WO2011122034A1 - 核酸クロマトグラフ法を利用した肺炎原因菌の検出方法 - Google Patents

核酸クロマトグラフ法を利用した肺炎原因菌の検出方法 Download PDF

Info

Publication number
WO2011122034A1
WO2011122034A1 PCT/JP2011/001934 JP2011001934W WO2011122034A1 WO 2011122034 A1 WO2011122034 A1 WO 2011122034A1 JP 2011001934 W JP2011001934 W JP 2011001934W WO 2011122034 A1 WO2011122034 A1 WO 2011122034A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleotide sequence
pneumoniae
probe
rna polymerase
Prior art date
Application number
PCT/JP2011/001934
Other languages
English (en)
French (fr)
Inventor
白井 睦訓
孝行 江崎
林 司
武史 宇治家
誠 我那覇
茂一 山本
Original Assignee
有限会社山口ティー・エル・オー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社山口ティー・エル・オー filed Critical 有限会社山口ティー・エル・オー
Priority to EP11762276.1A priority Critical patent/EP2557178B1/en
Priority to US13/637,815 priority patent/US9347944B2/en
Priority to CN201180016185.XA priority patent/CN102822352B/zh
Priority to JP2012508098A priority patent/JP5565781B2/ja
Publication of WO2011122034A1 publication Critical patent/WO2011122034A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56933Mycoplasma
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6865Promoter-based amplification, e.g. nucleic acid sequence amplification [NASBA], self-sustained sequence replication [3SR] or transcription-based amplification system [TAS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56916Enterobacteria, e.g. shigella, salmonella, klebsiella, serratia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56938Staphylococcus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56944Streptococcus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a detection method and detection kit for pneumonia-causing bacteria, and more particularly, Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Chlamydophilia pneumonia, Legionella pneumophila, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella cataur (MR)
  • the present invention relates to a detection method and a detection kit for pneumonia-causing bacteria that detect Staphylococcus aureus.
  • Pneumonia currently ranks fourth in Japanese mortality rates by cause of death, is often a complication of basic diseases such as cancer, and is known as a disease with a very large number of affected people.
  • culture tests that have been conducted as exploratory tests for microorganisms that cause pneumonia take at least several days, and when a drug susceptibility test is performed on the cultured causative bacteria, it can take up to a week. Therefore, it is said that the examination method does not sufficiently contribute to treatment selection.
  • ICU emergency life unit
  • the causative bacteria that cause pneumonia account for nearly 50% of the bacterial species with high frequency of occurrence, and it is said that there are about 20 to 30 main causative bacteria including viruses. Some of them cannot be cultured by a normal technique, and the causative bacteria may be difficult to determine by culture. In particular, in pneumonia, where antibiotics need to be appropriately selected and treated depending on the bacterial species and amount, it is possible to detect multiple types of pneumoniae at the same time and to quantitatively analyze the detected signals. Very important. In addition, although the optimal therapeutic drug varies depending on the type of causative bacteria, it is actually unavoidable to start treatment before determining the causative bacteria in terms of medical ethics. In order to solve these problems, development of a method capable of detecting specific bacteria quickly and quantitatively from a plurality of bacterial species has been awaited.
  • the lytA gene encoding Streptococcus pneumoniae autolytic enzyme (LytA), the gene encoding 16S rRNA of Haemophilus influenza, the gene encoding 16S rRNA of Streptococcus pneumoniae, Mycoplasma pneumoniae )
  • Primers derived from each of the 16S rRNA-encoding genes or a mip gene encoding a gene encoding 16S rRNA of Legionella pneumophila and a protein MIP that is a pathogenic factor of Legionella pneumophila
  • a method for simultaneously detecting four types of respiratory infection-causing bacteria using a primer set to which a primer derived from is added see, for example, Patent Document 1).
  • a pertussis bacteria containing a first oligonucleotide and a second oligonucleotide using a nucleic acid separated from a sample containing bacteria as a template a primer set that specifically amplifies a target sequence present in P.
  • a nucleic acid primer set capable of simultaneously amplifying 5 or more types of respiratory disease-causing virus target sequences selected from oligonucleotides containing 10 or more consecutive base fragments, and 10 or more consecutive bases
  • the step of obtaining cDNA is performed using, for example, reverse transcriptase, and reverse transcriptase reaction using reverse transcriptase is performed by RT-PCR. It is described that it may be used and that the amplification step can be performed by PCR ( In example, see Patent Document 4).
  • a method for specifically amplifying genes of genogroup I (GI) and genogroup II (GII), which are gene groups of noroviruses roughly classified in a trace amount A step of obtaining a complementary single-stranded nucleic acid by the NASBA method capable of amplifying a nucleic acid from the extracted RNA at a predetermined temperature, and an RT-LAMP method capable of amplifying the nucleic acid from the amplified product by the NASBA method at a predetermined temperature
  • a simple and highly sensitive detection method for norovirus which further comprises a step of amplifying a nucleic acid (see, for example, Patent Document 5).
  • the present inventors are primer sets used for detecting a plurality of types of pneumonia-causing bacteria.
  • multiplex PCR, real-time PCR, RT-PCR and the like are used for pneumococcus, influenza, From a primer set that enables simultaneous detection of Mycoplasma pneumoniae and Chlamydophila pneumoniae (see, for example, Patent Document 6), and a DNA sequence corresponding to a specific sequence of a target RNA from a fungus-specific RNA strand in 16S rRNA
  • a method for detecting and quantifying target RNA comprising preparing a liquid-phase universal primer having an RNA polymerase promoter sequence added to the 5 ′ end of the tag sequence, Staphylococcus spp., Streptococcus spp.
  • Two or more kinds selected from bacteria at least one first primer set having a tag sequence and a base sequence that selectively anneals to a target nucleic acid on a DnaJ gene held by the pathogenic microorganism, and the tag
  • a method for detecting pathogenic microorganisms (for example, see Patent Document 8) is proposed.
  • a method for specifically detecting or quantifying a target nucleic acid in a sample which is a single strand using a primer not bound to a hapten or peptide from a target nucleic acid arbitrarily extracted from a sample.
  • Amplifying as a nucleic acid detecting the amplified product by hybridizing with a first oligonucleotide probe complementary to the amplified product bound to the membrane and a complementary second oligonucleotide probe labeled with a colored polymer carrier
  • a method for detecting or quantifying a nucleic acid including a step and a step of evaluating the detected image by visual judgment has already been developed.
  • NASBA amplification using total RNA extracted from a cultured strain of methicillin-resistant Staphylococcus aureus (MRSA) as a template A method has been established for detecting amplification products using nucleic acid chromatostrips. For example, see Patent Document 9).
  • the object of the present invention is to provide Streptococcus pneumoniae, Haemophilus influenza, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis, methicillin resistance -Aureus (MRSA), Staphylococcus aureus (these individual bacteria are hereinafter referred to as “detection pneumoniae” or simply “pneumoniae”, sometimes collectively referred to as "10 types of detection pneumoniae”). It is to provide a rapid and accurate detection method and a detection kit used therefor.
  • the present inventors examined a method for further improving the detection accuracy of the causative agent of pneumonia for practical use in clinical practice, and found that the DnaJ gene has a gene polymorphism about 10 times the 16S rRNA sequence. Based on the DnaJ region and other gene regions specific to various pneumococci, primer pairs for each target region of 10 detection target pneumoniae contained in the DnaJ gene of 10 types of pneumoniae Designing a set, using this primer pair set, amplify the gene product by NASBA method, qualitatively quantitate the target nucleic acid that is the amplification product, and found that multiple types of pneumoniae causative bacteria can be detected with high accuracy It was.
  • the present invention relates to (1) Streptococcus pneumoniae, Hemophilus influenza, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis, methicillin resistant staphylococcus MRSA), a method for detecting pneumonia causative organisms to detect at least three types of pneumoniae selected from Staphylococcus aureus, 1) a target specific to each pneumoniae arbitrarily extracted from a sample Amplifying as a single-stranded nucleic acid from a nucleic acid using a primer (a); 2) a step of preparing at least three types of probe pairs different for each pneumococci selected from nucleotide sequences complementary to the amplification product ( 3) A step of preparing a first probe-bound labeled polymer carrier by binding at least three kinds of first probes of each pneumococci to the labeled polymer carrier
  • Reverse primer consisting of RNA polymerase promoter sequence added to the terminal side; forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 22, nucleotide sequence shown in SEQ ID NO: 32, and RNA polymerase promoter added to the 5 ′ terminal side thereof Reverse primer consisting of a sequence; a forward primer consisting of a nucleotide sequence shown in SEQ ID NO: 23, a reverse primer consisting of a nucleotide sequence shown in SEQ ID NO: 33 and an RNA polymerase promoter sequence added to the 5 ′ end side thereof; SEQ ID NO: 24 A forward primer comprising the nucleotide sequence shown in FIG.
  • RNA polymerase promoter sequence added to the 5 ′ end thereof; a forward comprising a nucleotide sequence represented by SEQ ID No. 28
  • a reverse primer comprising a nucleotide primer represented by SEQ ID NO: 38 and an RNA polymerase promoter sequence added to the 5 ′ end thereof; a forward primer comprising a nucleotide sequence represented by SEQ ID NO: 29; and represented by SEQ ID NO: 39
  • the primer comprises at least three different primer pairs selected from pneumoniae selected from a reverse primer comprising an RNA polymerase promoter sequence added to The at least three types of pneumoniae that comprise at least three types of pneumonia
  • the present invention also relates to (4) Streptococcus pneumoniae, Haemophilus influenza, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis, methicillin resistant staphylococcus MRSA), a kit for detecting pneumonia causing causative organisms for detection of at least three types of pneumoniae selected from Staphylococcus aureus, wherein a target nucleic acid specific for each pneumoniae arbitrarily extracted from a sample
  • a forward primer comprising the nucleotide sequence shown in SEQ ID NO: 21 that can be amplified, the nucleotide sequence shown in SEQ ID NO: 31, and an RNA polymerase added to the 5 ′ end side thereof Reverse primer consisting of a promoter sequence; a forward primer consisting of a nucleotide sequence shown in SEQ ID NO: 22, a reverse primer consisting of a
  • a first probe-bound labeled polymer carrier in which at least three kinds of first probes of pneumoniae different for each pneumoniae are bound to a labeled polymer carrier; 2) at least three types paired with the first probe
  • the second probe of each of the pneumoniae comprises a second probe-carrying development support that is solid-phased at a predetermined position that can be identified for each pneumoniae.
  • a kit, and (6) at least three kinds of first probes of each pneumococci are composed of at least three kinds of DNAs selected from the nucleotide sequences shown in SEQ ID NOs: 1 to 10, and at least paired with the first probes
  • the present invention makes it possible to quickly and accurately identify pneumonia-causing bacteria by a simple method when diagnosing pneumonia patients.
  • RNA amplification product by the NASBA method using a multiplex primer was detected about Legionella pneumophila, Pseudomonas aeruginosa, Klebsiella pneumoniae, MRSA, Haemophilus influenza.
  • FIG. 3 is a diagram showing that a target RNA amplification product was detected.
  • Moraxella catarrhalis it is a figure which shows that RNA amplified by NASBA was confirmed by real-time PCR that it was the target NASBA product of interest.
  • One specific example of the nucleic acid chromatography method of the present invention is shown as a schematic diagram. The figure which examined the non-specific binding between each probe for pneumoniae is shown.
  • RNA amplification product was detected by the nucleic acid chromatography when RNA amplification was separately performed by NASBA method. It is a figure which shows the verification result of the presence or absence of nonspecific reaction with object microbes other than the target microbe of each probe.
  • RNA amplification product was detected by the nucleic acid chromatography when RNA amplification was performed by NASBA method using a multiplex primer. It is the figure which used for the test piece for nucleic acid chromatograph measurement of this invention the 5 types of pneumonia causative bacteria.
  • a step of amplifying as a single-stranded nucleic acid using a primer from a target nucleic acid specific to each pneumoniae arbitrarily extracted from a sample (a); 2 ) Step (b) of preparing at least three kinds of probe pairs different from each pneumoniae selected from nucleotide sequences shown in SEQ ID NOs: 1 to 20 complementary to the amplification product; 3) shown in SEQ ID NOs: 1 to 10
  • Step (d) of preparing a development support carrying two probes (d); 5 The amplification
  • Detecting step (e); 6) step (f) for evaluating by determining a detection image; and at least three types of detection target pneumoniae selected from ten types of detection target pneumoniae as detection targets Although it is not particularly limited as long as it is a method, it is preferable to detect at least 5 types of pneumoniae to be detected, that is, 5 to 10 types.
  • a forward primer comprising the nucleotide sequence shown in SEQ ID NO: 21 capable of amplifying a target nucleic acid specific to each pneumoniae arbitrarily extracted from a sample
  • a reverse primer comprising a nucleotide sequence represented by SEQ ID NO: 31 and an RNA polymerase promoter sequence added to the 5 ′ end thereof
  • a forward primer comprising a nucleotide sequence represented by SEQ ID NO: 22
  • a nucleotide represented by SEQ ID NO: 32 A reverse primer comprising a sequence and an RNA polymerase promoter sequence added to the 5 ′ end thereof
  • a forward primer comprising a nucleotide sequence represented by SEQ ID NO: 23; a nucleotide sequence represented by SEQ ID NO: 33 and an addition to the 5 ′ end thereof
  • RNA Reverse primer consisting of a remerase promoter sequence
  • a forward primer consisting of a nucleotide sequence shown in SEQ ID NO: 21 capable of amplifying
  • a reverse primer consisting of the nucleotide sequence shown in SEQ ID No. 35 and the RNA polymerase promoter sequence added to the 5 ′ end thereof; consisting of the nucleotide sequence shown in SEQ ID No. 26 A reverse primer comprising a forward primer and a nucleotide sequence shown in SEQ ID NO: 36 and an RNA polymerase promoter sequence added to the 5 ′ end thereof; SEQ ID NO: 2 A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 37, a reverse primer consisting of the nucleotide sequence shown in SEQ ID NO: 37 and an RNA polymerase promoter sequence added to the 5 ′ end thereof; a forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 28 A reverse primer comprising a nucleotide sequence represented by SEQ ID NO: 38 and an RNA polymerase promoter sequence added to the 5 ′ end thereof; a forward primer comprising a nucleotide sequence represented by SEQ ID
  • Streptococcus pneumoniae Haemophilus influenzae, Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydophila pneumoniae (hereinafter referred to as “Pneumoniae for detection of outpatients”) when the above-mentioned three types of pneumoniae are detected.
  • Streptococcus pneumoniae such as Streptococcus pneumoniae, Haemophilus influenza and Mycoplasma pneumoniae, Streptococcus pneumoniae, Haemophilus influenza and Legionella pneumophila, Streptococcus pneumoniae, Haemophilus influenzae, and Chlamydophila pneumoniae Pseudomonas aeruginosa often detected in hospitalized patients due to hospital combinations or hospital infections , Klebsiella pneumoniae, Staphylococcus aureus, MRSA, Moraxella catarrhalis (hereinafter also referred to as “detected pneumoniae for inpatients”), Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus, and Klebsiella aureus Pneumonie, Staphylococcus aureus and MRSA, Pseudomonas aeruginosa, MRSA and Moraxella catarrhalis, Staphylococcus
  • Streptococcus pneumoniae When there are four types of pneumoniae to be detected, Streptococcus pneumoniae, Haemophilus influenza, Mycoplasma pneumoniae and Legionella pneumophila, Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae among the detection target pneumoniae for outpatients , Streptococcus pneumoniae, Streptococcus pneumoniae, Hemophilus influenza, Legionella pneumophila and Chlamydophila pneumoniae, Streptococcus pneumoniae, Mycoplasma pneumoniae, Legionella pneumophila and Chlamydophila pneumoniae, Hemophile, Emoplasma Legionella pneumophila and Among the four types of combinations such as Midophila pneumoniae and pneumoniae to be detected for hospitalized patients, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and MRSA, Pseudomonas aeruginosa, Klebsiella
  • MRA Streptococcus pneumoniae
  • Haemophilus influenza Mycoplasma pneumoniae, Legionella pneumophila, MRSA and Moraxella catarrhalis
  • Streptococcus pneumoniae Haemophilus influenza, Mycoplasma pneumoniae, Chlamydophila pneumoniae, MRSA and Moraxella catarrhalis
  • Streptococcus pneumoniae Hemophilus influenza, Mycoplasma pneumoniae, MRSA, Staphylococcus aureus and Moraxella catarrhalis
  • Streptococcus pneumoniae Influenza, Mycoplasma pneumoniae, cash register Nera pneumophila, Chlamydophila pneumoniae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Hemophilus influenza, Mycoplasma pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, MRSA, Streptococcus pneumoniae, Hemoni
  • detection pneumoniae for outpatients MRSA and Staphylococcus aureus
  • detection target pneumoniae for outpatients MRSA and Moraxella catarrhalis
  • Streptococcus pneumoniae hemophilus influenza , Mycoplasma pneumoniae, Legionella pneumophila, MRSA, Staphylococcus aureus and Moraxella catarrhalis
  • Streptococcus pneumoniae Hemophilus influenza, Mycoplasma pneumoniae, Chlamyphila pneumoniae, MRSA, Staphylococcus aureus Streptococcus pneumoniae, Haemophilus influenza, Mycoplasma pneumoniae, Pseudo 120 streets consisting of eggplant aeruginosa, MRSA, Staphylococcus aureus and Moraxella catarrhalis
  • Streptococcus pneumoniae Haemophilus influenza, Pseudomonas aeruginosa, Klebsiella pneumoniae, MRSA, Sta
  • MRA Staphylococcus aureus and Moraxella catarrhalis
  • Pneumoniae to be detected for outpatients Pseudomonas aeruginosa, MRSA and Staphylococcus Aureus
  • Pneumoniae to be detected for outpatients Pseudomonas aeruginosa, MRSA and Moraxella catarrhalis
  • Streptococcus pneumoniae Hemophilus influenza, Mycoplasma pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, MRSA, Staphylococcus aureus Moraxella catarrhalis
  • Streptococcus pneumoniae Hemophilus influenza, Mycoplasma pneumoniae, Kramidov La pneumoniae, Pseudomonas aeruginosa, MRSA
  • MRA Staphylococcus aureus
  • Moraxella catarrhalis Klebsiella pneumoniae, Streptococcus pneumoniae, Hemophilus influenza, Mycoplasma pneumoniae, Legionella ⁇ Pneumophila, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, MRSA, Moraxella catarrhalis, Streptococcus pneumoniae, Haemophilus influenza, Mycoplasma pneumoniae, Legionella pneumophila, Pseudomonas aergiosa aergiosa
  • lungs including Coccus aureus, Moraxella catarrhalis, etc. It can be exemplified a combination of fungi.
  • a target nucleic acid specific to each of the detection target pneumoniae arbitrarily extracted from a sample that may contain the detection target pneumoniae, the target nucleic acid
  • the target nucleic acid There is no particular limitation as long as it is a method of amplifying as a single-stranded nucleic acid using a primer capable of amplifying.
  • Specific target nucleic acids for each of the above pneumococci include Streptococcus pneumoniae lytA, Haemophilus influenza dnaJ, Mycoplasma pneumoniae dnaJ1, Chlamydophila pneumoniae dnaJ, Staphylococcus aureus spaA, Examples include nucleic acids in regions contained in MRSA mecA, Legionella pneumophila dnaJ, Moraxella catarrhalis dnaJ, Pseudomonas aeruginosa dnaJ, and Klebsiella pneumoniae dnaJ.
  • the primer pairs used in the above step (a) or (a ′) are primer pairs that can amplify pneumoniae-specific target nucleic acids in 10 types of pneumoniae to be detected. It is a primer pair including a target sequence that is different for each detection target pneumococci selected from the nucleotide sequences shown.
  • a combination of primer pairs consisting of (chimeric) primers is used. Also, instead of the above sequences, 5′-AGCGTATGAAATCCCTACTACTAT-3 ′ (SEQ ID NO: 54) and 5′-CAAAGATATCGCTGGAAGTCG-3 ′ (SEQ ID NO: 56) for Klebsiella pneumoniae, and 5′-GCGAGGTGGTCGTCTGCATGCATGCATGCATG A combination of a primer pair consisting of a forward primer and a reverse (chimeric) primer containing the target nucleotide sequence shown in (SEQ ID NO: 55) and 5′-GATGTGCAAGGTGGTGGGGA-3 ′ (SEQ ID NO: 57) can also be used.
  • a primer having the nucleotide sequence shown in SEQ ID NO: 21 to 30, 54 or 55 is used as the forward primer.
  • a tag sequence can be added to the 5'-end side of each of 10 types of target sequences that differ depending on the pneumoniae to be detected.
  • An example of such a tag sequence is 5'-TAGCAGGATCCCTCTAAG-3 '(SEQ ID NO: 41).
  • the reverse primer comprises a nucleotide sequence shown in SEQ ID NOs: 31 to 40, 56 or 57, and an RNA polymerase promoter sequence added to the 5 ′ end of each of 10 types of target sequences that differ depending on the pneumoniae to be detected. Use primers.
  • RNA polymerase promoter sequence examples include a T7 RNA polymerase promoter sequence, a T3 RNA polymerase promoter sequence, an SP6 RNA polymerase promoter sequence, and the like. Among them, the T7 RNA polymerase promoter sequence is preferable in terms of high RNA amplification efficiency. .
  • T7 RNA polymerase promoter sequences include 5'-AATTCTAATACGACTCACTATAGGGAG-3 '(SEQ ID NO: 42) and 5'-CTAATACGACTCACTATAGGGAG-3' (SEQ ID NO: 43).
  • any primer that can amplify target pneumoniae-specific target nucleic acids can be used as a primer in the present invention.
  • the forward primer and reverse primer can be synthesized by a conventional method using a DNA synthesizer or the like.
  • test samples that may contain the nucleic acid of the pneumoniae fungus to be detected in the above step (a) or (b ′) include saliva, sputum, peripheral blood, bronchoalveolar lavage, nasal lavage, and gargle from patients with pneumonia. Liquids, nasopharyngeal swabs, microorganisms contained in them, and cell lysates of cultures of such microorganisms.
  • RNA extraction method using guanidine thiocyanate or a nucleic acid extraction method using EDTA-SDS-phenol-ethanol
  • Extragen II manufactured by Tosoh Corporation
  • Mora-Extract Advanced Microorganism Research
  • the extracted RNA or DNA can be appropriately cleaved to prepare RNA or DNA containing one or a plurality of target RNAs or target DNA 5'-side sequences and 3'-side target-specific sequences.
  • RNA amplification method such as RNA amplification / detection by concerted reaction (Transcription Reverse Transcription Concerted Reaction, TRC method) can be used, but the NASBA method, particularly the NASBA method described in International Publication No. 2009/057330 is advantageous. Can be used.
  • This NASBA method is a method of amplifying a target RNA in a sample via RNA polymerase or reverse transcriptase.
  • a step of preparing a solid phase DNA (+) primer by immobilizing the 5 ′ end of the chimeric primer shown in SEQ ID NOs: 1 to 10 containing a DNA sequence corresponding to the 5 ′ target-specific sequence on the substrate surface;
  • B A step of preparing a liquid phase cDNA ( ⁇ ) primer shown in SEQ ID NOs: 11 to 20, in which a T7 RNA polymerase promoter sequence is added to the 5 ′ end side of a primer containing a cDNA sequence complementary to the 3 ′ side sequence of the target RNA.
  • (D) the liquid phase cDNA prepared in step (B) ( -) The primer and the sample RNA strand prepared in step (C) are contacted in the liquid phase, the liquid phase cDNA (-) primer and the sample RNA are hybridized, and then the DNA (-) strand by reverse transcriptase A step of preparing a cDNA strand-RNA strand complex by extending the RNA; and (E) the RNA strand in the DNA strand-RNA strand complex is specifically added to the cDNA strand-RNA strand complex prepared in step (D).
  • Phase DNA (+) primer in liquid phase Touch hybridize the single-stranded DNA (-) and the solid-phase DNA (+) primer, and then extend the DNA (+) strand with an enzyme having DNA-dependent DNA polymerase activity to (G) RNA polymerase is allowed to act on the double-stranded DNA prepared in step (F), and the single-stranded RNA ( ⁇ ) is converted using the RNA polymerase promoter sequence derived from the DNA ( ⁇ ) strand.
  • a method comprising the step of amplifying is disclosed.
  • the NASBA method the PCR method, the strand displacement amplification method (SDA method), the ligase chain reaction method (in order to amplify the target nucleic acid used in the above step (a) or (b ′) ( LCR method) can be used.
  • a forward primer a primer selected from the nucleotide sequences shown in SEQ ID NOs: 21 to 30, 54 or 55 is used, and a primer including the nucleotide sequence shown in SEQ ID NOs: 31 to 40, 56 or 57 is used as a reverse primer.
  • the probe pair used in the step (b) is different for each pneumococci selected from the nucleotide sequence complementary to the amplification product, for example, for each pneumoniae selected from the nucleotide sequences shown in SEQ ID NOs: 1 to 20.
  • they are different probe pairs and are shown as DNA sequences for convenience in the sequence listing, they may be probe pairs composed of DNA nucleotide sequences or probe pairs composed of RNA nucleotide sequences.
  • a probe pair consisting of a nucleotide sequence of DNA is preferable because of its excellent stability as a probe.
  • the probe pairs that differ depending on the pneumoniae to be detected include Streptococcus pneumoniae 5′-ACGCACGAGTATTGCACGAATAACC-3 ′ (SEQ ID NO: 1) and 5′-TGCCGAAAACCGCTTGATACAGGGAGT-3 ′ (SEQ ID NO: 11), and hemophilus influenza.
  • 5′-AACTTGTCCGCATTGCCACGGTTCT-3 ′ (SEQ ID NO: 44) and 5′-TGTGATAGGCTGTGGTGGCTCTGGGGG-3 ′ (SEQ ID NO: 49) of Chlamyphila pneumoniae (5′-TCAAGGGATTGAATCCTGATGCATGAATCGATGAATCGATGAATCG 45) and 5'-ATCTTGTGAAACCCTTTCTGGTCAA-3 '(SEQ ID NO: 50), Legionella pneumophila 5'-AAGAAGCAGCTATAGGAAAAAGAGT-3' (SEQ ID NO: 46) and 5'-GGGGCGCTGATTTGCAATTTAATGT-3 5'-TCGAACAGGGGCGGCATGGGC GCGG-3 '(SEQ ID NO: 47) and 5'-CAGAAGCGTGCGGCCTACGATCAGGT-3' (SEQ ID NO: 52), Pseudomonas aeruginosa 5'-TCCAGGTTCACCGGGGTTTC
  • the first probe is paired with at least three kinds of probes paired with the second probe, for example, a second probe selected from the nucleotide sequences shown in SEQ ID NOs: 1 to 10.
  • a second probe selected from the nucleotide sequences shown in SEQ ID NOs: 1 to 10.
  • examples include at least three types, preferably at least five types of first probes of pneumoniae.
  • a first probe-bound labeled polymer in which five types of first probes of pneumoniae are bound to a labeled polymer carrier. Two sets of carriers can be used simultaneously.
  • DNA having the nucleotide sequence shown in SEQ ID NOs: 1 to 10 having an additional group introduced at the 5 ′ or 3 ′ end is introduced into the additional group.
  • the additional group include an amino group, a carboxyl group, a hydroxyl group, and a thiol group.
  • an amino group is preferable.
  • a first probe in which one first probe is bound to one labeled polymer carrier as in the prior art. Since there is no need for an operation of mixing a plurality of probe-bound labeled polymer carriers, the detection operation is simplified, and the labeled polymer carrier concentration described below, such as labeled latex, can be set to an optimum concentration. This is preferable.
  • FIG. 13 One specific example of the present invention is shown in FIG. 13 as a schematic diagram.
  • Examples of the polymer carrier in the labeled polymer carrier include carboxymethyl cellulose (CMC), hydrophilic resins such as polyacrylate having a carboxyl group, acrylic latex, polyester latex, polystyrene latex, polyurethane latex, and polyacetic acid.
  • Examples of the latex include vinyl latex, SBR resin, NBR resin, polyamide latex, and carboxy-modified polystyrene latex.
  • carboxyl group-containing polystyrene latex solid content 4% (w / W)) (Duke Scientific) or carboxyl group-containing polystyrene latex (solid content 10% (w / w)) (Bangs).
  • Specific methods for preparing the first probe-bound labeled polymer carrier include, for example, at least three types selected from nucleotide sequences represented by SEQ ID NOs: 1 to 10, respectively.
  • the particle size of the polymer carrier can be appropriately selected, but is preferably selected from particle sizes smaller than the membrane pore size. For example, the size of particles having a diameter of 500 nm or less can be selected.
  • a polymer carrier exhibiting a color distinguishable from the color of the development support may be used, and a polymer carrier colored with a pigment or the like may be used.
  • a polymer carrier can also be used.
  • the second probe in the step (d) at least three kinds of probes paired with the first probe, for example, at least paired with the first probe selected from the nucleotide sequences shown in SEQ ID NOs: 11 to 20 are used.
  • Examples of the method for preparing the support carrying and carrying the second probe include a method in which the second probe is immobilized on a predetermined position on the development support for each pneumoniae.
  • a method in which a probe having the nucleotide sequence shown in SEQ ID NOs: 11 to 20 having an additional group introduced at the 3 ′ end is immobilized on a development support.
  • Examples of the addition group include an amino group, a carboxyl group, a hydroxyl group, and a thiol group.
  • an amino group is preferable. Regardless of the presence or absence, it is possible to produce the second probe using a known method such as a chemical synthesis method.
  • Examples of the development support include nylon membrane derivatives such as nylon membranes and carboxyl group-modified nylon membranes, cellulose membrane derivatives such as cellulose membranes and nitrocellulose membranes, and the nucleotide sequences shown in SEQ ID NOs: 11 to 20 above.
  • nylon membrane derivatives such as nylon membranes and carboxyl group-modified nylon membranes
  • cellulose membrane derivatives such as cellulose membranes and nitrocellulose membranes
  • the nucleotide sequences shown in SEQ ID NOs: 11 to 20 above In the case where an amino group is introduced, at least three kinds, preferably at least five kinds, selected from the nucleotide sequences shown in SEQ ID NOs: 11 to 20 by a reaction that forms a covalent bond via an amino group and a carboxyalkyl group. Since the second probe of each pneumoniae can be easily solid-phased at a predetermined position that can be identified on the development support, a carboxyl group-modified nylon membrane is preferable.
  • a carboxyl group-modified nylon membrane is treated with water-soluble carbodiimide, activated by washing with deionized water, and the activated carboxyl group-modified nylon membrane.
  • the nucleotide having the second probe sequence is immobilized on a predetermined position appropriately allocated so as to be distinguishable for each pneumoniae, air-dried for 15 minutes, and then the nucleotide having the second probe sequence is immobilized.
  • An example is a method in which the carboxyl group-modified nylon membrane is treated with a Tris base buffer to eliminate active groups, and the membrane on which nucleotides are immobilized is washed with deionized water.
  • the form of immobilizing the nucleotide having the second probe sequence is not particularly limited, and may be a line shape or a circular spot shape.
  • a method of detecting the amplification product in the step (e) a method of detecting by hybridizing the amplified single-stranded nucleic acid to the second probe carried on the development support and the labeled polymer carrier-bound first probe. If it is not particularly limited, it is preferable to hold a first probe-bound labeled polymer carrier in which a plurality of first probes are bound to a labeled polymer carrier in advance in a holding part, and as such a holding part, ADVANTEC made by ADVANTEC An absorbent pad can be preferably exemplified.
  • Such a holding part composed of an absorption pad or the like holding the first probe-bound labeled polymer carrier is sequentially connected to the other end of the second probe-carrying development support so that it can be advantageously used in the detection method of the present invention. It can be used as a test piece for nucleic acid chromatography.
  • Examples of the method for producing the holding part include a method in which a labeled polymer carrier to which a plurality of nucleotides having the first probe sequence are bonded is applied to the holding part and dried.
  • step (e) as a method of detecting the amplification product in the step (a) by hybridizing to the second probe supported on the development support and the first probe bound to the labeled polymer carrier, for example, By immersing the nucleic acid chromatograph test piece in a solution containing an amplification product, the first probe-bound labeled polymer carrier is leached from the holding part to the development support, and the first probe on the development support
  • the second probe of each detection target pneumococci forming a pair reaches a predetermined position where the solid phase is immobilized, the amplification product can be captured by sandwich hybridization at the predetermined position. Even when a plurality of types of target single-stranded nucleic acids are present in the amplification product, they are sequentially captured by each second probe at a predetermined position.
  • step (f) the labeled polymer carrier to which the nucleotide having the first probe sequence is bound has reached the position where the nucleotide having the second probe sequence has been immobilized on the development support.
  • nucleotides consisting of the sequences shown in SEQ ID NOs: 44 to 48 can be used, and the sequences shown in SEQ ID NOs: 11 to 20
  • nucleotides consisting of the sequences shown in SEQ ID NOs: 49 to 53 can be used.
  • Examples of the method for qualitatively and quantitatively determining the target nucleic acid in the step (c ′) include electrophoresis, hybridization method, and sequencing method.
  • Examples of the electrophoresis method include a method of analyzing the molecular weight of the amplified product by a molecular sieving effect using an agarose gel, and an analysis system of Agilent Technology Co., Ltd. using capillary electrophoresis.
  • Examples of the hybridization method include a method of monitoring and analyzing the production process of the amplification product in real time using a reagent for real time monitoring, such as real time PCR. Examples of the real-time monitoring reagent include TaqMan (registered trademark: Applied Biosystems) probe.
  • the hybridization method can also include a Northern blot method.
  • Examples of the sequencing method include a dideoxy method in which the synthesis of DNA polymerase is stopped in a base-specific manner using dideoxynucleotides.
  • the detection kit for pneumoniae causing bacteria of the present invention can be used in the detection method for the pneumoniae causing bacteria of the present invention, and a target nucleic acid specific to each pneumoniae arbitrarily extracted from a sample can be amplified.
  • a forward primer comprising a nucleotide sequence represented by SEQ ID NO: 23; and SEQ ID NO: 33 Nucleus shown in A reverse primer comprising a tide sequence and an RNA polymerase promoter sequence added to the 5 ′ end thereof; a forward primer comprising a nucleo
  • Such a kit includes the above-described primer pair, various reagents used in the RNA amplification method in the step (b ′), and the target nucleic acid in the step (c ′).
  • Various reagents used for qualitative / quantitative determination may be provided.
  • an amplification set that amplifies as a single-stranded nucleic acid using a primer from a target nucleic acid specific to each pneumoniae arbitrarily extracted from a sample; a nucleotide sequence complementary to the amplification product, eg, SEQ ID NOs: 1 to 10 Or a first probe-bound labeled polymer carrier in which at least three kinds of first probes of pneumococcus selected from the nucleotide sequences shown in 44 to 48 are bound to the labeled polymer carrier; A second probe made of, for example, a second probe of at least three types of pneumococci selected from the nucleotide sequences shown in SEQ ID NOs: 11 to 20 or 49 to 53, at a predetermined position identifiable for each pneumoniae
  • a kit including a second probe-carrying development support dedicated to each pneumococcus or shared by a plurality of pneumococci, and the amplification set and the nucleic acid chroma A kit and a graph for
  • PCR was performed using EX Taq Hot start (manufactured by TaKaRa bio) as an instrument, using TaKaRaPCR Thermal CyclerGP as a reagent kit in accordance with the protocol described in the following. 95 ° C .; 3 min, (95 ° C .; 10 sec, 65 ° C .; 10 sec, 72 ° C .; 10 sec) ⁇ 40 cycles.
  • the obtained PCR product was analyzed by electrophoresis using MultiNA. The result of electrophoresis is shown in FIG. Since the PCR product obtained in any strain was amplified, it was found that the newly designed primer pair was useful for detecting Moraxella catarrhalis.
  • RNA as a template was prepared by DNA cloning using a plasmid vector.
  • the target gene region was cloned to produce a recombinant.
  • each DNA fragment of the target gene dnaJ of Mycoplasma pneumoniae or Chlamyphila pneumoniae was inserted into a plasmid vector, and then E. coli serving as a host was transformed. After extracting the plasmid from E.
  • RNA target gene by NASBA method As a forward primer, a primer in which TAGCAGGATCCCTCTAG (SEQ ID NO: 41) is added to the 5 ′ end side of each of 10 types of target sequences for each detection target pneumoniae selected from the nucleotide sequences shown in SEQ ID NOs: 21 to 40, and reverse is used.
  • a promoter in which CTAATACGACTCACTATAGGGGAG (SEQ ID NO: 43) was added as a T7 RNA polymerase promoter sequence on the 5 ′ end side of each of 10 types of target sequences that differ for each pneumoniae to be detected was used.
  • RNA extracted from the seven standard strains of the above Streptococcus pneumoniae, Legionella pneumophila, Klebsiella pneumoniae, Moraxella catarrhalis, Staphylococcus aureus, Mycoplasma pneumoniae, and Chlamydophila pneumoniae for each bacterial species Data obtained by performing NASBA method to amplify RNA of a target gene is shown.
  • RNA extraction was carried out using MORA-EXTRACT (manufactured by Advanced Microorganism Research) according to the attached protocol, and NASBA method was carried out using the NASBA Amplification kit (manufactured by Kainos) according to the attached protocol.
  • RNA samples used as templates for Streptococcus pneumoniae, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, Klebsiella pneumoniae, Moraxella catarrhalis, Staphylococcus aureus are 1, 1/10, 1/100, 1 / 1000-fold dilutions were used for each, using Bio Analyzer; Agilent RNA Pico 6000.
  • Bio Analyzer Agilent RNA Pico 6000.
  • an enzyme-free reaction solution was prepared and carried out in the same process. The results are shown in FIGS. It was confirmed that RNA was amplified by the NASBA method for all target detection-target pneumonia-causing species.
  • FIG. 10 shows the results of studies on multiplexing using the present primer pairs for Legionella pneumophila, Pseudomonas aeruginosa, Chlamydophila pneumoniae, MRSA, and Haemophilus influenza.
  • FIG. 11 shows the multiplex examination results using this primer pair for Staphylococcus aureus, Streptococcus pneumoniae, Moraxella catarrhalis, Mycoplasma pneumoniae, and Chlamydophila pneumoniae. It was confirmed that RNAs of all target detection target pneumonia causative species were amplified by the NASBA method.
  • RNA amplified by NASBA It is necessary to determine whether the RNA amplified by NASBA has the target sequence of interest. Perform real-time PCR targeting DNA synthesized as a by-product of NASBA reaction, measure the Ct value of the control of NASBA product and NASBA unreacted sample, and indirectly confirm the target NASBA product by comparing this difference did. Using SYBR premixEX Taq Hot start (TaKaRa bio), PCR was performed under the conditions of 95 ° C .; 3 min, (95 ° C .; 10 sec, 65 ° C .; 10 sec, 72 ° C .; 10 sec) ⁇ 40 cycles. It was. In all bacterial species, RNA amplified by NASBA indirectly confirmed the target NASBA product of interest. An example of Moraxella catarrhalis is shown in FIG.
  • sequence information analysis software DNASISSpro registered trademark (Hitachi Software Co., Ltd.) was used for analysis, and oligonucleotide probes having the sequences shown in SEQ ID NOs: 1 to 20 were determined.
  • HEPES [4- (2-Hydroxyethyl) -1-piperazinyl] ethanesulfonic acid
  • a nonionic surfactant in the resulting precipitate manufactured by Saikyo Kasei Co., Ltd.
  • a labeled polymer carrier having a plurality of nucleotides having the first probe sequence bound thereto was prepared and stored at 4 ° C. until use.
  • One kind of the above 3′-terminal amino group-introduced oligonucleotide (second probe) was bound to the activated carboxyl group-modified nylon membrane and air-dried for 15 minutes. After treating the air-dried membrane with a Tris base buffer to remove the remaining active groups, the membrane is washed with deionized water and air-dried again, so that the oligonucleotide having the second probe sequence can be Thus, a development support that was solid-phased in a line at a predetermined position that was distinguishable from each other was produced. Since there are 3 or more types of pneumoniae to be detected, the above treatment was performed at least 3 times for each pneumoniae.
  • the reference line is a line detected for the purpose. Since this line is detected for the purpose of confirming the flow of the labeled polymer carrier, it is preferable to detect the reference line even when there is a nucleic acid of the pneumonia causing bacteria to be detected.
  • a test piece for nucleic acid chromatography used in the present invention was prepared as follows.
  • a labeled polymer carrier to which a plurality of nucleotides having the first probe sequence of each of the aforementioned pneumococci was bonded was dissolved in a buffer solution, applied to a development pad (manufactured by ADVANTEC), and then dried to form a holding part.
  • a holding portion was connected to one end of the development support at a portion that did not overlap the development support. Further, an absorption pad (manufactured by ADVANTEC) was connected to the other end of the development support to obtain a test piece for nucleic acid chromatography measurement.
  • the first probe-bound labeled polymer carrier to which one probe is bound is used, and the second probe-carrying development support is 5 sheets each carrying 5 types of second probes of detection target pneumoniae for outpatients.
  • a second probe-carrying deployment support (dedicated) and five second probe-carrying deployment supports (dedicated) each carrying 5 types of second probes of pneumoniae to be detected for hospitalized patients were used. The results are shown in FIG. In any strain used in the experiment, a red colored line is observed at the reference position, and in the absence of the amplification product, non-specific binding is present between the labeled polymer carrier-bound first probe and the second probe. It was confirmed that it did not occur.
  • NASBA product by nucleic acid chromatography
  • Legionella pneumophila, Pseudomonas aeruginosa, Klebsiella pneumoniae, MRSA, Haemophilus influenza, Staphylococcus aureus, Streptococcus pneumoniae, Moraxella catarrhalis, Mycoplasma pneumoniae, Chlamydophila pneumoniae NASBA products were detected and examined by nucleic acid chromatography. Test specimens for measurement were prepared individually for each detection target pneumococci using the probes shown in Table 2 according to the above method. The result is shown in FIG. All NASBA products were detected on nucleic acid chromatostrips to which probes for each pneumococcus were bound.
  • NASBA product amplified with multiplex primer by nucleic acid chromatography Multiple primer pairs using Legionella pneumophila, Pseudomonas aeruginosa, Klebsiella pneumoniae, MRSA, Haemophilus influenza, Staphylococcus aureus, Streptococcus pneumoniae, Moraxella catarrhalis, Mycoplasma pneumoniae, Chlamydophila pneumoniae NASBA products amplified with the primers were detected by nucleic acid chromatography. The result is shown in FIG. All NASBA products amplified using multiplex primers were detected by nucleic acid chromatography.
  • Legionella pneumophila is cultured at 35 ° C. using BCYE ⁇ medium
  • Chlamydia pneumoniae is cultured using HEp-2 cells
  • Mycoplasma pneumoniae is cultured at 37 ° C. using PPLO medium
  • Haemophilus influenzae is The culture was performed at 37 ° C. using a chocolate medium
  • Streptococcus pneumoniae was cultured at 37 ° C. using a sheep blood medium.
  • Nucleic acids were extracted from each sample from 100 ⁇ L of each bacterial suspension using EXTRAGENII reagent (manufactured by Tosoh Corporation), and the nucleic acids of the above five types of bacteria were dissolved with 50 ⁇ L of RNase free water.
  • Each target of 10 bacterial species different from the probe pair set of the present invention using 2.5 ⁇ L of nucleic acid solution using NASBA Amplification Kit (manufactured by Kainos) and using NASBA Amplification Kit (manufactured by Kainos) with totalRNA as a template NASBA amplification reaction was performed using a primer pair specific to each bacterial species that hybridizes to a sequence in the region.
  • the primer concentration for each bacterium was prepared so that the final concentration was 0.2 ⁇ M.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、レジオネラ・ニューモフィラ、クレブシエラ・ニューモニエ、シュードモナス・アエルギノーサ、モラクセラ・カタラーリス、メチシリン耐性スタフィロコッカス・アウレウス(MRSA)、スタフィロコッカス・アウレウスの10種類の検出対象肺炎菌の迅速で正確な検出方法や検出キットを提供するものである。10種類の各肺炎原因菌のDnaJ遺伝子等に含まれる10菌種の各ターゲット領域に対するプライマー対のセットを設計し、かかるプライマー対のセットを用いて、遺伝子産物を増幅する。さらにかかる増幅産物を、プライマー対のセットとは異なる10菌種の各ターゲット領域内の配列にハイブリダイズする各菌種固有のプローブ対のセットを設計する。かかるプローブ対のセットとして、複数の肺炎菌の第1のプローブを結合させた第1プローブ結合標識高分子担体と、固相化した第2プローブ担持展開支持体を用い、核酸クロマトグラフ法を行う。

Description

核酸クロマトグラフ法を利用した肺炎原因菌の検出方法
 本発明は、肺炎原因菌の検出方法や検出キット、より詳しくは、ストレプトコッカス・ニューモニエ(Streptococcus pneumoniae)、ヘモフィルス・インフルエンザ(Haemophilus influenzae)、マイコプラズマ・ニューモニエ(Mycoplasma pneumoniae)、クラミドフィラ・ニューモニエ(Chlamydophilia pneumoniae)、レジオネラ・ニューモフィラ(Legionella pneumophila)、クレブシエラ・ニューモニエ(Klebsiella pneumoniae)、シュードモナス・アエルギノーサ(Pseudomonas aeruginosa)、モラクセラ・カタラーリス(Moraxella catarrhalis)、メチシリン耐性スタフィロコッカス・アウレウス(MRSA)(Staphylococcus aureus (MRSA))、スタフィロコッカス・アウレウス(Staphylococcus aureus)を検出対象とする肺炎原因菌の検出方法や検出キットに関する。
 肺炎は、現在のところ日本人の死因別死亡率で第4位であり、がん等の基礎疾患の合併症としてもしばしば起こり、罹患者数が非常に多い疾患として知られている。従来肺炎の原因となる微生物(原因菌)の探索試験として行われている培養検査は少なくとも数日の時間を要し、更に培養された原因菌について薬剤感受性試験を行うと1週間近くもかかることから、治療選択に十分寄与する検査方法にはなっていないとされている。救急救命病室(ICU)に入院が必要な重症の肺炎に関しては、迅速で正確な原因菌の決定が治療選択において極めて重要であり、適切な初期治療は肺炎患者の救命確率を確実に上昇させることが報告されている。しかし実際には、依然として培養法に代わる原因菌同定技術が確立されていないため、原因菌が不明の状態で治療を行わなければならないのが現状であり、経験治療による抗生物質の使用がやむを得ず行われることで耐性菌の出現に繋がるおそれがある。
 肺炎の原因となる原因菌は、発生頻度の高い菌種が全体の50%近くを占め、ウイルスまで含めた主な原因菌は20~30種類程度であるとされている。この中には通常の手法で培養できないものもあり、また、培養によっても原因菌決定が困難である場合もある。特に、菌種・菌量に依存して抗生物質を適宜選択して治療する必要がある肺炎においては、複数種類の肺炎原因菌を同時に検出することと、検出されたシグナルの定量的な解析が非常に重要である。また、原因菌の種類によって最適な治療薬が異なるが、原因菌決定前に治療を開始するのも医療倫理上やむを得ないというのが実情である。これらの問題を解決するために、複数の菌種の中から特定の菌を迅速かつ定量的に検出可能な手法の開発が待たれていた。
 例えば、肺炎球菌(Streptococcus pneumoniae)の自己溶菌酵素(LytA)をコードするlytA遺伝子、インフルエンザ菌(Haemophilus influenza)の16SrRNAをコードする遺伝子、化膿レンサ球菌の16SrRNAをコードする遺伝子、マイコプラズマ・ニューモニエ(Mycoplasma Pneumoniae)の16SrRNAをコードする遺伝子のそれぞれに由来するプライマー、又は、さらにレジオネラ菌(Legionella pneumophila)の16SrRNAをコードする遺伝子及びレジオネラ・ニューモフィラ(Legionella pneumophila)の病原因子であるタンパク質MIPをコードするmip遺伝子に由来するプライマーを加えたプライマーセットを用いて、4種類の呼吸器感染症起因菌を同時に検出する方法(例えば、特許文献1参照)が提案されている。
 また、呼吸器疾患と関連した10種のバクテリアに特異的なプライマーセットとして、バクテリアを含む試料から分離された核酸をテンプレートとし、一番目のオリゴヌクレオチドと、二番目のオリゴヌクレオチドとを含む百日咳菌、肺炎クラミドフィラ菌、インフルエンザ菌、マイコプラズマ肺炎菌、クレブシエラ肺炎菌、レジオネラ肺炎菌、モラクセラ・カタラーリス、緑膿菌、黄色ブドウ球菌及び肺炎レンサ球菌に存在する標的配列を特異的に増幅するプライマーセットと、かかる菌に存在する標的核酸を特異的に検出するプローブからなる、呼吸器疾患と関連した10種のバクテリアに特異的なプライマーセット及びプローブオリゴヌクレオチドセット(例えば、特許文献2及び3参照)が提案されている。
 また、10個以上の連続塩基の断片を含むオリゴヌクレオチドから選択される5種以上の呼吸器疾患を引き起こすウイルスの標的配列を同時に増幅させることができる核酸プライマーセットや、10個以上の連続塩基の断片を含むオリゴヌクレオチドおよびそれに相補的なオリゴヌクレオチドからなる群から選択される長さが10bp~100bpである一つ以上のオリゴヌクレオチドを含む、はしかウイルス、エンテロウイルス、ライノウイルス、SARS関連コロナウイルス(SARS-coV)、ヘルペス・ゾスターウイルス(VZV)、アデノウイルス、ヒトパラインフルエンザウイルス1(HPIV1)、ヒトパラインフルエンザウイルス2(HPIV2)、ヒトパラインフルエンザウイルス3(HPIV3)、インフルエンザウイルスA(IVA)、インフルエンザウイルスB(IVB)、呼吸器多核体ウイルスA(RSVA)および呼吸器多核体ウイルスB(RSVB)のうち一つ以上を検出するためのプローブオリゴヌクレオチドが提案され、試料から核酸を得るステップと、前記核酸プライマーセットを利用して前記核酸を増幅するステップと、前記増幅産物を検出するステップが含まれる旨記載され、試料から核酸を得るステップは、試料からRNAを分離するステップと、分離されたRNAからcDNAを得るステップとを含み、cDNAを得るステップは、例えば、逆転写酵素を利用してなされ、逆転写酵素を利用する逆転写酵素反応は、RT-PCRを用いてもよいことや、前記増幅するステップは、PCRによって行われうる旨が記載されている(例えば、特許文献4参照)。
 一方、試料中に微量に存在する大別されるノロウイルスの遺伝子グループであるジェノグループI(GI)とジェノグループII(GII)の遺伝子を特異的に増幅するための方法であって、試料中より抽出されたRNAから所定の温度下で核酸を増幅できるNASBA法による相補的な1本鎖核酸を得る工程と、該NASBA法による増幅産物を所定の温度下で核酸を増幅できるRT-LAMP法により、さらに核酸を増幅する工程とを含む工程からなることを特徴とするノロウイルスの簡易高感度検出法が提案されている(例えば、特許文献5参照)。
 本発明者らは、複数種類の肺炎原因菌の検出に用いられるプライマーセットであって、通常のPCRに加えて、マルチプレックスPCR、リアルタイムPCR、RT-PCR等を用いて肺炎球菌、インフルエンザ菌、マイコプラズマ・ニューモニエ、及びクラミドフィラ・ニューモニエを同時に検出が可能となるプライマーセット(例えば、特許文献6参照)や、16SrRNA中の菌特異的なRNA鎖から、標的RNAの特異的配列に相当するDNA配列とタグ配列の5’ 末端にRNAポリメラーゼプロモーター配列を付加した液相ユニバーサルプライマーを調製することを含む、標的RNAの検出・定量方法(例えば、特許文献7参照)や、Staphylococcus属菌、Streptococcus属菌、Klebsiella属菌、Escherichia属菌、Mycobacterium属菌、Legionella属菌、Vibrio属菌、Bacillus属菌、Neisseria属菌、Campylobacter属菌、Chlamydia属菌、 Chlamydophila属菌、Mycoplasma属菌、Listeria 属菌、Salmonella属菌及びYersinia属菌から選択される1種又は2種以上の細菌から選択される2種以上であり、タグ配列と前記病原微生物が保持するDnaJ遺伝子上のターゲット核酸に選択的にアニールする塩基配列とを有する少なくとも1種類の第1のプライマーセットと、前記タグ配列と実質的に同一のタグ配列を有する少なくとも1種類の第2のプライマーセットとを用いてポリメラーゼ連鎖反応を実施するポリメラーゼ連鎖反応工程と、前記ターゲット核酸を含む増幅産物を検出する工程とを備える病原微生物の検出方法(例えば、特許文献8参照)を提案している。
 また、試料中の標的となる核酸を特異的に検出又は定量するための方法であって、試料中より任意に抽出された標的核酸からハプテン又はペプチドを結合していないプライマーを用いて1本鎖核酸として増幅する工程、該増幅産物をメンブレンに結合した増幅産物と相補的な第1のオリゴヌクレオチドプローブ及び着色高分子担体で標識した相補的な第2のオリゴヌクレオチドプローブとハイブリダイズさせて検出する工程及び該検出像を目視判定により評価する工程を含む核酸の検出又は定量方法について既に開発し、例えばメチシリン耐性スタフィロコッカス・アウレウス(MRSA)の培養菌株から抽出した全RNAを鋳型としてNASBAの増幅反応を行い、増幅産物を核酸クロマトストリップにより検出する方法を確立している(例えば、特許文献9参照)。
 NASBA法と核酸クロマトグラフィーを組み合わせた、ノロウイルス遺伝子の2種類の遺伝子タイプを検出するための試薬(スイフトジーン ノロウイルスGI/GII「カイノス」)も報告されているが、かかる試薬は、遺伝的に多様な15種類以上の遺伝子型が属するGIタイプと、18種類以上の遺伝子型が属するGIIタイプを大別して判定するものであって、原因肺炎菌を特定するための精度を有するものとはいえなかった。
特開2005-110545号公報 特開2006-174837号公報 特許第4235645号公報 特開2006-180878号公報 特開2009-240207号公報 特開2009-39046号公報 国際公開2009/057330号パンフレット 国際公開2008/041354号パンフレット 特許第4268944号公報
 本発明の課題は、肺炎患者の診断に際して、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、レジオネラ・ニューモフィラ、クレブシエラ・ニューモニエ、シュードモナス・アエルギノーサ、モラクセラ・カタラーリス、メチシリン耐性スタフィロコッカス・アウレウス(MRSA)、スタフィロコッカス・アウレウス(これら個々の菌を以下「検出対象肺炎菌」又は単に「肺炎菌」、総称して「10種類の検出対象肺炎菌」ということがある。)の迅速で正確な検出方法や、それに用いる検出キットを提供することにある。
 本発明者らは、臨床における実用化を図るために、肺炎の原因菌の検出精度をより高める方法について検討し、DnaJ遺伝子が16SrRNA配列の約10倍の遺伝子多型を有するとされる知見をもとにDnaJ領域をはじめ、各種肺炎菌に特異的な遺伝子領域を中心に、10種類の各肺炎原因菌のDnaJ遺伝子等に含まれる10種類の検出対象肺炎菌の各ターゲット領域に対するプライマー対のセットを設計し、かかるプライマー対のセットを用いて、NASBA法により遺伝子産物を増幅し、増幅産物である標的核酸を定性・定量して、複数種類の肺炎原因菌を高精度に検出できることを見いだした。さらにかかる増幅産物を、プライマー対のセットとは異なる10種類の検出対象肺炎菌の各ターゲット領域内の配列にハイブリダイズする各種肺炎菌固有のプローブ対のセットを設計し、かかるプローブ対のセットを用いて核酸クロマトグラフ法を行うことにより、一回の操作で10種類までの複数種類の検出対象肺炎菌を高精度に検出できることを見いだし、本発明を完成するに至った。
 すなわち、本発明は、(1)ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、レジオネラ・ニューモフィラ、クレブシエラ・ニューモニエ、シュードモナス・アエルギノーサ、モラクセラ・カタラーリス、メチシリン耐性スタフィロコッカス・アウレウス(MRSA)、スタフィロコッカス・アウレウスから選ばれる少なくとも3種類の肺炎菌類を検出対象とする肺炎原因菌の検出方法であって、1)試料中より任意に抽出された各肺炎菌に特異的な標的核酸からプライマーを用いて1本鎖核酸として増幅する工程(a);2)増幅産物と相補的なヌクレオチド配列から選ばれる、肺炎菌ごとに異なる少なくとも3種類のプローブ対を調製する工程(b);3)標識高分子担体に少なくとも3種類の各肺炎菌の第1のプローブを結合させ、第1プローブ結合標識高分子担体を調製する工程(c);4)第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブを、肺炎菌ごとに識別可能な所定の位置に固相化した第2プローブ担持展開支持体を調製する工程(d);5)前記増幅産物を、展開支持体に担持された第2プローブ及び標識高分子担体に結合した第1プローブにハイブリダイズさせて検出する工程(e);6)検出像を判定することにより評価する工程(f);の各工程を備えたことを特徴とする検出方法や、(2)プライマーが、配列番号21に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号31に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号22に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号32に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号23に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号33に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号24に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号34に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号25に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号35に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号26に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号36に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号27に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号37に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号28に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号38に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号29に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号39に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号30に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号40に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;から選ばれる、肺炎菌ごとに異なる少なくとも3種類のプライマー対であることを特徴とする上記(1)記載の検出方法や、(3)少なくとも3種類の各肺炎菌の第1のプローブが、配列番号1~10に示されるヌクレオチド配列から選ばれる少なくとも3種類のDNAからなり、第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブが、配列番号11~20に示されるヌクレオチド配列から選ばれる少なくとも3種類のDNAである上記(1)又は(2)記載の検出方法に関する。
 また、本発明は、(4)ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、レジオネラ・ニューモフィラ、クレブシエラ・ニューモニエ、シュードモナス・アエルギノーサ、モラクセラ・カタラーリス、メチシリン耐性スタフィロコッカス・アウレウス(MRSA)、スタフィロコッカス・アウレウスから選ばれる少なくとも3種類の肺炎菌類を検出対象とする肺炎原因菌の検出キットであって、試料中より任意に抽出された各肺炎菌に特異的な標的核酸を増幅することができる配列番号21に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号31に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号22に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号32に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号23に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号33に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号24に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号34に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号25に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号35に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号26に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号36に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号27に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号37に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号28に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号38に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号29に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号39に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号30に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号40に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;から選ばれる、肺炎菌ごとに異なる少なくとも3種類のプライマー対を備えたことを特徴とするキットや、(5)さらに、1)増幅産物と相補的なヌクレオチド配列から選ばれる、肺炎菌ごとに異なる少なくとも3種類の各肺炎菌の第1のプローブが標識高分子担体に結合された第1プローブ結合標識高分子担体;2)第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブが、肺炎菌ごとに識別可能な所定の位置に固相化されたた第2プローブ担持展開支持体;を備えたことを特徴とする上記(4)記載のキットや、(6)少なくとも3種類の各肺炎菌の第1のプローブが、配列番号1~10に示されるヌクレオチド配列から選ばれる少なくとも3種類のDNAからなり、第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブが、配列番号11~20に示されるヌクレオチド配列から選ばれる少なくとも3種類のDNAであることを特徴とする上記(5)記載のキットに関する。
 本発明により、肺炎患者の診断に際して、簡便な方法により、迅速で正確な肺炎原因菌の特定が可能となった。
8株のモラクセラ・カタラーリス菌株を対象とし、プライマー対を用いた検証データを示す図である。 本発明で用いられる肺炎菌特異的プライマー対によりストレプトコッカス・ニューモニエのNASBA法による標的遺伝子のRNAを増幅したデータを示す図である。 本発明で用いられる肺炎菌特異的プライマー対によりレジオネラ・ニューモフィラのNASBA法による標的遺伝子のRNAを増幅したデータを示す図である。 本発明で用いられる肺炎菌特異的プライマー対によりクレブシエラ・ニューモニエのNASBA法による標的遺伝子のRNAを増幅したデータを示す図である。 本発明で用いられる肺炎菌特異的プライマー対によりモラクセラ・カタラーリスのNASBA法による標的遺伝子のRNAを増幅したデータを示す図である。 本発明で用いられる肺炎菌特異的プライマー対によりスタフィロコッカス・アウレウスのNASBA法による標的遺伝子のRNAを増幅したデータを示す図である。 本発明で用いられる肺炎菌特異的プライマー対によりマイコプラズマ・ニューモニエのNASBA法による標的遺伝子のRNAを増幅したデータを示す図である。 本発明で用いられる肺炎菌特異的プライマー対によりクラミドフィラ・ニューモニエのNASBA法による標的遺伝子のRNAを増幅したデータを示す図である。 本発明で用いられるプライマー10対のマルチプレックス化を実施した際に、各プライマー対の標的菌以外の対象菌との非特異反応の有無の検証結果を示す図である。 レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、MRSA、ヘモフィルス・インフルエンザについて、マルチプレックスプライマーを用いたNASBA法による標的RNA増幅産物が検出されたことを示す図である。 スタフィロコッカス・アウレウス、ストレプトコッカス・ニューモニエ、モラクセラ・カタラーリス、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエについて、各菌に対応するプライマー対を使用して、マルチプレックスプライマーを用いたNASBA法によりRNA増幅を行った際に、標的RNA増幅産物が検出されたことを示す図である。 モラクセラ・カタラーリスにおいて、NASBAによって増幅したRNAが目的の標的NASBA産物であることをリアルタイムPCRで確認されたことを示す図である。 本発明の核酸クロマトグラフ法の1つの具体例を模式図として示す。 各肺炎菌専用プローブ間の非特異結合を検討した図を示す。 レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、MRSA、ヘモフィルス・インフルエンザ、スタフィロコッカス・アウレウス、ストレプトコッカス・ニューモニエ、モラクセラ・カタラーリス、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエについて、各菌に対応するプライマー対を使用して、個別にNASBA法によりRNA増幅を行った際に、標的RNA増幅産物が核酸クロマトグラフィーにより検出されたことを示す図である。 各プローブの標的菌以外の対象菌との非特異反応の有無の検証結果を示す図である。 レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、MRSA、ヘモフィルス・インフルエンザ、スタフィロコッカス・アウレウス、ストレプトコッカス・ニューモニエ、モラクセラ・カタラーリス、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエについて、各菌に対応するプライマー対を使用して、マルチプレックスプライマーを用いたNASBA法によりRNA増幅を行った際に、標的RNA増幅産物が核酸クロマトグラフィーにより検出されたことを示す図である。 肺炎原因菌5菌種を本発明の核酸クロマトグラフ測定用試験片に供した図である。
 本発明の肺炎原因菌を検出する方法としては、1)試料中より任意に抽出された各肺炎菌に特異的な標的核酸からプライマーを用いて1本鎖核酸として増幅する工程(a);2)増幅産物と相補的な配列番号1~20に示されるヌクレオチド配列から選ばれる、肺炎菌ごとに異なる少なくとも3種類のプローブ対を調製する工程(b);3)配列番号1~10に示されるヌクレオチド配列から選ばれる少なくとも3種類の各肺炎菌の第1のプローブを標識高分子担体に結合させ、第1プローブ結合標識高分子担体を調製する工程(c);4)配列番号11~20に示されるヌクレオチド配列から選ばれる、第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブを、肺炎菌ごとに識別可能な所定の位置に固相化した固相化第2プローブを担持した展開支持体を調製する工程(d);5)前記増幅産物を、展開支持体に担持された固相化第2プローブ及び標識高分子担体結合第1プローブにハイブリダイズさせて検出する工程(e);6)検出像を判定することにより評価する工程(f);を備えた、10種類の検出対象肺炎菌から選ばれる少なくとも3種類の検出対象肺炎菌を検出対象とする方法であれば特に制限されないが、検出対象肺炎菌として少なくとも5種類、すなわち5~10種類を検出することが好ましい。
 本発明の肺炎原因菌を検出する方法としては、1)試料中より任意に抽出された各肺炎菌に特異的な標的核酸を増幅することができる配列番号21に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号31に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号22に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号32に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号23に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号33に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号24に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号34に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号25に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号35に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号26に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号36に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号27に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号37に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号28に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号38に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号29に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号39に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号30に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号40に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;から選ばれる、肺炎菌ごとに異なる少なくとも3種類のプライマー対を調製する工程(a’);2)検出対象の肺炎菌類の核酸を含む可能性のある被検試料と、少なくとも3種類のキメラプライマー対を接触させ、RNA増幅法により遺伝子産物を増幅する工程(b’);3)増幅産物である標的核酸を定性・定量する工程(c’);を備えた10種類の検出対象肺炎原因菌から選ばれる少なくとも3種類の検出対象肺炎原因菌を検出対象とする方法を用いることもできる。この方法においては、検出対象肺炎菌として少なくとも5種類、すなわち5~10種類を検出することが好ましい。
 上記検出対象肺炎菌が3種類の場合、外来患者において検出されることが多いストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ及びクラミドフィラ・ニューモニエ(以下「外来患者用検出対象肺炎菌」ともいう)のうち、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ及びマイコプラズマ・ニューモニエや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ及びレジオネラ・ニューモフィラや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、及びクラミドフィラ・ニューモニエ等の3種類の組合せや、院内感染により入院患者において検出されることが多いシュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、スタフィロコッカス・アウレウス、MRSA、モラクセラ・カタラーリス(以下「入院患者用検出対象肺炎菌」ともいう)のうち、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ及びスタフィロコッカス・アウレウスや、クレブシエラ・ニューモニエ、スタフィロコッカス・アウレウス及びMRSAや、シュードモナス・アエルギノーサ、MRSA及びモラクセラ・カタラーリスや、スタフィロコッカス・アウレウス、MRSA及びモラクセラ・カタラーリス等の3種類の組合せや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ及びMRSAや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ及びシュードモナス・アエルギノーサ等の3種類の組合せなどからなる120通りの3種類の肺炎菌類の組合せを例示することができる。
 上記検出対象肺炎菌が4種類の場合、外来患者用検出対象肺炎菌のうち、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ及びレジオネラ・ニューモフィラや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ及びクラミドフィラ・ニューモニエや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、レジオネラ・ニューモフィラ及びクラミドフィラ・ニューモニエや、ストレプトコッカス・ニューモニエ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ及びクラミドフィラ・ニューモニエや、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ及びクラミドフィラ・ニューモニエ等の4種類の組合せや、入院患者用検出対象肺炎菌のうち、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、スタフィロコッカス・アウレウス及びMRSAや、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、スタフィロコッカス・アウレウス、及びモラクセラ・カタラーリスや、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、MRSA及びモラクセラ・カタラーリスや、シュードモナス・アエルギノーサ、スタフィロコッカス・アウレウス、MRSA及びモラクセラ・カタラーリスや、クレブシエラ・ニューモニエ、スタフィロコッカス・アウレウス、MRSA及びモラクセラ・カタラーリス等の4種類の組合せや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ及びMRSAや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、シュードモナス・アエルギノーサ及びMRSA等の4種類の組合せなどからなる210通りの4種類の肺炎菌類の組合せを例示することができる。
 上記検出対象肺炎菌が5種類の場合、外来患者用検出対象肺炎菌5種類や、入院患者用検出対象肺炎菌5種類の他、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ及びMRSAや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ及びMRSAや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、MRSA及びスタフィロコッカス・アウレウスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、シュードモナス・アエルギノーサ及びクラミドフィラ・ニューモニエや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、MRSA及びモラクセラ・カタラーリス等からなる252通りの5種類の肺炎菌類の組合せを例示することができる。
 上記検出対象肺炎菌が6種類の場合、外来患者用検出対象肺炎菌及びMRSAや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ、MRSA及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、MRSA及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、MRSA、スタフィロコッカス・アウレウス及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ、クラミドフィラ・ニューモニエ、シュードモナス・アエルギノーサや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、MRSAや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、シュードモナス・アエルギノーサ、MRSAや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、MRSA、スタフィロコッカス・アウレウス、モラクセラ・カタラーリス等からなる210通りの6種類の肺炎菌類の組合せを例示することができる。
 上記検出対象肺炎菌が7種類の場合、外来患者用検出対象肺炎菌、MRSA及びスタフィロコッカス・アウレウスや、外来患者用検出対象肺炎菌、MRSA及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ、MRSA、スタフィロコッカス・アウレウス及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、MRSA、スタフィロコッカス・アウレウス及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、シュードモナス・アエルギノーサ、MRSA、スタフィロコッカス・アウレウス及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、MRSA、スタフィロコッカス・アウレウス及びモラクセラ・カタラーリス等からなる120通りの7種類の肺炎菌類の組合せを例示することができる。
 上記検出対象肺炎菌が8種類の場合、外来患者用検出対象肺炎菌、MRSA、スタフィロコッカス・アウレウス及びモラクセラ・カタラーリスや、外来患者用検出対象肺炎菌、シュードモナス・アエルギノーサ、MRSA及びスタフィロコッカス・アウレウスや、外来患者用検出対象肺炎菌、シュードモナス・アエルギノーサ、MRSA及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、MRSA、スタフィロコッカス・アウレウス及びモラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、シュードモナス・アエルギノーサ、MRSA、スタフィロコッカス・アウレウス及びモラクセラ・カタラーリス等からなる90通りの8種類の肺炎菌類の組合せを例示することができる。
 上記検出対象肺炎菌が9種類の場合、外来患者用検出対象肺炎菌、MRSA、スタフィロコッカス・アウレウス、モラクセラ・カタラーリス、及びクレブシエラ・ニューモニエや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、スタフィロコッカス・アウレウス、MRSA、モラクセラ・カタラーリスや、ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、MRSA、スタフィロコッカス・アウレウス、モラクセラ・カタラーリス等からなる10通りの9種類の肺炎菌類の組合せを例示することができる。
 上記工程(a)における増幅産物を調製する方法としては、検出対象肺炎菌を含む可能性のある試料中より任意に抽出された上記各検出対象肺炎菌に特異的な標的核酸を、当該標的核酸を増幅することができるプライマーを用いて1本鎖核酸として増幅する方法であれば特に制限されない。上記各肺炎菌に特異的な標的核酸としては、ストレプトコッカス・ニューモニエのlytAや、ヘモフィルス・インフルエンザのdnaJや、マイコプラズマ・ニューモニエのdnaJ1や、クラミドフィラ・ニューモニエのdnaJや、スタフィロコッカス・アウレウスのspaAや、MRSAのmecAや、レジオネラ・ニューモフィラのdnaJや、モラクセラ・カタラーリスのdnaJや、シュードモナス・アエルギノーサのdnaJや、クレブシエラ・ニューモニエのdnaJに含まれる領域の核酸を例示することができる。
 上記工程(a)又は(a’)において用いられるプライマー対は、10種類の検出対象肺炎菌における各肺炎菌特異的な標的核酸を増幅することができるプライマー対であり、配列番号21~40に示されるヌクレオチド配列から選ばれる検出対象肺炎菌ごとに異なる標的配列を含むプライマー対である。より具体的には、ストレプトコッカス・ニューモニエには5’-CAATCTAGCAGATGAAGCAGG-3’(配列番号21)と5’-GGTTGTTTGGTTGGTTATTCG-3’(配列番号31)、ヘモフィルス・インフルエンザには5’-TCAATACTCTTGCACATTGTGAT-3’(配列番号22)と5’-ATACGAAGAAACCTTGCTGAC-3’(配列番号32)、マイコプラズマ・ニューモニエには5’-CCGGGATGGTTAGCTGTAACAG-3’(配列番号23)と5’-TACCTTCTTGTACTTACTTCC-3’(配列番号33)、クラミドフィラ・ニューモニエには5’-CATGGTGTTGAGAAGGAACTTGTAGT-3’(配列番号24)と5’-TCCACGACTCTGTACCACTTG-3’(配列番号34)、レジオネラ・ニューモフィラには5’-CGTCAATCACGTGGACAAAGAG-3’(配列番号25)と5’-AGTACCATGTCTTGGAACGGT-3’(配列番号35)、クレブシエラ ニューモニエには5’-GAAGTTCCGATCAACTTCAC-3’(配列番号26)と5’-AAGCTCTCCTGAAGCTCTTT-3’(配列番号36)、シュードモナス・アエルギノーサには5’-ACAGGGATCGGAAATCAT-3’(配列番号27)と5’-CGCGGACCTGCGCTACACCCTGGACC-3’(配列番号37)、モラクセラ・カタラーリスには5’-CAAAGGCTTGCCCAAAGATA-3’(配列番号28)と5’-GAAGCCGAAGAAAAGCTCAA-3’(配列番号38)、MRSAには5’-GTATGTGGAAGTTAGATTGGG-3’(配列番号29)と5’-GATACATTCTTTGGAACGAT-3’(配列番号39)、スタフィロコッカス・アウレウスには5’-GAGTACATGTCGTTAAACCTGGTG-3’(配列番号30)と5’-TACAGTTGTACCGATGAATGG-3’(配列番号40)にそれぞれに示される標的ヌクレオチド配列を含む、フォワードプライマーとリバース(キメラ)プライマーからなるプライマー対の組合せが用いられる。また、上記配列に代えて、クレブシエラ ニューモニエについては5’-AGCGTATGAAATCCTGACTGAT-3’(配列番号54)と5’-CAAAGATATCGCTGAAGTCG-3’(配列番号56)、シュードモナス・アエルギノーサについては5’-GCGAGGTGTCGCTCTGCAAC-3’(配列番号55)と5’-GATGTGCAAGGTGGTGGTGGA-3’(配列番号57)に示される標的ヌクレオチド配列を含む、フォワードプライマーとリバース(キメラ)プライマーからなるプライマー対の組合せを用いることもできる。
 上記フォワードプライマーとして、配列番号21~30、54又は55に示されるヌクレオチド配列からなるプライマーを用いる。これら検出対象肺炎菌ごとに異なる10種類の各標的配列の5’末端側にはタグ配列を付加することができる。かかるタグ配列としては、5’-TAGCAGGATCCCTCTAAG-3’(配列番号41)を例示することができる。上記リバースプライマーとして、配列番号31~40、56又は57に示されるヌクレオチド配列、及びこれら検出対象肺炎菌ごとに異なる10種類の各標的配列の5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるプライマーを用いる。かかるRNAポリメラーゼプロモーター配列としては、T7RNAポリメラーゼのプロモーター配列、T3RNAポリメラーゼのプロモーター配列、SP6RNAポリメラーゼのプロモーター配列等を挙げることができるが、なかでもT7RNAポリメラーゼのプロモーター配列が、高いRNA増幅効率の点で好ましい。T7RNAポリメラーゼのプロモーター配列として、例えば、5’-AATTCTAATACGACTCACTATAGGGAG-3’(配列番号42)や5’-CTAATACGACTCACTATAGGGAG-3’(配列番号43)を挙げることができる。上記配列番号21~40又は54~57に示されるヌクレオチド配列において、1塩基又は数個(例えば1~5個、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個)の塩基が欠失、置換又は付加されていても、各肺炎菌特異的な標的核酸を増幅することができるものであれば、本発明におけるプライマーとして使用することができる。上記フォワードプライマーやリバースプライマーは、DNA合成装置等を用いて常法により合成することができる。
 上記工程(a)又は(b’)における検出対象の肺炎菌類の核酸を含む可能性のある被検試料としては、肺炎罹患患者の唾液、喀痰、末梢血、気管支肺胞洗浄、鼻腔洗浄液、うがい液、鼻咽頭スワブ及びそれらに含まれる微生物や、かかる微生物の培養物の細胞溶解液等を挙げることができる。かかる被検試料から核酸を抽出するための方法としては、チオシアン酸グアニジンを用いるRNA抽出法や、EDTA-SDS-フェノール-エタノールを用いる核酸抽出法等の公知の方法の他、ExtragenII(東ソー社製)やMora-Extract(Advanced Microorganism Research社製)等の市販品を用いることができる。抽出したRNAやDNAを適宜切断処理して、1又は複数の標的RNAや標的DNAの5’側配列と3’側標的特異的配列とを含むRNAやDNAを調製することができる。
 標的核酸が標的RNAである場合、上記工程(a)又は(b’)において用いられる標的核酸を増幅するために、NASBA法、転写媒介性増幅法(TMA法)、転写酵素と逆転写酵素の協奏反応によるRNA増幅・検出法(Transcription Reverse Transcription Concerted Reaction、TRC法)等の公知のRNA増幅法を用いることができるが、NASBA法、特に国際公開2009/057330号パンフレットに記載のNASBA法を有利に用いることができる。このNASBA法は、試料中の標的RNAをRNAポリメラーゼや逆転写酵素を介して増幅する方法であるが、例えば、国際公開2009/057330号パンフレットに記載のNASBA法においては、(A)標的RNAの5’側標的特異的配列に相当するDNA配列を含む、配列番号1~10に示されるキメラプライマーの5’末端を基板表面に固定させ、固相DNA(+)プライマーを調製する工程;(B)標的RNAの3’側配列と相補的なcDNA配列を含むプライマーの5’末端側にT7RNAポリメラーゼプロモーター配列を付加した、配列番号11~20に示される液相cDNA(-)プライマーを調製する工程;(B’)必要に応じて、タグ配列の5’末端にRNAポリメラーゼプロモーター配列を付加した液相ユニバーサルプライマーを調製する工程;(C)標的RNAの3’側配列と5’側標的特異的配列とを含む試料RNAを調製する工程;(D)工程(B)で調製された液相cDNA(-)プライマーと、工程(C)で調製された試料RNA鎖とを液相で接触させ、液相cDNA(-)プライマーと試料RNAとをハイブリダイズさせ、次いで逆転写酵素によりDNA(-)鎖を伸長させてcDNA鎖-RNA鎖複合体を調製する工程;(E)工程(D)で調製されたcDNA鎖-RNA鎖複合体に、DNA鎖-RNA鎖複合体におけるRNA鎖を特異的に分解するRNA分解酵素を作用させ、一本鎖DNA(-)を調製する工程;(F)工程(E)で調製された一本鎖DNA(-)と、工程(A)で調製された固相DNA(+)プライマーとを液相で接触させ、一本鎖DNA(-)と固相DNA(+)プライマーとをハイブリダイズさせ、次いでDNA依存性DNAポリメラーゼ活性能を有する酵素によりDNA(+)鎖を伸長させて二本鎖DNAを調製する工程;(G)工程(F)で調製された二本鎖DNAにRNAポリメラーゼを作用させ、DNA(-)鎖由来のRNAポリメラーゼプロモーター配列を利用して、一本鎖RNA(-)を増幅させる工程からなる方法が開示されている。
 標的核酸が標的DNAである場合も、上記工程(a)又は(b’)において用いられる標的核酸を増幅するためにNASBA法やPCR法、ストランド置換増幅法(SDA法)、リガーゼ連鎖反応法(LCR法)等を用いることができる。フォワードプライマーとして配列番号21~30、54又は55に示されるヌクレオチド配列から選ばれるプライマーが、リバースプライマーとして配列番号31~40、56又は57に示されるヌクレオチド配列を含むプライマーが用いられる。
 上記工程(b)において用いられるプローブ対は、上記増幅産物と相補的なヌクレオチド配列から選ばれる肺炎菌ごとに異なるプローブ対、例えば配列番号1~20に示されるヌクレオチド配列から選ばれる肺炎菌ごとに異なるプローブ対であり、配列表では、便宜上DNA配列で示されているが、DNAのヌクレオチド配列からなるプローブ対であってもよいし、RNAのヌクレオチド配列からなるプローブ対であってもよい。しかし、プローブとしての安定性に優れていることからDNAのヌクレオチド配列からなるプローブ対であることが好ましい。
 上記の検出対象となる肺炎菌ごとに異なるプローブ対としては、ストレプトコッカス・ニューモニエの5’-ACGCACGAGTATTGCACGAATAACC-3’(配列番号1)と5’-TGCCGAAAACGCTTGATACAGGGAGT-3’(配列番号11)、ヘモフィルス・インフルエンザの5’-AAACTTGTCCGCATTGCCACGGTTC-3’(配列番号2)と5’-CTCTGGGGCTGAAAAAGGTTCTAAAG-3’(配列番号12)、マイコプラズマ・ニューモニエの5’-AGGCCAAACACAAGTGTAAGACTTG-3’(配列番号3)と5’-AGAATCAACGCTCCATCTTTGGTAC-3’(配列番号13)や、クラミドフィラ・ニューモニエの5’-ATCTTGTGAAACCTGTTCTGGTCAA-3’(配列番号4)と5’-TCAAGGGATTAAATCCTGCGAACGT-3’(配列番号14)や、レジオネラ・ニューモフィラの5’-GAAGTTGAAATTACCGTTCCAAGAC-3’(配列番号5)と5’-CAATTGACCCTTGAAGAAGCAGCTA-3’(配列番号15)、クレブシエラ ニューモニエの5’-GTGGTGGAGACGCCGGTGGGGCTGA-3’(配列番号6)と5’-TGAAACCCAGACCGGCAAGCTGTTC-3’(配列番号16)、シュードモナス・アエルギノーサの5’-GGTGACCGGTGTGGTGCCGG-3’(配列番号7)と5’-GTCTTGCAACCGACCAGGGTCGGCA-3’(配列番号17)、モラクセラ・カタラーリスの5’-GGTTGCGCGTTTTTCAGGATCACTG-3’(配列番号8)と5’-CCACCAGAGCCCATGCCTTGTTCAT-3’(配列番号18)、MRSAの5’-AGACCGAAACAATGTGGAATTGGC-3’(配列番号9)と5’-ATGCAGAAAGACCAAAGCATACATAT-3’(配列番号19)、及び、スタフィロコッカス・アウレウスの5’-CATGATCAAACCTGGTCAAGAACTTG-3’(配列番号10)と5’-CGGCACTACTGCTGACAAAATTGCT-3’(配列番号20)の組合せを具体的に示すことができる。また、プローブ対として、ヘモフィルス・インフルエンザの5’-AACTTGTCCGCATTGCCACGGTTCT-3’(配列番号44)と5’-TGTGATAGCTGTGGTGGCTCTGGGG-3’(配列番号49)、クラミドフィラ・ニューモニエの5’-TCAAGGGATTAAATCCTGCGAACGT-3’(配列番号45)と5’-ATCTTGTGAAACCTGTTCTGGTCAA-3’(配列番号50)、レジオネラ・ニューモフィラの5’-AAGAAGCAGCTATAGGAAAAGAAGT-3’(配列番号46)と5’-GGGGCGCTGATTTGCAATTTAATGT-3’(配列番号51)、クレブシエラ ニューモニエの5’-TCGAACAGGGCGGCATGGGCGGCGG-3’(配列番号47)と5’-CAGAAGCGTGCGGCCTACGATCAGT-3’(配列番号52)、シュードモナス・アエルギノーサの5’-TCCAGGTTCACCGGGGTTTCCACC-3’(配列番号48)と5’-GCTCTGCAACGACTTGCGGAACTC-3’(配列番号53)の組合せを用いることもできる。
 上記10種類のプローブ対のいずれを工程(c)における第1のプローブ又は工程(d)における第2のプローブにするかは、その存在が予想される検出対象肺炎菌等に応じて適宜選択・決定することができる。また、上記配列番号1~20又は44~53に示されるヌクレオチド配列において、1塩基又は数個(例えば1~5個、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個)の塩基が欠失、置換又は付加されていても、各肺炎菌特異的な標的核酸を検出することができるものであれば、本発明におけるプローブとして使用することができる。
 上記工程(c)における、第1プローブとしては、上記第2のプローブと対をなす少なくとも3種類のプローブ、例えば配列番号1~10に示されるヌクレオチド配列から選ばれる第2のプローブと対をなす少なくとも3種類、好ましくは少なくとも5種類の各肺炎菌の第1プローブを挙げることができ、例えば、5種類の各肺炎菌の第1プローブが標識高分子担体に結合した第1プローブ結合標識高分子担体を同時に2組用いることもできる。かかる複数の第1のプローブを標識高分子担体に結合させる方法としては、5’又は3’末端に付加基を導入した配列番号1~10に示されるヌクレオチド配列を有するDNAを、付加基を導入した標識高分子担体に結合させる方法を挙げることができる。上記付加基としては、アミノ基、カルボキシル基、水酸基、チオール基等を挙げることができるが、例えば、標識高分子担体がカルボキシル基で修飾されている場合はアミノ基が好ましい。また、複数の第1のプローブを一つの標識高分子担体に結合させているので、この場合、検出に際して、従来のように、一つの標識高分子担体に一つの第1プローブを結合した第1プローブ結合標識高分子担体を複数混合する操作を必要としないことから、検出操作が簡便となるばかりでなく、標識ラテックス等の以下に述べる標識高分子担体濃度を至適濃度に設定することができる点で好ましい。本発明の1つの具体例を模式図として図13に示す。
 上記標識高分子担体における高分子担体としては、カルボキシメチルセルロース(CMC)、カルボキシル基を有するポリアクリル酸塩等の親水性樹脂やアクリル系ラテックス、ポリエステル系ラテックス、ポリスチレン系ラテックス、ポリウレタン系ラテックス、ポリ酢酸ビニル系ラテックス、SBR樹脂、NBR樹脂、ポリアミド系ラテックス、カルボキシ変性ポリスチレン系ラテックス等のラテックスなどを挙げることができるが、上記配列番号1~10に示されるヌクレオチド配列にアミノ基が導入されている場合には、アミノ基とカルボキシキル基を介して共有結合を生じる反応によって、配列番号1~10に示されるヌクレオチド配列から選ばれる少なくとも3種類、好ましくは少なくとも5種類の各肺炎菌の第1のプローブを標識高分子担体に結合させることが容易となるため、ポリスチレン系ラテックス中にカルボキシル基を導入したカルボキシ変性ポリスチレン系ラテックスが好ましく、具体的には、カルボキシル基含有ポリスチレンラテックス(固型分4%(w/w))(Duke Scientific社製)やカルボキシル基含有ポリスチレンラテックス(固型分10%(w/w))(Bangs社製)を用いることができる。
 具体的な第1プローブが複数結合した標識高分子担体である第1プローブ結合標識高分子担体の調製方法としては、例えば、配列番号1~10に示されるヌクレオチド配列から選ばれる少なくとも3種類の各肺炎菌の5'末端にアミノ基を導入した第1プローブと、カルボキシル基含有ポリスチレンラテックス(Bangs社製)と、水溶性カルボジイミドを50mMのMES(2-Morpholinoethanesulfonic acid、monohydrate)(同仁化学研究所社製)緩衝液中で混合し、ラテックス中のカルボキシル基と第1のプローブのアミノ基とを結合させた後、モノエタノールアミン(和光純薬工業社製)を添加し、さらに反応させ、上記反応液を遠心分離後上清除去し、得られた沈殿に非イオン性の界面活性剤を含むHEPES(2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonicacid)(埼京化成社製)緩衝液で洗浄及び再懸濁して調製する方法を挙げることができる。また、高分子担体の粒子径の大きさは適宜選択することができるが、メンブレン孔径より小さい粒径から選択されることが好ましく、例えば直径500nm以下の粒子の大きさを選択することができる。
 また、上記標識高分子担体として、展開支持体の色と識別可能な色を呈する、高分子担体を用いてもよく、顔料等を用いて着色した高分子担体を用いることもできる他、蛍光標識高分子担体を用いることもできる。
 上記工程(d)における第2プローブとしては、上記第1のプローブと対をなす少なくとも3種類のプローブ、例えば配列番号11~20に示されるヌクレオチド配列から選ばれる、第1プローブと対をなす少なくとも3種類、好ましくは少なくとも5種類の各肺炎菌の第2プローブを挙げることができ、かかる第2プローブは支持体上に固相化されるが、一つの第2プローブを支持体上の所定の位置に固相化する(専用)ことも、複数の第2プローブを支持体上の所定の位置に固相化する(共用)こともできる。第2プローブを担持展開した支持体の調製方法としては、肺炎菌ごとに展開支持体上の識別可能な所定の位置に第2プローブを固相化する方法を挙げることができ、例えば、5’又は3’末端に付加基を導入した配列番号11~20に示されるヌクレオチド配列を有するプローブを展開支持体に固相化させる方法を挙げることができる。上記付加基としては、アミノ基、カルボキシル基、水酸基、チオール基等を挙げることができるが、例えば、展開支持体がカルボキシル基で修飾されている場合はアミノ基が好ましく、かかる付加基の付加の有無に関わらず、化学合成法等公知の方法を利用して第2のプローブを作製することが可能である。
 上記展開支持体としては、ナイロンメンブレンやカルボキシル基修飾ナイロンメンブレン等のナイロンメンブレン誘導体、セルロースメンブレンやニトロセルロースメンブレン等セルロースメンブレン誘導体などを挙げることができるが、上記配列番号11~20に示されるヌクレオチド配列にアミノ基が導入されている場合には、アミノ基とカルボキシキル基を介して共有結合を生じる反応によって、配列番号11~20に示されるヌクレオチド配列から選ばれる少なくとも3種類、好ましくは少なくとも5種類の各肺炎菌の第2のプローブを展開支持体上の識別可能な所定の位置に固相化することが容易となるため、カルボキシル基修飾ナイロンメンブレンが好ましい。
 第2プローブ担持展開支持体の具体的な調製方法としては、例えば、カルボキシル基修飾ナイロンメンブレンを水溶性カルボジイミドにより処理し、脱イオン水で洗浄して活性化し、かかる活性化したカルボキシル基修飾ナイロンメンブレンに、第2のプローブ配列を有するヌクレオチドを肺炎菌ごとに識別可能となるように適宜割り振った所定の位置に固相化し、15分間風乾し、その後第2のプローブ配列を有するヌクレオチドが固相化されたカルボキシル基修飾ナイロンメンブレンをTrisベース緩衝液で処理することで活性基を消去し、ヌクレオチドが固相化されたメンブレンを脱イオン水で洗浄して調製する方法を例示することができる。第2プローブ配列を有するヌクレオチドの固相化の態様としては特に制限されず、ライン状でも円形スポット状でもよい。
 工程(e)における前記増幅産物を検出する方法としては、展開支持体に担持された第2プローブ及び標識高分子担体結合第1プローブに、増幅した1本鎖核酸をハイブリダイズさせて検出する方法であれば特に制限されないが、あらかじめ複数の第1プローブを標識高分子担体に結合した第1プローブ結合標識高分子担体を保持部に保持させておくことが好ましく、かかる保持部として、ADVANTEC製の吸収パッドを好適に例示することができる。かかる第1プローブ結合標識高分子担体を保持した吸収パッド等からなる保持部を、前記第2プローブ担持展開支持体の他端に順次連結することにより、本発明の検出方法に有利に用いることができる核酸クロマトグラフ用試験片とすることができる。保持部の作製方法としては、第1プローブ配列を有するヌクレオチドが複数結合している標識高分子担体を保持部に塗布し、乾燥させる方法を例示することができる。
 工程(e)において、前記工程(a)における増幅産物を、展開支持体に担持された第2プローブ及び標識高分子担体に結合した第1プローブにハイブリダイズさせて検出する方法としては、例えば、上記核酸クロマトグラフ用試験片を、増幅産物を含む溶液に浸すことで、上記第1プローブ結合標識高分子担体は、上記保持部から展開支持体に浸出し、展開支持体上の第1プローブと対をなす各検出対象肺炎菌の第2プローブが固相化されている所定の位置に達した場合に、かかる所定の位置で、上記増幅産物をサンドイッチハイブリダイズすることで捕捉することができる。増幅産物中に標的となる1本鎖核酸が複数種存在する場合であっても順次所定の位置で各第2プローブにより補足されることになる。
 ついで、工程(f)において、第1プローブ配列を有するヌクレオチドが結合している標識高分子担体が、第2プローブ配列を有するヌクレオチドが展開支持体上の固相化されている位置に達した所定の位置で蓄積することで、所定の位置に現れる着色ラインや着色スポット等の有無を検出像として直接又は蛍光可視化装置で、判定することにより評価することができ、かかる評価により検出対象肺炎菌(肺炎原因菌)を検出することができる。なお、上記判定は、簡便性の点で目視判定とすることが好ましい。
 また、配列番号1~10に示される配列からなる第1プローブに代えて又は追加して配列番号44~48に示される配列からなるヌクレオチドを用いることができ、配列番号11~20に示される配列からなる第2プローブに代えて又は追加して配列番号49~53に示される配列からなるヌクレオチドを用いることもできる。
 工程(c’)における標的核酸を定性・定量する方法としては、電気泳動、ハイブリダイゼーション法、シークエンシング法を挙げることができる。電気泳動法としては、アガロースゲルを用いた分子ふるい効果で増幅産物の分子量解析をする方法や、キャピラリー電気泳動を利用したアジレントテクノロジー株式会社の解析システムを例示する事ができる。ハイブリダイゼーション法としては、リアルタイムPCRの様に、リアルタイムモニタリング用試薬を用いて増幅産物の生成過程をリアルタイムでモニタリングし解析する方法を挙げることができる。リアルタイムモニタリング試薬としては、例えば、TaqMan(登録商標:Applied Biosystems社製)プローブ等を挙げることができる。ハイブリダイゼーション法には、ノーザンブロット法を含めることもできる。シークエンシング法としては、ジデオキシヌクレオチドを用いてDNAポリメラーゼの合成を塩基特異的に停止させるジデオキシ法等を例示することができる。
 本発明の肺炎原因菌の検出キットとしては、上記本発明の肺炎原因菌に検出方法に用いることができ、試料中より任意に抽出された各肺炎菌に特異的な標的核酸を増幅することができる配列番号21に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号31に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号22に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号32に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号23に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号33に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号24に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号34に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号25に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号35に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号26に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号36に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号27に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号37に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号28に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号38に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号29に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号39に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号30に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号40に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号54に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号56に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号55に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号57に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;から選ばれる、肺炎菌ごとに異なる少なくとも3種類、好ましくは少なくとも5種類、すなわち5~10種類のプライマー対を備えたキットを例示することができ、かかるキットは、上記プライマー対の他、前記工程(b’)におけるRNA増幅法に用いられる各種試薬類や、前記工程(c’)における標的核酸を定性・定量するために用いられる各種試薬類を備えていてもよい。または、試料中より任意に抽出された各肺炎菌に特異的な標的核酸からプライマーを用いて1本鎖核酸として増幅する増幅セットと;増幅産物と相補的なヌクレオチド配列、例えば配列番号1~10又は44~48に示されるヌクレオチド配列から選ばれる少なくとも3種類の各肺炎菌の第1のプローブが標識高分子担体に結合された第1プローブ結合標識高分子担体と;第1のプローブと対をなす第2のプローブ、例えば配列番号11~20又は49~53に示されるヌクレオチド配列から選ばれる少なくとも3種類の各肺炎菌の第2プローブが、肺炎菌ごとに識別可能な所定の位置に固相化された、各肺炎菌専用の又は複数の肺炎菌共用の第2プローブ担持展開支持体とを備えたキットであってもよく、上記増幅セットと前記核酸クロマトグラフ用試験片とを備えたキットを好適に例示することができる。かかるキットは上記本発明の肺炎原因菌の検出方法に好適に用いることができる。
 以下に、実施例を挙げてこの発明を更に具体的に説明するが、この発明の範囲はこれらの例示に限定されるものではない。
[モラクセラ・カタラーリスdnaJプライマーの設計]
 これまでに、モラクセラ・カタラーリスのゲノム情報が解読されておらず、類縁属種のdnaJ遺伝子配列を基に設計を進めていたが、本菌に特異的なプライマーを設計することは困難であった。一方近年、本菌のゲノム配列情報のみが明らかとなったため, この配列を基にORF抽出によってdnaJ遺伝子のアノテーションをアライメントソフトDNASISpro(Hitachi Software社製)により実施し、この配列から新たなプライマーの設計を試みた。8株のモラクセラ・カタラーリス菌株を用いて新規プライマーの検証を実施した、試薬キットとしてTaKaRaPCR Thermal CyclerGPを記載のプロトコルに準じて用い、機器としてEX Taq Hot start(TaKaRa bio社製)を用いてPCRを95℃;3min、(95℃;10sec、65℃;10sec、72℃;10sec)×40cycles の条件で実施した。得られたPCR産物は、MultiNAを用いて電気泳動により解析された。電気泳動の結果を図1に示す。いずれの菌株においても得られたPCR産物は増幅していたことから、新たに設計したプライマー対がモラクセラ・カタラーリスの検出に有用であることがわかった。
[マルチプレックス化の検討]
(鋳型となるRNAの作製)
 マイコプラズマ・ニューモニエ及びクラミドフィラ・ニューモニエは培養が困難であるため、プラスミドベクターを利用したDNAクローニングによって、鋳型となるRNAを作製した。標的遺伝子領域をクローニングし組換え体を作製した。まず、プラスミドベクターに、マイコプラズマ・ニューモニエ又はクラミドフィラ・ニューモニエの標的遺伝子dnaJの各DNA断片を挿入後、宿主となる大腸菌をそれぞれ形質転換した。大腸菌からプラスミドを抽出後PCRで標的遺伝子のDNA増幅をPCRで行い、得られたPCR産物からRiboMAX(登録商標)T7Expressシステム(Promega社製)を用いてプロトコールにしたがってRNAを増幅し、得られたRNAをNASBA法の鋳型とした。マイコプラズマ・ニューモニエ及びクラミドフィラ・ニューモニエ以外の検出対象肺炎原因菌のRNAは常法により調製した。
(NASBA法によるRNA標的遺伝子の増幅)
 フォワードプライマーとしては、配列番号21~40に示されるヌクレオチド配列から選ばれる検出対象肺炎菌ごとに10種類の各標的配列の5’末端側にTAGCAGGATCCCTCTAAG(配列番号41)を付加したプライマーを用い、リバースプライマーとしては、検出対象肺炎菌ごとに異なる10種類の各標的配列の5’末端側にT7RNAポリメラーゼのプロモーター配列として、CTAATACGACTCACTATAGGGAG(配列番号43)が付加されたプロモーターを用いた。上記ストレプトコッカス・ニューモニエ、レジオネラ・ニューモフィラ、クレブシエラ・ニューモニエ、モラクセラ・カタラーリス、スタフィロコッカス・アウレウス、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエの7種の標準菌株から抽出したRNAを鋳型とし、1菌種ごとにNASBA法を実施して標的遺伝子のRNAを増幅したデータを示す。RNA抽出は、MORA-EXTRACT(Advanced Microorganism Research社製)を用いて添付のプロトコールにしたがって実施し、NASBA法は、NASBA Amplificationキット(カイノス製)を用いて添付のプロトコールにしたがって実施した。ストレプトコッカス・ニューモニエ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、レジオネラ・ニューモフィラ、クレブシエラ・ニューモニエ、モラクセラ・カタラーリス、スタフィロコッカス・アウレウスの各鋳型としたRNA試料は、1、1/10、1/100、1/1000倍に希釈したものをそれぞれ用い、Bio Analyzer ; Agilent RNA Pico 6000を用いて行った。コントロールとして、酵素無添加の反応液を調製し、同様の工程にて実施した。結果を図2~8に示す。すべての標的検出対象肺炎原因菌種について、NASBA法によりRNAが増幅したことを確認した。
(各プライマー間における特異性の検証)
 本件プライマー10対のマルチプレックス化を実施した際に、各プライマーが標的菌以外の対象菌と非特異反応を起こすか否かを検証した。結果を図9に示す。本件プライマー10対のすべてのプライマーにおいて非特異反応は認められなかった.
(マルチプレックスプライマーを用いたNASBA法による標的RNA増幅)
 レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、クラミドフィラ・ニューモニエ、MRSA、ヘモフィルス・インフルエンザについて、本件プライマー対を用いたマルチプレックス化の検討結果を図10に示す。また同様に、スタフィロコッカス・アウレウス、ストレプトコッカス・ニューモニエ、モラクセラ・カタラーリス、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエについて、本件プライマー対を用いたマルチプレックス化の検討結果を図11に示す。すべての標的検出対象肺炎原因菌種のRNAがNASBA法により増幅されることが確認された。
(NASBA産物の確認)
 NASBAによって増幅したRNAが目的の標的配列を有するか否かを判断する必要がある。NASBA反応の副産物として合成されるDNAを標的としたリアルタイムPCRを実施し、NASBA産物とNASBA未反応サンプルのコントロールのCt値を測定し、この差を比較することによって標的NASBA産物を間接的に確認した。SYBR premixEX Taq Hot start(TaKaRa bio社製)を用いて、プロトコルに準じ、PCRは、95℃;3min、(95℃;10sec、65℃;10 sec、72℃;10sec)×40cyclesの条件で行った。全菌種において、NASBAによって増幅したRNAが目的の標的NASBA産物を間接的に確認された。モラクセラ・カタラーリスの例を図12に示す。
[プローブ対の決定]
 検出対象となる各検出対象肺炎菌の以下の表1に示される遺伝子領域の核酸の標的配列に対し相補的配列を持つ1対のアミノ基含有オリゴヌクレオチドプローブの作製を試みた。
Figure JPOXMLDOC01-appb-T000001
 各種肺炎菌について、表1に記載されている各遺伝子領域の増幅された一本鎖核酸に対するプローブ候補として20~30塩基長の配列を選択するために、配列情報解析ソフトウェアDNASIS pro(登録商標)(日立ソフトウェア社製)を用いて解析し、配列番号1~20に示される配列を有するオリゴヌクレオチドプローブを決定した。
[第1プローブ結合標識高分子担体の作製]
 オリゴヌクレオチドプローブとカルボキシル基含有ポリスチレンラテックスとを結合させるために、5’末端にアミノ基を導入した5’末端アミノ基導入オリゴヌクレオチドを合成した。上記で選択された配列からなる20種類の各オリゴヌクレオチドの5’末端アミノ基導入オリゴヌクレオチドを各肺炎菌の第一のプローブ配列として作製した。検出対象とされる、少なくとも3種類、好ましくは少なくとも5種類の各肺炎菌の第1のプローブ配列を有するヌクレオチドと、カルボキシル基含有ポリスチレンラテックス(Bangs社製)とを、水溶性カルボジイミドを50mMのMES(2-Morpholinoethanesulfonic acid、monohydrate)(同仁化学研究所社製)緩衝液中で混合し、ラテックス中のカルボキシル基と複数の第1プローブのアミノ基とを結合させた後、モノエタノールアミン(和光純薬工業社製)を添加し、さらに反応させた。上記反応液を遠心分離後上清除去し、得られた沈殿に非イオン性の界面活性剤を含むHEPES(2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonicacid)(埼京化成社製)緩衝液で洗浄及び再懸濁して、第1のプローブ配列を有するヌクレオチドが複数結合している標識高分子担体が調製され、使用まで4℃にて保存された。
[第2プローブ配列を有するオリゴヌクレオチドが、肺炎菌ごとに識別可能な所定の位置に固相化された展開支持体の作製]
 上記で選択された第2プローブ配列からなるオリゴヌクレオチドと、カルボキシル基修飾ナイロンメンブレン(ポール社製)とを結合させるために、選択された第2プローブ配列の3’末端にアミノ基を導入した3’末端アミノ基導入オリゴヌクレオチド(第2プローブ)をDNA合成機により作製した。上記メンブレンを水溶性カルボジイミドにより処理し、脱イオン水で洗浄し活性化させた。かかる活性化されたカルボキシル基修飾ナイロンメンブレンに上記3’末端アミノ基導入オリゴヌクレオチド(第2プローブ)の1種類を結合させ、15分間風乾した。風乾されたメンブレンをTrisベース緩衝液で処理し、残存する活性基を除去した後、メンブレンを脱イオン水で洗浄し、再び風乾することで、第2プローブ配列を有するオリゴヌクレオチドが、肺炎菌ごとに識別可能な所定の位置にライン状に固相化された展開支持体が作製された。検出対象の肺炎菌が3種以上のため、上記処理を肺炎菌ごとに少なくとも3回行った。
 5’又は3’末端側にアミノ基が導入された配列は以下表2の通りである。各種肺炎菌について、以下の組合せにより本発明の核酸クロマトグラフ法を行うこととした。なお、表中肺炎菌名最後尾の「L」は標識高分子担体に結合しているプローブであることを示し、「M」は固相化されたプローブであることを示す。
Figure JPOXMLDOC01-appb-T000002
[リファレンスライン]
 肺炎原因菌の検出位置にラインが検出されなかった場合、検出される核酸が無いことがその要因である点を明らかとするために、クロマトストリップ上を標識高分子担体がフローできたことを証明する目的で検出されるラインがリファレンスラインである。なお、このラインは標識高分子担体のフローの確認を行う目的で検出されるため、検出される肺炎原因菌の核酸がある場合もリファレンスラインが検出されるようにすることが好ましい。
[核酸クロマトグラフ測定用試験片の作製]
 本発明に用いられる核酸クロマトグラフ用試験片を以下のように作製した。上記各肺炎菌の第1プローブ配列を有するヌクレオチドが複数結合している標識高分子担体を緩衝液に溶解して展開パッド(ADVANTEC社製)に塗布後、乾燥させて保持部とした。上記展開支持体の一端に、上記展開支持体とは重なり合わない部分で保持部を連結した。さらに、該展開支持体の他端に吸収パッド(ADVANTEC社製)を連結し、核酸クロマトグラフ測定用試験片とした。
[標識高分子担体結合第1プローブ間の非特異結合の確認]
 外来患者の肺炎菌特定に特に有効とされる5種類の肺炎原因菌についての外来用プローブセットと、入院患者の肺炎菌特定に特に有効とされる5種類の肺炎原因菌についての入院用プローブセットについて、各肺炎菌用の標識高分子担体結合第1プローブと第2プローブ(専用)との間において直接的にハイブリダイズして特異的結合が生じないかどうかを増幅産物の非存在下でチェックした。第1プローブ結合標識高分子担体として、外来患者用検出対象肺炎菌の5種類の第1プローブが結合された第1プローブ結合標識高分子担体と、入院患者用検出対象肺炎菌の5種類の第1プローブが結合された第1プローブ結合標識高分子担体とを用い、第2プローブ担持展開支持体としては、5種類の外来患者用検出対象肺炎菌の第2プローブがそれぞれ担持された5枚の第2プローブ担持展開支持体(専用)と、5種類の入院患者用検出対象肺炎菌の第2プローブがそれぞれ担持された5枚の第2プローブ担持展開支持体(専用)とを用いた。結果を図14に示す。実験に供したいずれの菌株においても、リファレンスの位置に赤色の着色線が観察され、増幅産物の非存在下において、標識高分子担体結合第1プローブと第2プローブとの間に非特異結合が生じないことが確認された。
[核酸クロマトグラフ法による標的NASBA産物の検出]
 レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、MRSA、ヘモフィルス・インフルエンザ、スタフィロコッカス・アウレウス、ストレプトコッカス・ニューモニエ、モラクセラ・カタラーリス、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエについて、各菌に対するプライマーで増幅されたNASBA産物を核酸クロマトグラフィーで検出検討した。測定用試験片は、表2に示されるプローブを用いて、上記の方法に準じて各検出対象肺炎菌毎に個別に作製して行った。その結果を図15に示す。いずれのNASBA産物も、各肺炎菌専用プローブが結合されている核酸クロマトストリップで検出された。
(各プローブにおける特異性の検証)
 各プローブが標的菌以外の対象菌のNASBA産物と非特異反応を起こすか否かを検証した。結果を図16に示す。本件プローブのすべてにおいて非特異反応は認められなかった。
(マルチプレックスプライマーで増幅されたNASBA産物の核酸クロマトグラフィーによる検出)
 レジオネラ・ニューモフィラ、シュードモナス・アエルギノーサ、クレブシエラ・ニューモニエ、MRSA、ヘモフィルス・インフルエンザ、スタフィロコッカス・アウレウス、ストレプトコッカス・ニューモニエ、モラクセラ・カタラーリス、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエについて、本件プライマー対を用いたマルチプレックスプライマーで増幅されたNASBA産物を核酸クロマトグラフィーで検出した。その結果を図17に示す。マルチプレックスプライマーを用いて増幅されたNASBA産物は、いずれも核酸クロマトグラフィーで検出された。
[複数肺炎菌の検出]
 レジオネラ・ニューモフィラは、BCYEα培地を用い35℃で培養し、クラミドフィラ・ニューモニエは、HEp-2細胞を用いて培養し、マイコプラズマ・ニューモニエは、PPLO培地を用い37℃で培養し、ヘモフィルス・インフルエンザは、チョコレート培地を用い37℃で培養し、ストレプトコッカス・ニューモニエは、羊血液培地を用い37℃で培養した。培養後の各菌懸濁液100μLからEXTRAGENII試薬(東ソー社製)を用いて各試料より核酸を抽出し、50μLのRNase free waterで上記5種類の菌の核酸を溶解した。2.5μLの核酸溶液をNASBA Amplificationキット(カイノス社製)を用いてtotalRNAを鋳型としてNASBA Amplificationキット(カイノス社製)を使用し、本発明のプローブ対のセットとは異なる10菌種の各ターゲット領域内の配列にハイブリダイズする各菌種固有のプライマー対を用いて、NASBA増幅反応を行った。この際の各菌専用プライマー濃度は、最終濃度が0.2μMになるように調製した。増幅反応後各菌の溶液は、増幅終了後のNASBA増幅産物を前処理する事なく1本にまとめ、直ちに核酸クロマトストリップを用いて核酸クロマトグラフ法による肺炎菌の検出を試みた。NASBA産物をフローさせなかった場合は、フローが行われた事を示すリファレンスラインのみ検出された(図18A参照)。上記肺炎原因菌5菌種のNASBA産物をフローさせた場合リファレンスラインとは別に各々の検出位置にラインが検出された(図18B参照)。

Claims (6)

  1. ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、レジオネラ・ニューモフィラ、クレブシエラ・ニューモニエ、シュードモナス・アエルギノーサ、モラクセラ・カタラーリス、メチシリン耐性スタフィロコッカス・アウレウス(MRSA)、スタフィロコッカス・アウレウスから選ばれる少なくとも3種類の肺炎菌類を検出対象とする肺炎原因菌の検出方法であって、以下の工程(a)~工程(f)を備えたことを特徴とする検出方法。
    1)試料中より任意に抽出された各肺炎菌に特異的な標的核酸からプライマーを用いて1本鎖核酸として増幅する工程(a);
    2)増幅産物と相補的なヌクレオチド配列から選ばれる、肺炎菌ごとに異なる少なくとも3種類のプローブ対を調製する工程(b);
    3)標識高分子担体に少なくとも3種類の各肺炎菌の第1のプローブを結合させ、第1プローブ結合標識高分子担体を調製する工程(c);
    4)第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブを、肺炎菌ごとに識別可能な所定の位置に固相化した第2プローブ担持展開支持体を調製する工程(d);
    5)前記増幅産物を、展開支持体に担持された第2プローブ及び標識高分子担体に結合した第1プローブにハイブリダイズさせて検出する工程(e);
    6)検出像を判定することにより評価する工程(f);
  2. プライマーが、配列番号21に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号31に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号22に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号32に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号23に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号33に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号24に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号34に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号25に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号35に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号26に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号36に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号27に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号37に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号28に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号38に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号29に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号39に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号30に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号40に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;から選ばれる、肺炎菌ごとに異なる少なくとも3種類のプライマー対であることを特徴とする請求項1記載の検出方法。
  3. 少なくとも3種類の各肺炎菌の第1のプローブが、配列番号1~10に示されるヌクレオチド配列から選ばれる少なくとも3種類のDNAからなり、第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブが、配列番号11~20に示されるヌクレオチド配列から選ばれる少なくとも3種類のDNAであることを特徴とする請求項1又は2記載の検出方法。
  4. ストレプトコッカス・ニューモニエ、ヘモフィルス・インフルエンザ、マイコプラズマ・ニューモニエ、クラミドフィラ・ニューモニエ、レジオネラ・ニューモフィラ、クレブシエラ・ニューモニエ、シュードモナス・アエルギノーサ、モラクセラ・カタラーリス、メチシリン耐性スタフィロコッカス・アウレウス(MRSA)、スタフィロコッカス・アウレウスから選ばれる少なくとも3種類の肺炎菌類を検出対象とする肺炎原因菌の検出キットであって、試料中より任意に抽出された各肺炎菌に特異的な標的核酸を増幅することができる配列番号21に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号31に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号22に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号32に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号23に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号33に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号24に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号34に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号25に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号35に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号26に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号36に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号27に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号37に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号28に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号38に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号29に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号39に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;配列番号30に示されるヌクレオチド配列からなるフォワードプライマーと、配列番号40に示されるヌクレオチド配列及びその5’末端側に付加されたRNAポリメラーゼプロモーター配列からなるリバースプライマー;から選ばれる、肺炎菌ごとに異なる少なくとも3種類のプライマー対を備えたことを特徴とするキット。
  5. さらに、1)増幅産物と相補的なヌクレオチド配列から選ばれる、肺炎菌ごとに異なる少なくとも3種類の各肺炎菌の第1のプローブが標識高分子担体に結合された第1プローブ結合標識高分子担体;
    2)第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブが、肺炎菌ごとに識別可能な所定の位置に固相化された第2プローブ担持展開支持体;
    を備えたことを特徴とする請求項4記載のキット。
  6. 少なくとも3種類の各肺炎菌の第1のプローブが、配列番号1~10に示されるヌクレオチド配列から選ばれる少なくとも3種類のDNAからなり、第1のプローブと対をなす少なくとも3種類の各肺炎菌の第2のプローブが、配列番号11~20に示されるヌクレオチド配列から選ばれる少なくとも3種類のDNAであることを特徴とする請求項5記載のキット。
PCT/JP2011/001934 2010-03-31 2011-03-30 核酸クロマトグラフ法を利用した肺炎原因菌の検出方法 WO2011122034A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11762276.1A EP2557178B1 (en) 2010-03-31 2011-03-30 Method for detecting pneumonia causative bacteria using nucleic acid chromatography
US13/637,815 US9347944B2 (en) 2010-03-31 2011-03-30 Method for detecting pneumonia causative bacteria using nucleic acid chromatography
CN201180016185.XA CN102822352B (zh) 2010-03-31 2011-03-30 利用核酸色谱法的肺炎病原菌的检出方法
JP2012508098A JP5565781B2 (ja) 2010-03-31 2011-03-30 核酸クロマトグラフ法を利用した肺炎原因菌の検出方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-083836 2010-03-31
JP2010083836 2010-03-31
JP2010083823 2010-03-31
JP2010-083823 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122034A1 true WO2011122034A1 (ja) 2011-10-06

Family

ID=44711789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001934 WO2011122034A1 (ja) 2010-03-31 2011-03-30 核酸クロマトグラフ法を利用した肺炎原因菌の検出方法

Country Status (5)

Country Link
US (1) US9347944B2 (ja)
EP (1) EP2557178B1 (ja)
JP (1) JP5565781B2 (ja)
CN (1) CN102822352B (ja)
WO (1) WO2011122034A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198482A (ja) * 2012-02-22 2013-10-03 Nippon Meat Packers Inc 核酸の検出方法
JP2014082977A (ja) * 2012-10-23 2014-05-12 Kainosu:Kk 食品中からのセレウリド産生セレウス菌の検出方法、これに用いられるプライマーおよびプローブ
JP2015500027A (ja) * 2011-12-09 2015-01-05 ザ セクレタリー オブ ステート フォー ヘルスThe Secretary Of State For Health 呼吸器感染症アッセイ
WO2018069185A1 (en) 2016-10-10 2018-04-19 Total Research & Technology Feluy Improved expandable vinyl aromatic polymers
WO2018069186A1 (en) 2016-10-10 2018-04-19 Total Research & Technology Feluy Improved expandable vinyl aromatic polymers
WO2018069178A1 (en) 2016-10-10 2018-04-19 Total Research & Technology Feluy Improved expandable vinyl aromatic polymers
US10640834B2 (en) 2014-09-10 2020-05-05 National University Corporation Tokyo Medical And Dental University Method for detecting mycoplasma
WO2021043552A1 (en) 2019-09-04 2021-03-11 Total Research & Technology Feluy Expandable vinyl aromatic polymers with improved flame retardancy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566097C1 (ru) * 2014-12-22 2015-10-20 Юлия Алексеевна Щепочкина Сплав на основе меди
GB201703383D0 (en) 2017-03-02 2017-04-19 Gargle Tech Ltd Testing for particulates
CN108411016A (zh) * 2018-05-25 2018-08-17 上海交通大学医学院附属上海儿童医学中心 快速检测骨关节感染常见细菌的pcr检测试剂盒及方法
JP7454264B2 (ja) 2018-09-05 2024-03-22 ヒーロー サイエンティフィック リミテッド 粒子検査
WO2020049566A1 (en) * 2018-09-05 2020-03-12 Hero Scientific Ltd. Strep testing methods
CN111893197B (zh) * 2020-07-15 2023-09-26 四川大学华西医院 一种检测呼吸道常见细菌的多重荧光pcr试剂盒和方法
WO2022149135A2 (en) 2021-01-06 2022-07-14 Hero Scientific Ltd. Filtration sampling devices
CN114836581B (zh) * 2022-06-02 2024-03-12 昆明理工大学 用于检测消化道感染性疾病病原体的引物组合

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093355A (ja) * 1983-09-26 1985-05-25 オーソ・ダイアグノステイツク・システムズ・インコーポレーテツド 核酸検出のためのサンドイツチハイブリダイゼーシヨン方法
JPS62205800A (ja) * 1986-02-27 1987-09-10 オリオン‐ユヒチユメ・オユ 核酸分子の定量法およびそれに用いる試薬
JP2005110545A (ja) 2003-10-06 2005-04-28 Meiji Seika Kaisha Ltd 呼吸器感染症起因菌の迅速検出法およびそのキット
JP2006174837A (ja) 2004-12-23 2006-07-06 Samsung Electronics Co Ltd 呼吸器疾患と関連した10種のバクテリアに特異的なプライマーセット及びプローブオリゴヌクレオチド
JP2006180878A (ja) 2004-12-24 2006-07-13 Samsung Electronics Co Ltd 呼吸器感染に関連したウイルスに特異的な核酸プライマーセットおよびプローブオリゴヌクレオチド
JP2006201062A (ja) * 2005-01-21 2006-08-03 Kainosu:Kk 核酸の検出あるいは定量方法
WO2008041354A1 (fr) 2006-10-03 2008-04-10 Gifu University DÉTECTION DE BACTÉRIES PAR L'UTILISATION DU GÈNE DnaJ ET UTILISATION DU PROCÉDÉ
JP2009039046A (ja) 2007-08-09 2009-02-26 Yamaguchi Univ 肺炎原因菌検出用プライマーセット
WO2009057330A1 (ja) 2007-11-01 2009-05-07 Yamaguchi University 標的rnaの検出・定量方法及びキット
JP2009240207A (ja) 2008-03-31 2009-10-22 Hiroshima Pref Gov ノロウイルスの簡易高感度検出法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69841894D1 (de) * 1997-11-21 2010-10-21 Merck Serono Biodevelopment Sa Äusseres Membranpolypeptid von Chlamydia pneumoniae sowie Fragmente davon und deren Verwendung, insbesondere zur Diagnose, Prävention und Behandlung einer Infektion
US20020086289A1 (en) * 1999-06-15 2002-07-04 Don Straus Genomic profiling: a rapid method for testing a complex biological sample for the presence of many types of organisms
FR2862659B1 (fr) * 2003-11-21 2006-02-10 Pasteur Institut Genome de legionella pneumophila souche paris- applications diagnostiques et epidemiologiques
WO2008105814A2 (en) * 2006-08-22 2008-09-04 Los Alamos National Security, Llc Miniturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids
WO2008140494A2 (en) * 2006-11-22 2008-11-20 The Board Of Trustees Of Michigan State University High throughput screening using microarrays

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093355A (ja) * 1983-09-26 1985-05-25 オーソ・ダイアグノステイツク・システムズ・インコーポレーテツド 核酸検出のためのサンドイツチハイブリダイゼーシヨン方法
JPS62205800A (ja) * 1986-02-27 1987-09-10 オリオン‐ユヒチユメ・オユ 核酸分子の定量法およびそれに用いる試薬
JP2005110545A (ja) 2003-10-06 2005-04-28 Meiji Seika Kaisha Ltd 呼吸器感染症起因菌の迅速検出法およびそのキット
JP2006174837A (ja) 2004-12-23 2006-07-06 Samsung Electronics Co Ltd 呼吸器疾患と関連した10種のバクテリアに特異的なプライマーセット及びプローブオリゴヌクレオチド
JP4235645B2 (ja) 2004-12-23 2009-03-11 三星電子株式会社 呼吸器疾患と関連した10種のバクテリアに特異的なプライマーセット及びプローブオリゴヌクレオチド
JP2006180878A (ja) 2004-12-24 2006-07-13 Samsung Electronics Co Ltd 呼吸器感染に関連したウイルスに特異的な核酸プライマーセットおよびプローブオリゴヌクレオチド
JP2006201062A (ja) * 2005-01-21 2006-08-03 Kainosu:Kk 核酸の検出あるいは定量方法
JP4268944B2 (ja) 2005-01-21 2009-05-27 株式会社カイノス 核酸の検出あるいは定量方法
WO2008041354A1 (fr) 2006-10-03 2008-04-10 Gifu University DÉTECTION DE BACTÉRIES PAR L'UTILISATION DU GÈNE DnaJ ET UTILISATION DU PROCÉDÉ
JP2009039046A (ja) 2007-08-09 2009-02-26 Yamaguchi Univ 肺炎原因菌検出用プライマーセット
WO2009057330A1 (ja) 2007-11-01 2009-05-07 Yamaguchi University 標的rnaの検出・定量方法及びキット
JP2009240207A (ja) 2008-03-31 2009-10-22 Hiroshima Pref Gov ノロウイルスの簡易高感度検出法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2557178A4
TAKAYUKI EZAKI ET AL.: "DnaJ Idenshi o Tsukatte Seikin o Morateki de Jinsoku ni Kenshutsu suru Idenshi Kensaho no Shin Tenkai", DAI 82 KAI JAPANESE SOCIETY OF BACTERIOLOGY SOKAI YOKOSHU, 20 February 2009 (2009-02-20), pages 105 *
TAKESHI UJIIE: "Kanben na Idenshi Kensa no Tool 'Kakusan Chromato-ho'", RINSHO KAGAKU, vol. 36, January 2007 (2007-01-01), pages 19 - 24 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500027A (ja) * 2011-12-09 2015-01-05 ザ セクレタリー オブ ステート フォー ヘルスThe Secretary Of State For Health 呼吸器感染症アッセイ
US10294534B2 (en) 2011-12-09 2019-05-21 The Secretary Of State For Health Respiratory infection assay
JP2013198482A (ja) * 2012-02-22 2013-10-03 Nippon Meat Packers Inc 核酸の検出方法
JP2014082977A (ja) * 2012-10-23 2014-05-12 Kainosu:Kk 食品中からのセレウリド産生セレウス菌の検出方法、これに用いられるプライマーおよびプローブ
US10640834B2 (en) 2014-09-10 2020-05-05 National University Corporation Tokyo Medical And Dental University Method for detecting mycoplasma
WO2018069185A1 (en) 2016-10-10 2018-04-19 Total Research & Technology Feluy Improved expandable vinyl aromatic polymers
WO2018069186A1 (en) 2016-10-10 2018-04-19 Total Research & Technology Feluy Improved expandable vinyl aromatic polymers
WO2018069178A1 (en) 2016-10-10 2018-04-19 Total Research & Technology Feluy Improved expandable vinyl aromatic polymers
US11834563B2 (en) 2016-10-10 2023-12-05 Totalenergies Onetech Belgium Expandable vinyl aromatic polymers
WO2021043552A1 (en) 2019-09-04 2021-03-11 Total Research & Technology Feluy Expandable vinyl aromatic polymers with improved flame retardancy

Also Published As

Publication number Publication date
CN102822352B (zh) 2015-07-29
US20130023443A1 (en) 2013-01-24
EP2557178B1 (en) 2014-11-26
CN102822352A (zh) 2012-12-12
JPWO2011122034A1 (ja) 2013-07-04
JP5565781B2 (ja) 2014-08-06
EP2557178A4 (en) 2013-11-13
EP2557178A1 (en) 2013-02-13
US9347944B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5565781B2 (ja) 核酸クロマトグラフ法を利用した肺炎原因菌の検出方法
EP3348640B1 (en) Amplified nucleic acid detection method and detection device
JP4268944B2 (ja) 核酸の検出あるいは定量方法
JP2004533204A (ja) 水性媒体の微生物学的品質の管理方法及びそれ用のキット
JP2009505651A (ja) 微生物および抗生物質耐性マーカーの検出の方法およびそのための核酸オリゴヌクレオチド
JPH10504973A (ja) 微生物検査室における日常的診断用の臨床検体からの通常の細菌病原体および抗生物質耐性遺伝子を迅速に検出および同定するための特異的および普遍的プローブおよび増幅プライマー
CN111118151A (zh) 基于数字pcr法的人smn1与smn2基因拷贝数检测试剂盒
CN107532213B (zh) 用于同时检测样品中多个核酸序列的方法
WO2013128397A1 (en) Real-time pcr detection of streptococcus pyogenes
EP1969145B1 (en) Oligonucleotide microarray and method for identification of pathogens
US10392652B2 (en) Micro RNA detection method using two primers to produce an amplified double stranded DNA fragment having a single stranded region at one end
JP5916740B2 (ja) 核酸標的の定量的多重同定
US20210363517A1 (en) High throughput amplification and detection of short rna fragments
JP2009000099A (ja) 検体中の核酸の検出方法、それに用いるプローブ設計方法、プローブ設計システム
CN115803463A (zh) 用于诊断SARS-CoV-2的组合物、试剂盒以及通过使用所述试剂盒诊断SARS-CoV-2的方法
US20150031576A1 (en) Real time pcr detection of m. tuberculosis resistant/susceptible to rifampicin and/or isoniazid
WO2021201072A1 (ja) スタフィロコッカス・アルジェンテウスの検出のためのプライマーセット及びプローブ
WO2021091803A1 (en) Idh mutation detection kit and method thereof
WO2022202954A1 (ja) 特定のgc含量を有する標的遺伝子の増幅方法
US10190176B2 (en) Primers, probes, and methods for mycobacterium tuberculosis specific diagnosis
WO2016129249A1 (ja) 乳酸菌の検出方法、乳酸菌検出キット、及び乳酸菌検出器具
JP7472476B2 (ja) プライマー及び百日咳菌 rRNAの検出方法
KR101058820B1 (ko) 유전자 서열 분석용 다중 중합효소 연쇄 반응
CN117043355A (zh) 用于新发传染病的即时需求诊断的保护性等温核酸扩增(pina)方法
JPH08252099A (ja) メチシリン耐性黄色ブドウ球菌の検出法及びキット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016185.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762276

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011762276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012508098

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13637815

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE