WO2011118807A1 - 酵母の培養方法 - Google Patents

酵母の培養方法 Download PDF

Info

Publication number
WO2011118807A1
WO2011118807A1 PCT/JP2011/057446 JP2011057446W WO2011118807A1 WO 2011118807 A1 WO2011118807 A1 WO 2011118807A1 JP 2011057446 W JP2011057446 W JP 2011057446W WO 2011118807 A1 WO2011118807 A1 WO 2011118807A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
culture
citric acid
liquid medium
culturing
Prior art date
Application number
PCT/JP2011/057446
Other languages
English (en)
French (fr)
Inventor
田中 美和
健司 川嶋
Original Assignee
アサヒビール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アサヒビール株式会社 filed Critical アサヒビール株式会社
Priority to DK11759611.4T priority Critical patent/DK2554656T3/en
Priority to PL11759611T priority patent/PL2554656T3/pl
Priority to JP2012507115A priority patent/JP5883780B2/ja
Priority to CN201180013517.9A priority patent/CN102812119B/zh
Priority to EP11759611.4A priority patent/EP2554656B1/en
Publication of WO2011118807A1 publication Critical patent/WO2011118807A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/24Synthetic spices, flavouring agents or condiments prepared by fermentation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/14Yeasts or derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/14Yeasts or derivatives thereof
    • A23L33/145Extracts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a yeast culture method capable of increasing glutathione content in bacterial cells, and a method for producing a yeast extract from yeast cultured by the culture method.
  • Yeasts belonging to the genus Saccharomyces such as brewer's yeast and baker's yeast, contain natural vitamin B groups, amino acids, minerals, etc. in a well-balanced manner. It is effectively used.
  • dry yeast has been used in Japan for many years as a pharmaceutical, a raw material for food, and a seasoning, and is recognized as a highly nutritious and safe material. In recent years, it has also been widely used as a raw material yeast for yeast extract.
  • Yeast extract is prepared from a yeast culture and contains abundant amino acids and has been used as a food additive such as a seasoning for imparting umami and richness.
  • a seasoning for imparting umami and richness.
  • the demand for yeast extract as a seasoning is increasing.
  • Yeast extract prepared from yeast containing abundant taste components can be expected to be used as a better seasoning, and therefore, development of yeasts containing more taste components has been actively conducted.
  • Examples of typical sulfur-containing compounds in yeast cells include glutathione and S-adenosylmethionine.
  • Glutathione is a very useful substance having liver function recovery, antioxidant activity, and the like.
  • glutathione is expected to be used in a wide range of applications such as seasonings, health foods and other food additives, and cosmetic base materials.
  • S-adenosylmethionine is known to act as a methyl group donor in various biological reactions.
  • effects such as antidepressant action, arthropathy alleviation, and liver function recovery have been reported, and it is known that these sulfur-containing compounds play an important role for the living body.
  • the sulfur-containing compound is usually synthesized by transcription and translation products of many genes including a MET gene (methionine synthesis gene) group using sulfur-containing amino acids such as methionine and cysteine. Therefore, in order to obtain a yeast that produces a higher amount of sulfur-containing compounds, a mutation is caused in the genes related to the synthesis of these sulfur-containing compounds that the yeast has, and a yeast mutant containing a high sulfur-containing compound content is produced.
  • a method for producing a yeast having a high glutathione content (1) aerobically cultivating a mutant strain of Candida yeast that has become capable of growing in a medium containing ethionine and sulfite by mutation treatment.
  • a method for increasing the glutathione content in the bacterial cells has been disclosed (see, for example, Patent Document 1).
  • a yeast having a high glutathione content can also be obtained by a method of screening a yeast having a higher glutathione content from yeasts that have been genetically modified by mutation treatment or the like.
  • the mutation treatment and screening require labor and labor, and it is often not always possible to obtain a glutathione-rich yeast.
  • natural yeast wild strain
  • development of a method for increasing glutathione content in yeast without mutation treatment is desired. For example, when yeast or yeast extract is used for food, a wild strain may be preferred over a recombinant.
  • An object of the present invention is to provide a method for culturing yeast that can increase the glutathione content in cells without genetic modification.
  • the present inventors have added a predetermined amount or more of citric acid to a liquid medium when cultivating yeast such as Saccharomyces sp.
  • the present invention was completed.
  • the present invention (1) A method for culturing yeast, comprising culturing yeast in a liquid medium having a citric acid concentration of 20 mM or more, (2) The yeast culture method according to (1), wherein the liquid medium has a citric acid concentration of 200 mM or less, (3) The method for culturing yeast according to (1) or (2) above, wherein the citrate concentration of the liquid medium at the start of the culture is 20 mM or more, (4) including adjusting the citrate concentration of the liquid medium to 20 to 200 mM when the citrate concentration of the liquid medium at the start of the culture is less than 20 mM and the growth state of the yeast is in the induction phase or the logarithmic growth phase.
  • the yeast culture method according to (1), (5) The citrate concentration of the liquid medium at the start of the culture is less than 20 mM, and the citrate concentration of the liquid medium is adjusted to 20 to 200 mM within 9 hours after the start of the culture (1) The yeast culture method described. (6) The yeast culture method according to any one of (1) to (5), wherein the yeast is a genus Saccharomyces or a genus Candida, (7) The yeast culture method according to any one of (1) to (5), wherein the yeast is Saccharomyces cerevisiae or Candida utilis.
  • a method for increasing the glutathione content of yeast comprising culturing yeast in a liquid medium having a citric acid concentration of 20 mM or more
  • a method for producing yeast comprising recovering yeast cultured by the yeast cultivation method according to any one of (1) to (7) above
  • a method for producing a yeast extract comprising extracting a yeast extract from a yeast cultured by the yeast culturing method according to any one of (1) to (7), (11)
  • a method for producing a food or drink including use as a raw material, (12) A yeast extract prepared from a yeast cultured by the yeast culture method according to any one of (1) to (7) above, (13) A seasoning composition containing the yeast cultured by the yeast culturing method according to any one of (1) to (7) or the yeast extract according to (12), (14) Yeast cultivated by the yeast culturing method according to any one of (1) to (7), or a food or drink containing the yeast extract according to (12), Is to provide.
  • the glutathione content of yeast such as Saccharomyces can be increased by a simple process of culturing in a liquid medium containing a sufficient amount of citric acid. Moreover, since the yeast cultivated by the culture method has a sufficiently high glutathione content, by using the yeast, yeast extracts and foods and drinks having a high glutathione content can be easily obtained.
  • Example 1 it is the graph which showed GSH content rate (%) for every citric-acid density
  • Example 2 it is the graph which showed the GSH content rate (%) of each culture for every citric acid concentration added to molasses culture medium (1).
  • Example 2 it is the graph which showed pH (final pH) of the liquid culture medium at the time of completion
  • the Saccharomyces cerevisiae KK122 strain is a view showing a measurement result of the GSH content and OD 600.
  • Example 5 the Saccharomyces cerevisiae KK124 strain is a view showing a measurement result of the GSH content and OD 600.
  • Example 11 it is the figure which showed the result of having measured the GSH content rate (%) of the yeast in each sample.
  • the reference example 1 it is the figure which showed the measurement result of the citric acid content in each supernatant before and behind culture
  • glutathione means both oxidized glutathione and reduced glutathione
  • the total glutathione content means the total content of oxidized glutathione and reduced glutathione.
  • the glutathione content per dry cell weight of yeast can be determined by a method usually performed when the glutathione content in a microorganism is quantified.
  • the total glutathione content per dry cell weight of yeast can be measured according to the method of Titze et al. (Analytical Biochemistry, Vol. 27, p502, 1969).
  • DTNB 5,5′-dithiobis (2nitrobenzoic acid)
  • NADPH nicotinamide adenine dinucleotide phosphate reduced form
  • the reaction rate of the reaction is proportional to the amount of glutathione present. This is a method for measuring glutathione content.
  • the yeast culture method of the present invention is characterized in that yeast is cultured in a liquid medium having a citric acid concentration of 20 mM or more.
  • yeast is cultured in a liquid medium having a citric acid concentration of 20 mM or more.
  • the glutathione content of the yeast can be increased, and yeast with a high glutathione content (yeast with a high glutathione content) can be obtained.
  • the reason why such an effect of high glutathione content (effect of increasing the glutathione content of yeast) is not clear.
  • Example 3 described later when other acids are added to the liquid medium, the effect is not observed, and the effect is obtained by adding citric acid even in a pH controlled environment. Therefore, it is not just the pH adjustment effect of the liquid medium, but the production of glutathione is promoted by some action specific to citric acid, or the discharge to the outside of the cell is suppressed, so that It is presumed that glutathione is accumulated.
  • One aspect of the yeast culturing method of the present invention is a method for producing a glutathione-rich yeast, wherein the yeast is cultured in a liquid medium having a citric acid concentration of 20 mM or more. And a method for producing a yeast having a high glutathione content, which comprises recovering the yeast from the culture.
  • the glutathione-rich yeast of the present invention refers to a yeast in which the glutathione content in the microbial cells is significantly increased compared to the parent strain.
  • the culture means a culture containing yeast cells and a medium used for culturing yeast.
  • the yeast used in the yeast culture method of the present invention is not particularly limited, but is preferably Saccharomyces sp. Or Candida sp.
  • Saccharomyces cerevisiae Saccharomyces cerevisiae
  • Saccharomyces paradoxus Saccharomyces paradoxus
  • Saccharomyces Mikatae Saccharomyces mikatae
  • Saccharomyces bayanus Saccharomyces bayanus
  • Saccharomyces click Doria Vu zero Vii Sacharomyces kudriavzevii
  • Candida utilis Candida utilis
  • Candida tropicalis Candida lipolytica
  • Candida salmon etc.
  • the yeast culturing method of the present invention can provide a high glutathione-containing effect not only when cultivating wild strains (natural yeast) but also when cultivating mutant strains obtained by mutation treatment.
  • wild strain means a yeast that originally existed in nature, that is, a yeast that has not been subjected to artificial mutation treatment.
  • mutant strain means a yeast obtained by subjecting a gene to artificial mutation treatment.
  • the mutation treatment is not particularly limited as long as it is a treatment capable of mutating a part of a gene possessed by an organism such as yeast, and when producing a mutant strain of a microorganism such as yeast. Any commonly used technique may be used.
  • the yeast can be mutated by treating the yeast with ultraviolet rays, ionizing radiation, nitrous acid, nitrosoguanidine, ethyl methanesulfonate (hereinafter abbreviated as EMS) or the like as a mutagen. .
  • the citric acid concentration of the liquid medium used in the yeast culture method of the present invention may be 20 mM or more.
  • the citric acid concentration is 20 mM or more, a sufficient amount of citric acid can be allowed to act on the yeast in order to achieve the effect of high glutathione content.
  • the citrate concentration of the liquid medium is preferably 20 to 200 mM, more preferably 20 to 120 mM, further preferably 20 to 100 mM, and particularly preferably 50 to 100 mM. preferable.
  • an excessive amount of citric acid is added to the liquid medium, the effect of high glutathione content cannot be obtained as expected, and there is a risk of inhibiting the growth of the yeast.
  • By setting the amount to 200 mM or less, a sufficient glutathione high content effect can be obtained while suppressing the influence on the growth of yeast.
  • the glutathione content is slightly higher compared to the liquid medium not added even when an acid other than citric acid is added. Become. This is presumably because the pH of the liquid medium was adjusted by the buffering action due to acid addition. That is, when the pH is not controlled, a part of the citric acid added to the liquid medium is used for pH control of the liquid medium. For this reason, the citric acid concentration of the liquid medium necessary for obtaining the same high glutathione content effect tends to be higher in the culture conditions where the pH is not controlled than in the culture conditions where the pH is controlled.
  • the yeast culturing method of the present invention it is preferable to culture the yeast at a citric acid concentration of 60 to 110 mM, and culture the yeast at 75 to 90 mM. More preferably.
  • the yeast culture method of the present invention the yeast is cultured at a citrate concentration of 20 to 100 mM in the liquid medium. It is preferable to culture yeast at 20 to 75 mM.
  • the yeast may be cultured using a liquid medium adjusted in advance so that the citric acid concentration is 20 mM or more, and citric acid is added to the liquid medium after the start of the culture. May be. That is, the yeast may be cultured with a citric acid concentration of 20 mM or more in the liquid medium at the start of the culture, and the citric acid concentration of the liquid medium is less than 20 mM (including a liquid medium containing no citric acid at the start). After culturing the yeast, the citric acid concentration of the liquid medium may be adjusted to 20 to 200 mM after the start of the culture. In the method of adjusting the citric acid concentration of the liquid medium, solid citric acid may be added to the liquid medium for adjustment, or an aqueous citric acid solution may be added for adjustment.
  • the earlier the citric acid is added to the liquid medium the higher the glutathione content tends to be obtained.
  • the effect of high glutathione content is sufficiently exerted by allowing a sufficient concentration of citric acid to act on yeast in a state of citizenship. Therefore, when adjusting the citrate concentration of the liquid medium after the start of culture, before entering the stationary phase, i.e., the yeast growth state is in the induction phase or logarithmic growth phase, preferably in the logarithmic growth phase after the start of the culture.
  • the logarithmic growth phase is a period in which, in batch and fed-batch culture, when the amount of yeast in the culture vessel is measured over time using absorbance or the like as an index, it is observed that the logarithmic growth period increases logarithmically.
  • continuous culture it is a time when the amount of yeast in the culture vessel is observed to be almost constant.
  • the induction period is the period from the start of culture to the logarithmic growth phase in batch and fed-batch culture.
  • continuous culture it is the time until the parameter that becomes Merckmar is controlled to a constant value. For example, by adjusting the citric acid concentration of the liquid medium within 9 hours, preferably within 3 hours from the start of culture, a sufficient concentration of citric acid can be allowed to act on yeast in a state where budding is thriving.
  • liquid medium used in the yeast culturing method of the present invention a liquid medium in which yeast can grow is appropriately added with citric acid so that the citric acid concentration becomes 20 mM or more.
  • the liquid medium to which citric acid is added contains a carbon source, a nitrogen source, an inorganic salt, and the like, and any medium that is usually used for culturing yeasts such as Saccharomyces cerevisiae can be used. .
  • the carbon source contained in the liquid medium is, for example, one or more selected from the group consisting of glucose, sucrose, acetic acid, ethanol, molasses, sulfite pulp waste liquid, and the like that are used for normal microorganism culture Substances can be used.
  • the nitrogen source may be a nitrogen-containing inorganic salt or a nitrogen-containing organic substance.
  • one or more substances selected from the group consisting of urea, ammonia, ammonium sulfate, ammonium chloride, ammonium phosphate, corn steep liquor (CSL), casein, yeast extract, and peptone can be used. .
  • inorganic salts phosphoric acid components such as lime superphosphate and phosphorous acid, potassium components such as potassium chloride and potassium hydroxide, and magnesium components such as magnesium sulfate and magnesium hydrochloride can be used.
  • inorganic salts such as zinc, copper, manganese, and iron ions may be used.
  • vitamins, nucleic acid-related substances and the like may be appropriately added to the liquid medium used in the yeast culture method of the present invention.
  • the liquid medium used in the yeast culture method of the present invention may be a synthetic medium such as an SD medium, or a semi-synthetic medium such as a YPD medium or a molasses medium.
  • a medium originally containing a small amount of citric acid such as a molasses medium, may be used.
  • the culture medium which modified these may be sufficient.
  • molasses medium sucrose concentration 3%) varies in content depending on the lot, etc.
  • the total organic acid concentration is generally about 1 to 3.5 g / L
  • the citric acid concentration is 50 to 50%. 400 mg / L. That is, it is calculated from the molecular weight 192 of citric acid that the molasses medium used for yeast culture usually contains 0.2 to 2 mM citric acid.
  • citric acid may be used as a carbon source when culturing yeast.
  • citric acid affects the pH of the medium
  • citric acid is actively added to the medium (for example, citric acid is added so as to be 10 mM or more).
  • citric acid added to the liquid medium is used as a carbon source. It is clear that it is not used.
  • the culture format is not particularly limited as long as it uses a liquid medium, and can be appropriately determined in consideration of the culture scale and the intended use of the obtained culture.
  • Examples of the culture format in the liquid medium include batch culture, fed-batch culture, and continuous culture.
  • the culture conditions of the yeast culture method of the present invention are not particularly limited, except that a liquid medium containing a predetermined concentration of citric acid is used, and culture is performed under conditions generally used for culturing yeast. Can do.
  • the culture temperature is preferably 20 to 40 ° C, more preferably 25 to 35 ° C.
  • the pH of the medium is preferably 3.5 to 8.0, and more preferably 4.0 to 6.0. In particular, when industrially mass-producing a culture, it is preferable to periodically measure the pH in the medium and adjust the pH to 4.0 to 6.0.
  • the amount of aeration and the conditions for stirring can be appropriately determined in consideration of the culture volume and time, and the initial concentration of bacteria.
  • the ventilation is 0.2-2V.
  • V. M.M. Stirring can be performed at about (Volume per volume per minuts) and about 50 to 800 rpm.
  • the yeast having a high glutathione content can be cultured by the yeast culturing method of the present invention.
  • the dried yeast cells are more cultivated than in the case of culturing in a liquid medium having a citric acid concentration of less than 20 mM (including a liquid medium containing no citric acid).
  • the glutathione content contained therein can be increased by 10% or more.
  • dry cell weight means the weight after drying a cell.
  • the yeast culture is centrifuged to collect the microbial cells as a precipitate.
  • the weight of the dried cells can be determined by washing the collected cells twice with a centrifugal separation and then measuring the weight after drying at 105 ° C. for 5 hours.
  • the yeast culture method of the present invention including culturing yeast in a liquid medium having a citric acid concentration of 20 mM or more, a culture containing yeast having a high glutathione content can be obtained.
  • the yeast can be recovered from the product.
  • the method for recovering the yeast from the culture is not particularly limited, and any of the recovery methods that are usually performed when recovering the yeast from the yeast culture may be used. Examples of a method for recovering yeast from the culture include a method of centrifuging a yeast culture.
  • the yeast extract of this invention can be prepared by extracting a yeast extract from the yeast cultured with the yeast culture
  • glutathione is a substance having various physiological activities. That is, it is possible to produce a yeast or yeast extract with higher added value than conventional by simply applying the yeast culture method of the present invention instead of the conventional culture method.
  • Preparation of the yeast extract from the yeast cultured by the yeast culture method of the present invention is not particularly limited, and any of the usual preparation methods may be used when preparing the yeast extract.
  • the preparation method include a self-digestion method that solubilizes cells using a proteolytic enzyme or the like inherent in yeast cells, and an enzyme decomposition that solubilizes cells by adding an enzyme preparation derived from microorganisms or plants.
  • hot water extraction method to solubilize cells by soaking in hot water for a certain period of time acid / alkaline decomposition method to solubilize cells by adding various acids or alkalis, freezing and thawing once
  • acid / alkaline decomposition method to solubilize cells by adding various acids or alkalis
  • freezing and thawing once
  • There are a freeze-thaw method for crushing cells by performing the above a physical crushing method for crushing cells by physical stimulation, and the like.
  • physical stimulation used in the physical crushing method include sonication, homogenization under high pressure, and grinding by mixing with a solid material such as glass beads.
  • dry yeast cells having a high glutathione content can be obtained by subjecting the culture obtained by the yeast culture method of the present invention to a drying treatment.
  • the method for drying the culture is not particularly limited, and any of the preparation methods commonly used for preparing dry yeast cells may be used. Examples of the preparation method include freeze-drying method, spray-drying method, and drum-drying method.
  • a dry yeast powder having a high glutathione content and excellent handleability can be obtained.
  • a fraction containing glutathione may be obtained from the culture obtained by the yeast culture method of the present invention.
  • any method may be used as long as it is a commonly used method.
  • an extract obtained by extraction with hot water or cell disruption is fractionated using an affinity column carrying a substance having a high affinity for sulfur-containing compounds, thereby containing glutathione at a high concentration. It becomes possible to concentrate and purify the fraction.
  • the glutathione-rich yeast obtained by the yeast culture method of the present invention, the dried yeast cells of the yeast, the yeast extract prepared from the yeast, and the yeast extract powder may be used as a seasoning composition.
  • the seasoning composition may consist only of the yeast extract of the present invention, and contains other components such as a stabilizer and a preservative in addition to the yeast extract of the present invention. It may be.
  • the said seasoning composition can be suitably used for various food-drinks similarly to other seasoning compositions.
  • the glutathione-rich yeast obtained by the yeast culture method of the present invention the dried yeast cells of the yeast, the yeast extract prepared from the yeast, and the yeast extract powder are directly contained in food and drink as raw materials. You can also. Thereby, the food / beverage products which contain glutathione in high concentration can be manufactured efficiently.
  • These foods and drinks may be any foods and drinks that can normally be added with dry yeast, yeast extract, and seasoning compositions containing these, for example, alcoholic beverages, soft drinks, fermented foods, seasonings, soups. , Breads and confectionery.
  • the said culture etc. can also be ingested as a supplement etc. by processing into a soft capsule, a hard capsule, and a tablet.
  • the above yeast containing a high amount of glutathione, the dried yeast cell of the yeast, the yeast extract prepared from the yeast, and the yeast extract powder are added in the same manner as other raw materials.
  • the food / beverage products which contain glutathione in high concentration can be manufactured.
  • total glutathione content per dry cell weight (% (w / w))” may be rephrased as “GSH content (%)”.
  • Saccharomyces cerevisiae YNN27 strain Saccharomyces cerevisiae BY4742 strain
  • Saccharomyces cerevisiae NCYC506 strain Saccharomyces cerevisiae NCYC506 strain
  • Schizosaccharomyces pombe wild strain JCM18 are strains JCM18. .
  • Saccharomyces cerevisiae AB9 strain ⁇ MATa / ⁇ gpi10 / gpi10 ura3 / URA3 leu2 / LEU2> is a mutant strain having a mutation in the gene encoding ⁇ 1,2-mannosyltransferase and releasing mannan protein into the medium ( (For example, see the pamphlet of International Publication No.
  • Saccharomyces cerevisiae AB9 strain has been deposited at the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (1-1-1 East Tsukuba, Ibaraki) (Accession number: FERM BP-10390) (date of deposit of the original deposit) : July 13, 2004, date of transfer to international deposit: August 3, 2005).
  • Saccharomyces cerevisiae AB13 strain is a glutathione-rich mutant obtained as follows. First, a wild-type strain of Saccharomyces cerevisiae was subjected to EMS treatment, and mutant strains having a higher glutathione content than the parent strain were selected from the obtained mutant strains. Subsequently, the selected mutant strain was subjected to EMS treatment, and a mutant strain having a higher glutathione content than the parent strain was selected from the obtained mutant strains. By repeating this step twice or more, Saccharomyces cerevisiae AB13, KK101 strain, KK122 strain, and KK124 strain were obtained.
  • compositions are shown in Tables 1 to 7, respectively.
  • yeast was cultured by the yeast culturing method of the present invention using a semi-synthetic medium, and the GSH content (%) of the cultured yeast was measured.
  • the KK101 strain stored in glycerol at ⁇ 80 ° C. was smeared on a YPD agar medium and cultured at 30 ° C. for 3 days. Thereafter, one loop of yeast grown on the YPD agar medium was inoculated into a 13-mL capacity tube containing 3 mL of YPD medium and cultured at 30 ° C. for 1 to 3 days at a stirring speed of 200 rpm.
  • the obtained culture broth was used as a pre-culture broth and used for the following main culture.
  • 150 ⁇ L of the preculture solution was inoculated into a 200 mL baffled Erlenmeyer flask containing 15 mL of a semi-synthetic medium supplemented with citric acid so as to be 0 to 100 mM, and cultured at 30 ° C. for 48 hours with a stirring speed of 200 rpm. did.
  • the total amount of glutathione contained in the cells in the obtained culture is measured according to the method of Titze et al. (Analytical Biochemistry, Vol. 27, p502, 1969), and is divided by the dry cell weight to contain GSH.
  • the rate (total glutathione content per dry cell weight) was calculated. Specifically, first, the obtained culture was centrifuged at 6000 rpm ⁇ 5 minutes at 4 ° C., and the recovered yeast cells were washed twice with purified water. After 2 mL of purified water is added and suspended in the yeast cells, 500 ⁇ L of this suspension is placed in an aluminum dish and dried at 105 ° C. for 5 hours or longer, and further left for 1 hour or longer in a desiccator, followed by drying.
  • the weight was measured and used as the dry cell weight.
  • 500 ⁇ L of the suspension was boiled in a hot water bath for 5 minutes, immediately cooled in an ice bath, centrifuged at 15000 rpm ⁇ 5 minutes at 4 ° C., and the recovered supernatant was used as a sample for glutathione determination. It was.
  • a solution prepared by adding 5 ⁇ L of glutathione reductase and 500 ⁇ L of NADPH to 2.5 mL of 0.5 M potassium phosphate buffer (pH 7.0) mixed with 1 mM EDTA was placed in a 4 mL disposable cell immediately before the measurement.
  • FIG. 1 is a graph showing the GSH content (%) for each citric acid concentration in the liquid medium. As a result, it was found that the GSH content (%) was increased by adding citric acid to the liquid medium. The GSH content (%) increased depending on the citric acid concentration. Under the conditions of this example, the maximum value was obtained at a citric acid concentration of 90 mM.
  • yeast was cultured by the yeast culture method of the present invention using molasses medium (1), and the GSH content (%) of the cultured yeast was measured.
  • Each conical flask was inoculated and cultured at 30 ° C. with shaking at 200 rpm for 48 hours.
  • molasses medium originally contains several mM citric acid, the actual citric acid concentration in the molasses medium is slightly higher than the added citric acid concentration.
  • the GSH content (%) of the cultured yeast was measured in the same manner as in Example 1. Furthermore, the pH of the liquid medium at the end of the culture was also measured. 2A and 2B show the citric acid in which the GSH content (%) of each culture (FIG. 2A) and the pH (final pH) of the liquid medium at the end of the culture (FIG. 2B) were added to the molasses medium (1). It is the graph shown for every density
  • Example 3 When the Saccharomyces cerevisiae KK101 strain was cultured using a semi-synthetic medium to which various acids were added, the GSH content (%) of the yeast after the culture was measured, and each of the liquid medium with respect to the glutathione content of the yeast was measured. The effect of acid was investigated. 150 ⁇ L of the preculture solution prepared in the same manner as in Example 1 was inoculated into a 200 mL baffled Erlenmeyer flask containing 15 mL of a semi-synthetic medium to which various salts described in Table 8 were added so as to have the concentrations described in the table. The culture was performed at 30 ° C. with shaking at 200 rpm for 48 hours. The GSH content (%) of the cultured yeast was measured in the same manner as in Example 1. Furthermore, the pH (final pH) and OD 600 of the liquid medium at the end of the culture were also measured. The measurement results are shown in Tables 8 to 10.
  • the pH of the liquid medium is adjusted to 4.0 to 6.0 by adding 50 mM or more of acid to the liquid medium, and in this addition amount range, It was found that the amount of added did not significantly affect the pH of the liquid medium. With phosphoric acid, it was found that the pH of the liquid medium increased depending on the amount added, and the effect of the amount added was large. In addition, when any liquid medium was used, the value of OD 600 at the end of the culture was about 30, and it was found that the effect of the type and amount of acid added to the liquid medium on the growth of yeast was small. .
  • the GSH content was about 2.8% for acids other than citric acid, and there was no particular difference.
  • GSH content rate was 2.4% and it was lower than others, but this is guessed because the pH of the liquid culture medium was less than 4.
  • the GSH content tends to increase depending on the citric acid content. From these results, it is clear that the glutathione-rich effect obtained by culturing yeast in a citric acid-containing medium is an effect peculiar to citric acid.
  • the semi-synthetic medium was used because the GSH content and the final pH of the liquid medium were almost the same when the citric acid concentration of the liquid medium was 50 mM and when other acids were added at 50 mM or more. In some cases, it is estimated that most of the citric acid added to have a citric acid concentration of 50 mM is used for adjusting the pH of the liquid medium.
  • Example 4 For the Saccharomyces cerevisiae KK101 strain, yeast was cultured by the yeast culture method of the present invention using a liquid medium to which citric acid was further added with the pH adjusted, and the GSH content (% ) was measured. 150 ⁇ L of the preculture solution prepared in the same manner as in Example 1 was added to each 200 mL baffled Erlenmeyer flask containing 15 mL of semi-synthetic medium to which both acids were added so that the succinic acid concentration and citric acid concentration described in Table 11 were obtained. Inoculated and cultured at 30 ° C. with shaking at 200 rpm for 48 hours. The GSH content (%) of the cultured yeast was measured in the same manner as in Example 1.
  • the pH (final pH) of the liquid medium at the end of the culture was also measured.
  • Table 11 shows the measurement results.
  • the citric acid was further added to the liquid medium, so that the GSH content was higher than when no addition was made. Increased dramatically.
  • the GSH content which was 2.8% when the citric acid concentration was 0 mM (no addition)
  • the citric acid concentration was 75 mM and 90 mM both were 4.3%, which was increased by 50% or more from the GSH content in the case of no addition.
  • Example 3 Compared with the results of Example 3, even when the citric acid concentration in the liquid medium was the same, the present Example to which succinic acid was added together had a higher GSH content rate. It can be said that a part of the citric acid added to the medium was used to control the pH of the liquid medium. That is, from these results, by adding citric acid to the liquid medium whose pH was controlled to 4.0 to 6.0, citric acid was added to the liquid medium whose pH was not controlled to 4.0 to 6.0. It is apparent that a higher glutathione-rich effect can be obtained with a smaller amount of citric acid added than when adding.
  • Saccharomyces cerevisiae KK122 and KK124 strains were cultured with the yeast culture method of the present invention under the culture conditions adjusted for pH using a jar fermenter, and the GSH content (% ) was measured.
  • pre-cultures of Saccharomyces cerevisiae KK122 strain and KK124 strain were prepared. 100 ⁇ L of each pre-culture solution was inoculated into a 200 mL baffled Erlenmeyer flask containing 10 mL of YPD medium, and cultured at 30 ° C. for 1 day at a stirring speed of 200 rpm. The obtained culture broth was used as a pre-culture broth and used for the following main culture.
  • 3A and 3B are diagrams showing the measurement results of GSH content and OD 600 of Saccharomyces cerevisiae KK122 strain [FIG. 3A] and KK124 strain [FIG. 3B].
  • the bar graph is the result of GSH content (%)
  • the line graph is the result of OD 600 .
  • the results of “90 mM citric acid” cultured in a 90 mM citric acid-containing medium and the results of “0 mM citric acid (no addition)” cultured in a semi-synthetic medium are shown.
  • Saccharomyces cerevisiae KK122 strain and KK124 strain also had a high GSH content by culturing in a liquid medium containing citric acid, like the Saccharomyces cerevisiae KK101 strain.
  • the slope of the OD 600 graph was slightly smaller than when cultured in a semi-synthetic medium, but the OD 600 values at the end of the culture were similar. Met. From this, it can be observed that by adding citric acid to the liquid medium, although a slight delay in the rise is observed, the yeast can eventually be cultured in the same manner as in the case of no addition of citric acid. It was confirmed that the effect on growth was small.
  • Example 6 For various Saccharomyces spp., Yeast was cultured by the yeast culture method of the present invention using a semi-synthetic medium, and the GSH content (%) of the cultured yeast was measured. Based on the results of Example 3, when the citric acid concentration was 50 mM as a reference (control), and an increase in the GSH content rate was observed depending on the citric acid concentration, the effect of high glutathione content of the present invention was It was confirmed that it was played. First, by the same method as in Example 1, precultures of the strains listed in Table 12 were prepared.
  • Example 7 For various Saccharomyces spp., Yeast was cultured by the yeast culture method of the present invention using a YPD medium, and the GSH content (%) of the cultured yeast was measured. When an increase in the GSH content rate was observed depending on the citric acid concentration, it was confirmed that the effect of high glutathione content of the present invention could be confirmed. First, by the same method as in Example 1, precultures of the strains listed in Table 13 were prepared.
  • each preculture was inoculated into a 200 mL baffled Erlenmeyer flask containing 15 mL of YPD medium supplemented appropriately with citric acid so that the citric acid concentration was 0 to 90 mM, and stirred at 30 ° C.
  • the culture was shaken at 200 rpm for 48 hours.
  • the GSH content (%) of the cultured yeast was measured in the same manner as in Example 1. Table 13 shows the measurement results. As a result, it was confirmed that each strain of Saccharomyces cerevisiae has the glutathione high content effect of the present invention in both the mutant strain and the wild strain in the YPD medium.
  • Yeasts other than Saccharomyces were also cultured by the yeast culturing method of the present invention, and the GSH content (%) of the cultured yeast was measured.
  • Candida utilis 1561 strain was cultured in a YPD medium containing citric acid, and the GSH content rate was measured.
  • a preculture solution of Candida utilis 1561 strain was prepared by the same method as in Example 1.
  • 15 ⁇ L of each preculture was inoculated into a 200 mL baffled Erlenmeyer flask containing 15 mL of YPD medium appropriately added with citric acid so that the citric acid concentration was 0 to 62.5 mM (the inoculation rate was 0. 0).
  • Example 14 shows the measurement results. As a result, it was confirmed that the Candida utilis 1561 strain also has the glutathione high content effect of the present invention as in the case of the genus Saccharomyces.
  • Yeast was also cultured with respect to yeast of other strains belonging to the genus Candida by the yeast culture method of the present invention, and the GSH content (%) of the cultured yeast was measured.
  • Candida utilis 1560 strain was cultured in a molasses medium (2) containing citric acid, and the GSH content rate was measured.
  • a preculture solution of Candida utilis 1560 strain was prepared by the same method as in Example 1.
  • 45 ⁇ L of each preculture was inoculated into a 200 mL baffled Erlenmeyer flask containing 15 mL of molasses medium (2) with appropriate addition of citric acid so that the citric acid concentration was 0-62.5 mM (inoculation magnification).
  • Example 15 shows the measurement results. As a result, it was confirmed that the Candida utilis 1560 strain also has the glutathione high content effect of the present invention as in the case of the genus Saccharomyces.
  • Example 10 For Saccharomyces spp., Yeast was cultured by the yeast culture method of the present invention using an SD medium, and the GSH content (%) of the cultured yeast was measured. When an increase in the GSH content rate was observed depending on the citric acid concentration, it was confirmed that the effect of high glutathione content of the present invention could be confirmed. First, by the same method as in Example 1, precultures of the strains described in Table 16 were prepared.
  • each preculture was inoculated into a 200 mL baffled Erlenmeyer flask containing 15 mL of YPD medium supplemented appropriately with citric acid so that the citric acid concentration was 50 to 150 mM, and stirred at 30 ° C.
  • the culture was shaken at 200 rpm for 48 hours.
  • the GSH content (%) of the cultured yeast was measured in the same manner as in Example 1. The measurement results are shown in Table 16.
  • each strain of Saccharomyces cerevisiae has the glutathione-rich effect of the present invention in both the mutant and wild strains even in the SD medium. From these results, the glutathione high content effect of the present invention is not particularly limited in the composition of the liquid medium to be used, and any medium can be used by adding a sufficient amount of citric acid. It can be said.
  • Example 11 After the cultivation was started, the citrate concentration of the liquid medium was adjusted to 20 mM or more, whereby yeast was cultured by the yeast cultivation method of the present invention, and the GSH content (%) of the cultured yeast was measured. Based on the results of Example 3, when the citric acid concentration at the start of culture is 50 mM as a reference (control), when the GSH content is higher than this, the effect of high glutathione content of the present invention is achieved. It can be confirmed that.
  • precultures of Saccharomyces cerevisiae KK101 strain, KK122 strain, KK124 strain, and AB13 strain were prepared. Subsequently, each strain was cultured as follows.
  • citric acid was added to one of the remaining two to which citric acid was not added so that the citric acid concentration was 90 mM, and the culture was continued as it was (after 6 hours). 90 mM sample added).
  • citric acid was added so that the citric acid concentration was 90 mM to the remaining one not added with citric acid (90 mM sample added after 9 hours), and the culture was continued as it was.
  • the culture was completed in all the flasks to obtain 5 samples. The same culture operation was performed on each strain to obtain a total of 20 samples.
  • FIG. 4 is a diagram showing the results of measuring the GSH content (%) of yeast in each sample.
  • the GSH content (%) was measured in the same manner as in Example 1.
  • the GSH content rate of the sample to which 90 mM citric acid was added was higher than that of the 50 mM sample added at the initial stage, regardless of the addition time of citric acid. That is, from these results, even when the concentration of citric acid in the liquid medium is adjusted to a sufficient concentration to achieve the glutathione-rich effect of the present invention after the start of culture, the glutathione content of the yeast is reduced. It was confirmed that it could be increased.
  • the initial addition 90 mM sample has the highest GSH content rate, and the later the addition time of citric acid, the lower the GSH content rate. Since the tendency was observed, it was considered that it is preferable to adjust the citric acid concentration after the start of the culture at least within 9 hours after the start of the culture, that is, at a time when budding of the yeast is active.
  • Example 1 It was examined whether or not citric acid added to the liquid medium was assimilated as a carbon source.
  • a preculture solution of Saccharomyces cerevisiae KK101 strain was prepared by the same method as in Example 1.
  • a semi-synthetic medium 50 mM citric acid-containing medium
  • semi-synthetic added with sodium citrate so that the citric acid concentration is 90 mM.
  • FIG. 5 is a diagram showing measurement results of citric acid content in each supernatant before and after culture.
  • 50 mM Na Citrate is the result of culturing in a medium containing 50 mM citric acid
  • 90 mM Na Citrate is the result of culturing in a medium containing 90 mM citric acid
  • 100 mM K Phospate is cultured in a medium containing 100 mM phosphoric acid. The results are shown respectively.
  • the yeast culturing method of the present invention can easily increase the glutathione content of yeast such as Saccharomyces, so that the culturing method can be used particularly in the food field.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Seasonings (AREA)

Abstract

 本発明は、酵母を、クエン酸濃度が20mM以上である液体培地中で培養することを含む、酵母の培養方法;培養開始時における液体培地のクエン酸濃度が20mM未満であり、かつ、培養開始後から対数増殖期終了時までの間に、液体培地のクエン酸濃度を20~200mMに調整する工程を含む前記記載の酵母の培養方法;並びに、前記いずれか記載の酵母の培養方法で培養された酵母から、酵母エキスを抽出する工程を含む、酵母エキスの製造方法;前記いずれか記載の酵母の培養方法で培養された酵母、及びこれらの酵母から調製された酵母エキスからなる群より選択される1以上の製造物を原料として用いることを含む、飲食品の製造方法に関する。本発明によれば、遺伝的な改変を施すことなく、菌体中のグルタチオン含有量を高めることができる酵母の培養方法を提供できる。

Description

酵母の培養方法
 本発明は、菌体中のグルタチオン含有量を高めることができる酵母の培養方法、及び、前記培養方法で培養された酵母から酵母エキスを製造する方法に関する。
 本願は2010年3月26日に日本に出願された特願2010-073818号に基づき優先権を主張し、その内容をここに援用する。
 ビール酵母やパン酵母を始めとするサッカロマイセス(Saccharomyces)属菌に属する酵母は、天然のビタミンB群、アミノ酸、及びミネラル等をバランス良く含有しており、ビールやパンの製造に使われる以外にも有効活用されている。例えば、乾燥酵母は我が国において長年にわたって医薬品、食品原料、及び調味料などとして使われており、栄養価と安全性の高い素材として認知されている。また、近年は酵母エキスの原料酵母としても広く用いられている。
 酵母エキスとは、酵母の培養物から調製され、アミノ酸等を豊富に含むものであり、従来から、旨味やコクを付与するための調味料等のような食品添加剤として使用されている。特に昨今の天然志向の高まりから、調味料としての酵母エキスの需要は増加傾向にある。呈味成分を豊富に含む酵母から調製された酵母エキスは、より優れた調味料として使用し得ることが期待できるため、呈味成分をより多く含む酵母の開発が盛んに行われている。
 酵母菌体内の代表的な含硫化合物として、グルタチオンとS-アデノシルメチオニンがあげられる。グルタチオンは肝機能回復、及び抗酸化活性等を有するきわめて有用な物質であり、近年、調味料や健康食品等の飲食品の添加剤や、化粧品の基材等、幅広い用途が期待されている。一方、S-アデノシルメチオニンは、様々な生体反応においてメチル基の供与体として作用することが知られている。その他、抗うつ作用、関節症の緩和、及び肝機能回復等の効果が報告されており、これら含硫化合物が生体に対して重要な役割を果たしていることが知られている。
 含硫化合物は、通常、メチオニンやシステイン等の含硫アミノ酸を用いて、MET遺伝子(メチオニン合成遺伝子)群をはじめとする多くの遺伝子の転写及び翻訳産物により合成される。そこで、より含硫化合物を高生産する酵母を得るために、酵母が有しているこれらの含硫化合物の合成に係る遺伝子に変異を生じさせ、含硫化合物高含有酵母変異株を製造することが広く行われている。例えば、グルタチオン高含有酵母を製造する方法として、(1)突然変異処理により、エチオニン及び亜硫酸塩を同時に含む培地に生育可能となったキャンディダ(Candida)属酵母の変異株を好気的に培養することにより、菌体中のグルタチオン含有量を高める方法が開示されている(例えば、特許文献1参照。)。
特開昭59-151894号公報
 グルタチオン自体やグルタチオンを豊富に含む酵母エキス等を、より低コストで効率よく工業上量産するためには、グルタチオン含有量の高い酵母を利用することが重要である。
 特許文献1に記載の方法のように、変異処理等を行い遺伝的な改変が施された酵母の中から、よりグルタチオン含有量の高い酵母をスクリーニングする方法によっても、グルタチオン高含有酵母を得ることができるが、変異処理及びスクリーニングは手間と労力を要し、また、必ずしもグルタチオン高含有酵母を得ることができない場合も多い。
 また、組換え体よりも天然の酵母(野生株)が求められる場合があり、変異処理を行うことなく、酵母中のグルタチオン含有量を高める方法の開発が望まれている。例えば、酵母自体や酵母エキスを食用として用いる場合には、組換え体よりも野生株が好まれる場合がある。
 本発明は、遺伝的な改変を施すことなく、菌体中のグルタチオン含有量を高めることができる酵母の培養方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、サッカロマイセス属菌等の酵母を培養する際に、液体培地に所定量以上のクエン酸を添加することにより、当該酵母のグルタチオン含有量を高められることを見出し、本発明を完成させた。
 すなわち、本発明は、
(1) 酵母を、クエン酸濃度が20mM以上である液体培地中で培養することを含む、酵母の培養方法、
(2) 前記液体培地のクエン酸濃度が200mM以下である前記(1)記載の酵母の培養方法、
(3) 培養開始時における液体培地のクエン酸濃度が20mM以上である前記(1)又は(2)記載の酵母の培養方法、
(4) 培養開始時における液体培地のクエン酸濃度が20mM未満であり、かつ、酵母の増殖状態が誘導期又は対数増殖期に、液体培地のクエン酸濃度を20~200mMに調整することを含む、前記(1)記載の酵母の培養方法、
(5) 培養開始時における液体培地のクエン酸濃度が20mM未満であり、かつ、培養開始後9時間以内に、液体培地のクエン酸濃度を20~200mMに調整することを含む、前記(1)記載の酵母の培養方法。
(6) 前記酵母がサッカロマイセス(Saccharomyces)属菌又はキャンディタ(Candida)属菌である前記(1)~(5)のいずれか1項記載の酵母の培養方法、
(7) 前記酵母が、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)又はキャンディダ・ユティリス(Candida utilis)である前記(1)~(5)のいずれか1項記載の酵母の培養方法、
(8) 酵母を、クエン酸濃度が20mM以上である液体培地中で培養することを含む、酵母のグルタチオン含有量を高める方法、
(9) 前記(1)~(7)のいずれか1項記載の酵母の培養方法で培養された酵母を回収することを含む、酵母の製造方法、
(10) 前記(1)~(7)のいずれか1項記載の酵母の培養方法で培養された酵母から、酵母エキスを抽出することを含む、酵母エキスの製造方法、
(11) 前記(1)~(7)のいずれか1項記載の酵母の培養方法で培養された酵母、及び前記酵母から調製された酵母エキスからなる群より選択される1以上の製造物を原料として用いることを含む、飲食品の製造方法、
(12) 前記(1)~(7)のいずれか1項記載の酵母の培養方法で培養された酵母から調製される、酵母エキス、
(13) 前記(1)~(7)のいずれか1項記載の酵母の培養方法で培養された酵母、又は前記(12)記載の酵母エキスを含有する、調味料組成物、
(14) 前記(1)~(7)のいずれか1項記載の酵母の培養方法で培養された酵母、又は前記(12)記載の酵母エキスを含有する、飲食品、
を提供するものである。
 本発明の酵母の培養方法によれば、十分量のクエン酸を含む液体培地中で培養するという簡単な工程によって、サッカロマイセス属菌等の酵母のグルタチオン含有量を増大させることができる。また、当該培養方法によって培養された酵母は、グルタチオン含有量が十分に高いため、当該酵母を用いることにより、グルタチオン含有量が高い酵母エキスや飲食品を、簡便に得ることができる。
実施例1において、液体培地中のクエン酸濃度ごとに、GSH含有率(%)を示したグラフである。 実施例2において、各培養物のGSH含有率(%)を、糖蜜培地(1)に添加したクエン酸濃度ごとに示したグラフである。 実施例2において、培養終了時点における液体培地のpH(終pH)を、糖蜜培地(1)に添加したクエン酸濃度ごとに示したグラフである。 実施例5において、サッカロマイセス・セレビシエKK122株の、GSH含有率及びOD600の測定結果を示した図である。 実施例5において、サッカロマイセス・セレビシエKK124株の、GSH含有率及びOD600の測定結果を示した図である。 実施例11において、各サンプル中の酵母のGSH含有率(%)を測定した結果を示した図である。 参考例1において、培養前後の各上清中のクエン酸含有量の測定結果を示した図である。
 本発明及び本願明細書においては、特に記載がない限り、グルタチオンとは、酸化型グルタチオンと還元型グルタチオンの双方を意味し、総グルタチオン含量とは、酸化型グルタチオン及び還元型グルタチオンの合計含量を意味する。
 本発明及び本願明細書において、酵母の乾燥菌体重量当たりのグルタチオン含有量は、微生物中のグルタチオン含有量を定量する場合に通常行われる方法により求めることができる。例えば、酵母の乾燥菌体重量当たりの総グルタチオン含量は、Titzeらの方法(Analytical Biochemistry, Vol.27、p502、1969)に従い、測定することができる。当該方法は、5,5’-ジチオビス(2ニトロ安息香酸)(DTNB)がニコチンアミドアデニンジヌクレオチドリン酸還元型(NADPH)によって還元される反応において、当該反応の反応速度がグルタチオン存在量に比例することを利用して、グルタチオン量を測定する方法である。
 本発明の酵母の培養方法は、酵母を、クエン酸濃度が20mM以上である液体培地中で培養することを特徴とする。この培養方法を用いて酵母を培養することにより、酵母のグルタチオン含有量を高めることができ、グルタチオン高含有酵母(グルタチオン含有量が高い酵母)を得ることが可能になる。このようなグルタチオン高含有効果(酵母のグルタチオン含有量を高める効果)が得られる理由は明らかではない。ただし、後記実施例3に示すように、他の酸を液体培地に添加した場合には当該効果は観察されておらず、かつ、pH制御環境下においても、クエン酸添加により当該効果が得られたことから、単に液体培地のpH調整効果ではなく、クエン酸に特有の何らかの作用により、グルタチオンの産生が促進されるか、若しくは菌体外への排出が抑制されることにより、酵母菌体内にグルタチオンが蓄積されるためと推察される。
 本発明の酵母の培養方法の1つの側面は、グルタチオン高含有酵母の製造方法であって、酵母を、クエン酸濃度が20mM以上である液体培地中で培養することにより、前記酵母を含む培養物を得ること、及び前記培養物から前記酵母を回収することを含む、グルタチオン高含有酵母の製造方法である。
 本発明のグルタチオン高含有酵母とは、親株と比較して菌体内のグルタチオン含量が優位に増加している酵母をいう。
 また培養物とは、酵母菌体及び酵母の培養に用いた培地を含む培養物を意味する。
 本発明の酵母の培養方法に供される酵母は特に限定されるものではないが、サッカロマイセス属菌又はキャンディダ属菌であることが好ましい。例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、サッカロマイセス・パラドキサス(Saccharomyces paradoxus)、サッカロマイセス・ミカタエ(Saccharomyces mikatae)、サッカロマイセス・バヤヌス(Saccharomyces bayanus)、サッカロマイセス・クドリアヴゼヴィイ(Saccharomyces kudriavzevii)、キャンディダ・ユティリス(Candida utilis)、キャンディダ・トロピカリス(Candidatropicalis)、キャンディダ・リポリティカ(Candida lypolitica)、及びキャンディダ・サケ(Candida sake)等を用いることができる。本発明においては、特に良好なグルタチオン高含有効果が得られることから、サッカロマイセス・セレビシエ又はキャンディダ・ユティリスの培養に用いることが好ましい。
 本発明の酵母の培養方法は、野生株(天然の酵母)を培養した場合のみならず、変異処理により得られた変異株を培養した場合であっても、グルタチオン高含有効果が得られる。なお、本発明及び本願明細書において、「野生株」とは、自然界に元々存在していた酵母、すなわち、遺伝子に対して人工的な変異処理を施していない酵母を意味する。これに対して、「変異株」とは、遺伝子に対して人工的な変異処理を施して得られた酵母を意味する。
 なお、本発明において、変異処理とは、酵母等の生物が有する遺伝子の一部を変異させ得る処理であれば、特に限定されるものではなく、酵母等の微生物の変異株を作製する場合に通常用いられるいずれの手法を用いて行ってもよい。例えば、変異原として、紫外線、電離放射線、亜硝酸、ニトロソグアニジン、エチルメタンスルホネート(Ethylmethane sulufonate、以下EMSと略記する)等を用いて酵母を処理することにより、酵母に変異処理を行うことができる。
 本発明の酵母の培養方法に用いられる液体培地のクエン酸濃度は、20mM以上であればよい。クエン酸濃度が20mM以上であることにより、グルタチオン高含有効果が奏されるために十分量のクエン酸を、酵母に作用させることができる。本発明においては、液体培地のクエン酸濃度は、20~200mMであることが好ましく、20~120mMであることがより好ましく、20~100mMであることがさらに好ましく、50~100mMであることが特に好ましい。液体培地に過剰量のクエン酸を添加した場合には、グルタチオン高含有効果が期待するほどは得られない上に、酵母の生育性を阻害する等のおそれがあるが、液体培地のクエン酸濃度を200mM以下とすることにより、酵母の生育性に対する影響を抑えつつ、十分なグルタチオン高含有効果を得ることができる。
 なお、液体培地のpHを制御していない条件で培養を行う際には、クエン酸以外の酸を添加した場合であっても、添加していない液体培地と比べて、グルタチオン含有量がやや高くなる。これは、酸添加による緩衝作用により、液体培地のpHが調整されたためと推察される。つまり、pHを制御していない場合には、液体培地に添加されたクエン酸のうちの一部は液体培地のpH制御に利用されることになる。このため、同程度のグルタチオン高含有効果を得るために必要な液体培地のクエン酸濃度は、pHを制御していない培養条件のほうが、pHを制御した培養条件よりも高くなる傾向がある。
 このため、液体培地のpHを制御しない場合には、本発明の酵母の培養方法では、液体培地のクエン酸濃度が、60~110mMで酵母を培養することが好ましく、75~90mMで酵母を培養することがより好ましい。一方で、液体培地のpHが4.0~6.0に制御されている場合には、本発明の酵母の培養方法では、液体培地のクエン酸濃度が、20~100mMで酵母を培養することが好ましく、20~75mMで酵母を培養することがより好ましい。
 本発明の酵母の培養方法においては、クエン酸濃度が20mM以上であるように予め調整された液体培地を用いて酵母を培養してもよく、培養開始後に、液体培地中にクエン酸を添加してもよい。すなわち、培養開始時の液体培地のクエン酸濃度が20mM以上で酵母を培養してもよく、培養開始時に、液体培地のクエン酸濃度が20mM未満(クエン酸を全く含まない液体培地も含まれる)で酵母を培養し、培養開始後に、液体培地のクエン酸濃度を20~200mMに調整してもよい。
 液体培地のクエン酸濃度を調整する方法においては、液体培地に固体のクエン酸を添加し調整してもよく、クエン酸水溶液を添加し調整してもよい。
 サッカロマイセス属やキャンディダ属の酵母、特にサッカロマイセス属の多くの菌株において、液体培地へのクエン酸の添加時期が早いほど、より高いグルタチオン高含有効果が得られる傾向がある。出芽が盛んな状態の酵母に対して十分な濃度のクエン酸を作用させることにより、グルタチオン高含有効果が十分に発揮される。このため、培養開始後に液体培地のクエン酸濃度を調整する場合、定常期に移行する前に、すなわち、酵母の増殖状態が誘導期又は対数増殖期に、好ましくは培養開始後から対数増殖期の中期までの間に、より好ましくは培養開始後から対数増殖期の前期までの間に、調整することが好ましい。
 なお、対数増殖期は、回分及び流加培養においては、吸光度等を指標として培養容器中の酵母の量を経時的に測定した場合に、対数的に増大することが観察される時期である。
 一方、連続培養においては、培養容器中の酵母の量がほぼ一定であることが観察される時期である。
 誘導期は、回分及び流加培養において、培養開始後から対数増殖期に至る前の時期である。
 一方、連続培養においては、メルクマールとなるパラメータを一定値に制御するまでの時期である。
 例えば、培養開始から9時間以内、好ましくは3時間以内に液体培地のクエン酸濃度を調整することにより、出芽が盛んな状態の酵母に対して十分な濃度のクエン酸を作用させることができる。
 本発明の酵母の培養方法に用いられる液体培地としては、酵母が増殖可能な液体培地に、クエン酸濃度が20mM以上となるように適宜クエン酸を添加したものが用いられる。
 クエン酸が添加される液体培地としては、炭素源、窒素源、及び無機塩等を含んでいるものであって、通常サッカロマイセス・セレビシエ等の酵母の培養に用いられるいずれの培地も用いることができる。
 液体培地に含有される炭素源としては、例えば、通常の微生物の培養に利用されるグルコース、蔗糖、酢酸、エタノール、糖蜜、及び亜硫酸パルプ廃液等からなる群より選択される1又は2種以上の物質を用いることができる。また、窒素源としては、含窒素無機塩であってもよく、含窒素有機物であってもよい。例えば、尿素、アンモニア、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、コーンスティプリカー(CSL)、カゼイン、酵母エキス、及びペプトン等からなる群より選択される1又は2種以上の物質を用いることができる。また、無機塩としては、過リン酸石灰やリン安等のリン酸成分、塩化カリウムや水酸化カリウム等のカリウム成分、及び硫酸マグネシウムや塩酸マグネシウム等のマグネシウム成分等を用いることができる。その他、亜鉛、銅、マンガン、及び鉄イオン等の無機塩を使用してもよい。さらに、本発明の酵母の培養方法に用いられる液体培地には、ビタミン、及び核酸関連物質等を適宜添加しても良い。
 本発明の酵母の培養方法に用いられる液体培地としては、SD培地等の合成培地であってもよく、YPD培地や糖蜜培地等の半合成培地であってもよい。また、糖蜜培地のように、元々少量のクエン酸を含有している培地であってもよい。さらに、これらを改変した培地であってもよい。なお、糖蜜培地(糖濃度3%)は、ロット等により含有量に差があるものの、一般的には、全有機酸濃度が1~3.5g/L程度であり、クエン酸濃度が50~400mg/Lである。つまり、クエン酸の分子量192から、酵母の培養に用いられる糖蜜培地は、通常、0.2~2mMのクエン酸を含有していると算出される。
 なお、酵母を培養する際に、炭素源としてクエン酸を用いてもよいことは、従来から知られている。しかしながら、クエン酸は培地のpHに影響を与えるため、一般的には、培地に積極的にクエン酸を添加すること(例えば、10mM以上となるようにクエン酸を添加すること)は行われていなかった。さらに、後記参考例1において示すように、培養後の液体培地中のクエン酸量は培養前よりも増大していることから、本発明においては、液体培地に添加されたクエン酸は炭素源として用いられていないことが明らかである。さらに、液体培地にクエン酸を添加することにより、酵母中のグルタチオン含有量が増大することは、本発明者らによって初めて見出された知見である。
 培養形式は、液体培地を用いるものであれば、特に限定されるものではなく、培養スケール、及び得られた培養物の使用用途等を考慮して適宜決定することができる。液体培地における培養形式として、例えば、回分培養、流加培養、及び連続培養等が挙げられる。
 本発明の酵母の培養方法の培養条件は、所定濃度のクエン酸を含む液体培地を用いる以外は、特に限定されるものではなく、酵母を培養する場合に一般的に用いられる条件により培養することができる。例えば、培養温度は20~40℃であることが好ましく、25~35℃であることがより好ましい。また、培地のpHは3.5~8.0であることが好ましく、4.0~6.0であることがより好ましい。特に、工業的に培養物を量産する場合には、培地中のpHを定期的に測定し、pH4.0~6.0に維持するよう調整することが好ましい。
 また、通気及び攪拌を行いながら培養することが好ましい。通気の量と攪拌の条件は、培養の容量と時間、及び菌の初発濃度を考慮して、適宜決定することができる。例えば、通気は0.2~2V.V.M.(Volume per volume per minuts)程度、攪拌は50~800rpm程度で行なうことができる。
 本発明の酵母の培養方法により、グルタチオン含有量の高い酵母を培養することができる。例えば、本発明の酵母の培養方法を用いて培養することにより、クエン酸濃度が20mM未満である液体培地(クエン酸を全く含まない液体培地を含む)で培養した場合よりも、乾燥酵母菌体中に含まれるグルタチオン含有量を10%以上増大させることができる。
 なお、乾燥菌体重量とは、菌体を乾燥させた後の重量を意味する。乾燥後の菌体重量を求める方法では、例えば、まず、酵母の培養物を遠心分離処理することにより、菌体を沈殿として回収する。回収した菌体を遠心分離操作により2回水洗した後、105℃で5時間乾燥させた後の重量を測定することにより、乾燥菌体重量を求めることができる。
 即ち本発明の、酵母をクエン酸濃度が20mM以上である液体培地中で培養することを含む酵母の培養方法により、グルタチオン高含有酵母を含む培養物を得ることができ、公知の方法で前記培養物から前記酵母を回収することができる。
 前記培養物から酵母を回収する方法は、特に限定されるものではなく、酵母の培養物から酵母を回収する場合に通常行なわれている回収方法のいずれを用いてもよい。前記培養物から酵母を回収する方法として、例えば、酵母の培養物を遠心分離処理する方法等が挙げられる。
 本発明の酵母の培養方法により得られた培養物から酵母を回収することにより、グルタチオン含有量の非常に高い酵母を製造することができる。また本発明の酵母エキスは、本発明の酵母の培養方法で培養された酵母から酵母エキスを抽出することにより、調製することができる。従って、本発明の酵母の培養方法により製造された酵母からグルタチオン含有量の高い酵母エキスを調製し、製造することができる。前述のように、グルタチオンは、様々な生理活性を有する物質である。つまり、従来の培養方法に替えて本発明の酵母の培養方法を適用するだけで、従来よりも付加価値の高い酵母や酵母エキスを製造することができる。
 本発明の酵母の培養方法により培養された酵母からの酵母エキスの調製は、特に限定されるものではなく、酵母エキスを調製する場合に通常行われている調製方法のいずれを用いてもよい。前記調製方法として、例えば、酵母菌体内に本来あるタンパク質分解酵素等を利用して菌体を可溶化する自己消化法、微生物や植物由来の酵素製剤を添加して菌体を可溶化する酵素分解法、熱水中に一定時間浸漬することにより菌体を可溶化する熱水抽出法、種々の酸あるいはアルカリを添加して菌体を可溶化する酸・アルカリ分解法、凍結及び融解を1回以上行うことにより菌体を破砕する凍結融解法、及び物理的な刺激により菌体を破砕する物理的破砕法等がある。物理的破砕法において用いられる物理的刺激としては、例えば、超音波処理、高圧下におけるホモジェナイズ、及びグラスビーズ等の固形物との混合による磨砕等がある。
 その他、本発明の酵母の培養方法により得られた培養物を、乾燥処理することにより、グルタチオン含有量が高い乾燥酵母菌体を得ることができる。前記培養物を乾燥処理する方法は、特に限定されるものではなく、乾燥酵母菌体を調製する場合に通常行われている調製方法のいずれを用いてもよい。前記調製方法として、例えば、凍結乾燥法、スプレードライ法、及びドラムドライ法等がある。さらに、得られた乾燥酵母菌体を粉末状に加工することにより、取り扱い性に優れたグルタチオン含有量が高い乾燥酵母菌末を得ることができる。
 その他、本発明の酵母の培養方法により得られた培養物から、グルタチオンを含有する分画物を得てもよい。培養物からグルタチオンを含有する分画物を分画する方法としては、通常行われている方法であればいずれの方法でもよい。例えば、熱水抽出、又は菌体破砕による抽出等により得られた抽出物を、含硫化合物と親和性の高い物質を担持したアフィニティカラムを用いて分画することにより、グルタチオンを高濃度に含む画分に濃縮精製することが可能となる。
 本発明の酵母の培養方法により得られたグルタチオン高含有酵母、前記酵母の乾燥酵母菌体、前記酵母から調製される酵母エキス、及び前記酵母エキス粉末は、調味料組成物としてもよい。なお、前記調味料組成物は、本発明の酵母エキス等のみからなるものであってもよく、本発明の酵母エキス等の他に、安定化剤、及び保存剤等の他の成分を含有していてもよい。
 前記調味料組成物は、他の調味料組成物と同様に、様々な飲食品に適宜用いることができる。
 さらに、本発明の酵母の培養方法により得られたグルタチオン高含有酵母、前記酵母の乾燥酵母菌体、前記酵母から調製される酵母エキス、及び前記酵母エキス粉末は、原料として直接飲食品に含有させることもできる。これにより、グルタチオンを高濃度に含む飲食品を効率的に製造することができる。これらの飲食品としては、通常乾燥酵母、酵母エキス、及びこれらを含む調味料組成物を添加しうる飲食品であれば何れでもよいが、例えばアルコール飲料、清涼飲料、発酵食品、調味料、スープ類、パン類、及び菓子類等を挙げることができる。その他、前記培養物等は、ソフトカプセル剤やハードカプセル剤、及び打錠剤等に加工することにより、サプリメント等として摂食することもできる。
 具体的には、飲食品の製造工程において、上記グルタチオン高含有酵母、前記酵母の乾燥酵母菌体、前記酵母から調製される酵母エキス、及び前記酵母エキス粉末等を、他の原料と同様に添加することにより、グルタチオンを高濃度に含む飲食品を製造することができる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例において、「乾燥菌体重量当たりの総グルタチオン含有量(%(w/w))」は、「GSH含有率(%)」と言い換えることがある。
 また、以下の実施例において用いられている酵母のうち、サッカロマイセス・セレビシエYNN27株、サッカロマイセス・セレビシエBY4742株、サッカロマイセス・セレビシエNCYC506株、及びシゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)JCM1846株は野生株である。
 サッカロマイセス・セレビシエAB9株<MATa/α gpi10/gpi10 ura3/URA3 leu2/LEU2>は、α1,2-マンノシルトランスフェラーゼをコードする遺伝子に変異を有し、マンナンタンパク質を培地中に放出する変異株である(例えば、国際公開2006/025295号パンフレット参照。)。サッカロマイセス・セレビシエAB9株は、独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1-1-1)に寄託されている(受託番号:FERM BP-10390)(原寄託の寄託日:2004年7月13日、国際寄託への移管日:2005年8月3日)。
 サッカロマイセス・セレビシエAB13株は、以下のようにして得られたグルタチオン高含有変異株である。まず、サッカロマイセス・セレビシエの野生株に対してEMS処理を行い、得られた変異株の中から親株よりもグルタチオン含有量の高い変異株を選抜した。次いで、この選抜された変異株に対してEMS処理を行い、得られた変異株の中から親株よりもグルタチオン含有量の高い変異株を選抜した。この工程を2回以上繰り返すことにより、サッカロマイセス・セレビシエAB13、KK101株、KK122株、及びKK124株を得た。
 また、以下の実施例において、酵母の培養に用いた半合成培地、YPD培地、SD培地、及び糖蜜培地{(1)、(2)}の組成、並びに、それに添加するTrace Element及びVitamin Solutionの組成を表1~7にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
<実施例1>
 サッカロマイセス・セレビシエKK101株に対して、半合成培地を用いて本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。
 まず、-80℃でグリセロール中に保存していたKK101株を、YPD寒天培地上に塗沫して30℃にて3日間培養した。その後、YPD寒天培地に生育した酵母1ループ分を、3mLのYPD培地を含む13mL容アシストチューブに接種し、30℃にて、攪拌速度200rpmで1~3日間、振盪培養した。得られた培養液を、前培養液とし、以下の本培養に用いた。
 150μLの前培養液を、0~100mMとなるようにクエン酸を添加した半合成培地を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し、30℃にて、攪拌速度200rpmで48時間、振盪培養した。
 得られた培養物中の菌体に含有される総グルタチオン量を、Titzeらの方法(Analytical Biochemistry, Vol.27、p502、1969)に従って測定し、乾燥菌体重量で除することにより、GSH含有率(乾燥菌体重量当たりの総グルタチオン含有量)を算出した。具体的には、まず、得られた培養物に対して、6000rpm×5分間、4℃で遠心分離処理を行い、回収された酵母菌体を精製水で2回洗浄した。この酵母菌体に2mLの精製水を添加して懸濁した後、この懸濁液500μLをアルミ皿に入れて105℃で5時間以上乾燥し、さらにデシケーター中で1時間以上放置した後、乾燥重量を測定し、これを乾燥菌体重量とした。一方、懸濁液500μLを湯浴中で5分間煮沸後、直ちに氷浴中で冷却し、15000rpm×5分間、4℃で遠心分離処理を行い、回収した上清を、グルタチオン定量のためのサンプルとした。1mMのEDTAを混合した0.5Mリン酸カリウム緩衝液(pH7.0)2.5mLに対して、5μLのグルタチオンレダクターゼと500μLのNADPHとを添加した溶液を4mL容ディスポーザルセルに入れ、測定直前に、10μLのサンプルと100μLのDTNBとを加えて転倒混和し、反応開始後から30秒間、412nmにおける吸収の増加を分光光度計で測定した。予め濃度既知のグルタチオン存在下で得られた測定値から求めた検量線を用いて、得られた測定値からグルタチオン量を算出し、これを培養物中の総グルタチオン量とした。この総グルタチオン量を、別途測定した乾燥菌体重量で除することにより、GSH含有率(%)を算出した。
 図1は、液体培地中のクエン酸濃度ごとに、GSH含有率(%)を示したグラフである。この結果、液体培地中にクエン酸を添加することによりGSH含有率(%)が増大することが分かった。GSH含有率(%)はクエン酸濃度依存的に増大し、本実施例の条件では、クエン酸濃度90mMで最大値をとった。
<実施例2>
 サッカロマイセス・セレビシエAB13株に対して、糖蜜培地(1)を用いて本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。
 実施例1と同様にして調製した150μLの前培養液(1)を、添加されたクエン酸の濃度が0~60mMとなるようにクエン酸を添加した糖蜜培地(1)を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し、30℃にて、攪拌速度200rpmで48時間、振盪培養した。糖蜜培地中には元々数mMのクエン酸が含まれているため、実際の糖蜜培地中のクエン酸濃度は、添加されたクエン酸濃度よりも若干高くなる。培養後の酵母のGSH含有率(%)を、実施例1と同様にして測定した。さらに、培養終了時点における液体培地のpHも測定した。
 図2A及び図2Bは、各培養物のGSH含有率(%)〔図2A〕及び培養終了時点における液体培地のpH(終pH)〔図2B〕を、糖蜜培地(1)に添加したクエン酸濃度ごとに示したグラフである。この結果、糖蜜培地(1)に対しても、クエン酸を10mM以上添加することにより、酵母のGSH含有率(%)を、添加前よりも10%以上増大させることができた。また、クエン酸を添加することにより、培養終了時点の液体培地のpHが上昇していたが、添加するクエン酸量が20mM以上の場合には、pH5.2前後で安定していた。
<実施例3>
 サッカロマイセス・セレビシエKK101株を、様々な酸を添加した半合成培地を用いて培養した場合の、培養後の酵母のGSH含有率(%)を測定し、酵母のグルタチオン含有量に対する液体培地中の各酸の影響を調べた。
 実施例1と同様にして調製した150μLの前培養液を、表8記載の各種の塩を表記載の濃度となるように添加した半合成培地を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し、30℃にて、攪拌速度200rpmで48時間、振盪培養した。
 培養後の酵母のGSH含有率(%)を、実施例1と同様にして測定した。さらに、培養終了時点における液体培地のpH(終pH)及びOD600も測定した。測定結果を表8~10に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 この結果、リン酸以外の酸では、液体培地に50mM以上の酸を添加することにより、液体培地のpHが4.0~6.0に調整されること、及び、この添加量範囲において、酸の添加量は液体培地のpHにあまり影響しないことが分かった。リン酸では、添加量に依存して液体培地のpHが高くなり、添加量の影響が大きいことが分かった。
 また、いずれの液体培地を用いた場合も、培養終了時のOD600の値は30前後であり、酵母の生育性に対する、液体培地に添加する酸の種類や量の影響は小さいことが分かった。
 一方で、GSH含有率は、クエン酸以外の酸においては、いずれも2.8%前後であり、特に差はなかった。なお、リン酸濃度を50mMとした液体培地ではGSH含有率2.4%と他よりも低かったが、これは、液体培地のpHが4未満であったためと推察される。これに対してクエン酸を含有させた液体培地では、クエン酸含有量依存的にGSH含有率が高くなる傾向が確認された。
 これらの結果から、クエン酸含有培地で酵母を培養することにより得られるグルタチオン高含有効果は、クエン酸に特有の効果であることが明らかである。なお、液体培地のクエン酸濃度を50mMとした場合と、他の酸を50mM以上添加した場合とで、GSH含有率と液体培地の終pHがほぼ同等であったことから、半合成培地を用いる場合には、クエン酸濃度が50mMとなるように添加されたクエン酸のうちの大部分は、液体培地のpHの調整に利用されていると推定される。
<実施例4>
 サッカロマイセス・セレビシエKK101株に対して、pHを調整した状態でさらにクエン酸を添加した液体培地を用いて本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。
 実施例1と同様にして調製した150μLの前培養液を、表11記載のコハク酸濃度及びクエン酸濃度となるように両酸を添加した半合成培地を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し、30℃にて、攪拌速度200rpmで48時間、振盪培養した。培養後の酵母のGSH含有率(%)を、実施例1と同様にして測定した。
 さらに、培養終了時点における液体培地のpH(終pH)も測定した。測定結果を表11に示す。
 この結果、コハク酸を添加することによって液体培地のpHを5.5~6.0に調整した状態で、液体培地にさらにクエン酸を添加することにより、無添加の場合よりもGSH含有率が飛躍的に増大した。具体的には、クエン酸濃度が0mM(無添加)の場合は2.8%であったGSH含有率が、クエン酸濃度が50mMの場合には3.7%となり、30%以上増大した。一方、クエン酸濃度が75mM及び90mMの場合にはいずれも4.3%となり、無添加の場合のGSH含有率よりも50%以上増大した。
 実施例3の結果と比較すると、液体培地中のクエン酸濃度が同じ場合でも、コハク酸をともに添加した本実施例のほうが、GSH含有率が高く、この比較からも、実施例3では、液体培地に添加されたクエン酸の一部が液体培地のpHを制御することに利用されていたといえる。
 すなわち、これらの結果から、pHが4.0~6.0に制御された液体培地にクエン酸を添加することにより、pHが4.0~6.0に制御されていない液体培地にクエン酸を添加した場合よりも、より少ないクエン酸添加量でより高いグルタチオン高含有効果が得られることが明らかである。
Figure JPOXMLDOC01-appb-T000011
<実施例5>
 サッカロマイセス・セレビシエKK122株及びKK124株に対して、ジャーファーメンターを用いてpHを調整した培養条件で、本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。
 まず、実施例1と同様の方法により、サッカロマイセス・セレビシエKK122株及びKK124株の前々培養液を、それぞれ調製した。各前々培養液100μLを、10mLのYPD培地を含む200mL容バッフル付三角フラスコに接種し、30℃にて、攪拌速度200rpmで1日間、振盪培養した。得られた培養液を、前培養液とし、以下の本培養に用いた。
 10mLの各前培養液を、半合成培地又はクエン酸濃度が90mMとなるようにクエン酸ナトリウムを添加した半合成培地(90mMクエン酸含有培地)を1L含む2L容ジャーファーメンターに接種し、初発pHが6.8、攪拌速度300rpm、通気量1V.V.M.、30℃の条件で、48時間、通気攪拌培養した。培養中、pHの下限値が6.0となるように、1N 水酸化ナトリウム溶液で調整した。培養開始から12時間ごとにサンプリングし、OD600を測定した。また、培養開始後24、36、及び48時間にサンプリングしたサンプルについては、実施例1と同様にしてGSH含有率も測定した。
 図3A及び3Bは、サッカロマイセス・セレビシエKK122株〔図3A〕及びKK124株〔図3B〕の、GSH含有率及びOD600の測定結果を示した図である。図中、棒グラフがGSH含有率(%)の結果であり、折れ線グラフがOD600の結果である。また、「90mM クエン酸」が90mMクエン酸含有培地で培養した結果を、「0mM クエン酸(無添加)」が半合成培地で培養した結果を、それぞれ示す。この結果、サッカロマイセス・セレビシエKK122株及びKK124株についても、サッカロマイセス・セレビシエKK101株と同様に、クエン酸を含有する液体培地中で培養することにより、GSH含有率が高くなった。また、両株とも、90mMクエン酸含有培地で培養した場合には、半合成培地で培養した場合よりも、若干OD600グラフの傾きが小さかったが、培養終了時点のOD600値は、同程度であった。このことから、液体培地にクエン酸を添加することにより、若干立ち上がりに遅れが観察されるものの、最終的にはクエン酸無添加の場合と同じように酵母は培養でき、クエン酸添加による酵母の生育性への影響は小さいといえることが確認された。
<実施例6>
 様々なサッカロマイセス属菌に対して、半合成培地を用いて本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。実施例3の結果に基づき、クエン酸濃度を50mMとした場合を基準(対照)とし、クエン酸濃度依存的にGSH含有率の増大が観察された場合には、本発明のグルタチオン高含有効果が奏されていることが確認できるとした。
 まず、実施例1と同様の方法により、表12に記載の菌株の前培養液をそれぞれ調製した。次いで、150μLの各前培養液を、50~150mMとなるようにクエン酸を添加した半合成培地を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し、30℃にて、攪拌速度200rpmで48時間、振盪培養した。培養後の酵母のGSH含有率(%)を、実施例1と同様にして測定した。
 測定結果を表12に示す。この結果、変異株であるサッカロマイセス・セレビシエKK101株、KK122株、KK124株、及びAB13株のみならず、野生株であるサッカロマイセス・セレビシエYNN27株、BY4742株、及びNCYC506株のいずれにおいても、クエン酸濃度が75~150mMの場合に、50mMの場合よりもGSH含有率が10%以上高くなっていた。これらの結果から、本発明の酵母の培養方法は、特定の変異株のみならず、野生株に対して適用した場合でも、本発明のグルタチオン高含有効果が得られることが明らかである。
Figure JPOXMLDOC01-appb-T000012
<実施例7>
 様々なサッカロマイセス属菌に対して、YPD培地を用いて本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。クエン酸濃度依存的にGSH含有率の増大が観察された場合には、本発明のグルタチオン高含有効果が奏されていることが確認できるとした。
 まず、実施例1と同様の方法により、表13に記載の菌株の前培養液をそれぞれ調製した。次いで、150μLの各前培養液を、クエン酸濃度が0~90mMとなるように適宜クエン酸を添加したYPD培地を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し、30℃にて、攪拌速度200rpmで48時間、振盪培養した。培養後の酵母のGSH含有率(%)を、実施例1と同様にして測定した。
 測定結果を表13に示す。この結果、サッカロマイセス・セレビシエの各菌株は、変異株と野生株のいずれも、YPD培地においても本発明のグルタチオン高含有効果が得られることが確認された。
Figure JPOXMLDOC01-appb-T000013
<実施例8>
 サッカロマイセス属以外の酵母に対しても本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。具体的には、キャンディダ・ユティリス1561株を、クエン酸を含有させたYPD培地で培養し、GSH含有率を測定した。
 まず、実施例1と同様の方法により、キャンディダ・ユティリス1561株の前培養液を調製した。次いで、15μLの各前培養液を、クエン酸濃度が0~62.5mMとなるように適宜クエン酸を添加したYPD培地を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し(接種倍率が0.1%)、30℃にて、攪拌速度200rpmで40時間、振盪培養した。培養後の酵母のGSH含有率(%)を、実施例1と同様にして測定した。
 測定結果を表14に示す。この結果、キャンディダ・ユティリス1561株においても、サッカロマイセス属菌と同様に本発明のグルタチオン高含有効果が得られることが確認された。
Figure JPOXMLDOC01-appb-T000014
<実施例9>
 キャンディダ属に属する他の菌株の酵母に対しても本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。具体的には、キャンディダ・ユティリス1560株を、クエン酸を含有させた糖蜜培地(2)で培養し、GSH含有率を測定した。
 まず、実施例1と同様の方法により、キャンディダ・ユティリス1560株の前培養液を調製した。次いで、45μLの各前培養液を、クエン酸濃度が0~62.5mMとなるように適宜クエン酸を添加した糖蜜培地(2)を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し(接種倍率が0.3%)、30℃にて、攪拌速度200rpmで24時間、振盪培養した。培養後の酵母のGSH含有率(%)を、実施例1と同様にして測定した。
 測定結果を表15に示す。この結果、キャンディダ・ユティリス1560株においても、サッカロマイセス属菌と同様に本発明のグルタチオン高含有効果が得られることが確認された。
Figure JPOXMLDOC01-appb-T000015
<実施例10>
 サッカロマイセス属菌に対して、SD培地を用いて本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。クエン酸濃度依存的にGSH含有率の増大が観察された場合には、本発明のグルタチオン高含有効果が奏されていることが確認できるとした。
 まず、実施例1と同様の方法により、表16に記載の菌株の前培養液をそれぞれ調製した。次いで、150μLの各前培養液を、クエン酸濃度が50~150mMとなるように適宜クエン酸を添加したYPD培地を15mL含む200mL容バッフル付三角フラスコにそれぞれ接種し、30℃にて、攪拌速度200rpmで48時間、振盪培養した。培養後の酵母のGSH含有率(%)を、実施例1と同様にして測定した。
 測定結果を表16に示す。この結果、サッカロマイセス・セレビシエの各菌株は、変異株と野生株のいずれも、SD培地においても本発明のグルタチオン高含有効果が得られることが確認された。これらの結果から、本発明のグルタチオン高含有効果は、用いる液体培地の組成は特に限定されるものではなく、十分量のクエン酸を添加することにより、いずれの培地を用いても効果が得られるといえる。
Figure JPOXMLDOC01-appb-T000016
<実施例11>
 培養開始後に、液体培地のクエン酸濃度を20mM以上に調整することにより、本発明の酵母の培養方法により酵母の培養を行ない、培養後の酵母のGSH含有率(%)を測定した。実施例3の結果に基づき、培養開始時点におけるクエン酸濃度を50mMとした場合を基準(対照)とし、これよりもGSH含有率が高い場合には、本発明のグルタチオン高含有効果が奏されていることが確認できるとした。
 実施例1と同様の方法により、サッカロマイセス・セレビシエKK101株、KK122株、KK124株、及びAB13株の前培養液を、それぞれ調製した。
 次いで、各菌株に対して、それぞれ次のように培養を行った。まず、150μLの前培養液を、半合成培地を15mL含む200mL容バッフル付三角フラスコ5本にそれぞれ接種した。このうちの2本のフラスコには、それぞれ、クエン酸濃度が50mM又は90mMとなるように、それぞれクエン酸を添加した(初期添加50mMサンプル、及び初期添加90mMサンプル)。これらの5本のフラスコを、30℃にて、攪拌速度200rpmで振盪培養した。培養開始から3時間後、クエン酸を添加していない3本のうちの1本に、クエン酸濃度が90mMとなるようにクエン酸を添加し、そのまま培養を続けた(3時間後添加90mMサンプル)。さらに、培養開始から6時間後に、クエン酸を添加していない残る2本のうちの1本に、クエン酸濃度が90mMとなるようにクエン酸を添加し、そのまま培養を続けた(6時間後添加90mMサンプル)。最後に、培養開始から9時間後に、クエン酸を添加していない残る1本に、クエン酸濃度が90mMとなるようにクエン酸を添加し(9時間後添加90mMサンプル)、そのまま培養を続け、培養開始から48時間後に全てのフラスコで培養を終了し、5サンプルを得た。各菌株に対して同様の培養操作を行い、合計20サンプルを得た。
 図4は、各サンプル中の酵母のGSH含有率(%)を測定した結果を示した図である。
 なお、GSH含有率(%)の測定は、実施例1と同様にして行った。この結果、全ての菌株において、クエン酸の添加時期に関わらず、90mMのクエン酸を添加したサンプルのGSH含有率は、初期添加50mMサンプルよりも高いことが確認された。つまり、これらの結果から、培養開始後に、液体培地のクエン酸濃度を、本発明のグルタチオン高含有効果が奏されるために十分な濃度に調整した場合であっても、酵母のグルタチオン含有量を高められることが確認された。また、菌株ごとに多少の差異はあるが、基本的にいずれの菌株においても、初期添加90mMサンプルが最もGSH含有率が高く、かつ、クエン酸の添加時期が遅くなるほど、GSH含有率が低くなる傾向が観察されたことから、培養開始後にクエン酸濃度を調整する場合には、少なくとも培養開始後9時間以内、つまり酵母の出芽が盛んな時期に行うことが好ましいと考えられた。
<参考例1>
 液体培地に添加されたクエン酸が、炭素源として資化されているかどうかを調べた。
 まず、実施例1と同様の方法により、サッカロマイセス・セレビシエKK101株の前培養液を調製した。
 150μLの前培養液を、クエン酸濃度が50mMとなるようにクエン酸ナトリウムを添加した半合成培地(50mMクエン酸含有培地)、クエン酸濃度が90mMとなるようにクエン酸ナトリウムを添加した半合成培地(90mMクエン酸含有培地)、又はリン酸濃度が100mMとなるようにリン酸カリウムを添加した半合成培地(100mMりン酸含有培地)を15mL含む200mL容バッフル付三角フラスコに接種し、30℃にて、攪拌速度200rpmで48時間、振盪培養した。酵母接種後培養前に培養上清の一部を予め採取しておき、培養終了後の上清とともに、これらの上清中のクエン酸の含有量を測定した。クエン酸量の測定は、市販のキット(商品名:F-キットクエン酸、Roche社製)を用いたF-kit法により行った。
 図5は、培養前後の各上清中のクエン酸含有量の測定結果を示した図である。図中、「50mM Na Citrate」は50mMクエン酸含有培地で培養した結果を、「90mM Na Citrate」は90mMクエン酸含有培地で培養した結果を、「100mM K Phospate」は100mMリン酸含有培地で培養した結果を、それぞれ示す。この結果、いずれの液体培地を用いた場合でも、上清中のクエン酸含有量は、培養前よりも培養後において若干増大していた。これは、培養工程において、酵母がクエン酸を生成したためと考えられる。つまり、これらの結果から、酵母は、液体培地中のクエン酸を資化しておらず、液体培地に添加されたクエン酸が炭素源として用いられていないことが明らかである。
 本発明の酵母の培養方法により、サッカロマイセス属菌等の酵母のグルタチオン含有量を簡便に高めることができるため、当該培養方法は、特に食品分野等で利用が可能である。
 FERM BP-10390

Claims (14)

  1.  酵母を、クエン酸濃度が20mM以上である液体培地中で培養することを含む、酵母の培養方法。
  2.  前記液体培地のクエン酸濃度が200mM以下である請求項1記載の酵母の培養方法。
  3.  培養開始時における液体培地のクエン酸濃度が20mM以上である請求項1又は2記載の酵母の培養方法。
  4.  培養開始時における液体培地のクエン酸濃度が20mM未満であり、かつ、
    酵母の増殖状態が誘導期又は対数増殖期に、液体培地のクエン酸濃度を20~200mMに調整することを含む、請求項1記載の酵母の培養方法。
  5.  培養開始時における液体培地のクエン酸濃度が20mM未満であり、かつ、
    培養開始後9時間以内に、液体培地のクエン酸濃度を20~200mMに調整することを含む、請求項1記載の酵母の培養方法。
  6.  前記酵母がサッカロマイセス(Saccharomyces)属菌又はキャンディタ(Candida)属菌である請求項1~5のいずれか1項記載の酵母の培養方法。
  7.  前記酵母が、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)又はキャンディダ・ユティリス(Candida utilis)である請求項1~5のいずれか1項記載の酵母の培養方法。
  8.  酵母を、クエン酸濃度が20mM以上である液体培地中で培養することを含む、酵母のグルタチオン含有量を高める方法。
  9.  請求項1~7のいずれか1項記載の酵母の培養方法で培養された酵母を回収することを含む、酵母の製造方法。
  10.  請求項1~7のいずれか1項記載の酵母の培養方法で培養された酵母から、酵母エキスを抽出することを含む、酵母エキスの製造方法。
  11.  請求項1~7のいずれか1項記載の酵母の培養方法で培養された酵母、及び前記酵母から調製された酵母エキスからなる群より選択される1以上の製造物を原料として用いることを含む、飲食品の製造方法。
  12.  請求項1~7のいずれか1項記載の酵母の培養方法で培養された酵母から調製される酵母エキス。
  13.  請求項1~7のいずれか1項記載の酵母の培養方法で培養された酵母、又は請求項12記載の酵母エキスを含有する調味料組成物。
  14.  請求項1~7のいずれか1項記載の酵母の培養方法で培養された酵母、又は請求項12記載の酵母エキスを含有する飲食品。
PCT/JP2011/057446 2010-03-26 2011-03-25 酵母の培養方法 WO2011118807A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK11759611.4T DK2554656T3 (en) 2010-03-26 2011-03-25 Method of cultivating yeast
PL11759611T PL2554656T3 (pl) 2010-03-26 2011-03-25 Sposób hodowli drożdży
JP2012507115A JP5883780B2 (ja) 2010-03-26 2011-03-25 酵母の培養方法
CN201180013517.9A CN102812119B (zh) 2010-03-26 2011-03-25 酵母培养方法
EP11759611.4A EP2554656B1 (en) 2010-03-26 2011-03-25 Method for culturing yeast

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010073818 2010-03-26
JP2010-073818 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118807A1 true WO2011118807A1 (ja) 2011-09-29

Family

ID=44673347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057446 WO2011118807A1 (ja) 2010-03-26 2011-03-25 酵母の培養方法

Country Status (6)

Country Link
EP (1) EP2554656B1 (ja)
JP (1) JP5883780B2 (ja)
CN (1) CN102812119B (ja)
DK (1) DK2554656T3 (ja)
PL (1) PL2554656T3 (ja)
WO (1) WO2011118807A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776258A (zh) * 2012-08-13 2012-11-14 苏州大学 一种s-腺苷-l-蛋氨酸和谷胱甘肽联产发酵方法
WO2013146465A1 (ja) * 2012-03-30 2013-10-03 オリエンタル酵母工業株式会社 銅高含有酵母抽出物及びその製造方法、並びに、食品、及び野菜の緑色保持復元剤
WO2015151867A1 (ja) * 2014-03-31 2015-10-08 興人ライフサイエンス株式会社 グルタチオンを含む酵母抽出物のメラニン産生抑制剤としての利用
JP2019137655A (ja) * 2018-02-14 2019-08-22 共栄化学工業株式会社 皮膚外用剤
WO2020050273A1 (ja) * 2018-09-07 2020-03-12 株式会社カネカ グルタチオンの製造方法
CN114395493A (zh) * 2022-01-17 2022-04-26 广东中烟工业有限责任公司 一种改善上部烟叶品质的发酵液及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883285A (zh) * 2017-02-15 2017-06-23 江门多微生物科技有限公司 一种酵母谷胱甘肽提取时减少损失的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151894A (ja) 1983-02-18 1984-08-30 Kohjin Co Ltd グルタチオン高含有酵母の製造法
JP2006042638A (ja) * 2004-08-02 2006-02-16 Asahi Breweries Ltd 酵母変異株、グルタチオン高含有酵母の製造方法、その培養物、その分画物、酵母エキスおよびグルタチオン含有飲食品
WO2006025295A1 (ja) 2004-08-30 2006-03-09 Asahi Breweries, Ltd. マンナンタンパク質を放出する酵母株およびマンナンタンパク質の製造法
JP2010073818A (ja) 2008-09-17 2010-04-02 Canon Inc 測定装置、露光装置およびデバイス製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191393A (en) * 1975-12-25 1976-08-10 Hatsukohonyoru ll hisuchijinnoseizoho
JPS60196185A (ja) * 1984-03-19 1985-10-04 Chemo Sero Therapeut Res Inst 形質転換酵母の培養方法
JP2816422B2 (ja) * 1992-11-08 1998-10-27 株式会社コスモ総合研究所 微生物による5−アミノレブリン酸の製造方法
GB9404270D0 (en) * 1994-03-05 1994-04-20 Delta Biotechnology Ltd Yeast strains and modified albumins
JP2000279164A (ja) * 1999-03-31 2000-10-10 Kohjin Co Ltd 酵母の製造方法
MY128920A (en) * 2000-05-25 2007-02-28 Ajinomoto Kk METHOD FOR PRODUCING y-GLUTAMYLCYSTEINE
BRPI0513617A (pt) * 2004-08-02 2008-05-13 Asahi Breweries Ltd grupo de levedura mutante, método para produção de levedura rica em glutationa, cultura e fração da mesma, extrato de levedura, células de levedura seca e alimento e bebida contendo glutationa
JP4412658B2 (ja) * 2004-08-31 2010-02-10 国立大学法人京都大学 チオレドキシン高含有酵母およびその製造法
CN101121922B (zh) * 2006-08-08 2010-11-10 中国人民解放军第三○二医院 酿酒酵母细胞培养分泌液制备方法及其抗dna病毒和促肝细胞生长的用途
JP2009107962A (ja) * 2007-10-29 2009-05-21 Asahi Breweries Ltd 酵母エキス含有組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151894A (ja) 1983-02-18 1984-08-30 Kohjin Co Ltd グルタチオン高含有酵母の製造法
JP2006042638A (ja) * 2004-08-02 2006-02-16 Asahi Breweries Ltd 酵母変異株、グルタチオン高含有酵母の製造方法、その培養物、その分画物、酵母エキスおよびグルタチオン含有飲食品
WO2006025295A1 (ja) 2004-08-30 2006-03-09 Asahi Breweries, Ltd. マンナンタンパク質を放出する酵母株およびマンナンタンパク質の製造法
JP2010073818A (ja) 2008-09-17 2010-04-02 Canon Inc 測定装置、露光装置およびデバイス製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ADAMA, C. ET AL.: "Optimization of biomass and dihydroorotase (DHOase) production by Saccharomyces cerevisiae MNJ3 (pMNJ1)", AFR.J. BIOTECHNOL., vol. 8, no. 1, 2009, pages 37 - 41, XP008161440 *
LIANG, G. ET AL.: "Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis", J.APPL. MICROBIOL., vol. 105, no. 5, 2008, pages 1432 - 1440, XP008161439 *
NIELSEN, M.K. ET AL.: "The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures", FOOD MICROBIOL., vol. 24, no. 1, 2007, pages 101 - 105, XP005593084 *
TITZE, ANALYTICAL BIOCHEMISTRY, vol. 27, 1969, pages 502

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146465A1 (ja) * 2012-03-30 2013-10-03 オリエンタル酵母工業株式会社 銅高含有酵母抽出物及びその製造方法、並びに、食品、及び野菜の緑色保持復元剤
CN104219967A (zh) * 2012-03-30 2014-12-17 东方酵母工业株式会社 含有高量铜的酵母萃取物及其制造方法以及食品及蔬菜的绿色保持复元剂
JPWO2013146465A1 (ja) * 2012-03-30 2015-12-10 オリエンタル酵母工業株式会社 銅高含有酵母抽出物及びその製造方法、並びに、食品、及び野菜の緑色保持復元剤
CN102776258A (zh) * 2012-08-13 2012-11-14 苏州大学 一种s-腺苷-l-蛋氨酸和谷胱甘肽联产发酵方法
WO2015151867A1 (ja) * 2014-03-31 2015-10-08 興人ライフサイエンス株式会社 グルタチオンを含む酵母抽出物のメラニン産生抑制剤としての利用
JPWO2015151867A1 (ja) * 2014-03-31 2017-04-13 興人ライフサイエンス株式会社 グルタチオンを含む酵母抽出物のメラニン産生抑制剤としての利用
JP2019137655A (ja) * 2018-02-14 2019-08-22 共栄化学工業株式会社 皮膚外用剤
WO2020050273A1 (ja) * 2018-09-07 2020-03-12 株式会社カネカ グルタチオンの製造方法
CN112639117A (zh) * 2018-09-07 2021-04-09 株式会社钟化 谷胱甘肽的制造方法
CN114395493A (zh) * 2022-01-17 2022-04-26 广东中烟工业有限责任公司 一种改善上部烟叶品质的发酵液及其应用
CN114395493B (zh) * 2022-01-17 2024-01-30 广东中烟工业有限责任公司 一种改善上部烟叶品质的发酵液及其应用

Also Published As

Publication number Publication date
DK2554656T3 (en) 2018-07-23
JP5883780B2 (ja) 2016-03-15
JPWO2011118807A1 (ja) 2013-07-04
EP2554656A1 (en) 2013-02-06
EP2554656A4 (en) 2014-03-26
EP2554656B1 (en) 2018-05-16
CN102812119B (zh) 2015-05-20
PL2554656T3 (pl) 2018-10-31
CN102812119A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5883780B2 (ja) 酵母の培養方法
US9084435B2 (en) Yeast mutant and yeast extract
BRPI0922088B1 (pt) Métodos para cultivar uma levedura, e para produzir uma levedura,levedura, extrato de levedura, composição de tempero, e, alimento ou bebida
JP5102076B2 (ja) サッカロマイセス・セレビシエ変異株、及び該変異株を用いたrna高含有酵母の製造方法。
KR101167345B1 (ko) 효모 변이주, 글루타티온 고함유 효모의 제조방법, 그배양물, 그 분획물, 효모 엑기스 및 글루타티온 함유음식품
JP4901372B2 (ja) デフェリフェリクリシン高生産変異株、シデロフォア生産用の液体培地、シデロフォアの製造方法
JP4620404B2 (ja) 酵母変異株、グルタチオン高含有酵母の製造方法、その培養物、その分画物、酵母エキスおよびグルタチオン含有飲食品
JP4620405B2 (ja) 酵母変異株、グルタチオン高含有酵母の製造方法、その培養物、その分画物、酵母エキスおよびグルタチオン含有飲食品
WO2012067106A1 (ja) 酵母エキスの製造方法
JP5667365B2 (ja) サッカロマイセス・セレビシエ変異株、及び該変異株を用いた含硫化合物高含有酵母の製造方法。
KR20170009140A (ko) 향상된 내염성, 내당성 및 내알코올성을 갖는 사카로마이세스 세레비지에 균주 및 이를 이용한 곡물 발효물의 제조방법
AU2014256403B2 (en) Yeast mutant and yeast extract
KR102278292B1 (ko) 아세트알데하이드를 분해능 및 글루타치온 생성능을 가지는 적응진화된 효모및 이의 용도
JP2006000122A (ja) 酒類製造用酵母変異株及び当該酵母変異株を用いた酒類の製造方法
JP2005245390A (ja) グルタチオンの製造方法
JP3899363B2 (ja) 酒類製造用酵母変異株及び当該酵母変異株を用いた酒類の製造方法
CN110484581A (zh) 一种累积谷胱甘肽的方法
CN110484580A (zh) 谷胱甘肽的合成方法
JP2011234645A (ja) グルタチオンを高含有する酵母菌体の製造法
JP2005130708A (ja) アルコール飲料の製造方法
EP2401387A2 (en) Production of fructo-oligosaccharide and derivatives by use of aspergillus spp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013517.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507115

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011759611

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004635

Country of ref document: TH