WO2011118748A1 - セルロースナノファイバーの製造方法 - Google Patents

セルロースナノファイバーの製造方法 Download PDF

Info

Publication number
WO2011118748A1
WO2011118748A1 PCT/JP2011/057287 JP2011057287W WO2011118748A1 WO 2011118748 A1 WO2011118748 A1 WO 2011118748A1 JP 2011057287 W JP2011057287 W JP 2011057287W WO 2011118748 A1 WO2011118748 A1 WO 2011118748A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
raw material
dispersion
treatment
nanofibers
Prior art date
Application number
PCT/JP2011/057287
Other languages
English (en)
French (fr)
Inventor
志穂 勝川
宮脇 正一
裕 阿部
知章 小柳
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2012507078A priority Critical patent/JPWO2011118748A1/ja
Publication of WO2011118748A1 publication Critical patent/WO2011118748A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/18Pulping cellulose-containing materials with halogens or halogen-generating compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • C08J2397/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a method capable of producing a cellulose nanofiber dispersion liquid having a lower energy and higher concentration than conventional ones from cellulose materials derived from broad-leaved trees oxidized with an N-oxyl compound.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical
  • sodium hypochlorite an inexpensive oxidizing agent sodium hypochlorite
  • carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils.
  • Cellulosic raw materials into which these carboxyl groups have been introduced are highly viscous and transparent by performing a simple mechanical treatment with a mixer in water. It is known that it can be prepared into an aqueous cellulose nanofiber dispersion (Non-patent Document 1, Patent Document 1).
  • Cellulose nanofiber is a new biodegradable water-dispersible material. Since the carboxyl group is introduced into the surface of the cellulose nanofiber by an oxidation reaction, the cellulose nanofiber can be freely modified with the carboxyl group as a base point. In addition, since the cellulose nanofibers obtained by the above method are in the form of a dispersion, the quality can be modified by blending with various water-soluble polymers or by combining with organic / inorganic pigments. it can. Furthermore, cellulose nanofibers can be made into sheets or fibers. Taking advantage of such characteristics of cellulose nanofibers, it is envisaged to be applied to highly functional packaging materials, transparent organic substrate members, highly functional fibers, separation membranes, regenerative medical materials, and the like. In the future, it is expected to develop new high-functional products that are essential for the formation of a recycling-type safety and security society by making the best use of the characteristics of cellulose nanofibers.
  • the cellulose nanofiber dispersion obtained by the above method is about 0.3 to 0.5% (w / v).
  • the B-type viscosity 60 rpm, 20 ° C.
  • the viscosity has a very high viscosity of about 800 to 4000 mPa ⁇ s, so it is not easy to handle and its application range is actually limited. It was.
  • a cellulose nanofiber dispersion derived from conifers is applied to a base material to form a film on the base material, it cannot be uniformly applied if the viscosity of the dispersion is too high.
  • the concentration of cellulose nanofibers in the dispersion must be set to a very low concentration of about 0.05 to 0.4% (w / v).
  • concentration of cellulose nanofibers in the dispersion must be set to a very low concentration of about 0.05 to 0.4% (w / v).
  • the viscosity of the resulting dispersion becomes very high, which causes various problems. It was happening. If the viscosity is too high, dispersion proceeds only around the stirring blades, resulting in non-uniform dispersion, resulting in a dispersion with low transparency.
  • the cellulose-based raw material derived from oxidized conifers is defibrated using a homogenizer with higher defibrating / dispersing power than a mixer, the cellulosic raw material is significantly thickened at the initial stage of dispersion and the fluidity deteriorates There is a problem in that the amount of power consumption required for distributed processing increases significantly. In addition, there is a problem that the cellulose nanofiber dispersion adheres to the inside of the apparatus and the dispersion is not sufficiently performed, and the operation of taking out the dispersion from the apparatus becomes difficult and the yield of the dispersion decreases. It was.
  • JP 2008-001728 A Japanese Patent Application No. 2009-082604
  • the present invention provides a method capable of efficiently producing a cellulose nanofiber dispersion having low viscosity even at high concentration, excellent fluidity, and excellent transparency with low energy. With the goal.
  • the present inventors have selected from the group consisting of (A) (1) N-oxyl compound and (2) bromide, iodide or a mixture thereof.
  • an oxidant is used to oxidize the hardwood-derived cellulosic raw material
  • (B) the slurry of the cellulose-based raw material concentration from (A) above 1% (w / v) is defibrated -It has been found that by carrying out dispersion treatment to form nanofibers, a cellulose nanofiber dispersion having excellent fluidity and transparency can be efficiently produced even at high concentrations, and the present invention has been completed.
  • a viscosity reduction treatment may be performed between (A) oxidation of the broad-leaved cellulosic raw material and (B) defibration / dispersion treatment of the cellulose raw material slurry after oxidation.
  • an enzyme may be added during the defibrating / dispersing treatment of the slurry of the cellulose-based material after oxidation, and then the enzyme may be deactivated.
  • a cellulose material derived from hardwood is oxidized in the presence of an N-oxyl compound and bromide, iodide, or a mixture thereof, and the resulting oxidized cellulose material is defibrated and dispersed.
  • the cellulose nanofiber dispersion obtained by the present invention is excellent in fluidity even at a high concentration.
  • a paint containing a high concentration of cellulose nanofibers such as 1% (w / v) or more can be prepared at a low viscosity of 10 to 3000 mPa ⁇ s (B-type viscosity, 60 rpm, 20 ° C.).
  • B-type viscosity 60 rpm, 20 ° C.
  • a coating material having a viscosity of about 10 to 3000 mPa ⁇ s (B-type viscosity, 60 rpm, 20 ° C.) with a cellulose nanofiber dispersion obtained from a conventional cellulose-based raw material derived from conifers, cellulose nanofiber
  • concentration must be set to a very low concentration of 0.05 to 0.4% (w / v). Also had to be repeated.
  • the feature of the cellulose nanofiber dispersion obtained by the present invention having a high fluidity at a high concentration is very excellent.
  • N-oxyl compound and (2) oxidation of a cellulosic raw material derived from hardwood in water using an oxidizing agent in the presence of bromide, iodide or a mixture thereof, and the resulting oxidation Dissipating and dispersing the cellulose-based raw material into nanofibers can reduce the amount of power consumed in the fibrillation and dispersion process, and it has excellent fluidity and transparency even at high concentrations
  • the cellulose nanofiber dispersion can be efficiently produced with low energy.
  • N-oxyl compounds As the N-oxyl compound used in the present invention, any compound can be used as long as it promotes the target oxidation reaction.
  • examples of the N-oxyl compound used in the present invention include substances represented by the following general formula (Formula 1).
  • R 1 to R 4 are the same or different alkyl groups having about 1 to 4 carbon atoms.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-oxy radical
  • N-oxyl compound represented by any one of the following formulas 2 to 4 that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity.
  • a 4-hydroxy TEMPO derivative is particularly preferable because it is inexpensive and can provide uniform oxidized cellulose.
  • R is a linear or branched carbon chain having 4 or less carbon atoms.
  • an N-oxyl compound represented by the following formula 5, that is, an azaadamantane-type nitroxy radical is particularly preferable because cellulose nanofibers having a high degree of polymerization can be produced in a short time.
  • R 5 and R 6 represent the same or different hydrogen or a C 1 -C 6 linear or branched alkyl group.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of converting the cellulose raw material into nanofibers.
  • 0.01 to 10 mmol, preferably 0.01 to 1 mmol, and more preferably about 0.05 to 0.5 mmol can be used with respect to 1 g of cellulosic raw material.
  • bromide or iodide As the bromide or iodide used in oxidizing the cellulosic raw material, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. For example, 0.1 to 100 mmol, preferably 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol can be used for 1 g of cellulosic raw material.
  • the oxidizing agent used for oxidizing the cellulosic raw material As the oxidizing agent used for oxidizing the cellulosic raw material, the target oxidation reaction such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide can be promoted. Any oxidizing agent can be used as long as it is an oxidizing agent. Among them, from the viewpoint of cellulose nanofiber production cost, sodium hypochlorite, which is currently most widely used in industrial processes and has a low environmental load, is particularly suitable.
  • broad-leaved cellulosic raw materials are less likely to introduce carboxyl groups (that is, less susceptible to oxidation) than coniferous cellulosic raw materials, so the amount of oxidizing agent used is adjusted to an appropriate range for oxidation. It is preferable to promote the progress of.
  • the appropriate amount of the oxidizing agent to be used varies depending on the hardwood species to be used. For example, 0.5 to 500 mmol, preferably 0.5 to 50 mmol, more preferably 2. It is about 5 to 25 mmol, most preferably about 5 to 20 mmol.
  • the cellulosic raw material used in the present invention is not particularly limited as long as it is derived from a broad-leaved tree. Maple genus (Acer), poplar genus (Populus), or a material containing the material is suitable.
  • Acacia genus Acacia (hereinafter abbreviated as A.), A. mangiumu, A. et al. auriculaeformis, A. et al. dealbata, A.M. Mearnsii and the like can be mentioned.
  • the genus Acacia is obtained by natural hybridization or breeding. mangium and A.M. including hybrids of auriculiformis.
  • Eucalyptus (hereinafter abbreviated as E.) calophylla, E .; citriodora, E .; diversiccolor, E.I. globulus, E.I. grandis, E .; gummifera, E .; marginata, E.M. nesophila, E.I. nitens, E.I. amygdalina, E .; camaldulensis, E .; delegenasis, E.I. gigantea, E .; muelleriana, E.M. obliqua, E .; regnans, E .; Sieberiana, E.I.
  • viminalis E .; camaldulensis, E .; marginata and the like.
  • birch genus Betala (hereinafter abbreviated as B.), ermanii, B.M. populinifolia, B.I. carpinifolia, B.I. mandhurica, B.M. verrucosa, B.M. papyrifera, B. et al. alleghaniensis and the like.
  • Fagus hereinafter abbreviated as F.
  • grandifolia F.M. orientalis
  • F.M. sylvatica F.M. Crenata
  • A. maple genus Acer
  • A. camprestre A.M. dasycarpum
  • A.M. ginnal A.M. platanoides
  • A.M. mono A.M. spicatum
  • A.M. apicatum A.M. saccharinum
  • A.M. rubrum A.R. pseudoplatanus and the like.
  • P. poplar genus Populus
  • maximowiczi P.M. alba, P.I. sieboldii, P.A. coreana, P.M. deltoides, P.A. grandidentata, P.M.
  • tacamachaca P.M. tremuloids, P.M. and trichocarpa.
  • A. It is particularly preferable to use mangiumu as a cellulose-based raw material because cellulose nanofibers having a very low viscosity can be prepared even at a high concentration.
  • an Acacia genus as a cellulose-based raw material because cellulose nanofibers having a very low viscosity can be prepared even at a high concentration.
  • cellulose-based raw materials derived from hardwood powdered cellulose obtained by pulverizing kraft pulp or sulfite pulp with a high-pressure homogenizer or a mill, or microcrystalline cellulose powder purified by chemical treatment such as acid hydrolysis is also used. be able to.
  • bleached kraft pulp, bleached sulfite pulp, powdered cellulose, or microcrystalline cellulose powder is preferably used from the viewpoint of mass production and cost.
  • Powdered cellulose is a rod-like particle made of microcrystalline cellulose obtained by removing a non-crystalline portion of wood pulp having high cellulose purity by acid hydrolysis, and then pulverizing and sieving.
  • the degree of polymerization of cellulose is about 100 to 500
  • the degree of crystallinity of powdered cellulose by X-ray diffractometry is 70 to 90%
  • the average particle size by laser diffraction type particle size distribution measuring device is 100 ⁇ m or less.
  • the method of the present invention is characterized in that the oxidation reaction can proceed smoothly even under mild conditions. Therefore, the reaction temperature may be a room temperature of about 15 to 30 ° C.
  • the reaction temperature may be a room temperature of about 15 to 30 ° C.
  • a carboxyl group produces
  • the reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is not particularly limited.
  • the reaction time is 0.5 to 6 hours, preferably 2 to 6 hours, more preferably about 4 to 6 hours. is there.
  • the oxidation reaction may be performed in two stages. For example, oxidized cellulose obtained by filtration after the completion of the first stage reaction is oxidized again under the same or different reaction conditions, so that the cellulose is not subject to reaction inhibition by the salt produced as a by-product in the first stage reaction.
  • the carboxyl group can be efficiently introduced into the system material, and the oxidation of the cellulosic material can be promoted.
  • the carboxyl group amount of the oxidized cellulose-based material obtained by the oxidation reaction is 1.0 mmol / g or more with respect to the absolute dry mass of the cellulose-based material. More preferred is 1.0 mmol / g to 3.0 mmol / g, still more preferred is 1.4 mmol / g to 3.0 mmol / g, and particularly preferred is 2.0 mmol / g to 2.5 mmol / g.
  • the amount of carboxyl groups can be adjusted by adjusting the oxidation reaction time, adjusting the oxidation reaction temperature, adjusting the pH during the oxidation reaction, adjusting the amount of N-oxyl compound, bromide, iodide, and oxidizing agent added. It can be the amount of carboxyl groups.
  • an oxidized cellulose material derived from hardwood is defibrated and dispersed.
  • types of defibrating / dispersing devices include high-speed rotation type, colloid mill type, high pressure type, roll mill type, ultrasonic type, etc.
  • Cellulose nanofiber dispersion liquid with excellent transparency and fluidity can be efficiently used.
  • the concentration of the oxidized cellulose raw material slurry during the defibration / dispersion treatment is 1% (w / v) or more, preferably 1 to 5% (w / v), more preferably 2 to 5% (w / V).
  • defibration / dispersion treatment can be satisfactorily performed even in a relatively high concentration slurry compared to the case of using cellulose-based raw materials derived from conifers.
  • Cellulase which is a cellulose-degrading enzyme, or hemicellulase (for example, xylanase or mannase), which is a degrading enzyme of hemicellulose, is added singly or as a mixture of two or more during defibration / dispersion treatment. This is preferable because a cellulose nanofiber dispersion having excellent properties can be efficiently produced.
  • Cellulase and hemicellulase may be derived from cellulase or hemicellulase-producing filamentous fungi, bacteria, actinomycetes, basidiomycetes, or those produced by genetic engineering such as genetic recombination or cell fusion, or commercially available products. May be used.
  • Examples of commercially available cellulases include Novozymes 476 manufactured by Novozymes Japan, Cellulase AP3 manufactured by Amano Enzyme, Cellulase Onozuka RS manufactured by Yakult Pharmaceutical Co., Ltd., Optimase CX40L manufactured by Genencor Kyowa Co., Ltd.
  • Cellulase XL-522 manufactured by Nagase ChemteX Corp., Enchiron CM manufactured by Nitto Kasei Kogyo Co., Ltd. can be used.
  • Examples of commercially available hemicellulases include pulpzyme manufactured by Novozymes Japan, hemicellulase amano 90 manufactured by Amano Enzyme, Sumiteam X manufactured by Shin Nippon Chemical Industry Co., Ltd. can be used.
  • the amount of enzyme added during defibration / dispersion treatment is preferably 0.001 to 10% by mass with respect to oxidized cellulose. More preferably, the content is 0.01 to 5% by mass, and still more preferably 0.05 to 2% by mass.
  • the “enzyme amount” here refers to the dry solid content of the enzyme aqueous solution.
  • the pH, temperature, and treatment time when performing defibration / dispersion treatment in the presence of the enzyme are not particularly limited as long as the hydrolysis reaction by the enzyme proceeds, but pH 4 to 10, preferably pH 5 to 9, More preferably, the pH is 6 to 8, the temperature is 40 to 70.degree. C., preferably 45 to 65.degree. C., and more preferably 50 to 60.degree. From the viewpoint of enzyme reaction efficiency, it is preferable.
  • the enzyme may be deactivated by irradiating the enzyme-treated cellulose nanofiber dispersion with ultraviolet rays and / or heating.
  • a pressure autoclave for heat sterilization is used according to the heat resistance of the enzyme, and the temperature is 90 to 120 ° C., preferably 100 to 120 ° C., for about 5 to 30 minutes. What is necessary is to process.
  • the wavelength of the ultraviolet rays used is preferably 100 to 400 nm, more preferably 100 to 300 nm.
  • ultraviolet rays having a wavelength of 135 to 260 nm not only act on the enzyme, but also act on cellulose and hemicellulose to promote further shortening of the cellulose nanofibers. In particular, it is also preferable from the viewpoint of lowering the viscosity of the cellulose nanofiber.
  • a light source for irradiating ultraviolet rays a light source having a wavelength of 100 to 400 nm can be used.
  • a xenon short arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a deuterium lamp, A metal halide lamp etc. are mentioned as an example, These 1 type (s) or 2 or more types can be used in arbitrary combinations.
  • the number of cut sites in the enzyme, cellulose chain, and hemicellulose chain increases by simultaneously irradiating ultraviolet rays of different wavelengths, deactivating the enzyme and shortening the nanofibers of cellulose nanofibers. Is preferable because it is promoted.
  • an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.) is added. This is preferable because the efficiency of the photo-oxidation reaction can be further increased.
  • a container for storing the oxidized cellulosic raw material when performing ultraviolet irradiation for example, when ultraviolet rays having a wavelength longer than 300 nm are used, those made of hard glass can be used, but ultraviolet rays having a shorter wavelength than that can be used. In the case of using, it is better to use a quartz glass that transmits ultraviolet rays more.
  • a suitable thing can be selected from the materials with little deterioration with respect to the wavelength of the ultraviolet-ray used.
  • the oxidized cellulosic material may be subjected to a viscosity reduction treatment.
  • the viscosity reduction treatment refers to a treatment that moderately cuts the cellulose chain of the oxidized cellulose raw material (shortens the cellulose chain) and lowers the viscosity of the raw material. Any treatment can be used as long as the viscosity of the cellulosic raw material is decreased. For example, a treatment of irradiating the oxidized cellulosic raw material with ultraviolet rays can be mentioned.
  • UV irradiation In the case of irradiating the oxidized cellulose raw material with ultraviolet rays as the viscosity reducing treatment, the energy efficiency is improved if the concentration of the oxidized hardwood-derived cellulose raw material is 0.1% by mass or more when irradiating the ultraviolet rays. In order to increase, it is preferable, and if it is 12 mass% or less, since the fluidity
  • the temperature of the cellulosic raw material when irradiated with ultraviolet rays is preferably 20 ° C. or higher because the efficiency of the photooxidation reaction is increased. This is preferable because there is no fear and there is no possibility that the pressure in the reactor exceeds atmospheric pressure. Therefore, the range of 20 to 95 ° C. is preferable. Within this range, there is also an advantage that there is no need to design a device in consideration of pressure resistance. More preferably, it is 20 to 80 ° C., and further preferably 20 to 50 ° C.
  • the pH at the time of irradiation with ultraviolet rays is not particularly limited, but in consideration of simplification of the process, it is preferable to perform the treatment in a neutral region, for example, pH of about 6.0 to 8.0.
  • the wavelength of the ultraviolet light is preferably 100 to 400 nm, more preferably 100 to 300 nm.
  • ultraviolet rays having a wavelength of 135 to 260 nm are particularly preferable because they directly act on cellulose or hemicellulose to cause low molecular weight, and the cellulose raw material can be shortened.
  • a light source for irradiating ultraviolet rays a light source having a wavelength of 100 to 400 nm can be used.
  • a xenon short arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, A hydrogen lamp, a metal halide lamp, etc. are mentioned as an example, These 1 type (s) or 2 or more types can be used in arbitrary combinations.
  • a container for storing the oxidized cellulosic raw material when performing ultraviolet irradiation for example, when ultraviolet rays having a wavelength longer than 300 nm are used, those made of hard glass can be used, but ultraviolet rays having a shorter wavelength than that can be used. In the case of using, it is better to use a quartz glass that transmits ultraviolet rays more.
  • a suitable thing can be selected from the materials with little deterioration with respect to the wavelength of the ultraviolet-ray used.
  • the concentration of the cellulose-based raw material derived from oxidized hardwood when irradiating with ultraviolet rays is 0.1% by mass or more, the energy efficiency is preferably increased, and when it is 12% by mass or less, the cellulose in the ultraviolet irradiation apparatus is preferred. This is preferable because the flowability of the system raw material is good and the reaction efficiency is increased. Therefore, the range of 0.1 to 12% by mass is preferable. More preferably, it is 0.5 to 5% by mass, and still more preferably 1 to 5% by mass.
  • the degree of irradiation received by the cellulosic raw material in the ultraviolet irradiation reaction can be arbitrarily set by adjusting the residence time of the cellulosic raw material in the irradiation reaction apparatus, adjusting the amount of energy of the irradiation light source, or the like. Also, for example, by adjusting the concentration of the cellulosic material in the irradiation device by diluting with water, or by adjusting the concentration of the cellulosic material by blowing an inert gas such as air or nitrogen into the cellulosic material.
  • the irradiation amount of ultraviolet rays received by the cellulosic material in the irradiation reaction apparatus can be arbitrarily controlled. These conditions such as residence time and concentration can be appropriately set in accordance with the quality (fiber length, cellulose polymerization degree, etc.) of the oxidized cellulose raw material after the target ultraviolet irradiation reaction.
  • the ultraviolet irradiation treatment as the viscosity reducing treatment is performed in the presence of an auxiliary such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.). This is preferable because the efficiency of the photooxidation reaction can be further increased.
  • an auxiliary such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.). This is preferable because the efficiency of the photooxidation reaction can be further increased.
  • ozone is generated because air usually exists in the gas phase around the light source. While supplying air continuously to the periphery of the light source, ozone is continuously extracted, and ozone is supplied from outside the system by injecting the extracted ozone into the oxidized cellulosic material. In addition, ozone can be used as an auxiliary for the photooxidation reaction. Furthermore, by supplying oxygen to the gas phase around the light source, a larger amount of ozone can be generated in the system, and the generated ozone can be used as an auxiliary agent for the photooxidation reaction. Thus, it is also a great advantage that ozone generated secondary by the ultraviolet irradiation reactor can be used.
  • the ultraviolet irradiation treatment as the viscosity reducing treatment can be repeated a plurality of times.
  • the number of repetitions can be appropriately set according to the relationship with the target quality of the oxidized cellulosic raw material and the post-treatment such as bleaching.
  • ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm are applied 1 to 10 times, preferably about 2 to 5 times, 0.5 to 10 hours per time, preferably 0.5 to 3 times. It can be irradiated for as long as an hour.
  • any treatment that moderately cuts the cellulose chain of the oxidized cellulose raw material (shortens the cellulose chain) and lowers the viscosity of the raw material may be used.
  • a process of hydrolyzing an oxidized cellulosic raw material with an enzyme a process of oxidizing an oxidized cellulosic raw material with hydrogen peroxide and ozone, a process of hydrolyzing an oxidized cellulosic raw material with an acid, and Combinations of these are included.
  • hemicellulase for example, xylanase or mannase
  • the hemicellulase is not particularly limited, and may be derived from cellulase or hemicellulase-producing filamentous fungi, bacteria, actinomycetes, basidiomycetes, or those produced by genetic engineering such as genetic recombination or cell fusion, alone or in combination. It can be used by mixing. Commercial products can also be used.
  • Examples of commercially available cellulases include Novozymes 476 from Novozymes Japan, Cellulase AP3 from Amano Enzyme, Cellulase Onozuka RS from Yakult Yakuhin Kogyo, Optimase CX40L from Genencor Kyowa, GODO-TCL from Nagase, and Nagase Cellulase XL-522 manufactured by Chemtex, Enchiron CM manufactured by Nitto Kasei Kogyo Co., Ltd., etc. can be used.
  • hemicellulase for example, Pulpzyme manufactured by Novozymes Japan, Hemicellulase Amano 90 manufactured by Amano Enzyme, and Sumiteam X manufactured by Shin Nippon Chemical Industry Co., Ltd. can be used.
  • the amount of the enzyme added is 0.001% by mass or more with respect to the absolutely dry cellulosic raw material, it is sufficient to cause the desired enzyme reaction from the viewpoint of treatment time and efficiency, and 10% by mass.
  • the following is preferable because excessive hydrolysis of cellulose can be suppressed and a decrease in the yield of cellulose nanofibers can be prevented. Therefore, the addition amount of the enzyme is preferably 0.001 to 10% by mass with respect to the absolutely dry cellulosic material. More preferably, the content is 0.01 to 5% by mass, and still more preferably 0.05 to 2% by mass.
  • the “enzyme amount” here refers to the dry solid content of the enzyme aqueous solution.
  • the hydrolysis treatment with an enzyme is performed at pH 4 to 10, preferably pH 5 to 9, more preferably pH 6 to 8, temperature 40 to 70 ° C., preferably 45 to 65 ° C., more preferably 50 to 60 ° C.
  • the reaction time is preferably 0.5 to 24 hours, preferably 1 to 10 hours, and more preferably 2 to 6 hours from the viewpoint of enzyme reaction efficiency.
  • the enzyme When an enzyme is used for the viscosity reduction treatment, the enzyme may be deactivated by irradiating the cellulose nanofiber dispersion treated with ultraviolet rays and / or heating.
  • the reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by enzyme treatment is presumed as follows.
  • a carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsive force between the carboxyl groups.
  • an enzyme is added to the raw material for hydrolysis, a strong network of cellulose molecules is broken, the specific surface area of the raw material is increased, the shortening of the cellulose-based raw material is promoted, and the cellulose-based raw material is It is thought that the viscosity is lowered.
  • ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material.
  • the addition amount (mass) of ozone is preferably 0.1 to 3 times the absolute dry mass of the cellulosic material. If the amount of ozone added is at least 0.1 times the absolute dry mass of the cellulosic material, the amorphous part of the cellulose can be sufficiently decomposed, greatly increasing the energy required for defibration and dispersion treatment in the next step. Can be reduced.
  • the amount of ozone added is more preferably 0.3 to 2.5 times, more preferably 0.5 to 1.5 times the absolute dry mass of the cellulosic material.
  • the addition amount (mass) of hydrogen peroxide is preferably 0.001 to 1.5 times the absolute dry mass of the cellulosic material.
  • hydrogen peroxide is used in an amount of 0.001 times or more of the addition amount of the cellulosic material, a synergistic effect between ozone and hydrogen peroxide is exhibited.
  • the amount of hydrogen peroxide added is more preferably 0.1 to 1.0 times the absolute dry mass of the cellulosic material.
  • the oxidative decomposition treatment with ozone and hydrogen peroxide is pH 2 to 12, preferably pH 4 to 10, more preferably pH 6 to 8, and temperature is 10 to 90 ° C., preferably 20 to 70 ° C., more preferably 30. From the viewpoint of oxidative decomposition reaction efficiency, it is preferable to carry out the reaction at -50 ° C. for 1-20 hours, preferably 2-10 hours, more preferably 3-6 hours.
  • a device for performing treatment with ozone and hydrogen peroxide a device commonly used by those skilled in the art can be used.
  • a reactor can be used.
  • ozone and hydrogen peroxide remaining in the aqueous solution can effectively work in the defibration / dispersion treatment in the next step, and can further promote the lowering of the viscosity of the cellulose nanofiber dispersion. .
  • the acid to be used is sulfuric acid, hydrochloric acid, nitric acid, or phosphoric acid. It is preferable to use a mineral acid.
  • the conditions for the acid hydrolysis treatment can be set as appropriate as long as the acid acts on the amorphous part of the cellulose, and are not particularly limited.
  • the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolute dry mass of the cellulosic material.
  • the amount of acid added is 0.01% by mass or more, hydrolysis of cellulose proceeds and the fibrillation / dispersion efficiency of the cellulose-based raw material in the next step is improved, and preferably 0.5% by mass or less.
  • the pH of the reaction solution during acid hydrolysis is 2.0 to 4.0, preferably 2.0 or more and less than 3.0.
  • the acid hydrolysis treatment is preferably performed at a temperature of 70 to 120 ° C. for 1 to 10 hours from the viewpoint of acid hydrolysis efficiency.
  • an alkali such as sodium hydroxide from the viewpoint of the efficiency of the subsequent defibration / dispersion treatment.
  • the reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by the acid hydrolysis treatment is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. For this reason, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the electric repulsion between carboxyl groups. Then, when an acid is added to the raw material for hydrolysis, a strong network of cellulose molecules is broken, the specific surface area of the raw material is increased, shortening of the cellulose-based raw material is promoted, and the cellulose-based raw material is It is thought that the viscosity is lowered.
  • the cellulose nanofibers produced by the present invention are cellulose single microfibrils having a width of 2 to 5 nm and a length of about 1 to 5 ⁇ m.
  • “to form a nanofiber” means that a cellulosic raw material is processed into cellulose nanofiber which is a single microfibril of cellulose having a width of about 2 to 5 nm and a length of about 1 to 5 ⁇ m.
  • the cellulose nanofiber dispersion obtained by the present invention has a B-type viscosity (60 rpm, 20 ° C.) at a concentration of 1.0% (w / v), preferably 2500 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, More preferably, it is 500 mPa * s or less, More preferably, it is 100 mPa * s or less.
  • the lower limit of the B-type viscosity is not particularly limited, but is usually about 1 mPa ⁇ s or more, or about 5 mPa ⁇ s or more.
  • the light transmittance (660 nm) at a concentration of 0.1% (w / v) is preferably 90% or more, and more preferably 95% or more.
  • Cellulose nanofibers produced according to the present invention are excellent in fluidity and transparency, and are also excellent in barrier properties and heat resistance, and thus can be used for various applications such as packaging materials.
  • the B-type viscosity of the cellulose nanofiber dispersion can be measured using a normal B-type viscometer commonly used by those skilled in the art, for example, TV-10 type viscosity of Toki Sangyo Co., Ltd. Using a meter, it can be measured at 20 ° C. and 60 rpm.
  • the light transmittance of the cellulose nanofiber dispersion can be measured as the transmittance of 660 nm light using an ultraviolet / visible spectrophotometer.
  • the carboxyl group amount of the cellulose nanofiber of the present invention is preferably 0.5 mmol / g or more.
  • the amount of carboxyl groups in cellulose nanofibers was prepared by adding 60 ml of a 0.5% by weight slurry of cellulose nanofibers, adding 0.1M hydrochloric acid aqueous solution to pH 2.5, and then dropping 0.05N sodium hydroxide aqueous solution dropwise. Then, the electrical conductivity is measured until the pH reaches 11, and can be calculated from the amount of sodium hydroxide (a) consumed in the weak acid neutralization stage where the change in electrical conductivity is gradual, using the following equation. .
  • Amount of carboxyl group [mmol / g pulp] a [ml] ⁇ 0.05 / oxidized pulp mass [g]
  • the B-type viscosity (60 rpm, 20 ° C.) of the obtained 1% (w / v) cellulose nanofiber dispersion was measured using a TV-10 viscometer (Toki Sangyo Co., Ltd.).
  • the transparency (660 nm light transmittance) of a 0.1% (w / v) cellulose nanofiber dispersion was measured using a UV-VIS spectrophotometer UV-265FS (Shimadzu Corporation).
  • the power consumption required for the defibration / dispersion process was determined by (power during processing) ⁇ (processing time) / (sample amount processed). The results are shown in Table 1.
  • Example 1 A nanofiber dispersion was obtained in the same manner as in Example 1 except that bleached kraft pulp derived from conifers was used. The results are shown in Table 2.
  • Example 2 A nanofiber dispersion was obtained in the same manner as in Example 1 except that it was treated with an ultrahigh pressure homogenizer without being subjected to ultraviolet treatment. The results are shown in Table 1.
  • Example 2 A nanofiber dispersion was obtained in the same manner as in Example 2 except that bleached kraft pulp derived from conifers was used. The results are shown in Table 2.
  • Example 3 A nanofiber dispersion was obtained in the same manner as in Example 1 except that the amount of 2M sodium hypochlorite aqueous solution added was 32 ml and the oxidation reaction time was 4 hours. The results are shown in Table 1.
  • Example 3 A nanofiber dispersion was obtained in the same manner as in Example 3 except that bleached kraft pulp derived from conifers was used. The results are shown in Table 2.
  • Example 4 A nanofiber dispersion was obtained in the same manner as in Example 2 except that the amount of 2M sodium hypochlorite aqueous solution added was 32 ml and the oxidation reaction time was 4 hours. The results are shown in Table 1.
  • Example 4 A nanofiber dispersion was obtained in the same manner as in Example 4 except that bleached kraft pulp derived from conifers was used. The results are shown in Table 2.
  • Example 5 E. grandis and E.M. A nanofiber dispersion was obtained in the same manner as in Example 1 except that bleached sulfite pulp derived from a mixture of camaldulensis (blending ratio 50:50) was used. The results are shown in Table 1.
  • Example 5 A nanofiber dispersion was obtained in the same manner as in Example 1 except that bleached sulfite pulp derived from conifers was used. The results are shown in Table 2.
  • Example 6 E. grandis and E.M. A nanofiber dispersion liquid was obtained in the same manner as in Example 2 except that bleached sulfite pulp derived from a mixture of camaldulensis (blending ratio 50:50) was used. The results are shown in Table 1.
  • Example 6 A nanofiber dispersion was obtained in the same manner as in Example 2 except that bleached sulfite pulp derived from conifers was used. The results are shown in Table 2.
  • Example 7 As hardwood A. A nanofiber dispersion was obtained in the same manner as in Example 1 except that mangium was used. The results are shown in Table 1.
  • Example 8 E. grandis and E.M. A nanofiber dispersion was prepared in the same manner as in Example 1 except that bleached sulfite pulp derived from a mixture of camaldulensis (blending ratio 50:50) was used, and the slurry concentration at the time of defibration / dispersion treatment was 2 mass%. Obtained. The results are shown in Table 1.
  • Example 7 A nanofiber dispersion was obtained in the same manner as in Example 8 except that bleached sulfite pulp derived from conifers was used. The results are shown in Table 2.
  • Example 9 E. grandis and E.M. Using bleached sulfite pulp derived from a mixed material of camaldulensis (mixing ratio 50:50), Novozyme 476 manufactured by Novozymes Japan was used as a cellulase in 2 L of oxidized pulp slurry of 2% by mass with respect to the oxidized pulp.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that after addition of mass%, defibration / dispersion treatment with an ultra-high pressure homogenizer at 50 ° C., and deactivation treatment with a 20 W low-pressure ultraviolet lamp for 2 hours. It was. The results are shown in Table 1.
  • Example 10 A nanofiber dispersion was obtained in the same manner as in Example 9 except that the enzyme was inactivated at 105 ° C. for 30 minutes. The results are shown in Table 1.
  • Example 11 As hardwood A. A nanofiber dispersion was obtained in the same manner as in Example 1 except that cellulase was added to 3% by mass of oxidized pulp slurry using Mangiumu. The results are shown in Table 1.
  • Example 8 A nanofiber dispersion was obtained in the same manner as in Example 11 except that bleached kraft pulp derived from conifers was used. The results are shown in Table 2.
  • Example 12 As E. hardwood. A nanofiber dispersion was obtained in the same manner as in Example 1 except that globulus was used. The results are shown in Table 1.
  • Example 13 As hardwood B. A nanofiber dispersion was obtained in the same manner as in Example 1 except that mandhurica was used. The results are shown in Table 1.
  • Example 14 A nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment was performed with an ultraviolet lamp for 4 hours. The results are shown in Table 1.
  • Example 15 As hardwood A. A nanofiber dispersion was obtained in the same manner as in Example 1 except that auriculaformis was used. The results are shown in Table 1.
  • Example 16 As hardwood A. A nanofiber dispersion was obtained in the same manner as in Example 1 except that mearnsi was used. The results are shown in Table 1.
  • Example 1 in which a cellulose-based material derived from hardwood is defibrated, cellulose nanofibers having a low B-type viscosity can be obtained with low power consumption, compared to Comparative Example 1 in which a cellulose-based material derived from conifers is defibrated. I understand that. Therefore, according to the method for producing cellulose nanofibers of the present invention, a cellulose nanofiber dispersion having high fluidity and transparency can be obtained at a high concentration and with high efficiency.
  • Example 14 since the cellulose nanofiber dispersions obtained in Example 14 (ultraviolet irradiation 4 hours) and Comparative Example 1 (using softwood and ultraviolet irradiation 6 hours) showed the same B-type viscosity, they were derived from hardwoods. It can be seen that the use of a cellulose-based material can shorten the time for reducing the viscosity by ultraviolet irradiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)

Abstract

 流動性と透明性に優れた高濃度のセルロースナノファイバー分散液を低エネルギーで効率良く製造できる方法を提供する。具体的には、(1)N-オキシル化合物、及び(2)臭化物、ヨウ化物若しくはこれらの混合物の存在下で、酸化剤を用い水中にて広葉樹由来のセルロース系原料を酸化し、次いで解繊・分散処理する製造方法を提供する。

Description

セルロースナノファイバーの製造方法
 本発明は、N-オキシル化合物で酸化した広葉樹由来のセルロース系原料から、従来よりも低エネルギーで高濃度のセルロースナノファイバー分散液を製造できる方法に関する。
 セルロース系原料を触媒量の2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、TEMPOと称する)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロースのミクロフィブリルの表面にカルボキシル基を効率よく導入することができ、このカルボキシル基を導入したセルロース系原料は、水中でミキサーなどの簡単な機械処理を行なうことにより、高粘度で透明なセルロースナノファイバー水分散液へと調製することができることが知られている(非特許文献1、特許文献1)。
 セルロースナノファイバーは、生分解性のある水分散型新規素材である。セルロースナノファイバーの表面には酸化反応によりカルボキシル基が導入されているため、セルロースナノファイバーを、カルボキシル基を基点として、自由に改質することができる。また、上記の方法により得られたセルロースナノファイバーは、分散液の形態であるため、各種水溶性ポリマーとブレンドしたり、或いは有機・無機系顔料と複合化することで品質の改変を図ることもできる。さらに、セルロースナノファイバーをシート化したり繊維化することも可能である。セルロースナノファイバーのこのような特性を活かし、高機能包装材料、透明有機基板部材、高機能繊維、分離膜、再生医療材料などに応用することが想定されている。今後、セルロースナノファイバーの特徴を最大限活用することで循環型の安全・安心社会形成に不可欠な新規高機能性商品の開発が期待されている。
 しかしながら、上記の方法、すなわち、セルロース系原料をTEMPOを用いて酸化してミキサーで解繊することにより得られたセルロースナノファイバー分散液は、0.3~0.5%(w/v)程度の低濃度でもB型粘度(60rpm、20℃)が800~4000mPa・s程度というように、非常に高い粘度を有しているため、取り扱いが容易ではなく、その応用範囲は実際には限られていた。例えば、針葉樹由来のセルロースナノファイバー分散液を基材に塗布して基材上にフィルムを形成させる場合、分散液の粘度が高すぎると均質に塗布することができないため、分散液のB型粘度(60rpm、20℃)を10~3000mPa・s程度に調整しなければならない。そのためには、分散液中のセルロースナノファイバーの濃度を0.05~0.4%(w/v)程度と非常に低い濃度に設定せざるを得なかった。しかしながら、そのような低濃度の分散液を用いる場合には、所望のフィルム厚みが達成されるまで何度も塗布と乾燥とを繰り返し実施せざるを得ず、効率が悪いという問題があった。
 また、針葉樹由来のセルロースナノファイバー分散液を顔料及びバインダーを含む塗料に混ぜて紙などに塗布する場合、分散液の粘度が高すぎると塗料中に均一に混合させることができないため、分散液の濃度を低くして低粘度化させなければならない。しかし、このような低濃度の分散液を用いると、塗料の濃度が希薄となり、塗布に必要な十分な粘性が確保できないため、塗布し難くなったり、乾燥負荷が増大したりする。また、塗料が原紙に浸透することにより有効塗膜が薄くなって、光沢発現性や表面強度、印刷むらの抑制などの塗膜に期待される所望の機能が発現しないという問題もあった。
 このように、TEMPOを用いて酸化して得られた針葉樹由来のセルロース系原料をミキサーを用いて解繊処理する従来の方法では、得られる分散液の粘度が非常に高くなり、様々な問題を生じていた。粘度が高すぎると、撹拌羽根周辺のみで分散が進行するため、不均一な分散が生じ、透明性の低い分散液となるという問題もあった。
 また、酸化された針葉樹由来のセルロース系原料を、ミキサーよりも解繊・分散力の高いホモジナイザーを用いて解繊処理すると、分散初期にセルロース系原料が顕著に増粘して流動性が悪化し、分散処理時に要する消費電力量が大幅に増大するという問題がある。また、装置内部にセルロースナノファイバー分散液が付着して分散が十分に行なわれなくなったり、また、装置から分散液を取り出すなどの操作が困難になって分散液の歩留りが低下するという問題もあった。
特開2008-001728号公報 特願2009-082604号明細書
Saito, T., et al., Cellulose Commun., 14 (2), 62 (2007)
 本発明は、高濃度であっても低い粘度を有し、流動性に優れており、かつ、透明性にも優れたセルロースナノファイバー分散液を、低エネルギーで効率良く製造できる方法を提供することを目的とする。
 本発明者らは、かかる従来技術の問題を解決するために鋭意検討した結果、(A)(1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いて広葉樹由来のセルロース系原料を酸化し、(B)前記(A)からのセルロース系原料の濃度1%(w/v)以上のスラリーを解繊・分散処理してナノファイバー化することにより、高濃度であっても流動性と透明性とに優れているセルロースナノファイバー分散液を効率良く製造できることを見出し、本発明を完成するに至った。
 本発明において、(A)広葉樹由来のセルロース系原料の酸化と(B)酸化後の当該セルロース系原料のスラリーの解繊・分散処理との間に、低粘度化処理を行ってもよい。
 また、(B)酸化後の当該セルロース系原料のスラリーの解繊・分散処理時に、酵素を添加し、次いで酵素の失活処理を行ってもよい。
 本発明によれば、N-オキシル化合物と、臭化物、ヨウ化物若しくはこれらの混合物との存在下で広葉樹由来のセルロース系原料を酸化し、得られた酸化されたセルロース系原料を解繊・分散処理してナノファイバー化することにより、高濃度であっても低粘度であり、流動性に優れていて取り扱いがしやすく、かつ透明性にも優れているセルロースナノファイバーの分散液を低い消費電力量で効率的に製造することができる。
 本発明により得られたセルロースナノファイバー分散液は、高濃度であっても流動性に優れているため、例えば、セルロースナノファイバーを基材に塗布して基材上にフィルムを形成させる際に、1%(w/v)以上といった高濃度のセルロースナノファイバーを含有する塗料を10~3000mPa・s(B型粘度、60rpm、20℃)といった低い粘度で調製することができ、塗料を1回塗布するだけで5~30μm程度の厚さを有するフィルムを形成できるといった利点がある。従来の針葉樹由来のセルロース系原料から得られるセルロースナノファイバー分散液では、10~3000mPa・s(B型粘度、60rpm、20℃)程度の粘度を有する塗料を調製するためには、セルロースナノファイバーの濃度を0.05~0.4%(w/v)といった非常に低い濃度に設定せざるを得ず、5~30μm程度の厚さを有するフィルムを作成するには、塗布と乾燥を何度も繰り返し行なう必要があった。本発明により得られるセルロースナノファイバー分散液の高濃度で流動性が高いという特徴は、非常に優れたものである。
 本発明では、(1)N-オキシル化合物、及び(2)臭化物、ヨウ化物若しくはこれらの混合物の存在下で、酸化剤を用い水中にて広葉樹由来のセルロース系原料を酸化し、得られた酸化されたセルロース系原料を解繊・分散処理してナノファイバー化することにより、解繊・分散処理における消費電力量を低減させることができ、高濃度であっても流動性と透明性とに優れているセルロースナノファイバー分散液を低エネルギーで効率よく製造することができる。
 (N-オキシル化合物)
 本発明で用いるN-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、本発明で使用されるN-オキシル化合物としては、下記一般式(式1)で示される物質が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式1中、R1~R4は同一又は異なる炭素数1~4程度のアルキル基を示す。)
 式1で表される物質のうち、2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下TEMPOと称する)が好ましい。また、下記式2~4のいずれかで表されるN-オキシル化合物、すなわち、4-ヒドロキシTEMPOの水酸基をアルコールでエーテル化、またはカルボン酸若しくはスルホン酸でエステル化し、適度な疎水性を付与した4-ヒドロキシTEMPO誘導体は、安価であり、かつ均一な酸化セルロースを得ることができるため、とりわけ好ましい。
Figure JPOXMLDOC01-appb-C000002
(式2~4中、Rは炭素数4以下の直鎖又は分岐状炭素鎖である。)
 さらに、下記式5で表されるN-オキシル化合物、すなわち、アザアダマンタン型ニトロキシラジカルは、短時間で、重合度の高いセルロースナノファイバーを製造できるため、とりわけ好ましい。
Figure JPOXMLDOC01-appb-C000003
(式5中、R5及びR6は、同一又は異なる水素又はC1~C6の直鎖若しくは分岐鎖アルキル基を示す。)
 N-オキシル化合物の使用量は、セルロース系原料をナノファイバー化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロース系原料に対して、0.01~10mmol、好ましくは0.01~1mmol、さらに好ましくは0.05~0.5mmol程度を用いることができる。
 (臭化物またはヨウ化物)
 セルロース系原料の酸化の際に用いる臭化物またはヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などを使用することができる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gのセルロース系原料に対して、0.1~100mmol、好ましくは0.1~10mmol、さらに好ましくは0.5~5mmol程度を用いることができる。
 (酸化剤)
 セルロース系原料の酸化の際に用いる酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。中でも、セルロースナノファイバー生産コストの観点から、現在工業プロセスにおいて最も汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが、特に好適である。一般に、広葉樹由来のセルロース系原料は、針葉樹由来のセルロース系原料に比べて、カルボキシル基を導入しにくい(すなわち、酸化しにくい)ので、酸化剤の使用量を適切な範囲に調整して、酸化の進行を促進することが好ましい。酸化剤の適切な使用量は、用いる広葉樹の樹種によっても異なるが、例えば、絶乾1gのセルロース系原料に対して、0.5~500mmol、好ましくは0.5~50mmol、さらに好ましくは2.5~25mmol、最も好ましくは5~20mmol程度である。
 (セルロース系原料)
 本発明で用いるセルロース系原料は広葉樹由来のものであれば特に限定されるものではないが、例えば、アカシア属(Acacia)、ユーカリノキ属(Eucalyptus)、シラカンバ属(Betula)、ブナ属(Fagus)、カエデ属(Acer)、ハコヤナギ属(Populus)、あるいは該材が配合された材が適する。アカシア属Acacia(以下、A.と略す)としては、A.mangiumu、A.auriculaeformis、A.dealbata、A.mearnsiiなどを挙げることができる。またアカシア属は、自然交雑もしくは育種によって得られたA.mangiumとA.auriculiformisの交配種などを含む。Eucalyptus(以下、E.と略す)としては、E.calophylla、E.citriodora、E.diversicolor、E.globulus、E.grandis、E.gummifera、E.marginata、E.nesophila、E.nitens、E.amygdalina、E.camaldulensis、E.delegatensis、E.gigantea、E.muelleriana、E.obliqua、E.regnans、E.sieberiana、E.viminalis、E.camaldulensis、E.marginataなどを挙げることができる。シラカンバ属Betula(以下、B.と略す)としては、B.ermanii、B.populinifolia、B.carpinifolia、B.mandshurica、B.verrucosa、B.papyrifera、B.alleghaniensisなどを挙げることができる。ブナ属Fagus(以下、F.と略す)としては、F.grandifolia、F.orientalis、F.sylvatica、F.crenataなどを挙げることができる。カエデ属Acer(以下、A.と略す)としては、A.camprestre、A.dasycarpum、A.ginnale、A.platanoides、A.mono、A.spicatum、A.apicatum、A.saccharinum、A.rubrum、A.pseudoplatanusなどを挙げることができる。 ハコヤナギ属Populus(以下、P.と略す)としては、P.maximowiczii、P.alba、P.sieboldii、P.koreana、P.deltoides、P.grandidentata、P.tacamachaca、P.tremuloides、P.trichocarpaなどを挙げることができる。これらの中では、A.mangiumuをセルロース系原料として用いると、高濃度であっても非常に粘度の低いセルロースナノファイバーを調製することができるから、特に好ましい。
 中でもアカシア属をセルロース系原料として用いると、高濃度であっても非常に粘度の低いセルロースナノファイバーを調製することができるので好ましい。本発明においては特に、A.mangiumu、A.auriculaeformis、A.mearnsiiをセルロース系原料として用いることが好ましい。
 また、広葉樹由来のセルロース系原料としては、クラフトパルプ又はサルファイトパルプを高圧ホモジナイザーやミル等で粉砕した粉末セルロース、あるいはそれらを酸加水分解などの化学処理により精製した微結晶セルロース粉末なども使用することができる。このうち、漂白済みクラフトパルプ、漂白済みサルファイトパルプ、粉末セルロース、または微結晶セルロース粉末を用いることが量産化やコストの観点から好ましい。また、粉末セルロース及び微結晶セルロース粉末を用いると、高濃度であってもより低い粘度を有するセルロースナノファイバー分散液を製造することができるから、とりわけ好ましい。
 粉末セルロースはセルロース純度の高い木材パルプの非結晶部分を酸加水分解処理で除去した後、粉砕・篩い分けすることで得られる微結晶性セルロースからなる棒軸状粒子である。セルロースの重合度は100~500程度、X線回折法による粉末セルロースの結晶化度は70~90%、レーザー回折式粒度分布測定装置による平均粒子径は100μm以下の基本特性を有する。
 (酸化反応条件)
 本発明の方法は温和な条件であっても酸化反応を円滑に進行させることができるという特色がある。そのため、反応温度は15~30℃程度の室温であってもよい。なお、反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率良く進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加することにより、反応液のpHを9~12、好ましくは10~11程度に維持することが望ましい。酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、特に限定されないが、例えば、0.5~6時間、好ましくは2~6時間、さらに好ましくは4~6時間程度である。また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、セルロース系原料に効率よくカルボキシル基を導入でき、セルロース系原料の酸化を促進することができる。
 本発明の酸化方法では、酸化反応により得られる酸化されたセルロース系原料のカルボキシル基量が、セルロース系原料の絶乾質量に対して、1.0mmol/g以上となるように条件を設定することが好ましく、より好ましくは1.0mmol/g~3.0mmol/g、さらに好ましくは1.4mmol/g~3.0mmol/g、とりわけ好ましくは2.0mmol/g~2.5mmol/gである。カルボキシル基量は、酸化反応時間の調整、酸化反応温度の調整、酸化反応時のpHの調整、N-オキシル化合物や臭化物、ヨウ化物、酸化剤の添加量の調整などを行うことにより、所望のカルボキシル基量とすることができる。
 (解繊・分散処理)
 本発明では、酸化された広葉樹由来のセルロース系原料を解繊・分散処理する。解繊・分散装置の種類としては、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置が挙げられるが、透明性と流動性に優れるセルロースナノファイバー分散液を効率よく得るには、50MPa以上、好ましくは100MPa以上、さらに好ましくは140MPa以上の条件下で分散できる湿式の高圧または超高圧ホモジナイザーで処理することが好ましい。
 解繊・分散処理時の酸化されたセルロース系原料のスラリーの濃度は、1%(w/v)以上、好ましくは、1~5%(w/v)、より好ましくは2~5%(w/v)である。広葉樹由来のセルロース系原料を用いると、針葉樹由来のセルロース系原料を用いた場合と比べて、比較的高濃度のスラリーであっても、良好に解繊・分散処理することができる。
 (解繊・分散処理時の酵素添加)
 解繊・分散処理の際に、セルロースの分解酵素であるセルラーゼや、ヘミセルロースの分解酵素であるヘミセルラーゼ(例えば、キシラナーゼやマンナーゼ)を、単独または2種以上混合して添加すると、流動性と透明性とに優れているセルロースナノファイバー分散液を効率良く製造できるため好ましい。セルラーゼやヘミセルーゼは、セルラーゼまたはヘミセルラーゼ生産性糸状菌、細菌、放線菌、担子菌由来のものや、遺伝子組み換え、細胞融合等の遺伝子操作により製造したものを用いてもよいし、また、市販品を用いてもよい。市販のセルラーゼとしては、例えば、ノボザイムズジャパン社製Novozyme 476、天野エンザイム社製セルラーゼAP3、ヤクルト薬品工業社製セルラーゼオノズカRS、ジェネンコア協和社製オプチマーゼCX40L、合同酒精社製のGODO-TCL、ナガセケムテックス社製セルラーゼXL-522、洛東化成工業社製エンチロンCMを用いることができ、市販のヘミセルラーゼとしては、例えば、ノボザイムズジャパン社製パルプザイム、天野エンザイム社製ヘミセルラーゼアマノ90、新日本化学工業社製スミチームXを用いることができる。
 解繊・分散処理時の酵素の添加量は、酸化セルロースに対して0.001~10質量%が好ましい。より好ましくは、0.01~5質量%、さらに好ましくは、0.05~2質量%である。なお、ここでいう「酵素の量」とは、酵素水溶液の乾燥固形分量のことをいう。
 酵素の存在下で解繊・分散処理を行なう際のpH、温度、処理時間は、酵素による加水分解反応が進行する条件であれば特に制限されないが、pH4~10、好ましくは、pH5~9、さらに好ましくは、pH6~8で、温度40~70℃、好ましくは、45~65℃、さらに好ましくは、50~60℃で、所望の粘度となるまで処理時間やパス回数を適宜変更することが、酵素反応効率の観点から好ましい。
 (酵素の失活処理)
 解繊・分散処理時に酵素を用いた場合には、酵素処理したセルロースナノファイバー分散液に紫外線を照射し、及び/または加熱することにより、酵素を失活させてもよい。
 加熱して酵素を失活させる場合には、酵素の耐熱性に応じて、加熱滅菌用の加圧型オートクレーブなどを用い、温度90~120℃、好ましくは100~120℃で、5~30分間程度処理すればよい。
 紫外線を照射して酵素を失活させる場合には、用いる紫外線の波長は、好ましくは100~400nmであり、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、酵素に作用するだけでなく、セルロースやヘミセルロースにも作用して、セルロースナノファイバーのさらなる短繊維化を促進することができるから、酵素の失活のみならず、セルロースナノファイバーの低粘度化の観点からも特に好ましい。
 紫外線を照射する光源としては、100~400nmの波長領域の光を持つものが使用でき、具体的には、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプ等が一例として挙げられ、これらの1種あるいは2種以上を任意に組合せて使用することができる。特に波長特性の異なる複数の光源を組合せて使用すると、異なる波長の紫外線を同時に照射することにより酵素やセルロース鎖、ヘミセルロース鎖における切断箇所が増加し、酵素の失活やセルロースナノファイバーの短繊維化が促進されるため好ましい。
 紫外線を照射して酵素を失活させる際には、酸素、オゾン、または、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)などの助剤を添加すると、紫外線による光酸化反応の効率をより高めることができるので、好ましい。
 紫外線照射を行う際の酸化されたセルロース系原料を収容する容器としては、例えば、300nmより長波長の紫外線を用いる場合は、硬質ガラス製のものを用いることができるが、それより短波長の紫外線を用いる場合は、紫外線をより透過させる石英ガラス製のものを用いる方がよい。なお、容器の光透過反応に関与しない部分の材質については、用いる紫外線の波長に対して劣化の少ない材質の中から適切なものを選定することができる。
 (低粘度化処理)
 本発明では、広葉樹由来のセルロース系原料を酸化してスラリーとした後に、酸化されたセルロース系原料を低粘度化処理してもよい。低粘度化処理とは、酸化されたセルロース系原料のセルロース鎖を適度に切断し(セルロース鎖の短繊維化)、原料を低粘度化させる処理をいう。セルロース系原料の粘度が低下するような処理であれば、いずれでもよいが、例えば、酸化されたセルロース系原料に紫外線を照射する処理が挙げられる。
 (紫外線照射)
 低粘度化処理として、酸化されたセルロース系原料に紫外線を照射する場合、紫外線を照射する際の酸化された広葉樹由来のセルロース系原料の濃度は、0.1質量%以上であればエネルギー効率が高まるため好ましく、また12質量%以下であれば紫外線照射装置内でのセルロース系原料の流動性が良好であり反応効率が高まるため、好ましい。したがって、0.1~12質量%の範囲が好ましい。より好ましくは、0.5~5質量%、さらに好ましくは、1~5質量%である。
 また、紫外線を照射する際のセルロース系原料の温度は、20℃以上であれば光酸化反応の効率が高まるため好ましく、一方、95℃以下であればセルロース系原料の品質の悪化などの悪影響のおそれがなく、また反応装置内の圧力が大気圧を超えるおそれもなくなるため好ましい。したがって、20~95℃の範囲が好ましい。この範囲内であれば、耐圧性を考慮した装置設計を行なう必要性が特にないという利点もある。より好ましくは、20~80℃、さらに好ましくは、20~50℃である。
 また、紫外線を照射する際のpHは特に限定はないが、プロセスの簡素化を考えると中性領域、例えばpH6.0~8.0程度で処理することが好ましい。
 紫外線の波長は、好ましくは100~400nmであり、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、直接セルロースやヘミセルロースに作用して低分子かを引き起こし、セルロース系原料を短繊維化することができるから、特に好ましい。
 紫外線を照射する光源としては、100~400nmの波長領域の光を持つものを使用することができ、具体的には、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプ等が一例として挙げられ、これらの1種あるいは2種以上を任意に組合せて使用することができる。特に波長特性の異なる複数の光源を組合せて使用すると、異なる波長の紫外線を同時に照射することによりセルロース鎖やヘミセルロース鎖における切断箇所が増加し、短繊維化が促進されるため好ましい。
 紫外線照射を行う際の酸化されたセルロース系原料を収容する容器としては、例えば、300nmより長波長の紫外線を用いる場合は、硬質ガラス製のものを用いることができるが、それより短波長の紫外線を用いる場合は、紫外線をより透過させる石英ガラス製のものを用いる方がよい。なお、容器の光透過反応に関与しない部分の材質については、用いる紫外線の波長に対して劣化の少ない材質の中から適切なものを選定することができる。
 紫外線を照射する際の酸化された広葉樹由来のセルロース系原料の濃度は、0.1質量%以上であればエネルギー効率が高まるため好ましく、また12質量%以下であれば紫外線照射装置内でのセルロース系原料の流動性が良好であり反応効率が高まるため、好ましい。したがって、0.1~12質量%の範囲が好ましい。より好ましくは、0.5~5質量%、さらに好ましくは、1~5質量%である。
 紫外線照射反応においてセルロース系原料が受ける照射の程度は、照射反応装置内でのセルロース系原料の滞留時間を調節することや、照射光源のエネルギー量を調節すること等により、任意に設定できる。また、例えば、照射装置内のセルロース系原料の濃度を水希釈によって調節することや、あるいは空気や窒素等の不活性気体をセルロース系原料中に吹き込むことによってセルロース系原料の濃度を調節することにより、照射反応装置内でセルロース系原料が受ける紫外線の照射量を、任意に制御することができる。これらの滞留時間や濃度などの条件は、目標とする紫外線照射反応後の酸化されたセルロース系原料の品質(繊維長やセルロース重合度等)にあわせて、適宜設定できる。
 また、低粘度化処理としての紫外線照射処理は、酸素、オゾン、または、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)などの助剤の存在下で行なうと、光酸化反応の効率をより高めることができるため、好ましい。
 特に135~242nmの波長領域の紫外線を照射する場合、光源周辺の気相部には通常空気が存在するためオゾンが生成する。この光源周辺部に連続的に空気を供給する一方で、生成するオゾンを連続的に抜き出し、この抜き出したオゾンを酸化されたセルロース系原料へと注入することにより、系外からオゾンを供給すること無しに、光酸化反応の助剤としてオゾンを利用することができる。また更に、光源周辺の気相部に酸素を供給することにより、より大量のオゾンを系内に発生させることができ、発生したオゾンを光酸化反応の助剤として使用することができる。このように、紫外線照射反応装置で副次的に発生するオゾンを利用することができることも大きな利点である。
 また、低粘度化処理としての紫外線照射処理は、複数回繰り返すことができる。繰り返しの回数は目標とする酸化されたセルロース系原料の品質や、漂白などの後処理などとの関係に応じて適宜設定できる。例えば、特に制限されないが、100~400nm、好ましくは135~260nmの紫外線を、1~10回、好ましくは2~5回程度、1回あたり0.5~10時間、好ましくは0.5~3時間くらいの長さで、照射することができる。
 本発明で用いることのできる他の低粘度化処理としては、酸化されたセルロース系原料のセルロース鎖を適度に切断し(セルロース鎖の短繊維化)、原料を低粘度化させる処理であればよく、例えば、酸化されたセルロース系原料を酵素で加水分解する処理、酸化されたセルロース系原料を過酸化水素及びオゾンで酸化分解する処理、酸化されたセルロース系原料を酸で加水分解する処理、並びにこれらの組み合わせなどが挙げられる。
 (酵素による加水分解)
 低粘度化処理として、酸化されたセルロース系原料にセルロース、ヘミセルロースの分解酵素であるセルラーゼやヘミセルラーゼ(例えば、キシラナーゼやマンナーゼ)を添加してセルロース鎖の加水分解を行なう場合、使用可能なセルラーゼやヘミセルラーゼとしては特に制限はなく、セルラーゼまたはヘミセルラーゼ生産性糸状菌、細菌、放線菌、担子菌由来のものや、遺伝子組み換え、細胞融合等の遺伝子操作により製造したものを、単独若しくは2種以上混合して用いることができる。また、市販品を用いることもできる。市販のセルラーゼとしては、例えば、ノボザイムズジャパン社製Novozyme 476、天野エンザイム社製セルラーゼAP3、ヤクルト薬品工業社製セルラーゼ オノズカRS、ジェネンコア協和社製オプチマーゼCX40L、合同酒精社製のGODO-TCL、ナガセケムテックス社製セルラーゼXL-522、洛東化成工業社製エンチロンCMなどを用いることができる。市販のヘミセルラーゼとしては、例えば、ノボザイムズジャパン社製パルプザイム、天野エンザイム社製ヘミセルラーゼアマノ90、新日本化学工業社製スミチームXを用いることができる。
 酵素の添加量は、絶乾したセルロース系原料に対して、0.001質量%以上であれば処理時間と効率の観点から所望の酵素反応を行なわせるのに十分であり、また、10質量%以下であればセルロースの過度の加水分解を抑制し、セルロースナノファイバーの収率の低下を防ぐことができるから好ましい。したがって、酵素の添加量は、絶乾したセルロース系原料に対して0.001~10質量%が好ましい。より好ましくは、0.01~5質量%、さらに好ましくは、0.05~2質量%である。なお、ここでいう「酵素の量」とは、酵素水溶液の乾燥固形分量のことをいう。
 酵素での加水分解処理は、pH4~10、好ましくは、pH5~9、さらに好ましくは、pH6~8で、温度40~70℃、好ましくは、45~65℃、さらに好ましくは、50~60℃で、0.5~24時間、好ましくは、1~10時間、さらに好ましくは、2~6時間程度行なうことが、酵素反応効率の観点から好ましい。
 低粘度化処理に酵素を用いた場合には、酵素処理したセルロースナノファイバー分散液に紫外線を照射し、及び/または加熱することにより、酵素を失活させてもよい。
 酵素処理により、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料に、酵素を添加して加水分解を行なうと、セルロース分子の強固なネットワークが崩れ、該原料の比表面積が増大し、セルロース系原料の短繊維化が促進され、セルロース系原料が低粘度化すると考えられる。
 (過酸化水素及びオゾンによる酸化分解)
 低粘度化処理として、酸化されたセルロース系原料を過酸化水素及びオゾンで酸化分解処理する場合、オゾンは、空気あるいは酸素を原料としてオゾン発生装置で公知の方法で発生させることができる。オゾンの添加量(質量)は、セルロース系原料の絶乾質量の0.1~3倍が好ましい。オゾンの添加量がセルロース系原料の絶乾質量の0.1倍以上であればセルロースの非晶部を十分に分解することができ、次工程での解繊・分散処理に要するエネルギーを大幅に削減することができる。また、3倍以下であればセルロースの過度の分解を抑制でき、セルロース系原料の収率の低下を防ぐことができる。オゾン添加量は、セルロース系原料の絶乾質量の0.3~2.5倍がより好ましく、0.5~1.5倍がさらに好ましい。
 また、過酸化水素の添加量(質量)は、セルロース系原料の絶乾質量の0.001~1.5倍が好ましい。セルロース系原料の添加量の0.001倍以上の量で過酸化水素を使用すると、オゾンと過酸化水素との相乗作用が発揮される。また、セルロース系原料の分解には、過酸化水素を、セルロース系原料の1.5倍以下程度の量で使用すれば十分であり、それより多い添加量はコストアップにつながると考えられる。過酸化水素の添加量は、セルロース系原料の絶乾質量の0.1~1.0倍がより好ましい。
 オゾン及び過酸化水素による酸化分解処理は、pH2~12、好ましくは、pH4~10、さらに好ましくは、pH6~8で、温度は10~90℃、好ましくは、20~70℃、さらに好ましくは30~50℃で、1~20時間、好ましくは、2~10時間、さらに好ましくは、3~6時間程度行なうことが、酸化分解反応効率の観点から好ましい。
 オゾン及び過酸化水素による処理を行なうための装置は、当業者に通常使用される装置を用いることができ、例えば、反応室、攪拌機、薬品注入装置、加熱器、及びpH電極を備えた通常の反応器を使用することができる。
 オゾン及び過酸化水素による処理後、水溶液中に残留するオゾンや過酸化水素は次工程の解繊・分散処理でも有効に作用し、セルロースナノファイバー分散液の低粘度化を一層促進することができる。
 過酸化水素及びオゾンにより、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料をオゾン及び過酸化水素で処理すると、オゾン及び過酸化水素から、酸化力に優れるヒドロキシラジカルが発生し、該原料中のセルロース鎖を効率良く酸化分解し、最終的にセルロース系原料を短繊維化し、セルロース系原料を低粘度化すると考えられる。
 (酸による加水分解)
 低粘度化処理において、酸化されたセルロース系原料に酸を添加してセルロース鎖の加水分解を行なう(酸加水分解処理)場合、使用する酸としては、硫酸、塩酸、硝酸、又はリン酸のような鉱酸を使用することが好ましい。
 酸加水分解処理の条件としては、酸がセルロースの非晶部に作用するような条件であれば適宜設定することができ、特に限定されない。例えば、酸の添加量としては、セルロース系原料の絶乾質量に対して0.01~0.5質量%が好ましく、0.1~0.5質量%がさらに好ましい。酸の添加量が0.01質量%以上であると、セルロースの加水分解が進行し、次工程でのセルロース系原料の解繊・分散効率が向上するから好ましく、0.5質量%以下であれば、セルロースの過度の加水分解を防ぐことができ、セルロースナノファイバーの収率の低下を防止することができるから好ましい。酸加水分解時の反応液のpHは、2.0~4.0、好ましくは2.0以上3.0未満である。また、酸加水分解処理は、温度70~120℃で、1~10時間行なうことが、酸加水分解効率の観点から好ましい。
 また、酸加水分解処理後は、水酸化ナトリウム等のアルカリを添加して中和することが、その後の解繊・分散処理の効率の観点から好ましい。
 酸加水分解処理により、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電化反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料に、酸を添加して加水分解を行なうと、セルロース分子の強固なネットワークが崩れ、該原料の比表面積が増大し、セルロース系原料の短繊維化が促進され、セルロース系原料が低粘度化すると考えられる。
 (セルロースナノファイバー)
 本発明により製造されるセルロースナノファイバーは、幅2~5nm、長さ1~5μm程度のセルロースのシングルミクロフィブリルである。本発明において、「ナノファイバー化する」とは、セルロース系原料を、幅2~5nm、長さ1~5μm程度のセルロースのシングルミクロフィブリルであるセルロースナノファイバーへと加工することを意味する。
 本発明により得られたセルロースナノファイバー分散液は、濃度1.0%(w/v)におけるB型粘度(60rpm、20℃)が、好ましくは2500mPa・s以下、さらに好ましくは1000mPa・s以下、さらに好ましくは500mPa・s以下、さらに好ましくは100mPa・s以下である。B型粘度の下限値は特に限定されないが、通常、1mPa・s以上、または5mPa・s以上程度である。また、濃度0.1%(w/v)における光透過率(660nm)が、好ましくは90%以上、さらに好ましくは95%以上である。本発明により製造されるセルロースナノファイバーは、流動性と透明性に優れ、さらに、バリヤー性および耐熱性にも優れるので、包装材料等の様々な用途に使用することが可能である。
 なお、本発明において、セルロースナノファイバー分散液のB型粘度は、当業者に慣用される通常のB型粘度計を用いて測定することができ、例えば、東機産業社のTV-10型粘度計を用いて、20℃及び60rpmの条件で測定することができる。
 また、セルロースナノファイバー分散液の光透過率は、紫外・可視分光光度計を用いて660nm光の透過率として測定することができる。
 また、本発明のセルロースナノファイバーのカルボキシル基量としては0.5mmol/g以上であるものが望ましい。セルロースナノファイバーのカルボキシル基量は、セルロースナノファイバーの0.5質量%スラリーを60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量〔mmol/gパルプ〕= a〔ml〕× 0.05/酸化パルプ質量〔g〕
 次に実施例に基づき、本発明をさらに詳細に説明する。
 [実施例1]
 共に広葉樹であるE.grandisとE.camaldulensisの混合材(配合比率50:50)由来の漂白済み未叩解クラフトパルプ5g(絶乾)を、TEMPO(Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。
 反応系に2M次亜塩素酸ナトリウム水溶液16ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することで酸化パルプを得た。
 1質量%の酸化パルプ水分散液2Lを20W低圧紫外線ランプで6時間処理した後、超高圧ホモジナイザー(20℃、140MPa)で10回処理したところ、透明なゲル状分散液が得られた。
 得られた1%(w/v)のセルロースナノファイバー分散液のB型粘度(60rpm、20℃)を、TV-10型粘度計(東機産業社)を用いて測定した。同様に、0.1%(w/v)のセルロースナノファイバー分散液の透明度(660nm光の透過率)を、UV-VIS分光光度計 UV-265FS(島津製作所社)を用いて測定した。解繊・分散処理に要した消費電力を(処理時における電力)×(処理時間)/(処理したサンプル量)により求めた。結果を表1に示す。
 [比較例1]
 針葉樹由来の漂白済みクラフトパルプを用いた以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表2に示す。
 [実施例2]
 紫外線処理をすることなく超高圧ホモジナイザーで処理した以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [比較例2]
 針葉樹由来の漂白済みクラフトパルプを用いた以外、実施例2と同様にしてナノファイバー分散液を得た。結果を表2に示す。
 [実施例3]
 2M次亜塩素酸ナトリウム水溶液の添加量を32mlとし、酸化反応時間を4時間とした以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [比較例3]
 針葉樹由来の漂白済みクラフトパルプを用いた以外、実施例3と同様にしてナノファイバー分散液を得た。結果を表2に示す。
 [実施例4]
 2M次亜塩素酸ナトリウム水溶液の添加量を32mlとし、酸化反応時間を4時間とした以外、実施例2と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [比較例4]
 針葉樹由来の漂白済みクラフトパルプを用いた以外、実施例4と同様にしてナノファイバー分散液を得た。結果を表2に示す。
 [実施例5]
 E.grandisとE.camaldulensisの混合材(配合比率50:50)由来の漂白済みサルファイトパルプを用いた以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [比較例5]
 針葉樹由来の漂白済みサルファイトパルプを用いた以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表2に示す。
 [実施例6]
 E.grandisとE.camaldulensisの混合材(配合比率50:50)由来の漂白済みサルファイトパルプを用いた以外、実施例2と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [比較例6]
 針葉樹由来の漂白済みサルファイトパルプを用いた以外、実施例2と同様にしてナノファイバー分散液を得た。結果を表2に示す。
 [実施例7]
 広葉樹としてA.mangiumuを用いた以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [実施例8]
 E.grandisとE.camaldulensisの混合材(配合比率50:50)由来の漂白済みサルファイトパルプを用い、解繊・分散処理時のスラリー濃度を2質量%とした以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [比較例7]
 針葉樹由来の漂白済みサルファイトパルプを用いた以外、実施例8と同様にしてナノファイバー分散液を得た。結果を表2に示す。
 [実施例9]
 E.grandisとE.camaldulensisの混合材(配合比率50:50)由来の漂白済みサルファイトパルプを用い、2質量%の酸化パルプスラリー2Lに、セルラーゼとしてノボザイムズジャパン社製Novozyme 476を酸化パルプに対して0.1質量%添加し、50℃にて超高圧ホモジナイザーで解繊・分散処理した後、20W低圧紫外線ランプで2時間、失活処理を行った以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [実施例10]
 105℃、30分間、酵素の失活処理を行った以外、実施例9と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [実施例11]
 広葉樹としてA.mangiumuを用い、3質量%の酸化パルプスラリーにセルラーゼを添加した以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [比較例8]
 針葉樹由来の漂白済みクラフトパルプを用いた以外、実施例11と同様にしてナノファイバー分散液を得た。結果を表2に示す。
 [実施例12]
 広葉樹としてE.globulusを用いた以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [実施例13]
 広葉樹としてB.mandshuricaを用いた以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [実施例14]
 紫外線ランプで4時間処理した以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [実施例15]
 広葉樹としてA.auriculaeformisを用いた以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
 [実施例16]
 広葉樹としてA.mearnsiiを用いた以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 広葉樹由来のセルロース系原料を解繊処理した実施例1では、針葉樹由来のセルロース系原料を解繊処理した比較例1に比べて、B型粘度が低いセルロースナノファイバーを、低い消費電力で得られることがわかる。したがって、本発明のセルロースナノファイバーの製造方法によれば、流動性および透明性が高いセルロースナノファイバー分散液を、高濃度で、かつ高い効率で得ることができる。
 また、実施例14(紫外線照射4時間)と比較例1(針葉樹を用い紫外線照射6時間)とで得られるセルロースナノファイバー分散液が同程度のB型粘度を示していることから、広葉樹由来のセルロース系原料を用いることで、紫外線照射による低粘度化処理時間を短縮できることがわかる。

Claims (10)

  1.  (A)(1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いて広葉樹由来のセルロース系原料を酸化すること、
     (B)前記(A)からのセルロース系原料の濃度1%(w/v)以上のスラリーを解繊・分散処理してナノファイバー化すること、
    を含む、セルロースナノファイバーの製造方法。
  2.  前記(A)からのセルロース系原料の濃度が、1~5%(w/v)である、請求項1に記載のセルロースナノファイバーの製造方法。
  3.  得られたセルロースナノファイバーの濃度1%(w/v)におけるB型粘度(60rpm、20℃)が、10~3000mPa・sである、請求項1または2に記載のセルロースナノファイバーの製造方法。
  4.  前記(A)及び(B)の間に、前記(A)からのセルロース系原料を低粘度化処理することをさらに含む、請求項1から3のいずれかに記載のセルロースナノファイバーの製造方法。
  5.  前記(B)解繊・分散処理を、セルラーゼ及び/またはヘミセルラーゼの存在下で行う、請求項1から4のいずれかに記載のセルロースナノファイバーの製造方法。
  6.  前記(B)の後に、紫外線を照射し、および/または加熱することにより、前記セルラーゼ及び/またはヘミセルラーゼを失活させることさらに含む、請求項5に記載のセルロースナノファイバーの製造方法。
  7.  前記(A)からのセルロース系原料のカルボキシル基量が、セルロース系原料の絶乾質量に対して1.4mmol/g以上である、請求項1から6のいずれかに記載のセルロースナノファイバーの製造方法。
  8.  前記(B)解繊・分散処理を、50MPa以上の圧力下で行う、請求項1から7のいずれかに記載のセルロースナノファイバーの製造方法。
  9.  (A)(1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いてアカシア属由来のセルロース系原料を酸化すること、
     (B)前記(A)からのセルロース系原料を解繊・分散処理してナノファイバー化すること、
    を含む、セルロースナノファイバーの製造方法。
  10.  (1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いてアカシア属由来のセルロース系原料を酸化すること、
    を含む、セルロースの酸化方法。
PCT/JP2011/057287 2010-03-26 2011-03-25 セルロースナノファイバーの製造方法 WO2011118748A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012507078A JPWO2011118748A1 (ja) 2010-03-26 2011-03-25 セルロースナノファイバーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010072310 2010-03-26
JP2010-072310 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118748A1 true WO2011118748A1 (ja) 2011-09-29

Family

ID=44673290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057287 WO2011118748A1 (ja) 2010-03-26 2011-03-25 セルロースナノファイバーの製造方法

Country Status (2)

Country Link
JP (1) JPWO2011118748A1 (ja)
WO (1) WO2011118748A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207133A (ja) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
WO2013047218A1 (ja) * 2011-09-30 2013-04-04 日本製紙株式会社 セルロースナノファイバーの製造方法
JP2013181167A (ja) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd 水性インク組成物およびそれを用いた筆記具
JP2014009414A (ja) * 2012-06-29 2014-01-20 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2014040530A (ja) * 2012-08-23 2014-03-06 Nippon Paper Industries Co Ltd 酸化セルロース及びセルロースナノファイバーの製造方法
JP2014040531A (ja) * 2012-08-23 2014-03-06 Nippon Paper Industries Co Ltd 酸化セルロース及びセルロースナノファイバーの製造方法
JP2014055323A (ja) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd 金属/セルロース複合化微細繊維、その製造方法、ならびに金属/セルロース複合化微細繊維を含む透明導電膜
JP2015157796A (ja) * 2014-01-21 2015-09-03 株式会社スギノマシン 乳化剤とその製造方法、及びオーガニック化粧料
WO2017078048A1 (ja) * 2015-11-02 2017-05-11 日本製紙株式会社 セルロースナノファイバーの製造方法
US9809655B2 (en) 2013-07-26 2017-11-07 Upm-Kymmene Corporation Method of modifying nanofibrillar cellulose composition
WO2018199191A1 (ja) * 2017-04-27 2018-11-01 日本製紙株式会社 マスターバッチ、ゴム組成物及びそれらの製造方法
WO2019021866A1 (ja) * 2017-07-25 2019-01-31 王子ホールディングス株式会社 繊維状セルロース含有組成物、その製造方法、及び膜
JP2019035095A (ja) * 2017-07-25 2019-03-07 王子ホールディングス株式会社 繊維状セルロース含有組成物、その製造方法、及び膜
WO2020085479A1 (ja) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
JPWO2019132001A1 (ja) * 2017-12-28 2020-12-10 日本製紙株式会社 セルロースナノファイバーを含有する紙
JPWO2021002361A1 (ja) * 2019-07-01 2021-10-21 日本製紙株式会社 セルロースナノファイバーを含有する紙
JP2021193198A (ja) * 2018-11-07 2021-12-23 王子ホールディングス株式会社 繊維状セルロース含有組成物、その製造方法、及び膜

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725772A (ja) * 1993-07-09 1995-01-27 Japan Atom Energy Res Inst 放射線処理による多糖類からの抗菌活性物質及びその製造方法
JPH0748401A (ja) * 1993-08-05 1995-02-21 Dai Ichi Kogyo Seiyaku Co Ltd カルボキシメチルセルロースナトリウムの改質方法
JP2004250592A (ja) * 2003-02-20 2004-09-09 Seikagaku Kogyo Co Ltd 紫外線照射による低分子化グリコサミノグリカンの製造方法
JP2008001728A (ja) * 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
WO2009020239A1 (ja) * 2007-08-07 2009-02-12 Kao Corporation ガスバリア用材料
WO2009069641A1 (ja) * 2007-11-26 2009-06-04 The University Of Tokyo セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液
WO2009084566A1 (ja) * 2007-12-28 2009-07-09 Nippon Paper Industries Co., Ltd. セルロースナノファイバーの製造方法、セルロースの酸化触媒及びセルロースの酸化方法
WO2009107795A1 (ja) * 2008-02-29 2009-09-03 国立大学法人東京大学 セルロースの改質方法、改質セルロース、セロウロン酸、セルロース微結晶
WO2009122982A1 (ja) * 2008-03-31 2009-10-08 日本製紙株式会社 製紙用添加剤及びそれを含有する紙
JP2009298972A (ja) * 2008-06-17 2009-12-24 Kao Corp セルロース繊維とその製造方法
JP2010235679A (ja) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725772A (ja) * 1993-07-09 1995-01-27 Japan Atom Energy Res Inst 放射線処理による多糖類からの抗菌活性物質及びその製造方法
JPH0748401A (ja) * 1993-08-05 1995-02-21 Dai Ichi Kogyo Seiyaku Co Ltd カルボキシメチルセルロースナトリウムの改質方法
JP2004250592A (ja) * 2003-02-20 2004-09-09 Seikagaku Kogyo Co Ltd 紫外線照射による低分子化グリコサミノグリカンの製造方法
JP2008001728A (ja) * 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
WO2009020239A1 (ja) * 2007-08-07 2009-02-12 Kao Corporation ガスバリア用材料
WO2009069641A1 (ja) * 2007-11-26 2009-06-04 The University Of Tokyo セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液
WO2009084566A1 (ja) * 2007-12-28 2009-07-09 Nippon Paper Industries Co., Ltd. セルロースナノファイバーの製造方法、セルロースの酸化触媒及びセルロースの酸化方法
WO2009107795A1 (ja) * 2008-02-29 2009-09-03 国立大学法人東京大学 セルロースの改質方法、改質セルロース、セロウロン酸、セルロース微結晶
WO2009122982A1 (ja) * 2008-03-31 2009-10-08 日本製紙株式会社 製紙用添加剤及びそれを含有する紙
JP2009298972A (ja) * 2008-06-17 2009-12-24 Kao Corp セルロース繊維とその製造方法
JP2010235679A (ja) * 2009-03-30 2010-10-21 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CELLULOSE NO JITEN, 10 November 2000 (2000-11-10), pages 19 - 23, 410 - 412 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207133A (ja) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
CN103827146A (zh) * 2011-09-30 2014-05-28 日本制纸株式会社 纤维素纳米纤维的制造方法
WO2013047218A1 (ja) * 2011-09-30 2013-04-04 日本製紙株式会社 セルロースナノファイバーの製造方法
JP5285197B1 (ja) * 2011-09-30 2013-09-11 日本製紙株式会社 セルロースナノファイバーの製造方法
CN103827146B (zh) * 2011-09-30 2016-09-07 日本制纸株式会社 纤维素纳米纤维的制造方法
US9365973B2 (en) 2011-09-30 2016-06-14 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
JP2013181167A (ja) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd 水性インク組成物およびそれを用いた筆記具
JP2014009414A (ja) * 2012-06-29 2014-01-20 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法
JP2014040531A (ja) * 2012-08-23 2014-03-06 Nippon Paper Industries Co Ltd 酸化セルロース及びセルロースナノファイバーの製造方法
JP2014040530A (ja) * 2012-08-23 2014-03-06 Nippon Paper Industries Co Ltd 酸化セルロース及びセルロースナノファイバーの製造方法
JP2014055323A (ja) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd 金属/セルロース複合化微細繊維、その製造方法、ならびに金属/セルロース複合化微細繊維を含む透明導電膜
US9809655B2 (en) 2013-07-26 2017-11-07 Upm-Kymmene Corporation Method of modifying nanofibrillar cellulose composition
JP2015157796A (ja) * 2014-01-21 2015-09-03 株式会社スギノマシン 乳化剤とその製造方法、及びオーガニック化粧料
JPWO2017078048A1 (ja) * 2015-11-02 2018-01-11 日本製紙株式会社 セルロースナノファイバーの製造方法
JP2018090949A (ja) * 2015-11-02 2018-06-14 日本製紙株式会社 セルロースナノファイバーの製造方法
WO2017078048A1 (ja) * 2015-11-02 2017-05-11 日本製紙株式会社 セルロースナノファイバーの製造方法
JP6473550B1 (ja) * 2017-04-27 2019-02-20 日本製紙株式会社 マスターバッチ、ゴム組成物及びそれらの製造方法
WO2018199191A1 (ja) * 2017-04-27 2018-11-01 日本製紙株式会社 マスターバッチ、ゴム組成物及びそれらの製造方法
JP2019035095A (ja) * 2017-07-25 2019-03-07 王子ホールディングス株式会社 繊維状セルロース含有組成物、その製造方法、及び膜
JP2019026651A (ja) * 2017-07-25 2019-02-21 王子ホールディングス株式会社 繊維状セルロース含有組成物、その製造方法、及び膜
WO2019021866A1 (ja) * 2017-07-25 2019-01-31 王子ホールディングス株式会社 繊維状セルロース含有組成物、その製造方法、及び膜
US11591481B2 (en) 2017-07-25 2023-02-28 Oji Holdings Corporation Cellulose fiber-containing composition, production method thereof, and film
JPWO2019132001A1 (ja) * 2017-12-28 2020-12-10 日本製紙株式会社 セルロースナノファイバーを含有する紙
WO2020085479A1 (ja) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
JPWO2020085479A1 (ja) * 2018-10-26 2021-10-07 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
JP7355028B2 (ja) 2018-10-26 2023-10-03 王子ホールディングス株式会社 微細繊維状セルロース含有組成物およびその製造方法
JP2021193198A (ja) * 2018-11-07 2021-12-23 王子ホールディングス株式会社 繊維状セルロース含有組成物、その製造方法、及び膜
JPWO2021002361A1 (ja) * 2019-07-01 2021-10-21 日本製紙株式会社 セルロースナノファイバーを含有する紙
JP7080404B2 (ja) 2019-07-01 2022-06-03 日本製紙株式会社 セルロースナノファイバーを含有する紙

Also Published As

Publication number Publication date
JPWO2011118748A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2011118748A1 (ja) セルロースナノファイバーの製造方法
JP5330882B2 (ja) セルロースゲル分散液の製造方法
JP5178931B2 (ja) セルロースナノファイバーの製造方法
JP5285197B1 (ja) セルロースナノファイバーの製造方法
WO2010116826A1 (ja) セルロースナノファイバーの製造方法
CA2831897C (en) Method for producing cellulose nanofibers
WO2011118746A1 (ja) セルロースナノファイバーの製造方法
JP5731253B2 (ja) セルロースナノファイバーの製造方法
JP5329279B2 (ja) セルロースナノファイバーの製造方法
JP5381338B2 (ja) セルロースナノファイバーの製造方法
WO2013137140A1 (ja) アニオン変性セルロースナノファイバー分散液の製造方法
JP2010235679A (ja) セルロースナノファイバーの製造方法
JP5179616B2 (ja) セルロースナノファイバーの製造方法
JP6877136B2 (ja) カルボキシル化セルロースナノファイバーの製造方法
JP6784709B2 (ja) セルロースナノファイバーの製造方法
JP5404131B2 (ja) セルロースナノファイバーの製造方法
JPWO2012132663A1 (ja) セルロースナノファイバーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507078

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759552

Country of ref document: EP

Kind code of ref document: A1