WO2011118405A1 - 二酸化炭素の分離装置及び二酸化炭素の分離方法 - Google Patents

二酸化炭素の分離装置及び二酸化炭素の分離方法 Download PDF

Info

Publication number
WO2011118405A1
WO2011118405A1 PCT/JP2011/055642 JP2011055642W WO2011118405A1 WO 2011118405 A1 WO2011118405 A1 WO 2011118405A1 JP 2011055642 W JP2011055642 W JP 2011055642W WO 2011118405 A1 WO2011118405 A1 WO 2011118405A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
hydrate
water
unit
Prior art date
Application number
PCT/JP2011/055642
Other languages
English (en)
French (fr)
Inventor
宮川 満
松尾 和芳
聡一郎 櫻井
正和 酒井
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to JP2011516922A priority Critical patent/JP5079141B2/ja
Priority to US13/637,085 priority patent/US20130095016A1/en
Priority to EP11759212.1A priority patent/EP2554241A4/en
Priority to CN2011800161883A priority patent/CN102946974A/zh
Priority to AU2011230823A priority patent/AU2011230823A1/en
Publication of WO2011118405A1 publication Critical patent/WO2011118405A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

【課題】被処理ガス中に含まれる二酸化炭素をハイドレート化して分離するにあたり、該被処理ガスから二酸化炭素を高効率に分離することができる二酸化炭素の分離装置及び方法を提供すること。 【解決手段】二酸化炭素を含む被処理ガスと水を原料として二酸化炭素のハイドレートを生成する二酸化炭素ハイドレート生成部と、前記二酸化炭素ハイドレート生成部をハイドレート化しないで通過した高圧ガスを水と気液接触させて該高圧ガス中の二酸化炭素を水に吸収させる二酸化炭素吸収部と、を備え、前記二酸化炭素吸収部内の水は、前記二酸化炭素ハイドレート生成部に前記原料水として送るように構成されていることを特徴とする二酸化炭素の分離装置。

Description

二酸化炭素の分離装置及び二酸化炭素の分離方法
 本発明は、燃焼排ガスやプロセスガス等の被処理ガス中に含まれる二酸化炭素の分離装置及び二酸化炭素の分離方法に関するものである。
 ガス化複合発電(IGCC)は、石炭をガス化させてガスタービンと蒸気タービンを組み合わせて発電を行い、石炭を高効率にエネルギー化できる発電方法として注目されている。前記ガス化複合発電では二酸化炭素(CO)と水素(H)を含むプロセスガスが生成され、前記プロセスガスから二酸化炭素を分離し、Hガスをガスタービンにおいて燃焼させて発電するとともに、前記ガスタービンにおいてHガスが燃焼する際に発生した蒸気を用いて蒸気タービンによる発電を行う。尚、前記プロセスガスの二酸化炭素と水素の混合比は、一般的に約4:6程度である。
 前記ガス化複合発電、石炭火力発電等の発電システムや、鉄鋼プラント、セメントプラント等における燃焼排ガスやプロセスガス中に含まれる二酸化炭素を分離する技術としては、化学吸収法、PSA法(物理吸着法)、膜分離法、物理吸収法などがあり、例えば特許文献1においては高圧水に二酸化炭素を溶解させる物理吸収法が用いられている。
 また、前記燃焼排ガスやプロセスガス等の被処理ガス中の二酸化炭素をハイドレート化することによって前記被処理ガスから二酸化炭素を分離するハイドレート分離法(例えば特許文献2を参照)は、水のみを利用して二酸化炭素の分離を行うことができるという点で最もクリーンな方法であり、注目されている。
 ガスハイドレートの生成条件はハイドレート化されるガス種によって異なるが、一般的に高圧、低温の条件である。二酸化炭素ハイドレートの場合、被処理ガス中の二酸化炭素濃度により異なるが、例えば圧力5MPa~20MPa、温度0℃~4℃において生成する。 
 一方、二酸化炭素は被処理ガス中に含まれる他のガス成分(水素、窒素など)に比べて水への溶解度が非常に高いことが知られており、その溶解度は圧力が高くなるほど、または温度が低くなるほど大きくなる傾向がある。
 以上により、反応器内を高圧低温条件にして前記被処理ガス中に含まれる二酸化炭素(ガス)のハイドレート化を行う場合、前記反応器においてハイドレートが生成すると同時に二酸化炭素の溶解が起こることで二酸化炭素分圧が低下し、ハイドレートの生成が止まってしまう。すなわち、二酸化炭素がガスのまま(液相に取り込まれず)反応器から流出するため、二酸化炭素の分離効率が低下してしまう。 
 他方、前記反応器内での二酸化炭素の溶解による二酸化炭素分圧の低下を解消するためには、当該反応器内の圧力を更に高くすれば良いが、この場合、ガスの圧縮動力の増加や反応器製造コストの増加を招き、その結果として二酸化炭素回収コストが増加するという問題がある。
特許第4088632号 特開2005-179629号公報
 上記問題に鑑み、本発明の目的は、被処理ガス中に含まれる二酸化炭素をハイドレート化して分離するにあたり、該被処理ガスから二酸化炭素を高効率に分離することができる二酸化炭素の分離装置及び方法を提供することにある。
 上記目的を達成するため、本発明の第1の態様に係る二酸化炭素の分離装置は、二酸化炭素を含む被処理ガスと水を原料として二酸化炭素のハイドレートを生成する二酸化炭素ハイドレート生成部と、前記二酸化炭素ハイドレート生成部をハイドレート化しないで通過した高圧ガスを水と気液接触させて該高圧ガス中の二酸化炭素を水に吸収させる二酸化炭素吸収部と、を備え、前記二酸化炭素吸収部内の水は、前記二酸化炭素ハイドレート生成部に前記原料水として送るように構成されていることを特徴とするものである。
 本態様によれば、ハイドレート化できないで二酸化炭素ハイドレート生成部を通過してしまった二酸化炭素を未だ多く含んでいる被処理ガスを、高圧状態のまま二酸化炭素吸収部内で水と気液接触させるので、被処理ガス中から更に二酸化炭素を水に吸収(溶解)させて除去することができる。 
 加えて、前記「二酸化炭素を吸収した水」を、原料として前記二酸化炭素ハイドレート生成部に送るように構成されている。よって、新たに二酸化炭素を含むガスが当該二酸化炭素ハイドレート生成部内に送り込まれた際に、原料の水には、既に二酸化炭素が、前記高圧状態での吸収工程を経て多く溶解している。従って、新たに送り込まれた被処理ガス中の二酸化炭素は、ほとんど水に溶けることができない。その結果、二酸化炭素ハイドレート生成部内における圧力の低下が防止され、以って二酸化炭素ハイドレートの生成効率の低下が防止される。 
 以上により、二酸化炭素を含む被処理ガス中からの二酸化炭素の高効率での分離を、当該二酸化炭素吸収部を設けることで容易に実現することができる。
 本発明の第2の態様に係る二酸化炭素の分離装置は、第1の態様において、前記二酸化炭素のハイドレートを受けて分解し、再ガス化するガスハイドレート分解部と、前記ガスハイドレート分解部での前記再ガス化で得られる水を受けて該水に溶解している二酸化炭素を放散させる二酸化炭素放散部と、を備え、前記二酸化炭素放散部を経た水は、前記二酸化炭素吸収部に送るように構成されていることを特徴とするものである。
 本態様によれば、二酸化炭素ハイドレートを分解して得られる水を、二酸化炭素放散部での二酸化炭素の放散処理を経て前記二酸化炭素吸収部に送るように構成されている。よって、二酸化炭素吸収部に送られる水は、前段の二酸化炭素放散部で二酸化炭素を放散しているため二酸化炭素の吸収能力が回復している。この水が二酸化炭素吸収部内に送られることで、該二酸化炭素吸収部内の水が希釈されるので、当該二酸化炭素吸収部への新たな水の追加を最小限にしてその二酸化炭素吸収能力を高い状態に維持しておくことが可能となる。 
 従って、二酸化炭素吸収部での二酸化炭素の吸収能力の維持を、当該二酸化炭素放散部を備えることで容易に、且つ低コストで実現することができる。
 本発明の第3の態様に係る二酸化炭素の分離装置は、第2の態様において、前記二酸化炭素ハイドレート生成部と前記ガスハイドレート分解部との間に設けられ、前記二酸化炭素ハイドレートのスラリーを脱水する脱水部を備え、前記脱水部での脱水により得られる水は、前記二酸化炭素ハイドレート生成部に送るように構成されていることを特徴とするものである。
 本態様における脱水部での脱水によって得られる水、すなわち、二酸化炭素ハイドレート生成部において生成した二酸化炭素ハイドレートのスラリーを脱水した水は、二酸化炭素を多く溶解している。また液温も二酸化炭素ハイドレート生成部内とほとんど変わらない。 
 従って、本態様によれば、二酸化炭素ハイドレート生成部内での二酸化炭素の水への溶解による圧力低下の問題を起すことなく、且つ原料水を冷却するためのエネルギーの増加を抑制しつつ、原料の水を効果的に供給することができる。
 本発明の第4の態様に係る二酸化炭素の分離装置は、第3の態様において、前記二酸化炭素吸収部および前記脱水部は、前記二酸化炭素ハイドレート生成部の圧力と同じ圧力に設定されていることを特徴とするものである。
 ここで、「同じ圧力」とは、前記二酸化炭素吸収部内の水を、或は前記脱水部を経た水を前記二酸化炭素ハイドレート生成部にポンプ等の加圧装置を介することなく送ることを可能にするというレベルで「同じ」であれば良く、厳密に同じである必要はない。 
 本態様によれば、二酸化炭素ハイドレート生成部内をハイドレート生成条件を満たす高圧にするためのエネルギーの増加を抑制しつつ、原料の水を効果的に供給することができる。
 本発明の第5の態様に係る二酸化炭素の分離装置は、第1の態様から第4の態様のいずれかにおいて、前記ガスハイドレート生成部の上流側に前記二酸化炭素を含むガスを所定の圧力にする圧縮装置を備え、前記圧縮装置の動力として、前記二酸化炭素吸収部を経た高圧ガスの圧力エネルギーを利用するように構成されていることを特徴とするものである。
 二酸化炭素ハイドレートが生成するための圧力条件は高圧であるので、前記被処理ガスは圧縮装置によって圧縮され、高圧にされてガスハイドレート生成部に供給される。 
 そして、前記ガスハイドレート生成部における二酸化炭素ハイドレート生成工程を経てハイドレート化しなかった高圧の被処理ガスは、該高圧のままガスハイドレート生成部から二酸化炭素吸収部に送られ、同じく高圧のまま二酸化炭素吸収部から放出されて回収される。
 本態様によれば、被処理ガス中の二酸化炭素をハイドレート化させて分離した後、二酸化炭素吸収部おいて更に二酸化炭素が分離された高圧ガスの圧力エネルギーを、前記圧縮装置の動力として利用することによって、該圧縮装置における消費エネルギーを低減させることができる。以って装置全体の運転コストを低減することができる。
 本発明の第6の態様に二酸化炭素の分離方法は、二酸化炭素を含む被処理ガスと水を原料として二酸化炭素のハイドレートを生成する二酸化炭素ハイドレート生成工程と、前記二酸化炭素ハイドレート生成工程においてハイドレート化しないで通過した高圧ガスを水と気液接触させて該高圧ガス中の二酸化炭素を水に吸収させる二酸化炭素吸収工程と、前記二酸化炭素吸収工程で生じる水を前記二酸化炭素ハイドレート生成工程に前記原料水として送る工程と、を有するものである。
 本態様によれば、第1の態様と同様の作用効果を奏し、二酸化炭素を含む被処理ガス中から二酸化炭素を高効率で分離することができる。
 本発明の第7の態様に二酸化炭素の分離方法は、第6の態様において、前記二酸化炭素のハイドレートを受けて分解し、再ガス化するガスハイドレート分解工程と、前記ガスハイドレート分解工程で得られる水を受けて該水に溶解している二酸化炭素を放散させる二酸化炭素放散工程と、前記二酸化炭素放散工程で得られる水を前記二酸化炭素吸収工程に送る工程と、を有することを特徴とするものである。
 本態様によれば、第2の態様と同様の作用効果を奏し、二酸化炭素の分離を行う工程全体において水を効率的に供給し、被処理ガスからの二酸化炭素の分離を高効率且つ低コストで行うことができる。
 本発明によれば、被処理ガス中に含まれる二酸化炭素をハイドレート化して分離する際にかかる消費エネルギーを低減させ、装置の運転コストを低減することができる。
実施例1に係る二酸化炭素の分離装置を示す概略構成図である。 実施例2に係る二酸化炭素の分離装置を示す概略構成図である。 実施例3に係る二酸化炭素の分離装置を示す概略構成図である。 実施例4に係る二酸化炭素の分離装置を示す概略構成図である。 実施例5に係る二酸化炭素の分離装置を示す概略構成図である。 比較例の試験に用いる二酸化炭素の分離装置を示す概略構成図である。 実施例5および比較例の試験結果を示す図である。
 以下、実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例に限られるものではない。図1は、実施例1に係る二酸化炭素の分離装置の一例を示す概略構成図である。
 [実施例1]
 本実施例に係る二酸化炭素の分離装置10は、二酸化炭素を含む被処理ガスGと水を原料として二酸化炭素のハイドレートを生成する二酸化炭素ハイドレート生成部11を備えている。 
 前記被処理ガスGは、圧縮装置2および冷却器3によって所定の圧力および温度(例えば、6~9MPa、1~2℃)にされて前記二酸化炭素ハイドレート生成部11の下部に設けられた被処理ガス導入口12から該二酸化炭素ハイドレート生成部11内に導入されるように構成されている。尚、被処理ガスGの圧力が高い場合には、前記圧縮装置2は省略することができる。また、前記被処理ガスG中に含まれる水分を除くため、前記二酸化炭素ハイドレート生成部11の前に被処理ガス脱水器1を設けることが好ましい。
 前記二酸化炭素ハイドレート生成部11内は、二酸化炭素ハイドレートが生成する所定の圧力および温度(例えば、6~9MPa、2~4℃)に設定されており、当該二酸化炭素ハイドレート生成部11内において、前記被処理ガスG中に含まれる二酸化炭素と水を原料として二酸化炭素ハイドレートを生成する二酸化炭素ハイドレート生成工程を行う。
 前記ガスハイドレート生成部11におけるガスハイドレート生成工程は、水中に微細な気泡を吹き込むバブリング法、ガス中に水を噴霧する噴霧法等の公知の方法によって行うことができる。特にバブリング法は気液接触効率が良く、目的のガスハイドレートを効率よく生成させることができるので好ましい。尚、バブリング法、噴霧法等によって得られる二酸化炭素ハイドレートはスラリーの状態で得られる。
 二酸化炭素ハイドレート生成部11において生成した二酸化炭素ハイドレートスラリーは、ライン15から系外に排出されるように構成されている。そして、前記二酸化炭素ハイドレート生成部11をハイドレート化しないで通過した高圧ガスGは、前記二酸化炭素ハイドレート生成部11の上部に設けられた高圧ガス排出口13から排出されて、ライン14を介して後述する二酸化炭素吸収部21に導入されるように構成されている。
 前記二酸化炭素吸収部21内にはライン26から水が供給されており、前記高圧ガスGは、前記二酸化炭素吸収部21の下部に設けられた高圧ガス導入口22から該二酸化炭素吸収部21内に導入されるように構成されている。当該二酸化炭素吸収部21において前記高圧ガスGと水とを気液接触させることによって、該高圧ガスG中の二酸化炭素を水に吸収させることができる(二酸化炭素吸収工程)。
 尚、前記二酸化炭素吸収部21内は、前記二酸化炭素ハイドレート生成部11と同じ圧力および温度に設定されていることが好ましい。前記「同じ圧力」とは、前記二酸化炭素吸収部21内の水を前記二酸化炭素ハイドレート生成部11にポンプ等の加圧装置を介することなく送ることを可能にするというレベルで「同じ」であれば良く、厳密に同じである必要はない。このことによって、二酸化炭素ハイドレート生成部11内をハイドレート生成条件を満たす高圧にするためのエネルギーの増加を抑制しつつ、原料の水を効果的に供給することができる。
 二酸化炭素吸収部21内において高圧ガスG中の二酸化炭素を吸収した水は、ライン24を介して前記二酸化炭素ハイドレート生成部11に前記原料水として送るように構成されている。すなわち、前記二酸化炭素吸収工程で生じる水は、前記二酸化炭素ハイドレート生成工程に前記原料水として送られる。また、高圧ガスG中から更に二酸化炭素が除去された高圧ガスGは、前記二酸化炭素吸収部21の上部に設けられた高圧ガス排出口23から排出されて回収される。
 二酸化炭素ハイドレート生成時には、二酸化炭素1molあたり65.2kJの生成熱が発生する。該生成熱により二酸化炭素ハイドレート生成部11内の温度が上昇することを防ぎ、当該二酸化炭素ハイドレート生成部11内を所定の温度(例えば2~4℃)に保持するため、前記ライン24に冷却器25を設け、前記二酸化炭素ハイドレート生成部11内の温度より低い温度に冷却された水(例えば1~2℃)を当該二酸化炭素ハイドレート生成部11に戻すように構成されていることが望ましい。 
 また、該二酸化炭素ハイドレート生成部11の水を抜き出して循環させるライン17を設け、前記抜き出した水を例えば冷却器18により約1~2℃に冷却するように構成されていることが望ましい。
 次に、本実施例に係る二酸化炭素の分離装置10および該二酸化炭素の分離装置10を用いた二酸化炭素の分離方法についての作用効果を説明する。 
 本実施例に係る二酸化炭素の分離装置10によれば、ハイドレート化できないで二酸化炭素ハイドレート生成部11を通過してしまった二酸化炭素を未だ多く含んでいる被処理ガス、すなわち高圧ガスGを、高圧状態のまま二酸化炭素吸収部21内で水と気液接触させるので、前記高圧ガスG中から更に二酸化炭素を水に吸収(溶解)させて除去することができる。
 加えて、前記「二酸化炭素を吸収した水」を、原料として前記二酸化炭素ハイドレート生成部11に送るように構成されている。よって、新たに二酸化炭素を含むガス(被処理ガスG)が当該二酸化炭素ハイドレート生成部11内に送り込まれた際に、原料の水には、既に二酸化炭素が、前記高圧状態での吸収工程を経て多く溶解している。従って、前記二酸化炭素ハイドレート生成部11に新たに送り込まれた被処理ガスG中の二酸化炭素は、ほとんど原料水に溶けることができない。その結果、二酸化炭素ハイドレート生成部11内における圧力の低下が防止され、以って二酸化炭素ハイドレートの生成効率の低下が防止される。 
 以上により、二酸化炭素を含む被処理ガスG中からの二酸化炭素の高効率での分離を、当該二酸化炭素吸収部21を設けることで容易に実現することができる。
 [実施例2]
 次に、本発明に係る二酸化炭素の分離装置の他の例について説明する。図2は、実施例2に係る二酸化炭素の分離装置20を示す概略構成図である。尚、実施例1と同様の部材には同じ符号を付し、その説明は省略する。 
 本実施例に係る二酸化炭素の分離装置20は、前記実施例1と同様、二酸化炭素ハイドレート生成部11と二酸化炭素吸収部21とを備え、更にその下流側に、ガスハイドレート分解部31と、二酸化炭素放散部41と、を備えている。
 前記二酸化炭素ハイドレート生成部11において生成した二酸化炭素ハイドレートスラリーは、ライン16を介して前記ガスハイドレート分解部31に導入されるように構成されている。該ガスハイドレート分解部31では、前記二酸化炭素ハイドレート生成部11において生成した二酸化炭素ハイドレートを分解し、再ガス化するガスハイドレート分解工程が行われる。二酸化炭素ハイドレートの再ガス化は、ガスハイドレート分解部31内を所定圧力及び所定温度にすることによって行うことができる。
 例えば、ガスハイドレート分解部31内の圧力を約4MPaにする場合、該ガスハイドレート分解部31内の温度は約10℃に設定される。前記ガスハイドレート分解部31は加温器36を備え、当該加温器36によって熱を供給するように構成されている。 
 尚、二酸化炭素ハイドレートの分解に必要な分解熱は二酸化炭素1molあたり65.2kJであるので、加温器36としては、例えば10~15℃程度の海水や、化学プラントなどから発生する低温排熱等を循環させる構成のものを用いることができる。
 二酸化炭素ハイドレートを分解すると、再ガス化した二酸化炭素とハイドレートが分解した水が生成する。前記水は、前記ガスハイドレート分解部31の下部に設けられた分解水排出口32から排出され、後述する二酸化炭素放散部41へと送られる。 
 また、前記再ガス化した二酸化炭素はガス排出口33から排出される。前記ガス排出口33から排出された二酸化炭素は、脱湿器34で脱湿された後に圧縮器35によりパイプライン輸送に必要な圧力(例えば10~15MPa)まで昇圧される。
 次に、前記二酸化炭素放散部41について説明する。前記二酸化炭素放散部41は、前記ガスハイドレート分解部31での前記再ガス化で得られる水を受けて該水に溶解している二酸化炭素を放散させる二酸化炭素放散工程を行うものである。前記二酸化炭素放散部41は加温器46を備え、二酸化炭素放散部41内を所定圧力および所定温度にすることで、前記再ガス化で得られる水中に溶解している二酸化炭素を放散させることができる。
 例えば、ガ二酸化炭素放散部41内の圧力を0.2~0.5MPaにする場合、該二酸化炭素放散部41内の温度は約10℃に設定される。 
 尚、水中に含まれる二酸化炭素を放散させる際には二酸化炭素1molあたり約20kJの放散熱が必要であるので、前記加温器46として、例えば10~15℃程度の海水や、化学プラントなどから発生する低温排熱等を循環させる構成のものを用いることができる。
 そして、前記二酸化炭素放散部41を経た水、すなわち二酸化炭素を放散させて除いた水は、該二酸化炭素放散部41の下部に設けられた水排出口42から排出され、ライン47を介して前記二酸化炭素吸収部21に送られるように構成されている。ライン47は、前記二酸化炭素吸収部21に新たな水を供給するライン26と合一し、共通の冷却器27により冷却して前記二酸化炭素吸収部21に送るように構成することが望ましい。 
 また、前記水から放散した二酸化炭素はガス排出口43から排出される。前記ガス排出口43から排出された二酸化炭素は、脱湿器44で脱湿された後に圧縮器45によりパイプライン輸送に必要な圧力(例えば10~15MPa)まで昇圧される。 
 尚、図2において、符号37および符号38はバルブ、符号48はポンプを示す。また、各構成部を繋ぐ他のラインにも適宜バルブまたはポンプを設けることができる(図においては省略されている)。
 本実施例によれば、二酸化炭素ハイドレートを分解して得られる水を、二酸化炭素放散部41での二酸化炭素の放散処理を経て前記二酸化炭素吸収部21に送るように構成されている。よって、二酸化炭素吸収部21に送られる水は、前段の二酸化炭素放散部41で二酸化炭素を放散しているため二酸化炭素の吸収能力が回復している。この水が二酸化炭素吸収部21内に送られることで、該二酸化炭素吸収部21内の水が希釈されるので、当該二酸化炭素吸収部21への新たな水の追加を最小限にしてその二酸化炭素吸収能力を高い状態に維持しておくことが可能となる。 
 従って、二酸化炭素吸収部での二酸化炭素の吸収能力の維持を、当該二酸化炭素放散部41を備えることで容易に、且つ低コストで実現することができる。
 [実施例3]
 次に、本発明に係る二酸化炭素の分離装置の更に他の例について説明する。図3は、実施例3に係る二酸化炭素の分離装置30を示す概略構成図である。尚、実施例2と同様の部材には同じ符号を付し、その説明は省略する。 
 本実施例に係る二酸化炭素の分離装置30は、前記実施例2と同様、二酸化炭素ハイドレート生成部11と、二酸化炭素吸収部21と、ガスハイドレート分解部31と、二酸化炭素放散部41と、を備えており、更に、前記二酸化炭素ハイドレート生成部11と前記ガスハイドレート分解部31との間に脱水部51を備えている。
 二酸化炭素ハイドレート生成部11において被処理ガスG中の二酸化炭素はハイドレート化され、二酸化炭素ハイドレートスラリーを形成する。被処理ガスG中の二酸化炭素を効率よく分離するためには、前記二酸化炭素ハイドレートスラリーの水分量は50~95wt%であることが好ましい。 
 前記ガスハイドレートスラリーは、前記二酸化炭素ハイドレート生成部11からライン16によって前記脱水部51に送られて脱水工程が行われる。前記脱水工程においては、前記50~95wt%の水分量の二酸化炭素ハイドレートスラリーが、例えば25~60wt%程度の水分量にされる程度の脱水が行われることが好ましい。脱水された二酸化炭素ハイドレートは、ライン54を介してガスハイドレート分解部31に送られる。
 一方、前記脱水部51において除かれた水は、該脱水部51の下部に設けられた水排出口52から排出され、ライン53によって二酸化炭素ハイドレート生成部11に送るように構成されている。その際、前記ライン53とライン24(二酸化炭素吸収部21内において高圧ガスG中の二酸化炭素を吸収した水を二酸化炭素ハイドレート生成部11に送るライン)とを合一し、冷却器25を用いて前記二酸化炭素ハイドレート生成部11内の温度よりも低い温度に冷却された水を、該二酸化炭素ハイドレート生成部11に戻すように構成されていることが望ましい。
 前記脱水部51での脱水によって得られる水、すなわち、二酸化炭素ハイドレート生成部11において生成した二酸化炭素ハイドレートのスラリーを脱水した水は、二酸化炭素を多く溶解している。また液温も二酸化炭素ハイドレート生成部11内とほとんど変わらない。従って、二酸化炭素ハイドレート生成部11内での二酸化炭素の水への溶解による圧力低下の問題を起すことなく、且つ原料水を冷却するためのエネルギーの増加を抑制しつつ、原料の水を効果的に供給することができる。
 また、前記脱水部51内の圧力は、前記二酸化炭素吸収部21と同様、前記二酸化炭素ハイドレート生成部11の圧力と同じ圧力に設定されていることが望ましい。このことによって、二酸化炭素ハイドレート生成部11内をハイドレート生成条件を満たす高圧にするためのエネルギーの増加を抑制しつつ、原料の水を効果的に供給することができる。
 ここで、脱水部51における脱水能力を高めれば、前記二酸化炭素ハイドレートスラリーから除かれる水(約1~2℃)の量が増え、前記ガスハイドレート分解部31における二酸化炭素ハイドレートの分解によって生じる水(約10℃前後)は少なくなるので、二酸化炭素ハイドレート生成部11へ循環する水の冷却に必要なエネルギー(冷却器25に必要なエネルギー)を低減することができる。加えて、再ガス化に必要な熱エネルギー(加温部36に必要なエネルギー)も、スラリー濃度が高くなると減少する。 
 一方、前記脱水部51における脱水能力を高めると、ガスハイドレート分解部31に送られる二酸化炭素ハイドレート中に含まれる水の量が減少するので、二酸化炭素放散部41を経て二酸化炭素吸収部21に循環される水量も減少する。
 したがって、前記脱水部51における脱水能力は、前記エネルギーコストの削減効果(二酸化炭素ハイドレート生成部11へ循環する水の冷却に必要なエネルギーや再ガス化に必要な熱エネルギーなど)と、前記二酸化炭素放散部41から二酸化炭素吸収部21に循環される水量を確保して、前記二酸化炭素吸収部21に新たに供給する水量を低減することによるコスト削減効果とのバランスを考慮して設定されることが望ましい。
 [実施例4]
 次に、本発明に係る二酸化炭素の分離装置の更に他の例について説明する。図4は、実施例4に係る二酸化炭素の分離装置40を示す概略構成図である。尚、実施例3と同様の部材には同じ符号を付し、その説明は省略する。 
 前記二酸化炭素の分離装置40において被処理ガスGは、実施例1~実施例3と同様、二酸化炭素ハイドレート生成部11の上流側に設けられた圧縮装置2によって所定の圧力(例えば、6~9MPa)にされて前記二酸化炭素ハイドレート生成部11内に導入されるように構成されている。 
 また、前記二酸化炭素吸収部21の高圧ガス排出口23からは、二酸化炭素ハイドレート生成部11を通過した高圧ガスG中から更に二酸化炭素が除去された高圧ガスGが排出される。
 本実施例では、前記二酸化炭素吸収部21から排出される前記高圧ガスGの圧力エネルギーを、前記圧縮装置2の動力として利用するように構成されている。 
 例えば、図4に示されるように、前記圧縮装置2の動力軸に公知のガスエキスパンダー(軸流タービン)等の動力回収部61を設け、該動力回収部61に、前記二酸化炭素吸収部21の高圧ガス排出口23から排出される前記高圧ガスGをライン28によって送り、該圧縮装置2の補助動力として該高圧ガスGの圧力エネルギーを利用することができる。 
 また、本実施例のように前記ガスエキスパンダー等の動力回収部61を圧縮装置2の動力軸に直結する構成の他、前記ガスエキスパンダー等を発電機に繋げて発電し、その電力をモーター駆動の圧縮装置2に用いることもできる。
 本実施例によれば、二酸化炭素ハイドレート生成部11において被処理ガスG中の二酸化炭素をハイドレート化させて分離した後、二酸化炭素吸収部21おいて更に二酸化炭素を分離した高圧ガスGの圧力エネルギーを、前記圧縮装置2の動力として利用することによって、該圧縮装置2における消費エネルギーを低減させることができる。以って二酸化炭素の分離装置全体の運転コストを低減することができる。
 [実施例5]
 次に、本発明に係る二酸化炭素の分離装置による二酸化炭素分離率(以下、CO分離率と称する場合がある)を確認する試験を行った。試験に用いる二酸化炭素の分離装置を図5および図6に示す。図5は実施例5に係る二酸化炭素の分離装置を示す概略構成図であり、図6は比較例として用いる、二酸化炭素吸収部を有しない二酸化炭素の分離装置を示す概略構成図である。
 図5に示す二酸化炭素の分離装置70は、二酸化炭素ハイドレート生成槽74aおよび二酸化炭素ハイドレート生成槽74bを備え、二段の反応器によって二酸化炭素ハイドレートを生成するように構成されている。上流側の反応器である二酸化炭素ハイドレート生成槽74aには、混合ガスボンベ71から被処理ガスGが導入される。符号72は圧縮機である。
 また、原料水Wは原料水タンク73から二酸化炭素吸収槽79へ供給され、気液分離部80においてガス成分Gと分離された水Wが、二酸化炭素ハイドレート生成槽74aに導入されるように構成されている。
 符号75は気液分離部であり、二酸化炭素ハイドレート生成槽74aおよび二酸化炭素ハイドレート生成槽74bにおける反応を行った後、二酸化炭素ハイドレートスラリーSとガスGとを分離できるように構成されている。
 前記ガスGは前記二酸化炭素吸収槽79へ導入され、ガスG中に残っているCOを原料水Wに吸収させた後に、ガスGとして排出されるように構成されている。
 また、気液分離部75において分離された二酸化炭素ハイドレートスラリーSはハイドレート分解槽76に送られ、前述したガスハイドレート分解工程が行われる。ガスハイドレート分解工程後、気液分離器77によって前記分解工程によって生じたCO(ガスG)と水Wとに分離され、前記水Wは二酸化炭素放散部としての回収水タンク78に送られる。回収水タンク78では水Wに溶解したCO(ガスG)を放散させる二酸化炭素放散工程を行う。
 比較例に用いる二酸化炭素の分離装置90(図6)は、図5に記載の二酸化炭素の分離装置70における、二酸化炭素吸収槽79および気液分離部80を有しない。原料水Wは、原料水タンク73から直接二酸化炭素ハイドレート生成槽74aに導入されるように構成されている。 
 尚、前記二酸化炭素の分離装置70および二酸化炭素の分離装置90において、前記水Wの循環利用は実施していない。
 以上のような実施例5に係る二酸化炭素の分離装置70と、比較例に係る二酸化炭素の分離装置90を用い、混合ガスからのCO分離率を測定する試験を行った。
 <試験方法>
 実施例5に係る二酸化炭素の分離装置70(図5)を用いた試験は、次のように行った。水素と二酸化炭素の混合ガスである被処理ガスG(60%H+40%CO)を所定の流量(105~420NL/h、気液比により変化)に調節し、二酸化炭素ハイドレート生成槽74aにおける気液比を25、50、および100のそれぞれに設定した場合について試験を行った。二酸化炭素ハイドレート生成槽74aおよび二酸化炭素ハイドレート生成槽74bは、圧力約6.0MPa、温度1~3℃に設定してハイドレートを生成させた。
 原料水Wは4.2L/hに調節し、二酸化炭素吸収槽79、気液分離部80を経て、二酸化炭素ハイドレート生成槽74aへ供給した。尚、二酸化炭素ハイドレート生成槽74aおよび二酸化炭素ハイドレート生成槽74bへの液滞留時間は10分である。
 ハイドレート分解槽76は、圧力約0.5MPa、温度約15℃の条件にしてガスハイドレート分解工程を行った。回収水タンク78における二酸化炭素放散工程は、温度は約15℃のまま、圧力を常圧にすることによって行った。前記ガスG、ガスG、およびガスGについて、湿式ガスメーターを用いた流量の測定およびガスクロマトグラフィーを用いたガス組成の分析を行った。
 比較例は、二酸化炭素の分離装置90(図6)を用い、前記実施例5と同じ組成の被処理ガスGを所定の流量(105~420NL/h、気液比により変化)に調節し、該実施例5と同様の圧力、温度条件下で原料水Wと反応させた。二酸化炭素ハイドレート生成槽74aおよび二酸化炭素ハイドレート生成槽74bへの液滞留時間も実施例5と同様、10分に設定した。尚、比較例は、二酸化炭素ハイドレート生成槽74aにおける気液比を25、48、50、および100のそれぞれに設定した場合について試験を行った。 
 原料水Wは、4.2L/hに調節し、二酸化炭素ハイドレート生成槽74aへ直接供給した。ガスハイドレート分解工程および二酸化炭素放散工程を行った後、比較例については、ガスG、ガスG、およびガスGについて、湿式ガスメーターを用いた流量の測定およびガスクロマトグラフィーを用いたガス組成の分析を行った。
 <試験結果>
 実施例5および比較例の試験結果を図7および表1に示す。図7において、横軸は気液比[=被処理ガスG流量/原料水W流量]、縦軸はCO分離率(%)[=(被処理ガスG中CO流量-処理後のガス成分中CO流量)/被処理ガスG中CO流量×100]を示す。尚、前記処理後のガス成分は、実施例5においてはガスGであり、比較例ではガスGである。
 図7および表1に示されるように、いずれの気液比においても実施例5の方が比較例に比して高いCO分離率を示し、平均して約15%CO分離率が向上する結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 本発明は、前記ガス化複合発電(IGCC)、石炭火力発電等の発電システムや、鉄鋼プラント、セメントプラント等における燃焼排ガスやプロセスガス中に含まれる二酸化炭素の分離装置及び分離方法に利用可能である。

Claims (7)

  1.  二酸化炭素を含む被処理ガスと水を原料として二酸化炭素のハイドレートを生成する二酸化炭素ハイドレート生成部と、
     前記二酸化炭素ハイドレート生成部をハイドレート化しないで通過した高圧ガスを水と気液接触させて該高圧ガス中の二酸化炭素を水に吸収させる二酸化炭素吸収部と、を備え、
     前記二酸化炭素吸収部内の水は、前記二酸化炭素ハイドレート生成部に前記原料水として送るように構成されていることを特徴とする二酸化炭素の分離装置。
  2.  請求項1に記載された二酸化炭素の分離装置において、
     前記二酸化炭素のハイドレートを受けて分解し、再ガス化するガスハイドレート分解部と、
     前記ガスハイドレート分解部での前記再ガス化で得られる水を受けて該水に溶解している二酸化炭素を放散させる二酸化炭素放散部と、を備え、
     前記二酸化炭素放散部を経た水は、前記二酸化炭素吸収部に送るように構成されていることを特徴とする二酸化炭素の分離装置。
  3.  請求項2に記載された二酸化炭素の分離装置において、
     前記二酸化炭素ハイドレート生成部と前記ガスハイドレート分解部との間に設けられ、前記二酸化炭素ハイドレートのスラリーを脱水する脱水部を備え、
     前記脱水部での脱水により得られる水は、前記二酸化炭素ハイドレート生成部に送るように構成されていることを特徴とする二酸化炭素の分離装置。
  4.  請求項3に記載された二酸化炭素の分離装置において、
     前記二酸化炭素吸収部および前記脱水部は、前記二酸化炭素ハイドレート生成部の圧力と同じ圧力に設定されていることを特徴とする二酸化炭素の分離装置。
  5.  請求項1から請求項4のいずれか一項に記載された二酸化炭素の分離装置において、
     前記ガスハイドレート生成部の上流側に前記二酸化炭素を含むガスを所定の圧力にする圧縮装置を備え、
     前記圧縮装置の動力として、前記二酸化炭素吸収部を経た高圧ガスの圧力エネルギーを利用するように構成されていることを特徴とする二酸化炭素の分離装置。
  6.  二酸化炭素を含む被処理ガスと水を原料として二酸化炭素のハイドレートを生成する二酸化炭素ハイドレート生成工程と、
     前記二酸化炭素ハイドレート生成工程においてハイドレート化しないで通過した高圧ガスを水と気液接触させて該高圧ガス中の二酸化炭素を水に吸収させる二酸化炭素吸収工程と、
     前記二酸化炭素吸収工程で生じる水を前記二酸化炭素ハイドレート生成工程に前記原料水として送る工程と、を有する二酸化炭素の分離方法。
  7.  請求項6に記載された二酸化炭素の分離方法において、
     前記二酸化炭素のハイドレートを受けて分解し、再ガス化するガスハイドレート分解工程と、
     前記ガスハイドレート分解工程で得られる水を受けて該水に溶解している二酸化炭素を放散させる二酸化炭素放散工程と、
     前記二酸化炭素放散工程で得られる水を前記二酸化炭素吸収工程に送る工程と、を有することを特徴とする二酸化炭素の分離方法。
PCT/JP2011/055642 2010-03-26 2011-03-10 二酸化炭素の分離装置及び二酸化炭素の分離方法 WO2011118405A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011516922A JP5079141B2 (ja) 2010-03-26 2011-03-10 二酸化炭素の分離装置及び二酸化炭素の分離方法
US13/637,085 US20130095016A1 (en) 2010-03-26 2011-03-10 Carbon Dioxide Separation Unit and Carbon Dioxide Separation Method
EP11759212.1A EP2554241A4 (en) 2010-03-26 2011-03-10 CARBON DIOXIDE SEPARATION UNIT AND CARBON DIOXIDE SEPARATION METHOD
CN2011800161883A CN102946974A (zh) 2010-03-26 2011-03-10 二氧化碳的分离装置及二氧化碳的分离方法
AU2011230823A AU2011230823A1 (en) 2010-03-26 2011-03-10 Carbon dioxide separation unit and carbon dioxide separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010072995 2010-03-26
JP2010-072995 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118405A1 true WO2011118405A1 (ja) 2011-09-29

Family

ID=44672966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055642 WO2011118405A1 (ja) 2010-03-26 2011-03-10 二酸化炭素の分離装置及び二酸化炭素の分離方法

Country Status (6)

Country Link
US (1) US20130095016A1 (ja)
EP (1) EP2554241A4 (ja)
JP (1) JP5079141B2 (ja)
CN (1) CN102946974A (ja)
AU (1) AU2011230823A1 (ja)
WO (1) WO2011118405A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480275A (zh) * 2013-09-17 2014-01-01 常州大学 一种脱硫液再生后的酸气提浓、除盐及分离装置及方法
JP2014188405A (ja) * 2013-03-26 2014-10-06 Mitsui Eng & Shipbuild Co Ltd 二酸化炭素分離装置及び二酸化炭素分離方法
CN104105540A (zh) * 2012-02-02 2014-10-15 奥加诺株式会社 流体二氧化碳的供给装置及供给方法
JP2015051404A (ja) * 2013-09-09 2015-03-19 株式会社Ihi 二酸化炭素の回収方法及び回収装置
CN105148731A (zh) * 2015-09-02 2015-12-16 杰瑞石油天然气工程有限公司 一种mdea再生酸气脱硫循环再生工艺
JP2016199427A (ja) * 2015-04-10 2016-12-01 Ihiプラント建設株式会社 オゾンハイドレート製造装置、および、オゾンハイドレート製造方法
JP2016204216A (ja) * 2015-04-24 2016-12-08 株式会社Ihi ガスハイドレート製造装置、および、ガスハイドレート製造方法
JP2016222519A (ja) * 2015-06-03 2016-12-28 株式会社Ihi ガスハイドレート製造装置
JP2017024953A (ja) * 2015-07-24 2017-02-02 株式会社Ihi オゾンハイドレート製造装置、および、オゾンハイドレート製造方法
KR102640411B1 (ko) * 2023-11-20 2024-02-23 고등기술연구원연구조합 고순도 이산화탄소 제조설비 및 제조방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739486B2 (ja) * 2013-07-26 2015-06-24 株式会社神戸製鋼所 分離方法及び分離装置
CN104944372A (zh) * 2015-06-11 2015-09-30 威海恒邦化工有限公司 二氧化碳排空气中氮、氢和二氧化碳气体分离回收装置及方法
CN105080323A (zh) * 2015-08-12 2015-11-25 辽宁石油化工大学 一种基于水合物法的二氧化碳捕集方法与装置
CN106955569B (zh) * 2017-04-18 2019-10-01 长沙紫宸科技开发有限公司 一种水合物法连续捕集水泥窑烟气中co2的方法
EP3781296A4 (en) * 2018-04-17 2021-05-26 Carbon Engineering Ltd. HYDRATION OF GAS FLOWS
CN108795526A (zh) * 2018-07-02 2018-11-13 江阴澄云机械有限公司 一种二氧化碳气体分离装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342473A (ja) * 2000-03-30 2001-12-14 Mitsubishi Heavy Ind Ltd ガスハイドレート製造装置およびガスハイドレート脱水装置
JP2002038171A (ja) * 2000-07-19 2002-02-06 Mitsubishi Heavy Ind Ltd ハイドレートの製造方法および製造装置、天然ガスの貯蔵方法
JP2003041273A (ja) * 2001-07-27 2003-02-13 Mitsubishi Heavy Ind Ltd 天然ガスハイドレートの生成方法および生成システム
JP2003080056A (ja) * 2001-09-07 2003-03-18 Mitsubishi Heavy Ind Ltd ガスハイドレート生成容器、ガスハイドレート製造装置及び製造方法
JP2005179629A (ja) 2003-11-26 2005-07-07 Mitsui Eng & Shipbuild Co Ltd 混合ガスの分離方法、混合ガス分離装置、および混合ガス処理システム
WO2008041299A1 (fr) * 2006-09-29 2008-04-10 National Institute Of Advanced Industrial Science And Technology Procédé de récupération de dioxyde de carbone à partir de gaz d'échappement et appareil associé
JP4088632B2 (ja) 2005-03-25 2008-05-21 神戸市 ガス精製方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700311A (en) * 1996-04-30 1997-12-23 Spencer; Dwain F. Methods of selectively separating CO2 from a multicomponent gaseous stream
US6106595A (en) * 1996-04-30 2000-08-22 Spencer; Dwain F. Methods of selectively separating CO2 from a multicomponent gaseous stream
US20080072495A1 (en) * 1999-12-30 2008-03-27 Waycuilis John J Hydrate formation for gas separation or transport
JP2001342476A (ja) * 2000-03-30 2001-12-14 Kawasaki Steel Corp ごみ炭化物の製造方法および製造設備
US6946017B2 (en) * 2003-12-04 2005-09-20 Gas Technology Institute Process for separating carbon dioxide and methane
JP4998772B2 (ja) * 2006-06-14 2012-08-15 独立行政法人産業技術総合研究所 ハイドレートの製造装置
US20100021361A1 (en) * 2008-07-23 2010-01-28 Spencer Dwain F Methods and systems for selectively separating co2 from a multi-component gaseous stream

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342473A (ja) * 2000-03-30 2001-12-14 Mitsubishi Heavy Ind Ltd ガスハイドレート製造装置およびガスハイドレート脱水装置
JP2002038171A (ja) * 2000-07-19 2002-02-06 Mitsubishi Heavy Ind Ltd ハイドレートの製造方法および製造装置、天然ガスの貯蔵方法
JP2003041273A (ja) * 2001-07-27 2003-02-13 Mitsubishi Heavy Ind Ltd 天然ガスハイドレートの生成方法および生成システム
JP2003080056A (ja) * 2001-09-07 2003-03-18 Mitsubishi Heavy Ind Ltd ガスハイドレート生成容器、ガスハイドレート製造装置及び製造方法
JP2005179629A (ja) 2003-11-26 2005-07-07 Mitsui Eng & Shipbuild Co Ltd 混合ガスの分離方法、混合ガス分離装置、および混合ガス処理システム
JP4088632B2 (ja) 2005-03-25 2008-05-21 神戸市 ガス精製方法
WO2008041299A1 (fr) * 2006-09-29 2008-04-10 National Institute Of Advanced Industrial Science And Technology Procédé de récupération de dioxyde de carbone à partir de gaz d'échappement et appareil associé

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554241A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105540A (zh) * 2012-02-02 2014-10-15 奥加诺株式会社 流体二氧化碳的供给装置及供给方法
CN104105540B (zh) * 2012-02-02 2016-08-10 奥加诺株式会社 流体二氧化碳的供给装置及供给方法
JP2014188405A (ja) * 2013-03-26 2014-10-06 Mitsui Eng & Shipbuild Co Ltd 二酸化炭素分離装置及び二酸化炭素分離方法
JP2015051404A (ja) * 2013-09-09 2015-03-19 株式会社Ihi 二酸化炭素の回収方法及び回収装置
CN103480275A (zh) * 2013-09-17 2014-01-01 常州大学 一种脱硫液再生后的酸气提浓、除盐及分离装置及方法
CN103480275B (zh) * 2013-09-17 2016-04-13 常州大学 一种脱硫液再生后的酸气提浓、除盐及分离装置及方法
JP2016199427A (ja) * 2015-04-10 2016-12-01 Ihiプラント建設株式会社 オゾンハイドレート製造装置、および、オゾンハイドレート製造方法
JP2016204216A (ja) * 2015-04-24 2016-12-08 株式会社Ihi ガスハイドレート製造装置、および、ガスハイドレート製造方法
JP2016222519A (ja) * 2015-06-03 2016-12-28 株式会社Ihi ガスハイドレート製造装置
JP2017024953A (ja) * 2015-07-24 2017-02-02 株式会社Ihi オゾンハイドレート製造装置、および、オゾンハイドレート製造方法
CN105148731A (zh) * 2015-09-02 2015-12-16 杰瑞石油天然气工程有限公司 一种mdea再生酸气脱硫循环再生工艺
KR102640411B1 (ko) * 2023-11-20 2024-02-23 고등기술연구원연구조합 고순도 이산화탄소 제조설비 및 제조방법

Also Published As

Publication number Publication date
JP5079141B2 (ja) 2012-11-21
CN102946974A (zh) 2013-02-27
US20130095016A1 (en) 2013-04-18
EP2554241A1 (en) 2013-02-06
EP2554241A4 (en) 2014-03-26
JPWO2011118405A1 (ja) 2013-07-04
AU2011230823A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5079141B2 (ja) 二酸化炭素の分離装置及び二酸化炭素の分離方法
US20120111194A1 (en) Gas Mixture Separation Apparatus and Method
WO2017149718A1 (ja) アンモニアの製造方法
CN102112391B (zh) 用于生成和纯化合成气的方法和装置
UA119810C2 (uk) Спосіб одержання аміаку
JP5936995B2 (ja) Co2回収型ガス化ガス発電プラント
JP2014188405A (ja) 二酸化炭素分離装置及び二酸化炭素分離方法
US8409514B2 (en) Method and device for producing ammonia
CN111591957B (zh) 一种煤层气联合循环发电及co2捕集系统及方法
JP2003267725A (ja) アンモニアの製造方法及びその装置並びにこれにより製造したアンモニアを用いる排煙脱硝方法
CA2737330C (en) System for gas purification and recovery with multiple solvents
CN105779047A (zh) 利用烟道气制液化天然气的工艺与系统
TWI434822B (zh) 甲醇製作方法及其裝置
JP2013095727A (ja) バイオガスのメタン濃縮方法及びメタン濃縮装置
JP2014018776A (ja) 二酸化炭素分離システムおよび二酸化炭素分離方法
JP2012251012A (ja) 二酸化炭素分離方法および二酸化炭素分離装置
JP5652905B2 (ja) 物理吸収法によるガス分離方法
JP2010235373A (ja) 膜分離及びハイドレートによる分離を用いたガス分離方法及びガス分離設備
JP2011251864A (ja) 高圧下における二酸化炭素の分離装置及びその方法
CN116947602A (zh) 一种基于可再生能源的二氧化碳利用装置与方法
TW202325659A (zh) 碳酸鹽製造廠
JP6136074B2 (ja) 窒素分離装置及び方法
BR102017028032A2 (pt) Sistema e processo para conversão de biogás em biometano

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016188.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011516922

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011230823

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005027

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2011230823

Country of ref document: AU

Date of ref document: 20110310

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011759212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13637085

Country of ref document: US