WO2011118244A1 - 燃料電池膜電極接合体の製造方法および燃料電池膜電極接合体の製造装置 - Google Patents

燃料電池膜電極接合体の製造方法および燃料電池膜電極接合体の製造装置 Download PDF

Info

Publication number
WO2011118244A1
WO2011118244A1 PCT/JP2011/050767 JP2011050767W WO2011118244A1 WO 2011118244 A1 WO2011118244 A1 WO 2011118244A1 JP 2011050767 W JP2011050767 W JP 2011050767W WO 2011118244 A1 WO2011118244 A1 WO 2011118244A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrode assembly
cell membrane
polymer electrolyte
membrane electrode
Prior art date
Application number
PCT/JP2011/050767
Other languages
English (en)
French (fr)
Inventor
靖洋 羽場
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201180015920.5A priority Critical patent/CN102823040B/zh
Priority to JP2012506869A priority patent/JP5772813B2/ja
Priority to US13/636,710 priority patent/US20130045438A1/en
Priority to EP11759053.9A priority patent/EP2555291A4/en
Priority to KR1020127027904A priority patent/KR101479627B1/ko
Publication of WO2011118244A1 publication Critical patent/WO2011118244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a membrane electrode assembly constituting a polymer electrolyte fuel cell and a manufacturing apparatus therefor.
  • a conventional polymer electrolyte fuel cell has a membrane electrode assembly in which a solid polymer electrolyte membrane is sandwiched between two electrodes (an oxidation electrode and a reduction electrode), and the membrane electrode assembly is sandwiched between gas diffusion layers. It has a structure.
  • the system generates electricity by causing an electrochemical reaction by flowing hydrogen and oxygen through the anode and cathode.
  • fuel cells generate only water in a power generation state, and are expected as clean power generators that do not generate environmentally harmful gases such as carbon dioxide, which have become a problem in recent years.
  • an electrode catalyst ink for fuel cells in which conductive particles carrying a catalyst and a polymer having ionic conductivity are dispersed in an organic solvent is applied to a transfer substrate.
  • a method in which an electrode catalyst layer is formed, the formed electrode catalyst layer is cut into a predetermined shape, and then sandwiched between solid polymer electrolyte membranes and thermocompression bonded by a hot press, a laminator, or the like.
  • Patent Document 2 after applying the electrode catalyst ink for fuel cell to the transfer substrate in a predetermined shape, the transfer sheet with the electrode catalyst layer is sandwiched between the solid polymer electrolyte membranes. It is also considered that the film is pressed into a predetermined shape of a membrane electrode assembly by thermocompression bonding with a hot press, a laminator or the like. Further, as disclosed in Patent Document 3 below, after applying the electrode catalyst ink for fuel cell to the transfer substrate, a predetermined shape is formed by a press or laminator processed so that the electrode shape becomes a convex portion. A method of transferring is also considered.
  • an electrode catalyst layer is formed by applying an electrode catalyst ink for a fuel cell in which conductive particles carrying a catalyst and a solid polymer electrolyte membrane film are dispersed in an organic solvent to a transfer substrate.
  • an electrode catalyst layer is cut into a predetermined shape and then sandwiched between solid polymer electrolyte membranes and thermocompression bonded with a hot press, laminator, etc., it takes time to align the catalyst layer, resulting in misalignment. May occur.
  • the transfer sheet with the electrode catalyst layer is placed between the solid polymer electrolyte membrane films, and thermocompression bonded with a hot press, laminator, etc.
  • the position shift occurs similarly.
  • the predetermined shape is transferred to both surfaces of the solid polymer electrolyte membrane film by a press or laminator that is processed so that the electrode shape becomes convex.
  • the possibility of misalignment is reduced and the production tact is improved, but there is a problem that wrinkles are generated in the edge shape and the solid polymer electrolyte membrane.
  • the present invention has been made in view of the above problems, and its object is to produce a fuel cell membrane electrode assembly and a fuel that do not cause wrinkles in the solid polymer electrolyte membrane and do not cause misalignment of the opposing electrode catalyst layers. It is providing the manufacturing apparatus of a battery membrane electrode assembly.
  • the present invention employs the following means.
  • a pair of base materials coated with an electrode catalyst layer are arranged so as to sandwich the solid polymer electrolyte membrane, and heat pressure is applied from the outside with a pair of laminator rolls on both sides of the solid polymer electrolyte membrane.
  • a laminator roll in which convex portions are formed is used. By using such a laminator roll, the pair of electrode catalyst layers can be accurately thermally transferred to the solid polymer electrolyte membrane without being displaced.
  • a protective film is further disposed outside the pair of base materials, and heat pressure is applied from the outside of the protective film with the laminator roll to thermally transfer the electrode catalyst layer onto both surfaces of the solid polymer electrolyte membrane.
  • heat pressure is applied from the outside of the protective film with the laminator roll to thermally transfer the electrode catalyst layer onto both surfaces of the solid polymer electrolyte membrane.
  • no soot enters the solid polymer electrolyte membrane, and bubbles do not enter between the electrode catalyst layer and the solid polymer electrolyte membrane.
  • the electrode catalyst layer and the solid polymer electrolyte membrane are aligned at, for example, near room temperature, and then thermally transferred. There is a risk of wrinkles entering the solid polymer electrolyte membrane.
  • the performance of the membrane / electrode assembly is further improved. Can do.
  • the substrate is peeled off while maintaining the temperature, thereby preventing the electrode catalyst layer from being chipped or peeled off from the solid polymer film. . Further, it is possible to prevent deformation such as wrinkles near the electrode catalyst layer of the solid polymer electrolyte membrane and curling of the membrane electrode assembly itself.
  • the surface of the gap between the convex portions on the transfer laminator roll is made of a material having an elastic modulus smaller than the elastic modulus of the convex surface, thereby eliminating flaws and damage to the solid polymer electrolyte membrane and improving the shape accuracy of the electrode catalyst layer. Can be improved.
  • the membrane / electrode assembly produced by the above method exhibits excellent electrical characteristics and has no defects in appearance.
  • FIG. 1 is an exploded perspective view of a polymer electrolyte fuel cell 100 according to the present invention. It is a perspective view which shows an example of the laminator roll 50 used for this invention. It is sectional drawing of the laminator roll 50 used for this invention. It is explanatory drawing which shows one Embodiment of the membrane electrode assembly manufacturing method which concerns on this invention. It is explanatory drawing which shows other embodiment of the membrane electrode assembly manufacturing method which concerns on this invention. It is explanatory drawing which shows other embodiment of the membrane electrode assembly manufacturing method which concerns on this invention.
  • FIG. 1 is an exploded perspective view of a polymer electrolyte fuel cell 100 according to the present invention.
  • the air electrode side gas diffusion layer 21 and the fuel electrode side gas diffusion layer are opposed to the electrode catalyst layer 11 and the electrode catalyst layer 12 of the membrane electrode assembly 10. 31 is arranged.
  • the air electrode 20 and the fuel electrode 30 are comprised, respectively.
  • the membrane electrode assembly 10 includes a solid polymer electrolyte membrane 13 sandwiched between an electrode catalyst layer 11 and an electrode catalyst layer 12.
  • the air electrode 20 is provided with a gas flow path 41 for gas distribution
  • the fuel electrode 30 is provided with a set of a conductive and impermeable material provided with a cooling water flow path 42 for cooling water flow.
  • Separators 40 are disposed.
  • hydrogen gas is supplied as a fuel gas from the gas flow path 41 of the separator 40 on the fuel electrode 30 side.
  • a gas containing oxygen for example, is supplied as an oxidant gas from the gas flow path 41 of the separator 40 on the air electrode 20 side.
  • 1 shows a so-called single-cell solid polymer fuel in which a solid polymer electrolyte membrane 13, electrode catalyst layers 11 and 12, and gas diffusion layers 21 and 31 are sandwiched between a pair of separators 40 and 40. Although it is a battery, the structure which laminated
  • the electrode catalyst layers 11 and 12 include catalyst-supported conductive particles and an ion conductive polymer.
  • the conductive particles carrying the catalyst are composed of a carrier having conductivity and a catalytic metal having catalytic ability.
  • the catalyst metal is not particularly limited as long as it has a catalytic action for oxygen reduction reaction at the cathode and hydrogen oxidation reaction at the anode. Specific examples include transition metal simple substances, alloys composed of transition metal groups, oxides, double oxides, carbides, and complexes.
  • Pt, Pd, Ni, Ir, Rh, Co, Os, Ru, Fe, Au, Ag, Cu and the like are particularly preferable, and are composed of alloys, oxides, double oxides, carbides, and complexes of this group.
  • the particle size is preferably about 1 nm or more and 10 nm or less in consideration of the utilization factor, reactivity and stability of the catalyst metal.
  • the carrier having conductivity is not particularly limited, and known ones can be used. Typical examples include carbon particles, and specifically include carbon particles such as carbon black, acetylene black, ketjen black, carbon nanotubes, fullerenes, solid acid aggregates, etc., and one or more of these can be selected. That's fine.
  • the particle size is preferably about 10 nm to 100 nm.
  • the electrode catalyst layers 11 and 12 may be mixed with conductive particles not carrying the catalyst. Furthermore, additives for improving the water repellency of the electrode catalyst layers 11 and 12 such as a water repellent material and a pore increasing material may be added.
  • the polymer contained in the electrode catalyst layers 11 and 12 may be any polymer having ion conductivity. Specifically, a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used. .
  • fluoropolymer electrolyte examples include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., and Gore Select (registered trademark) manufactured by Gore. Etc. can be used.
  • As the hydrocarbon polymer electrolyte sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, sulfonated polyphenylene and the like can be used.
  • Nafion registered trademark
  • sulfonated polyether ketone sulfonated polyethersulfone
  • sulfonated polyetherethersulfone sulfonated polysulfide
  • sulfonated polyphenylene sulfonated polyphenylene, and the like are preferably used.
  • the catalyst-carrying conductive particles, ion-conducting polymer, and appropriate dispersants / additives are added, and the ink is applied to the substrate and dried.
  • the coating method include, but are not limited to, a doctor blade method, a dipping method, a screen printing method, a laminator roll coating method, and a coating method such as a spray method. Select the most suitable one according to the substrate.
  • the electrode catalyst layers 11 and 12 are transferred to the solid polymer electrolyte membrane 13 through the substrate 90 as described later.
  • the base material 90 is not particularly limited, but it is preferable that the electrode catalyst layers 11 and 12 are released by thermocompression bonding.
  • Specific examples include fluorine resins such as PTFE and ETFE, release materials having a surface coated with silicon resin, PET films, polymer films such as polyimide and PEEK, and metal plates such as S ⁇ S.
  • fluorine resins such as PTFE and ETFE
  • release materials having a surface coated with silicon resin PET films
  • polymer films such as polyimide and PEEK
  • metal plates such as S ⁇ S.
  • the base material 90 may be subjected to a surface treatment such as an embossing treatment, a blasting treatment, a roughening treatment, and a corona treatment.
  • the coating pattern on the substrate 90 may be any type, such as continuous, striped, and intermittent.
  • the solid polymer electrolyte membrane 13 in the present invention has ion conductivity
  • examples of the fluorine-based polymer electrolyte membrane include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., and Asahi Kasei.
  • Examples include Aciplex (registered trademark) manufactured by Co., Ltd. and Gore Select (registered trademark) manufactured by Gore.
  • hydrocarbon polymer electrolyte membrane examples include electrolyte membranes such as sulfonated polyetherketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene, but are not particularly limited.
  • the film thickness is preferably about 5 ⁇ m or more and 100 ⁇ m or less.
  • FIG. 2 is a perspective view showing an example of a laminator roll 50 used in the method of the present invention
  • FIG. 3 is a sectional view thereof.
  • the laminator roll 50 is provided with a plurality of convex portions 53 on the surface of a roll body 52 provided with a rotation shaft 51.
  • the convex portion 53 is curved in a curved shape so that the surface thereof is along the roll body 52, and the planar shape thereof is the same as the shape of the electrode catalyst layers 11 and 12 of the membrane electrode assembly 10. .
  • the material of the surface of the convex portion 53 is made of a metal such as stainless steel, but may be a rubber material such as silicon rubber, fluorine rubber or butadiene rubber in addition to the metal.
  • the planar shape of the convex portion 53 may be substantially the same as the shape of the electrode catalyst layers 11 and 12 as long as the desired shape of the electrode catalyst layers 11 and 12 can be formed.
  • the size of the convex portion 53 can be appropriately designed according to the size of the electrode catalyst layers 11 and 12 to be formed.
  • the number of the protrusions 53 provided on the surface of the laminator roll 50 is not particularly specified, but there is no loss in consideration of the area of the solid electrolyte of the final fuel cell membrane electrode assembly, the width of the solid electrolyte roll, etc. It can be designed as appropriate, such as chamfering.
  • the laminator roll 50 and a smooth surface laminator roll 60 having no convex portion 53 on the surface are set so as to be close to and away from each other, and the laminator rolls 50 and 50 are pressed between them.
  • the electrode catalyst layers 11 and 12 having a target shape are intermittently thermally transferred. In this way, by intermittently transferring the electrode catalyst layers 11 and 12 to the solid polymer electrolyte membrane 13, a manufacturing method of the membrane electrode assembly 10 with a quick production tact can be constructed.
  • the laminator rolls 50 and 60 can be adjusted by adjusting the gap so that the solid polymer electrolyte membrane 13 is not damaged by the gap 54 of the convex portion 53 of the laminator roll 50. Further, when the pair of laminator rolls 50, 60 widens the gap after transferring the pair of electrode catalyst layers 11, 12, and only the solid polymer electrolyte membrane 13 is changed, there is no loss of the electrode catalyst layers 11, 12.
  • a laminator roll 60 facing the laminator roll 50 that has been processed so that the electrode shape of the target membrane electrode assembly 10 is convex on the surface is a smooth one. Instead of the laminator roll 60, a laminator roll 50 processed on the surface so that the electrode shape of the target membrane electrode assembly 10 becomes the convex portion 53 may be used similarly to the one laminator roll 50. .
  • the temperature of the laminator roll 50 when transferring the electrode catalyst layers 11 and 12 is preferably 80 ° C. or higher and 150 ° C. or lower. More preferably, it is 100 ° C. or more and 140 ° C. or less. By performing thermal transfer at such a temperature, the performance of the membrane electrode assembly can be enhanced. When this temperature is exceeded, there is a high possibility that the solid polymer electrolyte membrane 13 will be thermally deteriorated or transfer defects of the electrode catalyst layers 11 and 12 will be caused.
  • protective films 80, 80 are respectively provided on the outer sides of the substrates 90, 90 on which the electrode catalyst layer 70 is continuously applied. May be arranged.
  • the laminator rolls 50 and 50 processed so that the electrode shape of the target membrane electrode assembly 10 may become a convex part on the surface, it is made to oppose, synchronizing, and the electrode catalyst layer 11, It is desirable to avoid 12 misalignments.
  • the protective film 80 is not particularly limited as long as it has smoothness and heat resistance, but PET, PP, PTFE, ETFE, polyimide, PEEK, and the like are preferable.
  • the thickness is not particularly limited, but is preferably 15 ⁇ m or more and 100 ⁇ m or less. If it is smaller than 15 ⁇ m, the effect of preventing the solid polymer electrolyte membrane 13 from being wrinkled is thin, and if it is larger than 100 ⁇ m, the production cost is increased.
  • the membrane electrode joint is manufactured by preheating the base material 90, the solid polymer electrolyte membrane 13 and the protective film 80 before the electrode catalyst layers 11 and 12 are thermally transferred to the solid polymer electrolyte membrane 13 by the laminator roll 50. It is possible to more effectively prevent the body 10 from wrinkling or curling.
  • the preheating temperature is preferably about 50 ° C to 140 ° C.
  • the preheating method may be any method such as warm air, IR, and thermal lamination. However, if the temperature is not lowered below 50 ° C. before the thermal transfer, wrinkles or the like do not enter the membrane electrode assembly 10.
  • the heated roll include a roll having a heating mechanism.
  • the height of the convex portion 53 of the laminator roll 50 is not particularly limited, but is preferably 0.2 mm or more and 3 mm or less. This makes it possible to thermally transfer the electrode catalyst layers 11 and 12 with high shape accuracy.
  • the edge portion of the convex portion 53 of the laminator roll 50 is chamfered as shown in FIG.
  • the value of R can be set as appropriate as long as the electrode catalyst layers 11 and 12 can be thermally transferred with good shape accuracy.
  • the value of R is 0.1 mm or more and 0.5 mm or less. preferable.
  • the convex portion 53 of the laminator roll 50 may be further uneven. By doing so, the in-plane distribution can be given to the porosity of the electrode catalyst layers 11 and 12, and as a result, the water repellency and conductivity of the electrode catalyst layers 11 and 12 are improved, and the performance of the membrane electrode assembly 10 is improved. Can do.
  • the surface roughness of the convex portion 53 is preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the surface of the gap between the convex portions 53 of the laminator roll 50 is desirably formed of a material having an elastic modulus smaller than the elastic modulus of the surface of the convex portion 53. That is, when pressure is applied only to the electrode catalyst layers 11 and 12 of the solid polymer electrolyte membrane 13, wrinkles may enter the solid polymer electrolyte membrane 13. Therefore, when the electrode catalyst layers 11 and 12 are thermally transferred, if a small pressure is applied to a portion of the solid polymer electrolyte membrane 13 where the electrode catalyst layers 11 and 12 are not required, wrinkles do not occur in the polymer electrolyte membrane 13.
  • the electrode catalyst layers 11 and 12 are also transferred to portions of the solid polymer electrolyte membrane 13 where the electrode catalyst layers 1 and 12 are not required. Therefore, by using a material having an elastic modulus smaller than that of the convex portion 53 in the gap between the convex portions 53, the electrode catalyst layers 11 and 12 are not thermally transferred to the gap portion of the convex portion 53.
  • the solid polymer electrolyte membrane does not cause wrinkles, and there is no displacement of the opposing electrode catalyst layer. 10 can be manufactured efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】本発明は、固体高分子電解質膜に皺を生じることなく、相対する電極触媒層の位置ずれがない燃料電池膜電極接合体の製造方法および製造装置の提供。 【解決手段】電極触媒層70が塗工された一対の基材90,90を固体高分子電解質膜13を挟持するように配置し、その外側から一対のラミネータロール50,60で熱圧力を加えて前記固体高分子電解質膜13の両面に前記電極触媒層70を熱転写する燃料電池膜電極接合体10の製造方法であって、前記一対のラミネータロール50,60のうち少なくとも一方は、その表面に前記固体高分子電解質膜13側に転写する電極触媒層11,12と同じ形状の凸部53が形成されたラミネータロール50を用いる。これによって、固体高分子電解質膜13に皺を生じることなく、相対する電極触媒層の位置ずれがない高品質の膜電極接合体を効率良く製造できる。

Description

燃料電池膜電極接合体の製造方法および燃料電池膜電極接合体の製造装置
 本発明は、固体高分子形燃料電池を構成する膜電極接合体の製造方法およびその製造装置に関する。
 従来の固体高分子形燃料電池は、固体高分子電解質膜を二つの電極(酸化極と還元極)で挟んで接合した膜電極接合体を有すると共に、この膜電極接合体をガス拡散層で挟んだ構造をしている。そして、アノードとカソードに水素と酸素を流すことで電気化学反応を起こし、発電を起こすシステムである。燃料電池は従来の発電装置と異なり、発電状態において発生するのは水のみであり、近年問題となっている二酸化炭素等の環境負荷ガスを発生しないクリーンな発電装置として期待されている。
 膜電極接合体の作製方法としては、様々な方法が提案されている。例えば、以下の特許文献1に開示されているように、触媒担持した導電性粒子とイオン導電性を持つ高分子とを有機溶媒に分散させた燃料電池用電極触媒インクを転写基材に塗布して電極触媒層を形成し、形成した電極触媒層を所定形状に断裁した後、固体高分子電解質膜に挟持させ、熱プレス、ラミネータなどにより熱圧着する方法が知られている。
 また、以下の特許文献2に開示されているように、燃料電池用電極触媒インクを転写基材に所定形状に塗布した後、この電極触媒層付き転写シートを固体高分子電解質膜に挟持させるように配し、熱プレス、ラミネータなどにより熱圧着し、所定の膜電極接合体の形状に断裁する方法も考えられている。
 また、以下の特許文献3に開示されているように、燃料電池用電極触媒インクを転写基材に塗布した後、電極形状が凸部になるように加工してあるプレス乃至ラミネータによって所定形状を転写する方法も考えられている。
特開2001-196070号公報 特開2006-185762号公報 特開2009-37916号公報
 しかしながら、膜電極接合体の作製方法として、触媒担持した導電性粒子と固体高分子電解質膜フィルムとを有機溶媒に分散させた燃料電池用電極触媒インクを転写基材に塗布し電極触媒層を形成し、形成した電極触媒層を所定形状に断裁した後、固体高分子電解質膜に挟持させ、熱プレス、ラミネータなどにより熱圧着する方法の場合、触媒層の位置あわせに時間を要し、位置ずれが生じる可能性がある。
 また、燃料電池用電極触媒インクを転写基材に所定形状に塗布した後、該電極触媒層付き転写シートを固体高分子電解質膜フィルムに挟持させるように配し、熱プレス、ラミネータなどにより熱圧着し、所定の膜電極接合体の形状に断裁する方法の場合、同様に位置ずれを起こす可能性がある。
 また、燃料電池用電極触媒インクを転写基材に塗布した後、電極形状が凸部になるように加工してあるプレス乃至ラミネータによって所定形状を固体高分子電解質膜フィルムの両面に転写する方法の場合、位置ずれの可能性が軽減し、生産タクトも向上するが、エッジ形状や固体高分子電解質膜に皺を発生する問題があった。
 本発明は、係る課題に鑑みなされたものであり、その目的は固体高分子電解質膜に皺を生じることなく、相対する電極触媒層の位置ずれがない燃料電池膜電極接合体の製造方法および燃料電池膜電極接合体の製造装置を提供することである。
 上記課題を解決する為に、本発明は以下の手段を採った。
 電極触媒層を塗工された一対の基材を、固体高分子電解質膜を挟持するように配置し、その外側から一対のラミネータロールで熱圧力を加えて前記固体高分子電解質膜の両面に前記電極触媒層を熱転写する燃料電池膜電極接合体の製造方法であって、前記一対のラミネータロールのうち少なくとも一方は、その表面に前記固体高分子電解質膜側に転写する電極触媒層と同じ形状の凸部が形成されたラミネータロールを用いる。このようなラミネータロールを用いることにより、一対の電極触媒層を位置ずれすることなく固体高分子電解質膜に正確に熱転写することができる。
 また、前記一対の基材の外側にさらに保護フィルムを配置し、これら保護フィルムの外側から前記ラミネータロールで熱圧力を加えて前記固体高分子電解質膜の両面に前記電極触媒層を熱転写する。これによって、固体高分子電解質膜に皺が入らず、電極触媒層と固体高分子電解質膜の間に気泡などが入ることがない。
 一般的に、電極触媒層を塗工する基材と固体高分子電解質膜の熱膨張率は異なる為、電極触媒層と固体高分子電解質膜を、例えば常温付近で位置あわせを行い、その後熱転写すると、固体高分子電解質膜に皺が入るおそれがある。また、例えば膜電極接合体の性能を高めるため電極触媒層の多孔度を上げるなどした場合でも、固体高分子膜と電極触媒層の接合性を高める必要があるため、熱転写する前に余熱をかける必要がある。
 電極触媒層が塗工された基材から固体高分子電解質膜に貼りあわせた後に、保護フィルム、基材を剥離する前に、熱ラミネートをかけると、膜電極接合体の性能を更に向上させることができる。
 また、電極触媒層を固体高分子膜に熱圧着を加えた後、その温度を保ったまま基材剥離することで、電極触媒層の欠け、固体高分子膜からの剥がれを抑制することができる。また、固体高分子電解質膜の電極触媒層近傍の皺や、膜電極接合体自体がカールするなどの変形を防ぐことができる。
 電極触媒層の転写に用いる凸部の高さが0.2mm以上3mm以下にすることで、固体高分子電解質膜の皺、損傷をなくし、電極触媒層の形状精度を向上することができる。
 転写ラミネータロール上の凸部の間隙の表面は、凸部表面の弾性率よりも小さい弾性率の素材を用いることで、固体高分子電解質膜の皺、損傷をなくし、電極触媒層の形状精度を向上することができる。
 上記方法により作製した膜電極接合体は優れた電気特性を示し、外観上に欠損がない。
 本発明によれば、固体高分子電解質膜に皺を生じることなく、相対する電極触媒層の位置ずれがない高品質の燃料電池膜電極接合体を効率良く製造することができる。
本発明に係る固体高分子形燃料電池100の分解斜視図である。 本発明に用いるラミネータロール50の一例を示す斜視図である。 本発明に用いるラミネータロール50の断面図である。 本発明に係る膜電極接合体製造方法の実施の一形態を示す説明図である。 本発明に係る膜電極接合体製造方法の他の実施形態を示す説明図である。 本発明に係る膜電極接合体製造方法の他の実施形態を示す説明図である。
 以下に、本発明に係る燃料電池膜電極接合体の製造方法ついて説明する。なお、本発明は、以下に記載する各実施の形態に限定されるものではなく、当業者の知識に基づいて設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
 図1は、本発明に係る固体高分子形燃料電池100の分解斜視図である。図示するようにこの固体高分子形燃料電池100にあっては、膜電極接合体10の電極触媒層11および電極触媒層12と対向して空気極側ガス拡散層21および燃料極側ガス拡散層31が配置される。これにより、それぞれ空気極20及び燃料極30が構成される。膜電極接合体10は、固体高分子電解質膜13を電極触媒層11と電極触媒層12とで挟んで構成される。
 そして、空気極20側にはガス流通用のガス流路41を備えると共に、燃料極30には冷却水流通用の冷却水流路42を備えた導電性でかつ不透過性の材料よりなる1組のセパレータ40,40が配置される。燃料極30側のセパレータ40のガス流路41からは燃料ガスとして、例えば水素ガスが供給される。一方、空気極20側のセパレータ40のガス流路41からは、酸化剤ガスとして、例えば酸素を含むガスが供給される。
 なお、図1は、一組のセパレータ40,40に固体高分子電解質膜13、電極触媒層11,12、ガス拡散層21,31が狭持された、いわゆる単セル構造の固体高分子形燃料電池であるが、セパレータ40,40を介して複数のセルを多重に積層した構成であっても良い。
 次に、この電極触媒層11,12の形成方法について説明する。この電極触媒層11,12は、触媒担持した導電性粒子とイオン伝導性高分子を含む。
 触媒担持した導電性粒子は、導電性を持つ担体と、触媒能を持つ触媒金属から成り立つ。触媒金属には、カソードでは酸素の還元反応、アノードでは水素の酸化反応に触媒作用を有すれば特に限定するものではない。具体的は、遷移金属単体、遷移金属群からなる合金、酸化物、複酸化物、炭化物、錯体があげられる。中でも、特にPt、Pd、Ni、Ir、Rh、Co、Os、Ru、Fe、Au、Ag、Cu等が好ましく、この群からなる合金、酸化物、複酸化物、炭化物、錯体からなる。また、粒径としては、触媒金属の利用率、反応性および安定性を考慮し、1nm以上10nm以下程度が好ましい。
 導電性を持つ担体としては、特に制限されず公知のものが使用できるが。代表的なものとしてはカーボン粒子があり、具体的にはカーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、フラーレン、固体酸凝集体等の炭素粒子等が挙げられ、この中から一つ以上選べばよい。粒径としては10nm以上100nm以下程度が好ましい。
 また、この電極触媒層11,12には、触媒担持した導電性粒子以外にも、触媒を担持していない導電性粒子を混合させても良い。さらに撥水材、増孔材などの電極触媒層11,12の撥水性などを向上する為の添加材を加えてもよい。
 また、この電極触媒層11,12に含まれる高分子は、イオン伝導性を有するものであれば良いが、具体的には、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などを用いることができる。炭化水素系高分子電解質としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどを用いることができる。中でも、デュポン社製Nafion(登録商標)、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどを用いることが好ましい。また、電極触媒層と電解質膜の密着性を考え、固体高分子電解質膜と同じ材料を選択することが好ましい。
 触媒担持した導電性粒子、イオン伝導性高分子及び適宜分散剤・添加剤を加え、インク化したものを基材に塗工し、乾燥することで完成する。
 塗工方法としては、ドクターブレード法、ディッピング法、スクリーン印刷法、ラミネータロールコーティング法、スプレー法などの塗布法などの方法が挙げられるが、特に限定しない。基材により最適なものを選定する。
 この電極触媒層11,12は、後述するように基材90を介して固体高分子電解質膜13に転写される。
 この基材90としては特に限定しないが、電極触媒層11,12が熱圧着により離型するものが良い。具体的にはPTFE、ETFE等のフッ素系樹脂、表面にシリコン樹脂等が塗布されている離型材、PETフィルム、ポリイミド、PEEKなどの高分子フィルム、SΜS等の金属板などが挙げられるが、電極触媒層11,12が良好に印刷されかつ良好に固体高分子電解質膜13に転写されれば特に限定しない。
 また、この基材90は、エンボス処理、ブラスト処理、粗化、コロナ処理など表面処理を行ってもよい。
 この基材90への塗工パターンは連続、ストライプ状、間欠状など、種類を問わないが、電極触媒層11,12及び基材90の有効活用のため、目的とする膜電極接合体10の電極面積と同等以上の大きさに適宜印刷してあればよい。
 本発明における固体高分子電解質膜13は、イオン伝導性を有するものであり、フッ素系高分子電解質膜としては、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などが挙げられる。炭化水素系高分子電解質膜としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の電解質膜が挙げられるが、特に限定しない。膜厚は5μm以上100μm以下程度が好ましい。
 本発明における基材90から固体高分子電解質膜13への電極触媒層11,12のラミネータ転写方法について述べる。
 図2は、本発明方法に用いるラミネータロール50の一例を示す斜視図、図3はその断面図である。図示するように、このラミネータロール50は、回転軸51を備えたロール本体52の表面に凸部53が複数設けられている。この凸部53は、その表面がロール本体52と沿うように曲面状に湾曲していると共に、その平面形状が膜電極接合体10の電極触媒層11,12の形状と同じ形状をしている。この凸部53の表面の材質はステンレスなどの金属から構成されているが、金属の他にシリコンゴム、フッ素ゴム、ブタジエンゴムなどのゴム材でも構わない。
 凸部53の平面形状は、電極触媒層11,12の所望の形状を形成できれば、電極触媒層11,12の形状と略同じ形状であってもよい。また、凸部53の大きさは、形成したい電極触媒層11,12の大きさに合わせて適宜設計することができる。
 ラミネータロール50の表面に設けられる凸部53の個数は、特に指定されないが、最終的な燃料電池膜電極接合体の固体電解質の面積と、固体電解質ロールの巾などを考慮しロスの無いような面取りを取るなど、適宜設計することができる。
 そして、図4に示すように、このラミネータロール50と、表面に凸部53を有さない平滑表面のラミネータロール60を互いに近接離間自在にセットし、そのラミネータロール50,50に加圧しながらその間を固体高分子電解質膜13と、それを挟むように電極触媒層70,70が連続して塗工した一対の基材90,90とを連続的に通過させて固体高分子電解質膜13の両面に、目的とする形状の電極触媒層11,12を間欠的に熱転写する。
 このようにして電極触媒層11,12を固体高分子電解質膜13に間欠的に転写することで、生産タクトの早い膜電極接合体10の製造方法を構築できる。
 また、図2に示すように、ラミネータロール50の凸部53の間隙54で固体高分子電解質膜13を傷つけないようにするため、ラミネータロール50,60はギャップ調整により隙間調整できるようにする。また、一対のラミネータロール50,60は一対の電極触媒層11,12を転写後にギャップを広げ、固体高分子電解質膜13のみ送り速度を変更すると電極触媒層11,12のロスがない。図4では、表面に目的とする膜電極接合体10の電極形状が凸部になるように加工してあるラミネータロール50に対し、対向するラミネータロール60は平滑なものを用いているが、平滑なラミネータロール60の代わりに、一方のラミネータロール50と同様に、表面に目的とする膜電極接合体10の電極形状が凸部53になるように加工してあるラミネータロール50を用いてもよい。
 電極触媒層11,12を転写する際のラミネータロール50の温度は、80℃以上150℃以下が好ましい。より好ましくは100℃以上140℃以下がよい。このような温度で熱転写を行うことで、膜電極接合体の性能を高めることができる。この温度を外れた場合、固体高分子電解質膜13の熱劣化を引き起こしたり、電極触媒層11,12の転写不良を引き起こすおそれが高くなる。
 また、図5に示すように、固体高分子電解質膜13への皺の発生を減少させるため、電極触媒層70を連続して塗工した基材90,90の外側にそれぞれ保護フィルム80,80を配置してもよい。なお、いずれも表面に目的とする膜電極接合体10の電極形状が凸部になるように加工してあるラミネータロール50,50を用いる場合は、同期を取りながら対向させ、電極触媒層11,12の位置ずれのないようにすることが望ましい。
 また、図6の示すように、予め基材90,90へ電極触媒層11,12をパターン塗工しておけば電極触媒層70のロス(無駄)を減らすことが可能となる。また、保護フィルム80は、平滑性や耐熱性があるフィルムであれば特に限定しないが、PET、PP、PTFE、ETFE、ポリイミド、PEEKなどが望ましい。また、その厚みも特に限定するものでないが15μm以上100μm以下が望ましい。15μmより小さいと固体高分子電解質膜13の皺防止への効果が薄く、100μmより大きいと生産コストがかさむという不都合が生ずる。
 また、ラミネータロール50によって固体高分子電解質膜13に電極触媒層11,12を熱転写する前に、基材90や固体高分子電解質膜13、保護フィルム80を予熱しておくと製造する膜電極接合体10に皺が入ったり、カールするのをより効果的に防ぐことができる。予熱の温度は、50℃以上140℃以下程度が良い。予熱の方法としては、温風、IR、熱ラミネートなど手法を問わないが、熱転写する前に、温度を50℃より下げないようにすると、膜電極接合体10に皺などが入ることがない。
 また、電極触媒層11,12を固体高分子電解質膜13へ熱転写し、基材90を剥離する際に熱をかけたロールを用いればなおよい。熱をかけたロールとしては、加熱機構を有するロールなどが挙げられる。また、熱転写から剥離までの間、基材90及び膜電極接合体10の温度を50℃以下に下げないことが望ましい。こうすることで電極触媒層11,12の転写残りをなくすことが可能となる。
 また、ラミネータロール50の凸部53の高さ(ロール本体52表面からの高さ)も特に限定するものではないが、0.2mm以上3mm以下であるのが望ましい。こうすることで電極触媒層11,12を形状精度良く熱転写することが可能となる。
 また、ラミネータロール50の凸部53のエッジ部分は、図3のようにR面取りしてあることが望ましい。こうすることで、電極触媒層11,12が形状精度良く熱転写することが可能となる。なお、Rの値については、電極触媒層11,12が形状精度良く熱転写することができる範囲で適宜設定することができるが、具体的には、0.1mm以上0.5mm以下であることが好ましい。
 また、ラミネータロール50の凸部53は、さらにその表面に凹凸がつけてあっても良い。こうすることで電極触媒層11,12の多孔性に面内分布をつけることができ、結果として電極触媒層11,12の撥水性・導電性を高め、膜電極接合体10の性能を高めることができる。具体的には、凸部53の表面粗さが0.5μm以上5μm以下であることが好ましい。
 また、ラミネータロール50の凸部53の間隙の表面は、凸部53表面の弾性率よりも小さい弾性率の素材で形成することが望ましい。つまり、固体高分子電解質膜13の電極触媒層11,12の部分にのみ圧力がかかる場合、固体高分子電解質膜13に皺が入ることがある。そこで、電極触媒層11,12の熱転写の際に、固体高分子電解質膜13の電極触媒層11,12が必要とされない部分にも小さい圧力を加えると高分子電解質膜13に皺が生じない。
 しかし、圧力が高すぎると固体高分子電解質膜13の電極触媒層1,12が必要とされない部分にも電極触媒層11,12が転写されてしまう。そこで、凸部53の間隙に、凸部53よりも小さい弾性率の素材を用いることで凸部53の間隙部分は電極触媒層11,12が熱転写されない。
 本発明の燃料電池膜電極接合体の製造方法を用いることによって、固体高分子電解質膜に皺を生じることなく、相対する電極触媒層の位置ずれがない優れた性能・外観形状の膜電極接合体10が効率的に製造できる。
10…膜電極接合体
11…電極触媒層(空気極側)
12…電極触媒層(燃料極側)
13…固体高分子電解質膜
20…空気極
21…ガス拡散層(空気極側)
30…燃料極
31…ガス拡散層(燃料極側)
40…セパレータ
41…ガス流路
42…冷却水流路
50…ラミネータロール(凸部あり)
51…回転軸
52…ロール本体
53…凸部
54…隙間
60…ラミネータロール(凸部なし)
70…電極触媒層
80…保護フィルム
90…基材
100…固体高分子形燃料電池

Claims (11)

  1.  電極触媒層が塗工された一対の基材を、固体高分子電解質膜を挟持するように配置し、その外側から一対のラミネータロールで熱圧力を加えて前記固体高分子電解質膜の両面に前記電極触媒層を熱転写する燃料電池膜電極接合体の製造方法であって、
     前記一対のラミネータロールのうち少なくとも一方は、その表面に前記固体高分子電解質膜側に転写する電極触媒層と同じ形状の凸部が形成されたラミネータロールを用いることを特徴とする燃料電池膜電極接合体の製造方法。
  2.  請求項1に記載の燃料電池膜電極接合体の製造方法において、
     前記一対の基材の外側にさらに保護フィルムを配置し、これら保護フィルムの外側から前記ラミネータロールで熱圧力を加えて前記固体高分子電解質膜の両面に前記電極触媒層を熱転写することを特徴とする燃料電池膜電極接合体の製造方法。
  3.  請求項1または2に記載の燃料電池膜電極接合体の製造方法において、
     前記固体高分子電解質膜および電極触媒層を塗工された基材に対し、熱転写する前に余熱をかけることを特徴とする燃料電池膜電極接合体の製造方法。
  4.  請求項2に記載の燃料電池膜電極接合体の製造方法において、
     前記保護フィルムに対し、熱転写する前に余熱をかけることを特徴とする燃料電池膜電極接合体の製造方法。
  5.  請求項1乃至4のいずれか1項に記載の燃料電池膜電極接合体の製造方法において、
     前記ラミネータロールで熱圧力を加えられた基材を前記固体高分子電解質膜から剥離する前に、熱ラミネートをかけることを特徴とする燃料電池膜電極接合体の製造方法。
  6.  請求項1乃至4のいずれか1項に記載の燃料電池膜電極接合体の製造方法において、
     前記ラミネータロールで熱圧力を加えられた基材を加熱しながら前記固体高分子電解質膜から剥離することを特徴とする燃料電池膜電極接合体の製造方法。
  7.  請求項1乃至6のいずれか1項に記載の燃料電池膜電極接合体の製造方法において、
     前記ラミネータロールの凸部の高さは0.2mm以上3.0mm以下であることを特徴とする燃料電池膜電極接合体の製造方法。
  8.  請求項1乃至7のいずれか1項に記載の燃料電池膜電極接合体の製造方法において、
     前記ラミネータロールの凸部の間隙の表面は、前記凸部表面の弾性率よりも小さい弾性率の素材からなることを特徴とする燃料電池膜電極接合体の製造方法。
  9.  電極触媒層を塗工された一対の基材を、固体高分子電解質膜を挟持するように配置し、その外側から熱圧力を加えて前記固体高分子電解質膜の両面に前記電極触媒層を熱転写するための一対のラミネータロールを備えた燃料電池膜電極接合体の製造装置であって、
     前記一対のラミネータロールのうち少なくとも一方は、その表面に前記固体高分子電解質膜側に転写する電極触媒層と同じ形状の凸部が形成されたラミネータロールであることを特徴とする燃料電池膜電極接合体の製造装置。
  10.  請求項9に記載の燃料電池膜電極接合体の製造装置において、
     前記ラミネータロールの凸部の高さは0.2mm以上3mm以下であることを特徴とする燃料電池膜電極接合体の製造装置。
  11.  請求項9または10に記載の燃料電池膜電極接合体の製造装置において、
     前記ラミネータロールの凸部の間隙の表面は、前記凸部表面の弾性率よりも小さい弾性率の素材からなることを特徴とする燃料電池膜電極接合体の製造装置。
PCT/JP2011/050767 2010-03-26 2011-01-18 燃料電池膜電極接合体の製造方法および燃料電池膜電極接合体の製造装置 WO2011118244A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180015920.5A CN102823040B (zh) 2010-03-26 2011-01-18 燃料电池膜电极组件的制造方法及燃料电池膜电极组件的制造装置
JP2012506869A JP5772813B2 (ja) 2010-03-26 2011-01-18 燃料電池膜電極接合体の製造方法および燃料電池膜電極接合体の製造装置
US13/636,710 US20130045438A1 (en) 2010-03-26 2011-01-18 Producing method of fuel cell membrane electrode assembly and producing apparatus of the same
EP11759053.9A EP2555291A4 (en) 2010-03-26 2011-01-18 METHOD FOR PRODUCING A FUEL CELL MEMBRANE ELECTRODE ARRANGEMENT AND DEVICE FOR PRODUCING A FUEL CELL MEMBRANE ELECTRODE ARRANGEMENT
KR1020127027904A KR101479627B1 (ko) 2010-03-26 2011-01-18 연료 전지 막 전극 접합체의 제조 방법, 및 연료 전지 막 전극 접합체의 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010073070 2010-03-26
JP2010-073070 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118244A1 true WO2011118244A1 (ja) 2011-09-29

Family

ID=44672822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050767 WO2011118244A1 (ja) 2010-03-26 2011-01-18 燃料電池膜電極接合体の製造方法および燃料電池膜電極接合体の製造装置

Country Status (6)

Country Link
US (1) US20130045438A1 (ja)
EP (1) EP2555291A4 (ja)
JP (1) JP5772813B2 (ja)
KR (1) KR101479627B1 (ja)
CN (1) CN102823040B (ja)
WO (1) WO2011118244A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507841A (en) * 2012-11-07 2014-05-14 Intelligent Energy Ltd Fuel cell assembly
JP2016122585A (ja) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 補強型電解質膜の製造方法
JP2017004809A (ja) * 2015-06-12 2017-01-05 本田技研工業株式会社 電極層製造方法
KR101738633B1 (ko) * 2015-04-15 2017-05-23 (주)피엔티 막-전극 조립체 형성 장치 및 형성 방법

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962769B2 (ja) * 2012-11-21 2016-08-03 トヨタ自動車株式会社 金属触媒担持体の製造方法、金属触媒担持体、燃料電池の製造方法、触媒担持装置
KR101646707B1 (ko) 2013-05-22 2016-08-08 주식회사 아모그린텍 이온 교환 멤브레인과 그의 제조 방법, 멤브레인 전극 어셈블리 및 연료 전지
WO2015052860A1 (ja) * 2013-10-11 2015-04-16 日東電工株式会社 薄層転写用シート、電極触媒層付薄層転写用シート、薄層転写用シートの製造方法、および膜電極接合体の製造方法
JP6365205B2 (ja) * 2014-10-08 2018-08-01 Tdk株式会社 静電気対策素子
KR101575312B1 (ko) * 2014-10-21 2015-12-07 현대자동차 주식회사 연료전지의 막-전극 어셈블리 제조 장치
WO2017052179A1 (ko) 2015-09-24 2017-03-30 주식회사 아모그린텍 연료전지용 분리막, 그의 제조방법 및 연료전지 전극 어셈블리
CN107949943B (zh) 2015-09-24 2021-02-02 阿莫绿色技术有限公司 燃料电池用分离膜、其制备方法及燃料电池电极组件
KR101956029B1 (ko) * 2016-04-25 2019-03-08 현대자동차 주식회사 연료 전지용 막-전극 어셈블리 제조 장치 및 방법
JP6984848B2 (ja) * 2018-02-26 2021-12-22 エムテックスマート株式会社 燃料電池の膜電極アッセンブリーの製造方法
CN112203855A (zh) * 2018-05-30 2021-01-08 日东电工株式会社 用于转印层的转印片和带有电极催化剂层的片
JP7096717B2 (ja) * 2018-07-04 2022-07-06 東レエンジニアリング株式会社 電極シートの製造方法および電極シートの製造装置
KR20200053915A (ko) * 2018-11-09 2020-05-19 현대자동차주식회사 연료전지용 막-전극 어셈블리의 열처리 장치
CN111180771B (zh) * 2019-12-31 2021-04-20 无锡先导智能装备股份有限公司 卷料贴合设备及用于膜电极的制备系统
US11201344B2 (en) * 2020-03-09 2021-12-14 Daimler Ag Method for manufacturing a membrane assembly for a fuel cell with catalyst free edge areas; membrane assembly and fuel cell with membrane assembly
CN111477885B (zh) * 2020-04-10 2021-07-23 武汉理工氢电科技有限公司 一种3ccm的生产方法
KR102458564B1 (ko) * 2020-10-13 2022-10-25 한국기계연구원 막-전극 접합체 제조장치 및 제조방법
KR20220109202A (ko) * 2021-01-28 2022-08-04 주식회사 엘지에너지솔루션 분리막 접착장치
CN113745565B (zh) * 2021-07-29 2023-03-21 东风汽车集团股份有限公司 一种燃料电池膜电极的电解质膜固定方法及其应用
CN113517459B (zh) * 2021-09-14 2022-02-18 山东华滋自动化技术股份有限公司 一种生产膜电极的工艺方法
EP4432379A1 (en) * 2021-11-11 2024-09-18 LG Energy Solution, Ltd. Roll for manufacturing electrode of secondary battery and electrode manufacturing apparatus employing same
DE102022128222A1 (de) 2022-10-25 2024-04-25 Körber Technologies Gmbh Laminiervorrichtung zum Laminieren von mehrlagigen Endlosbahnen zur Herstellung von Energiezellen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196070A (ja) 2000-01-12 2001-07-19 Toyota Motor Corp 接合体製造装置および接合体製造方法
JP2003257438A (ja) * 2002-03-05 2003-09-12 Toyota Motor Corp 触媒層転写用ロールプレス装置
JP2004095553A (ja) * 2002-08-14 2004-03-25 Dainippon Printing Co Ltd 転写シート、触媒層−電解質膜積層体、電極−電解質膜接合体及びこれらの製造方法
WO2005063466A1 (ja) * 2003-12-26 2005-07-14 Kaneka Corporation フレキシブル積層板の製造方法
JP2006185762A (ja) 2004-12-28 2006-07-13 Dainippon Printing Co Ltd 固体高分子形燃料電池用膜・触媒層接合体の製造方法、固体高分子形燃料電池の製造方法、及び固体高分子形燃料電池用膜・触媒層接合体の製造装置
JP2009037916A (ja) 2007-08-02 2009-02-19 Toyota Motor Corp 一対の加熱加圧ロール、燃料電池用触媒層連続転写ロールプレス装置、該燃料電池用触媒層連続転写ロールプレス装置によって作製された燃料電池用膜−電極接合体(mea)、及び該燃料電池用触媒層連続転写ロールプレス装置を用いた燃料電池用膜−電極接合体(mea)の製造方法
JP2009054600A (ja) * 2008-11-05 2009-03-12 Dainippon Printing Co Ltd 触媒層−電解質膜積層体の製造方法
JP2009093965A (ja) * 2007-10-10 2009-04-30 Nippon Pillar Packing Co Ltd 燃料電池セパレータ及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941916A (en) * 1956-10-19 1960-06-21 Meyercord Co Heat resistant decalcomania transfer and method of making and using the same
US6400589B2 (en) * 2000-01-12 2002-06-04 Toyota Jidosha Kabushiki Kaisha Control apparatus for a power supply circuit including plural converter
JP4171978B2 (ja) * 2002-05-27 2008-10-29 ソニー株式会社 燃料改質器及びその製造方法、並びに電気化学デバイス用電極及び電気化学デバイス
US8372232B2 (en) * 2004-07-20 2013-02-12 Neenah Paper, Inc. Heat transfer materials and method of use thereof
CA2641032A1 (en) * 2006-01-31 2007-08-09 Bdf Ip Holdings Ltd. Method of forming membrane electrode assemblies for electrochemical devices
JP2010055922A (ja) * 2008-08-28 2010-03-11 Toppan Printing Co Ltd 膜電極接合体の製造装置及び製造方法
CN101393989B (zh) * 2008-09-27 2010-06-16 武汉理工新能源有限公司 一种带密封边框的核心组件及由此制备的膜电极
WO2010075492A1 (en) * 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Process to produce catalyst coated membranes for fuel cell applications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196070A (ja) 2000-01-12 2001-07-19 Toyota Motor Corp 接合体製造装置および接合体製造方法
JP2003257438A (ja) * 2002-03-05 2003-09-12 Toyota Motor Corp 触媒層転写用ロールプレス装置
JP2004095553A (ja) * 2002-08-14 2004-03-25 Dainippon Printing Co Ltd 転写シート、触媒層−電解質膜積層体、電極−電解質膜接合体及びこれらの製造方法
WO2005063466A1 (ja) * 2003-12-26 2005-07-14 Kaneka Corporation フレキシブル積層板の製造方法
JP2006185762A (ja) 2004-12-28 2006-07-13 Dainippon Printing Co Ltd 固体高分子形燃料電池用膜・触媒層接合体の製造方法、固体高分子形燃料電池の製造方法、及び固体高分子形燃料電池用膜・触媒層接合体の製造装置
JP2009037916A (ja) 2007-08-02 2009-02-19 Toyota Motor Corp 一対の加熱加圧ロール、燃料電池用触媒層連続転写ロールプレス装置、該燃料電池用触媒層連続転写ロールプレス装置によって作製された燃料電池用膜−電極接合体(mea)、及び該燃料電池用触媒層連続転写ロールプレス装置を用いた燃料電池用膜−電極接合体(mea)の製造方法
JP2009093965A (ja) * 2007-10-10 2009-04-30 Nippon Pillar Packing Co Ltd 燃料電池セパレータ及びその製造方法
JP2009054600A (ja) * 2008-11-05 2009-03-12 Dainippon Printing Co Ltd 触媒層−電解質膜積層体の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507841A (en) * 2012-11-07 2014-05-14 Intelligent Energy Ltd Fuel cell assembly
US9768464B2 (en) 2012-11-07 2017-09-19 Intelligent Energy Limited Fuel cell components
JP2016122585A (ja) * 2014-12-25 2016-07-07 トヨタ自動車株式会社 補強型電解質膜の製造方法
KR101738633B1 (ko) * 2015-04-15 2017-05-23 (주)피엔티 막-전극 조립체 형성 장치 및 형성 방법
JP2017004809A (ja) * 2015-06-12 2017-01-05 本田技研工業株式会社 電極層製造方法

Also Published As

Publication number Publication date
EP2555291A1 (en) 2013-02-06
JPWO2011118244A1 (ja) 2013-07-04
KR101479627B1 (ko) 2015-01-06
JP5772813B2 (ja) 2015-09-02
EP2555291A4 (en) 2016-08-03
CN102823040B (zh) 2015-03-11
KR20130001294A (ko) 2013-01-03
US20130045438A1 (en) 2013-02-21
CN102823040A (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5772813B2 (ja) 燃料電池膜電極接合体の製造方法および燃料電池膜電極接合体の製造装置
JP5196717B2 (ja) 触媒層転写シート、触媒層−電解質膜積層体の製造方法、電極−電解質膜接合体の製造方法、および燃料電池の製造方法
US20140011116A1 (en) Manufacturing method and apparatus for membrane electrode assembly, and polymer electrolyte fuel cell
JP4812331B2 (ja) 燃料電池用接合体の製造方法及び燃料電池用接合体の製造装置
JP2006339022A (ja) 固体高分子形燃料電池用マスクフィルム付き電解質膜−電極接合体及びその製造方法
US9640823B2 (en) Manufacturing method of membrane electrode assembly
JP5594021B2 (ja) 膜電極接合体及びその製造方法
JP4810841B2 (ja) 固体高分子形燃料電池用電解質膜−触媒層接合体の製造方法および製造装置
JP6439678B2 (ja) 触媒転写フィルム用基材フィルム及びその製造方法、触媒転写フィルムの製造方法、触媒層付電解質膜の製造方法
JP5707825B2 (ja) 固体高分子形燃料電池の膜電極接合体およびその製造方法
JP5838570B2 (ja) 固体高分子形燃料電池における膜電極接合体
JP2007265733A (ja) 転写シート、触媒層−電解質膜積層体及びこれらの製造方法
JP5273207B2 (ja) 固体高分子形燃料電池用マスクフィルム付き電解質膜−電極接合体及びその製造方法
JP7110961B2 (ja) 燃料電池用膜電極ガス拡散層接合体の製造方法
JP2008077986A (ja) 固体高分子形燃料電池用触媒層の転写方法及び電解質膜−触媒層接合体
JP6550917B2 (ja) 膜−電極接合体の製造方法および膜−電極接合体
JP2011204425A (ja) 燃料電池用セパレータ及びその製造方法
JP6746994B2 (ja) 燃料電池の膜電極接合体の製造方法
WO2013080421A1 (ja) 直接酸化型燃料電池およびこれに用いる膜触媒層接合体の製造方法
JP6319940B2 (ja) 触媒層付電解質膜の製造方法
JP6307960B2 (ja) 固体高分子形燃料電池用触媒層付電解質膜の製造方法、固体高分子形燃料電池および触媒層付電解質膜
JP2013084426A (ja) 膜−触媒層接合体の製造方法及び膜電極接合体の製造方法
JP2018163745A (ja) 燃料電池用膜電極接合体及びその製造方法、単電池セル、燃料電池スタック、固体高分子形燃料電池
JP2018077980A (ja) 膜電極接合体の製造方法
JP2010272223A (ja) 膜電極接合体、膜電極接合体製造用の転写基材、膜電極接合体製造用の電極触媒層の塗工転写基材及び固体高分子形燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015920.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506869

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011759053

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13636710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027904

Country of ref document: KR

Kind code of ref document: A