WO2011115202A1 - 高圧水素ガス貯蔵容器用アルミニウム合金材 - Google Patents

高圧水素ガス貯蔵容器用アルミニウム合金材 Download PDF

Info

Publication number
WO2011115202A1
WO2011115202A1 PCT/JP2011/056369 JP2011056369W WO2011115202A1 WO 2011115202 A1 WO2011115202 A1 WO 2011115202A1 JP 2011056369 W JP2011056369 W JP 2011056369W WO 2011115202 A1 WO2011115202 A1 WO 2011115202A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy material
less
hydrogen embrittlement
storage container
Prior art date
Application number
PCT/JP2011/056369
Other languages
English (en)
French (fr)
Inventor
中井 学
安永 繁信
Original Assignee
株式会社神戸製鋼所
三菱アルミニウム株式会社
古河スカイ株式会社
日本軽金属株式会社
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 三菱アルミニウム株式会社, 古河スカイ株式会社, 日本軽金属株式会社, 昭和電工株式会社 filed Critical 株式会社神戸製鋼所
Priority to CN201180014326.4A priority Critical patent/CN102812141B/zh
Priority to US13/635,693 priority patent/US9249483B2/en
Priority to KR1020127024204A priority patent/KR101457774B1/ko
Priority to EP11756386.6A priority patent/EP2548984B1/en
Publication of WO2011115202A1 publication Critical patent/WO2011115202A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to an AA6066 standard aluminum alloy material for a high-pressure hydrogen gas storage container.
  • the main purpose of the present invention is a main body member of a high-pressure hydrogen gas storage container such as a liner, but the peripheral member of the high-pressure hydrogen gas storage container such as a base or a gas pipe is also used for a high-pressure hydrogen gas storage container. To express.
  • the high-pressure hydrogen gas storage container using an aluminum alloy liner is not composed of an aluminum alloy alone, but a composite in which a fiber reinforced resin or reinforcing fiber is wound (filament winding) around the outer surface of the aluminum alloy liner.
  • the mainstream is made of materials.
  • Patent Document 1 discloses a method for manufacturing a high-pressure hydrogen gas storage container using an aluminum alloy liner from a high strength precipitation hardening type 7000 series aluminum alloy extruded material. That is, a 7000 series aluminum alloy extruded material is subjected to a drawing process, the drawn material is subjected to a solution treatment, and then an impact process is performed to form a bottomed cylindrical body. Thereafter, a gas outlet is formed by cold die forging and aging treatment is performed to manufacture a small high-pressure gas container.
  • Patent Documents 2 and 3 propose that the proof stress of an aluminum alloy liner is further improved and the manufacturing method thereof is also improved. That is, it has been proposed that a solution treatment is applied to a 7000 series aluminum alloy material, and thereafter, ironing is performed to form a liner shape while imparting plastic strain, thereby omitting an aging treatment after the solution treatment.
  • Patent Document 3 also discloses an aluminum alloy having a composition standardized to AA6066 (hereinafter also referred to as AA6066 standard aluminum alloy or AA6066 alloy) having excellent resistance to 7000 series and stress corrosion cracking resistance (SCC resistance). Proposed as a liner material.
  • a liner material for such a 6066 aluminum alloy high-pressure hydrogen gas storage container is also proposed in Patent Document 4.
  • This 6066 alloy is a precipitation hardening type aluminum alloy material having a high amount of Mg and Si and a relatively high strength among 6000 series aluminum alloys, and is expected to be a promising liner material for high-pressure hydrogen gas storage containers.
  • the 7000 series aluminum alloy has higher strength than the 6066 alloy.
  • 7000 series alloys have a large content of main elements such as Zn, Mg and Cu, and stress corrosion cracking (SCC) involving hydrogen embrittlement becomes a problem.
  • SCC stress corrosion cracking
  • the hydrogen embrittlement resistance is further deteriorated.
  • the billet and slab are liable to crack during melt casting.
  • cracks are likely to occur during hot working such as rolling, forging, and extrusion, and in extrusion, there is a problem that the extrusion speed becomes extremely low and productivity is lowered.
  • this AA6066 alloy material is the most suitable material for a high-pressure hydrogen gas storage container among aluminum alloys.
  • the improvement and combination of the above-described hydrogen embrittlement resistance and strength remain important improvements and improvement issues.
  • Mg and Si contained in the AA6066 alloy composition are Mg ⁇ 1.73Si ⁇ 0.52%, Mg ⁇ 1.5%, Mg ⁇ 0.9%, and Si ⁇ 1.8. It has been proposed to improve the hydrogen embrittlement resistance of the AA6066 alloy by containing it within a specific range that satisfies the respective%.
  • JP-A-6-63681 Japanese Patent No. 3750449 JP 2000-233245 A JP 2001-349494 A JP 2009-24225 A
  • Patent Document 5 although the hydrogen embrittlement resistance can surely be improved, the mechanical properties of the AA6066 aluminum alloy material after the T6 tempering are based on the example, even if it has the highest strength, the tensile strength. Is 403 MPa, and the 0.2% proof stress is about 387 MPa. Therefore, it is necessary to increase the strength in order to reduce the thickness of the high-pressure hydrogen gas storage container in order to reduce the liner weight.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an aluminum alloy material for a high-pressure hydrogen gas storage container that has higher strength while having excellent hydrogen embrittlement resistance.
  • the gist of the present invention is, in mass%, Mg: 0.8 to 1.4%, Si: 0.9 to 1.8%, Fe: less than 0.44% (however, 0 %: Cu: 0.05-1.2%, Mn: 0.2-0.9%, Cr: 0.40% or less (including 0%), Zn: 0.25% or less (Including 0%), Ti: 0.20% or less (including 0%), respectively, the balance is made of Al and inevitable impurities, and the aluminum alloy structure has an equivalent circle diameter of 800 nm or less.
  • the chemical component composition of the aluminum alloy material of the present invention is a standardized AA6066 alloy composition, and further limits the contents of Fe, Mn, and Cu to be narrower than the standard composition range, and Mg, The range of each content of Si, Cr, Zn, and Ti is the same as the standard range of AA6066.
  • the said aluminum alloy material said by this invention includes the rolled sheet by hot rolling, the rolled sheet by cold rolling, the shape by hot extrusion, and the forging material by hot forging. Further, as mechanical properties after the T6 tempering of the aluminum alloy material, it is preferable that the tensile strength is 410 MPa or more, the 0.2% proof stress is 360 MPa or more, and the elongation is 10% or more.
  • a fiber reinforced resin or a reinforcing fiber is wound around and suitably used as a high-pressure hydrogen gas storage container.
  • the hydrogen embrittlement resistance of the aluminum alloy material is 5% of the case where the strain rate is 6.7 ⁇ 10 ⁇ 7 s ⁇ 1 or less and only the atmospheric conditions are changed and the aluminum alloy material is subjected to tensile deformation.
  • the elongation value in a dry atmosphere below RH is ⁇ 1
  • the elongation value in a highly humid atmosphere above 90% RH is ⁇ 2
  • the hydrogen embrittlement susceptibility index represented by [( ⁇ 1- ⁇ 2) / ⁇ 1] is 0. It is preferably 1 or less (including negative values).
  • the present inventors investigated the relationship between the composition, structure, hydrogen embrittlement resistance and strength of AA6066 alloy. As a result, it has been found that, among the compositions of the AA6066 alloy, the contents of Fe, Mn transition elements and Cu other than the main elements Mg and Si and particularly the hydrogen embrittlement resistance are greatly affected. Further, it has been found that the average density of dispersed particles formed by these transition elements and the average density of crystallized substances greatly influence the hydrogen embrittlement resistance.
  • the content of the Fe transition element increases, the number (density) of dispersed particles and crystallized substances in the AA6066 alloy material structure increases. However, the behavior (action) of the dispersed particles and the crystallized materials are completely different from each other. If the (average) density of the dispersed particles increases, the hydrogen embrittlement resistance is greatly improved. It was found that the hydrogen embrittlement resistance greatly decreases as the (average) density of the object increases.
  • the dispersed particles improve the hydrogen embrittlement resistance is that the dispersed particles have a function as a hydrogen trap (trapping) site in the 6066 alloy, and therefore, the effect of suppressing the accumulation of hydrogen at the crystal grain boundaries.
  • the size of the dispersed particles is fine at the nano-order level when the material is produced by a conventional method. For this reason, even if hydrogen is trapped, it is unlikely to be the starting point of destruction, and it is assumed that the hydrogen embrittlement resistance is improved.
  • the dispersed particles have the effect of suppressing recrystallization and making the crystal grains finer, and this is considered to lead to an improvement in hydrogen embrittlement resistance as well as an increase in strength. . Therefore, if a certain amount of these dispersed particles is secured, the hydrogen embrittlement resistance and strength are improved.
  • the crystallized product is also considered to be a site where hydrogen accumulates.
  • the interface between the crystallized material and the parent phase is a place where hydrogen easily enters the material.
  • the crystallized substance is on the order of microns and is larger than the dispersed particles.
  • the specific composition is further narrowed, and the aluminum alloy material has a structure in which a small amount of fine dispersed particles are dispersed and a coarse crystallized product is small.
  • an aluminum alloy material having excellent hydrogen embrittlement resistance and high strength and suitable as a container for high-pressure hydrogen storage can be provided.
  • the chemical composition of the aluminum alloy material of the present invention is that, as described above, the mechanical properties of the aluminum alloy material after T6 tempering are the mechanical properties necessary for a high-pressure hydrogen gas storage container.
  • the specific composition is narrower than the composition range. That is, in order to control the dispersed particles and crystallized materials for the purpose of improving hydrogen embrittlement resistance and strength, among the main elements specified in the AA6066 alloy standard, in particular, the contents of Fe and Mn are specified. The balance is limited to a narrower range.
  • the T6 tempering means that an aluminum alloy material is subjected to a peak aging treatment after a solution treatment and a quenching treatment.
  • the chemical component composition of the aluminum alloy material of the present invention is narrower than the composition range of the standardized AA6066 alloy, and in mass%, Mg: 0.8 to 1.4%, Si: 0.9 ⁇ 1.8%, Fe: less than 0.44% (excluding 0%), Cu: 0.7-1.2%, Mn: 0.7-0.9%, Cr: 0.40%
  • Mg 0.8 to 1.4%
  • Si 0.9 ⁇ 1.8%
  • Fe less than 0.44%
  • Cu 0.7-1.2%
  • Mn 0.7-0.9%
  • Cr 0.40%
  • Zn 0.25% or less
  • Ti 0.20% or less (including 0%)
  • the ranges of the contents of Mg, Si, Cu, Cr, Zn, and Ti to be defined are the same as the standard ranges (upper limit value and lower limit value) of AA6066. is there.
  • % display of content of each element means the mass% altogether.
  • the other elements other than these are impurities as in the standard of AA6066.
  • the standard of AA6066 is 0.05% or less for individual elements, and the total amount (total) of these elements is 0.15% or less (allowable amount).
  • the preferable content range and significance of each element, or the allowable amount will be described below for each element.
  • Si 0.9-1.8% Si, together with Mg, partly dissolves in the aluminum alloy matrix and strengthens.
  • the Si content is in the range of 0.9 to 1.8% in accordance with the standard of AA6066.
  • Mg 0.8-1.4% Mg, like Si, strengthens the solid solution and forms aging precipitates that contribute to strength improvement together with Si during the artificial aging treatment, exerts age-hardening ability, and mechanical properties necessary as a high-pressure hydrogen gas storage container It is an essential element for obtaining the high strength and high proof stress necessary to satisfy the above. If the Mg content is too small, the absolute amount is insufficient, so that the solid solution strengthening and age hardening ability are insufficient. As a result, the required high strength and high yield strength cannot be obtained. On the other hand, when there is too much Mg content, intensity
  • the Mg content is in the range of 0.8 to 1.4% in accordance with the standard of AA6066.
  • Fe Less than 0.44% (excluding 0%), Fe is 0.50% or less (including 0%) as an impurity in the standard of AA6066.
  • the Fe itself or the Fe content has been recognized only as an allowable amount as a general impurity inevitably contained from a melting raw material using scrap.
  • Fe in order to allow a certain amount of fine dispersion particles of nano order to exist, Fe is contained as an essential element in a substantial amount of less than 0.44%. Fe, like Mn, forms a certain amount of average density that defines Al- (Fe, Mn, Cr) -based finely dispersed particles of the Al- (Fe, Mn, Cr) system during the homogenization heat treatment, and traps hydrogen. And improve the hydrogen embrittlement resistance. In addition, there is an effect of improving the strength by suppressing recrystallization and making the crystal finer.
  • Fe is not contained in a substantial amount of less than 0.44%, too much or too little, the hydrogen embrittlement resistance is deteriorated.
  • the average density D (particles / ⁇ m 2 ) of dispersed particles having an equivalent circle diameter of 800 nm or less and the average of crystallized substances having an equivalent circle diameter of 0.38 ⁇ m or more does not satisfy D ⁇ 0.0011 ⁇ C-6.6, and these effects are not exhibited.
  • Fe is preferably 0 in order to ensure that these effects are reliably exhibited regardless of variations in the production conditions of the aluminum alloy material. 0.04% or more is contained.
  • the Fe content is narrower than the standard of AA6066 and is limited to a range of less than 0.44% (but not including 0%).
  • Mn 0.7 to 0.9%
  • Mn forms a certain amount of average density that defines finely dispersed particles of the order of Al- (Fe, Mn, Cr) system during homogenization heat treatment, functions as a hydrogen trapping (trapping) site, Improve hydrogen embrittlement characteristics. Further, a part of Mn is dissolved in the aluminum alloy plate matrix to cause solid solution strengthening, and the dispersed particles have an effect of suppressing recrystallization and refining crystal grains.
  • the Mn content is too small, and only a certain amount of average density that defines Al- (Fe, Mn, Cr) -based nano-order fine dispersed particles cannot be secured.
  • the Mn content exceeds the upper limit of 0.9% defined in the present invention, coarse micron-order crystallized products are formed. On the contrary, the strength and hydrogen embrittlement resistance are lowered.
  • the Mn content is narrower than the standard of AA6066 and is limited to a range of 0.7 to 0.9%.
  • Cu 0.7 to 1.2% Cu contributes to the improvement of strength and proof stress together with Mg and Si. If the Cu content is too small, the effect cannot be sufficiently obtained, and the high strength and high proof stress necessary for satisfying the mechanical properties necessary for a high-pressure hydrogen gas storage container cannot be obtained. In addition, since the density of dispersed particles trapping hydrogen is lowered, the hydrogen embrittlement resistance is deteriorated. On the other hand, when there is too much Cu content, intensity
  • Cr 0.40% or less (including 0%), Zn: 0.25% or less (including 0%), Ti: 0.20% or less (including 0%) Cr, Zn, and Ti are regulated as impurities.
  • Cr forms dispersed particles in the same manner as Fe and Mn, but the amount added is smaller than that of Mn and Fe, and the effect of dispersed particles containing Cr is not as great as that of Fe and Mn.
  • the content is too large, coarse micron-order crystallized products are formed, and on the contrary, the strength and hydrogen embrittlement resistance are lowered. Accordingly, Cr is regulated as an impurity to 0.40% or less (including 0%) as an AA6066 standard.
  • Zn is regulated as an impurity to 0.25% or less (including 0%) as the standard of AA6066.
  • Ti together with B contained in the mother alloy for Ti addition, has the effect of refining the crystal grains of the ingot, but if the Ti content is too high, it forms a coarse intermetallic compound, Reduces hydrogen embrittlement resistance.
  • the formability of the plate and the workability such as rolling, extrusion, and forging during the production of the plate material and profile are greatly reduced. Therefore, Ti is restricted to 0.20% or less (including 0%) as impurities as AA6066 standard.
  • the contents of Mg, Si, Cr, Zn, and Ti are the same as the standard range of AA6066 as described above.
  • a certain amount of fine dispersed particles are present, and a structure in which coarse crystallized substances are regulated as few as possible. That is, in order to obtain hydrogen embrittlement resistance, the average density of dispersed particles having a circle-equivalent diameter of 800 nm or less is D (particles / ⁇ m 2 ) and the average density C of crystallized crystals having a circle-equivalent diameter of 0.38 ⁇ m or more ( 1 / mm 2 ) so that the expression D + 0.0011 ⁇ C ⁇ 9.5 ⁇ 0 shown in FIG. In FIG.
  • FIG. 1 is an arrangement of the average density D of dispersed particles and the average density C of crystallized materials in each example of Example Table 2 described later from the viewpoint of hydrogen embrittlement resistance, and the vertical axis represents the dispersion.
  • the average density D of the particles and the horizontal axis are the average density C of the crystallized product.
  • the average density C of the products is to be a value positioned in a region where the hydrogen embrittlement susceptibility index (elongation) on the left side of this straight line is 0.1 or less (including a negative value).
  • the region on the right side of the straight line is a region where the hydrogen embrittlement susceptibility index (elongation) exceeds 0.1, and the average density D of dispersed particles or the average density C of crystallized material is located in this region. In this case, the hydrogen embrittlement resistance is inferior.
  • the processing means such as a rolled plate, extruded material, or forged material can be used. Regardless, a certain amount of the finely dispersed particles described above can be present, and a coarse crystallized product can be regulated as little as possible. As a result, it does not become brittle even if the filling pressure of hydrogen gas in a high-pressure hydrogen gas storage container in an automobile-mounted application increases when it is used as a liner material regardless of a rolled plate, extruded material, or forged material. The hydrogen embrittlement resistance can be obtained. In addition, the strength can be increased to reduce the thickness to reduce the liner weight.
  • the dispersed particles have a function as a hydrogen trapping site, and the size of the dispersed particles is fine at the nano-order level when a material is produced by a conventional method. For this reason, even if hydrogen is trapped, it does not become a starting point of destruction, and the strength and hydrogen embrittlement resistance are improved. Further, as is well known, the dispersed particles have an effect of refining crystal grains. Therefore, if a certain amount of these dispersed particles is secured as defined above, the hydrogen embrittlement resistance and strength are improved.
  • the average density D (particles / ⁇ m 2 ) of dispersed particles having an equivalent circle diameter of 800 nm or less and the average density C (particles / mm 2 ) of crystallized particles having an equivalent circle diameter of 0.38 ⁇ m or more are dispersed.
  • the average density D of the particles is larger than the value of ⁇ 0.0011 ⁇ C + 9.5, the number of fine dispersed particles (the number) of hydrogen trapping sites is excessive.
  • the filling pressure of hydrogen gas in the high-pressure hydrogen gas storage container is increased, it is likely to become brittle.
  • the dispersed particles defined in the present invention are mainly compounds of transition elements such as Mn and Al and Si, and may contain Fe. Further, depending on the amount of other transition elements such as Cr, Zr, V, etc., it is a compound containing these elements. These are mainly generated at the time of ingot casting, homogenization heat treatment of the ingot, and the like. However, since the maximum length level is greatly different (small) unlike the crystallized product, a TEM (transmission electron microscope) is generally used for the observation. However, only a narrow region can be observed, and there is a risk that the state of the microstructure in a specific region may be misunderstood as average information of the entire sample.
  • TEM transmission electron microscope
  • the dispersed particles defined in the present invention are observed and measured at a relatively high magnification of 10,000 times using an SEM (scanning electron microscope).
  • the dispersed particles defined in the present invention need not be identified by elemental analysis (elemental amount analysis) using EDX or the like. That is, the second phase particles having a circle-equivalent diameter of 800 nm or less, which are observed (or can be observed) by the SEM under the above conditions, are all regarded as dispersed particles defined in the present invention.
  • ultra-fine dispersed particles having a maximum equivalent circle diameter of less than 1 nm are difficult to accurately observe and measure the maximum length even with an SEM with a magnification of 10,000 times.
  • the (capture) site effect is also considered small. Therefore, the lower limit of the preferable maximum length of the dispersed particles is 1 nm.
  • the measurement surface of the average density of the dispersed particles defined in the present invention is the longitudinal direction (axis) of the pressure vessel member such as the aluminum alloy material after T6 tempering treatment and the liner formed and processed like the crystallized material.
  • Crystallized product refers to a crystallized product crystallized at the time of casting, a micron-sized coarse Mg 2 Si formed at the time of homogenizing heat treatment or hot working and remaining even after the subsequent solution treatment. It is assumed that fine crystallized products and crystallized products also have a function as a hydrogen trapping (capturing) site, similar to the dispersed particles. However, when the material is produced by a conventional method, the existing crystallization product is on the order of microns and larger than the dispersed particles. For this reason, it is presumed that when hydrogen is trapped, it tends to be a starting point of destruction. Therefore, if these crystallized substances are restricted as much as possible, the hydrogen embrittlement resistance is improved, and the general toughness and fatigue characteristics are also improved.
  • the average density C (particles / mm 2 ) of crystallized grains having an equivalent circle diameter of 0.38 ⁇ m or more is too large, the average density D (particles / ⁇ m 2 ) of dispersed particles having an equivalent circle diameter of 800 nm or less is large.
  • D + 0.0011 ⁇ C ⁇ 9.5 ⁇ 0 is not satisfied, and there are too many coarse crystallized substances that are the starting points of fracture, and the hydrogen embrittlement resistance is remarkably deteriorated.
  • the crystallized substance specified in the present invention can be confirmed as an irregularly shaped particle existing in the matrix regardless of the composition by observation with an SEM having a magnification of about 300 times of the aluminum alloy material structure (the circle defined in the present invention). It can be determined whether the maximum equivalent diameter is 0.38 ⁇ m or less).
  • These crystallized products are mainly Mg, Si-based compounds, Si, Fe-based compounds, etc. (however, in the case of containing many transition elements such as Cu and Mn, Cr, Zr, V, etc., These elements may be included). These include crystallized substances that crystallize during casting, coarse micron-sized Mg2MgSi, etc. that are formed during homogenization heat treatment and hot working and remain after the subsequent solution treatment.
  • the composition of the second phase particles is not limited, elemental analysis (elements) of each crystallized substance using EDX (energy dispersive spectroscopy) or the like at the time of observation by the SEM (Quantitative analysis) is not necessary. That is, the coarse second-phase particles having an equivalent circle diameter of 0.38 ⁇ m or more observed with the SEM under the above conditions are all crystallized particles defined in the present invention.
  • the maximum size of coarse crystallized particles cannot be predicted because it differs depending on the composition and manufacturing method, and all coarse crystallized particles having an equivalent circle diameter of 0.38 ⁇ m or more are subject to regulation. In the present invention, the upper limit of the maximum size of the crystallized particles is not defined.
  • the measurement surface of the average density of the crystallized product specified in the present invention is the longitudinal direction (axis) of the pressure vessel member such as a liner obtained by molding and processing the aluminum alloy material after T6 tempering treatment, as with the dispersed particles.
  • each crystallized substance observed as the second phase particles of any composition in the observation visual field is observed at a magnification of x300 and an acceleration voltage of 15 kV.
  • image processing amorphous crystals are replaced with circles of the same area, the number of crystals having a maximum diameter of 0.38 ⁇ m or more is counted, and the number per unit area 1 mm 2 of the measurement field, that is, density (pieces) / mm 2 ) is calculated.
  • all crystallized substances observed by SEM are evaluated. The measurement is performed at any five points in the cross section of each test wire rod, and each of the two visual fields (total 10 visual fields) is averaged to obtain the average density of the crystallized product defined in the present invention.
  • the alloy composition of the specific composition is 6066, as long as the temperature of the homogenization heat treatment is taken care of, a rolled plate by hot rolling, a rolled plate by cold rolling, a profile by hot extrusion, or a forging material by hot forging
  • the aluminum alloy material of the present invention can be produced by a conventional method. That is, the aluminum alloy material structure of the present invention in which a certain amount of fine dispersed particles are present and the amount of coarse crystallized substances is regulated as little as possible can be obtained.
  • the 6066 alloy ingot of the specific composition is melted and the ingot is subjected to homogenization heat treatment, followed by hot rolling and further cold rolling as necessary to obtain a cold rolled plate having a desired thickness, Alternatively, hot extrusion or hot forging is performed to obtain a 6066 alloy profile or forging having a desired thickness and shape.
  • hot extrusion or hot forging is performed to obtain a 6066 alloy profile or forging having a desired thickness and shape.
  • the molten aluminum alloy melt-adjusted within the specific 6066 composition range is cast by appropriately selecting a normal melting casting method such as a semi-continuous casting method (DC casting method).
  • the cast aluminum alloy ingot Prior to the above-mentioned various hot workings, the cast aluminum alloy ingot is subjected to a homogenization heat treatment (soaking) in a relatively high temperature range of 540 ° C. or more to homogenize the structure (within the crystal grains in the ingot structure).
  • the crystallized product is refined.
  • the soaking temperature is relatively low, 350 to 550 ° C. (540 ° C. in the embodiment)
  • the crystallization product can be refined even within the composition of the present invention.
  • the soaking temperature is too high, the dispersed particles are coarsened and the density tends to be low. There is a risk that the number of hydrogen trap sites is reduced and the hydrogen embrittlement resistance is deteriorated. Further, since the dispersed particles are coarse and low in density, recrystallization is likely to occur, and the crystal grains are also coarsened, so that the strength is low and easy. Also, ingot burning is likely to occur. Therefore, the upper limit of the soaking temperature is 575 ° C.
  • the billet (ingot) After this soaking process, it is preferable to forcibly quench the billet (ingot) with a fan or the like to increase the cooling rate. If the cooling rate is slow, such as allowing the billet (ingot) to cool, there is a risk of the crystallized material becoming coarse during the cooling process.
  • the standard of the average cooling rate in such rapid cooling is preferably 80 ° C./hr or higher up to a temperature of 300 ° C. or lower including room temperature.
  • Hot working such as hot rolling, hot extrusion, hot forging, etc. is performed by a conventional method.
  • the hot working start temperature is selected from the range of 350 to 575 ° C. in relation to the composition of the aluminum alloy and the size of the ingot.
  • the processing rate of hot working is also selected from a range of processing rates of 85% or more depending on the composition of the aluminum alloy and the relationship between the ingot size and the desired thickness of the aluminum alloy material (product). If the processing rate is too small, the crystallized product is not pulverized to a small size, and coarse crystallized product remains, and the crystallized product cannot be refined as defined in the present invention.
  • the ingot after the homogenization heat treatment is cooled to the hot rolling temperature, or once cooled to room temperature and then reheated to the hot rolling temperature, hot rolled, and hot rolled to a desired thickness.
  • a rolled sheet is obtained or further cold-rolled as necessary to obtain a cold-rolled sheet having a desired thickness and then tempered.
  • the ingot after the homogenization heat treatment is reheated, hot extruded to a desired thickness and shape in the range of 350 to 575 ° C, and further cold-extruded to the desired shape and thickness as required ( Draw core) and then temper.
  • a forged material is the ingot after the homogenization heat treatment reheated and hot forged to a desired thickness and shape within a range of 350 to 575 ° C. to obtain a hot forged material having a desired thickness?
  • hot forging, warm forging, and cold forging are performed to obtain a forged material having a desired thickness, and then tempering.
  • tempering treatment After these hot workings, as a tempering treatment for the aluminum alloy material, first, solution treatment and rapid cooling (quenching) treatment are performed. This solution treatment is preferably performed at a temperature of 530 ° C. or higher in order to sufficiently precipitate aging precipitates that contribute to strength improvement by the relationship with the component composition of the aluminum alloy and the subsequent artificial age hardening treatment at a high temperature. 570 is performed under the condition of holding for a predetermined time. Immediately after the solution treatment, rapid cooling (quenching) is performed at a cooling rate of 10 ° C./second or more. When the cooling rate of the rapid cooling treatment after the solution treatment is slow, Si, MgSi compounds and the like are likely to precipitate on the grain boundaries, and mechanical properties and formability are deteriorated.
  • any of a batch furnace, a continuous furnace, and a molten salt bath furnace may be used as a heat treatment furnace used for solution treatment and quenching treatment.
  • the quenching treatment after the solution treatment may be any of water immersion, water jetting, mist jetting, air jetting, and air cooling.
  • any of a batch furnace, a continuous furnace, an oil bath, a hot water bath, etc. may be used for the high temperature aging treatment performed after the solution treatment and the quenching treatment.
  • a high temperature aging treatment at 150 to 200 ° C. is preferably performed immediately in order to improve mechanical properties such as strength.
  • This tempering is a tempering symbol T6 (solution treatment and quenching treatment + peak aging treatment) performed under the heat treatment conditions described in JISH-0001, for example.
  • T6 solution treatment and quenching treatment + peak aging treatment
  • the mechanical properties after the T6 tempering of the aluminum alloy material are a tensile strength of 410 MPa or more, a 0.2% proof stress of 360 MPa or more, and an elongation of 10% or more. It becomes difficult to obtain mechanical properties.
  • the cast billet is reheated and hot extruded so that the temperature of the extruded material on the outlet side of the hot extrusion is in the solution temperature range, and then the extruded material is immediately after the extrusion.
  • Forcibly cooling and quenching may be performed online by water injection, mist injection, air injection, or the like to a temperature near room temperature.
  • high temperature aging treatment may be performed after room temperature aging and distortion correction as necessary.
  • high temperature An aging treatment T6 may be performed.
  • the above-described tempering may be selected and performed on the plate material, the extruded material, and the forged material in advance before preparing the member for the high-pressure gas container.
  • the T6 tempering treatment is performed according to the required characteristics of each member after producing these high-pressure gas container materials and peripheral members. Each may be selected.
  • the tempering treatment and the quenching treatment may be performed separately, such as performing the high pressure gas container material and the peripheral member before the production, and performing the peak aging treatment after the production.
  • This cold-rolled sheet was quenched by water quenching (described as WQ in Table 2) immediately after solution treatment at 550 ° C. ⁇ 3 hours (hr) shown in Table 2 in a batch furnace. It was. Then, after 3 days of room temperature aging (15-35 ° C), after correcting the distortion of the plate with a leveler, 180 ° C ⁇ 9 hours of peak aging treatment, T6 (after solution treatment and quenching) Each tempered material of peak aging treatment was prepared. An air furnace was used for soaking, heating to hot rolling temperature, and high temperature aging treatment. The cooling rate in the case of water quenching immediately after the solution treatment shown in Table 2 is about 250 ° C./second. Incidentally, the cooling rate in the case of forced air cooling by a fan is about 50 ° C./min.
  • sample material properties The external dimensions of the tempered plate materials thus manufactured were 1.0 mm in length and 200 mm in width in common with each example. Then, from the plate material after room temperature aging (elapsed) for 30 days after the high temperature aging treatment of this plate, a test material (plate-shaped test piece) was cut out, and the microstructure, tensile properties, hydrogen embrittlement resistance of each test material were cut out. The crystallization characteristics were measured and evaluated. These results are shown in Table 2.
  • Microstructure The average density (particles / ⁇ m 2 ) of directly dispersed particles having an equivalent circle diameter of 800 nm or less and the average density of crystallized substances having an equivalent circle diameter of 0.38 ⁇ m or more (pieces / mm 2 ) of each test material are: Each was measured by the method described above.
  • Tensile test In the tensile test, a JIS No. 5 test piece (GL 50 mm) of JISZ2201 was sampled from the test material so that the longitudinal direction of the test piece was perpendicular to the rolling direction, and pulled at room temperature in air at a crosshead speed of 5 mm / min. A test was conducted. The measured N number was 5, and each mechanical property was an average of these values.
  • the hydrogen embrittlement resistance of the test material is 5% RH or less when the aluminum alloy material is subjected to tensile deformation only by changing the atmospheric condition with a strain rate of 6.7 ⁇ 10 ⁇ 7 s ⁇ 1 or less.
  • the elongation value in a dry atmosphere is ⁇ 1
  • the elongation value in a high-humidity atmosphere of 90% RH or higher is ⁇ 2.
  • a small tensile test piece having a width of 5 mm, a length of 12 mm, and a shoulder radius of 7.5 mm from the test material is set so that the longitudinal direction of the test piece is perpendicular to the rolling direction of the plate.
  • the sample was sampled and pulled to break at two initial strain rates of 6.7 ⁇ 10 ⁇ 7 s ⁇ 1 , and in two conditions: a dry atmosphere of 5% RH or less and a highly humid atmosphere of 90% RH or more.
  • a test was conducted. Then, the rate of decrease of the elongation value ⁇ 2 in the highly humid atmosphere of 90% RH or more relative to the elongation value ⁇ 1 in the dry atmosphere of 5% RH or less was calculated by the above formula. It can be evaluated that the hydrogen embrittlement resistance is excellent as the decrease rate of these elongation values is 0.1 or less, more preferably 0.05 or less.
  • the rate of decrease in elongation value of 0.05 means that a 6061-T6 material that has been proven to be excellent in hydrogen embrittlement resistance in a hydrogen container member was tested for hydrogen embrittlement resistance under the same conditions as described above. This is the reference value obtained. Further, the elongation reduction rate of 10% was obtained by testing the hydrogen embrittlement resistance test under the same conditions as described above for 7050-T7 material which is not a hydrogen container member but has a proven track record as a structural member having excellent corrosion resistance. This is the reference value.
  • Invention Examples 1 to 3 have both high strength and hydrogen embrittlement resistance. That is, each of the inventive examples satisfies the aluminum alloy composition of the present invention, and the production conditions including tempering are appropriate. For this reason, the relationship between the average density of dispersed particles having a circle-equivalent diameter of 800 nm or less and D (particles / ⁇ m 2 ) and the average density C (particles / mm 2 ) of crystallized particles having a circle-equivalent diameter of 0.38 ⁇ m or more is , D + 0.0011 ⁇ C ⁇ 9.5 ⁇ 0 (D ⁇ ⁇ 0.0011 ⁇ C + 9.5), a fine dispersed particle is dispersed in a certain amount, and there is little coarse crystallized structure.
  • the tensile strength is 410 MPa or more
  • the 0.2% proof stress is 360 MPa or more
  • the elongation is 10% or more
  • the hydrogen embrittlement susceptibility index is 0.1 or less even under high-pressure hydrogen gas. Combines hydrogen embrittlement resistance.
  • Comparative Examples 1 to 3 do not satisfy both strength and hydrogen embrittlement resistance. That is, each comparative example does not satisfy the aluminum alloy composition of the present invention or the manufacturing method is inappropriate.
  • Comparative Example 1 Although the Fe content is within the standard range of AA6066, it exceeds the upper limit of the present invention and is too much. For this reason, although the production conditions are appropriate and a certain amount of fine dispersed particles are dispersed, there are too many coarse crystallized products, and D + 0.0011 ⁇ C ⁇ 9.5 ⁇ 0 (D ⁇ ⁇ 0.0011 ⁇ C + 9.5) is not satisfied and the hydrogen embrittlement resistance is inferior to that of the inventive examples.
  • Comparative Example 2 has too little Cu content, and is outside the standard range of the present invention and AA6066. For this reason, the manufacturing conditions are appropriate, the formula of D + 0.0011 ⁇ C ⁇ 9.5 ⁇ 0 is satisfied, and the hydrogen embrittlement resistance is high, but the strength is inferior to that of the inventive examples.
  • Comparative Example 3 has too little content of Mn and is outside the standard range of the present invention and AA6066. For this reason, the manufacturing conditions are appropriate, the formula D + 0.0011 ⁇ C ⁇ 9.5 ⁇ 0 is satisfied, and the hydrogen embrittlement resistance is high, but the strength is lower than that of the inventive examples.
  • a 6000 series aluminum alloy material for a high-pressure hydrogen gas storage container having excellent strength and hydrogen embrittlement resistance. Therefore, a 6000 series aluminum alloy material can be applied as a member such as a liner, a cap, or a gas pipe to a high-pressure gas container in which reinforcing fibers are wound around the outer surface of an aluminum alloy or plastic liner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 本発明は、耐水素脆化特性および機械的性質などを兼備する高圧ガス容器用アルミニウム6000系合金材を提供することを目的とする。高圧ガス容器用アルミニウム合金材を、AA6066合金の規格組成範囲よりも更にFe、MnおよびCuの含有量を狭い範囲とし、このアルミニウム合金材を、微細な分散粒子が一定量分散するとともに、粗大な晶出物が少ない組織として、高圧ガス容器としての強度と耐水素脆化特性とを向上させる。

Description

高圧水素ガス貯蔵容器用アルミニウム合金材
 本発明は、高圧水素ガス貯蔵容器用のAA6066規格アルミニウム合金材に関するものである。本発明は、ライナーなどの高圧水素ガス貯蔵容器の本体部材を主たる用途とするが、口金あるいはガス管などの高圧水素ガス貯蔵容器周辺部材も用途に含めて、高圧水素ガス貯蔵容器用として、一括して表現している。
 近年、クリーンなエネルギーとして、燃料電池の燃料となる水素が注目されている。しかし、この水素は、鉄やアルミニウム合金などの金属材料の水素脆化をもたらすので、自動車などに搭載されるガスボンベなどの高圧水素ガス貯蔵容器による高圧化での効率的な貯蔵が難しい。この点は、主流となっている鉄製の高圧ガス容器だけではなく、軽量化のためにアルミニウム合金製ライナーを用いた高圧ガス容器でも同様であって、高圧ガス容器としての信頼性から、耐水素脆化特性に優れることが要求される。
 ここで、アルミニウム合金製ライナーを用いた高圧水素ガス貯蔵容器としては、アルミニウム合金単独からなるのではなく、アルミニウム合金製ライナーの外面に、繊維強化樹脂あるいは強化用繊維を巻き付け(フィラメントワインディング)た複合材料からなることが主流である。
 例えば、特許文献1には、アルミニウム合金製ライナーを用いた高圧水素ガス貯蔵容器を、強度の高い析出硬化型7000系アルミニウム合金押出材から製造する方法が開示されている。即ち、7000系アルミニウム合金押出材に抽伸加工を施し、この抽伸加工材を溶体化処理し、その後インパクト加工を施すことにより、有底円筒体に成形する。その後冷間型鍛造によりガス取出口を形成し、時効処理して、小型高圧ガス容器を製造する。
 特許文献2、3では、アルミニウム合金製ライナーの耐力を更に向上させ、かつ、その製造方法も改善することが提案されている。すなわち、7000系アルミニウム合金素材に溶体化処理を施し、しかる後に、しごき加工して塑性ひずみを付与しながらライナー形状に成形し、溶体化処理後における時効処理を省くことが提案されている。また、特許文献3では、7000系や、耐応力腐食割れ性(耐SCC性)が優れた、AA6066に規格された組成を有するアルミニウム合金(以下、AA6066規格アルミニウム合金、あるいはAA6066合金とも言う)もライナー材として提案されている。
 このような6066アルミニウム合金の高圧水素ガス貯蔵容器のライナー材は特許文献4でも提案されている。この6066合金は、6000系アルミニウム合金の中でも、MgおよびSi量が多く、強度が比較的高い、析出硬化型のアルミニウム合金材であり、高圧水素ガス貯蔵容器のライナー材として有望視されている。
 ただ、圧延板や押出材、あるいは鍛造材などの熱間加工方法や形状によらず、このような6066アルミニウム合金材をライナー材として用いるためには、自動車搭載用途における高圧水素ガス貯蔵容器での水素ガスの充填圧力が増大しても脆化しない、耐水素脆化特性が必要である。また、ライナー軽量化のための薄肉化に向けて、より高強度化される必要がある。
 この点、この6066合金よりも、前記した7000系アルミニウム合金の方が高強度である。しかし、7000系合金はZn、MgならびにCuなどの主要元素含有量が多く、水素脆化も関与する応力腐食割れ(SCC)が問題となる。特に、過時効処理に対するピーク時効処理などで強度を高くした、高強度な7000系合金においては、耐水素脆化特性がより低下する。また、主要元素の添加量が多くなると、溶解鋳造時のビレット、スラブの割れが生じ易くなる。また、圧延、鍛造、押出等の熱間加工時に割れが生じ易くなり、押出では、押出速度が極端に低くなり等の生産性を低くするという問題もある。
 このため、このAA6066合金材は、アルミニウム合金の中でも、最も高圧水素ガス貯蔵容器に適した材料と言える。ただ、このような6066アルミニウム合金材をライナー材として用いるためには、前記した、耐水素脆化特性と強度との向上と兼備は、引き続き重要な改良、改善課題となっている。
 このため、特許文献5では、AA6066合金組成において含有されるMgおよびSiを、Mg≦1.73Si-0.52%、Mg≦1.5%、Mg≧0.9%、Si≦1.8%を各々満たす、特定の範囲内で含有させ、AA6066合金の耐水素脆化性を向上させることが提案されている。
特開平6-63681号公報 特許第3750449号公報 特開2000-233245公報 特開2001-349494号公報 特開2009-24225号公報
 前記特許文献5では、確かに耐水素脆化性は向上できるものの、そのAA6066アルミニウム合金材のT6調質後の機械的な性質は、実施例ベースで、最も強度が高いものでも、引張強さが403MPa、0.2%耐力が387MPaの程度である。したがって、高圧水素ガス貯蔵容器での、ライナー軽量化のための薄肉化に向けては、より高強度化される必要がある。
 本発明は、かかる問題に鑑みてなされたもので、優れた耐水素脆化特性を有しながら、より高強度化した、高圧水素ガス貯蔵容器用アルミニウム合金材を提供することを目的とする。
 この目的を達成するために、本発明の要旨は、質量%で、Mg:0.8~1.4%、Si:0.9~1.8%、Fe:0.44%未満(但し0%は含まず) 、Cu:0.05~1.2%、Mn:0.2~0.9%、Cr:0.40%以下(但し0%を含む) 、Zn:0.25%以下(但し0%を含む) 、Ti:0.20%以下(但し0%を含む) を各々含み、残部がAlおよび不可避的不純物よりなり、このアルミニウム合金組織における、800nm以下の円相当径を有する分散粒子の平均密度をD(個/μm2)、0.38μm以上の円相当径を有する晶出物の平均密度C(個/mm2)とした時、これらCとDとの関係が、D+0.0011×C-9.5≦0の式を満たすこととする。
 ここで、本発明アルミニウム合金材の化学成分組成は、規格化されたAA6066合金の組成であり、更に、Fe、Mn、Cuの含有量をこの規格組成範囲よりも更に狭く限定するとともに、Mg、Si、Cr、Zn、Tiの前記各含有量の範囲は、AA6066の規格範囲と同じである。なお、本発明で言う前記アルミニウム合金材とは、熱間圧延による圧延板や、冷間圧延による圧延板、あるいは熱間押出による形材や熱間鍛造による鍛造材を含む。また、前記アルミニウム合金材のT6調質後の機械的な性質として、引張強さが410MPa以上、0.2%耐力が360MPa以上、伸びが10%以上であることが好ましく、ライナー材として外側に繊維強化樹脂あるいは強化用繊維が巻き付けられて高圧水素ガス貯蔵容器として好適に使用される。また、前記アルミニウム合金材の耐水素脆化特性としては、歪み速度を6.7×10-7 s-1 以下として雰囲気条件のみを変えて、このアルミニウム合金材を引張変形させた場合の5%RH以下の乾燥雰囲気中での伸び値をδ1、90%RH以上の高湿潤雰囲気中での伸び値をδ2として、[(δ1-δ2)/δ1]で示される水素脆化感受性指標が0.1以下(マイナスの値も含む)あることが好ましい。
 本発明者らは、AA6066合金の、組成、組織と、耐水素脆化特性および強度との関係を調査した。この結果、AA6066合金の組成の中でも、主要元素であるMg、Si以外の、Fe、Mn遷移元素ならびにCuの含有量が特に、耐水素脆化特性に大きく影響することを知見した。そして、更に進んで、これら遷移元素が形成する分散粒子平均密度と晶出物の平均密度とが、耐水素脆化特性に大きく影響することを知見した。
 AA6066合金を中心とした組成において、たとえばFe遷移元素の含有量が増せば、AA6066合金材組織中の、分散粒子と晶出物の数(密度)が増す。しかし、これら分散粒子と晶出物の互いの挙動(作用)は全く異なっており、これら分散粒子の(平均)密度が増せば、耐水素脆化特性が大きく向上し、反対に、前記晶出物の(平均)密度が増せば、耐水素脆化特性が大きく低下することを知見した。
 分散粒子が耐水素脆化特性を向上させる理由は、分散粒子には、6066合金において、水素のトラップ(捕捉)サイトとしての機能があり、このため結晶粒界への水素の集積を抑制する効果があり、かつこの分散粒子の大きさは、常法により材を製造した場合、ナノオーダーレベルで微細である。このため、例え水素をトラップしても、破壊の起点とはなりにくく、耐水素脆化特性とを向上させるものと推考される。また、分散粒子には、周知の通り、再結晶の抑制ならびに結晶粒を微細化させる効果があり、これが強度の増大とともに耐水素脆化特性を向上させることにもつながっているものと推考される。したがって、これらの分散粒子を一定量確保すれば、耐水素脆化特性と強度とが向上する。
 これに対して、前記晶出物も、水素が集積するサイトと推考される。しかしながら、試料表面ならびに表層に存在する晶出物において、晶出物と母相との界面は、水素が材料内部に侵入し易い箇所とされている。晶出物の密度が高くなると、材料内部へ水素が侵入する箇所が増え、結晶粒界への集積等により破壊が生じ易くなるものと推察される。また、晶出物は大きさがミクロンオーダーと、分散粒子よりも巨大である。水素が侵入し破壊の起点として作用するとともに、そもそも晶出物の密度が高くなると、機械的特性たとえば靱性、疲労特性は低下する。したがって、これらの晶出物をできるだけ少なく規制すれば、耐水素脆化特性とともに靱性、疲労特性が向上する。
 因みに、従来から、Ni合金材料や鉄鋼材料などでは、析出物は、水素脆化やクラック発生の起点として規制されたり、逆に、有効な水素のトラップ(捕捉)サイトとして扱われたりしている。しかし、アルミニウム合金の分野、特にAA6066合金のような高強度6000系合金においては、このような分散粒子や晶出物について、耐水素脆化特性との関係はあまり知られていなかった。これは、高強度アルミニウム合金をライナーに適用した高圧ガス容器(ガスボンベ)が、水素の高圧貯蔵用容器として注目されていたにもかかわらず、研究例があまりなかったことにも起因すると推考される。
 本発明では、AA6066合金の組成範囲の中でも、更に狭い特定組成とするとともに、このアルミニウム合金材を微細な分散粒子が一定量分散するとともに、粗大な晶出物が少ない組織とする。これによって、本発明では、優れた耐水素脆化特性を有するとともに高強度化され、水素の高圧貯蔵用容器として適したアルミニウム合金材を提供できる。
本発明で規定する、分散粒子の平均密度Dと晶出物の平均密度Cとの関係式、D+0.0011×C-9.5≦0(D≦-0.0011×C+9.5)を示す説明図である。
(アルミニウム合金組成)
 先ず、本発明材のアルミニウム合金の化学成分組成について、各元素の限定理由を含めて、以下に説明する。本発明アルミニウム合金材の化学成分組成は、アルミニウム合金材のT6調質後の機械的な性質を、高圧水素ガス貯蔵容器として必要な機械的な性質とするために、前記した通り、AA6066合金の組成範囲よりも更に狭い特定組成とする。すなわち、耐水素脆化特性や強度の向上を目的として、分散粒子や晶出物を制御するために、AA6066合金規格に規定された主要元素の中でも、特に、Fe、Mnの含有量を、規格よりも狭い範囲に限定して、よりバランスさせる。なお、前記T6調質とは、アルミニウム合金材を溶体化処理および焼入れ処理後にピーク時効処理を施すことである。
 より具体的に、本発明アルミニウム合金材の化学成分組成は、規格化されたAA6066合金の組成範囲よりも更に狭く、質量%で、Mg:0.8~1.4%、Si:0.9~1.8%、Fe:0.44%未満(但し0%は含まず) 、Cu:0.7~1.2%、Mn:0.7~0.9%、Cr:0.40%以下(但し0%を含む) 、Zn:0.25%以下(但し0%を含む) 、Ti:0.20%以下(但し0%を含む) を各々含み、残部がAlおよび不可避的不純物よりなることとする。ここで、前記したFe、Mnの含有量を除き、規定するMg、Si、Cu、Cr、Zn、Tiの前記各含有量の範囲は、AA6066の規格範囲(上限値、下限値)と同じである。なお、各元素の含有量の%表示は全て質量%の意味である。
 これら以外のその他の元素はAA6066の規格同様不純物であり、AA6066の規格である、個々の元素で0.05%以下、これらの総量(合計)で0.15%以下の含有量 (許容量) 規定に従う。
 本発明アルミニウム合金組成における、各元素の好ましい含有範囲と意義、あるいは許容量について以下に元素毎に説明する。
Si:0.9~1.8%
 Siは、Mgとともに、一部がアルミニウム合金マトリックスに固溶し、固溶強化する。また、前記比較的高温での人工時効処理時に強度向上に寄与する時効析出物などを形成する時効硬化能を発揮して、高圧水素ガス貯蔵容器として必要な機械的性質を満たすのに必要な、前記高強度、高耐力を得るための必須の元素である。Si含有量が少なすぎると、絶対量が不足するため、前記固溶強化や時効硬化能が不足する。この結果、必要な前記高強度、高耐力を得ることができない。一方で、Siの含有量が多過ぎると、強度が高くなり過ぎ、耐食性や耐水素脆化特性が低下する。また、マトリックスに固溶できないため、粗大な晶出物および析出物を形成し、耐水素脆化特性が低下するとともに、強度、伸びなどの低下の原因となり、また板材や形材製造時の圧延や押出、鍛造などの加工性も低下する。したがって、Siの含有量は、AA6066の規格通り、0.9~1.8%の範囲とする。
Mg:0.8~1.4%
 Mgは、Siと同様、固溶強化と、前記人工時効処理時にSiとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、高圧水素ガス貯蔵容器として必要な機械的特性を満たすのに必要な、前記高強度、高耐力を得るための必須の元素である。Mg含有量が少なすぎると、絶対量が不足するため、前記固溶強化や時効硬化能が不足する。この結果、必要な前記高強度、高耐力を得ることができない。一方、Mg含有量が多すぎると、強度が高くなり過ぎ、耐食性や耐水素脆化特性が低下する。また、マトリックスに固溶できないため、粗大な晶出物および析出物を形成し、耐水素脆化特性が低下するとともに、強度、伸びなどの低下の原因となり、また板材や形材製造時の圧延や押出、鍛造などの加工性も低下する。したがって、Mgの含有量は、AA6066の規格通り、0.8~1.4%の範囲とする。
Fe:0.44%未満(但し0%は含まず) 、
 Feは、AA6066の規格では、不純物として0.50%以下(但し0%を含む) である。ただ、前記特許文献5などでは、これを超えて、0.65%まで含有させている実施例もある。したがって、これまでFe自体あるいはFeの含有量については、スクラップを使用した溶解原料などから必然的に含まれる一般的な不純物としての許容量としてしか、認識されてこなかった。
 これに対して、本発明では、ナノオーダーの微細な分散粒子を一定量存在させるために、Feを:0.44%未満の実質量、必須の元素として含有させる。Feは、Mnと同様に、均質化熱処理時にAl-(Fe,Mn,Cr)系のナノオーダーの微細な分散粒子を規定する一定量の平均密度だけ形成して、水素のトラップ(捕捉)サイトとして機能し、耐水素脆化特性を向上させる。また、再結晶の抑制、結晶の微細化により強度の向上をもたらす効果もある。
 Feを:0.44%未満の実質量含有させないと、これより多すぎても、少なすぎても、却って、耐水素脆化特性とを低下させる。例えば、Feを含有しないと、あるいは含有量が少なすぎると、800nm以下の円相当径の分散粒子の平均密度D(個/μm2)と0.38μm以上の円相当径の晶出物の平均密度C(個/mm2)との関係がD≧0.0011×C-6.6とならず、これらの効果が発揮されない。Feの含有量がごく少量でもこれらの効果あるが、アルミニウム合金材の製造条件などのばらつきによらずに、これらの効果が確実に発揮されることを保証するためには、Feは好ましくは0.04%以上含有させる。
 また、Feの含有量が多すぎると、粗大なミクロンオーダーの晶出物が生成して、却って、強度と耐水素脆化特性とを低下させる。すなわち、前記AA6066の規格や前記特許文献5などの不純物としてのFeの含有量は、場合によって多すぎることとなる。したがって、Feの含有量は、AA6066の規格よりも狭く、0.44%未満(但し0%は含まず) の範囲に限定する。
Mn:0.7~0.9%
 Mnは、均質化熱処理時にAl-(Fe,Mn,Cr)系のナノオーダーの微細な分散粒子を規定する一定量の平均密度だけ形成して、水素のトラップ(捕捉)サイトとして機能し、耐水素脆化特性とを向上させる。また、Mnの一部がアルミニウム合金板マトリックスに固溶し固溶強化を生じ,また、分散粒子は再結晶の抑制ならびに結晶粒を微細化させる効果もある。
 Mn含有量が少なすぎること、Al-(Fe,Mn,Cr)系のナノオーダーの微細な分散粒子を規定する一定量の平均密度だけ確保できないことも起こり得る。また、本発明で規定する上限の0.9%を超えて、Mn含有量が多すぎると、粗大なミクロンオーダーの晶出物が生成して、却って、強度と耐水素脆化特性とを低下させる。したがって、Mnの含有量は、AA6066の規格よりも狭く、0.7~0.9%の範囲に限定する。
Cu:0.7~1.2%
 Cuは、Mg、Siと共に強度、耐力の向上に寄与する。Cu含有量が少なすぎると、その効果が十分に得られず、高圧水素ガス貯蔵容器として必要な機械的特性を満たすのに必要な、前記高強度、高耐力を得ることができない。また、水素をトラップする分散粒子の密度は低くなるため、耐水素脆化特性を劣化する。一方、Cu含有量が多すぎると、却って、強度、耐力が低下する。また、板の成形性や板材や形材製造時の圧延や押出、鍛造などの加工性そして耐食性が大きく低下する。晶出物の密度は高くなり、耐水素脆化特性は劣化する。したがって、Cuの含有量は、AA6066の規格通り、0.7~1.2%の範囲とする。
Cr:0.40%以下(但し0%を含む) 、Zn:0.25%以下(但し0%を含む)、Ti:0.20%以下(但し0%を含む)
 Cr、Zn、Tiは各々不純物として規制する。このうち、Crは、Fe、Mnと同様に、分散粒子を形成するものの、添加量はMn、Feに比べ少なく、Crを含む分散粒子の効果は、Fe、Mnほどには大きくない。また、含有量が多すぎると、粗大なミクロンオーダーの晶出物が生成して、却って、強度と耐水素脆化特性とを低下させる。したがって、Crは不純物として、AA6066の規格通り、0.40%以下(但し0%を含む)に規制する。
 Znは、含有量が多すぎると、粒界腐食感受性は高くなり、耐食性は低下する。したがって、Znは不純物として、AA6066の規格通り、0.25%以下(但し0%を含む) に規制する。
 Tiは、Ti添加のための母合金に含まれるBとともに、鋳塊の結晶粒を微細化させる作用があるが、Ti含有量が多すぎると、粗大な金属間化合物を形成し却って、強度と耐水素脆化性とを低下させる。また、板の成形性や板材や形材製造時の圧延や押出、鍛造などの加工性が大きく低下する。したがって、Tiは不純物として、AA6066の規格通り、0.20%以下(但し0%を含む) に規制する。
組織:
 本発明では、Mg、Si、Cr、Zn、Tiの含有量は、前記した通り、AA6066の規格範囲と同じである。その上で、微細な分散粒子を一定量存在させるとともに、粗大な晶出物をできるだけ少なく規制した組織とする。すなわち、耐水素脆化特性を得るために、800nm以下の円相当径の分散粒子の平均密度をD(個/μm2)と0.38μm以上の円相当径の晶出物の平均密度C(個/mm2)との関係が、図1に示すD+0.0011×C-9.5≦0の式を満たすようにする。なお、図1では、このD+0.0011×C-9.5≦0の式を変形したD≦-0.0011×C+9.5の式で示している。この図1は、後述する実施例表2の各例の分散粒子の平均密度Dと晶出物の平均密度Cとを耐水素脆化特性の観点から整理したものであり、縦軸が前記分散粒子の平均密度D、横軸が晶出物の平均密度Cである。そして、横軸の晶出物の平均密度8200個/mm2近傍から左上に向かって斜めに立ち上がる直線がD=-0.0011×C+9.5の式である。ここで、本発明が規定するD+0.0011×C-9.5≦0、すなわちD≦-0.0011×C+9.5の式を満たすとは、図1において、分散粒子の平均密度Dおよび晶出物の平均密度Cをともに、この直線よりも左側の水素脆化感受性指標(伸び)が0.1以下(マイナスの値も含む)となる領域に位置させる値にすることである。言い換えると、この直線よりも右側の領域は水素脆化感受性指標(伸び)が0.1を超える領域であり、分散粒子の平均密度Dか晶出物の平均密度Cをこの領域に位置させた場合には、耐水素脆化特性が劣ることとなる。
 因みに、前記6066合金組成とし、かつFe、Mn、Cuを一定の含有量とすれば、後述する通り、均質化熱処理の温度さえ注意すれば、圧延板や押出材あるいは鍛造材などの加工手段によらず、上記した、微細な分散粒子を一定量存在させるとともに、粗大な晶出物をできるだけ少なく規制した組織とすることができる。これによって、圧延板や押出材、あるいは鍛造材などによらず、ライナー材として用いた場合に、自動車搭載用途における高圧水素ガス貯蔵容器での水素ガスの充填圧力が増大しても、脆化しない、耐水素脆化特性が得られる。また、ライナー軽量化のための薄肉化に向けて高強度化できる。
分散粒子:
 分散粒子は、水素のトラップ(捕捉)サイトとしての機能があり、かつこの分散粒子の大きさは、常法により材を製造した場合、ナノオーダーレベルで微細である。このため、水素をトラップしても、破壊の起点とはなりにくく、強度と耐水素脆化特性とを向上させる。また、分散粒子には、周知の通り、結晶粒を微細化せる効果がある。したがって、これらの分散粒子を、上記規定の通り一定量確保すれば、耐水素脆化特性と強度とが向上する。
 一方、800nm以下の円相当径の分散粒子の平均密度D(個/μm2)、0.38μm以上の円相当径の晶出物の平均密度C(個/mm2)とした場合に、分散粒子の平均密度Dが、-0.0011×C+9.5の値よりも大きくなると、水素のトラップ(捕捉)サイトした微細な分散粒子(の数)が多くなりすぎる。この結果、ライナー材として用いた場合、高圧水素ガス貯蔵容器での水素ガスの充填圧力が増大すると脆化し易くなる。
 因みに、本発明で規定する分散粒子とは、主としてMnなどの遷移元素とAl,Siとの化合物であり、Feを含むこともある。また、Cr、Zr、Vなどの他の遷移元素の量によっては、これらの元素も含む化合物である。これらは、鋳塊鋳造時、鋳塊の均質化熱処理時などに主として生成する。但し、前記晶出物とは違い、最大長のレベルが大きく異なる(小さい)ために、一般的にはそれらの観察にはTEM(透過型電子顕微鏡)が用いられる。但し、狭い領域しか観察出来ず、特定領域のミクロ組織の状態を、試料全体の平均的な情報として誤解する危険性もある。そこで、本発明で規定する分散粒子は、SEM(走査型電子顕微鏡)を用いて、比較的高倍率10000倍で観察し測定する。なお、本発明で規定する分散粒子につき、EDXなどを用いた元素分析(元素量分析)によって識別する必要はない。すなわち、前記条件のSEMで観察される(観察できる、あるいは観察可能な)、800nm以下の円相当径の第2相粒子は、これを全て本発明で規定する分散粒子と見なす。
 但し、円相当径最大値が1nm未満の超微細な分散粒子(第2相粒子)は、上記倍率10000倍のSEMでも、正確な観察や最大長の測定が困難であり、また、水素のトラップ(捕捉)サイトとしての効果も小さいと見なされる。したがって、分散粒子の好ましい最大長の下限は1nmとする。
分散粒子の平均密度の測定:
 本発明で規定する分散粒子の平均密度の測定面は、晶出物と同様、T6調質処理後のアルミニウム合金材や、これを成形、加工したライナーなどの圧力容器部材の、長手方向(軸方向)に対する平行な任意の断面の中央部とする。これら平行断面中央部より、試料を作製し、成分分析装置付属のSEM(走査型電子顕微鏡)を用いて、倍率×10000、加速電圧15kVで観察する。画像処理で、不定形の分散粒子を同一面積の円に置き換え、その円相当径(直径)の最大径が800nm以下の分散粒子の数をカウイントし、観察面積当たりの個数すなわち密度(個/μm2)を算出する。一般的に、加速電圧15kVの場合、母材がAlであれば、電子線の侵入深さは2ミクロン強で、観察される深さはその1/3程度とされる。試料表面の分散粒子のみを評価対象とするため、画像処理する際は、試料内部に存在する粒子に対応するぼやけた像は、画像上から削除することとする。なお、試料表面の分散粒子は、明瞭な輝点(白黒の画像であれば、白色の点)として観察される。測定は、各供試線棒材の任意の前記断面5箇所で、各2視野(計10視野)について行い、これらを平均化し、本発明で規定する分散粒子の平均密度とする。
晶出物:
 晶出物とは、鋳造時に晶出する晶出物や、均質化熱処理時、熱間加工時に形成されその後の溶体化処理時後でも残存するミクロンサイズの粗大なMg Si等を指す。微細な晶出物や晶出物にも、前記分散粒子と同様に、水素のトラップ(捕捉)サイトとしての機能はあると推考される。しかし、常法により材を製造した場合、存在する晶出物は大きさがミクロンオーダーと、分散粒子よりも巨大である。このため、水素をトラップした場合に、破壊の起点となり易くなるものと推定される。したがって、これらの晶出物をできるだけ少なく規制すれば、耐水素脆化特性が向上するとともに、さらには一般的な靱性、疲労特性も高くなる。
 一方、0.38μm以上の円相当径の晶出物の平均密度C(個/mm2)が多すぎると、800nm以下の円相当径の分散粒子の平均密度D(個/μm2)が多くても、D+0.0011×C-9.5≦0を満足せず、破壊の起点となる粗大な晶出物が多すぎ、耐水素脆化特性は著しく低下する。
 本発明で規定する晶出物とは、アルミニウム合金材組織の倍率300倍程度のSEMによる観察で、マトリックス内に存在する、組成を問わない不定形の粒子として確認できる(本発明で規定する円相当径最大値が0.38μm以上か未満かの判別ができる)第2相粒子のことを言う。これら晶出物は、主として、Mg、Si系化合物、Si、Fe系化合物などである(但し、CuならびにMn、Cr、Zr、Vなどの遷移元素を多く含有する場合には、前記化合物に、これらの元素を含む場合もある)。これらは、鋳造時に晶出する晶出物や、均質化熱処理時、熱間加工時に形成されその後の溶体化処理時後でも残存するミクロンサイズの粗大なMg2 Si等などからなる。但し、本発明では、前記した通り、第2相粒子の組成を問わないゆえに、上記SEMによる観察の際に、EDX(エネルギー分散型分光)などを用いた、各晶出物の元素分析(元素量分析)を行う必要はない。すなわち、前記条件のSEMで観察される(観察できる、あるいは観察可能な)、0.38μm以上の円相当径の粗大な第2相粒子は、これを全て本発明で規定する晶出物粒子と見なす。組成や製法によって異なるために、粗大な晶出物粒子の最大となる大きさは予測できず、また、円相当径が0.38μm以上の粗大な晶出物粒子は全て規制の対象となるので、本発明では、敢えて晶出物粒子の最大サイズの上限は規定しない。
晶出物の平均密度の測定:
 本発明で規定する晶出物の平均密度の測定面は、分散粒子と同様、T6調質処理後のアルミニウム合金材や、これを成形、加工したライナーなどの圧力容器部材の、長手方向(軸方向)に対する平行な任意の断面の中央部とする。これら平行断面中央部の位置における組織の走査型電子顕微鏡(SEM)による倍率300倍、加速電圧15kVの観察から、計測、算出される。
 すなわち、このSEMによる観察視野の画像解析によって、観察視野内の、組成を問わない第2相粒子として観察される、個々の晶出物を倍率×300、加速電圧15kVで観察する。画像処理で、不定形の晶出物を同一面積の円に置き換え、その直径の最大長が0.38μm以上の晶出物の数をカウイントし、測定視野の単位面積1mm 当たりの個数すなわち密度(個/mm )を算出する。なお、画像処理は、SEMで観察された全ての晶出物を評価対象とする。測定は各供試線棒材の任意の前記断面5箇所で、各2視野(計10視野)について行い、これらを平均化し、本発明で規定する晶出物の平均密度とする。
製造方法:
 前記特定組成の6066合金組成とすれば、均質化熱処理の温度さえ注意すれば、熱間圧延による圧延板や、冷間圧延による圧延板、あるいは熱間押出による形材や熱間鍛造による鍛造材など、常法によって、本発明アルミニウム合金材を製造できる。すなわち、上記した、微細な分散粒子を一定量存在させるとともに、粗大な晶出物をできるだけ少なく規制した本発明アルミニウム合金材組織とすることができる。
 前記特定組成の6066合金鋳塊を溶製し、この鋳塊を均質化熱処理後、熱間圧延、更に必要に応じて冷間圧延して、所望の板厚の冷間圧延板を得るか、あるいは、熱間押出や熱間鍛造を行って、所望の厚みと形状の6066合金形材、鍛造材を得る。以下に、各工程の好ましい条件を記載するが、特に断らない限り、圧延板(圧延)や押出形材(押出)、鍛造材(鍛造)に共通する条件である。
(溶解、鋳造冷却速度)
 先ず、溶解、鋳造工程では、上記特定の6066組成範囲内に溶解調整されたアルミニウム合金溶湯を、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
(均質化熱処理)
 前記した種々の熱間加工に先立って、鋳造されたアルミニウム合金鋳塊を540℃以上の比較的高温域で均質化熱処理(均熱処理)し、組織の均質化(鋳塊組織中の結晶粒内の偏析をなくすなど)とともに、晶出物を微細化する。前記特許文献5のように、この均熱処理温度を350~550℃(その実施例では540℃)と比較的低温した場合には、本発明組成内であっても、晶出物を微細化出来ずに、粗大な晶出物が多くなる危険性がある。したがって、破壊の起点となる晶出物が多過ぎ、耐水素脆化特性の低下さらには靱性、疲労特性の低下をもたらす危険性が高くなる。
 一方、均熱処理温度が高くなり過ぎると、分散粒子は粗大化し密度は低くなり易くなる。水素のトラップサイトは減り、耐水素脆化特性を低下させる危険性がある。また、分散粒子の粗大、低密度化で、再結晶が生じ易くなり、また結晶粒も粗大化するため、強度は低くやり易い。また、鋳塊のバーニングも生じ易くなる。従って、均熱処理温度の上限は575℃とする。
 この均熱処理後は、ファンなどによってビレット(鋳塊)を強制的に急冷して、冷却速度を速める方が好ましい。ビレット(鋳塊)を放冷するなど、冷却速度が遅いと、冷却過程で晶出物が粗大化する危険性がある。このような急冷における平均冷却速度の目安は、室温を含む300℃以下の温度まで、80℃/hr以上とすることが好ましい。
(熱間加工)
 熱間圧延、熱間押出、熱間鍛造などの熱間加工は常法による。言い換えると、特別な条件は不要で、熱間加工開始温度は、前記アルミニウム合金の成分組成や鋳塊の大きさとの関係で、350~575℃の範囲から選択する。熱間加工の加工率も、前記アルミニウム合金の成分組成や、鋳塊の大きさとアルミニウム合金材(製品)の所望厚みとの関係で、85%以上の加工率の範囲から選択する。この加工率が少なすぎると、晶出物が小さく粉砕されず、粗大な晶出物が残存して、本発明で規定するようには晶出物を微細化できない。
 圧延板の場合、均質化熱処理後の鋳塊を、熱間圧延温度まで冷却するか、一旦室温まで冷却後に熱間圧延温度まで再加熱して、熱間圧延し、所望の板厚の熱間圧延板を得るか、更に必要に応じて冷間圧延して、所望の板厚の冷間圧延板とし、その後調質する。なお、熱間圧延と冷間圧延の間あるいは冷間圧延のパス間に、必要に応じて焼鈍を行ってもよい。
 押出材の場合、均質化熱処理後の鋳塊を再加熱し、350~575℃の範囲で所望の厚みと形状に熱間押出し、更に必要に応じて所望の形状・肉厚に冷間押出(抽芯加工)し、その後調質する。なお、熱間押出と冷間押出の間あるいは冷間押出(抽芯加工)のパス間に、必要に応じて焼鈍を行ってもよい。
 また、鍛造材の場合、均質化熱処理後の鋳塊を再加熱し、350~575℃の範囲で所望の厚みと形状に熱間鍛造して、所望の肉厚の熱間鍛造材を得るか、更に必要に応じて熱間鍛造、温間鍛造、冷間鍛造して、所望の肉厚の鍛造材とし、その後調質する。なお、熱間鍛造、温間鍛造、冷間鍛造の間のパス間に、必要に応じて焼鈍を行ってもよい。
(調質処理)
 これらの熱間加工後に、アルミニウム合金材に対する調質処理として、先ず、溶体化および急冷(焼入れ)処理を行う。この溶体化処理は、前記アルミニウム合金の成分組成との関係や、続く高温での人工時効硬化処理により強度向上に寄与する時効析出物を十分粒内に析出させるために、好ましくは、530℃~570で所定時間保持する条件で行う。この溶体化処理後、直ちに10℃/秒以上の冷却速度で急冷処理(焼入れ処理)を行う。この溶体化処理後の急冷処理の冷却速度が遅いと、粒界上にSi、MgSi化合物などが析出しやすくなり、機械的な特性や成形性を低下させる。
 溶体化および焼入れ処理に使用する熱処理炉は、バッチ炉、連続炉、溶融塩浴炉のいずれを用いてもよい。また、溶体化処理後の焼入れ処理は、水浸漬、水噴射、ミスト噴射、空気噴射、空気中放冷のいずれを用いてもよい。更に、溶体化及び焼入れ処理後に行われる高温時効処理も、バッチ炉、連続炉、オイルバス、温湯浴槽等のいずれを用いてもよい。
 この溶体化および焼入れ処理の後に、強度など機械的諸特性を向上させるために、好ましくは直ちに、150~200℃での高温時効処理を行う。この調質は、例えばJISH-0001に記載の熱処理条件内にて行う、調質記号で、T6(溶体化処理および焼入処理+ピーク時効処理)の調質処理である。このような高温時効処理を行なわない場合、前記アルミニウム合金材のT6調質後の機械的な性質として、引張強さが410MPa以上、0.2%耐力が360MPa以上、伸びが10%以上である機械的な性質を得ることが難しくなる。
 ここで、押出材の場合には、熱間押出の出口側の押出材温度が溶体化温度域になるように、前記鋳造ビレットを再加熱して熱間押出し、引き続き、押出直後から押出材を室温近傍の温度まで水噴射、ミスト噴射、空気噴射等で、オンラインで強制冷却し焼入れ処理を行っても良い。その後、必要に応じて必要に応じて室温時効、歪み矯正した後、高温時効処理を行っても良い。また、必要に応じて抽芯加工を行った後、たとえばJIS-H-0001に記載の熱処理条件内にて、溶体化処理、焼入し、必要に応じて室温時効、歪み矯正した後、高温時効処理(T6)を行ってもよい。
 これら調質処理後の圧延材、押出材、鍛造材から、高圧ガス容器用のライナー等の容器材や周辺部材を作製する場合には、必要に応じて加熱を行いながら、絞り、しごき、スピニング、切削、孔開けなどの必要な加工を行う。ここで、記載した通り、板材、押出材、鍛造材に対して、予め、高圧ガス容器用の部材を作製する前に、前記した調質を各々選択して行っても勿論良い。また、板材、押出材、鍛造材に対して、前記調質処理を行わずに、これら高圧ガス容器材や周辺部材を作製後に、前記T6調質処理を、各部材の要求特性に応じて、各々選択して行っても良い。あるいは、溶体化処理および焼入処理を、高圧ガス容器材や周辺部材を作製前に行い、作製後にピーク時効処理を行うなど、調質処理を分けて行っても良い。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 次に、本発明の実施例を説明する。高圧ガス容器におけるライナーを想定して、表1に示す各成分組成のアルミニウム合金圧延板を、表2に示す条件で製造し、T6調質後の、ミクロ組織、機械的特性、耐水素脆化特性を各々調査、評価した。これらの結果も表2に示す。表1と表2の各例は互いに同じ例である。
 板の製造は、先ず、表1に示す各成分組成の各アルミニウム合金溶湯から、各々スラブを鋳造した。このスラブを表2に示す560℃で4時間(hr)の均質化熱処理後、一旦、室温まで冷却した。そして、46mm厚さに面削した後、再加熱して、表2の通り、460℃の開始温度で、板厚46mmから熱間圧延を開始して板厚5mmの熱延板とした。その後、この熱延板を、中間焼鈍無しで、冷間圧延して、1.0mmの板厚の冷延板とした。
 この冷延板を、バッチ炉にて、共通して表2示す550℃×3時間(hr)の溶体化処理後に、直ちに水焼入(表2にはWQと記載)にて焼入を行った。そして、その後3日間の室温時効(15~35℃)後、レベラーで板の歪みを矯正した後、180℃×9時間のピーク時効処理し、調質記号でT6(溶体化処理および焼入後にピーク時効処理)の各調質材を作製した。均熱処理、熱延温度への加熱、高温時効処理には空気炉を用いた。表2に示す溶体化処理直後からの水焼入の場合の冷却速度は約250℃/秒程度である。因みに、ファンによる強制空冷の場合の冷却速度は50℃/分程度である。
(供試材特性)
 これら製作した調質後の板材の外寸形状は、各例とも共通して、長さ1.0mm、幅200mmとした。そして、この板の高温時効処理後から30日間の室温時効(経過)後の板材から、供試材(板状試験片)を切り出し、これら各供試材のミクロ組織、引張特性、耐水素脆化特性を測定、評価した。これらの結果を表2に示す。
ミクロ組織:
 各供試材の800nm以下の円相当径の直分散粒子の平均密度(個/μm2 )と、0.38μm以上の円相当径の晶出物の平均密度が(個/mm )は、各々前記した方法で測定した。
引張試験:
 引張試験は、前記供試材からJISZ2201のJIS5号試験片(GL50mm)を圧延方向に対して試験片長手方向が直角となるように採取し、室温大気中で、クロスヘッド速度5mm/分で引張試験を行った。測定N数は5として、各機械的性質はこれらの平均値とした。
耐水素脆化特性試験:
 前記供試材の耐水素脆化特性は、歪み速度を6.7×10-7 s-1 以下として雰囲気条件のみを変えて、このアルミニウム合金材を引張変形させた場合の5%RH以下の乾燥雰囲気中での伸び値をδ1、90%RH以上の高湿潤雰囲気中での伸び値をδ2として、[(δ1-δ2)/δ1]で示されるものを、耐水素脆化感受性指標とした。具体的には、前記供試材から幅5mm、長さ12mmの平行部、肩部半径7.5mmの小型引張試験片を、板の圧延方向に対して試験片長手方向が直角となるように採取し、初期歪速度6.7×10-7 s-1 で、雰囲気条件を5%RH以下の乾燥雰囲気中、90%RH以上の高湿潤雰囲気中との2つの条件で、各々破断まで引張試験を行った。そして、5%RH以下の乾燥雰囲気中の伸び値δ1に対する、90%RH以上の高湿潤雰囲気中の伸び値δ2の低下率を上記式にて算出した。これら伸び値の低下率が0.1以下、より好ましくは0.05以下と小さいほど、耐水素脆化特性が優れていると評価出来る。
 ここで、この伸び値の低下率0.05とは、水素容器部材で耐水素脆化特性が優れていると実績のある6061-T6材を、前記した同じ条件で耐水素脆化特性試験して求めた基準値である。また、この伸び値の低下率10%とは、水素容器部材ではないが、耐食性に優れた構造部材として実績のある7050-T7材を前記した同じ条件で耐水素脆化特性試験して求めた基準値である。
 表1、2から分かる通り、発明例1~3は、高強度と耐水素脆化特性とを兼備している。すなわち、各発明例は本発明アルミニウム合金組成を満足するとともに、調質を含めて製造条件が適切である。このため、800nm以下の円相当径の分散粒子の平均密度をD(個/μm2)と0.38μm以上の円相当径の晶出物の平均密度C(個/mm2)との関係が、D+0.0011×C-9.5≦0(D≦-0.0011×C+9.5)の式を満足しており、微細な分散粒子が一定量分散し、粗大な晶出物が少ない組織となっている。この結果、引張強さが410MPa以上、0.2%耐力が360MPa以上、伸びが10%以上であり、高圧水素ガス下であっても、水素脆化感受性指標が0.1以下である優れた耐水素脆化特性とを兼備している。
 これに対して、表1、2から分かる通り、比較例1~3は、強度と耐水素脆化特性を満足兼備できていない。すなわち、各比較例は、本発明アルミニウム合金組成を満足しないか、製法が不適切である。
 比較例1は、Feの含有量が、AA6066の規格範囲内であるにもかかわらず、本発明の上限を超えてしまって多すぎる。このため、製造条件が適切であり、微細な分散粒子が一定量分散しているものの、粗大な晶出物が多くなりすぎており、D+0.0011×C-9.5≦0(D≦-0.0011×C+9.5)の式を満足できておらず、発明例に比して耐水素脆化特性が劣る。
 比較例2はCuの含有量が少なすぎ、本発明やAA6066の規格範囲も外れている。このため、製造条件が適切であり、D+0.0011×C-9.5≦0の式を満足し、耐水素脆化特性が高いにもかかわらず、発明例に比して強度が劣る。
 比較例3はMnの含有量が少なすぎ、本発明やAA6066の規格範囲も外れている。このため、製造条件が適切で、D+0.0011×C-9.5≦0の式を満足し、耐水素脆化性が高いにもかかわらず、強度が発明例に比して低い。
 したがって、以上の実施例の結果から、本発明における成分や組織の各要件の、耐水素脆化特性および機械的性質などを兼備するための臨界的な意義乃至効果が裏付けられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上説明したように、本発明によれば、強度と耐水素脆化特性とが優れる、高圧水素ガス貯蔵容器用6000系アルミニウム合金材を提供することができる。したがって、アルミニウム合金製やプラスチック製ライナーの外面に強化用繊維を巻き付けた高圧ガス容器へ、6000系アルミニウム合金材をライナー、口金あるいはガス管などの部材として適用することができる。

Claims (3)

  1.  質量%で、Mg:0.8~1.4%、Si:0.9~1.8%、Fe:0.44%未満(但し0%は含まず) 、Cu:0.7~1.2%、Mn:0.7~0.9%、Cr:0.40%以下(但し0%を含む) 、Zn:0.25%以下(但し0%を含む) 、Ti:0.20%以下(但し0%を含む) を各々含み、残部がAlおよび不可避的不純物よりなり、このアルミニウム合金組織における、800nm以下の円相当径を有する分散粒子の平均密度をD(個/μm2)、0.38μm以上の円相当径を有する晶出物の平均密度C(個/mm2)とした時、これらCとDとの関係が、D+0.0011×C-9.5≦0の式を満たすことを特徴とする高圧水素ガス貯蔵容器用アルミニウム合金材。
  2.  前記アルミニウム合金材のT6調質後の機械的な性質として、引張強さが410MPa以上、0.2%耐力が360MPa以上、伸びが10%以上であり、ライナー材として外側に繊維強化樹脂あるいは強化用繊維が巻き付けられて高圧水素ガス貯蔵容器として使用されるものである請求項1に記載の高圧水素ガス貯蔵容器用アルミニウム合金材。
  3.  前記アルミニウム合金材の耐水素脆化感受性が、歪速度を6.7×10-7 s-1 として雰囲気条件のみを変えて、このアルミニウム合金材を引張変形させた場合の5%RH以下の乾燥雰囲気中での伸び値をδ1、90%RH以上の高湿潤雰囲気中での伸び値をδ2として、[(δ1-δ2)/δ1]で示される水素脆化感受性指標が0.1以下(マイナスの値も含む)である請求項1または2に記載の高圧水素ガス貯蔵容器用アルミニウム合金材。
PCT/JP2011/056369 2010-03-18 2011-03-17 高圧水素ガス貯蔵容器用アルミニウム合金材 WO2011115202A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180014326.4A CN102812141B (zh) 2010-03-18 2011-03-17 用于高压氢气储存容器的铝合金材料
US13/635,693 US9249483B2 (en) 2010-03-18 2011-03-17 Aluminum alloy material for storage container for high-pressure hydrogen gas
KR1020127024204A KR101457774B1 (ko) 2010-03-18 2011-03-17 고압 수소 가스 저장 용기용 알루미늄 합금재
EP11756386.6A EP2548984B1 (en) 2010-03-18 2011-03-17 Aluminum alloy material for storage container for high-pressure hydrogen gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010062146 2010-03-18
JP2010-062146 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011115202A1 true WO2011115202A1 (ja) 2011-09-22

Family

ID=44649285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056369 WO2011115202A1 (ja) 2010-03-18 2011-03-17 高圧水素ガス貯蔵容器用アルミニウム合金材

Country Status (6)

Country Link
US (1) US9249483B2 (ja)
EP (1) EP2548984B1 (ja)
JP (1) JP5610582B2 (ja)
KR (1) KR101457774B1 (ja)
CN (1) CN102812141B (ja)
WO (1) WO2011115202A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145112A (ja) * 2013-01-29 2014-08-14 Uacj Corp 高圧水素ガス容器用Al−Mg合金材
US20150316210A1 (en) * 2012-11-19 2015-11-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy material for high-pressure hydrogen gas container and method for producing the same
EP3584492A4 (en) * 2017-02-15 2021-03-17 Bogachek, Oleg Evgenievich THERMALLY NON-HARDENING ALUMINUM ALLOY CONTAINER AND PRODUCTION PROCESS

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045428B2 (ja) * 2013-04-09 2016-12-14 日本軽金属株式会社 水素経路用アルミニウム合金とその製造方法
LU92362B1 (en) 2014-01-28 2015-07-29 Luxembourg Patent Co Valve body treated by autofrettage
WO2016004963A2 (en) * 2014-07-08 2016-01-14 Mahran Asmaa Mohamed Mahmoud Generate electricity from green house gases, depending on their ability to absorb thermal energy (uv rays) emitted by the sun and its heat emission
US10550455B2 (en) 2014-12-03 2020-02-04 Arconic Inc. Methods of continuously casting new 6xxx aluminum alloys, and products made from the same
JP6587533B2 (ja) * 2015-12-14 2019-10-09 日本軽金属株式会社 疲労強度特性に優れた切削加工用アルミニウム合金押出材及びその製造方法
EP3400316B1 (en) 2016-01-08 2020-09-16 Arconic Technologies LLC New 6xxx aluminum alloys, and methods of making the same
JP6208389B1 (ja) * 2016-07-14 2017-10-04 株式会社Uacj 曲げ加工性及び耐リジング性に優れたアルミニウム合金からなる成形加工用アルミニウム合金圧延材の製造方法
KR101916386B1 (ko) 2016-11-25 2018-11-08 하성의 다이캐스팅 접합 구조의 가스 탱크
US11124862B2 (en) 2017-03-03 2021-09-21 Uacj Corporation Aluminum alloy thick plate
JP2020519772A (ja) * 2017-05-26 2020-07-02 ノベリス・インコーポレイテッドNovelis Inc. 高強度耐食性6xxxシリーズアルミニウム合金およびその作製方法
US10030295B1 (en) 2017-06-29 2018-07-24 Arconic Inc. 6xxx aluminum alloy sheet products and methods for making the same
JP7061281B2 (ja) * 2018-03-06 2022-04-28 日本軽金属株式会社 アルミニウム合金製ライナー及びその製造方法
KR102216865B1 (ko) * 2018-09-28 2021-02-18 대주코레스(주) 일체형 범퍼빔 유닛용 알루미늄 합금재 및 이를 이용한 일체형 범퍼빔 유닛의 제조방법
JP7172494B2 (ja) * 2018-11-20 2022-11-16 日本軽金属株式会社 アルミニウム合金製ライナー及びその製造方法
JP2022513644A (ja) * 2018-12-03 2022-02-09 リオ ティント アルカン インターナショナル リミテッド アルミニウム押出合金
JP2021143368A (ja) * 2020-03-11 2021-09-24 昭和電工株式会社 Al−Mg−Si系アルミニウム合金鍛造品の製造方法
US20220376338A1 (en) * 2021-05-18 2022-11-24 GM Global Technology Operations LLC Sheet metal assembly having one stiffening members with a predetermined draw depth
WO2022270483A1 (ja) * 2021-06-22 2022-12-29 国立大学法人岩手大学 アルミニウム合金材の水素脆化防止剤
JP2023154234A (ja) * 2022-04-06 2023-10-19 国立大学法人岩手大学 アルミニウム合金材の水素脆化防止方法および水素脆化防止剤
CN117127065B (zh) * 2023-10-23 2024-02-13 中铝材料应用研究院有限公司 一种铝合金材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161136A (ja) * 1986-12-24 1988-07-04 Showa Alum Corp アルミニウム合金製ボンベ
JPH0663681A (ja) 1992-08-12 1994-03-08 Furukawa Alum Co Ltd アルミニウム合金製継ぎ目無し小型高圧ガス容器の製造方法
JP2000233245A (ja) 1998-12-07 2000-08-29 Toyota Motor Corp 高圧ガス容器のアルミニウム製ライナーの製造方法
JP2000282197A (ja) * 1999-04-02 2000-10-10 Kobe Steel Ltd 成形後の表面性状に優れたアルミニウム合金板の製造方法
JP2001349494A (ja) 1997-08-04 2001-12-21 Samtec Kk ガスボンベ用ライナ
JP2009024225A (ja) 2007-07-20 2009-02-05 Furukawa Sky Kk 高圧水素ガス貯蔵容器用アルミニウム合金

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160131A (ja) * 1990-10-23 1992-06-03 Kobe Steel Ltd 強度かつ成形性に優れるAl―Mg―Si系合金板及びその製造方法
JP3260227B2 (ja) * 1993-11-26 2002-02-25 神鋼アルコア輸送機材株式会社 結晶粒制御により成形性及び焼付硬化性に優れたAl−Mg−Si系合金板及びその製造方法
WO2007114078A1 (ja) 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho アルミニウム合金鍛造部材およびその製造方法
CN100412217C (zh) * 2006-08-02 2008-08-20 王季庄 一种抑爆材料的生产方法
JP5180496B2 (ja) 2007-03-14 2013-04-10 株式会社神戸製鋼所 アルミニウム合金鍛造材およびその製造方法
JP5160930B2 (ja) 2008-03-25 2013-03-13 株式会社神戸製鋼所 曲げ圧壊性と耐食性に優れたアルミニウム合金押出材およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161136A (ja) * 1986-12-24 1988-07-04 Showa Alum Corp アルミニウム合金製ボンベ
JPH0663681A (ja) 1992-08-12 1994-03-08 Furukawa Alum Co Ltd アルミニウム合金製継ぎ目無し小型高圧ガス容器の製造方法
JP2001349494A (ja) 1997-08-04 2001-12-21 Samtec Kk ガスボンベ用ライナ
JP2000233245A (ja) 1998-12-07 2000-08-29 Toyota Motor Corp 高圧ガス容器のアルミニウム製ライナーの製造方法
JP3750449B2 (ja) 1998-12-07 2006-03-01 トヨタ自動車株式会社 高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法
JP2000282197A (ja) * 1999-04-02 2000-10-10 Kobe Steel Ltd 成形後の表面性状に優れたアルミニウム合金板の製造方法
JP2009024225A (ja) 2007-07-20 2009-02-05 Furukawa Sky Kk 高圧水素ガス貯蔵容器用アルミニウム合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2548984A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150316210A1 (en) * 2012-11-19 2015-11-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy material for high-pressure hydrogen gas container and method for producing the same
JP2014145112A (ja) * 2013-01-29 2014-08-14 Uacj Corp 高圧水素ガス容器用Al−Mg合金材
EP3584492A4 (en) * 2017-02-15 2021-03-17 Bogachek, Oleg Evgenievich THERMALLY NON-HARDENING ALUMINUM ALLOY CONTAINER AND PRODUCTION PROCESS
US11644151B2 (en) 2017-02-15 2023-05-09 Oleg Evgenievich BOGACHEK Vessel made of thermally non-hardenable aluminum alloy and method for the production thereof

Also Published As

Publication number Publication date
EP2548984A1 (en) 2013-01-23
CN102812141A (zh) 2012-12-05
US20130164170A1 (en) 2013-06-27
EP2548984B1 (en) 2016-07-20
KR20120123711A (ko) 2012-11-09
EP2548984A4 (en) 2015-06-24
JP5610582B2 (ja) 2014-10-22
US9249483B2 (en) 2016-02-02
CN102812141B (zh) 2014-08-06
KR101457774B1 (ko) 2014-11-03
JP2011214149A (ja) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5610582B2 (ja) 高圧水素ガス貯蔵容器用アルミニウム合金材
JP5421613B2 (ja) 耐軟化性に優れた高強度アルミニウム合金線棒材およびその製造方法
JP5925667B2 (ja) 高圧水素ガス容器用アルミニウム合金材とその製造方法
JP5276341B2 (ja) 耐水素脆化特性に優れた高圧ガス容器用アルミニウム合金材
WO2016140335A1 (ja) アルミニウム合金板
JP5830006B2 (ja) 強度に優れたアルミニウム合金押出材
US11519058B2 (en) 6XXX aluminium alloy extruded forging stock and method of manufacturing thereof
KR100994812B1 (ko) 고강도 고연성 마그네슘 합금 압출재 및 그 제조방법
KR101277297B1 (ko) 이방성이 낮은 고강도 고연성 마그네슘 합금 압출재 및 그 제조방법
WO2014142199A1 (ja) 構造材用アルミニウム合金板
WO2015141647A1 (ja) 構造材用アルミニウム合金板
JP5204793B2 (ja) 耐応力腐食割れ性に優れた高強度アルミニウム合金押出材
JP2016160516A (ja) アルミニウム合金板
JP2004084058A (ja) 輸送機構造材用アルミニウム合金鍛造材の製造方法およびアルミニウム合金鍛造材
JP4996853B2 (ja) 高温高速成形用アルミニウム合金材及びその製造方法、並びにアルミニウム合金成形品の製造方法
JP2018204116A (ja) アルミニウム合金板
JP2008062255A (ja) キャビティ発生の少ないAl−Mg−Si系アルミニウム合金板の超塑性成形方法およびAl−Mg−Si系アルミニウム合金成形板
WO2008078399A1 (en) Method of producing aluminum alloy sheet
JP5860371B2 (ja) アルミニウム合金製自動車部材
KR101252784B1 (ko) 고강도 고성형성 마그네슘 합금 판재 및 그 제조방법
JP5823010B2 (ja) 耐応力腐食割れ性に優れた自動車構造部材用高強度アルミニウム合金押出材
JP5631379B2 (ja) 耐応力腐食割れ性に優れたバンパーレインフォース用高強度アルミニウム合金押出材
JP2021095619A (ja) キャップ材用アルミニウム合金板及びその製造方法
JP2023138178A (ja) アルミニウム合金押出成形用ビレット、アルミニウム合金押出形材及びそれらの製造方法
KR101690156B1 (ko) 고강도 및 고연성의 알루미늄 합금 압출재 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014326.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756386

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011756386

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011756386

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127024204

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13635693

Country of ref document: US