JP3750449B2 - 高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法 - Google Patents

高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法 Download PDF

Info

Publication number
JP3750449B2
JP3750449B2 JP34545199A JP34545199A JP3750449B2 JP 3750449 B2 JP3750449 B2 JP 3750449B2 JP 34545199 A JP34545199 A JP 34545199A JP 34545199 A JP34545199 A JP 34545199A JP 3750449 B2 JP3750449 B2 JP 3750449B2
Authority
JP
Japan
Prior art keywords
aluminum
pressure gas
gas container
liner
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34545199A
Other languages
English (en)
Other versions
JP2000233245A (ja
Inventor
寛史 井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34545199A priority Critical patent/JP3750449B2/ja
Publication of JP2000233245A publication Critical patent/JP2000233245A/ja
Application granted granted Critical
Publication of JP3750449B2 publication Critical patent/JP3750449B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高圧ガス容器のアルミニウム(アルミニウム合金を含む)製ライナーの製造方法および高圧ガス容器の製造方法に関する。
【0002】
【従来の技術】
高圧ガス容器として、たとえば自動車用天然ガスガスボンベがある。高圧ガス容器は鉄製のもの、アルミニウム製ライナーの外面に強化用繊維を巻き付けたもの(フィラメントワインディング)など、種々のものがある。
特開平6−63681号は、高圧ガス容器のアルミニウム製ライナーの製造方法を開示している。そこでは、アルミニウム合金抽出材に抽伸加工を施し、この抽伸加工材を溶体化処理し、その後インパクト加工を施すことにより有底円筒体に成形し、その後冷間型鍛造によりガス取出口を形成し、時効処理して、小型高圧ガス容器が製造される。溶体化処理は、インパクト加工性の向上を目的として施され、容器の強度(耐力)アップを目的としたものではない。
一般に、高圧ガス容器のアルミニウム製ライナーの製造方法は、従来、図8に示すように、アルミニウムシームレスパイプからなる素材1を、端口部を閉じ成形してライナー形状に成形し、溶体化処理(たとえば、520℃×2Hr)を施し、さらに時効処理(たとえば、180℃×6Hr)を施す、工程により製造される。溶体化処理では耐力(0.2%耐力)が約145MPaしかないが時効処理で約280MPaに上がる。そのため、従来法では、耐力向上のために、溶体化処理後の時効処理は必須である。
【0003】
【発明が解決しようとする課題】
しかし、従来方法では、つぎの問題がある。
1)時効処理で耐力を上げても約280MPaに過ぎない。
2)時効処理は、他工程に比べて多大の時間と作業を要する。たとえば、アルミニウム素材の溶体化処理には約2時間を要するが、時効処理には約6時間を要する。したがって、時効処理があることによって、作業時間の増大、工程増、製造の複雑化を招く。
3)製造の複雑化により素材板厚を最適化することが困難であること、および時効で出る耐力が約280MPaに過ぎないこと、などにより、板厚が厚くなり、重量増、コストアップを招いている。
4)溶体化処理による変形が容器の最終形状に残ってしまう。
本発明の目的は、耐力を向上でき、時効処理を廃止でき、溶体化処理による容器の変形を残さずに高精度に加工できる、高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成する本発明は、つぎの通りである。
(1) 析出硬化型アルミニウム合金からなるアルミニウム素材に溶体化処理を施し、しかる後円筒部と該円筒部の両端の半球部からなる形状をもつ素材の前記円筒部または全部をしごき加工して塑性ひずみを付与し、その後端口部をスピニング加工により成形してライナー形状にし、溶体化処理後における時効処理を除去した高圧ガス容器のアルミニウム製ライナーの製造方法。
(2) 前記塑性ひずみは、常温かそれ以上の温度で50%以上の板厚減少率にてしごき加工することで付与する(1)記載の高圧ガス容器のアルミニウム製ライナーの製造方法。
(3) 前記塑性ひずみは、125°C以上の温度でしごき加工することで付与する(1)記載の高圧ガス容器のアルミニウム製ライナーの製造方法。
(4) アルミニウム素材に溶体化処理を施した後しごき加工して塑性ひずみを付与し、溶体化処理後における時効処理を除去してアルミニウム製ライナーを製造し、その後の工程で前記アルミニウム製ライナーにFRP用強化繊維を巻き該FRP用強化繊維に樹脂を含浸させ該樹脂を加熱・硬化させて高圧ガス容器とする高圧ガス容器の製造方法であって、前記アルミニウム素材を析出硬化型アルミニウム合金から構成し、後工程の樹脂硬化時の供給熱量を制御し加えることによりアルミニウム製ライナーのアルミニウム材料中に析出硬化を生じさせる、高圧ガス容器の製造方法。
【0005】
上記(1)の高圧ガス容器のアルミニウム製ライナーの製造方法では、溶体化処理後、塑性ひずみを付与することにより、従来の溶体化処理後時効処理で得られた耐力に比べて耐力を向上させることができ、溶体化処理後の時効が不要となる。時効廃止により、作業時間、作業量が減少され、工程減、製造方法が単純化される。また、製造方法の単純化により塑性ひずみ付与工程で余分の厚みをつけることなく最終形状に仕上げることができること、および塑性ひずみ付与工程で従来の時効による耐力向上以上に耐力を出すことができること、により、板厚の最適化、低減をはかることができ、重量低減、コストダウンをはかることができる。また、溶体化処理により生じる容器の変形が、塑性ひずみ付与により矯正されることにより容器の最終形状まで残らず、高精度に加工できる。
上記(2)、(3)の方法により、塑性ひずみ付与工程で約320MPa以上の耐力を達成できる。
上記(4)の高圧ガス容器の製造方法は、上記(1)の方法によるアルミニウム製ライナーの製造後に、後工程の樹脂硬化時の供給熱量を制御し加えることによりアルミニウム素材中に析出硬化を生じさせる方法であり、この析出硬化により、塑性ひずみ付与で得られた耐力(上記(1)の方法で得られた耐力)に比べて、耐力をさらに向上させることができる。
【0006】
【発明の実施の形態】
図1は本発明の第1実施例の高圧ガス容器のアルミニウム製ライナーの製造方法を工程順に示しており、図2は本発明の第2実施例の高圧ガス容器のアルミニウム製ライナーの製造方法を工程順に示しており、図3は本発明の第3実施例の高圧ガス容器のアルミニウム製ライナーの製造方法を工程順に示しており、図4は、本発明の第1〜第3実施例の方法における板厚減少率、加工温度と耐力との関係を示しており、図5は本発明の第4実施例の高圧ガス容器の製造方法を工程順に示しており、図6、図7は本発明の第4実施例によりアルミニウム材料の耐力がさらに向上されることをグラフで示している。
図中、本発明の何れの実施例にも共通または類似する部分には、本発明のすべての実施例にわたって同じ符合を付してある。
【0007】
まず、本発明の何れの実施例にも共通または類似する部分を、たとえば、図1、図4、図5を参照して、説明する。
高圧ガス容器のアルミニウム製ライナー11は、たとえば自動車用天然ガスボンベのアルミニウム製ライナーである。アルミニウム製ライナー11の形状は、たとえば円筒部12とその両端部の半球状部13とからなる継目無しライナーである。高圧ガス容器のアルミニウム製ライナーは、作製後、円筒部または全外周にFRP用強化繊維15を巻かれ、該繊維に樹脂(熱硬化性樹脂)を含浸させ、加熱し硬化させて高圧ガス容器とされる。
【0008】
本発明実施例の高圧ガス容器のアルミニウム製ライナー11の製造方法は、アルミニウム素材10に溶体化処理を施す工程101と、しかる後塑性ひずみを付与する工程102と、その後端口部14を成形(口閉じ成形)してライナー形状にする工程103と、を有する。本発明実施例の高圧ガス容器のアルミニウム製ライナー11の製造方法は、溶体化処理を施した後塑性ひずみを付与して製造したアルミニウム製ライナー11に、FRP用強化繊維(フィラメント)15を巻き(ワインディング)する工程104と、該繊維15に樹脂(熱硬化性樹脂、たとえば、エポキシ樹脂)16を含浸させ加熱・硬化させる樹脂硬化時の供給熱量をアルミニウム製ライナー11に制御し加えてアルミニウム材料中に析出硬化を生じさせアルミニウム材料強度を向上させる工程105を、有していてもよい。
【0009】
本発明実施例の高圧ガス容器のアルミニウム製ライナーの製造方法は、溶体化工程101の前にアルミニウム素材10の提供工程100を有する。アルミニウム素材10は、パイプ状、または一端が閉じられたパイプ状の形態で溶体化処理工程101に供給される。
アルミニウム製ライナー11のアルミニウム材料は、望ましくはJIS6000系のような析出硬化型の材料組成(Al−Mg−Si合金)であり、たとえばA6061である。また、アルミニウム素材10は、継目なし素材でり、たとえばシームレスパイプである。
溶体化処理は、たとえば、アルミニウム素材10を520℃〜530℃×2Hr加熱しついで急冷することにより行う。溶体化処理後のアルミニウム材料の耐力は約145MPaである。
【0010】
塑性ひずみの付与は、たとえば、素材の一部分(図示例では円筒部12)または全部の、素材板厚まで変化させる、しごき加工(素材の板厚の変化を伴う塑性加工)である。塑性ひずみの付与工程において、塑性ひずみの付与条件によっては、320MPa以上の0.2%耐力が得られる。320MPaは、従来の溶体化処理後時効処理による280MPaの耐力に比べて、14%アップである。
強度(耐力)向上に適する塑性ひずみの付与条件を求めるために、加工温度、ひずみ量を種々に変えて、耐力(0.2%耐力)を求める試験を行った。加工温度は、常温(冷間加工)、100〜125°C、125〜150°C、150〜175°Cに変化させた。また、板厚減少率は15%、35%、55%、75%に変化させた。結果を図4に示す。
【0011】
図4からわかるように、温間での加工の方が冷間加工に比べて大きな耐力の向上が見られ、しかも小さな塑性ひずみでも耐力の向上が見られる。また、塑性ひずみを板厚減少率にして50%以上にすると、冷間でも大きな耐力向上が見られる。
耐力向上が得られる理由は、加工硬化による他、加工時の素材中の熱発生により時効に近い現象が生じているからであると考えられる。
【0012】
図4からわかるように、320MPa以上の0.2%耐力を得るために、塑性ひずみ付与は、常温かそれ以上の温度で50%以上の板厚減少率で塑性ひずみを付与するか、あるいは125°C以上の温度で塑性ひずみを付与することにより行われることが望ましい。ここで、板厚減少率は、((減少前の板厚−減少後の板厚)/減少前の板厚)×100%として定義される。また、通常の、溶体化処理(たとえば、500℃×2Hr)後に時効処理(たとえば、180℃×6Hr)を行った場合に得られる耐力は約280MPa(処理条件により若干異なる)であり、図4にそれを合わせ示してある。
なお、図4は、100℃〜125℃の温度で33%の板厚減少率で325MPaの0.2%耐力が得られ、125°C以上の温度で14%の板厚減少率で340MPaの0.2%耐力が得られることを示しており、このことから、常温かそれ以上の温度で50%以上の板厚減少率で塑性ひずみを付与するかあるいは125°C以上の温度で塑性ひずみを付与すること以外の条件でも320MPa以上の0.2%耐力を得ることがわかる。
【0013】
端口部14を成形(口閉じ成形)工程104は、しごき加工後に行われ、たとえば、スピニング加工による。しごき加工後には、時効処理は施されない。したがって、容器の製造工程から、従来必要であった時効処理工程が除去されている。
【0014】
溶体化処理を施した後塑性ひずみを付与して製造したアルミニウム製ライナー11に、工程104でFRP用強化繊維(フィラメントで、たとえばカーボン、ガラス、アラミド等の繊維)15を巻き、工程105で繊維15に熱硬化性樹脂16(たとえば、エポキシ樹脂)を含浸、加熱・硬化させる場合は、樹脂硬化時の供給熱量を制御し加え、樹脂硬化のための熱を利用して、アルミニウム材料中に析出硬化を生じさせることにより、たとえばMg、Si、Zn等の化合物(たとえば、Mg2 Si、またはそれへの中間化合物)を析出させることにより、材料強度を高める。
樹脂硬化時の加熱を利用してアルミニウム材料に熱量を供給する場合の、アルミニウム材料に供給される熱量(温度×時間)とアルミニウム材料強度(0.2%耐力)との関係は図6に示す通りである。温度が180℃の場合は時間は約2〜4時間とし(それ以上だと、過時効により材料耐力が低下する場合がある)、温度が150℃の場合は時間は約4時間以上、たとえば6時間とする。温度が120℃より低いと熱量供給時間が長くなり過ぎて生産に適しなくなる。したがって、樹脂硬化時の供給熱量を制御し加える場合、温度は120℃〜200℃とし、望ましくは温度を150℃〜180℃とし、時間は2〜8Hrとし、温度が高いほど熱量供給時間を少なくする。
【0015】
つぎに、本発明の何れの実施例にも共通または類似する上記部分の作用を説明する。
上記の高圧ガス容器のアルミニウム製ライナー11の製造方法では、アルミニウム素材10を溶体化処理後、塑性ひずみを付与することにより、塑性ひずみの付与の仕方によっては、従来の溶体化処理後時効処理で得られた耐力(280MPa)に比べて耐力を320MPa以上に向上させることができ、溶体化処理後の時効を廃止できる。塑性ひずみ付与後に時効処理を施すと逆に耐力が従来の時効処理で得られる耐力並みに低下してしまうことがある。時効廃止により、作業時間、作業量が減少され、工程減、製造方法が単純化される。また、製造方法の単純化により塑性ひずみ付与工程で余分の厚みをつけることなく最終形状に仕上げることができること、および塑性ひずみ付与工程で従来の時効による耐力向上以上に耐力を出すことができること、により、板厚の最適化、低減をはかることができ、重量低減、コストダウンをはかることができる。
【0016】
市販タンクを購入して自動車用天然ガスボンベを製造した場合と、本発明実施例方法により自動車用天然ガスボンベを製造した場合の物理的特性を比較すると、表1に示すようになる。
【0017】
【表1】
Figure 0003750449
【0018】
表1からわかるように、溶体化処理後塑性ひずみを付与することにより、材料強度が向上できること、製品形状での熱処理が不要となるため製品の精度が良好となりしごき工程で最終板厚に成形することが許されること(余分の板厚とする必要がない)により、発生応力が最も大きくなる容器胴部が8.4mmから3.0mmに減少でき、−61%もの重量軽減、材料コスト低減をはかることができる。
また、長時間が必要である時効処理が不要となるため、製作時間が短縮でき、かつコスト低減をはかることができる。
【0019】
また、溶体化処理を施した後塑性ひずみを付与して製造したアルミニウム製ライナー11に、樹脂硬化時の供給熱量を制御し加え、析出硬化を生じさせて材料強度を高める場合は、図6、図7に示すように、0.2%耐力が350MPa以上に向上させることが可能であり、本発明の第1〜第3実施例の320MPa以上の0.2%耐力に比べて、さらに耐力が向上された。これを、従来の溶体化処理後時効処理を施した0.2%耐力の280MPaと比較すると、溶体化処理後しごき加工の320MPaで14%以上の耐力アップが得られ、溶体化処理後しごき加工およびその後の樹脂硬化時の加熱利用による析出硬化による350MPaで25%の耐力アップが得られた。
【0020】
つぎに、本発明の各実施例に特有な部分を説明する。
本発明の第1実施例は、パイプ材を用いた高強度容器製造方法である。本発明の第1実施例においては、図1に示すように、素材供給工程100が、アルミニウムシームレスパイプのアルミニウム素材10を供給する工程からなり、この状態で工程101で溶体化処理を施し、工程102でしごき加工を施し、成形工程103で一端にスピニング加工により口閉じ加工を施し、ついで他端にスピニング加工により口閉じ加工を施す。
本発明の第1実施例では、パイプ材を利用するので、素材の入手が容易であり、かつ容易に継目なし素材を提供できる。
【0021】
本発明の第2実施例は、板材を用いた高強度容器製造方法である。本発明の第2実施例においては、図2に示すように、素材供給工程100が、アルミニウム板材をスピニング加工またはプレス加工により継目なしのおわん型に絞り成形してアルミニウム素材10を供給する工程からなり、この状態で工程101で溶体化処理を施し、工程102でしごき加工を施し、成形工程103で開放端にスピニング加工により口閉じ加工を施す。
本発明の第2実施例では、板材を利用するので、素材が安価で入手が容易であり、かつ成形を施して容易に継目なし素材を提供できる。
【0022】
本発明の第3実施例は、棒材を用いた高強度容器製造方法である。本発明の第3実施例においては、図3に示すように、素材供給工程100が、アルミニウム棒材を後方押出成形(型内に棒材を入れ、棒材にポンチを押し入れることによりパンチと型との隙間に後方に素材を押し出しておわん側に成形すること)により継目なしのおわん型に成形してアルミニウム素材10を供給する工程からなり、この状態で工程101で溶体化処理を施し、工程102でしごき加工を施し、成形工程103で開放端にスピニング加工により口閉じ加工を施す。
本発明の第3実施例では、棒材を利用するので、素材が安価で入手が容易であり、かつ成形を施して容易に継目なし素材を提供できる。
【0023】
本発明の第4実施例は、本発明の第1〜第3実施例で製造したアルミニウム製ライナー11に、図5に示すように工程104でフィラメントを巻き、工程105で樹脂を含浸させ加熱・硬化させるとともに樹脂硬化の加熱時の熱を利用して、アルミニウム材料を加熱しアルミニウム材料中にMg、Si、Zn等の化合物を析出させることにより材料強度を高める、高強度容器製造方法である。工程105でのアルミニウム加熱の熱量は、たとえば、180℃×2〜4Hr、または150℃×6〜8Hrである。これによって、図6、図7に示すように、析出硬化により350MPa程度の材料耐力が得られ、従来の溶体化処理後時効処理の場合の280MPaに比べて25%の耐力向上が可能となった。
【0024】
【発明の効果】
請求項1の高圧ガス容器のアルミニウム製ライナーの製造方法によれば、溶体化処理後、塑性ひずみを付与することにより、従来の時効処理で得られた耐力に比べて耐力を向上させることができ、溶体化処理後の時効が不要となる。時効廃止により、作業時間、作業量が減少され、工程減、製造方法が単純化される。また、製造方法の単純化により塑性ひずみ付与工程で余分の厚みをつけることなく最終形状に仕上げることができること、および塑性ひずみ付与工程で従来の時効による耐力向上以上に耐力を出すことができること、により、板厚の最適化、低減をはかることができ、重量低減、コストダウンをはかることができる。また、溶体化処理により生じる容器の変形が、塑性ひずみ付与により矯正されることにより容器の最終形状まで残らず、高精度に加工できる。
請求項2の高圧ガス容器のアルミニウム製ライナーの製造方法によれば、塑性ひずみを、常温かそれ以上の温度で50%以上の板厚減少をしごき加工で付与するので、塑性ひずみ付与工程で約320MPa以上の耐力を得ることができる。
請求項3の高圧ガス容器のアルミニウム製ライナーの製造方法によれば、塑性ひずみを、125°C以上の温度でしごき加工することで付与するので、塑性ひずみ付与工程で約320MPa以上の耐力を得ることができる。
請求項4の高圧ガス容器の製造方法によれば、後工程の樹脂硬化時の供給熱量を制御し加えるので、アルミニウム材料中に析出硬化を生じさせ、この析出硬化により、塑性ひずみ付与で得られた耐力(請求項1の方法で得られた耐力)に比べて、アルミニウム材料の耐力をさらに向上させることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例の高圧ガス容器のアルミニウム製ライナーの製造方法の工程図である。
【図2】 本発明の第2実施例の高圧ガス容器のアルミニウム製ライナーの製造方法の工程図である。
【図3】 本発明の第3実施例の高圧ガス容器のアルミニウム製ライナーの製造方法の工程図である。
【図4】 加工温度、ひずみ量(板厚減少率)と0.2%耐力との関係を示すグラフである。
【図5】 本発明の第4実施例の高圧ガス容器の製造方法の工程図である。
【図6】 本発明の第4実施例の高圧ガス容器の製造方法におけるアルミニウム材料の0.2%耐力とそれぞれの温度の保持時間との関係を示す試験結果のグラフである。
【図7】 本発明の第4実施例の高圧ガス容器の製造方法で得られる材料耐力を、ひずみ付与で得られる材料耐力および溶体化処理で得られる材料耐力と比較して示すグラフである。
【図8】 従来の高圧ガス容器のアルミニウム製ライナーの製造方法の工程図である。
【符号の説明】
10 アルミニウム素材
11 アルミニウム製ライナー
12 円筒部
13 半球状部
14 端口部
15 強化繊維(フィラメント)
16 樹脂
100 アルミニウム素材の提供工程
101 溶体化工程
102 塑性ひずみ付与工程
103 容器成形工程
104 フィラメントワインディング工程
105 樹脂加熱・硬化工程(アルミニウム材料の析出硬化がある工程)

Claims (4)

  1. 析出硬化型アルミニウム合金からなるアルミニウム素材に溶体化処理を施し、しかる後円筒部と該円筒部の両端の半球部からなる形状をもつ素材の前記円筒部または全部をしごき加工して塑性ひずみを付与し、その後端口部をスピニング加工により成形してライナー形状にし、溶体化処理後における時効処理を除去した高圧ガス容器のアルミニウム製ライナーの製造方法。
  2. 前記塑性ひずみは、常温かそれ以上の温度で50%以上の板厚減少率にてしごき加工することで付与する請求項1記載の高圧ガス容器のアルミニウム製ライナーの製造方法。
  3. 前記塑性ひずみは、125°C以上の温度でしごき加工することで付与する請求項1記載の高圧ガス容器のアルミニウム製ライナーの製造方法。
  4. アルミニウム素材に溶体化処理を施した後しごき加工して塑性ひずみを付与し、溶体化処理後における時効処理を除去してアルミニウム製ライナーを製造し、その後の工程で前記アルミニウム製ライナーにFRP用強化繊維を巻き該FRP用強化繊維に樹脂を含浸させ該樹脂を加熱・硬化させて高圧ガス容器とする高圧ガス容器の製造方法であって、前記アルミニウム素材を析出硬化型アルミニウム合金から構成し、後工程の樹脂硬化時の供給熱量を制御し加えることによりアルミニウム製ライナーのアルミニウム材料中に析出硬化を生じさせる、高圧ガス容器の製造方法。
JP34545199A 1998-12-07 1999-12-03 高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法 Expired - Fee Related JP3750449B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34545199A JP3750449B2 (ja) 1998-12-07 1999-12-03 高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-346473 1998-12-07
JP34647398 1998-12-07
JP34545199A JP3750449B2 (ja) 1998-12-07 1999-12-03 高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法

Publications (2)

Publication Number Publication Date
JP2000233245A JP2000233245A (ja) 2000-08-29
JP3750449B2 true JP3750449B2 (ja) 2006-03-01

Family

ID=26578025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34545199A Expired - Fee Related JP3750449B2 (ja) 1998-12-07 1999-12-03 高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法

Country Status (1)

Country Link
JP (1) JP3750449B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115202A1 (ja) 2010-03-18 2011-09-22 株式会社神戸製鋼所 高圧水素ガス貯蔵容器用アルミニウム合金材
KR101837090B1 (ko) * 2010-12-07 2018-03-09 라이펠트 메탈 스피닝 아게 파이프부를 성형하기 위한 방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492817B1 (ko) * 2003-02-05 2005-05-30 코리아프랜트 주식회사 대형 고압용기의 성형장치
KR100620303B1 (ko) 2003-03-25 2006-09-13 도요다 지도샤 가부시끼가이샤 가스저장탱크 및 그 제조방법
CN100371102C (zh) * 2005-08-02 2008-02-27 中国科学院金属研究所 一种复合压力容器内衬半壳体毛坯模锻成型方法
WO2007111325A1 (ja) * 2006-03-28 2007-10-04 Showa Denko K.K. ライナ構成部材の製造方法
JP5740095B2 (ja) * 2010-03-10 2015-06-24 サムテック株式会社 金属ライナー用カップおよびその製造方法
JP6507335B2 (ja) * 2014-06-16 2019-05-08 フジデノロ株式会社 ストレッチャ
EP3325188B1 (en) * 2015-08-21 2020-04-15 VitKovice Cylinders a.s. Method of production of a high-pressure seamless steel cylinder with second inner neck
JP6676949B2 (ja) * 2015-12-15 2020-04-08 東洋製罐グループホールディングス株式会社 金属容器の製法
JP6631235B2 (ja) * 2015-12-18 2020-01-15 富士ゼロックス株式会社 導電性支持体、電子写真感光体、プロセスカートリッジ、画像形成装置、及び導電性支持体の製造方法
CN114147131B (zh) * 2022-02-10 2022-04-29 四川大学 一种大口径高压气瓶均质化热旋压成形方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115202A1 (ja) 2010-03-18 2011-09-22 株式会社神戸製鋼所 高圧水素ガス貯蔵容器用アルミニウム合金材
US9249483B2 (en) 2010-03-18 2016-02-02 Kobe Steel, Ltd. Aluminum alloy material for storage container for high-pressure hydrogen gas
KR101837090B1 (ko) * 2010-12-07 2018-03-09 라이펠트 메탈 스피닝 아게 파이프부를 성형하기 위한 방법

Also Published As

Publication number Publication date
JP2000233245A (ja) 2000-08-29

Similar Documents

Publication Publication Date Title
JP3750449B2 (ja) 高圧ガス容器のアルミニウム製ライナーの製造方法および高圧ガス容器の製造方法
CN108380722A (zh) 一种轻量化铝合金车身构件的热冲压成形方法
CN1827289A (zh) 锻造铝合金车轮锻-旋成形工艺
JP3859504B2 (ja) アルミ化チタン金属材料の強化処理方法及び同方法を適用される金属材料
US20020170635A1 (en) Process for manufacturing aluminum alloys and aluminium castings
DE3433350A1 (de) Motorfahrzeugrad und verfahren zur herstellung
Hua Forming behaviour of sandwich materials made of steel covers and polyamide cores with or without glass fibre reinforcements
CN105945079A (zh) 一种应用于铝材的弯曲成型工艺
KR101345031B1 (ko) 중력주조 및 가압성형을 이용한 마그네슘합금 너클의 제조방법 및 그 너클
CN107900305A (zh) 一种汽车控制臂的生产方法
JPH03236452A (ja) マグネシウム合金鍛造ホイールの製造方法
CN108555131B (zh) 一种高强度钢a型轿车后副车架扭力梁制造方法
CN110560528A (zh) 一种降低管状零件回弹的工艺方法
JP2000202552A (ja) 高圧ガス容器ライナ―の製造方法
CN106345966A (zh) 一种汽车下摆臂生产工艺
KR20170112845A (ko) 주조용 합금을 이용한 알루미늄 휠 제조방법
WO2008111723A1 (en) Ball joint integrated aluminum control arm for automobile and method of fabricating the same
KR20040001581A (ko) 고인성 알루미늄 합금 및 이를 이용한 차체용 알루미늄스페이스 프레임의 제조 방법
JP2001026835A (ja) 鍛造成形品およびその製造方法
CN209467271U (zh) 电动自行车一体式上管
JPH06248402A (ja) マグネシウム合金製部材の製造方法
CN113210573B (zh) 一种铝合金轮毂及其多场耦合铸造成型及晶粒细化方法
JP2878842B2 (ja) 高張力鋼部品及び製造方法
JP3285055B2 (ja) 成形機用シリンダ及びその製造方法
JP3316241B2 (ja) 鍛造成形品の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees