JP2018204116A - アルミニウム合金板 - Google Patents

アルミニウム合金板 Download PDF

Info

Publication number
JP2018204116A
JP2018204116A JP2018158623A JP2018158623A JP2018204116A JP 2018204116 A JP2018204116 A JP 2018204116A JP 2018158623 A JP2018158623 A JP 2018158623A JP 2018158623 A JP2018158623 A JP 2018158623A JP 2018204116 A JP2018204116 A JP 2018204116A
Authority
JP
Japan
Prior art keywords
surface layer
plate
cube
aluminum alloy
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018158623A
Other languages
English (en)
Inventor
松本 克史
Katsushi Matsumoto
克史 松本
有賀 康博
Yasuhiro Ariga
康博 有賀
久郎 宍戸
Hisao Shishido
久郎 宍戸
佐藤 和史
Kazufumi Sato
和史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018158623A priority Critical patent/JP2018204116A/ja
Publication of JP2018204116A publication Critical patent/JP2018204116A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】強度を低下させずに、自動車の衝突時における衝撃吸収性を向上させた、7000系アルミニウム合金板を提供する。【解決手段】常法によって製造された7000系アルミニウム合金板の表層部をCubeが発達した集合組織とし、板の中心部をS方位が発達した集合組織とし、板の表層部と板厚中心部とを、衝撃吸収性と強度とに対して、それぞれ最適な集合組織に作り分けることで、強度を低下させずに、図1のVDA曲げ試験にて評価される自動車の衝突時における衝撃吸収性を向上させる。【選択図】図1

Description

本発明は、通常の圧延によって製造される7000系アルミニウム合金板であって、衝撃吸収性に優れた高強度7000系アルミニウム合金板に関するものである。
構造材料として自動車を例にとると、近年、地球環境などへの配慮から、自動車車体の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車車体のうち、パネル(フード、ドア、ルーフなどのアウタパネル、インナパネル)や、バンパリーンフォース(バンパーR/F)やドアビームなどの補強材などを、部分的に鋼板等の鉄鋼材料に代えて、アルミニウム合金材料を適用することが行われている。
ただ、自動車車体の更なる軽量化のためには、自動車部材のうちでも特に軽量化に寄与する、フレーム、ピラーなどの構造部材にも、アルミニウム合金材料の適用を拡大することが必要となる。これら自動車構造部材は、前記自動車パネルに比べて、材料の高強度化が必要であり、前記補強材として既に用いられている、JIS乃至AA 7000系アルミニウム合金を用いる必要がある。
前記バンパ補強材やドアビームなどの自動車構造部材の補強材は、7000系アルミニウム合金を熱間押出加工して製造される押出形材を素材として、既に汎用されている。これに対して、フレーム、ピラーなどの大型の構造部材は、鋳塊を均熱処理後に熱間圧延する、あるいは更に冷間圧延するような、常法によって製造される圧延板を素材とすることが好ましい。ただ、7000系アルミニウム合金の圧延板は、高合金ゆえのつくりにくさがあり、これまであまり実用化されていない。
ただ、近年では、このような高強度な7000系アルミニウム合金圧延板(以下、7000系アルミニウム合金板、あるいは単に板とも言う)を、前記自動車構造部材を始め、鉄道車両などの構造部材に適用するために、集合組織を制御する検討が行われている。
7000系アルミニウム合金板の集合組織の制御例として、特許文献1、2では、構造材用の板の高強度化、高耐SCC性化を図るために、鋳塊を鍛造後に、温間加工域にて繰り返して圧延して、板組織を細かくしている。これは、板組織を細かくすることによって、耐SCC性低下の原因となる粒界と粒内との電位差の要因となる、方位差が20°以上の大傾角粒界を抑制して、3〜10°の小傾角粒界が25%以上である集合組織を得るためである。
ただ、特許文献1、2が、このような特殊な温間圧延の繰り返しを行うのは、通常の熱間圧延、冷間圧延の製造方法では、このような小傾角粒界が多い集合組織を得ることができないためである。したがって、通常の製造方法とは、その工程が大きく異なるため、板の製造方法としては実用的ではない。
これに対して、特許文献3では、通常の板の製造方法によって製造される、強度と耐SCC性の両方に優れた、自動車部材用の7000系アルミニウム合金板を提供することを目的として、板の集合組織を制御している。
具体的には、Zn:3.0〜8.0%、Mg:0.5〜4.0%を含み、残部がAlおよび不可避的不純物からなる組成のAl−Zn−Mg系アルミニウム合金板の、平均結晶粒径が15μm以下であるとともに、Brass方位、S方位、Cu方位を有する結晶粒の平均合計面積率が30%以上である集合組織を有することとしている。
すなわち、通常の等軸な再結晶組織ではなく、むしろ前記押出形材に類似した加工組織として、繊維状組織で構成し、これを集合組織の観点から、主方位がBrass方位、S方位、Cu方位であるものと規定している。
この特許文献3では、このような集合組織とすることによって、板に歪が入った場合に、局所的に集中せずに、均一に転位する組織とできるとしている。そして、常法によって製造された7000系アルミニウム合金板であっても、0.2%耐力が350MPa以上の高強度とし、伸びも大きくして成形性を確保でき、高強度であるにも関わらず、耐SCC性の低下も抑制できるとしている。
特開2001−335874号公報 特開2002−241882号公報 特開2014−62285号公報
ここで、近年の自動車の衝突安全基準のレベルアップによって、ヨーロッパなどでは、前記フレーム、ピラーなどの自動車構造部材に、ドイツ自動車工業会(VDA)で規格化されている「VDA238−100 Plate bending test for metallic materials(以降、VDA曲げ試験と言う)」にて評価される、自動車の衝突時における衝撃吸収性(圧壊特性)を満たすことが求められるようになっている。
このような厳しい安全基準に対して、板の組織を、前記特許文献1、2のように、大傾角粒界を抑制して、3〜10°の小傾角粒界を増した集合組織としても、また、前記特許文献3のように、繊維状組織で構成した集合組織としても、前記自動車の衝突時における衝撃吸収性(圧壊特性)を満たすことができない。
また、通常の圧延によって製造される7000系アルミニウム合金板に、その強度を低下させずに、自動車の衝突時における衝撃吸収性(圧壊特性)を満たす手段ついては、未だ有効な手段が不明で、なお解明の余地がある。
このような状況に鑑み、本発明の目的は、通常の圧延によって製造される7000系アルミニウム合金板であって、強度を低下させずに、自動車の衝突時における衝撃吸収性(圧壊特性)を向上させた、7000系アルミニウム合金板を提供することである。
この目的を達成するために、本発明のアルミニウム合金板の要旨は、質量%で、Zn:2.0〜9.0%、Mg:0.5〜4.5%を各々含有するとともに、Cu:0.5%以下(但し0%を含む)、Zr:0.15%以下(但し0%を含む)、Mn:0.2%以下(但し0%を含む)、Cr:0.15%以下(但し0%を含む)、Sc:0.05%以下(但し0%を含む)に各々規制し、残部がAl及び不可避的不純物からなるアルミニウム合金板であって、この板の表面から板厚の15%の深さまでの表層部の結晶粒のうち、Cube方位を有する結晶粒の面積率を[表層部Cube]、S方位を有する結晶粒の面積率を[表層部S]と各々するとともに、前記板の板厚中心部における結晶粒のうち、Cube方位を有する結晶粒の面積率を[板厚中心部Cube]、S方位を有する結晶粒の面積率を[板厚中心部S]と各々した時、前記表層部は、平均結晶粒径が40μm以下の等軸な再結晶組織であるとともに、前記[表層部Cube]が10%以上で、かつ、前記[表層部S]が10%以上、40%以下であり、かつ、前記[表層部Cube]の前記[板厚中心部Cube]に対する割合である[表層部Cube]/[板厚中心部Cube]が1.0を超えているとともに、前記[表層部S]の前記[板厚中心部S]に対する割合である[表層部S]/[板厚中心部S]が1.0未満であるような、前記表層部と前記板厚中心部とが異なる集合組織を有することとする。
本発明では、溶体化および焼入れ処理後の7000系アルミニウム合金板の集合組織に着目して、VDA曲げ試験にて評価される、自動車衝突時における衝撃吸収性(圧壊特性)との関係を解析した。その結果、この衝撃吸収性は、特に板の表層部の集合組織が影響し、板の表層部をCubeが発達した特定の集合組織にすることによって向上することを見出した。また、この際に、板の中心部(板厚中心部)をS方位が発達した特定の集合組織にすることによって、強度が保持されることも見出した。
すなわち、板の表層部と板厚中心部とを、衝撃吸収性と強度とに対して、それぞれ最適な集合組織に作り分けることで、強度を低下させずに、自動車の衝突時における衝撃吸収性を向上させられることを見出した。
このように、本発明は、前記表層部と前記板厚中心部とが異なる集合組織を有することによって、通常の圧延によって製造される7000系アルミニウム合金板に、強度と衝撃吸収性を兼備させることができる。したがって、このような特性が要求される、前記自動車や鉄道車両などの構造部材用に好適な7000系アルミニウム合金板を提供できる。
衝撃吸収性を評価するVDA曲げ試験の態様を示す斜視図である。
本発明で言うアルミニウム合金板とは、鋳塊を均熱処理後に熱間圧延され、更に冷間圧延された冷延板であって、更に溶体化処理などの調質が施される、通常の圧延法によって製造された7000系アルミニウム合金板のことを言う。言い換えると、前記特許文献1、2のような、鋳塊を鍛造した上で温間圧延を何回も繰り返すような特殊な圧延方法や製法により製造される板を含まない。
このような7000系アルミニウム合金板は、伸びフランジ加工(バーリング加工、穴拡げ加工)などを含む、プレス成形や加工が施された上で、自動車、自転車、鉄道車両などの構造部材とされる。
以下に、本発明の実施の形態につき、要件ごとに具体的に説明する。
アルミニウム合金組成:
先ず、本発明アルミニウム合金板の化学成分組成について、各元素の限定理由を含めて、以下に説明する。なお、各元素の含有量の%表示は全て質量%の意味である。
本発明アルミニウム合金板の化学成分組成は、Al−Zn−Mg系の7000系アルミニウム合金として、自動車などの構造部材に要求される、強度と衝撃吸収性(圧壊特性)、耐SCC性などの諸特性を保証するために決定される。この観点から、本発明アルミニウム合金板の化学成分組成は、質量%で、Zn:2.0〜9.0%、Mg:0.5〜4.5%を各々含有するとともに、Cu:0.5%以下(但し0%を含む)、Zr:0.15%以下(但し0%を含む)、Mn:0.2%以下(但し0%を含む)、Cr:0.15%以下(但し0%を含む)、Sc:0.05%以下(但し0%を含む)に各々規制し、残部がAl及び不可避的不純物からなるものとする。
この組成に、更に、質量%で、Ag:0.01〜0.2%、Sn:0.001〜0.1%の1種又は2種を含んでも良い。これに加えて、あるいはこれとは別に、更に、質量%で、Ti:0.001〜0.1%を含んでも良い。
Zn:2.0〜9.0%
必須の合金元素であるZnは、Mgとともに、溶体化処理後の室温時効時にクラスタ(微細析出物)を形成して加工硬化特性を向上させる。また、人工時効処理時に時効析出物を形成して強度を向上させる。Zn含有量が2.0質量%未満では強度が不足し、また集合組織を規定通りに制御できず、強度と成形性とのバランスが低下する可能性もある。一方Znが9.0質量%を超えると粒界析出物MgZn2が増えて粒界腐食が起こりやすくなり、耐食性が劣化する。従って、Zn含有量は2.0〜9.0%の範囲、好ましくは3.7〜8.3%の範囲の範囲とする。
Mg:0.5〜4.5%
必須の合金元素であるMgは、Znとともに、溶体化処理後の室温時効時にクラスタ(微細析出物)を形成して加工硬化特性を向上させる。また、人工時効処理時に時効析出物を形成して強度を向上させる。Mg含有量が0.5%未満では強度が不足し、4.5質量%を超えると、鋳造割れが発生し、また板の圧延性が低下し、板の製造試作が困難になる。従って、Mg含有量は0.5〜4.5%の範囲、好ましくは1.4〜4.3%の範囲とする。ここで、必要な強度を得るためには、Mg、Znの各含有量を互いにバランスさせるのが好ましい。
Cu、Zr、Mn、Cr、Sc
Cu、Zr、Mn、Cr、Scは、いずれも、溶体化処理時の板の再結晶温度を顕著に上昇させるため、溶体化処理での板の再結晶化の加熱温度が高くなり、板の表面から板厚の15%の深さまでの表層部のCube方位の発達を阻害する作用がある。このため、これらの元素の含有量が多すぎると、前記表層部におけるCube方位を有する結晶粒の面積率[表層部Cube]を、本発明で規定するように大きくできなくなる。また、これらの元素の含有量が多すぎると、この表層部のS方位の発達を助長するため、S方位を有する結晶粒の面積率[表層部S]を、本発明で規定するように制限できなくなる。
このため、本発明では、Cu:0.5%以下(但し0%を含む)、Zr:0.15%以下(但し0%を含む)、Mn:0.2%以下(但し0%を含む)、Cr:0.15%以下(但し0%を含む)、Sc:0.05%以下(但し0%を含む)に、各々敢えて規制することが必要である。
ちなみに、通常、Cuは、Al−Zn−Mg系合金の耐SCC性を向上させる作用や強度向上効果もあるので、添加されることが多い。また、Zr、Mn、Cr、Scも、鋳塊及び最終製品板の結晶粒の微細化による強度向上のために、添加されることが多い。このため、通常は、Cu、Zr、Mn、Cr、Scによって、前記表層部におけるCube方位を有する結晶粒の面積率[表層部Cube]が、本発明で規定するように大きくできなくなる蓋然性が高い。また、この表層部のS方位を有する結晶粒の面積率[表層部S]を、本発明で規定するように制限できなくなる蓋然性も高い。
Ag:0.01〜0.2%、Sn:0.001〜0.1%の1種又は2種
Ag及びSnは、構造材への成形加工後の人工時効処理によって強度向上に寄与する時効析出物を緊密微細に析出させ、高強度化を促進する効果があるので、必要に応じて選択的に含有させる。これらをいずれか一方又は両方含有する場合、Sn含有量が0.001%未満、Ag含有量が0.01%未満では、強度向上効果が小さい。一方、SnやAg含有量が多すぎると、圧延性及び溶接性などの諸特性を却って低下させる。また、強度向上効果も飽和し、Agに関しては高価となるだけである。従って、Ag:0.01〜0.2%、Sn:0.001〜0.1%の範囲とする。
Ti:0.001〜0.1%
Tiは、Bとともに、圧延板としては不純物であるが、アルミニウム合金鋳塊の結晶粒を微細化する効果があるので、7000系合金としてJIS規格で規定する範囲での各々の含有を許容する。Tiが0.001%未満では結晶粒微細化効果が得られない。一方、Tiが0.1%を超える場合、粗大な化合物を形成し、機械的特性が劣化する。従って、Tiの上限は0.1%、好ましくは0.05%以下とする。また、このTiとともに、Bを0.03%まで含有することを許容する。Bが0.03%を超える場合、粗大な化合物を形成し、機械的特性が劣化する。
その他の元素:
これら記載した以外のその他の元素は不可避的な不純物である。溶解原料として、純アルミニウム地金以外に、アルミニウム合金スクラップの使用による、これら不純物元素の混入なども想定(許容)して、7000系合金のJIS規格で規定する範囲での各々の含有を許容する。例えば、不可避的な不純物として、Fe:0.5%以下、Si:0.5%以下であれば、本発明に係るアルミニウム合金板の特性に影響せず、含有が許容される。
組織:
本発明の7000系アルミニウム合金板は、前提として、その組成と多くの製造工程とが、従来の7000系アルミニウム合金板や、その製造方法(通常の圧延法)と共通する。このため、板組織として、微細なナノレベルのサイズの析出物が、結晶粒内に多数存在して、強度や耐食性などの基本特性を満たす土台となっている点も共通している。これらの微細なナノレベルのサイズの析出物とは、結晶粒内に生成する、前記MgとZnとの金属間化合物(組成はMgZn2など)であり、これに前記組成に応じた元素が含まれる微細分散相である。
集合組織:
以上の7000系アルミニウム合金板の組成を前提として、本発明では、VDA曲げ試験にて評価される、自動車衝突時における衝撃吸収性(圧壊特性)や、強度、耐食性などの特性の向上のために、この7000系アルミニウム合金板の組織を制御する。
具体的には、先ず、この板の表面から板厚の15%の深さまでの表層部を、平均結晶粒径が50μm以下の等軸な再結晶組織とする。この表層部の平均結晶粒径が50μmを超えて粗大化するか、等軸な再結晶組織ではなく、圧延方向に伸長した細長い加工組織となった(加工組織のままの)場合、VDA曲げ性を向上させるCube方位を有する結晶粒が発達せずに、衝撃吸収性(圧壊特性)が低下する。
ここで、板の表面から板厚の15%の深さとは、板(供試材)表面の酸化皮膜を研磨により除去した後の、板のアルミニウムマトリックスの最表面からの深さである。
勿論、この表層部だけでなく、より板の内部に向かって、このような平均結晶粒径を50μm以下とした等軸で微細な再結晶組織とできれば良いが、前記した常法による板の製造では、特に板厚が厚い場合など、板厚中心部などの板の内部組織まで、平均結晶粒径を50μm以下とした等軸で微細な再結晶組織とすることは難しい。
また、前記衝撃吸収性(圧壊特性)には、板厚中心部などの板の内部組織の有り様よりも、板の表面から板厚の15%の深さまでの表層部の、Cube方位を有する結晶粒組織が、大きく影響する。このため、本発明では、板の表面から板厚の15%の深さまでの表層部の集合組織を規定する。
この表層部の厚みが、板の表面から板厚の15%未満では、Cube方位やS方位の面積率が後述する規定を満たしても、板のごく表面だけなど、表層部が薄すぎて、前記衝撃吸収性の向上効果が小さくなる。また、この集合組織を有する表層部が、板の表面から板厚の15%を超える深さまで存在しては、表層部が厚すぎることとなり、強度を保証する板の中心部の厚さが薄くなりすぎて、板全体としての高強度を保証できなくなる。
表層部と板厚中心部との集合組織の複合化:
上記のように、板の表層部を微細で等軸な再結晶組織とした上で、本発明では、板の表層部を、強度よりも衝撃吸収性(圧壊特性)に優れたCube方位を主とする集合組織とし、板の板厚中心部は、衝撃吸収性(圧壊特性)よりも強度に優れたS方位を主とする集合組織する。
すなわち、本発明では、板の表層部の前記衝撃吸収性(圧壊特性)に効くCube方位を、その絶対量を確保するとともに、板厚中心部のCube方位よりも多くして、前記衝撃吸収性(圧壊特性)を向上させる。
と同時に、板厚中心部においては、強度の向上に効くS方位の絶対量を確保し、この絶対量を、前記板厚中心部のS方位の面積率を、前記表層部のS方位の面積率より多くすることで規定して、板の強度を確保する。
このように、本発明では、板の表層部と板厚中心部とを、衝撃吸収性と強度とに対して、それぞれ最適な集合組織に作り分け、前記表層部と前記板厚中心部とで集合組織と作用とが異なる、板厚方向での複合組織を有する板とする。
Cube方位とS方位の表層部と板厚中心部とでの各面積率:
具体的に、本発明では、表面から板厚の15%の深さまでの板の表層部の結晶粒のうち、Cube方位を有する結晶粒の面積率を[表層部Cube]とし、S方位を有する結晶粒の面積率を[表層部S]とする。そして、前記板の板厚中心部における結晶粒のうち、Cube方位を有する結晶粒の面積率を[板厚中心部Cube]とし、S方位を有する結晶粒の面積率を[板厚中心部S]とする。
そして、板の板厚の15%の深さまでの表層部の結晶粒のうち、前記[表層部Cube]を10%以上とし、かつ、前記[表層部S]を10%以上、40%以下とする。
同時に、前記[表層部Cube]と前記[板厚中心部Cube]との割合である[表層部Cube]/[板厚中心部Cube]を1.0を超えるものとし、前記[表層部S]と前記[板厚中心部S]との割合である[表層部S]/[板厚中心部S]を1.0未満とする。
ちなみに、常法により製造された板は、[表層部Cube]/[板厚中心部Cube]が1.0か、この近傍、[表層部S]/[板厚中心部S]が1.0か、この近傍となり、板の表層部と板厚中心部とが互いに同じ集合組織となる。
前記[表層部Cube]の上限は、製造限界からすると、80%程度である。この点で、前記[表層部Cube] の好ましい範囲は10%以上、80%以下の範囲である。
このような前記[表層部Cube]とすることによって、常法によって製造された7000系アルミニウム合金板であっても、VDA曲げ試験によって、板に歪が入った場合に、局所的に歪が集中せずに、均一に変形する組織とできる。これによって、前記[板厚中心部S]によって得られた、0.2%耐力が350MPa以上であるような高強度であっても、自動車衝突時における衝撃吸収性(圧壊特性)が高い板特性を得られる。
前記[表層部Cube]が10%未満と少ないか、前記[表層部S]が40%超と多すぎるか、前記[表層部Cube]/[板厚中心部Cube]が1.0以下で、[表層部Cube]が少なすぎると、VDA曲げ性が低下し、自動車衝突時における衝撃吸収性(圧壊特性)が低下する。また、前記[表層部Cube]/[板厚中心部Cube]が1.0以下で、[板厚中心部Cube]が多すぎると、後述するように[板厚中心部S]が少なくなりすぎて、強度が低下する。
一方、前記[表層部S]が10%未満と少ないか、前記[表層部S]/[板厚中心部S]が1.0以上と、[板厚中心部S]が少なすぎるか、[板厚中心部S]が多すぎると、強度が低下する。
ここで、VDA曲げ性や強度の、より一層の向上のためには、好ましくは、[表層部Cube]/[板厚中心部Cube]が1.2以上、[表層部S]/[板厚中心部S]が0.8以下、より好ましくは、[表層部Cube]/[板厚中心部Cube]が1.3以上、[表層部S]/[板厚中心部S]が0.7以下とする。
なお、これらのCube方位やS方位の関係を満たせば、他のCR方位、Brass方位、Cu方位、Goss方位 、Rotated−Goss方位、S方位、B/G方位、B/S方位、P方位などの他の方位の結晶粒が存在することは許容される。常法による製造限界からも、これらの他の方位の結晶粒を無くすことはできない。
前記[表層部Cube]を増すためには、冷延板あるいは熱延板などの板の溶体化処理時に起こる再結晶での、圧延集合組織の残存量を低下させる必要がある。その目安として、前記[表層部S]を極力少なくする。圧延集合組織の残存量が多くなり、前記[表層部S]が多くなった場合には、自動車衝突時における衝撃吸収性(圧壊特性)が低下する。
集合組織の測定:
これら本発明で規定する平均結晶粒径や、各方位を有する結晶粒の面積率は、いずれもEBSP法によって測定する。より具体的に、溶体化処理後の冷延板や熱延板(T4材)の幅方向断面から、板の板厚の15%の深さまでの表層部と、板厚中心部とを各々採取して、機械研磨し、更に、バフ研磨に次いで電解研磨して、表面を調製した試料を用意し、SEMあるいはFESEMを用いて、EBSPによる、前記表層部と前記板厚中心部との、結晶方位測定並びに結晶粒径測定を各々行う。そして、この板の表面から板厚の15%の深さまでの表層部の[表層部Cube]と[表層部S]とを、また、板の板厚中心部における[板厚中心部Cube]と[板厚中心部S]とを各々測定する。
EBSP測定・解析システムは、EBSP:TSL社製(OIM)あるいはOXFORD社製(CHANNEL5)を用いる。板の組織の測定部位は、通常のこの種組織の測定部位と同じく、この板の幅方向断面として、この板の幅方向断面の任意の箇所から採取した5個の測定試験片(5箇所の測定箇所)の、前記表層部の各測定値や板厚中央部の各測定値を、それぞれで平均化したものを、本発明で規定する平均結晶粒径や各方位を有する結晶粒の面積率とする。
前記SEM/EBSP法は、集合組織の測定方法として汎用され、走査型電子顕微鏡(Scanning Electron Microscope:SEM)あるいは電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM)に、後方散乱電子回折像[EBSP: Electron Back Scattering(Scattered) Pattern] システムを搭載した結晶方位解析法である。この測定方法は、他の集合組織の測定方法に比して、高分解能ゆえに高測定精度であり、板の同じ測定部位の平均結晶粒径も同時に高精度に測定できる利点がある。
SEM/EBSP法は、前記SEMあるいはFESEM(FE−SEM)の鏡筒内にセットしたAl合金板の試料に、電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の各方位は3次元オイラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点に対して自動的に行なわれるので、測定終了時には数万〜数十万点の結晶方位データが得られる。これらSEMあるいはFESEMにEBSPシステムを搭載した結晶方位解析法の詳細は、神戸製鋼技報/Vol.52 No.2(Sep.2002)P66−70などに詳細に記載されている。
アルミニウム合金板の場合、通常は、以下に示す多くの方位因子(これら各方位を有する結晶粒)からなる集合組織を形成し、それらに応じた結晶面が存在する。一般に、アルミニウム合金の圧延板における集合組織は、主としてCube方位、Goss方位、Brass方位、S方位、およびCopper方位から構成される。これらの集合組織のでき方は、同じ結晶系の場合でも加工、熱処理方法によって異なり、圧延による板材の集合組織の場合は、圧延面と圧延方向で表されており、圧延面は{hkl}で表現され、圧延方向は<uvw>で表現される。かかる表現に基づき、各方位は下記の如く表現される。
Cube方位 {001}<100>
Goss方位 {011}<100>
Brass方位(B方位) {011}<211>
Cu方位(Copper方位){112}<111>
S方位 {123}<634>
B/G方位 {011}<511>
B/S方位 {168}<211>
P方位 {011}<111>
本発明においては、基本的に、これらの結晶面から±10°未満の方位のずれ(傾角)のものは同一の結晶面(方位因子)に属するものとする。また、隣り合う結晶粒の方位差(傾角)が5°以上の結晶粒の境界を結晶粒界と定義する。
そして、前記したSEMあるいはFESEMにEBSPシステムを搭載した結晶方位解析法を用いて、そして、この板の表面から板厚の15%の深さまでの表層部の[表層部Cube]と[表層部S]とを、また、板の板厚中心部における[板厚中心部Cube]と[板厚中心部S]とを、各々算出する。
この際、上記のように記載したCube方位からP方位までの各結晶方位(全結晶方位)の合計の面積を100として、本発明で規定した各方位の面積率の算出を行なった。
なお、前記平均結晶粒径も、傾角が5°以上の粒界で測定、算出する。言い換えると、本発明では、±5°未満の方位のずれは同一の結晶粒に属するものと定義し、隣り合う結晶粒の方位差(傾角)が5°以上の結晶粒の境界を結晶粒界と定義した上で、平均結晶粒径を以下の式により算出した。平均結晶粒径=(Σx)/n(ここで、nは測定した結晶粒の数、xはそれぞれの結晶粒径を示す)。
(製造方法)
本発明の7000系アルミニウム合金板は、鋳塊を均熱処理後に熱間圧延され、更に冷間圧延された冷延板であって、更に溶体化処理などの調質が施される、常法によって製造される。即ち、鋳造、均質化熱処理、熱間圧延の通常の各製造工程を経て製造され、板厚が2〜10mm程度であるアルミニウム合金熱延板とされる。次いで、冷間圧延されて板厚が3mm以下の冷延板とされる。
したがって、本発明の7000系アルミニウム合金板は、双ロール法などの薄板連続鋳造後に冷延して熱延を省略したり、温間圧延を行うような特殊な製造方法や圧延方法によっては製造しない。但し、本発明で規定する集合組織とするための均熱条件と溶体化処理条件とは、後述する通り、常法による工程とは、その条件が異なる。
(溶解、鋳造冷却速度)
先ず、溶解、鋳造工程では、上記7000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
(均質化熱処理)
次いで、前記鋳造されたアルミニウム合金鋳塊に、熱間圧延に先立って、均質化熱処理を施す。この均質化熱処理(均熱処理)は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくすことを目的とする。但し、この均熱処理は集合組織の形成にも大きく影響するので、本発明で規定する集合組織とするためには、この均熱処理を、通常の1回だけの均熱ではなく、2回均熱あるいは2段均熱とする。
2回均熱とは、1回目の均熱後に、一旦室温を含む200℃以下の温度まで冷却し、更に、再加熱し、その温度で一定時間維持した後に、熱延を開始する。これに対して、2段均熱とは、1回目の均熱後に冷却はするものの、200℃以下までは冷却せず、より高温で冷却を停止した上で、その温度で維持した後に、そのままの温度か、より高温に再加熱した上で熱延を開始する。
1回目あるいは1段目の均熱条件は、400℃以上、融点未満の温度範囲で、2時間以上の保持時間の範囲から適宜選択される。
この1回目の均熱処理後に、2回均熱のために、一旦、室温を含む200℃以下まで冷却するか(2回均熱)、2段均熱のために、一旦、200℃よりも高温の温度まで冷却する(2段均熱)。この際の平均冷却速度は、2回均熱あるいは2段均熱とも共通して、30℃/hr超、好ましくは40℃/hr以上の急冷とする。
このように冷却速度を増大させることで、冷却中の粗大な分散粒子の析出抑制し、それによって冷延時の圧延集合組織の発達を強める。これによって、溶体化処理時に起こる再結晶で、前記[表層部Cube]を発達させることができ、前記[表層部S]を適度な割合に制御することができる。
このような2回均熱あるいは2段均熱における、1回目の均熱処理後の冷却条件によって、後述する冷延条件、溶体化処理条件と合わせて、本発明で規定する集合組織とすることができる。
一方、この冷却条件から外れるか、通常の1回の均熱処理では、後述する冷延条件、溶体化処理が好ましい範囲内で行われたとしてもて、本発明で規定する集合組織が得られない可能性が高くなる。
2回目あるいは2段目の均熱条件は、熱延開始温度以上、500℃以下の温度範囲で2時間以上の保持時間の範囲から選択し、1回目の均熱、冷却後の鋳塊を再加熱し、熱延開始温度まで冷却するか、あるいは熱延開始温度まで再加熱してその近傍で保持すれば良い。また、1段目の均熱後の鋳塊を、熱延開始温度まで冷却して、その近傍で保持しても良い。これら、2回目あるいは2段目の均熱温度は、1回目あるいは1段目の均熱温度よりも低温とする方が好ましい。
(熱間圧延)
熱間圧延は、熱延開始温度が固相線温度を超える条件では、バーニングが起こるため熱延自体が困難となる。また、熱延開始温度が350℃未満では熱延時の荷重が高くなりすぎ、熱延自体が困難となる。したがって、熱延開始温度は350℃〜固相線温度の範囲から選択して熱間圧延し、2〜10mm程度の板厚の熱延板とする。この熱延板の冷間圧延前の焼鈍(荒鈍)は必ずしも必要ではないが実施しても良い。
(冷間圧延)
冷間圧延では、上記熱延板を圧延して、自動車構造部材用としては1〜5mm程度の所望の最終板厚の冷延板(コイルも含む)に製作する。この際、本発明で規定する集合組織を形成させるために、熱延後で冷延前の荒鈍や、冷延途中での中間焼鈍を行う場合には、冷延率(総冷延率)を50%以上とする。冷延率が50%未満では、前記均熱処理や後述する溶体化処理を好ましい条件としても、本発明で規定する集合組織が得られない可能性が高くなる。一方、冷延率の上限は製造限界から決まり、概ね98%程度である。
この冷延工程の回数は、熱延板の板厚と冷延板の最終板厚との関係で自由に選択され、この1回当たりの冷延工程における冷間圧延機への板(コイル)のパス回数も自由に選択される。
前記荒鈍や冷間圧延途中での中間焼鈍の温度は、380〜500℃の範囲で、用いる連続炉やバッチ炉での通板条件に応じた適当な所要時間が選択される。中間焼鈍後の冷却は、ファンによる空冷などの強制冷却することが好ましい。連続焼鈍に関しては、後の溶体化処理での固溶確保の観点からは、到達温度は450℃以上が望ましい。バッチ焼鈍に関しては、冷却速度が遅いため、到達温度が高いと冷却中の析出物量が増大するので、到達温度は420℃以下が望ましい。
(溶体化処理)
冷間圧延後は調質として溶体化処理を行う。この溶体化処理については、通常の連続熱処理ラインによる加熱,冷却でよく、特に限定はされない。ただ、各元素の十分な固溶量を得ることや結晶粒の微細化のためには、450〜550℃の溶体化処理温度とすることが望ましい。
溶体化処理時の加熱(昇温)速度は、3段階に分けることが望ましい。先ず、板の温度が300℃以下の範囲では、加熱(昇温)速度を、平均で0.001℃/s以上、10℃/s以下の範囲とする。次に、板の温度が300℃〜450℃の範囲では、加熱(昇温)速度を、平均で10℃/s以上、100℃/s以下の範囲とする。更に、板の温度が450℃〜固相線温度の範囲では、加熱(昇温)速度を、平均で0.001℃/s以上、10℃/s以下の範囲とする。
加熱(昇温)中の再結晶は、板の板厚中心部(中心部)よりも、板の表層部の方が、より低温で開始する。このため、板の温度が300℃以下の範囲を、前記低速で加熱(昇温)することで、前記[表層部Cube]を優先的に発達させることができ、前記[表層部S]を適度な割合に制御することができる。
また、板の温度が300℃〜450℃の範囲を、前記高速で加熱(昇温)することで、前記[板厚中心部S]を優先的に発達させることができ、再結晶粒の粗大化を抑制できる。
そして、板の温度が450℃〜固相線温度の範囲では、前記低速で加熱(昇温)することで、前記強化元素の固溶を確保することができる。
なお、溶体化処理炉の設備能力の限界から、平均加熱速度は100℃/sを超えて大きくはできない。
溶体化処理後の平均冷却(降温)速度は、冷却中の粗大な分散粒子の析出抑制するために、10℃/s以上とすることが好ましい。このため、溶体化処理後の冷却は、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段など、強制的な冷却手段を各々選択して用いるか、室温〜100℃の水や湯に直接焼き入れることが好ましい。
ちなみに、溶体化処理は基本的に1回のみであるが、室温時効硬化が進みすぎた場合などには、自動車部材などへの成形性の確保のため、溶体化処理を前記好ましい条件にて再度施して、この進みすぎた室温時効硬化を一旦キャンセルしても良い。
そして、本発明のアルミニウム合金板は、素材として、バーリング加工、穴拡げ加工などを含む、プレス成形や加工が施された上で、自動車、自転車、鉄道車両などの構造部材とされる。また、成形性の確保の点で、これら構造部材に成形や加工された後で、別途、必要に応じて、人工時効硬化処理されて高強度化される。
(人工時効硬化処理)
この人工時効硬化処理は、一般的な人工時効条件(T6、T7)で良く、温度や時間の条件は、所望の強度や素材の7000系アルミニウム合金板の強度、あるいは室温時効の進行程度などから自由に決定される。例示すると、1段の時効処理であれば、100〜150℃での時効処理を12〜36時間(過時効領域を含む)行う。また、2段の工程においては、1段目の熱処理温度が70〜100℃の範囲で2時間以上、2段目の熱処理温度が100〜170℃の範囲で5時間以上の範囲(過時効領域を含む)から選択する。
下記表1に示す各成分組成の7000系アルミニウム合金の冷延板の集合組織を、表2のように製造条件を変えて種々変えたものについて、強度などの機械的な特性とVDA曲げ試験にて評価される衝撃吸収性(圧壊特性)を評価した。これらの結果を下記表3に示す。
冷延板の集合組織は、主として、表2に示すように、均熱条件と溶体化処理条件とを変えて制御した。具体的には、各例とも共通して、下記表1に示す各成分組成の7000系アルミニウム合金溶湯をDC鋳造し、得られた鋳塊を、表2に示す均熱条件と熱延開始温度にて熱間圧延を行い、3mm〜25mmの板厚の熱延板を製造した。これらの熱延板を、各例とも共通して、500℃で30秒間保持後に、強制空冷を行う荒鈍(焼鈍)を施した後、表2に示す中間焼鈍条件にて、冷間圧延して、共通して2mmの板厚の冷延板を得た。ここで、表1中の各元素の含有量の表示において「−」としている表示は、その含有量が検出限界以下であることを示す。
各例での冷延の冷延回数は3とし、各例とも共通して、各冷延工程1回当たりのパス回数は3とした。また、冷延工程間の中間焼鈍は、連続焼鈍炉の場合は昇温速度は200℃/min、冷却はファン空冷で行い、バッチ焼鈍炉の場合は昇降温速度は30℃/hrで行った。表2の中間焼鈍のうち、バッチ焼鈍を行った発明例2以外の例は、全て連続焼鈍である。
これらの冷延板を、表2に示すように、平均昇温速度を温度範囲によって3段階に分けて制御した溶体化処理を行った。保持温度、保持時間、平均冷却速度も表2に示す条件で行い、T4材を得た。
このT4材を室温で1週間時効させた後に、供試材を採取して、集合組織、微細析出物(参考)を調査し、また、後述する引張試験により、機械的な特性を調査した。これらの結果を各々表3に示す。
(集合組織、平均結晶粒径)
前記T4材の板状試験片の集合組織、平均結晶粒径の測定は、表層部及び板厚中心部の圧延面にてEBSD測定を行い、各方位成分粒の面積率及び結晶粒径(円相当直径)を求めた。
具体的には、前記T4材の板状試験片の表層部及び板厚中心部の圧延面にて前記した測定方法により行った。測定は、TSL社製EBSP測定・解析システム(OIM)を搭載した日本電子社製SEM(JEOL JSM 6500F)を用いた。各例とも、圧延方向表層部及び板厚中心部の任意の箇所から採取した各々の試験片5個について行い、これらの測定値を各々平均化した。各試験片の測定領域は、表層部は、酸化皮膜を除いた前記試験片表面から板厚方向に15%までの位置の圧延面、板厚中心部は板厚方向に50%の位置の圧延面において、1000μm×1000μmの領域とし、測定ステップ間隔も共通して1μmとした。
(微細析出物)
各例とも、参考として、前記T4材の板状試験片の表面から板厚中心である1/2t深さ部の断面を、倍率300000倍の透過型電子顕微鏡により観察し、結晶粒内の2.0〜20nmのサイズの析出物の平均数密度(個/μm3)を測定した。この観察を試験片5個について行い、結晶粒内の2.0〜20nmのサイズの析出物の数密度を各々求めて、平均化(平均数密度と)したところ、各発明例ともに、2.0〜20nmのサイズの析出物の数密度は平均で2〜9×104個/μm3の範囲であった。ここで、析出物のサイズは面積が等価な円の直径に換算して測定した。
また、前記T4材を室温で1週間時効させた後に、構造部材への成形加工後の人工時効硬化処理を模擬して、T6処理として、前記T4材を、90℃×3hr+140℃×8hrの2段階の共通する条件で、人工時効硬化処理を行い、T6材とした。こうして得られたT6材のアルミニウム合金板の中央部から板状試験片を採取して、機械的特性や耐食性を以下のようにして調査した。これらの結果も各々表3に示す。
(機械的特性)
各例とも、前記T6材あるいは前記T4材の板状試験片をJIS5号試験片に加工し、圧延方向に対して、引張方向が平行となるように室温引張試験を行い、引張強度(MPa)、0.2%耐力(MPa)を測定した。室温引張り試験はJIS2241(1980)に基づき、室温20℃で試験を行い、評点間距離50mmで引張速度5mm/分、試験片が破断するまで一定の速度で行った。
(衝撃吸収性)
衝撃吸収性を評価する曲げ試験は、VDA曲げ試験として、ドイツ自動車工業会(VDA)の規格の中の「VDA238−100 Plate bending test for metallic materials」に従って実施した。この試験方法を、図1に斜視図で示す。
先ず、前記T6材の板状試験片を、ロールギャップを設けて、互いに平行に配置した2個のロール上に、図1に点線で示すように、水平で左右均等の長さに載置する。
具体的には、前記T6材の板状試験片を、その圧延方向と、上方に垂直に立てて配置した板状の押し曲げ治具の延在方向とが、互いに直角になるように、ロールギャップ中央にその中央部が位置するよう、2個のロール上に、水平で左右均等の長さに載置する。
そして、上方から前記押し曲げ治具を板状試験片の中央部に押し当てて荷重を負荷し、この板状試験片を前記狭いロールギャップに向けて押し曲げ(突き曲げ)て、曲げ変形した板状試験片中央部を前記狭いロールギャップ内に押し込む。
この際に、上方からの押し曲げ治具からの荷重Fが最大となる時の板状試験片の中央部の曲げ外側の角度を曲げ角度(°)として測定して、その曲げ角度の大きさで衝撃吸収性を評価する。この曲げ角度が大きいほど、板状試験片は、途中で圧壊せずに、曲げ変形が持続しており、衝撃吸収性(圧壊特性)が高い。
このVDA曲げ試験の試験条件として、図1に記載した記号を用いて示すと、板状試験片は幅b:60mm×長さl:60mmの正方形形状とし、2個のロール直径Dは各々30mm、ロールギャップLは板状試験片板厚の2.0倍の4mmとした。sは荷重Fが最大となる時の板状試験片中央部のロールギャップ内への押し込み深さである。
また、板状の押し曲げ治具は、図1に示すように、板状試験片の中央部に押し当たる、下端側の辺が、その先端(下端)の半径が0.2mmφとなるように尖ったテーパ状とされている。
上記曲げ試験は、各例とも板状試験片3枚ずつ(3回)行い、曲げ角度(°)はこれらの平均値を採用した。
(粒界腐食感受性)
耐SCC性の評価にもつながる耐食性評価として、旧JIS−W1103の規定に準じた粒界腐食感受性試験を、前記人工時効硬化処理後の板状試験片(試験片3個)に対して行った。試験条件は、試験片を硝酸水溶液(30質量%)に室温で1分間浸漬した後、水酸化ナトリウム水溶液(5質量%)に40℃で20秒浸漬した後、硝酸水溶液(30質量%)に室温で1分間浸漬することによって試験片の表面を洗浄した。その後、塩化ナトリウム水溶液(5質量%)に浸漬した状態で、1mA/cm2の電流密度の電流を24時間流した後、試料を引き上げ、その後、試験片の断面を切断・研磨し、光学顕微鏡を用いて、試料表面からの腐食深さを測定した。倍率は×100とし、腐食深さが200μm以下までを軽微な腐食として「○」と評価した。また、200μmを超える場合を大きな腐食として「×」と評価した。
表1〜3から明らかなように、各発明例は、本発明アルミニウム合金組成範囲内であり、前記した好ましい均熱処理条件と冷延条件の範囲内で製造されている。この結果、T4材の組織として、この板の表面から板厚の15%の深さまでの表層部の平均結晶粒径が40μm以下の等軸な再結晶組織であるとともに、前記[表層部Cube]が10%以上で、かつ、前記[表層部S]が10%以上、40%以下である。また、前記[表層部Cube]/[板厚中心部Cube]が1.0を超えているとともに、前記[表層部S]/[板厚中心部S]が1.0未満である。
この結果、T6材の0.2%耐力が358〜391MPaの強度レベルでは、VDA曲げ角度が67〜59°の高いレベル、0.2%耐力が425〜446MPaの強度レベルでも、VDA曲げ角度が44〜40°の高いレベルを有して、強度と衝撃吸収性(圧壊特性)とを兼備している。また、耐食性にも優れている。
ちなみに、表2、3の発明例1と2は、必要な強度を得るために、言い換えると、強度を制御するために、Mg、Znの各含有量を互いにバランスさせている好例である。発明例2は、表1の通り、発明例1よりZn含有量が少ないが、表3のように、発明例1より0.2%耐力が高くなっている。これは、発明例2が、Znの含有量が少ない分、Mg、Znの各含有量を互いにバランスさせ、発明例1よりMgの含有量を多く制御して強度を確保しているからである。一方、発明例1は、Znの含有量は多いが、Mg、Znの各含有量を互いにバランスさせて、発明例2よりMgの含有量を少なくし、0.2%耐力を低く制御している。
一方、表2、3の比較例は、合金組成が、表1の通り、本発明範囲から外れるか、合金組成は本発明範囲内であるものの、前記した好ましい均熱処理条件と冷延条件の範囲からはずれて、各々製造されている。この結果、所望の集合組織を得られないか、得られていたとしても、強度の割にVDA曲げ角度が低い。
比較例9〜15は、表1の発明例と同じ合金例1、3を用いている。しかし、これらの比較例は、表2に示す通り、1回のみの均熱(比較例10)、1回目の均熱後の冷却速度が遅い(比較例10〜12)、冷延率が低い(比較例9、10)、溶体化処理の3段階の各温度範囲での各平均昇温速度が外れる(比較例9、11、12、13、14、15)など、製造条件が好ましい条件を外れている。
このため、これら比較例は、T4材の組織として、この板の表面から板厚の15%の深さまでの表層部の平均結晶粒径が40μm以下の等軸な再結晶組織であるものの、前記[表層部Cube]が10%未満か(比較例9)、前記[表層部Cube]/[板厚中心部Cube]が1.0未満か(比較例9〜11、13、15)、前記[表層部S]/[板厚中心部S]が1.0を超えている(比較例9〜15)。
この結果、これら比較例は、T6材の0.2%耐力が346〜375MPaの強度レベルでは、VDA曲げ角度が42〜37°の低いレベルでしかなく、前記発明例の同程度の強度レベルでのVDA曲げ角度のレベルに比して著しく低く、強度と衝撃吸収性(圧壊特性)とを兼備できていないことが分かる。
比較例16〜23は、比較例19、20を除き、好ましい条件範囲で製造しているものの、表1の合金番号9〜16を用いており、Znが少ない(合金番号9)、Mgが少ない(合金番号10)、Cu、Zr、Mn、Cr、Scが多すぎる(合金番号11〜16)など、各々本発明の組成範囲を外れている。
加えて、比較例19は1回のみの均熱であり、比較例19、20は冷延率が低く、比較例20は溶体化処理の3段階の各温度範囲での各平均昇温速度や溶体化処理後の平均冷却速度が好ましい条件も外れている。
このため、これら比較例は、表3に示す通り、T4材の組織として、この板の表面から板厚の15%の深さまでの表層部の平均結晶粒径が40μmを超えるか(比較例16〜18)、前記[表層部Cube]が10%未満か(比較例18〜23)、前記[表層部Cube]/[板厚中心部Cube]が1.0未満か(比較例16、18〜23)、前記[表層部S] /[板厚中心部S]が1.0を超えている(比較例16〜23)。
この結果、これら比較例は、T6材の0.2%耐力が319〜370MPaの強度レベルでも、VDA曲げ角度が53〜32°の低いレベルしかなく、0.2%耐力が428〜471MPaの強度レベルでは、VDA曲げ角度が38〜32°の低いレベルで、前記発明例の同程度の強度レベルでのVDA曲げ角度のレベルに比して著しく低く、強度と衝撃吸収性(圧壊特性)とを兼備できていないことが分かる。
また、比較例16は強度が低すぎ、比較例18は耐食性が低すぎる。
以上の結果から、本発明アルミニウム合金板がVDA曲げ試験にて評価される衝撃吸収性(圧壊特性)、高強度、そして耐食性を各々兼備するための、本発明の各要件の臨界的な意義が裏付けられる。
Figure 2018204116
Figure 2018204116
Figure 2018204116
以上説明したように、本発明は、常法の圧延によって製造され、強度を低下させずに、自動車の衝突時における衝撃吸収性(圧壊特性)を向上させた、7000系アルミニウム合金板を提供できる。したがって、本発明は軽量化に寄与する、自動車、自転車、鉄道車両などの構造部材に好適である。

Claims (4)

  1. 質量%で、Zn:2.0〜9.0%、Mg:0.5〜4.5%を各々含有するとともに、Cu:0.5%以下(但し0%を含む)、Zr:0.15%以下(但し0%を含む)、Mn:0.2%以下(但し0%を含む)、Cr:0.15%以下(但し0%を含む)、Sc:0.05%以下(但し0%を含む)に各々規制し、残部がAl及び不可避的不純物からなるアルミニウム合金板であって、この板の表面から板厚の15%の深さまでの表層部の結晶粒のうち、Cube方位を有する結晶粒の面積率を[表層部Cube]、S方位を有する結晶粒の面積率を[表層部S]と各々するとともに、前記板の板厚中心部における結晶粒のうち、Cube方位を有する結晶粒の面積率を[板厚中心部Cube]、S方位を有する結晶粒の面積率を[板厚中心部S]と各々した時、前記表層部は、平均結晶粒径が40μm以下の等軸な再結晶組織であるとともに、前記[表層部Cube]が10%以上で、かつ、前記[表層部S]が10%以上、40%以下であり、かつ、前記[表層部Cube]の前記[板厚中心部Cube]に対する割合である[表層部Cube]/[板厚中心部Cube]が1.0を超えているとともに、前記[表層部S]の前記[板厚中心部S]に対する割合である[表層部S]/[板厚中心部S]が1.0未満であるような、前記表層部と前記板厚中心部とが異なる集合組織を有し、
    鋳造されたアルミニウム合金鋳塊に2回均熱の均質化熱処理を施し、上記均質化熱処理後に冷延率50%以上で冷延途中に中間焼鈍行う冷間圧延を行い、さらに溶体化処理及び人工時効硬化処理をして得られることを特徴とするアルミニウム合金板。
  2. 前記アルミニウム合金板が、更に、質量%で、Ag:0.001〜0.2%、Sn:0.001〜0.1%の1種又は2種を含む請求項1に記載のアルミニウム合金板。
  3. 前記アルミニウム合金板が、更に、質量%で、Ti:0.001〜0.1%を含む請求項1または2に記載のアルミニウム合金板。
  4. 前記アルミニウム合金板が衝撃吸収部材用である請求項1乃至3のいずれか1項に記載のアルミニウム合金板。
JP2018158623A 2018-08-27 2018-08-27 アルミニウム合金板 Pending JP2018204116A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018158623A JP2018204116A (ja) 2018-08-27 2018-08-27 アルミニウム合金板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018158623A JP2018204116A (ja) 2018-08-27 2018-08-27 アルミニウム合金板

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015042565A Division JP2016160515A (ja) 2015-03-04 2015-03-04 アルミニウム合金板

Publications (1)

Publication Number Publication Date
JP2018204116A true JP2018204116A (ja) 2018-12-27

Family

ID=64955279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018158623A Pending JP2018204116A (ja) 2018-08-27 2018-08-27 アルミニウム合金板

Country Status (1)

Country Link
JP (1) JP2018204116A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541096A (zh) * 2019-09-11 2019-12-06 北京科技大学 一种高强易焊Al-Mg-Zn-Cu合金及其制备方法
CN112111680A (zh) * 2020-09-17 2020-12-22 湖南恒佳新材料科技有限公司 一种铝合金及其板材的制备方法
JP7041979B1 (ja) * 2020-11-17 2022-03-25 国立成功大学 車両構造材料強化システム及びそれを含む車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501847A (ja) * 2005-07-21 2009-01-22 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 鍛造アルミニウムaa7000シリーズ合金製品および該製品の製造方法
JP2014062285A (ja) * 2012-09-20 2014-04-10 Kobe Steel Ltd 自動車部材用アルミニウム合金板
WO2014142199A1 (ja) * 2013-03-14 2014-09-18 株式会社神戸製鋼所 構造材用アルミニウム合金板
JP2016160515A (ja) * 2015-03-04 2016-09-05 株式会社神戸製鋼所 アルミニウム合金板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501847A (ja) * 2005-07-21 2009-01-22 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 鍛造アルミニウムaa7000シリーズ合金製品および該製品の製造方法
JP2014062285A (ja) * 2012-09-20 2014-04-10 Kobe Steel Ltd 自動車部材用アルミニウム合金板
WO2014142199A1 (ja) * 2013-03-14 2014-09-18 株式会社神戸製鋼所 構造材用アルミニウム合金板
JP2014198899A (ja) * 2013-03-14 2014-10-23 株式会社神戸製鋼所 構造材用アルミニウム合金板
JP2016160515A (ja) * 2015-03-04 2016-09-05 株式会社神戸製鋼所 アルミニウム合金板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541096A (zh) * 2019-09-11 2019-12-06 北京科技大学 一种高强易焊Al-Mg-Zn-Cu合金及其制备方法
CN112111680A (zh) * 2020-09-17 2020-12-22 湖南恒佳新材料科技有限公司 一种铝合金及其板材的制备方法
JP7041979B1 (ja) * 2020-11-17 2022-03-25 国立成功大学 車両構造材料強化システム及びそれを含む車両
CN114507834A (zh) * 2020-11-17 2022-05-17 林士刚 载具结构材料强化系统及包含其的载具
CN114507834B (zh) * 2020-11-17 2023-08-29 林士刚 载具结构材料强化系统及包含其的载具

Similar Documents

Publication Publication Date Title
WO2016140335A1 (ja) アルミニウム合金板
JP6165687B2 (ja) アルミニウム合金板
EP2899287B1 (en) Aluminum alloy plate for automobile part
JP6273158B2 (ja) 構造材用アルミニウム合金板
JP4312819B2 (ja) 成形時のリジングマーク性に優れたアルミニウム合金板
JP4939088B2 (ja) 成形時のリジングマーク性に優れたアルミニウム合金板の製造方法
JP2009242904A (ja) 塗装焼付け硬化性に優れ、室温時効を抑制したアルミニウム合金板およびその製造方法
WO2014046046A1 (ja) アルミニウム合金製自動車部材
WO2015141647A1 (ja) 構造材用アルミニウム合金板
JP2017125240A (ja) アルミニウム合金構造部材およびその製造方法、アルミニウム合金板
WO2016190408A1 (ja) 高強度アルミニウム合金板
JP2016160516A (ja) アルミニウム合金板
JP2019026897A (ja) 構造部材用アルミニウム合金板およびアルミニウム合金構造部材の製造方法
JP2016222959A (ja) 高強度アルミニウム合金板
JP2018204116A (ja) アルミニウム合金板
JP2009173973A (ja) 成形時のリジングマーク性に優れたアルミニウム合金板
JP2017088906A (ja) 自動車構造部材用アルミニウム合金板およびその製造方法
JP6223670B2 (ja) 自動車部材用アルミニウム合金板
JP6223669B2 (ja) 自動車部材用アルミニウム合金板
JP5905810B2 (ja) 成形加工用アルミニウム合金板
JP5432439B2 (ja) 温間成形用アルミニウム合金板
JP2008144209A (ja) アルミニウム合金板およびその製造方法
JP2008062255A (ja) キャビティ発生の少ないAl−Mg−Si系アルミニウム合金板の超塑性成形方法およびAl−Mg−Si系アルミニウム合金成形板
JP5860372B2 (ja) アルミニウム合金製自動車部材の製造方法
JP2017210673A (ja) r値の異方性が小さいプレス成形用アルミニウム合金板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200324