WO2011114889A1 - 極端紫外光光源装置および集光光学手段の位置調整方法 - Google Patents

極端紫外光光源装置および集光光学手段の位置調整方法 Download PDF

Info

Publication number
WO2011114889A1
WO2011114889A1 PCT/JP2011/054762 JP2011054762W WO2011114889A1 WO 2011114889 A1 WO2011114889 A1 WO 2011114889A1 JP 2011054762 W JP2011054762 W JP 2011054762W WO 2011114889 A1 WO2011114889 A1 WO 2011114889A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
distribution characteristic
characteristic image
optical means
condensing optical
Prior art date
Application number
PCT/JP2011/054762
Other languages
English (en)
French (fr)
Inventor
大樹 山谷
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to US13/636,086 priority Critical patent/US8785893B2/en
Publication of WO2011114889A1 publication Critical patent/WO2011114889A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70133Measurement of illumination distribution, in pupil plane or field plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70166Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/067Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma

Definitions

  • the present invention relates to an extreme ultraviolet light source device that emits extreme ultraviolet light, and more particularly, to an EUV light source device and a method for adjusting the position of condensing optical means (condensing mirror) provided in the EUV light source device.
  • FIG. 4 is a diagram for simply explaining the EUV light source apparatus disclosed in Patent Document 1.
  • the EUV light source device has a chamber 1 which is a discharge vessel.
  • a discharge unit 1 a that houses a pair of disc-shaped discharge electrodes 2 a and 2 b, and an EUV collector 1 b that houses a foil trap 5 and a collector mirror 6.
  • the pair of disc-shaped electrodes 2a and 2b are arranged vertically on the paper surface of FIG. 4 with the insulating material 2c interposed therebetween.
  • a rotating shaft 2e of a motor 2j is attached to the discharge electrode 2b located below the paper surface.
  • the discharge electrodes 2a and 2b are connected to the pulse power supply unit 3 through the sliders 2g and 2h.
  • a groove 2d is provided in the periphery of the discharge electrode 2b, and a solid material M (Li or Sn) for generating high temperature plasma P is disposed in the groove 2d.
  • 1c is a gas exhaust unit for exhausting the discharge part 1a and the EUV condensing part 1b to make the inside of the chamber 1 into a vacuum state.
  • the energy beam is irradiated from the energy beam irradiator 4 to the raw material for high temperature plasma disposed in the groove portion of the discharge electrode 2b.
  • the energy beam is, for example, a laser beam, which is irradiated through the laser incident window 4a, and the solid material is vaporized between the discharge electrodes 2a and 2b.
  • pulse power is supplied from the pulse power supply unit 3 between the discharge electrodes 2a and 2b
  • a discharge occurs between the edge portion of the discharge electrode 2a and the edge portion of the discharge electrode 2b, and high temperature plasma is generated.
  • a plasma P is formed by the raw material M, and is heated and excited by a large current flowing during discharge to increase the temperature.
  • EUV light is emitted from the high temperature plasma P.
  • the emitted EUV light enters the EUV collector 1b through the foil trap 5, is collected by the collector mirror 6 at the intermediate condensing point f of the collector mirror 6, and exits from the EUV light exit 7. Then, the light enters the exposure device 30 indicated by a dotted line connected to the EUV light source device.
  • the angular distribution characteristic (the illuminance distribution state of the EUV light after the intermediate condensing point) is such that the EUV light is condensed at a desired position of the condensing mirror 6 (condensing optical means).
  • the angular distribution becomes larger as the condensing optical means 6 deviates from the alignment position. The characteristics deteriorate.
  • the position of the condensing optical means 6 is adjusted in the X-axis direction (light) while measuring the angular distribution characteristic.
  • Axis C direction left and right direction in FIG. 4, Y axis direction (up and down direction in FIG. 4), Z direction (forward direction in FIG. 4), ⁇ z direction (rotational direction around Z axis), ⁇ y (rotation around Y axis) Direction).
  • the operator performs the above operation by inserting an EUV light angle distribution measuring device after the condensing point f and measuring the angle distribution characteristics while moving the position of the condensing mirror 6 slightly. Yes.
  • the relationship between the angle distribution characteristic change and the moving direction and amount of movement of the condenser mirror 6 is obtained by the skill of the operator, and is used for position adjustment work of the condenser mirror 6 to obtain uniform angle distribution characteristics.
  • the required time differs depending on the worker, and in some cases, a long time of several hours was required.
  • the angle distribution characteristic is measured in the same manner, and if it is not uniform, the position adjustment operation of the condenser mirror 6 must be performed so as to be uniform. Don't be. Therefore, it may take a long time to replace the condenser mirror 6 and adjust its position.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is when the angular distribution characteristic after the intermediate condensing point of the extreme ultraviolet light source device deteriorates and becomes non-uniform (asymmetric), or In other words, when the condenser mirror is replaced, the position of the condenser mirror can be adjusted in order to obtain a uniform angular distribution characteristic in a short time.
  • the condensing optical means In order to make the image data indicating the non-uniform angular distribution characteristic reflected by the condensing optical means (condensing mirror) to the control unit of the EUV light source device in advance to make the non-uniform angular distribution characteristic uniform.
  • a plurality of the condensing optical means are registered in correspondence with the moving direction and the moving amount.
  • the angle distribution characteristic image data is stored in a plurality of pre-stored non-uniform angle distribution characteristics. Compare with image data. Then, the image data that best matches the acquired measured current angular distribution characteristic is selected from the plurality of non-uniform angular distribution characteristic image data.
  • the movement direction and movement amount data of the condensing optical means for making uniform angular distribution characteristics stored in association with the selected image data are read out, and based on this, the condensing optical means is read out. Move.
  • the current angular distribution characteristic image data is acquired, compared with the non-uniform angular distribution characteristic image data registered in advance, and the non-uniform angular distribution characteristic corresponding to the best matching image data is uniform.
  • the moving direction and the moving amount of the condensing optical means for obtaining the angular distribution characteristics are read out, and the condensing optical means is moved based on the read direction. Therefore, the collecting optical means is collected in a short time without depending on the level of skill of the operator.
  • the position of the optical optical means can be adjusted.
  • FIG. 1 is a diagram schematically illustrating the configuration of an EUV light source apparatus according to an embodiment of the present invention.
  • the configuration of the EUV light source device is the same as that shown in FIG. 4 and houses a discharge part 1a that houses the discharge electrodes 2a and 2b, a foil trap 5 and a condenser mirror (condensing optical means) 6.
  • a chamber 1 including the EUV collector 1b is provided.
  • the chamber 1 is provided with a gas exhaust unit 1c for exhausting the discharge unit 1a and the EUV condensing unit 1b to make the chamber 1 in a vacuum state.
  • the pair of disc-shaped discharge electrodes 2a and 2b are arranged to face each other with the insulating member 2c interposed therebetween, and the centers of the electrodes are arranged coaxially.
  • a rotating shaft 2e of a motor 2j is attached to the discharge electrode 2b located on the lower side in the drawing.
  • the center of the discharge electrode 2a and the center of the discharge electrode 2b are located on the same axis as the rotating shaft 2e.
  • the rotating shaft 2e is introduced into the chamber 1 through a mechanical seal 2f.
  • the mechanical seal 2f allows rotation of the rotating shaft 2e while maintaining a reduced pressure atmosphere in the chamber 1.
  • Sliders 2g and 2h made of, for example, a carbon brush or the like are provided below the discharge electrode 2b.
  • the slider 2g is electrically connected to the discharge electrode 2a through a through hole provided in the discharge electrode 2b.
  • the slider 2h is electrically connected to the discharge electrode 2b.
  • the pulse power supply unit 3 supplies pulse power to the discharge electrodes 2a and 2b via the sliders 2g and 2h, respectively.
  • the peripheral portions of the disc-shaped discharge electrodes 2a and 2b are formed in an edge shape.
  • a liquid or solid raw material M for generating high temperature plasma is disposed in the groove 2d of the discharge electrode 2b.
  • the raw material M is, for example, tin (Sn) or lithium (Li).
  • the discharge electrodes 2a and 2b When power is supplied from the pulse power supply unit 3 to the discharge electrodes 2a and 2b, discharge occurs between the edge portions of both electrodes. When discharge occurs, the peripheral portions of the discharge electrodes 2a and 2b become high temperature due to discharge, so the discharge electrodes 2a and 2b are made of a high melting point metal such as tungsten, molybdenum, or tantalum.
  • the insulating member 2c is made of silicon nitride, aluminum nitride, diamond or the like to ensure insulation between the discharge electrodes 2a and 2b.
  • the chamber 1 is provided with an energy beam irradiator 4 for irradiating the material M with an energy beam to vaporize the material M.
  • the energy beam emitted from the energy beam irradiator 4 is, for example, a laser beam.
  • a laser beam is irradiated from the energy beam irradiation machine 4 through the laser incident window 4a to the high temperature plasma raw material M arranged in the groove 2d of the discharge electrode 2b. As a result, the solid material M is vaporized between the discharge electrodes 2a and 2b.
  • the condensing mirror 6 disposed in the EUV condensing unit 1b has a light reflecting surface 6a for reflecting EUV light having a wavelength of 13.5 nm emitted from high-temperature plasma.
  • the condenser mirror 6 is composed of a plurality of light reflecting surfaces 6 a arranged in a nested manner without contacting each other.
  • Each light reflecting surface 6a is formed by densely coating a metal such as Ru (ruthenium), Mo (molybdenum), Rh (rhodium) on the reflecting surface side of the base material having a smooth surface made of Ni (nickel) or the like. , 0-25 degree incident angle of extreme ultraviolet light is formed to reflect well.
  • Each light reflecting surface 6a of the condensing mirror 6 is configured such that the condensing points f coincide.
  • the light condensed by the condenser mirror 6 exits from the EUV light exit 7 and enters the exposure device 30 indicated by the dotted line connected to the EUV light source device.
  • the EUV light source apparatus includes a control unit 10 and controls operations of the motor 2d that rotates the electrodes 2a and 2b, the pulse power supply unit 3 that supplies power to the electrodes 2a and 2b, and the like. Based on the measured image data of the angular distribution characteristics, the moving direction and the moving amount of the collecting mirror 6 are obtained, and the collecting mirror 6 is moved by the collecting mirror moving means 11.
  • an angle distribution characteristic measuring device 12 for measuring the angular distribution characteristic of the EUV light condensed at the condensing point f.
  • the angular distribution characteristic measuring instrument 12 is provided with a moving mechanism (not shown). At the time of measuring the angular distribution characteristic, the angular distribution characteristic measuring instrument 12 is inserted into the optical path (the position indicated by the solid line in the figure) and during the exposure process. Is retracted from the optical path (the position of the dotted line in the figure).
  • the angle distribution characteristic measuring instrument 12 includes a scintillator 12a that converts EUV light into visible light, and a CCD camera 12b that receives visible light converted by the scintillator 12a.
  • the CCD camera 12b receives incident light and outputs image data indicating the illuminance distribution of the received light. This image data is sent to the control unit 10 as angle distribution characteristic image data.
  • the condenser mirror 6 is arranged in the X-axis direction (optical axis C direction: left-right direction in FIG. 1), Y-axis direction (up-down direction in FIG. 1), Z-direction (front-rear direction in FIG. 7), ⁇ z direction ( A condensing mirror moving means 11 for moving in the rotation direction around the Z axis) and ⁇ y (the rotation direction around the Y axis) is attached, and its operation is controlled by the control unit 10.
  • the control unit 10 can be composed of a processing device such as a processor and a storage unit, for example, and controls the pulse power supply unit 3 that supplies power to the electrodes 2a and 2b as described above. While controlling the operation, the movement control of the condenser mirror 6 is performed for making the angle distribution characteristic uniform according to the present invention.
  • the control unit 10 includes a distribution database 10a, a comparison / selection unit 10b, and a condenser mirror movement control unit 10c.
  • a registration unit 10d for registering image data and the like in the distribution database 10a is provided.
  • the distribution database 10a is obtained by registering a plurality of angular distribution characteristic image data and movement data for moving the condenser mirror 6 corresponding to each image data in the storage unit of the control unit 10.
  • the comparison / selection unit 10b includes a comparison unit 101 and a movement data reading unit 102.
  • the comparison unit 101 receives the angle distribution characteristic image data acquired by the angle distribution characteristic measurement device 12 and the image data stored in the distribution database 10a. In comparison, the most matched image data in the distribution database 10a is searched, and the movement data reading unit 102 reads movement data corresponding to the image data. This movement data is sent to the focusing mirror movement control unit 10c, and the focusing mirror movement control unit 10c controls the focusing mirror moving means 11 based on the movement data to move the focusing mirror 6.
  • FIG. 2 is a diagram for explaining the movement control of the condenser mirror of the present embodiment.
  • an example of image data stored in the distribution database 10a, the condenser mirror moving means 11, and the condenser mirror are shown.
  • 6 shows an angular distribution characteristic measuring instrument 12 composed of an aperture (EUV light exit 7) arranged at the focal position of EUV light, a scintillator 12a and a CCD camera 12b.
  • EUV light exit 7 an aperture
  • image data having a non-uniform angular distribution characteristic reflected by the condenser mirror from the registration unit 10 d is stored in the distribution database 10 a of the control unit 10.
  • a plurality of registrations are registered (stored) in correspondence with the moving direction and the moving amount of the condenser mirror for making the distribution characteristics uniform angular distribution characteristics.
  • the angle distribution characteristic measuring instrument 12 is inserted into the optical path in a state where EUV light is emitted, and the condenser mirror moving means 11 is operated while viewing the image data obtained from the angle distribution characteristic measuring instrument 12.
  • the condenser mirror 6 is moved, and the moving direction and moving amount at that time are registered in the distribution database together with the angular distribution image data at that time.
  • FIG. 2A is an example of angular distribution characteristic image data in which the illuminance distribution measured by the angular distribution characteristic measuring device is substantially uniform.
  • the white part is a part where the intensity of the EUV light is strong, and the illuminance of the EUV light becomes weaker from white to gray or black.
  • the portions where the intensity of EUV light is strong are distributed almost uniformly on the circumference.
  • the portion where the intensity of EUV light is strong is divided into six regions, which is due to the shadow of the support member that supports each reflecting surface 6a of the condenser mirror 6. In this state, the condenser mirror is moved by a condenser mirror moving means 11 in a certain direction (for example, A mm in the X direction).
  • the distribution database 10a of the control unit 10 stores the image data with non-uniform angular distribution characteristics and the movement information indicating that the angular distribution characteristics have moved Amm in the X direction from the uniform angular distribution characteristics.
  • the operation of storing the movement information of the condenser mirror 6 in correspondence with the image data with nonuniform angular distribution characteristics is performed from the registration unit 10 d connected to the control unit 10.
  • the image data registered in this way is assumed to be image data 1.
  • the condenser mirror 6 is returned to a state (alignment position) where uniform angular distribution characteristics can be obtained, and this time, the condenser mirror is moved in a direction different from the previous one (for example, B degree in the ⁇ y direction).
  • the angle distribution characteristic image data is stored in correspondence with movement information indicating that the angle distribution characteristic is moved B degrees in the ⁇ y direction from a state where the angle distribution characteristic is uniform. This is image data 2.
  • image data 2 As much non-uniform angular distribution characteristic image data as possible corresponding to the movement information is registered (stored) in the distribution database 10a of the control unit 10. For example, in an actual apparatus, 4000 to 5000 image data is stored.
  • each image data stores the data of the moving direction and the moving amount corresponding to how much and in what direction the angle distribution characteristic is moved from a uniform state.
  • the position adjustment operation of the condenser mirror 6 is performed.
  • the condenser mirror 6 is replaced with an old one and attached, the EUV light is emitted, the angle distribution characteristic measuring instrument 12 is inserted into the optical path, and the angle in that state (current) Measure distribution characteristics.
  • the measured angular distribution characteristic image data is sent to the control unit 10.
  • the measured image data is, for example, as shown in FIG.
  • the comparison unit 101 of the comparison / selection unit 10b the measured image data (FIG. 2C) is compared with image data having a plurality of non-uniform angular distribution characteristics stored in the distribution database 10a.
  • the best matching image data is selected from the image data of 10a (FIG. 2B).
  • the selection of image data from the distribution database 10a is performed by using, for example, pattern matching.
  • Pattern matching is generally well known as a technique for measuring the degree of coincidence between a registered image pattern and an observed image pattern. That is, the image data having the highest matching score is selected for the measured image data (FIG. 2C).
  • the comparison selection unit 10b The movement data reading unit 102 calls movement information stored corresponding to the image data. In the called image data, movement information of the condenser mirror 6 is stored correspondingly as described above.
  • Corresponding movement information is information on how much and in what direction the condenser mirror 6 has been moved from a uniform angular distribution characteristic.
  • Z is the front-rear direction of the paper
  • ⁇ z is the rotation about the Z axis
  • ⁇ y is the rotation about the Y axis
  • the amount of rotation about the Y axis is ⁇ y.
  • the image data measured by the angle distribution characteristic measuring device 12 should approach that of a uniform angle distribution characteristic. It is. For example, if the measured image data closely resembles the image registered as the image data 1 described above, the control unit 10 causes the condenser mirror moving means 11 to move the condenser mirror in the X direction by ⁇ A mm. If the measured image data is very similar to the image registered as the image data 2, the condenser mirror is moved by -B degrees in the ⁇ y direction. After moving the condensing mirror in this way, the angular distribution characteristic of the EUV light is again measured by the angular distribution characteristic measuring device 12 to acquire image data.
  • the newly acquired angular distribution characteristic image data is again compared with each image data in the distribution database 10a, and the best matching image data is selected.
  • the condenser mirror 6 corresponding to the image data is selected.
  • the condenser mirror 6 is moved based on the movement information. By repeating this several times, the converging mirror 6 is adjusted to a position with uniform angular distribution characteristics.
  • Such measurement of the angular distribution characteristics of EUV light and the position adjustment of the condenser mirror are desirably performed at a frequency of about once a day (about every 100 million shots).
  • the focusing mirror 6 is automatically aligned based on the image data stored in advance in the control unit 10 and the movement information of the focusing mirror 6 stored corresponding to the image data. Therefore, the position adjustment work can be performed in a short time of 20 to 30 seconds regardless of the skill level of the operator. Further, checking the degree of coincidence with the stored image has the following advantages. As described above, the condensing mirror 6 has a plurality of reflecting surfaces 6a, but when the reflectance of a specific reflecting surface of the reflecting surfaces 6a decreases, only a part of the angular distribution changes. However, this may not be noticed visually. However, since the degree of coincidence (score) with the stored image, such as pattern matching, is reduced, it is possible to quickly find the malfunction of the condenser mirror 6.
  • the position of the condenser mirror is adjusted when the foil trap 5 is displaced and the angular characteristics of the EUV light are deteriorated due to the displacement, or when the condenser having a plurality of reflecting surfaces 6a is collected.
  • the mirror 6 it can carry out also when the angle characteristic of EUV light deteriorates because the reflectance of a specific reflective surface falls. In such a case, the angle characteristics of the EUV light cannot be returned to a uniform one as in the initial state, but can be corrected to a uniform state as much as possible.
  • FIG. 3 shows an outline of a configuration in which the present invention is applied to an EUV light source apparatus that does not include a discharge electrode.
  • the EUV light source device includes a chamber 1 that houses a condenser mirror 21 that is a condenser optical means.
  • the condensing mirror 21 is formed with a light reflecting surface 21a for reflecting EUV light having a wavelength of 13.5 nm emitted from high temperature plasma and condensing the light at a condensing point f.
  • the chamber 1 is provided with a gas exhaust unit 1c for making the inside of the chamber 1 in a vacuum state.
  • the EUV light source device includes a material supply means 22 that drops (drops) and supplies a liquid or solid material M for high-temperature plasma generation to the light reflecting surface 21 a side of the condenser mirror 21.
  • the raw material M is, for example, tin (Sn) or lithium (Li).
  • the EUV light source device includes a high-power laser device 23 that irradiates the raw material M supplied by the raw material supply means 22 with a laser beam with very high energy. A laser beam having very high energy from the high-power laser device 23 through the laser incident window 23a to the high-temperature plasma raw material M supplied to the light reflecting surface 21a side of the condenser mirror 21 by the raw material supply means. Is irradiated.
  • the raw material M becomes high-temperature plasma and emits EUV light having a wavelength of 13.5 nm.
  • the EUV light radiated from the high temperature plasma is reflected by the light reflecting surface 61a of the condensing mirror 21 and is condensed at the condensing point f.
  • the angle distribution characteristic measuring instrument 12 that measures the angle distribution characteristic of the EUV light condensed at the condensing point f is provided behind the condensing point f.
  • the angle distribution characteristic measuring instrument 12 is composed of the scintillator 12a and the CCD camera 12b as described above, and is inserted into the optical path at the time of measuring the angular distribution characteristic (the position of the solid line in the figure), and from the optical path during the exposure process. Evacuated (dotted line position in the figure).
  • the angle distribution characteristic measuring instrument 12 outputs angle distribution characteristic image data indicating the illuminance distribution, and the image data is sent to the control unit 10.
  • a condenser mirror moving means 11 for moving the condenser mirror 6 is attached to the condenser mirror 21, and its operation is controlled by the control unit 10.
  • the control unit 10 includes the distribution database 10a, the comparison / selection unit 10b, and the condenser mirror movement control unit 10c, and image data and the like are registered in the distribution database 10a from the registration unit 10d.
  • the distribution database 10a a plurality of angular distribution characteristic image data and movement data for moving the condensing mirror 6 corresponding to each image data are registered.
  • the angle distribution characteristic image data acquired by the angle distribution characteristic measuring instrument 12 and the image data stored in the distribution database 10a are compared to search for the most consistent image data in the distribution database 10a.
  • the movement data reading unit 102 reads movement data corresponding to.
  • the movement data is sent to the condenser mirror movement control unit 10c, and the condenser mirror movement control unit 10c controls the condenser mirror moving means 11 based on the movement data to move the condenser mirror 21.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Epidemiology (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

極端紫外光光源装置において、均一な角度分布特性を得るための集光鏡の位置調整を、短時間で行うことができるようにすること。 制御部10の分布データベース10aに、不均一な角度分布特性画像データと、この不均一な角度分布特性を均一な角度分布特性にするための集光鏡の移動方向および移動量と登録しておく。角度分布特性測定器12により、角度分布画像データを取得したら、この角度分布特性画像データを、分布データベース10aに登録された画像と比較し、角度分布特性画像データの中から、取得した現在の角度分布特性と最もよく一致する画像データを選ぶ。そして、選び出した画像データに対応づけて記憶されている、均一な角度分布特性にするための集光鏡6の移動方向および移動量のデータを読み出し、これに基づいて、集光鏡移動手段11により、集光鏡6を移動させる。

Description

極端紫外光光源装置および集光光学手段の位置調整方法
 本発明は、極端紫外光を出射する極端紫外光光源装置に関し、特に、EUV光源装置のおよびEUV光源装置に設けられた集光光学手段(集光鏡)の位置の調整方法に関するものである。
 半導体集積回路の微細化、高集積化につれて、露光用光源の短波長化が進められ、次世代の半導体露光用光源として、波長13~14nm、特に波長13.5nmの極端紫外光(以下、EUV(Extreme Ultra Violet)光ともいう)を放出する極端紫外光光源装置(以下、EUV光源装置ともいう)が開発されている(例えば特許文献1参照)。
 図4は、特許文献1に示されるEUV光源装置を簡易的に説明するための図である。
 同図に示すように、EUV光源装置は、放電容器であるチャンバ1を有する。チャンバ1内には、一対の円板状の放電電極2a,2bが収容される放電部1aと、ホイルトラップ5と集光鏡6とを収容するEUV集光部1bが設けられる。
 一対の円盤状の電極2a,2bは、絶縁材2cを挟んで図4の紙面において上下に配置されている。紙面の下方に位置する放電電極2bには、モータ2jの回転軸2eが取付けられている。放電電極2a、2bは、摺動子2g、2hを介してパルス電力供給部3に接続されている。
 放電電極2bの周辺部には溝部2dが設けられ、この溝部2dに高温プラズマPを発生させるための固体の原料M(LiまたはSn)が配置されている。
 1cは、放電部1a、EUV集光部1bを排気して、チャンバ1内を真空状態にするためのガス排気ユニットである。
 上記のEUV光源装置においては、放電電極2bの溝部に配置された高温プラズマ用の原料に対し、エネルギービーム照射機4からエネルギービームを照射する。エネルギービームは例えばレーザビームであり、レーザ入射窓4aを介して照射され、固体の原料が放電電極2aと2bとの間で気化する。
 この状態で、放電電極2aと2bの間にパルス電力供給部3からパルス電力が供給されると、放電電極2aのエッジ部分と放電電極2bのエッジ部分との間で放電が発生し、高温プラズマ原料MによるプラズマPが形成され、放電時に流れる大電流により加熱励起され高温化し、この高温プラズマPからEUV光が放射される。
 放射されたEUV光は、ホイルトラップ5を介してEUV集光部1bに入射し、集光鏡6によって、集光鏡6の中間集光点fに集められ、EUV光出射口7から出射し、EUV光源装置に接続された点線で示した露光機30に入射する。
国際公開第2005/101924号パンフレット
 しかしながら、このようなEUV光源装置においては、以下に説明するような実用上の問題があった。
 EUV光源装置を長時間にわたって点灯駆動した場合、プラズマPと集光鏡6とのアライメントのずれが生じる。このため、中間集光点f以降の、EUV光の照度分布状態を示す角度分布特性が悪化し、角度分布特性が不均一(非対称)になることがある。角度分布特性が不均一になると、EUV光を使った露光機において、被処理体に露光ムラが生じることがある。
 角度分布特性が悪化して非対称になる原因は、例えば以下の2つの原因が考えられる。
(1)点灯駆動時間の経過とともに放電電極が磨耗していくことにより、放電電極間に形成されるプラズマの位置が、点灯初期の状態と比べて変動する。
(2)集光鏡6が、放電電極2a,2bやプラズマPから発せられる熱により高温状態になって、熱歪みを生じて変形する。
 以上のように、角度分布特性(中間集光点以降のEUV光の照度分布状態)は、上記集光鏡6(集光光学手段)のアライメント位置(所望の位置にEUV光が集光するように集光光学手段がセットされたときの集光光学手段の位置)からのずれの方向、大きさを等に対応しており、上記集光光学手段6がアライメント位置からずれるほど、上記角度分布特性は悪化する。
 すなわち、角度分布特性を、不均一(非対称)なものから均一(対称)なものに修正するためには、角度分布特性を測定しながら、集光光学手段6の位置を、X軸方向(光軸C方向:図4左右方向)、Y軸方向(図4上下方向)、Z方向(図4手前奥方向)、θz方向(Z軸の周りの回転方向)、θy(Y軸の周りの回転方向)に移動させて行う必要がある。
 現状では、上記作業を、作業者が、集光点fの後にEUV光の角度分布測定器を挿入して、角度分布特性を測定しながら、集光鏡6の位置を微小移動させて行っている。角度分布特性変化と、集光鏡6の移動方向及び移動量との関係は、作業者の熟練により体得するものであり、均一な角度分布特性を得るための集光鏡6の位置調整作業に必要な時間は作業者によって異なり、場合によっては数時間という長時間が必要であった。
 また、集光鏡6を新しいものに交換したときも、同様に角度分布特性を測定し、それが不均一であれば、均一になるように、集光鏡6の位置調整作業を行わなければならない。したがって、集光鏡6の交換とその位置調整にかかる時間も、長時間が必要な場合があった。
 本発明は上記事情に鑑みなされたものであって、本発明の目的は、極端紫外光光源装置の中間集光点以降における角度分布特性が悪化して不均一(非対称)になったとき、あるいは、集光鏡を交換した際等に、短時間で均一な角度分布特性を得るための集光鏡の位置調整を行うことができるようにすることである。
 あらかじめ、EUV光源装置の制御部に、集光光学手段(集光鏡)により反射された不均一な角度分布特性を示す画像データを、不均一な角度分布特性を均一な角度分布特性にするための集光光学手段の移動方向および移動量と対応させて、複数、登録しておく。
 そして、角度分布特性測定器により、現状における角度分布特性を示す画像データ(角度分布特性画像データ)を取得したら、この角度分布特性画像データを、予め記憶されている複数の不均一な角度分布特性画像データと比較する。そして、その複数の不均一な角度分布特性画像データの中から、取得した測定した現在の角度分布特性と最もよく一致する画像データを選ぶ。
 次に、選び出した画像データに対応づけて記憶されている、均一な角度分布特性にするための集光光学手段の移動方向および移動量のデータを読み出し、これに基づいて、集光光学手段を移動させる。
 本発明においては、以下の効果を得ることができる。
 現状における角度分布特性画像データを取得し、あらかじめ登録しておいた、不均一な角度分布特性画像データと比較し、最もよく一致する画像データに対応づけた、不均一な角度分布特性を均一な角度分布特性にするための集光光学手段の移動方向および移動量を読み出し、これに基づいて集光光学手段を移動させるようにしたので、作業者の熟練の度合いによることなく、短時間で集光光学手段の位置を調整することができる。
本発明の実施例のEUV光源装置の構成の概略を示す図である。 本実施例の集光鏡の移動制御を説明する図である。 放電電極を備えないEUV光源装置に本発明を適用した場合の概略構成を示す図である。 EUV光源装置を説明する図である。
 図1は、本発明の実施例のEUV光源装置の構成の概略を示す図である。
 EUV光源装置の構成は、前記図4に示したものと同様であり、放電電極2a,2bを収容する放電部1aと、ホイルトラップ5と集光鏡(集光光学手段)6とを収容するEUV集光部1bとにより構成されるチャンバ1を備える。
 チャンバ1には、放電部1a、EUV集光部1bを排気して、チャンバ1内を真空状態にするためのガス排気ユニット1cが設けられている。
 一対の円板状の放電電極2a、2bは、絶縁部材2cを挟んで対向するよう配置され、各々の中心が同軸上に配置されている。紙面において下方側に位置する放電電極2bには、モータ2jの回転軸2eが取付けられている。
 回転軸2eは、放電電極2aの中心と放電電極2bの中心とが回転軸2eの同軸上に位置している。回転軸2eは、メカニカルシール2fを介してチャンバ1内に導入される。
 メカニカルシール2fは、チャンバ1内の減圧雰囲気を維持しつつ、回転軸2eの回転を許容する。
 放電電極2bの下方側には、例えばカーボンブラシ等で構成される摺動子2gおよび2hが設けられている。摺動子2gは、放電電極2bに設けられた貫通孔を介して放電電極2aと電気的に接続される。摺動子2hは、放電電極2bと電気的に接続されている。
 パルス電力供給部3は、摺動子2g、2hを介して、それぞれ放電電極2a、2bにパルス電力を供給する。
 円板状の放電電極2a,2bの周辺部は、エッジ形状に形成されている。
 放電電極2bの溝部2dには、高温プラズマ生成用の液体または固体の原料Mが配置されている。原料Mは、例えば、スズ(Sn)、リチウム(Li)である。
 パルス電力供給部3より放電電極2a、2bに電力が供給されると、両電極のエッジ部分間で放電が発生する。放電が発生すると、放電電極2a,2bの周辺部は放電により高温となるので、放電電極2a,2bは、タングステン、モリブデン、タンタルなどの高融点金属からなる。
 絶縁部材2cは、放電電極2aと2bの間の絶縁を確保するため、窒化珪素、窒化アルミニウム、ダイヤモンド等からなる。
 チャンバ1には、原料Mに対してエネルギービームを照射して、原料Mを気化するためのエネルギービーム照射機4が設けられている。エネルギービーム照射機4から照射されるエネルギービームは、例えばレーザビームである。
 放電電極2bの溝部2dに配置された高温プラズマ用の原料Mに対し、エネルギービーム照射機4からレーザ入射窓4aを介してレーザビームが照射される。これによって、固体の原料Mが放電電極2aと2bとの間で気化する。
 この状態で、放電電極2aと2bの間にパルス電力供給部3からパルス電力が供給されると、放電電極2aのエッジ部分と放電電極2bのエッジ部分との間で放電が発生し、高温プラズマ原料MによるプラズマPが形成され、放電時に流れる大電流により加熱励起され高温化し、この高温プラズマPからEUV光が放射される。
 EUV集光部1bに配置されたホイルトラップ5は、放電電極を構成する物質や高温プラズマ発生用の原料Mを基にして発生するデブリが、集光鏡6に向けて飛散することを抑制するために設けられている。
 ホイルトラップ5は、放射状に伸びる複数の薄板により仕切られる複数の狭い空間が形成されている。
 EUV集光部1bに配置された集光鏡6は、高温プラズマから放射された波長13.5nmのEUV光を反射するための光反射面6aが形成されている。
 集光鏡6は、互いに接触することなく入れ子状に配置された複数の光反射面6aにより構成されている。各光反射面6aは、Ni(ニッケル)などからなる平滑面を有する基体材料の反射面側に、Ru(ルテニウム)、Mo(モリブデン)、Rh(ロジウム)などの金属を緻密にコーティングすることにより、0-25度の射入射角度の極端紫外光を良好に反射するように形成されている。
 集光鏡6の各光反射面6aは、集光点fが一致するように構成される。集光鏡6で集光した光はEUV光出射口7から出射し、EUV光源装置に接続された点線で示した露光機30に入射する。
 また、EUV光源装置は制御部10を備え、電極2a,2bを回転させるモータ2dや、電極2a,2bに電力を供給するパルス電力供給部3などの動作を制御するとともに、後述するように、測定した角度分布特性の画像データに基づき、集光鏡6の移動方向および移動量を得て、集光鏡移動手段11により集光鏡6を移動させる。
 集光点fの後方には、集光点fに集光したEUV光の角度分布特性を測定する角度分布特性測定器12が設けられる。この角度分布特性測定器12には不図示の移動機構が取付けられており、角度分布特性測定時には、角度分布特性測定器12は光路内に挿入され(図中実線の位置)また、露光処理中には光路から退避される(図中点線の位置)。
 角度分布特性測定器12はEUV光を可視光に変換するシンチレ一タ12aと、このシンチレ一タ12aにより変換された可視光を受光するCCDカメラ12bとを備える。
 CCDカメラ12bは、入射した光を受光し、受像した光の照度分布を示す画像データを出力する。この画像データは、角度分布特性画像データとして制御部10に送られる。
 集光鏡6には、集光鏡6をX軸方向(光軸C方向:図1左右方向)、Y軸方向(図1上下方向)、Z方向(図7手前奥方向)、θz方向(Z軸の周りの回転方向)、θy(Y軸の周りの回転方向)に移動させる集光鏡移動手段11が取り付けられており、その動作は制御部10により制御される。
 制御部10は、例えばプロセッサ等の処理装置と記憶部から構成することができ、前記したように電極2a,2bに電力を供給するパルス電力供給部3を制御するなど、EUV光源装置の全体の動作を制御するとともに、本発明に係る、角度分布特性を均一にするための集光鏡6の移動制御をおこなう。
 集光鏡6の移動制御をおこなうため、制御部10は、分布データベース10aと、比較選択部10bと、集光鏡移動制御部10cを備える。また、上記分布データベース10aに画像データ等を登録するための登録部10dが設けられる。
 分布データベース10aは、制御部10の記憶部に、複数の角度分布特性画像データと、該各画像データに対応させて集光鏡6を移動させるための移動データとを登録したものである。
 比較選択部10bは、比較部101と移動データ読出部102を備え、比較部101で前記角度分布特性測定器12で取得した角度分布特性画像データと、上記分布データベース10aに格納された画像データを比較して、分布データベース10a中の最も一致している画像データを検索し、移動データ読出部102で、この画像データに対応した移動データを読み出す。この移動データは集光鏡移動制御部10cに送られ、集光鏡移動制御部10cは、この移動データに基づき集光鏡移動手段11を制御して、集光鏡6を移動させる。
 次に、本発明の、集光鏡の位置調整方法について、図1と図2を使って説明する。
 図2は、本実施例の集光鏡の移動制御を説明する図であり、同図には、分布データベース10aに格納された画像データの一例と、集光鏡移動手段11と、集光鏡6と、EUV光の焦点位置に配置されたアパーチャ(EUV光出射口7)と、シンチレータ12aとCCDカメラ12bから構成される角度分布特性測定器12が示されている。
 まず、集光鏡6の位置調整の前段階として、制御部10の分布データベース10aに、登録部10dから、集光鏡により反射された不均一な角度分布特性の画像データを、不均一な角度分布特性を均一な角度分布特性にするための集光鏡の移動方向および移動量と対応させて、複数登録(記憶)する。
 具体的には、EUV光が放射されている状態で角度分布特性測定器12を光路内に挿入し、角度分布特性測定器12から得られる画像データを見ながら、集光鏡移動手段11を動作させることにより、集光鏡6を移動させ、そのときの移動方向、移動量を、そのときの角度分布画像データとともに、分布データベースに登録する。
 図2(a)は、角度分布特性測定器により測定された照度分布が略均一な角度分布特性画像データの一例である。同図において、白い部分がEUV光の強度が強い部分であり、白から灰色、黒になるほどEUV光の照度が弱くなる。同図では、EUV光の強度が強い部分が円周上にほぼ均一に分布している。なお、同図において、EUV光の強度が強い部分が6つの領域に分割されているが、これは集光鏡6の各反射面6aを支持する支持部材の影によるものである。
 この状態で、集光鏡移動手段11により、集光鏡を、ある方向にある移動量(例えばX方向にAmm)移動させる。角度分布特性が均一な状態から移動させるのであるから、角度分布特性測定器12より得られる角度分布特性画像データにおける照度分布は、例えば図2の(c)に示すように不均一なものとなる。
 そして、制御部10の分布データベース10aに、この角度分布特性が不均一な画像データと、角度分布特性が均一な状態からX方向にAmm移動したという移動情報を対応させて記憶させる。
 この角度分布特性の不均一な画像データに集光鏡6の移動情報を対応させて記憶させる作業は、制御部10に接続された登録部10dから行う。このようにして登録した画像データを、仮に画像データ1とする。
 続いて、集光鏡6を均一な角度分布特性が得られる状態(アライメント位置)に戻し、今度は先ほどとは異なる方向に集光鏡を移動させ(例えばθy方向にB度)、その位置での角度分布特性画像データを、角度分布特性が均一な状態からθy方向にB度移動したという移動情報を対応させて記憶させる。これを画像データ2とする。
 このようにして、できるだけ多くの、移動情報を対応させた不均一な角度分布特性画像データを、制御部10の分布データベース10aに登録(記憶)する。例えば、実際の装置においては、4000~5000の画像データを記憶する。
 図2(b)は、このようにして制御部10の分布データベース10aに登録した、複数の不均一な角度分布特性を持つ画像データ例である。上記したように、各画像データには、角度分布特性が均一な状態からどの方向にどの程度移動させたかという移動方向と移動量のデータが対応して記憶されている。
 このようにして複数の不均一な角度分布特性を持つ画像データの登録ができた段階で、集光鏡6の位置調整の作業を実施する。
 例えば、集光鏡6を古いものから新しいものに交換して取り付けが終われば、EUV光を放射し、角度分布特性測定器12を光路内に挿入し、その状態での(現状での)角度分布特性を測定する。測定した角度分布特性画像データは制御部10に送られる。ここで、測定された画像データは、例えば図2(c)のようなものであったとする。
 比較選択部10bの比較部101において、測定した画像データ(図2(c))と、分布データベース10aに記憶されている複数の不均一な角度分布特性を持つ画像データとを比較し、分布データベース10a(図2(b))の画像データ中から最も良く一致する画像データを選び出す。
 この、分布データベース10aからの画像データの選択は、例えばパターンマッチングを使用することで行う。パターンマッチングは、登録された画像のパターンと、観察した画像のパターンの一致度を測定する手法として一般によく知られている。即ち、測定した画像データ(図2(c))に対して、一致するスコアが最も高い画像データを選択する。
 記憶している複数の不均一な角度分布特性を持つ画像データ図2(b)の中から、測定した画像データ図2(c)と最も良く一致する画像データを選び出したら、比較選択部10bの移動データ読出部102は、その画像データに対応して記憶されている移動情報を呼び出す。
 呼び出した画像データには、上記したように集光鏡6の移動情報が対応して記憶されている。対応して記憶されている移動情報は、集光鏡6を均一な角度分布特性からどの方向にどのくらい移動させたのかという情報であり、図1に示すように紙面左右方向をX、紙面上下方向をY、紙面前後方向をZとし、Z軸回りの回転をθz、Y軸回りの回転をθyとすると、X,Y,Z方向の移動量ΔX,ΔY,ΔZ、Z軸回りの回転量Δθz、Y軸回りの回転量をΔθyである。
 したがって、対応して記憶されている位置情報に対して反対方向に集光鏡6を移動させれば、角度分布特性測定器12により測定される画像データは、均一な角度分布特性のもの近づくはずである。
 例えば、測定した画像データが、上記の画像データ1として登録した画像に良く似ていれば、制御部10は、集光鏡移動手段11により集光鏡をX方向に-Amm移動させる。また、測定した画像データが、上記の画像データ2として登録した画像に良く似ていれば、集光鏡をθy方向に-B度移動させる。
 このようにして集光鏡を移動させた後、再度、角度分布特性測定器12によりEUV光の角度分布特性を測定し、画像データを取得する。
 そして、新たに取得した角度分布特性画像データを、再度、分布データベース10aの各画像データと比較し、最も良く一致する画像データを選び、上記と同様に、その画像データに対応した集光鏡6の移動情報に基づき、集光鏡6を移動する。
 これを何度か繰り返すことにより、集光鏡6は、均一な角度分布特性が得られ位置に調整される。
 このようなEUV光の角度分布特性の測定と集光鏡の位置調整は、1日1回程度(1億ショットごと程度)の頻度で行うことが望ましい。
 本実施例によれば、制御部10にあらかじめ記憶された画像データと、その画像データに対応して記憶された集光鏡6の移動情報に基づき、自動的に集光鏡6の位置合せができるので、位置調整の作業は、作業者の熟練の度合いに依らず、20秒から30秒という短い時間で行うことができるようになった。
 また、このように、記憶した画像との一致度を調べることは、次のような利点もある。
 上記したように、集光鏡6は複数の反射面6aを有するが、その反射面6aのうち、特定の反射面の反射率が低下した場合、角度分布の一部だけが変化することになるが、目視ではそのことに気がつかないことがある。しかし、パターンマッチングのような記憶した画像との一致度(スコア)が低下するので、いち早く集光鏡6の不具合を発見することができる。
 また、この集光鏡の位置調整は、EUV光源装置においては、ホイルトラップ5が位置ずれを起こし、その位置ずれによりEUV光の角度特性が悪化した場合や、複数の反射面6aを有する集光鏡6において、特定の反射面の反射率が低下することによりEUV光の角度特性が悪化した場合にも行うことができる。そのような場合、EUV光の角度特性を初期状態のような均一なものに戻すことはできないが、できるだけ均一な状態に補正することができる。
 上記本実施例では、電極間の放電によりEUV光を放射するEUV光源装置の集光鏡の位置調整を例にして説明したが、本発明は、滴下される高温プラズマ生成用の原料に対して高出力のエネルギービームを照射してEUV光を放射するEUV光源装置の集光鏡の位置調整にも使用することができる。
 図3に、放電電極を備えないEUV光源装置に本発明を適用した構成の概略を示す。
 EUV光源装置は、集光光学手段である集光鏡21を収容するチャンバ1を備える。集光鏡21は、高温プラズマから放射された波長13.5nmのEUV光を反射し、その光を集光点fに集光するための光反射面21aが形成されている。
 チャンバ1には、チャンバ1内を真空状態にするためのガス排気ユニット1cが設けられている。
 EUV光源装置は、集光鏡21の光反射面21a側に、高温プラズマ生成用の液体または固体の原料Mを落下(滴下)して供給する原料供給手段22を備える。原料Mは、例えば、スズ(Sn)、リチウム(Li)である。
 EUV光源装置は、原料供給手段22により供給された原料Mに対して、非常に高いエネルギーのレーザビームを照射する高出力のレーザ装置23を備える。
 原料供給手段により、集光鏡21の光反射面21a側に供給された高温プラズマ用の原料Mに対し、高出力のレーザ装置23からレーザ入射窓23aを介して非常に高いエネルギーを有するレーザビームが照射される。これによって、原料Mが高温プラズマとなり、波長13.5nmのEUV光を放射する。高温プラズマから放射されたEUV光は、集光鏡21の光反射面61aにより反射され、集光点fに集光する。
 集光点fの後方には、前述したように、集光点fに集光したEUV光の角度分布特性を測定する角度分布特性測定器12が設けられる。この角度分布特性測定器12は、前記したようにシンチレ一タ12aとCCDカメラ12bから構成され、角度分布特性測定時には光路内に挿入され(図中実線の位置)、露光処理中には光路から退避される(図中点線の位置)。
 上記角度分布特性測定器12は照度分布を示す角度分布特性画像データを出力し、この画像データは制御部10に送られる。
 集光鏡21には、集光鏡6を移動させる集光鏡移動手段11が取り付けられており、その動作は制御部10により制御される。
 制御部10は、前記したように分布データベース10aと、比較選択部10bと、集光鏡移動制御部10cを備え、上記分布データベース10aには登録部10dから画像データ等が登録される。
 分布データベース10aには、複数の角度分布特性画像データと、該各画像データに対応させて集光鏡6を移動させるための移動データとが登録され、比較選択部10bは、比較部101において前記角度分布特性測定器12で取得した角度分布特性画像データと、上記分布データベース10aに格納された画像データを比較して、分布データベース10a中の最も一致している画像データを検索し、その画像データに対応した移動データを移動データ読出部102で読み出す。この移動データは集光鏡移動制御部10cに送られ、集光鏡移動制御部10cは、この移動データに基づき集光鏡移動手段11を制御して、集光鏡21を移動させる。
1     チャンバ
1a    放電部
1b    EUV集光部
2a,2b 放電電極
2c    絶縁部材
3     パルス電力供給部
4     エネルギービーム照射機
5     ホイルトラップ
6     集光鏡
10    制御部
10a   分布データベース
10b   比較選択部
10c   集光鏡移動制御部
11    集光鏡移動手段
12    角度分布特性測定器
12a   シンチレ一タ
12b   CCDカメラ    
21    集光鏡
22    原料供給手段
23    高出力のレーザ装置
30    露光機
C     光軸
M     原料
P     プラズマ

Claims (2)

  1.  極端紫外光源と、該光源から放射された光を反射して集光する集光光学手段と、該集光光学手段を移動させる集光光学手段移動手段と、
     上記集光光学手段により反射された光を受光し、照度分布の不均一度が上記集光光学手段のアライメント位置からのずれの方向、大きさを示す画像データである角度分布特性画像データを得る角度分布特性測定部と、
     上記角度分布特性画像データに基づき、上記集光光学手段移動手段を制御して集光光学手段を移動させる制御部とを備え、
     上記制御部は、
     予め測定した照度分布が不均一な複数の角度分布特性画像データと、該角度分布特性画像データに対応させて、該不均一な照度分布の角度分布特性画像データが得られたときの集光光学手段の位置を、照度が均一な角度分布特性画像データが得られる位置に移動させるための移動方向および移動量とを記憶させた記憶部と、
     上記角度分布特性測定部により測定された現在の角度分布特性画像データと、上記記憶部に記憶している複数の照度が不均一な角度分布特性画像データとを比較し、上記記憶している複数の角度分布特性画像データの中から、上記現在の角度分布特性画像データの角度分布特性と形状が最も良く一致する角度分布特性画像データを選択し、該選択した角度分布特性画像データに対応して記憶されている集光光学手段の移動方向および移動量を読みだす比較選択部と、
     上記比較選択部により読みだされた角度分布特性画像データに対応して記憶されている集光光学手段の移動方向および移動量に基づき、前記集光光学手段移動手段を制御して集光光学手段を移動させる集光光学手段移動制御部とを有する
    ことを特徴とする極端紫外光光源装置。
  2.  極端紫外光源と、該光源から放射された光を反射して集光する集光光学手段とを備えた極端紫外光光源装置の集光光学手段位置調整方法であって、
     あらかじめ、照度分布が不均一な複数の角度分布特性画像データと、該角度分布特性画像データに対応させて、該不均一な照度分布の角度分布特性画像データが得られたときの集光光学手段の位置を、照度が均一な角度分布特性画像データが得られる位置に移動させるための移動方向および移動量とを取得する工程と、
     現在の角度分布特性を測定し角度分布特性画像データを取得する工程と、
     上記取得した現在の角度分布特性画像データと、上記あらかじめ取得した複数の不均一な角度分布特性画像データとを比較し、上記複数の不均一な角度分布特性画像データの中から、上記現在の角度分布特性画像データと角度分布特性の形状が最も良く一致する角度分布特性画像データを選択する工程と、
     上記選択した角度分布特性画像データと対応する集光光学手段の移動方向及び移動量に基づき、上記集光光学手段を移動させる工程とを備える
     ことを特徴とする光源装置の集光光学手段位置調整方法。
     
     
PCT/JP2011/054762 2010-03-19 2011-03-02 極端紫外光光源装置および集光光学手段の位置調整方法 WO2011114889A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/636,086 US8785893B2 (en) 2010-03-19 2011-03-02 Extreme ultraviolet light source and positioning method of light focusing optical means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-064022 2010-03-19
JP2010064022A JP5471663B2 (ja) 2010-03-19 2010-03-19 極端紫外光光源装置および集光光学手段の位置調整方法

Publications (1)

Publication Number Publication Date
WO2011114889A1 true WO2011114889A1 (ja) 2011-09-22

Family

ID=44648992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054762 WO2011114889A1 (ja) 2010-03-19 2011-03-02 極端紫外光光源装置および集光光学手段の位置調整方法

Country Status (3)

Country Link
US (1) US8785893B2 (ja)
JP (1) JP5471663B2 (ja)
WO (1) WO2011114889A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10345714B2 (en) * 2016-07-12 2019-07-09 Cymer, Llc Lithography optics adjustment and monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128342A (ja) * 2004-10-28 2006-05-18 Canon Inc 露光装置、光源装置及びデバイス製造方法
JP2007088267A (ja) * 2005-09-22 2007-04-05 Komatsu Ltd 極端紫外光源装置
JP2007142361A (ja) * 2005-10-21 2007-06-07 Canon Inc 露光装置及びデバイス製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680588A (en) * 1995-06-06 1997-10-21 International Business Machines Corporation Method and system for optimizing illumination in an optical photolithography projection imaging system
US6501534B1 (en) * 2001-04-30 2002-12-31 Advanced Micro Devices, Inc. Automated periodic focus and exposure calibration of a lithography stepper
JP2005233827A (ja) * 2004-02-20 2005-09-02 Canon Inc Euv光強度分布測定装置およびeuv光強度分布測定方法
JP2005268035A (ja) * 2004-03-18 2005-09-29 Canon Inc Euv光源の評価用評価装置、およびそれを用いた評価方法
RU2278483C2 (ru) 2004-04-14 2006-06-20 Владимир Михайлович Борисов Эуф источник с вращающимися электродами и способ получения эуф излучения из газоразрядной плазмы
JP5301165B2 (ja) * 2005-02-25 2013-09-25 サイマー インコーポレイテッド レーザ生成プラズマeuv光源
JP2010123714A (ja) * 2008-11-19 2010-06-03 Ushio Inc 極端紫外光光源装置
JP5218014B2 (ja) * 2008-12-17 2013-06-26 ウシオ電機株式会社 極端紫外光光源装置および極端紫外光光源装置の保守方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128342A (ja) * 2004-10-28 2006-05-18 Canon Inc 露光装置、光源装置及びデバイス製造方法
JP2007088267A (ja) * 2005-09-22 2007-04-05 Komatsu Ltd 極端紫外光源装置
JP2007142361A (ja) * 2005-10-21 2007-06-07 Canon Inc 露光装置及びデバイス製造方法

Also Published As

Publication number Publication date
JP2011198610A (ja) 2011-10-06
US20130009076A1 (en) 2013-01-10
JP5471663B2 (ja) 2014-04-16
US8785893B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
JP5603135B2 (ja) チャンバ装置におけるターゲット軌道を計測及び制御する装置及び方法
JP5695636B2 (ja) 最適な極紫外線出力のためにターゲット材料を位置合わせ及び同期させるシステム、方法及び装置
TWI420257B (zh) 微影裝置及元件製造方法
JP4842084B2 (ja) 極端紫外光源装置及びコレクタミラー
US8491353B2 (en) Mold for optical components
JP5218014B2 (ja) 極端紫外光光源装置および極端紫外光光源装置の保守方法
NL2005771A (en) Illumination system, lithographic apparatus and illumination method.
JP2016522431A (ja) 放射コレクタ、放射源およびリソグラフィ装置
JP5355115B2 (ja) 極端紫外光光源装置及びその調整方法
JP5885418B2 (ja) リソグラフィ装置、収差ディテクタ、およびデバイス製造方法
JP4842088B2 (ja) 極端紫外光源装置及びコレクタミラー装置
JP5471663B2 (ja) 極端紫外光光源装置および集光光学手段の位置調整方法
WO2011114887A1 (ja) 極端紫外光光源装置における照度分布検出方法および集光光学手段の位置調整方法
NL2003819C2 (en) Extreme ultraviolet light source device.
JPWO2020095453A1 (ja) 積層造形装置
JP5659711B2 (ja) 極端紫外光光源装置における照度分布の検出方法および極端紫外光光源装置
JP2012028770A (ja) イメージ補償のアドレス可能な静電チャックシステム
JP2017103120A (ja) 電極状態の計測方法および電極状態計測装置
KR20210127879A (ko) 극단 자외광 광원 장치 및 플라즈마 위치 조정 방법
JP2012052870A (ja) マスクブランク検査装置およびその光学調整方法
JP2010169472A (ja) 干渉測定方法
WO2022038921A1 (ja) 極端紫外光光源装置
TWI606308B (zh) 用於反射光學機構原位修復之方法及裝置
JP2021009274A (ja) 光源、検査装置、euv光の生成方法及び検査方法
JP2005019485A (ja) 光学素子の形状修正方法、光学素子及び露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13636086

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11756078

Country of ref document: EP

Kind code of ref document: A1