WO2011114821A1 - 化学強化用ガラス組成物及び化学強化ガラス材 - Google Patents

化学強化用ガラス組成物及び化学強化ガラス材 Download PDF

Info

Publication number
WO2011114821A1
WO2011114821A1 PCT/JP2011/053000 JP2011053000W WO2011114821A1 WO 2011114821 A1 WO2011114821 A1 WO 2011114821A1 JP 2011053000 W JP2011053000 W JP 2011053000W WO 2011114821 A1 WO2011114821 A1 WO 2011114821A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass material
mol
chemical strengthening
composition
Prior art date
Application number
PCT/JP2011/053000
Other languages
English (en)
French (fr)
Inventor
両角秀勝
中野浩孝
Original Assignee
石塚硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石塚硝子株式会社 filed Critical 石塚硝子株式会社
Publication of WO2011114821A1 publication Critical patent/WO2011114821A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Definitions

  • the present invention relates to a glass composition for chemical strengthening and a chemically strengthened glass material, and particularly relates to a glass material suitable for chemical strengthening by ion exchange.
  • glass materials are used for a wide range of applications as a material that is colorless and transparent and has excellent scratch resistance.
  • glass panels used for displays of liquid crystal televisions, plasma televisions, organic EL televisions, personal computers and the like.
  • cellular phones including multifunctional information terminals such as smartphones), PDAs, tablet terminals, small music and glass panels for image display units of image playback devices have been increasing in recent years.
  • protective glass for watches and the like, and glass for optical devices represented by various lenses such as glasses and telescopes Thus, a glass material is frequently used for the part exposed on the surface. For this reason, there is an ever-increasing demand for glass materials to ensure mechanical strength that can withstand impacts caused by dropping and impacts with other hard materials.
  • the strength of the glass material can be increased by retrofitting the glass material.
  • a strengthening method there is a chemical strengthening method called an ion exchange method for exchanging alkali ions on the surface of a glass material (hereinafter referred to as chemical strengthening).
  • chemical strengthening there is an air cooling strengthening method (physical strengthening method).
  • air-cooling strengthening method a certain thickness is required to generate a compressive stress layer (also referred to as a stress layer or a surface strengthening layer), and the method cannot be applied to a thin plate material.
  • the chemical strengthening can be strengthened even if it is a thin plate or a complicated shape compared with the air cooling strengthening.
  • a compressive stress layer is formed on the surface of the glass material, and resistance to impacts and scratches is increased.
  • Chemical strengthening is mainly applied to glass materials such as soda lime glass and aluminosilicate glass.
  • the compressive stress value formed by chemical strengthening is low, as a result of scratches on the glass material surface, cracks tend to occur starting from the scratches. Further, when the stress layer is shallow, the crack easily exceeds the compressive stress layer, which leads to damage of the glass material itself. For this reason, in order to ensure the scratch resistance performance of the glass material, it is necessary to form a higher stress value and a deeper stress layer.
  • soda lime glass it is difficult to introduce a deep stress layer in a short time, and the stress layer is developed by extending the time of chemical strengthening treatment.
  • the chemical strengthening treatment time becomes long, the production efficiency per hour deteriorates.
  • capital investment increases.
  • the strength reduction of the glass material itself accompanying stress relaxation cannot be ignored.
  • weathering an appearance defect called “weathering” may be caused on the surface of the glass material. “Yake” is a phenomenon in which the refractive index of the surface changes unnaturally due to an alkali component eluted from the surface of the glass material.
  • a stress layer is developed in a short time as a composition containing 10 mol% or more of Al 2 O 3 (see, for example, Patent Documents 1 and 2).
  • a difficulty in aluminosilicate glass the melting property of the glass material itself deteriorates as the content of Al 2 O 3 increases. Therefore, a relatively high melting temperature of about 1600 ° C. must be maintained, which requires manufacturing costs.
  • the hardness after strengthening the glass material may increase extremely with the increase in the content of Al 2 O 3 . For this reason, scratches on the surface of a glass material cannot be removed by polishing a general glass material. As a result, the remaining scratches on the glass surface cause stress concentration, and the glass material may be easily broken. It has also been reported that aluminosilicate glass tends to cause cracks while increasing its hardness and Young's modulus (see Non-Patent Document 1).
  • two-step strengthening As an improvement of the glass composition for chemical strengthening, a method of forming a deep stress layer by containing Li in the composition of the glass material and performing ion exchange (strengthening by a mixed bath of Na salt and K salt) called two-step strengthening Is also known (see, for example, Patent Documents 3, 4, 5, and 6).
  • Li is an expensive raw material compared with Na and K. As a result, it increases the manufacturing cost of glass materials.
  • the Li-containing glass material that has undergone two-stage strengthening sacrifices high compressive stress values instead of seeking the formation of a deeper stress layer.
  • Non-Patent Document 2 a low-density glass composition such as borate glass, borosilicate glass, aluminoborosilicate glass, etc. in terms of the material constituting the glass material.
  • the inventors studied the composition of the glass material in the aluminoborosilicate glass (aluminoborosilicate glass), while suppressing the occurrence of cracks, and suitable composition components and ratios that can exhibit high strength after chemical strengthening. I found.
  • the present invention shortens the chemical strengthening treatment time in aluminoborosilicate glass (aluminoborosilicate glass), at the same time lowers the melting temperature than aluminosilicate glass, and does not contain Li as a composition component, thereby suppressing the manufacturing cost. Furthermore, the glass composition for chemical strengthening which can reduce generation
  • the invention of claim 1 is a glass material to be tempered that is chemically strengthened by an ion exchange method, and the glass material to be tempered comprises 35 to 65 mol% of SiO 2 in the whole glass material to be tempered. Containing 6-20 mol% Al 2 O 3 , 5-30 mol% B 2 O 3 , 7-20 mol% Na 2 O, 0-15 mol% K 2 O, and The main glass (A1) satisfying that the sum of mol% of Na 2 O and K 2 O is 10 to 25 mol%, and at least one of MgO, CaO, and ZnO is used as the glass to be tempered. It relates to a glass composition for chemical strengthening characterized by comprising an auxiliary component (A2) of the glass to be reinforced to satisfy the content of 1 to 15 mol% in total.
  • A2 auxiliary component
  • ⁇ calculated in the following equation (i) is in a range satisfying ⁇ 0.2 ⁇ ⁇ ⁇ 1.5
  • ⁇ A calculated in the following equation (ii) is 0.
  • Na 2 O, K 2 O, MgO, CaO, ZnO, B 2 O 3 , and Al 2 O 3 represent mol% values of the compound.
  • the invention according to claim 3 relates to the glass composition for chemical strengthening according to claim 1, wherein the density of the glass to be reinforced satisfies 2.33 g / cm 3 to 2.49 g / cm 3 .
  • the invention according to claim 4 is a crack generation rate of the following formula (iii) generated from a Vickers indentation generated on the surface of the glass to be reinforced when the following indentation test (I) is performed on the glass to be tempered (
  • the indentation test (I) was carried out after 30 seconds had passed after the Vickers indenter was pressed into the glass to be reinforced at a load of 4.9 N for 10 seconds under the environment of normal temperature and normal humidity, and the Vickers indenter was unloaded. The number of cracks generated from the Vickers indentation by the Vickers indenter is counted.
  • the indentation test (II) was carried out after 30 seconds had passed after the Vickers indenter having been set at a load of 9.8 N was pressed into the tempered glass material for 10 seconds in an environment of normal temperature and humidity, and the Vickers indenter was unloaded. The number of cracks generated from the Vickers indentation by the Vickers indenter is counted.
  • the invention of claim 6 relates to a chemically strengthened glass material obtained by chemically strengthening the glass composition for chemical strengthening according to claim 1 by an ion exchange method.
  • the invention of claim 7 is a chemically strengthened glass, wherein the chemically strengthened glass material obtained by chemically strengthening the glass composition for chemical strengthening according to claim 1 by an ion exchange method has a stress layer of 20 ⁇ m or more. Related to the material.
  • the invention of claim 8 relates to the chemically strengthened glass material according to claim 7, wherein the chemically strengthened glass material exhibits a compressive stress value of 600 MPa or more.
  • the glass composition for chemical strengthening is a glass to be tempered that is chemically strengthened by an ion exchange method, and the glass to be tempered contains 35 to 65 mol% of SiO 2 and Al 2 O 3 . 6-20 mol%, B 2 O 3 5-30 mol%, Na 2 O 7-20 mol%, K 2 O 0-15 mol%, and Na 2 O and K
  • the tempered glass material satisfying that the main component satisfying the sum of 2 mol% of 2O is 10 to 25 mol% and containing 1 to 15 mol% of one or more of MgO, CaO or ZnO Therefore, the chemical strengthening treatment time in the aluminoborosilicate glass is shortened, and at the same time, the melting temperature is lowered as compared with the aluminosilicate glass, and the production cost is reduced by not containing Li in the composition component. Hold down It is possible.
  • the blending ratio of the main component and the auxiliary component it is possible to reduce the occurrence of cracks, and to lower the density than existing soda lime glass. In particular, since the generation of cracks can be suppressed, it is suitable for applications where scratch resistance is required.
  • the chemically strengthened glass material according to the present invention can be produced at a relatively low melting temperature and can form a sufficient stress layer in spite of shortening the time required for chemical strengthening. Is possible. Moreover, the chemically strengthened glass material according to the present invention can improve the balance between the compressive stress value and the compressive stress layer as compared with the Li-containing glass material.
  • the glass composition for chemical strengthening of the present invention is a glass material to be tempered that is chemically strengthened by an ion-exchange method. That is, the glass material to be tempered is a glass composition before chemical strengthening (a precursor material).
  • the glass material to be reinforced is a glass composition containing aluminoborosilicate glass (aluminoborosilicate glass) as a main component composition.
  • the glass to be reinforced has a composition containing a main component (A1) and an auxiliary component (A2) described below.
  • a main component (A1) 35 to 65 mol% of SiO 2 , 6 to 20 mol% of Al 2 O 3 , and 5 to 30 mol% of B 2 O 3 in the entire glass to be reinforced, 7 to 20 mol% of Na 2 O is contained.
  • the sum of the mole percentages of Na 2 O and K 2 O in the main component satisfies 10 to 25 mole%.
  • an auxiliary component (A2) 1 to 15 mol% of one or more of MgO, CaO, or ZnO is contained in the entire glass to be reinforced.
  • the blending ratio of each component constituting the tempered glass material is the components occupying the total weight of the tempered glass material after preparation such as mixing and melting (that is, the glass composition for chemical strengthening). It is a ratio (mol%) in terms of mole fraction.
  • the effects exhibited by the listed components as the main component (A1) and auxiliary component (A2) in the glass to be reinforced do not necessarily change linearly according to the blending ratio. It is considered that various factors such as bonds between atoms in amorphous glass and changes in bond angle are acting.
  • about the compounding ratio of each component which comprises a to-be-reinforced glass material it becomes as follows from the knowledge of the result of the below-mentioned Example and the knowledge which can be grasped
  • SiO 2 is a main component that forms the structural skeleton of glass in the glass to be reinforced. Since it is a main component, it is essential that the SiO 2 content is 35 mol% or more. If the amount is less than this, vitrification becomes difficult, and chemical resistance and water resistance are liable to decrease.
  • the mixing ratio of SiO 2 is regulated to 35 to 65 mol%, preferably 45 to 63 mol%, more preferably 48 to 60 mol% in consideration of the composition and mixing of other main components and auxiliary components. .
  • Al 2 O 3 expands the network interval in the glass material by replacing the position of SiO 2 in the glass material to be reinforced.
  • the network in the glass material is formed in a network structure.
  • the bond distance of Si—O serving as the interval of the network structure is 162 pm, whereas the bond distance of Al—O is 172 pm.
  • Al 2 O 3 facilitates subsequent ion exchange, it has the effect of forming the stress layer deeper in a short time.
  • the number of non-bridging oxygen (NBO) in the glass material is minimized by suitably controlling the abundance ratio of alkali metal, divalent metal oxide, B 2 O 3 and Al 2 O 3 Can be. Also from this point, ion exchange becomes easy. Further, Al 2 O 3 suppresses the phase separation of the glass and improves the homogeneity of the glass material.
  • the blending ratio of Al 2 O 3 is defined as 6 to 20 mol%, preferably 10 to 18 mol%, more preferably 13 to 15 mol%.
  • B 2 O 3 improves the meltability of the glass material to be reinforced and suppresses crystallization of the glass material.
  • B 2 O 3 decreases the density and thermal expansion coefficient of the glass material and increases the electrical resistance. Since B 2 O 3 suppresses the outflow of ions from the glass material, chemical resistance can be improved.
  • the blending ratio of B 2 O 3 needs to be at least 5 mol%. However, when the blending ratio of B 2 O 3 exceeds 30 mol%, B 2 O 3 tends to volatilize in the melting process, and it is not easy to control the volatilization amount practically. Accordingly, B 2 O 3 in the mixing ratio of the volatilization amount in consideration of B 2 O 3 is 5 to 30 mol%, is defined preferably 6 to 20 mol%, further preferably 7 to 15 mol%.
  • Na 2 O breaks the bond between Si and O in the network in the glass material to form non-bridging oxygen. As a result, the viscosity of the glass material is reduced. Na + in Na 2 O is exchanged with K + in the molten salt during subsequent chemical strengthening. Due to the difference in ionic radius between Na + and K + , a stress layer is formed on the surface of the glass to be reinforced. When the blending ratio of Na 2 O is less than 7 mol%, even if chemical strengthening is performed on the glass material to be reinforced (glass composition for chemical strengthening), the formation of the stress layer is insufficient, and the target stress Can't get value.
  • the blending ratio of Na 2 O exceeds 20 mol%, in addition to an increase in the coefficient of thermal expansion, the chemical resistance of the surface of the glass material (chemically strengthened glass material) after chemically strengthening the glass to be reinforced deteriorates. To do. Specifically, the glass material and moisture in the air react to cause a whitening phenomenon called bloom and elution of an alkaline component called burn. Due to the burning, the refractive index of the glass material surface changes and the commercial value of the glass material is greatly reduced. Therefore, the blending ratio of Na 2 O is defined as 7 to 20 mol%, preferably 9 to 17 mol%, more preferably 11 to 15 mol%.
  • K 2 O promotes the exchange of ions between Na + and K + during chemical strengthening by ion exchange.
  • the stress layer is formed deeper in a short time due to the presence of K 2 O.
  • the blending ratio of K 2 O exceeds 15 mol%, the coefficient of thermal expansion increases and the electrical resistance decreases.
  • the alumina of the melting furnace for melting the glass material is easily eroded.
  • the blending ratio of K 2 O is specified to be 15 mol% or less, preferably 10 mol% or less, more preferably 6 mol% or less. Even if no blended K 2 O, provided a constant scratch performance (see Example). From this, 0 mol% is contained in a lower limit.
  • the present invention is a composition containing no Li (as Li 2 O) as grasped from elemental species of the main component (A1).
  • the sum of the mole percentages of Na 2 O and K 2 O means the definition of the total amount of alkali metal components that does not depend on Li 2 O in the glass material to be reinforced (glass composition for chemical strengthening).
  • the alkali component serves as a fluxing aid for melting the glass material.
  • the alkali component lowers the viscosity of the molten glass material and improves the moldability and meltability. Contrary to this, for example, there are the following points regarding the influence caused by the alkaline components Na 2 O and K 2 O.
  • the alkali component increases the coefficient of thermal expansion of the glass material.
  • the coefficient of thermal expansion is high, it is considered that the glass material is easily broken by a thermal shock during molding.
  • the electrical resistance value of the glass material is lowered and the current is less likely to change to heat, it is difficult for the temperature of the glass material to increase during electromelting.
  • the sum of mol% of Na 2 O and K 2 O, which are alkali components, is specified in consideration of the balance with other main components and auxiliary components, and performance deterioration as a glass material due to the alkali metal components. .
  • the sum of the mole percentages of Na 2 O and K 2 O is preferably 10 to 25 mole%, more preferably 13 to 23 mole%, and even more preferably 15 to 20 mole%.
  • the sum of the mole percentages of Na 2 O and K 2 O is preferably 10 to 25 mole%, more preferably 13 to 23 mole%, and even more preferably 15 to 20 mole%.
  • the sum of the mole percentages of Na 2 O and K 2 O is preferably 10 to 25 mole%, more preferably 13 to 23 mole%, and even more preferably 15 to 20 mole%.
  • MgO, CaO, or ZnO listed as the auxiliary component (A2) improves the water resistance and chemical resistance of the finally produced glass material. Further, the viscosity can be lowered when the glass material is melted, and the molding temperature zone can be widened. In general, divalent cations tend to inhibit ion exchange. Of the divalent cation components used as auxiliary components, MgO has the least effect of inhibiting ion exchange during chemical strengthening.
  • the tempered glass material is established even when the total proportion of the auxiliary component (A2) in the tempered glass material is not compounded (0 mol%). However, from the viewpoint of performance, it is desirable to add 1 mol% or more. However, when the blending ratio of the auxiliary component (A2) as a whole exceeds 15 mol%, the hardness of the glass material is reduced (weakened). In addition, the specific gravity of the glass material increases and the devitrification temperature increases. Therefore, the upper limit is defined as a blending ratio of 15 mol% or less, preferably 10 mol% or less, and further 7 mol% or less.
  • the auxiliary component (A2) only needs to contain at least one of MgO, CaO, or ZnO, or may be two or three of them. The selection is arbitrary according to the design of a desired glass material.
  • auxiliary component (A2) in addition to the components of the listed also, SrO, BaO, TiO 2, ZrO 2, Nb 2 O 5, P 2 O 5, Cs 2 O, Rb 2 O, TeO 2, BeO, GeO 2 Bi 2 O 3 , La 2 O 3 , Y 2 O 3 , WO 3 , MoO 3 , Ag 2 O, Fe 2 O 3 or the like can also be included. Furthermore, in addition to the main component (A1) and auxiliary component (A2), F, Cl, SO 3 , Sb 2 O 3 , SnO 2 , Ce, or the like may be added as a clarifier.
  • the composition can also be defined by the relationship established between the components. Specifically, first, the formula (i) is defined.
  • the indication of the oxide in each formula is a numerical value based on mol% of the blending ratio of the oxide.
  • ⁇ calculated from the formula (i) represents each of B 2 O 3 , Al 2 O 3 , divalent metal oxide (MeO), and alkali metal oxide (Me ′ 2 O) constituting the glass to be reinforced. This is convenient when considering the balance of the components. Further, by using the value of ⁇ , it is possible to associate with the crack occurrence rate described later.
  • the difference obtained by subtracting the amount of Al 2 O 3 from the sum of the amount of alkali metal oxide (Me ′ 2 O) and the amount of divalent metal oxide (MeO). Is required.
  • Al 2 O 3 , alkali metal oxide (Me ′ 2 O), and divalent metal oxide (MeO) form a one-to-one (by activity evaluation) bond.
  • Alkali metal oxides and divalent metals that can contribute to changes in the coordination number of boron by determining the difference between the amount of Al 2 O 3 from the sum of the amount of alkali metal oxides and divalent metal oxides The amount of oxide can be grasped.
  • the reason for dividing the denominator part of the formula (i) by the amount of B 2 O 3 is to calculate the ratio of the alkali metal oxide and the divalent metal oxide to boron. Value obtained by dividing “sum of the amount of alkali metal oxide (Me ′ 2 O) and the amount of divalent metal oxide (MeO)” by “amount of B 2 O 3 ” ⁇ (Me ′ 2 O + MeO) / B 2 When O 3 ⁇ is greater than 1, it is considered that there is sufficient oxygen for boron to maintain tetracoordinate. When the value obtained by dividing the above becomes smaller than 1, boron cannot maintain tetracoordinate and is considered to shift to tricoordinate. From the above, equation (i) that defines ⁇ can be derived.
  • the action of boron and aluminum in the skeleton of the glass material is known as an aluminoboron effect that greatly affects the density and refractive index of the glass.
  • the aluminoboron effect can be easily grasped by the amount of ⁇ . Therefore, from the value of ⁇ derived from the equation (i), the state of the next glass structure can be grasped as a guide.
  • B When 0.3 ⁇ ⁇ 1, there is a shortage of oxygen bonded to boron. For this reason, boron begins to take tricoordination. Gradually the density of the glass material decreases.
  • the crack generation rate of the glass material to be reinforced increases. Since the relative proportion of Al 2 O 3 is increased, Al 2 O 3 as the form of the 6-coordinate (octahedral) increases, the density of the glass material is expected to rise. Therefore, in consideration of the embodiment, the lower limit value of ⁇ is ⁇ 0.2, preferably 0.0, and more preferably 0.2. Even when the value of ⁇ is 1.5 or more (for example, 2.3), the crack generation rate of the glass to be tempered increases. Since B 2 O 3 remains in the fourth coordination (tetrahedron), it leads to an increase in density. For this reason, the upper limit of ⁇ is 1.5, preferably 1.0, and more preferably 0.6.
  • ⁇ A is defined from the above formula (ii) as an index for grasping the number of non-bridging oxygen in the glass material.
  • the oxide in each formula is a numerical value by mol% of the blending ratio of the oxide.
  • ⁇ in the equation is a numerical value calculated from the equation (i).
  • SiO 2 glass material, Al 2 O 3 assuming that the composition of the ternary system of Na 2 O, the ratio of Al 2 O 3 and Na 2 O is theoretically closer to one to one, non-crosslinked The number of oxygen decreases. Therefore, it is known that the rate of ion exchange in chemical strengthening increases and ion exchange proceeds from the glass material surface to a deep position. This relationship can be expressed by equation (a).
  • a glass-forming oxide (NWF: Net-Work former) is SiO 2 and Al 2 O 3 and a glass-modifying oxide (NWM: Net-Work Modifier) is composed only of Na 2 O. Applied to the material.
  • K (K 2 O) which is an alkali metal, is considered to modify the glass material in the same manner as Na 2 O. Therefore, when the alkali metal component in the composition system is taken into account, the formula (b) can be derived.
  • the glass material is modified with respect to Mg, Ca, or Zn which is a divalent metal as well as the alkali metal.
  • the formula (c) can be derived.
  • B 2 O 3 is included.
  • B 2 O 3 becomes a glass-forming oxide like Al 2 O 3 .
  • B 2 O 3 can be added to the molecule of formula (c) and formula (d) can be derived.
  • B 2 O 3 can take both tricoordinate and tetracoordinate in the glass material. Therefore, as shown in the conceptual diagram of FIG. 1, when B 2 O 3 is tetracoordinate, the central B forms a bond of B—Na or BK instead of non-bridging oxygen. However, when B 2 O 3 is tricoordinate, the central B does not contribute to the reduction of non-bridging oxygen. In consideration of this point, since the bonding state of B 2 O 3 is considered, the concept of ⁇ calculated from the equation (i) can be applied. In the range of ⁇ from 0 to 1, it is assumed that the coordination state of B 2 O 3 is also changed in proportion to ⁇ . That is, the ratio of tetracoordinate B 2 O 3 is proportional to ⁇ .
  • can be regarded as a coefficient of B 2 O 3 . Therefore, ⁇ shown in the equations (a) to (d) is put together with ⁇ . Thus, the formula (ii) is derived, and ⁇ A that is an index for grasping the number of non-bridging oxygen in the glass material can be calculated.
  • ⁇ A calculated from the formula (ii) can be an effective index in grasping the number of non-bridging oxygen. It is estimated that the closer the value of the index ⁇ A is to 1, the smaller the number of non-bridging oxygens.
  • beta A is in the range of 1 to not 0.68 (0.68 ⁇ ⁇ A ⁇ 1 ), furthermore, 0.75 to the range of 1 (0.75 ⁇ ⁇ A ⁇ 1), more preferably in the range of 0.8 to 1 (0.8 ⁇ ⁇ A ⁇ 1).
  • the density of the glass material to be tempered prepared according to the blending ratio defined in the main component (A1) and the auxiliary component (A2) can be 2.6 g / cm 3 or less, and further 2.5 g / cm 3 or less.
  • This density is lower than or equal to or slightly higher than the chemically strengthened glass material having the existing composition (see the density in the examples of Patent Documents 5 and 6).
  • the density is 2.3 g / cm 3 or less, the glass material is weakened, and the density value is considered to be the lower limit.
  • the density of the reinforcing glass member is preferably 2.33g / cm 3 ⁇ 2.49g / cm 3, more preferably 2.35g / cm 3 ⁇ 2.46g / cm 3 More preferably, it is defined in the range of 2.38 g / cm 3 to 2.46 g / cm 3 .
  • the tempered glass material obtained in consideration of the component types disclosed so far the range values of ⁇ and ⁇ A , and the density, a known Vickers indenter is used as disclosed in Examples described later.
  • An indentation test (I) is performed. By this test, the crack formation probability of the glass material to be tempered before chemical strengthening is evaluated. Both the indentation test (I) and the indentation test (II) described later were performed by methods conforming to JIS Z 2244 (2009), or ISO6507-1, ISO6507-4, and ASTM-E-384.
  • the indentation test (I) based on the above test method is a diamond set at a pressing force of 4.9 N (load 500 gf) in an environment of normal temperature and humidity as shown in the schematic diagram at the time of press-fitting in FIG.
  • the made Vickers indenter 20 (the angle of the tip 21 is 136 °) is pressed against the glass material to be reinforced 10 for 10 seconds.
  • 2A is before press-fitting
  • FIG. 2B is during press-fitting
  • reference numeral 12 is an indentation. Thereafter, the Vickers indenter 20 is unloaded, and after 30 seconds or more, as shown in the schematic diagram of FIG.
  • the crack 13 (generated from the indentation 12 generated on the surface 11 of the glass material 10 to be reinforced by the Vickers indenter 20 ( The number Cn of radial cracks) is counted. Cracks may occur at the same time or with delay from the Vickers indenter. Therefore, the number of cracks was counted by confirming the occurrence of cracks after a moderate amount of time. According to the following formula (iii), the crack occurrence rate Ci (%) for each glass material to be reinforced is calculated from the number Cn of cracks.
  • the lower the crack occurrence rate the higher the strength of the glass material itself.
  • the number of cracks 13 in FIG. 3A is four, and the crack occurrence rate Ci is 100%.
  • the number of cracks 13 in FIG. 3B is two, and the crack occurrence rate Ci is 50%. That is, the tempered glass material in FIG. 3B has less cracking and higher scratch resistance. Considering this point, the crack occurrence rate Ci is 50% or less.
  • the crack occurrence rate Ci satisfies 50% or less even when it is press-fitted by double pressing.
  • the indentation test (II) is also performed in accordance with the method based on the above, and the schematic diagram at the time of press-fitting in FIG. 2 is referred to.
  • the crack 13 (generated from the indentation 12 generated on the surface 11 of the glass material 10 to be reinforced by the Vickers indenter 20 ( The number Cn of radial cracks) is counted. Cracks may occur at the same time or with delay from the Vickers indenter. Then, like the test (I), the occurrence of cracks was confirmed at an appropriate time, and the number of cracks was counted.
  • the crack generation rate Ci (%) for each glass material to be reinforced is calculated from the number Cn of cracks according to the formula (iii). As described above, since the crack generation rate can be suppressed even when the load is increased, it is possible to improve the scratch resistance of the glass material to be tempered before chemical strengthening.
  • the glass material comes into contact with various objects during transportation and processing.
  • a crack may occur on the surface of the glass material.
  • the depth of the generated crack is deeper than the depth of the compressive stress layer formed by the chemical strengthening process, the crack is extremely reduced in strength compared to the glass material contained in the compressive stress layer. obtain.
  • the above-mentioned influences are remarkably affected.
  • the strength of the glass material after chemical strengthening it has been mostly determined by the strength (for example, Vickers hardness, Young's modulus, etc.) of the glass material after chemical strengthening. That is, almost no knowledge has been obtained about how to adjust the strength of the glass material before chemical strengthening (glass composition before chemical strengthening).
  • the main purpose is to maintain the strength of the glass material to be tempered (the glass composition for chemical strengthening) prior to chemical strengthening based on the selection of the constituent components and the review of the formulation. In other words, by suppressing cracks generated in the glass material before chemical strengthening, the presence of cracks with a depth exceeding the compressive stress layer formed by chemical strengthening can be reduced, and the strength of the glass material after chemical strengthening can be reduced. Can be suppressed.
  • the manufacturing method is not particularly limited.
  • a press method, a blow method, a rollout method, a fusion method, a downdraw method, a float method, and the like The optimum production method is selected according to the shape and application of the glass product finally produced.
  • the glass material to be reinforced (a glass composition for chemical strengthening) is chemically strengthened by an ion exchange method to become a chemically strengthened glass material.
  • a known technique is applied to the chemical strengthening and is not particularly limited.
  • the chemical strengthening is a technique to replace the Na + of the glass material surface to K +.
  • KNO 3 , K 2 SO 4 , K 2 CO 3 or the like is mainly used, and KCl or the like may be added to stabilize the molten salt.
  • the ion radius of K + is larger than Na + . Therefore, as the substitution from Na + to K + proceeds on the glass material surface, compressive stress is generated in the glass lattice, and a stress layer (compressive stress layer) develops on the glass material surface.
  • the stress layer produced by chemical strengthening depends on the application of the final product.
  • the thickness of the stress layer varies, the thickness of the stress layer of at least 20 ⁇ m or more is required.
  • the development of the stress layer is controlled by adjusting the composition of the glass composition for chemical strengthening, the temperature of the molten salt, and the immersion time.
  • a stress layer (compressive stress layer) having a thickness of at least 20 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 35 ⁇ m or more. Is desirable. Therefore, the glass material composition is adjusted as much as possible to form the stress layer having a sufficient thickness.
  • the glass composition for chemical strengthening to be strengthened is preheated to a temperature lower by about 20 ° C. than the later strengthening temperature, and then in the molten salt of KNO 3 maintained at the strengthening temperature of 400 ° C. to 500 ° C. Soaked. After the glass composition for chemical strengthening has been immersed for 2 to 8 hours, preferably 2 to 6 hours, it is taken out from the molten salt and allowed to cool in air at room temperature. Excess salt is washed with water and the glass is dried. Thus, the chemically strengthened glass material is completed.
  • the glass material to be tempered (the glass composition for chemical strengthening) based on the composition of the present invention has a stress layer of 30 ⁇ m within 12 hours under the chemical strengthening condition (III) defined in the exemplified ion exchange method. Can be formed.
  • the chemical strengthening conditions are the same, the processing time can be halved. Therefore, formation of a deeper stress layer is easy, productivity is improved, and it is extremely advantageous in terms of equipment depreciation.
  • the compressive stress value (MPa) and the above stress layer ( ⁇ m) are measured by nondestructive measurement.
  • a surface stress meter manufactured by Orihara Seisakusho Co., Ltd. is used, and each is calculated by reading interference fringes in the field of view.
  • the compressive stress value required for the chemically strengthened glass material is 600 MPa or more, more desirably 800 MPa or more, and further desirably 900 MPa or more.
  • the scratch resistance of the chemically strengthened glass material surface also improves.
  • the compressive stress value becomes extremely large, it takes time to form a stress layer caused by chemical strengthening. Alternatively, the stress layer may be insufficiently formed in the same time. Therefore, the upper limit of the compressive stress value is considered to be 1300 MPa.
  • the use of the chemically strengthened glass material obtained by chemically strengthening the chemically strengthened glass composition satisfying the component system defined in the present invention is not particularly limited. Since it has high mechanical strength, it is suitable for use in places where impact due to dropping or contact with other substances is expected.
  • mobile phones including multifunctional information terminals such as smartphones
  • PHS, PDA, tablet terminals notebook personal computers, game machines, portable music / video players, electronic books, electronic terminals, watches
  • Cover glass for display parts such as cameras and GPS, or cover glass for touch panel operation monitors of these devices
  • cover glass for cookers such as microwave ovens and oven toasters
  • top plates such as electromagnetic cookers, meters, gauges
  • machines and devices exemplified as cover glass for instruments such as glass plates for reading parts such as copying machines and scanners.
  • window glass for vehicles, ships, aircraft, etc. lighting equipment for home or industry, signals, guide lights, cover boards for electric bulletin boards, showcases, bulletproof glass, etc.
  • cover glass for protecting a solar cell and a condensing glass material for increasing the power generation efficiency of the solar cell.
  • glass for mirror surfaces there are various uses for glass for mirror surfaces, as well as substrates for information storage media such as HDDs, and substrates for information recording media such as CDs, DVDs, and Blu-ray discs.
  • the chemically strengthened glass material produced after the chemical strengthening treatment is optimal as a glass material for a display incorporated in various image display devices such as liquid crystal, plasma, and organic EL.
  • image display devices such as liquid crystal, plasma, and organic EL.
  • it is suitable to produce a glass plate having a large area.
  • the demand for flat glass materials having uniform strength is increasing. Therefore, it can greatly contribute to maintaining the strength in the manufacturing stage and further improving the durability after shipment.
  • the raw materials described in the table were weighed and prepared according to the composition of each prototype and control example, and then heated to 1350 ° C. in an electric furnace to melt. Thereafter, it was put into water and crushed to obtain a crude material.
  • the crude material obtained by water granulation was transferred to a platinum small plate, heated to 1350 ° C. in an electric furnace, melted, taken out, and gradually cooled.
  • the surface of the glass material produced after the slow cooling was polished with a cerium oxide abrasive to prepare a glass composition for chemical strengthening in a prototype and a control example having a smooth mirror surface.
  • the density (g / cm 3 ) was measured according to a known Archimedes method.
  • the glass composition for chemical strengthening of the prototype to be measured and the control example are left to stand in a normal temperature and humidity environment (in this case, maintained at a room temperature of 25 ° C. and a humidity of 50% RH (relative humidity)).
  • a diamond-made Vickers indenter set to a pressing force of 4.9 N (load 500 gf) was pressed against the glass material to be reinforced for 10 seconds (pressing as described above). Equivalent to test (I)). After unloading the Vickers indenter and passing 30 seconds or more, the number of cracks generated from indentations generated on the surface of the glass material to be reinforced by the Vickers indenter was counted.
  • the calculation of the crack occurrence rate is as in the above formula (iii) (see 4.9 N press-fit crack occurrence rate (%) in the table). Also, under the same conditions, only the load at the time of press-fitting of the Vickers indenter was changed to 9.8 N (load 1000 gf) (corresponding to the indentation test (II) described above), and the Vickers indenter generated the surface of the glass material to be reinforced. The number of cracks generated from the indentation was counted (see 9.8 N press-fit crack occurrence rate (%) in the table). The crack occurrence rate was determined at 10 locations per prototype example, and the average of the 10 locations was taken as the crack occurrence rate of the prototype example.
  • meltability The evaluation of meltability was defined as the quality of fluidity when heated to 1350 ° C.
  • is an example that can be easily poured out
  • is an example that is slightly viscous, but an example that cannot be melted at 1350 ° C. is “ ⁇ ”. It was.
  • composition ratio of SiO 2 Regarding SiO 2, it is 35 mol% from Prototype Example 44 and 65 mol% from Prototype Example 34. Therefore, a range of 35 to 65 mol% can be derived. Preferably, it is 45 mol% from Trial Example 23 and 63 mol% from Trial Example 46, and a range of 45 to 63 mol% can be derived. More preferably, it is 48 mol% from the prototype 27 and 60 mol% from the prototype 45, and a range of 48 to 60 mol% can be derived.
  • Al 2 O 3 is 6 mol% from Prototype Example 11 and 20 mol% from Prototype Example 21. Therefore, a range of 6 to 20 mol% can be derived. Preferably, it is 10 mol% from Trial Example 12 and 18 mol% from Trial Example 43, and a range of 10 to 18 mol% can be derived. More preferably, it is 13 mol% from the prototype 41 and 15 mol% from many other “A” and “B” prototypes, and a range of 13 to 15 mol% can be derived.
  • B 2 O 3 is 5 mol% from Trial Example 46 and 30 mol% from Trial Example 44. Therefore, a range of 5 to 30 mol% can be derived. Preferably, it is 6 mol% from the prototype 47 and 20 mol% from the prototype 37, and a range of 6 to 20 mol% can be derived. More preferably, it is 7 mol% from the prototype 36 and 15 mol% from the prototype 42, and a range of 7 to 15 mol% can be derived.
  • [Mixing ratio of Na 2 O] Na 2 O is 7 mol% from Prototype Example 39 and 20 mol% from Prototype Example 38. Therefore, a range of 7 to 20 mol% can be derived. Preferably, it is 9 mol% from the prototype 40 and 17 mol% from the prototype 20, and a range of 9 to 17 mol% can be derived. More preferably, it is 11 mol% from the prototype 42 and 15 mol% from the prototype 16, and a range of 11 to 15 mol% can be derived.
  • K 2 O can be made unmixed (0 mol%) from Prototype Example 22. Further, since it is 15 mol% from the prototype 40, a range of 0 to 15 mol% can be derived. Preferably, since it is 10 mol% from the trial example 23, a range of 0 to 10 mol% can be derived. More preferably, it is 6 mol% from Prototype Example 2, so a range of 0 to 6 mol% can be derived.
  • the lower limit is ⁇ 0.2 from Trial Example 21, preferably 0.0 from Trial Example 22, and more preferably Trial Example 1 based on the results of excellent (A) and good (B) in the pass / fail evaluation results. It can be said that 0.2 is more desirable.
  • the lower limit value of ⁇ 0.2 or less of ⁇ is a production limit because Al 2 O 3 increases excessively.
  • an upper limit is 1.5.
  • the upper limit value is 1.0 in consideration of Prototype Example 11, and the upper limit value is 0.6 from Prototype Example 2.
  • beta A since the beta A prototype example 48 is 0.68, the lower limit value of the beta A and 0.68 or more.
  • ⁇ A of Prototype Example 25 is 0.787, and is preferably 0.75 or more.
  • ⁇ A of Prototype Example 29 is 0.819, it is more preferably 0.8 or more.
  • a preferable upper limit of ⁇ A is set to 1.0 from Trial Example 31.
  • the preferable upper limit of ⁇ A can be set to 0.9 or less from prototype examples 1 to 4 and prototype examples 11 to 50 (excluding prototype examples 31, 35, 38, 40, 44, 49, and 50). .
  • FIG. 4 (a) is prototype example 1
  • FIG. 4 (b) is prototype example 4
  • FIG. 5 (a) is aluminosilicate glass (comparative composition 101)
  • FIG. 5 (b) is soda lime glass (comparative composition 102).
  • 6A is a prototype 63
  • FIG. 6B is a glass containing lithium (comparative composition 103).
  • the compression stress value tends to decrease when the compression stress layer is emphasized, and the compression stress layer formation tends to decrease when the compression stress value is emphasized.
  • the stress layer is thin although the stress value is high as in Prototype Example 68. Since the formation of a deep compressive stress layer and a high compressive stress value are contradictory properties, the quality of the prototype was evaluated in addition to considering a prototype with a balance between the two values. Therefore, the compressive stress layer is required to be at least 20 ⁇ m or more from the prototype examples 11 and 22 and the like.
  • the thickness is 30 ⁇ m or more from Prototype Examples 16 and 20 and the like, and 35 ⁇ m or more from Prototype Examples 3 and 4 and the like.
  • the compressive stress value was derived as 600 MPa or more from the boundary between good (B) and impossible (C) prototype examples. In particular, it is 800 MPa or more from the majority of the good (B) prototype examples, and 900 MPa or more from the excellent (A) prototype examples 3 and 4.
  • the compressive stress layer and compressive stress value of the excellent (A) and good (B) prototypes were generally better than those of the comparative composition glass materials.
  • the glass specimen before chemical strengthening used for the measurement was initially 50 mm ⁇ 50 mm ⁇ 1.5 mm (thickness). This plate-like body was polished several times to obtain 42.4 mm ⁇ 42.4 mm ⁇ 0.7 mm (thickness). Similarly, polishing was performed a plurality of times from a test piece of 124 mm ⁇ 66 mm ⁇ 1.5 mm (thickness) to obtain 116.1 mm ⁇ 58.2 mm ⁇ 0.7 mm (thickness).
  • the 4-point support bending test was performed based on JIS R 1601 (2008) (corresponding standard: ISO 1470: 2000, ASTM C158-2007). However, the test piece was changed to a plate shape (width 42.4 mm ⁇ 42.4 mm ⁇ thickness 0.7 mm), not as a prismatic shape (width 4 mm ⁇ thickness 3 mm) described in the JIS standard.
  • Prototype Example 4 two types of comparative compositions 101 (101-1 and 101-2) of aluminosilicate glass strengthened by changing the chemical strengthening time, and a total of four types of comparative composition 102 of soda lime glass, after chemical strengthening, A four-point support bending test was performed.
  • test pieces Forty test pieces were prepared for one example, and an average was obtained from 38 specimens excluding the minimum and maximum values.
  • the four types of test results were logarithmic graphs of Weibull plots of the four-point support bending strength (MPa) and the fracture probability (%) in FIG.
  • Prototype Example 4 Comparative Composition 101-2, and Comparative Composition 102 were heated to 390 ° C. with an electric furnace and immersed in a 410 ° C. KNO 3 melt (molten salt) for 8 hours. Each test piece was pulled up from the melt and allowed to cool in air. After cooling to room temperature, the salt was sufficiently washed with water and dried.
  • the comparative composition 101-1 was heated to 390 ° C. by an electric furnace and immersed in a KNO 3 molten solution (molten salt) at 410 ° C. for 4 hours. The test piece was pulled up from the melt and allowed to cool in the air. After cooling to room temperature, the salt was sufficiently washed with water and dried. That is, the chemical strengthening time of the comparative composition 101-1 is half that of 101-2.
  • the central stress value (CT: Center Tension) (MPa) was determined for the four types of glass material test pieces including the prototype 4 based on the formula (iv).
  • DOL Depth of Layer
  • CS Compressive Stress
  • thickness is the thickness ( ⁇ m) of the glass specimen.
  • Table 10 shows the results of the central stress (CT) and the like.
  • a plate-shaped test piece width 42.4 mm ⁇ 42.4 mm ⁇ thickness 0.5 mm
  • X thickness 0.3 mm was also prepared, and the central stress value was measured and described in Table 10.
  • DOL of four types of glass material test pieces was also attached to the logarithmic graph of FIG. 7 as a legend.
  • the compressive stress layer of the comparative composition 101-2 is the thickest and has the smallest variation in strength.
  • the tensile stress inside the glass material that is, the central stress value increases as the compressive stress layer and the compressive stress value increase.
  • a glass material having a high central stress value tends to scatter shards violently when damaged.
  • a tempered glass material used for a touch panel display of a cellular phone has a thickness of 1 mm or less. When the use of the glass material and the plate thickness are considered, it is necessary to keep the central stress value lower. That is, it is particularly important to maintain the strength of the glass material while suppressing the central stress value.
  • Prototype Example 4 can reduce the variation in strength and can also suppress the central stress value. For this reason, the glass composition for chemical strengthening (glass material to be reinforced) satisfying the conditions of the present invention including the prototype 4 is very promising as a thin glass material.
  • a diamond-made Vickers indenter set at a pressing pressure of 10 mm was pressed for 10 seconds and pressed. Further, under the same conditions, a diamond-shaped Vickers indenter set to a pressing pressure of 9.8 N (load 1000 gf) was pressed against each test piece for 10 seconds.
  • Prototype Example 4 one of Comparative Composition 101 (101-2), and Comparative Composition 102 were immersed in a KNO 3 melt (molten salt) at 410 ° C. for 8 hours in the same manner as in the 4-point support bending test. Further, the other (101-1) of the comparative composition 101 was also immersed in a 410 ° C. KNO 3 molten solution (molten salt) for 4 hours. Other conditions are the same.
  • test piece that has been subjected to press-fitting and chemical strengthening with a Vickers indenter is subjected to the 4-point support bending test (in accordance with the above method) with the indentation facing downward, and 0 N (no pressing), 4.9 N, 9.8 N
  • the strength of each test piece with a pressing pressure of was evaluated.
  • 20 test pieces were prepared for one type of example. Eighteen four-point support bending strengths excluding the minimum and maximum values and the average of each pressing force were determined. The results of plotting the four-point support bending strength at each pressing force for the individual test pieces of each type are shown in the graph of FIG.
  • the size of the test piece is 42.4 mm wide ⁇ 42.4 mm wide ⁇ 0.7 mm thick.
  • Prototype Example 4 (shown as a solid line in the graph) was a horizontal line. Prototype Example 4 showed a constant four-point support bending strength regardless of the pressure (the strength did not decrease). In contrast, the strengths of the comparative composition 101-1 (medium broken line), the comparative composition 101-2 (thin broken line), and the comparative composition 102 (dashed line) all decreased as the pressing force increased. Therefore, Prototype Example 4 has a glass material composition that is resistant to scratching.
  • the glass composition for chemical strengthening (strengthened glass material) of the composition system satisfying the conditions of the present invention including the prototype 4 is subjected to the process after the actual glass production and the subsequent handling (handling). It can be said that cracks hardly occur even when contacting with an object. Therefore, the glass composition for chemical strengthening (strengthened glass material) of the composition system of the present invention can introduce an appropriate compressive stress layer and compressive stress value without excessively increasing the central stress value, and thus has high strength. It can be inferred that it has reliability.
  • the comparative composition 104 was selected as a composition in which the compressive stress layer and the compressive stress value were suppressed as compared with the comparative composition 101.
  • strength evaluation was performed using a test piece of 116.1 mm ⁇ 58.2 mm ⁇ 0.7 mm.
  • the comparative composition 104 was subjected to chemical strengthening in the same manner as in the four-point support bending test by immersing it in a 410 ° C. KNO 3 melt (molten salt) for 8 hours and using the same conditions.
  • the compressive stress layer of the test piece of the comparative composition 104 was 50 ⁇ m.
  • the prototype 4 and the comparative composition 104 were subjected to a four-point support bending test (based on the above method) after chemical strengthening. Forty test pieces were prepared for one example, and an average was obtained from 38 specimens excluding the minimum and maximum values. The test result was a logarithmic graph of the Weibull plot of 4-point support bending strength (MPa) and failure probability (%) in FIG. From the graph of FIG. 9, both of the prototype 4 and the comparative composition 104 showed the same intensity variation.
  • 100 cm in the graph means non-destructive due to dropping from a height position increased by 90 cm from the initial position.
  • the test pieces of Prototype Example 4 and Comparative Composition 104 were subjected to a concentric bending test and a falling ball test after chemical strengthening.
  • the concentric circle bending test 40 test pieces were prepared for one example, and an average was obtained from 38 pieces excluding the minimum value and the maximum value.
  • the test result is a logarithmic graph of the Weibull plot of the concentric bending load (N) and the failure probability (%) in FIG.
  • For the falling ball test 30 test pieces were prepared for one example, and the number of test pieces with cracks at each height of the falling ball was counted (frequency).
  • the result of the falling ball test is a bar graph in the upper and lower parts of FIG. Both tests are tests for evaluating the surface strength of a glass material.
  • prototype 4 has less strength variation than comparative composition 104.
  • the prototype 4 has a narrower ball height distribution than the comparative composition 104.
  • Both the prototype 4 and the comparative composition 104 are subjected to the same steps and processes.
  • prototype 4 has less variation in strength than comparative composition 104. This suggests that prototype 4 has few deep cracks. It can be inferred that due to the large number of residual cracks in the comparative composition 104, the surface strength of the glass material was lowered.
  • a glass composition for chemical strengthening (a glass material to be tempered) satisfying the conditions of the present invention including Prototype Example 4 is a glass having a compressive stress layer with a similar depth in existing aluminosilicate glass. We obtained a powerful finding that the material has high strength stability.
  • the glass composition for chemical strengthening of the composition system satisfying the conditions of the present invention in Prototype Example 4 The material (glass to be reinforced) suppresses the occurrence of cracks in the previous stage of chemical strengthening, and enables both the suppression of the central stress value that could not be achieved with existing aluminosilicate glass and the maintenance of the strength of the glass material itself. did.
  • a glass composition for chemical strengthening (a glass material to be reinforced) having a composition that satisfies the conditions of the present invention is very promising in the field of use as a thin glass material.
  • the glass composition for chemical strengthening (the glass material to be reinforced) of the composition system satisfying the conditions of the present invention other than the prototype 4 will also exhibit physical properties and performance superior to those of the existing glass materials.
  • the glass composition for chemical strengthening the glass material to be reinforced
  • the glass composition for chemical strengthening of the present invention is a glass material before being chemically strengthened and can improve the scratch resistance before strengthening, it is effective for scratching during the process before strengthening. Moreover, the chemically strengthened glass material of the present invention can reduce variations in strength after strengthening due to scratches before processing. Therefore, it is suitable as a glass material for a flat display panel having a large area and a portable small terminal display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

【課題】溶融温度をアルミノシリケート系ガラスよりも低下させ、組成成分にLiを含有せず、クラックの発生を低減する化学強化用ガラス組成物、及びこれを化学強化して得た化学強化ガラス材を提供する。 【解決手段】イオン交換法により化学強化される被強化ガラス材とは、SiO2を35~65モル%、Al23を6~20モル%、B23を5~30モル%、Na2Oを7~20モル%、K2Oを0~15モル%を含有し、Na2O及びK2Oのモル%の和が10~25モル%であることを満たす主成分(A1)と、MgO、CaO、またはZnOのいずれか1種以上を被強化ガラス材全体において1~15モル%含有することを満たす当該被強化ガラス材の補助成分(A2)とを含んでなるアルミノボロシリケートガラスの化学強化用ガラス組成物であり、これを化学強化してなる化学強化ガラス材である。

Description

化学強化用ガラス組成物及び化学強化ガラス材
 本発明は、化学強化用ガラス組成物及び化学強化ガラス材に関し、特に、イオン交換による化学強化に好適なガラス材に関する。
 一般に、無色透明であるとともに耐傷性に優れた材料としてガラス材は広汎な用途に用いられる。例えば、液晶テレビジョン、プラズマテレビジョン、有機ELテレビジョン、パーソナルコンピューター等のディスプレイに使用するガラスパネルがある。また、携帯電話機(スマートフォン等の多機能情報端末を含む。)、PDA、タブレット型端末、小型の音楽や画像再生装置の画像表示部のガラスパネルも近年増加している。加えて、腕時計等の保護用ガラス、眼鏡や望遠鏡等の各種のレンズに代表される光学機器用ガラスがある。このように、表面に露出する部位にガラス材は多用される。そのため、ガラス材に対し、落下による衝撃、他の高硬度の物質との衝撃に耐えうる機械的な強度確保の要求がこれまで以上に高まっている。
 通常、ガラス材に対して事後的な強化を行うことにより、ガラス材の強度は高められる。強化方法としては、ガラス材表面のアルカリイオンを交換するイオン交換法と称される化学強化法がある(以下、化学強化と称する。)。同法以外にも風冷強化法(物理強化法)がある。なお、風冷強化法では、圧縮応力層(応力層や表面強化層等とも称される。)を生じさせるために一定の肉厚が必要であり、薄い板材には適用できない。これに対し、前記の化学強化は風冷強化と比較して薄い板材や複雑な形状物であっても強化が可能である。
 ガラス材に強化処理を施すことにより、ガラス材表面に圧縮応力層が形成され、衝撃や加傷に対する耐性が高まる。主にソーダライムガラス、アルミノシリケート系ガラス等のガラス材に、化学強化は適用される。ただし、化学強化により形成された圧縮応力値が低い場合、ガラス材表面に傷が生じた結果、この傷を起点にクラック(crack)が生じやすくなる。また、応力層が浅い場合、クラックは容易に圧縮応力層を超えるため、ガラス材自体の損壊につながる。このため、ガラス材の耐傷性能を確保するためには、より高い応力値とより深い応力層の形成が必要となる。
 ソーダライムガラスでは、短時間で深い応力層を導入することが難しく、化学強化処理の時間を長くすることにより応力層を発達させている。当然ながら、化学強化処理時間が長くなるため、時間当たりの生産効率は悪化する。生産量を確保する場合、設備投資が多くなる。また、応力緩和に伴うガラス材自体の強度低下を無視することができない。長時間の化学強化処理による問題点として、ガラス材表面に、「やけ(weathering)」と称される外観不良が引き起こされることがある。「やけ」は、ガラス材表面から溶出するアルカリ成分により、表面の屈折率が不自然に変化する現象である。
 アルミノシリケート系ガラスでは、10モル%以上のAl23を含有する組成として短時間で応力層を発達させている(例えば、特許文献1、2参照)。アルミノシリケート系ガラスにおける難点として、Al23の含有量が増加するほどガラス材自体の溶融性が悪化する。そのため、約1600℃の比較的高温の溶融温度を維持しなければならず、製造経費を要する。
 ガラス材の加工性に関して言えば、Al23の含有量の増加に伴いガラス材を強化した後の硬度が極端に上昇する場合もある。このため、一般的なガラス材に対する研磨ではガラス材表面の傷を除くことができない。結果、残存したガラス表面の傷が応力集中の原因となり、ガラス材が破壊しやすくなることがある。アルミノシリケート系ガラスでは、硬度やヤング率を上昇させる一方でクラックが生じやすくなることも報告されている(非特許文献1参照)。
 化学強化用ガラス組成物の改良として、ガラス材の組成にLiを含有させ、2段強化と呼ばれるイオン交換(Na塩とK塩の混浴による強化)を行うことにより、深い応力層を形成させる方法も知られている(例えば、特許文献3、4、5、6参照)。しかし、Liは、NaやKと比べて高価な原料である。結果として、ガラス材の製造原価を押し上げる。加えて、2段強化を行ったLi含有ガラス材は、より深い応力層の形成を求める代わりに高い圧縮応力値を犠牲にしている。
 前述のいずれの方法を採用するにしても一長一短がある。化学強化処理を行う前段階のガラス材において、搬送や加工中に他の物体との接触等によりガラス材表面に傷が生じた場合、化学強化処理後の強化ガラス材では、強度にばらつきが生じるほか、強度低下も生じる。特に、大型で平板の強化ガラス材の需要を想定すると、脆弱箇所(クラック)の存在は強化ガラス材の強度を均一に保つ上で大きな障害となる。
 一連の経緯から、化学強化処理を行う前段階のガラス材における耐傷性を向上させることができれば、化学強化処理後の強化ガラス材の強度を均一化できる可能性がある。しかしながら、化学強化処理前のガラス材における組成を検討することにより、クラックの発生を抑制しようとする試みは行われていなかった。
 なお、ガラス材を構成する材質面において、ホウ酸ガラス、ホウケイ酸ガラス、アルミノホウケイ酸塩ガラス等の低密度のガラス組成を採用することにより、ガラス材にクラックが発生しにくくなることが報告されている(非特許文献2参照)。ただし、これらのガラス材組成についての化学強化処理の知見はほとんど得られていない。つまり、化学強化処理を行う前段階のガラス材の耐傷性を向上させつつ、化学強化処理に好適なガラス材の組成は未だに見出されていない。
特公昭47-47970号公報 特公昭48-11327号公報 特許2724136号公報 特許3254157号公報 特開平10-241134号公報 特許第3995902号公報
Satoshi Yoshida,Atsuo Hidaka and Jun Matsuoka,"Journal of Non-Crystalline Solids",Vol.344,Issues1-2,(2004),pp.37-43 Shingo Sugimura,Seiji Inaba,Hiroshi Abe and Kenji Morinaga,"Journal ofthe Ceramic Society of Japan",Vol.110[12],(2002),pp.1103-1106
 その後、発明者らはアルミノボロシリケートガラス(アルミノホウケイ酸塩ガラス)におけるガラス材の組成を鋭意検討するうちに、クラックの発生を抑制し、化学強化後に高い強度を示し得る好適な組成成分及び割合を見出した。
 本発明は、アルミノボロシリケートガラス(アルミノホウケイ酸塩ガラス)における化学強化処理時間を短縮し、同時に溶融温度をアルミノシリケート系ガラスよりも低下させ、組成成分にLiを含有しないことにより製造原価を抑え、さらに、クラックの発生を低減可能とする化学強化用ガラス組成物、及び当該ガラス組成物を化学強化して得た化学強化ガラス材を提供する。
 すなわち、請求項1の発明は、イオン交換法により化学強化される被強化ガラス材であって、前記被強化ガラス材は、該被強化ガラス材全体において、SiO2を35~65モル%と、Al23を6~20モル%と、B23を5~30モル%と、Na2Oを7~20モル%と、K2Oを0~15モル%を含有し、かつ、前記Na2O及び前記K2Oのモル%の和が10~25モル%であることを満たす主成分(A1)と、MgO、CaO、またはZnOのいずれか1種以上を前記被強化ガラス材全体において1~15モル%含有することを満たす当該被強化ガラス材の補助成分(A2)とを含んでなることを特徴とする化学強化用ガラス組成物に係る。
 請求項2の発明は、下記(i)式において算出されるψが-0.2≦ψ≦1.5を満たす範囲内にあり、かつ、下記(ii)式において算出されるβAが0.68≦βA≦1.0を満たす範囲内にある請求項1に記載の化学強化用ガラス組成物に係る。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 なお、(i)式並びに(ii)式におけるNa2O、K2O、MgO、CaO、ZnO、B23、及びAl23は、当該化合物のモル%の値を表す。
 請求項3の発明は、前記被強化ガラス材の密度が、2.33g/cm3~2.49g/cm3を満たす請求項1に記載の化学強化用ガラス組成物に係る。
 請求項4の発明は、前記被強化ガラス材に対し下記の押し込み試験(I)を行った際、前記被強化ガラス材表面に生じたビッカース圧痕から発生する下記(iii)式のクラック発生率(Ci)が50%以下である請求項1に記載の化学強化用ガラス組成物に係る。
 押し込み試験(I)は、常温、常湿の環境下、被強化ガラス材に対し、荷重4.9Nに設定したビッカース圧子を10秒間圧入し、前記ビッカース圧子を除荷して30秒経過の後、前記ビッカース圧子によるビッカース圧痕から発生するクラックの数を数える。
Figure JPOXMLDOC01-appb-M000007
 請求項5の発明は、前記被強化ガラス材に対し下記の押し込み試験(II)を行った際、前記被強化ガラス材表面に生じたビッカース圧痕から発生する前記の(iii)式のクラック発生率(Ci)が50%以下である請求項1に記載の化学強化用ガラス組成物に係る。
 押し込み試験(II)は、常温、常湿の環境下、被強化ガラス材に対し、荷重9.8Nに設定したビッカース圧子を10秒間圧入し、前記ビッカース圧子を除荷して30秒経過の後、前記ビッカース圧子によるビッカース圧痕から発生するクラックの数を数える。
 請求項6の発明は、請求項1に記載の化学強化用ガラス組成物をイオン交換法により化学強化してなることを特徴とする化学強化ガラス材に係る。
 請求項7の発明は、請求項1に記載の化学強化用ガラス組成物をイオン交換法により化学強化してなる化学強化ガラス材が、20μm以上の応力層を有することを特徴とする化学強化ガラス材に係る。
 請求項8の発明は、前記化学強化ガラス材が、600MPa以上の圧縮応力値を示す請求項7に記載の化学強化ガラス材に係る。
 本発明に係る化学強化用ガラス組成物によると、イオン交換法により化学強化される被強化ガラス材であって、当該被強化ガラス材においてSiO2を35~65モル%と、Al23を6~20モル%と、B23を5~30モル%と、Na2Oを7~20モル%と、K2Oを0~15モル%を含有し、かつ、Na2O及びK2Oのモル%の和が10~25モル%であることを満たす主成分と、MgO、CaO、またはZnOのいずれか1種以上を1~15モル%含有することを満たす当該被強化ガラス材の補助成分とを含んでなるため、アルミノボロシリケートガラスにおける化学強化処理時間を短縮し、同時に溶融温度をアルミノシリケート系ガラスよりも低下させ、さらに、組成成分にLiを含有しないことにより製造原価を抑えることが可能である。
 また、主成分及び補助成分の配合割合の制御により、クラックの発生を低減可能とし、さらに既存のソーダライムガラスよりも低密度とすることができる。特に、クラックの発生を抑えることができるため、耐傷性能が求められる用途に適する。
 本発明に係る化学強化ガラス材は、比較的低い溶融温度で製造できるとともに、化学強化に要する時間を短縮しているにも関わらず十分な応力層を形成することができることから、効率良い生産が可能である。また、本発明に係る化学強化ガラス材は、Li含有ガラス材と比較して圧縮応力値と圧縮応力層のバランスを良くすることができる。
ガラス材におけるAl、B、及びOとの架橋構造を示す概念図である。 ビッカース圧子の圧入時の模式図である。 クラック発生時の模式図である。 優(A)の試作例のビッカース圧痕の拡大写真である。 比較組成の例のビッカース圧痕の拡大写真である。 不可(C)及び比較組成の例のビッカース圧痕の拡大写真である。 4点支持曲げ強度と破壊確率に関する第1の対数グラフである。 加傷後に化学強化した試験片の4点支持曲げ試験に関するグラフである。 4点支持曲げ強度と破壊確率に関する第2の対数グラフである。 同心円曲げ荷重と破壊確率の対数グラフである。 落球試験の棒グラフである。
 本発明の化学強化用ガラス組成物とは、イオン交換法(ion-exchange method)により化学強化(chemical strengthening)される被強化ガラス材である。すなわち、当該被強化ガラス材は、化学強化前のガラス組成物である(前駆材料である)。被強化ガラス材は、アルミノボロシリケートガラス(アルミノホウケイ酸塩ガラス)を主要な成分組成とするガラス組成物である。
 被強化ガラス材は、次に述べる主成分(A1)と補助成分(A2)を含む組成となる。まず、主成分(A1)として、被強化ガラス材全体において、SiO2を35~65モル%と、Al23を6~20モル%と、B23を5~30モル%と、Na2Oを7~20モル%が含有される。そして、主成分におけるNa2O及びK2Oのモル%の和は、10~25モル%であることを満たす。次に、補助成分(A2)として、被強化ガラス材全体においてMgO、CaO、またはZnOのいずれか1種以上あるいは2種以上が1~15モル%含有される。
 被強化ガラス材において、当該被強化ガラス材を構成する各成分の配合割合は、混合、溶融等の調製後の被強化ガラス材(すなわち、化学強化用ガラス組成物)の全体重量に占める各成分のモル分率換算による割合(モル%)である。被強化ガラス材における主成分(A1)、補助成分(A2)として列記の成分が発揮する作用は、必ずしも配合割合に応じた線形的な変化とならない。非結晶のガラス質内の原子同士の結合、結合角の変化等の種々の要因が作用していると考えられる。被強化ガラス材を構成する各成分の配合割合について、後記の実施例の結果及び発明者のこれまでの試行より把握し得る知見より、次のとおりとなる。
 “SiO2”は、被強化ガラス材におけるガラスの構造骨格を形成する主成分である。主成分であることから、SiO2の配合割合は35モル%以上の含有が必須である。この配合量を下回る場合、ガラス化が困難になるほか、耐化学性、耐水性が低下しやすくなる。SiO2の配合割合が65モル%よりも高くなる場合、融点が上昇することによる溶融性の悪化、粘度上昇の原因となるため好ましくない。そこで、SiO2の配合割合は、他の主成分並びに補助成分の組成及び配合を勘案して35~65モル%、好ましくは45~63モル%、さらに好ましくは48~60モル%に規定される。
 “Al23”は、被強化ガラス材中において、SiO2の位置と置換することによりガラス材内のネットワークの間隔を広げる。一般にガラス材内のネットワークは網目構造に形成されていると言われており、網目構造の間隔となるSi-Oの結合距離は162pmであることに対し、Al-Oの結合距離は172pmである。Al23により、後のイオン交換が容易になるため、応力層を短時間でより深く形成する効果がある。さらに、アルカリ金属、2価金属酸化物、B23とAl23の存在比率を好適に制御することにより、ガラス材内の非架橋酸素(NBO:Non-Bridging oxygen)の数を最小にすることができる。この点からもイオン交換は容易になる。さらに、Al23はガラスの分相を抑制しガラス材の均質性を高める。
 Alは3価であるため、Siと同じく4配位となる場合、中心のAlは負の電荷を持つ。SiO2骨格のガラス材において、Na等のカチオンは、ほぼ全て非架橋酸素と対になって存在する。しかし、Al23を含むガラス材では、Na等のカチオンはAlと対となるカチオンとして存在する。Alと結合するNaは、非架橋酸素と結合して存在するNa等と比較して、移動の制約が少ない。ゆえに、イオン交換の速度が高まると推測されている。
 Al23の配合割合が6モル%を下回る場合、相対的にアルミニウムイオンの量は低下して非架橋酸素が増加する。このためイオン交換されにくくなり、化学強化に時間を要する。また、歪点も低下するため、応力緩和も生じやすくなる。Al23の配合割合が20モル%を上回る場合、被強化ガラス材の溶融性が低下して粘性が高まってしまう。さらに、溶融点も上昇してしまうため、ガラス材の生産効率上好ましくない。そこで、Al23の配合割合は6~20モル%、好ましくは10~18モル%、さらに好ましくは13~15モル%に規定される。
 “B23”は、被強化ガラス材の溶融性を向上させ、ガラス材の結晶化を抑制する。B23はガラス材の密度、熱膨張率を低下させ、電気抵抗を上昇させる。B23はガラス材からのイオンの流出を抑制するため、耐化学性を向上することができる。このことを考慮して、B23の配合割合は少なくとも5モル%以上が必要である。しかし、B23の配合割合が30モル%を超過する場合、B23は溶融過程において揮発しやすく、実用上、揮発量の制御も容易ではない。そこで、B23の揮発量を勘案してB23の配合割合は5~30モル%、好ましくは6~20モル%、さらに好ましくは7~15モル%に規定される。
 “Na2O”は、前記のガラス材内のネットワークにおけるSiとOとの結合を切断して非架橋酸素を形成する。その結果、ガラス材の粘性を低下させる。Na2OのNa+は事後の化学強化に際し、溶融塩中のK+と交換される。Na+とK+のイオン半径の差から、被強化ガラス材の表面に応力層が形成される。Na2Oの配合割合が7モル%を下回る場合、被強化ガラス材(化学強化用ガラス組成物)に対し化学強化を行ったとしても、応力層の形成が不十分であり、目的とする応力値を得ることができない。Na2Oの配合割合が20モル%を超過する場合、熱膨張率の増加に加え、被強化ガラス材を化学強化処理した後のガラス材(化学強化ガラス材)の表面の耐化学性が悪化する。具体的には、ガラス材と空気中の水分が反応して、ブルームと称される白化現象や、やけと称されるアルカリ成分の溶出が引き起こされる。やけが生じることにより、ガラス材表面の屈折率が変化してガラス材の商品価値を大きく下げてしまう。そこで、Na2Oの配合割合は7~20モル%、好ましくは9~17モル%、さらに好ましくは11~15モル%に規定される。
 “K2O”は、イオン交換による化学強化に際し、Na+とK+とのイオンの交換を促進する。そして、応力層は、K2Oの存在により短時間でより深く形成される。しかし、K2Oの配合割合が15モル%を上回る場合、熱膨張率の増加、電気抵抗の低下を引き起こす。また、ガラス材を溶解する溶解炉のアルミナ質が浸食されやすくなる。溶解炉の耐久性と応力層形成の利点が勘案され、K2Oの配合割合は15モル%以下、好ましくは10モル%以下、さらに好ましくは6モル%以下に規定される。なお、K2Oを配合しない場合であっても、一定の耐傷性能を備える(後記実施例参照)。このことから、下限値に0モル%が含まれる。
 本発明は、主成分(A1)の元素種から把握されるようにLi(Li2Oとして)を含有しない組成である。Na2O及びK2Oのモル%の和とは、被強化ガラス材(化学強化用ガラス組成物)におけるLi2Oに依存しないアルカリ金属成分の総量の規定を意味する。アルカリ成分であるNa2O及びK2Oの役割は、主に2つある。アルカリ成分はガラス材原料を溶融する際、溶融を補助する融剤となる。アルカリ成分は溶融状態のガラス材の粘性を下げ、成形性や溶融性等を向上させる。これとは逆に、アルカリ成分であるNa2O及びK2Oに起因する影響について、例えば次の点がある。アルカリ成分はガラス材の熱膨張率を増加させる。熱膨張率が高くなる場合、成形時の熱衝撃でガラス材は割れやすくなると考えられる。また、ガラス材の電気抵抗値が低下して電流が熱に変わりにくくなるため、電気溶融を行う際のガラス材の温度上昇が進みにくくなる。
 アルカリ成分であるNa2O及びK2Oのモル%の和は、他の主成分及び補助成分との均衡、並びに、アルカリ金属成分に起因するガラス材としての性能劣化を勘案して規定される。10モル%を下回る場合、原料の溶融時に高い温度が必要となる。20モル%を超える場合、ガラス材は熱膨張率の上昇に伴って熱衝撃に弱くなる。つまり、成形時等の温度変化に晒されて割れやすくなる。そこで、Na2O及びK2Oのモル%の和は10~25モル%、さらに13~23モル%にすることが好ましく、よりいっそう好ましくは15~20モル%である。前述のNa2O、K2Oの配合割合のとおり、K2Oが無配合のときは、Na2Oのみのモル%として計算される。
 補助成分(A2)として列記されるMgO、CaO、またはZnOは、最終的にできあがるガラス材の耐水性、耐化学性を向上させる。また、ガラス材の溶解時に粘性を低下させ、成形温度帯を広げることができる。一般的に、2価の陽イオンはイオン交換を阻害する傾向にある。補助成分として用いられる2価の陽イオン成分の中で、MgOは化学強化時のイオン交換を阻害する影響が最も少ない。
 被強化ガラス材に占める補助成分(A2)全体の配合割合は、無配合(0モル%)としても被強化ガラス材は成立する。しかし、性能面から望ましくは1モル%以上の添加が必要とされる。ただし、補助成分(A2)全体の配合割合が、15モル%を超える場合、ガラス材の硬度低下(脆弱化)をもたらす。加えて、ガラス材の比重増加、失透温度の上昇も生じる。よって、上限は15モル%以下、好ましくは10モル%以下、さらには7モル%以下の配合割合に規定される。補助成分(A2)は、MgO、CaO、またはZnOの内、少なくともいずれか1種が配合されていれば良く、あるいはこれらの中の2種、3種であっても良い。その選択は所望のガラス材の設計に応じ任意である。
 補助成分(A2)については、列記の成分以外にも、SrO、BaO、TiO2、ZrO2、Nb25、P25、Cs2O、Rb2O、TeO2、BeO、GeO2、Bi23、La23、Y23、WO3、MoO3、Ag2O、またはFe23等も含めることができる。さらに、前述の主成分(A1)と補助成分(A2)に加え、F、Cl、SO3、Sb23、SnO2、あるいはCe等を清澄剤として添加してもよい。
 主成分(A1)並びに補助成分(A2)に規定する成分(酸化物)とその個々の配合割合に加えて、各成分同士の間に成立する関係によっても組成を規定することができる。具体的には、まず、前記の式(i)が規定される。各式中の酸化物の表示は、当該酸化物の配合割合のモル%による数値である。
 各構成成分(酸化物の配合割合のモル%による数値)の間で成立する関係については、前記の式(i)のとおり、被強化ガラス材(化学強化用ガラス組成物)の「B23の配合割合」(式の分母)、つまり、Al23とB23成分の構造状態を示す指標(ψ)が構築される。式(i)に含まれる元素の全てがホウ素を4配位にできるわけではないため、ψの計算には適切な補正値を採用する必要がある。そこで、発明者らは、ガン・フーシ〔Гань Фу-си〕の提案によるホウ素に対する酸化物の活動度を採用した。この指標並びにガン・フーシの提案による活動度についての出典は、「ガラスの化学(昭和49年8月20日発行)の330ページ,社団法人新日本鋳鍛造協会,著者:ア・ア・アッペン〔А.А.Аппен〕,原本出版所:《化学》出版所,レニングラード支部1970年,翻訳:有限会社日・ソ通信社翻訳部,発行所:有限会社日・ソ通信社」である。
 ここで、式(i)の分子について、(a):「Na2O、K2O、BaO」の係数「1」、(b):「CaO、SrO」の係数「0.7」、(c):「MgO、ZnO」の係数「0.3」は、(a)、(b)、(c)のそれぞれ対応する成分の活動度である。各係数は、ガン・フーシの提案による活動度に基づく。
 出典書籍中のψの計算式においては、本願の式(i)の分子部分に「CdO、PbO、Li2O」がさらに含まれる。しかし、本発明の被強化ガラス材はカドミウムや鉛等の重金属を含まず、かつ、リチウムを含有しない組成である。そこで、当初のψの計算式から前掲の式(i)のとおり、BaO、SrO、CdO、PbO、Li2Oの項を削除した。なお、式(i)の分子部分に関し、主成分(A1)のK2O、補助成分(A2)のうち、配合されない成分の項については「0」としてψは算定される。
 式(i)から算出されるψは、被強化ガラス材を組成するB23、Al23、2価金属酸化物(MeO)、及びアルカリ金属酸化物(Me’2O)の各成分のバランスを勘案する上で簡便である。さらに、ψの値を用いることにより、後述するクラック発生率との関連付けも可能である。
 より詳しくは、式(i)の分子部分において、アルカリ金属酸化物(Me’2O)の量と2価金属酸化物(MeO)の量の和から、Al23の量を引いた差が求められる。Al23と、アルカリ金属酸化物(Me’2O)及び2価金属酸化物(MeO)とが1対1(活性度の評価による)となる結合を形成する。アルカリ金属酸化物の量と2価金属酸化物の量の和から、Al23の量との差を求めることにより、ホウ素の配位数の変化に寄与できるアルカリ金属酸化物及び2価金属酸化物の量が把握可能となる。
 式(i)の分母部分に関し、B23の量で除することは、ホウ素に対するアルカリ金属酸化物及び2価金属酸化物の比率を算出するためである。「アルカリ金属酸化物(Me’2O)の量と2価金属酸化物(MeO)の量の和」を「B23の量」で除した値{(Me’2O+MeO)/B23}が1よりも大きくなる場合、ホウ素が4配位を維持する上で十分な酸素があると考えられる。前記の除した値が1よりも小さくなる場合、ホウ素は4配位を維持することができず、3配位に移行すると考えられる。以上より、ψを規定する式(i)を導くことができる。
Figure JPOXMLDOC01-appb-M000008
 このように、ガラス材の骨格におけるホウ素とアルミニウムの作用は、ガラスの密度や屈折率に大きな影響を与えるアルミノボロン効果として知られている。ψの多少によりアルミノボロン効果を容易に把握することができる。そこで、式(i)から導出されるψの値から、次のガラス構造の状態を目安として把握することができる。
  (a):1≦ψの場合、ホウ素はほとんど4配位である。一般的なガラス材と同様の密度となる。
  (b):0.3<ψ<1の場合、ホウ素に結合する酸素が不足する。このため、ホウ素は3配位を取り始める。徐々にガラス材の密度は低下する。
  (c):0<ψ<0.3の場合、ホウ素はほとんど3配位となる。さらに密度は低下する。
  (d):ψ≦0の場合、ホウ素に加えてアルミニウムに結合する酸素も不足する。そこで、Al23(アルミナ成分)が6配位を取り始める。
 ホウ素が3配位を取り始めると、前記のガラス材内のネットワークからホウ素が追い出されるため、ガラス材の密度は低下すると言われている。逆にアルミニウムが6配位を取り始めると、ガラス材の密度は急激に上昇する。
 ψの値と、耐傷性(いわゆるガラス材表面の傷に対する強さ)との関連について検討すると、実施例の知見より、応力値、応力層、及び被強化ガラス材のクラック発生率の結果値が参照される。この結果、ψを「-0.2≦ψB≦1.5の範囲」に収斂させることが望ましいと判明した。
 ψの値が-0.2以下となる場合(例えば-1.0)、被強化ガラス材のクラック発生率は上昇する。Al23の相対的な割合が高まるため、第6配位(八面体)の形態となるAl23が増え、当該ガラス材の密度が上昇すると予想される。そこで、実施例を勘案して、ψの下限値は-0.2、好ましくは、0.0、さらに好ましくは0.2である。ψの値が1.5以上となる場合(例えば2.3)であっても、被強化ガラス材のクラック発生率は上昇する。B23が第4配位(四面体)で留まるため密度増加につながる。このため、ψの上限値は1.5、好ましくは1.0、さらに好ましく0.6である。
 次に、ガラス材内の非架橋酸素の数を把握するための指標として前記の式(ii)よりβAが規定される。各式中の酸化物は、当該酸化物の配合割合のモル%による数値である。式中のψは、式(i)より算出される数値である。ここにβAの導出過程を説明する。
 ガラス材をSiO2、Al23、Na2Oの3成分系の組成と仮定した場合、Al23とNa2Oとの比率は、理論上、1対1に近づくほど、非架橋酸素の数は減少する。そこで、化学強化におけるイオン交換の速度は速まり、ガラス材表面から深い位置までイオン交換が進むことが知られている。この関係は、式(a)により示すことができる。
Figure JPOXMLDOC01-appb-M000009
 式(a)はガラス形成酸化物(NWF:Net-Work Former)がSiO2とAl23であり、ガラス修飾酸化物(NWM:Net-Work Modifier)がNa2Oのみで構成されるガラス材に適用される。次に、アルカリ金属であるK(K2O)もNa2Oと同様にガラス材を修飾すると考えられる。そこで、組成系におけるアルカリ金属成分を考慮すると、式(b)を導き出すことができる。
Figure JPOXMLDOC01-appb-M000010
 また、2価金属であるMg、Ca、またはZnについても、前記のアルカリ金属と同様にガラス材を修飾すると考えられる。本願の補助成分(A2)も勘案すると式(c)を導き出すことができる。
Figure JPOXMLDOC01-appb-M000011
 本願発明の組成系においてはB23が含まれる。B23はAl23と同様にガラス形成酸化物となる。式(c)の分子にB23を加えることができ、式(d)を導き出すことができる。
Figure JPOXMLDOC01-appb-M000012
 B23はガラス材において、3配位または4配位の両方を取り得る。そのため、図1の概念図に示すように、B23が4配位の場合、中心のBは非架橋酸素の代わりにB-NaあるいはB-Kの結合を形成する。しかし、B23が3配位の場合、中心のBは非架橋酸素の減少に寄与しない。この点を踏まえ、B23の結合状態が考慮されるため、式(i)から算出されるψの概念を適用することができる。ψが0ないし1の範囲において、B23の配位状態もψに比例して変化として仮定する。すなわち、B23の4配位の割合はψに比例する。ψはB23の係数と見なすことができる。そこで、式(a)ないし(d)に示されたβはψとともにまとめられる。こうして、式(ii)が導き出され、ガラス材内の非架橋酸素の数を把握するための指標であるβAの算出が可能となる。
Figure JPOXMLDOC01-appb-M000013
 ガラス材における化学強化し易さ、換言すると応力層の生じやすさは、非架橋酸素の数、2価のカチオンの数、B23、K2Oの数等の複合的な要因に起因すると考えられる。ただし、非架橋酸素の数を把握する上で式(ii)から算出されるβAは有効な指標となり得る。当該指標βAの値が1に近づくほど、非架橋酸素の数は少なくなると推測される。後述する実施例の結果を勘案すると、βAの値は0.68ないし1の範囲内(0.68≦βA≦1)であることが望ましく、さらには、0.75ないし1の範囲内(0.75≦βA≦1)、より好ましくは0.8ないし1の範囲内(0.8≦βA≦1)である。
 主成分(A1)及び補助成分(A2)に規定する配合割合に従い調製した被強化ガラス材の密度は、2.6g/cm3以下、さらには2.5g/cm3以下にすることができる。この密度は、既存の組成の化学強化ガラス材よりも低密度、あるいは同等または微増に留まる(前出の特許文献5、6の実施例中の密度参照)。ガラス材の密度を低下させることにより被強化ガラス材のガラス格子内の自由体積を増加させ、局所的な高密度化が可能となる。そこで、クラックの発生を抑制する効果が期待できる。ただし、密度が2.3g/cm3以下となる場合、逆にガラス材は脆弱化するため当該密度値が下限と考えられる。クラック発生の抑制と強度の均衡から、被強化ガラス材の密度は、好ましくは2.33g/cm3~2.49g/cm3、より好ましくは2.35g/cm3~2.46g/cm3、さらに好ましくは2.38g/cm3~2.46g/cm3の範囲に規定される。
 これまでに開示の成分種、ψ及びβAの範囲値、密度を考慮して得られる被強化ガラス材については、後述する実施例に開示するように、公知のビッカース圧子(vickers indenter)を用いる押し込み試験(I)が行われる。当該試験により化学強化前の被強化ガラス材のクラック発生率(crack formation probability)が評価される。押し込み試験(I)並びに後記する押し込み試験(II)は、いずれもJIS Z 2244(2009)、あるいはISO6507-1、ISO6507-4、ASTM-E-384に準拠する方法で行った。
 前記の試験法に準拠する押し込み試験(I)は、図2の圧入時の模式図参照のとおり、常温、常湿の環境下にて、4.9N(荷重500gf)の押し圧力に設定したダイヤモンド製のビッカース圧子20(先端21の角度は136°)が、10秒間、被強化ガラス材10に押し当てられて圧入される。図2(a)は圧入前、図2(b)は圧入時であり、符号12は圧痕である。その後、ビッカース圧子20は除荷され30秒以上を経過した後、図3の模式図にあるように、ビッカース圧子20により被強化ガラス材10の表面11に生じた圧痕12から発生したクラック13(ラジアルクラック)の本数Cnが数えられる。クラックは、ビッカース圧子と同時あるいは遅延して生じることもある。そこで、適度に時間を置いてクラックの発生を確認してクラックの本数を数えた。次の式(iii)に従い、クラックの本数Cnから被強化ガラス材毎のクラック発生率Ci(%)が算出される。
Figure JPOXMLDOC01-appb-M000014
 被強化ガラス材において、クラック発生率が低いほどガラス材自体の強度は高い。図3(a)のクラック13の本数は4本であり、クラック発生率Ciは100%である。対照的に、図3(b)のクラック13の本数は2本であり、クラック発生率Ciは50%である。すなわち、図3(b)の被強化ガラス材の方が、クラックの発生は少なく、より耐傷性が高い。この点を踏まえ、クラック発生率Ciは50%以下である。
 さらに、後記の実施例が参照されるように、2倍の押圧により圧入した場合であっても、クラック発生率Ciは50%以下を満たす。押し込み試験(II)も前記に準拠する方法に則って行われ、図2の圧入時の模式図が参照される。常温、常湿の環境下にて、9.8N(荷重1000gf)の押し圧力に設定したダイヤモンド製のビッカース圧子20(先端21の角度は136°である。)が、10秒間、被強化ガラス材10に押し当てられて圧入される。その後、ビッカース圧子20は除荷され30秒以上を経過した後、図3の模式図にあるように、ビッカース圧子20により被強化ガラス材10の表面11に生じた圧痕12から発生したクラック13(ラジアルクラック)の本数Cnが数えられる。クラックは、ビッカース圧子と同時あるいは遅延して生じることもある。そこで、前記試験(I)と同様に適度に時間を置いてクラックの発生を確認してクラックの本数を数えた。押し込み試験(II)におけるクラック発生率も前記の式(iii)に従い、クラックの本数Cnから被強化ガラス材毎のクラック発生率Ci(%)が算出される。このように、より荷重が増した場合であってもクラック発生率を抑えることができるため、化学強化前の被強化ガラス材における耐傷性の向上が可能である。
 ガラス材の製造工程において、搬送や加工時にガラス材は様々な物体と接触する。ガラス材が物体に接触することによりガラス材表面にクラックが発生することがある。生じたクラックの深さが化学強化処理により形成される圧縮応力層(compressive stress layer)の深さよりも深い場合、クラックが圧縮応力層内に収まっているガラス材料に比べて極端な強度低下が起こり得る。特に、近年大型化が進むディスプレイパネル用の平板状のガラス材の用途においては顕著に前述の影響を受けると考えられる。
 従来、ガラス材の評価にあっては、最終的に化学強化された後のガラス材の強度(例えばビッカース硬度、ヤング率等)により判断されることが大半であった。つまり、化学強化をする前のガラス材(化学強化前のガラス組成物)の強度をいかに調整するのかについてほとんど知見は得られていなかった。本発明においては、構成成分の選択、配合の見直し等を踏まえ、化学強化に先だって被強化ガラス材(化学強化用ガラス組成物)の強度維持を図ることに主眼がある。すなわち、化学強化前のガラス材に生じるクラックを抑えることにより、化学強化により形成される圧縮応力層を超える深さのクラックの存在を減少することができ、化学強化後のガラス材の強度低下を抑制できる。
 これまでに述べた被強化ガラス材(化学強化用ガラス組成物)を製造するに際し、公知のガラス製造方法を適用することができ、特段、製法は限定されない。例えば、プレス法、ブロー法、ロールアウト法、フュージョン法、ダウンドロー法、フロート法等である。最終的にできあがるガラス製品の形状、用途等に応じて最適な製法が選択される。その後、被強化ガラス材(化学強化用ガラス組成物)は、イオン交換法により化学強化され、化学強化ガラス材となる。化学強化には公知の手法が適用され、特段限定されない。
 化学強化とは、前記の化学強化用ガラス組成物をK+が存在する溶融塩に浸漬し、当該ガラス材表面のNa+をK+に置換する手法である。カリウム源となる溶融塩として、主にKNO3、K2SO4、K2CO3等が使用され、溶融塩の安定化のためKCl等も添加されることがある。K+のイオン半径はNa+よりも大きい。そのため、ガラス材表面においてNa+からK+への置換が進むにつれて、ガラス格子内に圧縮応力が生じ、ガラス材表面に応力層(圧縮応力層)が発達する。化学強化により生じさせる応力層は、最終的にできあがる製品の用途に依存する。必要とされる応力層の厚さに幅はあるものの、少なくとも20μm以上の応力層の厚さが必要とされる。応力層の発達は、化学強化用ガラス組成物の組成、溶融塩の温度、浸漬時間を調整して制御される。
 化学強化用ガラス組成物に対して行われる化学強化の結果得ることができる応力層の発達について、少なくとも20μm以上、好ましくは30μm以上、より好ましくは35μm以上の厚さとなる応力層(圧縮応力層)の形成が望ましい。そこで、ガラス材組成は、前記の十分な厚さの応力層形成となるべく調整される。
 イオン交換法にあっては、次の「イオン交換法(III)」の条件を例示できる。すなわち、強化対象である化学強化用ガラス組成物は後出の強化温度より約20℃低い温度に予熱された後、400℃ないし500℃の強化温度に維持されているKNO3の溶融塩内に浸漬される。化学強化用ガラス組成物は2時間ないし8時間、好ましくは2時間ないし6時間の浸漬を終えた後、前記の溶融塩から取り出され、室温下の空気中で放冷される。余分な塩は水洗により洗浄され、ガラス材は乾燥される。こうして化学強化ガラス材は完成する。
 従前のソーダライムガラスの化学強化用ガラス組成物の場合、例えば、前記のイオン交換法(III)に規定する化学強化条件の下で30μmの応力層を形成するためには、24時間以上を要していた。これに対し、本発明の組成に基づく被強化ガラス材(化学強化用ガラス組成物)は、例示のイオン交換法に規定する化学強化条件(III)の下で、12時間以内で30μmの応力層を形成することができる。化学強化条件が同一でありながら処理に要する時間が半減できる。そのため、より深い応力層の形成も容易であり、生産性が向上し、設備償却の面で極めて有利である。
 化学強化された化学強化ガラス材において、非破壊的な測定により、圧縮応力値(compressive stress value)(MPa)及び前出の応力層(μm)は計測される。例えば、有限会社折原製作所製の表面応力計が用いられ、視野内の干渉縞を読み取ることにより、それぞれ計算される。化学強化ガラス材に必要とされる圧縮応力値は、600MPa以上であり、より望ましくは800MPa以上、さらに望ましくは900MPa以上である。
 圧縮応力値が大きくなるに伴い化学強化ガラス材表面の耐傷性も向上する。しかし、圧縮応力値が極端に大きくなる場合、化学強化により生じる応力層の形成に時間を要する。あるいは同等の時間では応力層の形成が不十分となるおそれがある。そのため、圧縮応力値の上限は1300MPaであると考えられる。
 本発明に規定する成分系を満たす化学強化用ガラス組成物が化学強化されてなる化学強化ガラス材の用途は、特段限定されない。高い機械的強度を有することから、落下による衝撃や、他の物質との接触が予想される箇所への使用に好適である。
 具体的には、携帯電話機(スマートフォン等の多機能情報端末を含む。)、PHS、PDA、タブレット型端末、ノート型パーソナルコンピューター、ゲーム機、携帯音楽・動画プレーヤー、電子ブック、電子端末、時計、カメラ、GPS等のディスプレイ部分用のカバーガラス、あるいは、これらの機器のタッチパネル操作用モニターのカバーガラス、電子レンジ、オーブントースター等の調理器のカバーガラス、電磁調理器等のトッププレート、メーター、ゲージ等の計器類のカバーガラス、コピー機、スキャナ等の読み取り部分用のガラス板等として例示される機械、機器類の保護用途がある。
 車両、船舶、航空機等の窓用ガラス、家庭用または産業用の照明機器、信号、誘導灯、電光掲示板のカバーガラス、ショーケース、防弾ガラス等の用途がある。また、太陽電池保護用のカバーガラス、太陽電池の発電効率を高めるための集光用のガラス材の用途がある。
 各種の鏡面用のガラス、さらには、HDD等の情報記憶媒体の基盤、CD、DVD、ブルーレイディスク等の情報記録媒体の基板としての用途がある。
 水槽、皿やコップ等の食器、びん、まな板等の各種の調理器具、食器棚、冷蔵庫の棚板、加えて、壁、屋根、仕切り等の建材としての用途がある。
 これらの例示の用途に加え、化学強化処理を終えて製造される化学強化ガラス材は、液晶、プラズマ、有機EL等の各種画像表示装置に組み込まれるディスプレイ用ガラス材として最適である。本願発明が満たし得るクラックの抑制、化学強化後の応力層の特性を勘案すると、広い面積を有するガラス板の製造が適する。近年の画像表示装置の大画面化に伴い、均質な強度を有する平板状のガラス材の需要はますます高まっている。そのため、製造段階における強度維持、さらには、出荷後の耐久性のさらなる向上に大きく貢献できる。
  [化学強化用ガラス組成物の作成]
 表1ないし表9中に示す主成分及び補助成分の組成(モル%)に従い、試作例1ないし4、試作例11ないし50、試作例61ないし81の化学強化用ガラス組成物(被強化ガラス材)を作成した。また、対照例として、アルミノシリケートガラス(比較組成101)、ソーダライムガラス(比較組成102)、リチウムを含有するガラス(比較組成103)、圧縮応力値を抑えた組成のアルミノシリケートガラス(比較組成104)も作成した。
 表中に記載の原料を各試作例及び対照例の組成に従って秤量、調合後、電気炉により1350℃まで加熱して溶融した。その後水中に投入して破砕し粗原料とした。水砕により得た粗原料を白金製の小皿に移し、電気炉にて1350℃に加熱して溶融の後、取り出して徐冷した。徐冷後に生じたガラス材の表面を酸化セリウム研磨剤により研磨し、平滑な鏡面状となる試作例及び対照例の化学強化用ガラス組成物を作成した。
  [イオン交換法による化学強化]
 各試作例及び対照例の化学強化用ガラス組成物(被強化ガラス材)を電気炉により390℃に加熱し、410℃のKNO3溶融液(溶融塩)中に6時間浸漬した。溶融液から化学強化用ガラス組成物を引き上げ、空気中にて放冷した。室温まで冷却した後、水洗により塩を十分洗浄し、乾燥した。
  [物性の測定]
 試作例並びに対照例の化学強化用ガラス組成物(化学強化する前の前駆体となる被強化ガラス材)、及び試作例並びに対照例の化学強化用ガラス組成物を化学強化した化学強化ガラス材について、以下の方法で測定した。
   〔密度の測定〕
 密度(g/cm3)は、公知のアルキメデス法に従い測定した。
   〔クラック発生率の算出〕
 クラック発生率の測定には、JIS-Z-2244(2009)に規定する試験法に準拠する株式会社ミツトヨ製のビッカース硬度計(MVK-H1)を用いた。なお、ISO6507-1、ISO6507-4、ASTM-E-384も同様の規定である。
 常温、常湿環境下(この場合、室温25℃、湿度50%RH(相対湿度)に維持した。)に計測対象の試作例並びに対照例の化学強化用ガラス組成物を静置し、温度を順応させた後、化学強化用ガラス組成物に対し、4.9N(荷重500gf)の押し圧力に設定したダイヤモンド製のビッカース圧子を10秒間、被強化ガラス材に押し当てて圧入した(前述の押し込み試験(I)に相当)。ビッカース圧子を除荷し、30秒以上を経過した後、ビッカース圧子により被強化ガラス材の表面に生じた圧痕から発生したクラックの本数を数えた。クラック発生率の算出は、前記の式(iii)のとおりである(表中の4.9N圧入クラック発生率(%)参照)。また、同一条件下において、ビッカース圧子の圧入時の荷重のみを9.8N(荷重1000gf)に変更(前述の押し込み試験(II)に相当)し、ビッカース圧子により被強化ガラス材の表面に生じた圧痕から発生したクラックの本数を数えた(表中の9.8N圧入クラック発生率(%)参照)。ひとつの試作例当たり10箇所でクラック発生率を求め、この10箇所の平均を当該試作例のクラック発生率とした。
   〔ビッカース硬度(Hv)の測定〕
 試作例並びに対照例の化学強化後の化学強化ガラス材についてのビッカース硬度の測定は、クラック発生率の算出の場合と同様に、JIS-Z-2244(2009)(ISO6507-1、ISO6507-4、ASTM-E-384)に規定する試験法に準拠し、前出の株式会社ミツトヨ製のビッカース硬度計(MVK-H1)を用い、常温、常湿環境下(この場合、室温25℃、湿度50%RHに維持した。)において測定した。ひとつの試作例当たり10箇所で測定し、その平均を当該試作例のビッカース硬度とした。また、ビッカース圧子の圧入荷重を2.9N、10秒間の圧入とした。
   〔圧縮応力値、圧縮応力層の測定〕
 試作例並びに対照例の化学強化後の化学強化ガラス材についての圧縮応力値及び圧縮応力層(応力層)の測定は、常温、常湿環境下(この場合、室温25℃、湿度50%RH(相対湿度)に維持した。)において、有限会社折原製作所製「FSM-600」を用いて行った。測定毎のばらつきを考慮して、ひとつの試作例当たり10箇所で測定し、その平均を求めた。
  [評価、判定]
   〔溶融性の評価〕
 溶融性の評価は、1350℃まで加熱した際の流動性の良否とした。表中に記載の原料を各試作例及び対照例の組成に従って秤量、調合し、1350℃まで加熱した際に完全に溶融し、かつ、溶融後にるつぼから非常に簡単に流しだすことができた例(サンプル)を“◎”とした。同様に、容易に流しだすことができた例を“○”とし、若干粘性を帯びてはいるものの流すことができた例を“△”とし、1350℃では溶融できなかった例を“×”とした。
   〔良否評価〕
 試作例並びに対照例の化学強化用ガラス組成物(被強化ガラス材)及び化学強化後の化学強化ガラス材について、これまでに述べた各種物性の測定結果を重視し、溶融性を参考にしながら当業者における実需用の観点を加味し総合的に良否を評価した。評価に際し、優を“A”、良を“B”、不可を“C”とする3段階に区分した。各表中、クラック発生率の「-」の表記は、クラックの本数を数えることができないほど表面に亀裂が生じた例である。その他の測定項目の「-」の表記はガラス化せず、もしくは測定できなかった例である。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
  [結果、考察]
   〔主成分の組成割合〕
 試作例1ないし4、試作例11ないし50、試作例61ないし81の化学強化用ガラス組成物(被強化ガラス材)の良否評価結果を踏まえ、良である“B”の試作例、さらには優である“A”の試作例に着目した。そして、主成分(A1)のそれぞれの成分の配合割合、好ましい配合割合、さらに好ましい配合割合を抽出した。結果は次のとおりである。
   〔SiO2の配合割合〕
 SiO2については、試作例44より35モル%、試作例34より65モル%である。そこで、35~65モル%の範囲を導き出すことができる。好ましくは、試作例23より45モル%、試作例46より63モル%であり、45~63モル%の範囲を導き出すことができる。さらに好ましくは、試作例27より48モル%、試作例45より60モル%であり、48~60モル%の範囲を導き出すことができる。
   〔Al23の配合割合〕
 Al23については、試作例11より6モル%、試作例21より20モル%である。そこで、6~20モル%の範囲を導き出すことができる。好ましくは、試作例12より10モル%、試作例43より18モル%であり、10~18モル%の範囲を導き出すことができる。さらに好ましくは、試作例41より13モル%、その他多くの“A”と“B”の試作例より15モル%であり、13~15モル%の範囲を導き出すことができる。
   〔B23の配合割合〕
 B23については、試作例46より5モル%、試作例44より30モル%である。そこで、5~30モル%の範囲を導き出すことができる。好ましくは、試作例47より6モル%、試作例37より20モル%であり、6~20モル%の範囲を導き出すことができる。さらに好ましくは、試作例36より7モル%、試作例42より15モル%であり、7~15モル%の範囲を導き出すことができる。
   〔Na2Oの配合割合〕
 Na2Oについては、試作例39より7モル%、試作例38より20モル%である。そこで、7~20モル%の範囲を導き出すことができる。好ましくは、試作例40より9モル%、試作例20より17モル%であり、9~17モル%の範囲を導き出すことができる。さらに好ましくは、試作例42より11モル%、試作例16より15モル%であり、11~15モル%の範囲を導き出すことができる。
   〔K2Oの配合割合〕
 K2Oは、試作例22より無配合(0モル%)とすることができる。また、試作例40より15モル%であるから、0~15モル%の範囲を導き出すことができる。好ましくは、試作例23より10モル%であるから、0~10モル%の範囲を導き出すことができる。さらに好ましくは、試作例2より6モル%であるから0~6モル%の範囲を導き出すことができる。
   〔Me’2Oについて〕
 Na2O及びK2Oのモル%の和(Me’2O)については原料の溶融性を加味し、試作例39より10モル%、試作例31より25モル%である。そこで、10~25モル%の範囲を導き出すことができる。好ましくは、試作例22より13モル%、試作例23より23モル%であるから、13~23モル%の範囲を導き出すことができる。さらに好ましくは、試作例36より15モル%、試作例2より20モル%であるから、15~20モル%の範囲を導き出すことができる。
   〔MeOについて〕
 補助成分(A2)の組成(MeO)については全く含有しない試作例31であっても良(B)の評価である。しかしながら、最終的にできあがるガラス材の耐水性、耐化学性の向上から、1モル%以上の配合を必要と考える。上限については、主成分との成分バランス、イオン交換の効率面から15モル%以下(試作例48)、好ましくは10モル%以下(試作例19)、さらに好ましくは7モル%以下(試作例27)である。
   〔ψ及びβAの数値範囲〕
 “ψ”に関し、良否評価結果における優(A)、良(B)の結果を踏まえ、下限は試作例21より-0.2、好ましくは試作例22より0.0、さらに好ましくは試作例1より0.2であることが望ましいと言える。ψの下限値-0.2以下についてはAl23が増えすぎることから作成上の限界である。ψの上限について、試作例67の値が1.6で不可(C)となることから上限値は1.5である。さらに試作例11を考慮して上限値は1.0、試作例2より上限値は0.6である。
 “βA”に関し、試作例48のβAは0.68であるため、βAの下限値を0.68以上とした。また、試作例25のβAは0.787であるため、好ましくは0.75以上である。さらには試作例29のβAは0.819であるため、より好ましくは0.8以上である。βAの好ましい上限は試作例31より1.0とした。さらに、βAの好ましい上限は、試作例1ないし4、試作例11ないし50(試作例31、35、38、40、44、49、及び50を除く)より0.9以下とすることができる。
   〔被強化ガラス材の密度〕
 不可(C)の試作例については密度が2.50g/cm3に近づく例が多くなる。一方、良否評価が優(A)、良(B)の試作例については、いずれも2.50g/cm3以下を満たす。良(B)の試作例のうち、試作例44が最低値であるため密度の下限は2.33g/cm3であり、試作例39が最高値であるため密度の上限は2.49g/cm3である。より好ましくは、下限となる試作例41と上限となる試作例26等より2.35g/cm3~2.46g/cm3となり、さらに好ましくは、下限となる試作例22も加味されるため、2.38g/cm3~2.46g/cm3の範囲となる。
   〔被強化ガラス材のクラック発生率〕
 良否評価において優(A)、良(B)の試作例は、4.9N(荷重500gf)のビッカース圧子の圧入においても、9.8N(荷重1000gf)のビッカース圧子の圧入においても、クラック発生率は50%を下回る。この点は対照例となる比較組成101ないし104より大きく改善した。特に優(A)の評価、良(B)の一部の試作例では4.9Nの圧入時のクラック発生率は0%であり、しかも、9.8Nの圧入時のクラック発生率も25%以下としていることから、際だった耐傷性の向上を認めることができる。
 クラック発生の様子については図示の写真を参照することができる。いずれも化学強化用ガラス組成物(被強化ガラス材)に対し、9.8N、10秒間のビッカース圧子の圧入により生じたビッカース圧痕の拡大写真である。図4(a)は試作例1、図4(b)は試作例4であり、図5(a)はアルミノシリケートガラス(比較組成101)、図5(b)はソーダライムガラス(比較組成102)であり、図6(a)は試作例63、図6(b)はリチウムを含有するガラス(比較組成103)である。
 試作例1,4には圧痕は残るもののクラックは生じていない。アルミノシリケートガラス、ソーダライムガラス、リチウム含有ガラス、良否評価結果が不可(C)の試作例63にあっては、いずれも大小の差はあるもののクラックが生じた。そこで、本発明の組成割合の配合は、ガラス材表面での耐傷性を獲得することができると考えられる。
   〔圧縮応力層、圧縮応力値〕
 化学強化後の化学強化ガラス材において、圧縮応力層の形成を重視すると圧縮応力値は低下する傾向にあり、また、圧縮応力値を重視すると圧縮応力層の形成は低下する傾向にある。例えば、試作例68のように応力値が高い割に応力層は薄い。深い圧縮応力層の形成と高い圧縮応力値は相反する性質であるため、その中で両値の均衡のとれた試作例を勘案することも加えて試作例の良否を評価した。そこで、圧縮応力層については、試作例11,22等より少なくとも20μm以上を必須とした。望ましくは、試作例16,20等より30μm以上、さらには試作例3,4等より35μm以上である。圧縮応力値について、良(B)と不可(C)の試作例の境界から600MPa以上と導いた。特に良(B)の試作例の大半の値より800MPa以上、優(A)の試作例3,4等より900MPa以上である。優(A)や良(B)の試作例の圧縮応力層及び圧縮応力値は、比較組成のガラス材よりも総じて良好な数値を示した。
  [強度の測定並びにガラス組成による比較]
 発明者らは、試作例の化学強化用ガラス組成物(被強化ガラス材)の具体的な強度を既存のガラス材とともに測定し評価した。評価に際し、前述の組成、並びにクラック発生率、圧縮応力値や圧縮応力層の厚さ(化学強化性能)、溶融性等の条件を満たす好例な化学強化用ガラス組成物(被強化ガラス材)として試作例4を選択した。
 測定に使用した化学強化前のガラス材の試験片は、当初50mm×50mm×1.5mm(厚さ)であった。この板状体を複数回研磨することにより42.4mm×42.4mm×0.7mm(厚さ)とした。同様に、124mm×66mm×1.5mm(厚さ)の試験片から複数回の研磨を行い、116.1mm×58.2mm×0.7mm(厚さ)とした。
   〔4点支持曲げ試験〕
 4点支持曲げ試験は、JIS R 1601(2008)(対応規格;ISO1470:2000,ASTM C158-2007)に基づいて行った。ただし、試験片については、前記のJIS規格に記載の角柱状(幅4mm×厚さ3mm)としてではなく、板状(幅42.4mm×42.4mm×厚さ0.7mm)に変更した。試作例4、化学強化時間を変えて強化したアルミノシリケートガラスの2種類の比較組成101(101-1と101-2)、そしてソーダライムガラスの比較組成102の計4種類について、化学強化後、4点支持曲げ試験を行った。1種の例につき40個の試験片を用意し、最小値と最大値を除く38個により平均を求めた。4種類の試験結果は、図7の4点支持曲げ強度(MPa)と破壊確率(%)のワイブルプロットの対数グラフとなった。
 試作例4、比較組成101-2、比較組成102は、電気炉により390℃に加熱し、410℃のKNO3溶融液(溶融塩)中に8時間浸漬した。溶融液から各試験片を引き上げ、空気中にて放冷した。室温まで冷却した後、水洗により塩を十分洗浄し、乾燥した。また、比較組成101-1は、電気炉により390℃に加熱し、410℃のKNO3溶融液(溶融塩)中に4時間浸漬した。溶融液から試験片を引き上げ、空気中にて放冷した。室温まで冷却した後、水洗により塩を十分洗浄し、乾燥した。つまり、比較組成101-1の化学強化時間は101-2の半分である。
 4点支持曲げ試験の評価とともに、式(iv)に基づいて試作例4を含む4種類のガラス材試験片について中心応力値(CT:Center Tension)(MPa)を求めた。同式中、DOL(Depth of Layer)は圧縮応力層の厚さ(μm)、CS(Compressive Stress)は圧縮応力値(MPa)、thicknessはガラス材試験片の厚さ(μm)である。中心応力(CT)等の結果は表10である。あわせて、試作例4を含む4種類のガラス材について厚さを薄くした板状の試験片(幅42.4mm×42.4mm×厚さ0.5mm)と(幅42.4mm×42.4mm×厚さ0.3mm)も作成し、中心応力値を測定して表10に記した。なお、4種類のガラス材試験片のDOLも図7の対数グラフに凡例として付した。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-T000025
 図7の4点支持曲げ試験及び表10の中心応力の結果から、ソーダライムガラスの比較組成102の圧縮応力層は浅く、圧縮応力値も小さい。また、比較組成102の強度は全体にばらつきが大きく強度の平均値も低い値となった。他の3種類と比較してグラフの傾斜(係数参照)が最も緩いことから判断される。また、アルミノシリケートガラスの比較組成101-1においても強度のばらつきが大きい。
 次に、本発明の条件を充足する試作例4の場合、比較組成102や比較組成101-1よりも強度のばらつきが少ない。特に、比較組成101-1と同程度の圧縮応力層としても、強度のばらつきが少なくなることを明らかにした。従って、試作例4をはじめとする本発明の条件を充足する組成系の化学強化用ガラス組成物(被強化ガラス材)の場合、40μmの圧縮応力層の形成により、化学強化前に生じたクラックに起因する強度低下の抑制に十分な効果を上げることが予想できる。
 比較組成101-2の圧縮応力層は最も厚く、しかも強度のばらつきも最も小さい。しかしながら、比較組成101-2のように圧縮応力層を深く形成した板厚の薄いガラス板の場合、圧縮応力層や圧縮応力値の増加に伴いガラス材内部の引っ張り応力、つまり中心応力値も増加する。表10の中心応力値が参照される。一般に、中心応力値の高いガラス材は、損傷時に破片が激しく飛散しやすくなる傾向にある。携帯電話機のタッチパネル式のディスプレイ等に使用される強化ガラス材は、多くの場合1mm以下の板厚である。ガラス材の用途並びに板厚を考慮した場合、中心応力値をより低く抑える必要がある。つまり、中心応力値を抑制しつつ、ガラス材の強度を維持することが特に重要である。
 この4点支持曲げ試験の結果と中心応力値との関係を勘案した場合、試作例4は、強度のばらつきを少なくでき、かつ中心応力値も抑制できた。このため、試作例4をはじめとする本発明の条件を充足する組成系の化学強化用ガラス組成物(被強化ガラス材)は、薄板状のガラス材として非常に有望である。
   〔加傷後に化学強化した試験片の4点支持曲げ強度〕
 発明者らは、化学強化を行う前にガラス材表面に生じた傷が化学強化後に与える影響を調査した。試作例4、比較組成101、比較組成102の3種類に対し、前出の〔クラック発生率の算出〕と同様の条件下、常温、常湿環境下(この場合、室温25℃、湿度50%RH(相対湿度)に維持した。)に計測対象の試作例並びに比較組成のガラス材の試験片を静置し、温度を順応させた後、各試験片に対し、4.9N(荷重500gf)の押し圧力に設定したダイヤモンド製のビッカース圧子を10秒間、押し当てて圧入した。また、同一条件下、各試験片に対し、9.8N(荷重1000gf)の押し圧力に設定したダイヤモンド製のビッカース圧子を10秒間、押し当てて圧入した。
 試作例4、比較組成101の一方(101-2)、比較組成102について、前記4点支持曲げ試験と同様に、410℃のKNO3溶融液(溶融塩)中に8時間浸漬した。また、比較組成101の他方(101-1)も410℃のKNO3溶融液(溶融塩)中に4時間浸漬した。その他の条件も同一である。
 ビッカース圧子による圧入、化学強化を終えた各試験片について、圧痕を下向きして前記の4点支持曲げ試験(前記の方法に準拠)を行い、0N(押圧なし)、4.9N、9.8Nの押し圧力の各試験片の強度を評価した。評価に際し1種類の例について試験片を20個用意した。1回の押し圧力について最小値と最大値を除く18個の4点支持曲げ強度とその平均を求めた。各種類についての個々の試験片について、各押し圧力における4点支持曲げ強度のプロットの結果は図8のグラフとなった。試験片の大きさは、幅42.4mm×42.4mm×厚さ0.7mmである。
 試作例4(グラフ中の実線表記)は水平線となった。試作例4は押し圧力の大小にかかわらず一定の4点支持曲げ強度を示した(強度低下が生じなかった)。これに対し、比較組成101-1(中破線)、比較組成101-2(細破線)、及び比較組成102(一点鎖線)は、いずれも押し圧力の増加に伴い強度が低下した。従って、試作例4は加傷に耐性あるガラス材の組成である。
 この結果より、試作例4をはじめとする本発明の条件を充足する組成系の化学強化用ガラス組成物(被強化ガラス材)は、実際のガラス製造後の工程、その後のハンドリング(取り扱い)に際し、物体と接触してもクラックが生じにくいといえる。それゆえ、本発明の組成系の化学強化用ガラス組成物(被強化ガラス材)は、中心応力値を上げすぎずに適切な圧縮応力層や圧縮応力値を導入することができるため、高い強度信頼性を具備することが推測できる。
   〔比較組成104との比較〕
 比較組成101よりも圧縮応力層や圧縮応力値を抑えた組成として比較組成104を選択した。比較組成104との比較に際し、116.1mm×58.2mm×0.7mmの試験片を用いて強度評価を行った。比較組成104について、前記4点支持曲げ試験と同様に、410℃のKNO3溶融液(溶融塩)中に8時間浸漬し、その他の条件も同一にして化学強化を行った。結果、比較組成104の試験片の圧縮応力層は50μmであった。試作例4と比較組成104について、化学強化後、4点支持曲げ試験(前記の方法に準拠)を行った。1種の例につき40個の試験片を用意し、最小値と最大値を除く38個により平均を求めた。試験結果は、図9の4点支持曲げ強度(MPa)と破壊確率(%)のワイブルプロットの対数グラフとなった。図9のグラフより、試作例4と比較組成104は、双方とも同程度の強度のばらつきとなった。
   〔同心円曲げ試験,落球試験〕
 試作例4と比較組成104の4点支持曲げ試験に加え、ガラス材の面強度を評価するべく同心円曲げ試験及び落球試験も取り入れた。同心円曲げ試験は、ASTM C1499-2005(ISO/DIS 1288-2,5)に準拠した。なお、今回の試験においては、摩擦低減のためのカーボンホイールやフッ素樹脂テープを使用していない。落球試験は、JIS R 3206(2003)に基づいて行った。ただし、鋼球の重量を130gとした。試験片の直上10cmから徐徐に高さを増して鋼球を落下し、試験片が破壊するまで繰り返し、試験片が破壊した時点の高さを記録した。そのため、グラフ中の100cmとは当初位置から90cm増した高さ位置からの落下による非破壊を意味する。試作例4及び比較組成104の各試験片について、化学強化後、同心円曲げ試験、落球試験を行った。同心円曲げ試験は、1種の例につき40個の試験片を用意し、最小値と最大値を除く38個により平均を求めた。その試験結果は、図10の同心円曲げ荷重(N)と破壊確率(%)のワイブルプロットの対数グラフである。落球試験については、1種の例につき30個の試験片を用意し、落球高さ毎に亀裂が生じた試験片を数えた(度数)。落球試験の結果は図11の上段及び下段の棒グラフである。両試験はいずれもガラス材の面強度を評価する試験である。
 図10の同心円曲げ試験の結果より、試作例4は比較組成104よりも強度のばらつきが少ないことが判明した。次に、図11の落球試験の結果より、試作例4は比較組成104よりも落球高さの分布が狭いといえる。試作例4と比較組成104はともに同様の工程、処理を経ている。しかしながら、試作例4は比較組成104よりも強度のばらつきが少ない。このことから、試作例4には深いクラックが少ないことが示唆される。比較組成104の残存クラックが多かったことに起因して、ガラス材の面強度を下げる結果となったと推測できる。
 従って、試作例4をはじめとする本発明の条件を充足する組成系の化学強化用ガラス組成物(被強化ガラス材)は、既存のアルミノシリケートガラスにおいて圧縮応力層を同程度の深さとしたガラス材に対し、強度安定性が高いという有力な知見を得た。
  [まとめ]
 実施例における試作例はアルミノボロシリケートガラス(アルミノホウケイ酸塩ガラス)であるため、比較組成のアルミノシリケートガラスよりもガラスの溶融温度を下げることができた。また、各比較組成との対比から、クラック発生率が低く、圧縮応力層及び圧縮応力値も向上していることが明らかである。この点を踏まえると、Liの配合を回避することによりガラス材の組成から原材料費を抑えるとともに、製造工程中の経費節減等も可能となる。これらの特性により、耐傷性を備えたガラス材が求められる分野に好適である。加えて、面積が大きく平板状の強化ガラス材の需要を想定すると、クラックの残存が少ない本発明の化学強化用ガラス組成物は、従来のガラス材より強度安定性に優れた強化ガラス材として提供することが可能である。
 また、4点支持曲げ試験や同心円曲げ試験等の材料力学的な見知からの測定結果からも明らかであるように、試作例4の本発明の条件を充足する組成系の化学強化用ガラス組成物(被強化ガラス材)は、化学強化の前段階のクラック発生を抑制し、既存のアルミノシリケートガラスでは成し得なかった中心応力値の抑制と、ガラス材自体の強度維持の両立を可能とした。特に、本発明の条件を充足する組成系の化学強化用ガラス組成物(被強化ガラス材)は、薄板状のガラス材として用いる分野に非常に有望である。なお、試作例4以外の本発明の条件を充足する組成系の化学強化用ガラス組成物(被強化ガラス材)についても同様に既存のガラス材よりも優れた物性、性能を示すことが予想される。むろん、本発明の条件を充足する組成系を板厚の厚いガラス材の用途に適用するとしても、当然に良好な性能を得ることが期待できる。
 本発明の化学強化用ガラス組成物は、化学強化される前のガラス材であり強化前の耐傷性を向上できるようになるため、強化前の工程中の加傷に対して有効である。また、本発明の化学強化ガラス材は、加工前の傷に起因する強化後の強度のばらつきを少なくすることができる。そのため、携帯用の小型端末ディスプレイ用途や面積が大きく平板状のディスプレイパネル用のガラス材等として好適である。
  10 被強化ガラス材
  12 圧痕
  13 クラック
  20 ビッカース圧子

Claims (8)

  1.  イオン交換法により化学強化される被強化ガラス材であって、
     前記被強化ガラス材は、該被強化ガラス材全体において、
     SiO2を35~65モル%と、
     Al23を6~20モル%と、
     B23を5~30モル%と、
     Na2Oを7~20モル%と、
     K2Oを0~15モル%を含有し、
     かつ、前記Na2O及び前記K2Oのモル%の和が10~25モル%であることを満たす主成分(A1)と、
     MgO、CaO、またはZnOのいずれか1種以上を前記被強化ガラス材全体において1~15モル%含有することを満たす当該被強化ガラス材の補助成分(A2)とを含んでなる
     ことを特徴とする化学強化用ガラス組成物。
  2.  下記(i)式において算出されるψが-0.2≦ψ≦1.5を満たす範囲内にあり、かつ、下記(ii)式において算出されるβAが0.68≦βA≦1.0を満たす範囲内にある請求項1に記載の化学強化用ガラス組成物。
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-M000002
     ((i)式並びに(ii)式におけるNa2O、K2O、MgO、CaO、ZnO、B23、及びAl23は、当該酸化物の配合割合のモル%による数値を表す。)
  3.  前記被強化ガラス材の密度が、2.33g/cm3~2.49g/cm3を満たす請求項1に記載の化学強化用ガラス組成物。
  4.  前記被強化ガラス材に対し下記の押し込み試験(I)を行った際、前記被強化ガラス材表面に生じたビッカース圧痕から発生する下記(iii)式のクラック発生率(Ci)が50%以下である請求項1に記載の化学強化用ガラス組成物。
    (押し込み試験(I):常温、常湿の環境下、被強化ガラス材に対し、荷重4.9Nに設定したビッカース圧子を10秒間圧入し、前記ビッカース圧子を除荷して30秒経過の後、前記ビッカース圧子によるビッカース圧痕から発生するクラックの数を数える。)
    Figure JPOXMLDOC01-appb-M000003
  5.  前記被強化ガラス材に対し下記の押し込み試験(II)を行った際、前記被強化ガラス材表面に生じたビッカース圧痕から発生する下記(iii)式のクラック発生率(Ci)が50%以下である請求項1に記載の化学強化用ガラス組成物。
    (押し込み試験(II):常温、常湿の環境下、被強化ガラス材に対し、荷重9.8Nに設定したビッカース圧子を10秒間圧入し、前記ビッカース圧子を除荷して30秒経過の後、前記ビッカース圧子によるビッカース圧痕から発生するクラックの数を数える。)
    Figure JPOXMLDOC01-appb-M000004
  6.  請求項1に記載の化学強化用ガラス組成物をイオン交換法により化学強化してなることを特徴とする化学強化ガラス材。
  7.  請求項1に記載の化学強化用ガラス組成物をイオン交換法により化学強化してなる化学強化ガラス材であって、当該化学強化ガラス材が20μm以上の応力層を有することを特徴とする化学強化ガラス材。
  8.  前記化学強化ガラス材が、600MPa以上の圧縮応力値を示す請求項7に記載の化学強化ガラス材。
PCT/JP2011/053000 2010-03-19 2011-02-14 化学強化用ガラス組成物及び化学強化ガラス材 WO2011114821A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010064501 2010-03-19
JP2010-064501 2010-03-19
JP2011007749A JP5683971B2 (ja) 2010-03-19 2011-01-18 化学強化用ガラス組成物及び化学強化ガラス材
JP2011-007749 2011-01-18

Publications (1)

Publication Number Publication Date
WO2011114821A1 true WO2011114821A1 (ja) 2011-09-22

Family

ID=44648928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053000 WO2011114821A1 (ja) 2010-03-19 2011-02-14 化学強化用ガラス組成物及び化学強化ガラス材

Country Status (2)

Country Link
JP (1) JP5683971B2 (ja)
WO (1) WO2011114821A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110396A (ja) * 2011-10-27 2013-06-06 Nippon Electric Glass Co Ltd 集光型太陽光発電装置用光学素子、その製造方法および集光型太陽光発電装置
WO2014115837A1 (ja) * 2013-01-24 2014-07-31 旭硝子株式会社 太陽電池用カバーガラスおよび太陽電池モジュール
US20140227523A1 (en) * 2012-05-31 2014-08-14 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
JP2015512853A (ja) * 2012-02-29 2015-04-30 コーニング インコーポレイテッド 容器健全性を確保するガラス包装
WO2015038841A3 (en) * 2013-09-13 2015-05-14 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
CN104968626A (zh) * 2012-11-30 2015-10-07 康宁股份有限公司 具有抗脱层性与改善的强度的玻璃容器
WO2015178175A1 (ja) * 2014-05-20 2015-11-26 日本電気硝子株式会社 強化ガラス板及びその製造方法
WO2016170931A1 (ja) * 2015-04-23 2016-10-27 日本電気硝子株式会社 強化ガラス
JP2017520496A (ja) * 2014-05-02 2017-07-27 コーニング インコーポレイテッド 強化ガラスおよびその組成物
US9963378B2 (en) 2012-09-14 2018-05-08 Asahi Glass Company, Limited Glass for chemical strengthening and chemical strengthened glass, and manufacturing method of glass for chemical strengthening
CN112592052A (zh) * 2013-04-10 2021-04-02 肖特公开股份有限公司 化学性预加应力的高刮划容忍度玻璃元件及其制造方法
US11179295B2 (en) 2012-02-29 2021-11-23 Corning Incorporated Glass packaging ensuring container integrity
WO2023009371A1 (en) * 2021-07-29 2023-02-02 Corning Incorporated Low-modulus ion-exchangeable glass compositions
WO2024086037A1 (en) * 2022-10-21 2024-04-25 Corning Incorporated Zircon-compatible alkali glasses

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8341976B2 (en) 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
CN103842309B (zh) 2011-09-29 2016-08-17 中央硝子株式会社 化学强化玻璃板及其制造方法
JP5267753B1 (ja) 2011-09-29 2013-08-21 セントラル硝子株式会社 化学強化ガラス及びその製造方法
WO2013088988A1 (ja) * 2011-12-12 2013-06-20 コニカミノルタ株式会社 カバーガラスおよびその製造方法
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
CN104271524A (zh) * 2012-05-11 2015-01-07 旭硝子株式会社 用于层叠体的前面玻璃板和层叠体
KR20150011818A (ko) * 2012-05-25 2015-02-02 아사히 가라스 가부시키가이샤 화학 강화 유리판, 커버 유리, 터치 센서 부착 화학 강화 유리 및 디스플레이 장치
WO2013176150A1 (ja) * 2012-05-25 2013-11-28 旭硝子株式会社 化学強化ガラス板、カバーガラス、タッチセンサ付化学強化ガラスおよびディスプレイ装置
JP6168288B2 (ja) * 2012-06-13 2017-07-26 日本電気硝子株式会社 強化ガラス及び強化ガラス板
JP2014028743A (ja) * 2012-06-25 2014-02-13 Nippon Electric Glass Co Ltd 有機el用ガラス基板及びその製造方法
JP2014037343A (ja) * 2012-07-18 2014-02-27 Nippon Electric Glass Co Ltd 医薬品容器用ガラス及びこれを用いたガラス管
JP2015061808A (ja) * 2012-12-21 2015-04-02 日本電気硝子株式会社 強化ガラス、強化ガラス板、強化ガラス容器及び強化用ガラス
JP2014194509A (ja) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp 集光光学系
JP6597950B2 (ja) * 2013-07-24 2019-10-30 日本電気硝子株式会社 強化ガラス及び強化用ガラス
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US10118858B2 (en) 2014-02-24 2018-11-06 Corning Incorporated Strengthened glass with deep depth of compression
US9670088B2 (en) 2014-05-20 2017-06-06 Corning Incorporated Scratch resistant glass and method of making
TWI773291B (zh) 2014-06-19 2022-08-01 美商康寧公司 無易碎應力分布曲線的玻璃
KR20190090090A (ko) 2014-10-08 2019-07-31 코닝 인코포레이티드 금속 산화물 농도 구배를 포함한 유리 및 유리 세라믹
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
EP3215471B1 (en) 2014-11-04 2021-12-15 Corning Incorporated Deep non-frangible stress profiles and methods of making
CN107001115A (zh) * 2014-12-02 2017-08-01 旭硝子株式会社 玻璃板及使用其的加热器
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US9701569B2 (en) 2015-07-21 2017-07-11 Corning Incorporated Glass articles exhibiting improved fracture performance
CN108349795B (zh) * 2015-10-16 2020-12-29 Agc株式会社 玻璃树脂层叠体
WO2017077943A1 (ja) * 2015-11-05 2017-05-11 旭硝子株式会社 ガラス積層体およびガラス積層体の製造方法
JP6839192B2 (ja) 2015-12-11 2021-03-03 コーニング インコーポレイテッド 金属酸化物濃度勾配を含むフュージョン成形可能なガラス系物品
KR20210068158A (ko) 2016-04-08 2021-06-08 코닝 인코포레이티드 금속 산화물 농도 구배를 포함하는 유리-계 제품
KR20240019381A (ko) 2016-04-08 2024-02-14 코닝 인코포레이티드 두 영역을 포함하는 응력 프로파일을 포함하는 유리-계 물품, 및 제조 방법
CN112512986B (zh) * 2018-08-09 2022-11-15 株式会社小原 结晶化玻璃基板
KR20210040966A (ko) * 2018-08-09 2021-04-14 가부시키가이샤 오하라 결정화 유리 기판
KR20200085387A (ko) * 2019-01-04 2020-07-15 삼성디스플레이 주식회사 윈도우 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185451A (ja) * 1982-04-05 1983-10-29 シヨツト・グラスヴエルケ 高いヌ−プ硬度を有する化学的硬化された時計用ガラス
JPS62270439A (ja) * 1986-05-17 1987-11-24 Ishizuka Glass Ltd 化学強化用ガラス
JPH03237036A (ja) * 1989-08-24 1991-10-22 Nippon Electric Glass Co Ltd アルミナパッケージ用薄板状硼けい酸ガラス
JP2002265233A (ja) * 2001-03-05 2002-09-18 Nippon Sheet Glass Co Ltd レーザ加工用母材ガラスおよびレーザ加工用ガラス
JP2002358626A (ja) * 2001-05-31 2002-12-13 Hoya Corp 情報記録媒体用ガラス基板及びそれを用いた磁気情報記録媒体
JP2006298691A (ja) * 2005-04-20 2006-11-02 Hitachi Ltd 平面型画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185451A (ja) * 1982-04-05 1983-10-29 シヨツト・グラスヴエルケ 高いヌ−プ硬度を有する化学的硬化された時計用ガラス
JPS62270439A (ja) * 1986-05-17 1987-11-24 Ishizuka Glass Ltd 化学強化用ガラス
JPH03237036A (ja) * 1989-08-24 1991-10-22 Nippon Electric Glass Co Ltd アルミナパッケージ用薄板状硼けい酸ガラス
JP2002265233A (ja) * 2001-03-05 2002-09-18 Nippon Sheet Glass Co Ltd レーザ加工用母材ガラスおよびレーザ加工用ガラス
JP2002358626A (ja) * 2001-05-31 2002-12-13 Hoya Corp 情報記録媒体用ガラス基板及びそれを用いた磁気情報記録媒体
JP2006298691A (ja) * 2005-04-20 2006-11-02 Hitachi Ltd 平面型画像表示装置

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110396A (ja) * 2011-10-27 2013-06-06 Nippon Electric Glass Co Ltd 集光型太陽光発電装置用光学素子、その製造方法および集光型太陽光発電装置
US11091392B2 (en) 2012-02-29 2021-08-17 Corning Incorporated Glass packaging ensuring container integrity
US9850162B2 (en) 2012-02-29 2017-12-26 Corning Incorporated Glass packaging ensuring container integrity
US11179295B2 (en) 2012-02-29 2021-11-23 Corning Incorporated Glass packaging ensuring container integrity
KR101938446B1 (ko) 2012-02-29 2019-01-14 코닝 인코포레이티드 용기의 무결성을 보장하는 유리 포장
JP2015512853A (ja) * 2012-02-29 2015-04-30 コーニング インコーポレイテッド 容器健全性を確保するガラス包装
US11767253B2 (en) 2012-05-31 2023-09-26 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US8946103B2 (en) * 2012-05-31 2015-02-03 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US20140227523A1 (en) * 2012-05-31 2014-08-14 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US10570053B2 (en) 2012-05-31 2020-02-25 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US8951927B2 (en) * 2012-05-31 2015-02-10 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US9822032B2 (en) 2012-05-31 2017-11-21 Corning Incorporated Zirconia compatible, ion exchangeable glass with high damage resistance
US11447415B2 (en) 2012-05-31 2022-09-20 Corning Incorporated Zircon compatible, ion exchangeable glass with high damage resistance
US9963378B2 (en) 2012-09-14 2018-05-08 Asahi Glass Company, Limited Glass for chemical strengthening and chemical strengthened glass, and manufacturing method of glass for chemical strengthening
CN104968626A (zh) * 2012-11-30 2015-10-07 康宁股份有限公司 具有抗脱层性与改善的强度的玻璃容器
WO2014115837A1 (ja) * 2013-01-24 2014-07-31 旭硝子株式会社 太陽電池用カバーガラスおよび太陽電池モジュール
JPWO2014115837A1 (ja) * 2013-01-24 2017-01-26 旭硝子株式会社 太陽電池用カバーガラスおよび太陽電池モジュール
CN112592052A (zh) * 2013-04-10 2021-04-02 肖特公开股份有限公司 化学性预加应力的高刮划容忍度玻璃元件及其制造方法
CN115124239A (zh) * 2013-09-13 2022-09-30 康宁公司 具有高裂缝引发阈值的离子可交换玻璃
US9714188B2 (en) 2013-09-13 2017-07-25 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
WO2015038841A3 (en) * 2013-09-13 2015-05-14 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
CN105579411A (zh) * 2013-09-13 2016-05-11 康宁公司 具有高裂缝引发阈值的离子可交换玻璃
US11306019B2 (en) 2013-09-13 2022-04-19 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
US10144198B2 (en) 2014-05-02 2018-12-04 Corning Incorporated Strengthened glass and compositions therefor
JP2017520496A (ja) * 2014-05-02 2017-07-27 コーニング インコーポレイテッド 強化ガラスおよびその組成物
EP3137428B1 (en) * 2014-05-02 2020-07-01 Corning Incorporated Strengthened glass and compositions therefor
JP2016000682A (ja) * 2014-05-20 2016-01-07 日本電気硝子株式会社 強化ガラス板及びその製造方法
WO2015178175A1 (ja) * 2014-05-20 2015-11-26 日本電気硝子株式会社 強化ガラス板及びその製造方法
US11236015B2 (en) 2015-04-23 2022-02-01 Nippon Electric Glass Co., Ltd. Tempered glass
WO2016170931A1 (ja) * 2015-04-23 2016-10-27 日本電気硝子株式会社 強化ガラス
JPWO2016170931A1 (ja) * 2015-04-23 2018-02-15 日本電気硝子株式会社 強化ガラス
WO2023009371A1 (en) * 2021-07-29 2023-02-02 Corning Incorporated Low-modulus ion-exchangeable glass compositions
WO2024086037A1 (en) * 2022-10-21 2024-04-25 Corning Incorporated Zircon-compatible alkali glasses

Also Published As

Publication number Publication date
JP2011213576A (ja) 2011-10-27
JP5683971B2 (ja) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5683971B2 (ja) 化学強化用ガラス組成物及び化学強化ガラス材
JP2011213576A5 (ja)
KR102074835B1 (ko) 화학 강화 유리 및 화학 강화용 유리
KR102564323B1 (ko) 화학 강화용 유리
TWI491571B (zh) 用於顯示器裝置的玻璃板,用於顯示器裝置的平板玻璃及其製造方法
CN115385571B (zh) 化学强化玻璃以及化学强化用玻璃
EP2075237B1 (en) Reinforced glass substrate
KR101629779B1 (ko) 강화유리, 강화유리판 및 강화용 유리
JP5672405B2 (ja) 板ガラス
JP5605736B2 (ja) 強化ガラス及びその製造方法
JP2022159558A (ja) 化学強化ガラス及びその製造方法
US10040716B2 (en) Glass sheet
TW201004886A (en) Glass plate for display devices
CN107250072B (zh) 玻璃和化学强化玻璃以及化学强化玻璃的制造方法
TW201604164A (zh) 玻璃及使用其之化學強化玻璃
JP6675592B2 (ja) 強化ガラス
CN110234616B (zh) 化学强化玻璃
CN114929641A (zh) 化学强化玻璃物品及其制造方法
WO2015166891A1 (ja) ガラス
TW201829346A (zh) 化學強化用玻璃板和化學強化玻璃板的製造方法
JP7019941B2 (ja) 強化用ガラスの製造方法及び強化ガラスの製造方法
WO2023243574A1 (ja) 化学強化用ガラス及びガラス
JP2022177042A (ja) 強化ガラス及び強化用ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756011

Country of ref document: EP

Kind code of ref document: A1