WO2011114587A1 - 微粒子組成分析方法及び微粒子組成分析装置 - Google Patents

微粒子組成分析方法及び微粒子組成分析装置 Download PDF

Info

Publication number
WO2011114587A1
WO2011114587A1 PCT/JP2010/071818 JP2010071818W WO2011114587A1 WO 2011114587 A1 WO2011114587 A1 WO 2011114587A1 JP 2010071818 W JP2010071818 W JP 2010071818W WO 2011114587 A1 WO2011114587 A1 WO 2011114587A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
particle beam
fine particles
irradiated
fine particle
Prior art date
Application number
PCT/JP2010/071818
Other languages
English (en)
French (fr)
Inventor
暢之 竹川
貴之 中村
友紀 鮫島
正彦 武居
平山 紀友
Original Assignee
国立大学法人 東京大学
富士電機システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 富士電機システムズ株式会社 filed Critical 国立大学法人 東京大学
Priority to JP2012505454A priority Critical patent/JP5659351B2/ja
Priority to US13/635,304 priority patent/US9285298B2/en
Priority to CN201080065448.1A priority patent/CN103026199B/zh
Publication of WO2011114587A1 publication Critical patent/WO2011114587A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2208Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with impactors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Definitions

  • the present invention relates to a fine particle composition analysis method and a fine particle composition analysis apparatus suitable for quantifying, for example, the mass concentration of fine particles (aerosol) suspended in the air according to chemical composition.
  • filter collection and off-line chemical analysis methods have been widely used as methods for measuring the chemical composition of atmospheric fine particles.
  • This is a technique in which air is sucked to collect fine particles on a filter and transferred to an analysis chamber or the like, followed by chemical analysis through solution extraction or heat treatment.
  • this method generally requires several hours to several days of collection time in order to analyze the average atmospheric concentration level.
  • Components with high volatility may evaporate during collection and transfer, and gas phase components may adsorb to the trapping concentration and cause interference, which poses a problem in quantitativeness.
  • it since it is an offline analysis, it takes a lot of labor to continuously acquire data over a long period of time.
  • Patent Document 1 particles are introduced into a high vacuum chamber, and the flying particles are irradiated with a laser to ionize constituent components. Is described.
  • Patent Document 2 and Non-Patent Documents 1 and 2 listed below a particle beam generated by a particle beam generator (aerodynamic lens) that generates a particle beam of fine particles in a gas is introduced into a high vacuum chamber, and molybdenum.
  • a method is described in which particles are made to collide with a heated copper substrate or tungsten with a foil on the surface, gasified by heating, and ionized to perform mass spectrometry.
  • an object of the present invention is to provide a fine particle composition analysis method and a fine particle composition analyzer that can quantitatively analyze the mass concentration of atmospheric fine particles by chemical composition on-line.
  • the present inventors have used a trapping body having a mesh-like structure to obtain a particle beam of atmospheric fine particles generated by a particle beam generator (aerodynamic lens).
  • the fine particles can be efficiently concentrated and captured in a relatively narrow space region, and further, the captured fine particles are irradiated with energy rays to efficiently generate desorbed components for analysis, It has been found that this can be introduced into the analysis part, and the present invention has been completed.
  • the fine particle composition analysis method of the present invention has a mesh-like structure for converging fine particle particles in a gas sample and removing excess gas phase components to capture the fine particles in the particle beam. After irradiating the narrow area of the capturing body to capture the fine particles, the narrow area is irradiated with energy rays intensively to vaporize, sublimate or react with the fine particles captured by the capturing body to generate desorbed components. The desorption component is analyzed.
  • the fine particle particles in the gas sample are converged on the trapping body having a mesh-like structure by converging the particle beam of the fine particles in the gas sample and further removing the excess gas phase component. Since the fine particles are captured by irradiating the line, atmospheric fine particles can be efficiently concentrated and captured in a relatively narrow space region. Then, the trapped body is irradiated with energy rays to vaporize, sublimate or react the fine particles trapped in the trapped body to generate desorbed components, so that the energy can be concentrated on the trapped atmospheric fine particles, and for a short time This can be analyzed by producing a high concentration of desorbed components.
  • the mass concentration according to the chemical composition of the atmospheric fine particles can be quantitatively analyzed online.
  • the trapping body is irradiated with energy rays, the atmospheric fine particles trapped in the trapping body are desorbed in a short time, and the trapping body is ready to capture the next microparticles.
  • online measurement is possible with high time resolution (several minutes to 1 hour).
  • the temperature of the capturing body is controlled to a temperature at which evaporation of highly volatile components of the particulates captured by the capturing body is reduced. High components can be captured and analyzed.
  • the mesh structure is preferably composed of a noble metal having a catalytic action.
  • the capturing body has a capturing action for efficiently capturing atmospheric fine particles, and also has a catalytic action for converting the desorbed component into a form for analysis.
  • the mesh structure includes a first mesh structure having a predetermined porosity on the front side irradiated with the particle beam, and the first mesh structure.
  • the second mesh-like structure having a smaller porosity than the first mesh-like structure is arranged on the opposite side to which the particle beam connected to the structure is irradiated. It is preferable.
  • the fine particles once entering the inside of the mesh-like structure can be captured by the first mesh-like structure, and the fine particles that have passed through the first mesh-like structure are Fine particles that can be captured by the second mesh-like structure and have passed through the first mesh-like structure and have been bounced off by the second mesh-like structure. It is possible to capture with a mesh-like structure. Therefore, it is possible to prevent the fine particles from being taken outside and to capture the fine air particles efficiently.
  • the mesh structure has a mesh structure with a predetermined porosity on the front side irradiated with the particle beam, and the mesh structure is continuous with the mesh structure. It is preferable that the plate body which does not have a space
  • the fine particle composition analyzer of the present invention is A decompression chamber in which the inside of the chamber is decompressed and a predetermined airflow is generated in the chamber; A particle beam having one end arranged outside the chamber and the other end arranged inside the chamber, and is configured to take in outside air by depressurization of the decompression chamber and to irradiate the chamber with a particle beam of fine particles in the outside air.
  • a generator A capturing body having a mesh-like structure that is disposed at a position where the particle beam in the chamber is irradiated and captures fine particles in the particle beam; An energy beam supplier for generating desorption components by irradiating the capture body with energy rays, vaporizing, sublimating or reacting the fine particles captured by the capture body; An optical window through which the particle beam incident port and the energy beam are incident is provided, and the capturing body is disposed therein, and the particle beam from which excess gas phase components are removed from the incident port is disposed in the capturing body.
  • a capturing body holding container arranged to irradiate; A conduit connected to the catcher holding container; An analyzer for analyzing the desorbed component, wherein the desorbed component in the capture body holding container is supplied via the conduit; It is provided with.
  • the particle beam generator forms a particle beam in which fine particles in the gas are concentrated in a beam shape, removes excess gas phase components, and The capturing body having a mesh-like structure is irradiated and held. Therefore, atmospheric fine particles can be efficiently concentrated and captured in a relatively narrow space region. Then, the energy beam supply device irradiates the trapped body with energy rays and vaporizes, sublimates or reacts the fine particles trapped in the trapped body to generate desorbed components, so that energy is concentrated on the trapped atmospheric fine particles. And a high concentration of desorption component can be generated in a short time.
  • the generated desorbed component can be efficiently guided to the analyzer by the conduit while being prevented from diffusing by the capturing body holding container, and analyzed.
  • the mass concentration according to the chemical composition of the atmospheric fine particles can be quantitatively analyzed online.
  • the trapping body is irradiated with energy rays, the atmospheric fine particles trapped in the trapping body are desorbed in a short time, and the trapping body is ready to capture the next microparticles.
  • online measurement is possible with high time resolution (several minutes to 1 hour).
  • the decompression chamber further includes a first partition that separates a first space in which the particle beam generator is disposed and a second space in which the capturing body holding container is disposed, and the particle beam is provided in the first partition.
  • the particle beam passage port and the particle beam entrance port of the trapping body holding container are configured as skimmers, respectively, so that the air pressure in the second space is lower than the air pressure in the first space.
  • the trapping body is provided with a temperature control means, and when the fine particles are trapped in the trapping body, the temperature of the trapping body is controlled to a temperature at which evaporation of highly volatile components of the trapped particulates is reduced. By doing so, a highly volatile component can be captured and analyzed.
  • the desorbed component is converted into another substance in a series of processes in which the desorbed component is guided to the analyzer.
  • the converted substance can be analyzed, for example, by oxidizing all of the plural types of carbon compounds that are thermally desorbed from the organic matter and converting them into carbon dioxide, and the organic matter can be detected intensively and efficiently. it can.
  • the decompression chamber is provided with a second partition wall that separates the second space in which the capturing body holding container is disposed and the third space in which the analyzer is disposed, and the atmospheric pressure in the third space is the second space.
  • the second and third spaces are depressurized so that the pressure is lower than the atmospheric pressure, and the conduit is passed through the second partition, and the desorbed component in the capture body holding container is guided to the analyzer.
  • a gentle air flow can be generated from the second space side to the third space side, and the desorbed component generated by the irradiation of the energy beam can be efficiently guided to the analyzer.
  • a flow path control mechanism is provided in the conduit, and when the desorbed component is analyzed by the analyzer, the flow path control mechanism shields or throttles the flow path space of the conduit and depressurizes the third space to a vacuum.
  • the analysis part can perform mass spectrometry which must be a vacuum.
  • the capture portion can be set to atmospheric pressure and the analysis portion can be evacuated.
  • the desorbed component in the capture body holding container can be guided to a plurality of analyzers by branching the conduit into a plurality.
  • the mesh structure is preferably composed of a noble metal having a catalytic action.
  • the capturing body has a capturing action for efficiently capturing atmospheric fine particles, and also has a catalytic action for converting the desorbed component into a form for analysis.
  • the mesh structure includes a first mesh structure having a predetermined porosity on the front side irradiated with the particle beam, and the first mesh structure.
  • the second mesh-like structure having a smaller porosity than the first mesh-like structure is arranged on the opposite side to which the particle beam connected to the structure is irradiated. It is preferable.
  • the fine particles once entering the inside of the mesh-like structure can be captured by the first mesh-like structure, and the fine particles that have passed through the first mesh-like structure are Fine particles that can be captured by the second mesh-like structure and have passed through the first mesh-like structure and have been bounced off by the second mesh-like structure. It is possible to capture with a mesh-like structure. Therefore, it is possible to prevent the fine particles from being taken outside and to capture the fine air particles efficiently.
  • the mesh structure has a mesh structure with a predetermined porosity on the front side irradiated with the particle beam, and the mesh structure is connected to the mesh structure. It is preferable that the plate body which does not have a space
  • the fine particle particles in the gas sample are converged on the trapping body having a mesh-like structure by converging the particle beam of the fine particles in the gas sample and further removing the excess gas phase component. Since the fine particles are captured by irradiating the line, atmospheric fine particles can be efficiently concentrated and captured in a relatively narrow space region. Then, the trapped body is irradiated with energy rays to vaporize, sublimate or react the fine particles trapped in the trapped body to generate desorbed components, so that the energy can be concentrated on the trapped atmospheric fine particles, and for a short time This can be analyzed by producing a high concentration of desorbed components.
  • the mass concentration according to the chemical composition of the atmospheric fine particles can be quantitatively analyzed online.
  • the capturing body is irradiated with energy rays, the atmospheric fine particles captured by the capturing body are desorbed in a short time, and the capturing body is ready to capture the next fine particles. Online measurement is possible with high temporal resolution (several minutes to 1 hour) even for concentration levels.
  • the particle beam generator forms a particle beam in which fine particles in the gas are concentrated in a beam shape, removes excess gas phase components, and The capturing body having a mesh-like structure is irradiated and held. Therefore, atmospheric fine particles can be efficiently concentrated and captured in a relatively narrow space region. Then, the energy beam supply device irradiates the trapped body with energy rays and vaporizes, sublimates or reacts the fine particles trapped in the trapped body to generate desorbed components, so that energy is concentrated on the trapped atmospheric fine particles. And a high concentration of desorption component can be generated in a short time.
  • the generated desorbed component can be efficiently guided to the analyzer by the conduit while being prevented from diffusing by the capturing body holding container, and analyzed.
  • the mass concentration according to the chemical composition of the atmospheric fine particles can be quantitatively analyzed online.
  • the capturing body is irradiated with energy rays, the atmospheric fine particles captured by the capturing body are desorbed in a short time, and the capturing body is ready to capture the next fine particles. Online measurement is possible with high temporal resolution (several minutes to 1 hour) even for concentration levels.
  • FIG. 1 It is a conceptual diagram of the fine particle composition analysis method of the present invention. It is a schematic diagram showing an example of an aerodynamic lens. It is a schematic diagram (A) showing an example of the mesh-like structure of a capturing body, and a schematic diagram (B) showing a mode in which a plate body having no gap is arranged so as to be continuous with the mesh-like structure. . It is the perspective view showing an example of the mesh structure board
  • FIG. 5 is an enlarged view (A) of a mesh portion of the mesh structure substrate and a cross-sectional view (B) of the mesh structure substrate taken along the line A-A ′ illustrated in FIG. 4 (A).
  • It is explanatory drawing which forms the microfabrication molded object which has a mesh-shaped structure by laminating
  • FIG. 1 It is the schematic diagram showing another example of the mesh-shaped structure of a capturing body
  • (A) is a schematic diagram from a particle beam irradiation direction
  • (B) is a schematic diagram from the cross-sectional direction of a capturing body.
  • A) is a schematic diagram from a particle beam irradiation direction
  • B) is a schematic diagram from the cross-sectional direction of a capturing body.
  • A is a schematic diagram from a particle beam irradiation direction
  • FIG. 1 It is the schematic diagram showing another example of the mesh-shaped structure of a capturing body
  • (A) is a schematic diagram from a particle beam irradiation direction
  • (B) is a schematic diagram from the cross-sectional direction of a capturing body.
  • A) is a schematic diagram from a particle beam irradiation direction
  • (B) is a schematic diagram from the cross-sectional direction of a capturing body.
  • FIG. 1 shows a conceptual diagram of the fine particle composition analysis method of the present invention.
  • the particle beam of the fine particle in the gas sample is converged at the particle beam generation portion, and the particle beam is removed while removing the excess gas phase component.
  • a narrow region of the particle trapping portion having a structure is irradiated and the fine particles are trapped in the particle trapping portion.
  • the “narrow region” refers to a region that is narrow enough to efficiently apply energy to captured fine particles when irradiated with energy rays to be described later.
  • it refers to a region having a diameter of about 1 mm to 3 mm as a diameter of a projected image having a circular cross section of a particle beam formed by an irradiated surface of a capturing body on which fine particles are incident.
  • the energy rays generated in the energy ray supply portion are concentratedly irradiated toward the particle trapping portion having the mesh structure, and the fine particles trapped in the particle trapping portion are vaporized, sublimated or reacted by the energy of the energy rays.
  • concentrated irradiation means that when energy rays are irradiated, the irradiation is concentrated to such an extent that the energy can be efficiently applied to the captured fine particles.
  • the energy beam is irradiated with an energy beam having a diameter of about 0.1 mm to 5 mm as a diameter of a projected image having a circular cross section of the energy beam formed by the irradiated surface of the capturing body on which the energy beam is incident.
  • an energy beam having a diameter of about 0.1 mm to 5 mm as a diameter of a projected image having a circular cross section of the energy beam formed by the irradiated surface of the capturing body on which the energy beam is incident.
  • the desorption component generated by vaporizing, sublimating or reacting the fine particles captured in the particle capturing portion is guided to the composition analysis portion, and the desorption component is analyzed in the composition analysis portion.
  • the “desorbed component” refers to a component that has been desorbed from the capturing body and can move to the composition analysis portion. Specifically, CO 2 , H 2 O, NO 2 , SO 2 and the like generated by oxidation of the constituent components of the fine particles.
  • the energy rays may be selected and controlled according to the energy absorption characteristics of the components constituting the fine particles. Specifically, when the component constituting the fine particle is sulfate, nitrate, organic matter, etc., irradiation with an infrared laser is performed. When the component constituting the fine particle is soot, metal or the like, visible or infrared is applied. Irradiate the laser. Thereby, it is possible to deal with fine particles having various chemical compositions.
  • the particle beam of the fine particles in the gas sample refers to each fine particle in the gas sample from the gas sample (aerosol) in which the fine particles are suspended by utilizing the aerodynamic characteristics of the fine particles composed of solid or liquid. It is a particle beam of fine particles that are separated and concentrated in a beam shape so as to have the same flight and movement characteristics.
  • a particle beam is obtained by using a particle beam generator equipped with a mechanism such as an orifice, a nozzle, or a combination thereof, such as an aerodynamic lens.
  • the other end can be arranged in the decompression chamber, and the outside air can be taken in by decompressing the decompression chamber.
  • FIG. 2 shows a schematic diagram of the aerodynamic lens mechanism.
  • the aerodynamic lens 1 has a structure in which several stages of orifices 21a to 21d are connected to the inside of a tubular housing 20, and a sample inlet 22 through which a gas sample flows is provided on one side surface thereof. On the side surface at the other end, a sample outlet 23 for discharging the particle beam of the generated fine particles is provided.
  • the sample inlet 22 is arranged in the outside air, and the sample outlet 23 is arranged in a reduced pressure atmosphere. Due to the pressure difference, when the gas sample flows from the outside air through the sample inlet 22 and the gas sample passes through the aerodynamic lens, the gas as the medium moves while diffusing, so that the orifice 21 moves linearly.
  • the movement of the fine particles that have passed through the first-stage orifice 21a is the second-stage and subsequent orifices 21b to 21d.
  • the particle beam of the fine particles can be discharged to the reduced-pressure atmosphere side through the sample outlet 23 while the fine particles converge in a beam shape without being greatly hindered by the above.
  • a nozzle 24 is provided at the sample outlet 23 so that the generated particle beam of fine particles is more converged and accelerated.
  • the size of the fine particles capable of generating such a beam-like particle beam depends on the structure and pressure of the aerodynamic lens, and is usually a fine particle having an aerodynamic diameter of about 3 ⁇ m or less.
  • the range to which the analytical method is applied is not necessarily limited to the size of these fine particles.
  • the method of generating the particle beam of the fine particles in the gas sample is not limited to the method using the aerodynamic lens.
  • the capturing body having a mesh-like structure is a capturing body for capturing fine particles in the particle beam.
  • FIG. 3A is a schematic diagram showing an example of a mesh-like structure of the capturing body used in the present invention.
  • the mesh-like structure 40 has a structure in which a plurality of mesh layers 40a to 40d are laminated to form a mesh-like structure as a whole. Can be considered. Then, when the particle beam of the fine particles is irradiated onto the capturing body, the individual fine particles pass to a certain depth through the voids of the mesh layer with a specific probability (irradiate the fine particle beam 2 from the front side in the figure).
  • FIG. 3B shows a plate in the mesh-like structure of FIG. 3A that does not have a space on the opposite side to which the particle beam of fine particles is irradiated so as to be continuous with the mesh-like structure.
  • arranged is shown. According to this aspect, the fine particles that have once passed through the mesh-like structure and have been rebounded by the plate can be captured by the mesh-like structure.
  • the material of the mesh-like structure is preferably a material that does not substantially change its structure even if it repeatedly irradiates with energy rays that cause a desorption component by vaporizing, sublimating, or reacting fine particles. This makes it possible to withstand a plurality of uses, analyze the collected and collected fine particles over a certain period of time, and then analyze the collected fine particles collected over the next fixed time, This can also be performed continuously. Examples of such materials include platinum, gold, palladium, rhodium, iridium, and alloys thereof. These materials are arranged on the surface of the mesh-like structure by forming a thin film on the surface of the members used for the skeleton, framework, framework, etc. for forming the mesh-like structure. May be.
  • a structure composed of a nonwoven fabric made of a metal, an alloy, or a compound fiber thereof can be used.
  • a commercially available platinum nonwoven fabric “platinum sheet” manufactured by Tanaka Kikinzoku Co., Ltd., average porosity: about 24%, thickness of about 0.1 mm
  • platinum sheet manufactured by Tanaka Kikinzoku Co., Ltd., average porosity: about 24%, thickness of about 0.1 mm
  • a structure constituted by a microfabricated molded body formed by laminating a plurality of mesh-like sheets formed by micromachining may be used as the mesh-like structure.
  • a microfabricated molded body can be obtained, for example, by micromachining of silicon, metal or the like.
  • FIGS. 4 to 6 show an example of a mesh-like structure of a capturing body composed of a microfabricated molded body.
  • This mesh structure is formed by laminating a plurality of mesh structure substrates obtained by processing an SOI substrate by photoetching.
  • FIG. 4A shows a perspective view of the mesh structure substrate 100 as viewed from the upper side.
  • FIG. 4B shows a perspective view of the mesh structure substrate 100 as viewed from the lower side.
  • the mesh structure substrate 100 includes a mesh 101 that forms a lattice-like opening, and a support frame body 102 that supports the outer periphery of the mesh.
  • the size is typically about 5 to 8 mm square in the vertical and horizontal directions, the area of the mesh 101 is about ⁇ 3 to 8 mm, and the thickness of the support frame 102 is about 100 to 300 ⁇ m.
  • FIG. 5A shows an enlarged view of the mesh portion. As shown in FIG. 5A, a mesh-shaped opening is formed in the mesh by fine processing.
  • the lattice size is typically about 1 to 10 ⁇ m in frame width and about 10 to 100 ⁇ m perforations.
  • FIG. 5B shows a cross-sectional view of the mesh structure substrate 100 taken along the line A-A ′ shown in FIG.
  • the lower part of the mesh 101 was hollowed into a cylindrical shape surrounded by the mesh 101 and the support frame 102 that supports the outer periphery of the mesh by fine processing. A space is formed.
  • the thickness of the mesh 101 is typically about 10 to 100 ⁇ m, and the thickness of the support frame 102 is about 100 to 300 ⁇ m as described above.
  • FIG. 6 shows a microfabricated molded body 200.
  • a microfabricated molded body 200 is formed by, for example, forming a thin film such as platinum, gold, palladium, rhodium, iridium, or an alloy thereof on the silicon material portion of the mesh 101 in advance. It can be obtained by bonding the silicon material parts.
  • a plurality of mesh structure substrates 100 (5 sheets 100a to 100e) are bonded together.
  • low melting point glass can be heated and melted at 300 ° C. to 500 ° C. and bonded through this.
  • bonding by anodic bonding using a glass substrate may be used.
  • a thin film such as platinum, gold, palladium, rhodium, iridium, or an alloy thereof is formed on the silicon material portion of the support frame 102 of the mesh structure substrate 100, and bonded through the thin film layer. Also good. Further, when the material of the mesh structure substrate 100 is a metal, the mesh structure substrate 100 may be directly joined without using another bonding material. Alternatively, they may simply be overlaid if the structure allows.
  • the voids of the mesh structure are formed.
  • a product having a rate of about 80 to 99% can be obtained.
  • the mesh-like structure comprised by the microfabricated molded body 200 here is a structure in which the mesh portion is laminated in a plurality of layers through a hollow space formed in a columnar shape formed in the lower part. It is comprised by. Therefore, the porosity means the porosity per volume that the mesh portion occupies until reaching the depth when viewed from the direction in which the fine particles are incident, and does not include the columnar cavity and the support frame.
  • the perforation pattern of the mesh of the microfabricated molded body 200 is typically a square lattice pattern, but there is no particular limitation on the shape and pitch, and a shape such as a circle, an ellipse, or a polygon may be adopted. A combination of a plurality of shapes may be employed. Examples include a honeycomb structure. Further, the shape, pitch, and phase thereof may be shifted for each layer to be laminated or may be different.
  • the mesh structure has a first mesh structure with a predetermined porosity on the front side irradiated with the particle beam, and is disposed on the opposite surface side irradiated with the particle beam.
  • the second mesh-like structure having a smaller porosity than the first mesh-like structure is preferably arranged.
  • FIG. 7 shows an example of another mesh-like structure configured as described above.
  • FIG. 7A is a schematic view from the particle beam irradiation direction
  • FIG. 7B is a schematic view from the cross-sectional direction of the capturing body.
  • This mesh-like structure 40 is provided with a first mesh-like structure 41 having a relatively large porosity on the front side where the particle beam is irradiated.
  • a second mesh-like structure 42 having a smaller porosity than the first mesh-like structure is disposed on the opposite side to which the particle beam is irradiated.
  • the first mesh-like structure 41 is obtained by the fine processing and molding described above, the size is about 3 to 8 mm square in the vertical and horizontal directions, the lattice size is about 1 to 10 ⁇ m in frame width, about 10 to 100 ⁇ m in the aperture, It is possible to use a microfabricated molded body having a thickness of about 10 to 100 ⁇ m, a spacer thickness of about 100 to 300 ⁇ m, and a number of layers of about 1 to 10 layers. Such a microfabricated molded body has a porosity of the mesh-like structure of about 80 to 99% as described above.
  • the above-described platinum nonwoven fabric “platinum sheet” manufactured by Tanaka Kikinzoku Co., Ltd., average porosity: about 24%, thickness of about 0.1 mm
  • platinum sheet manufactured by Tanaka Kikinzoku Co., Ltd., average porosity: about 24%, thickness of about 0.1 mm
  • the porosity of the first mesh-like structure 41 is relatively large, the probability that the fine particles in the particle beam bounce off the surface of the capturing body is small, and the first mesh-like structure 41 It is easy to reach the inside of the structure 41 and the second mesh-like structure 42. Even if the fine particles are captured by the first or second mesh-like structure or rebound from the second mesh-like structure 42, the first mesh-like structure 41 is formed. Since it collides with one of the lattice layers (41a, 41b, or 41c in FIG. 7B) and the velocity is reduced and trapped, the fine particles can be reliably trapped in the voids of the mesh-like structure 40. Can do.
  • the mesh structure includes a particle having a mesh structure with a predetermined porosity on the front side irradiated with the particle beam, and the particles connected to the mesh structure. It is preferable that the plate body which does not have a space
  • FIG. 8 shows an example of a mesh-like structure configured as described above.
  • FIG. 8A is a schematic view from the particle beam irradiation direction
  • FIG. 8B is a schematic view from the cross-sectional direction of the capturing body.
  • the mesh-like structure 45 is provided with the first mesh-like structure 41 having a relatively large porosity described in FIG. 7 on the front side where the particle beam is irradiated.
  • a plate 43 having no voids is disposed on the opposite side to which the particle beam is irradiated, instead of the second mesh structure 42 described in FIG.
  • the plate 43 may be made of any material that reflects fine particles. Specifically, platinum, gold, palladium, rhodium, iridium, and alloys thereof can be used. Moreover, it is preferable that the surface has the unevenness
  • the porosity of the first mesh-like structure 41 is relatively large, the probability that the fine particles in the particle beam bounce off the surface of the capturing body is small, and the first mesh-like structure 41 It is easy to reach the inside of the structure 41 and the plate 43. Then, the fine particles are captured by the first mesh-like structure, or are rebounded by the plate 43 to form any one of the lattice layers constituting the first mesh-like structure 41 (FIG. 8). In (B), it collides with 41a, 41b, or 41c), and the velocity is weakened and trapped, so that the fine particles are reliably trapped in the gap formed by the first mesh-like structure 41 and plate 43. can do.
  • Another aspect of the capturing body is a mesh-like structure for capturing fine particles from a particle beam of fine particles, the first mesh-like structure disposed on the irradiation surface side of the particle beam, and the particle beam
  • the second mesh-like structure may include a mesh-like structure that is made of a mesh-like structure having a smaller porosity than the first mesh-like structure.
  • the porosity of the first mesh structure and the second mesh structure is gradually or stepwise from the irradiation surface side to the back surface side of the particle beam, or layered with a cavity interposed therebetween.
  • You may be comprised with the integral mesh-like structure formed so that it might become small.
  • the first mesh-like structure and the second mesh-like structure each have a mesh-like structure formed so that the porosity changes gradually, stepwise, or in a layered manner sandwiching the cavity. It may be composed of a body.
  • the first mesh structure preferably has a porosity of about 80 to 99%.
  • the first mesh structure is formed by laminating a plurality of mesh structure substrates formed of a mesh having a lattice-like opening and a support frame that supports the outer periphery of the mesh. It is preferable.
  • the number of layers of the mesh structure substrate is typically 2 to 10 layers, and preferably 3 to 6 layers. Note that the voids in the stacking interval and the volume of the support frame are not included in the porosity.
  • a plane perpendicular to the first direction with respect to a predetermined first direction (for example, a direction perpendicular to the substrate when the substrate is flat) viewed from the side irradiated with the particle beam
  • the area void ratio when the mesh is projected is about 80 to 99%.
  • the area porosity when the mesh is projected on a surface orthogonal to the second direction with respect to the second direction (for example, about 45 degrees) apart from the first direction by a predetermined angle is smaller than the above.
  • the mesh lattice frame having the lattice-shaped openings has, for example, a line width of 1 to 10 ⁇ m viewed from the plane direction of the lattice frame, and is viewed from the side surface direction of the lattice frame.
  • the height is preferably 10 to 100 ⁇ m
  • the hole diameter width by the lattice frame is preferably 10 to 100 ⁇ m.
  • the stacking interval of the meshes in the first mesh structure is 100 to 300 ⁇ m.
  • the area porosity as viewed from the side irradiated with the particle beam is relatively large, so that there is a probability that the fine particles will rebound on the surface of the capturing body.
  • Small and fine particles easily reach the inside of the mesh structure. And once the particles that have entered the inside bounce off, they bounce off at an angle, so that the particles are caught at the side of the lattice frame, or further bounce off and collide with other parts to reduce the speed and get caught. The As a result, it is possible to prevent the fine particles from being discharged to the outside, and to capture atmospheric fine particles efficiently.
  • the porosity and the stacking interval of the mesh structure formed by laminating a plurality of the mesh structure substrates are relatively large, energy rays to be irradiated to generate a desorption component of fine particles
  • the energy beam is a laser beam, it can be efficiently scattered by utilizing reflection or diffraction in the frame or scanning the irradiation direction.
  • the temperature of the capturing body is controlled to a temperature at which evaporation of highly volatile components of the fine particles captured by the capturing body is reduced.
  • the temperature control can be performed by configuring a capturing body supporting portion (described later) that is in contact with and supporting the capturing body with a material such as copper having thermal conductivity, and embedding a thermocouple thermometer or a Peltier cooling element therein. . Thereby, a highly volatile component can be captured and analyzed.
  • the energy beam is not particularly limited as long as it can vaporize, sublimate, or react the fine particles captured by the capturing body to generate a desorption component suitable for the composition analysis of the fine particles.
  • the energy beam is supplied by an infrared laser supply device, a visible laser supply device, an ultraviolet laser supply device, an X-ray supply device, and an ion beam supply device. According to this, energy can be concentrated in a narrow region by laser light, X-rays, and ion beams, and the desorption component of the fine particles can be efficiently generated.
  • the type, wavelength, intensity, and the like of the energy beam can be selected according to the energy absorption characteristics of the component that has been the object of detection in advance, thereby simultaneously quantitatively analyzing a plurality of components. It is also possible.
  • the capturing body after the desorption component is generated is in a state in which the fine particles are detached from the capturing body and the next microparticles are collected, collected, and captured. Therefore, as described above, it is possible to analyze the fine particles collected and collected over a certain period of time, and then to analyze the fine particles collected and accumulated over the next certain time. It is also possible to do this continuously.
  • the capturing body is further irradiated with the first energy beam that generates a desorbed component, and the component remaining on the capturing body is heated to a high temperature. Then, an operation mode for more completely cleaning the capturing body may be provided. In order to clean the trapping body, the components remaining on the trapping body are heated to a high temperature separately from the energy rays used to generate the desorption component of the fine particles.
  • the second energy beam may be irradiated.
  • the means for analyzing the desorbed component is not particularly limited, and an analysis means that can be used by a person skilled in the art can be appropriately selected and applied.
  • an analysis means that can be used by a person skilled in the art can be appropriately selected and applied.
  • a means having a mechanism for detecting a signal corresponding to the molecular species of the desorption component instantaneously or with high time resolution is preferable.
  • mass spectrometry, spectroscopic analysis and the like can be preferably exemplified.
  • the desorbed component can be converted into another substance using a catalyst body, and the converted substance can be analyzed.
  • a catalyst body examples include platinum, gold, palladium, rhodium, iridium, and their compounds or alloys.
  • Conversion to other substances by the catalyst body is carried out while the catalyst body is placed in the flow path of a conduit (described later) connected to the capture body holding container and the desorbed component is guided to the analysis part. Can be done.
  • the mesh structure may be composed of a noble metal having a catalytic action.
  • the capturing body has a capturing action for capturing atmospheric fine particles efficiently and also has a catalytic action for converting the desorbed component into a form for analysis.
  • noble metals include gold, palladium, rhodium, iridium, and alloys thereof in addition to platinum of the platinum nonwoven fabric. These materials are arranged on the surface of the mesh-like structure by forming a thin film on the surface of the members used for the skeleton, framework, framework, etc. for forming the mesh-like structure. May be.
  • the decompression chambers 11a, 11b, and 11c are divided by the first partition wall 12 and the second partition wall 13 to constitute the decompression chamber 11 having a structure divided into three as a whole.
  • the decompression chambers 11a, 11b, and 11c are decompressed by the exhaust devices 14a, 14b, and 14c, respectively.
  • the first partition wall 12 that separates the decompression chambers 11a and 11b is formed with a communication port that constitutes a skimmer 3 described later
  • the second partition wall 13 that separates the decompression chambers 11b and 11c includes a portion of the conduit 8 described later. There is a communication port.
  • the decompression chamber 11 can form a state where the inside of the chamber is decompressed with respect to the outside atmosphere, and by adjusting the degree of decompression of the decompression chambers 11a to 11c by the exhaust devices 14a to 14c.
  • the decompression chambers 11a, 11b, and 11c provide a first space, a second space, and a third space, respectively, having different atmospheric pressures.
  • the aerodynamic lens 1 which is a particle beam generator that generates a particle beam of fine particles in gas, described in FIG. 2 above, penetrates the side wall of the decompression chamber 11a that is in contact with the ambient atmosphere so as not to impair the decompression.
  • a sample inlet 22 at one end thereof is disposed outside the chamber of the decompression chamber 11, and a sample outlet 23 at the other end is disposed in the chamber of the decompression chamber 11a.
  • the sample outlet 23 arranged in the chamber of the decompression chamber 11a is directed to the communication port formed in the first partition 12 of the decompression chambers 11a and 11b, and the generated particle beam 2 of the fine particles is connected to the communication port. It passes through the mouth and reaches the inside of the chamber of the decompression chamber 11b. Further, the exhaust devices 14a and 14b and the first partition 12 are adjusted so that the pressure in the second space provided by the decompression chamber 11b is lower than the pressure in the first space provided by the decompression chamber 11a. Accordingly, an air flow is generated from the decompression chamber 11a to the decompression chamber 11b, and the flight of the fine particle beam 2 from the decompression chamber 11a side to the decompression chamber 11b side is aided.
  • the communication port formed in the partition wall between the decompression chambers 11a and 11b is a skimmer 3 that is narrowly formed in the direction in which the particle beam 2 of fine particles is incident, and the particle beam 2 is connected to the decompression chamber 11a.
  • a skimmer 3 that is narrowly formed in the direction in which the particle beam 2 of fine particles is incident, and the particle beam 2 is connected to the decompression chamber 11a.
  • the tapered opening of the skimmer 3 helps maintain the pressure difference between the atmospheric pressure in the first space provided by the decompression chamber 11a and the atmospheric pressure in the second space provided by the decompression chamber 11b. ing.
  • FIG. 10 (A) shows an enlarged view of the capturing body.
  • the capturing body 7 is composed of a mesh-like structure 40 and a capturing body support portion 7a that supports the mesh-shaped structure 40, and one side surface of the capturing body support portion 7a is supported obliquely. A surface is formed on which the mesh-like structure 40 is placed. This adjusts the angle between the angle at which the particle beam 2 of the fine particles is incident on the capturing body 7 and the angle at which the laser 5a from the energy beam supplier 5 is incident on the capturing body 7, It is possible to optimize both the capturing efficiency of the fine particles by the capturing body 7 and the generation efficiency of the desorption component of the fine particles by the energy beam.
  • a temperature control mechanism for controlling the temperature of the mesh structure 40 is provided. That is, the capturing body support portion 7a is formed of a metal having high thermal conductivity, for example, copper, and the thermocouple temperature sensor 15 and the Peltier cooling element 16 are embedded.
  • the temperature of the capturing body can be lowered to a temperature at which evaporation of the highly volatile component of the fine particles captured by the capturing body is reduced.
  • cooling is stopped and temperature rises. This is convenient for capturing and analyzing highly volatile components.
  • FIG. 10B shows an enlarged view of the capturing body holding container.
  • the capturing body 7 is integrally held in the capturing body holding container 17.
  • the capturer holding container 17 is formed with a narrow skimmer portion 4 in the direction in which the particle beam 2 of the fine particles is incident.
  • An optical window 6 b is provided on one side wall of the capturing body holding container 17.
  • the trapping body 7 described in FIG. 10 is held in the trapping body holding container 17 that holds the trapping body in the chamber of the decompression chamber 11 b, and the aerodynamic lens 1.
  • the particle beam 2 of the fine particles discharged from the sample outlet 23 is disposed at a position to be irradiated, and the fine particles constituting the particle beam 2 of the fine particles are captured by the capturing body 7.
  • the surplus gas phase component is removed similarly to the skimmer 3 while the particle beam 2 is efficiently introduced by the skimmer portion 4 of the capture body holding container 17 toward the capture body in the capture body holding container. It is like that.
  • a laser supply device 5 is disposed outside the decompression chamber 11 as an energy beam supply device.
  • the laser 5a passes through the optical window 6a formed on the side wall of the decompression chamber 11b in contact with the ambient atmosphere and the optical window 6b formed on one side wall of the capturing body holding container 17 to the capturing body 7.
  • the fine particles captured by the capturing body can be vaporized, sublimated or reacted to generate a desorbed component.
  • a predetermined air flow can be generated in the chambers of the decompression chambers 11a to 11c by the control of the exhaust devices 14a to 14c.
  • the exhaust devices 14 b and 14 c and the second partition wall 13 are configured such that the pressure in the third space provided by the decompression chamber 11 c is lower than the pressure in the second space provided by the decompression chamber 11 b. It is adjusted by. Accordingly, an air flow from the decompression chamber 11b to the decompression chamber 11c is generated, and thereby, the desorbed component generated by the irradiation of the laser 5a is guided to the composition analysis portion.
  • the capturing body holding container 17 also serves to prevent the desorption component generated by the irradiation of the laser 5a from diffusing into the chamber of the decompression chamber 11b. That is, as described above, the end of the trapping body holding container 17 on the decompression chamber 11c side extends, and the conduit 8 that guides the desorbed component to the decompression chamber 11c is integrally formed. And this conduit
  • the end portion is tapered to help maintain a pressure difference between the atmospheric pressure of the second space provided by the decompression chamber 11b and the atmospheric pressure of the third space provided by the decompression chamber 11c.
  • a mass spectrometer 10 is installed in the chamber of the decompression chamber 11c.
  • An ionization region 9 is provided in the sample introduction portion of the mass spectrometer 10, and the outlet of the conduit 8 is disposed at a position close to the ionization region 9.
  • the desorbed component generated by the irradiation of the energy beam moves from the outlet to the ionization region 9 through the conduit 8, is ionized, and is used for analysis by the mass spectrometer 10. ing.
  • 11 and 12 show another example of the capturing body holding container 17 used in the present invention and the conduit 8 connected thereto.
  • a catalyst body 18 for converting the desorbed component of fine particles into another substance is placed in the space of the conduit 8.
  • the catalyst body 18 is a honeycomb structure having holes through which fine particle desorption components can pass, and is brought into contact with the catalyst body while the fine particle desorption components are guided to the analysis portion.
  • a platinum catalyst having an oxidation catalytic action can be used as the catalyst body. In this case, it is preferable to increase the oxidation catalytic action of the catalyst body by heating the catalyst body to about 100 to 400 ° C.
  • an oxidation catalyst for example, a plurality of types of carbon compounds that are thermally desorbed from organic substances can be oxidized, and the carbon can be concentrated into carbon dioxide, so that the concentration of organic substances in a gas sample can be quantified efficiently. it can.
  • the conduit 8 is provided with a flow path control mechanism. That is, the conduit 8 is branched into two conduits 8a and 8b, whereby the desorption component of the fine particles can be guided to the plurality of analyzers.
  • a valve 19 is further provided at the branching portion so that the flow path space of the conduit 8 can be shielded or narrowed.
  • the valve 19 may be configured to induce the desorbed component at different ratios to the analyzer connected to each of the conduits 8a and 8b.
  • two valves 19a and 19b can be provided independently on the branched conduits 8a and 8b.
  • the catalyst body 18 may be placed on either or both of the branched conduits 8a and 8b.
  • the tip of the conduit 8 has a tapered shape and the opening is a pinhole having a diameter of about 3 mm, the third space provided by the decompression chamber 11c is thereby kept in a vacuum. Is helping.
  • the flow path space of the conduit 8 can be shielded or throttled by the valve 19 or the like, and the third space can be decompressed to a vacuum.
  • Example 1> Measurement of sulfate aerosol
  • a microparticle composition analyzer having the configuration of the microparticle composition analyzer 50 shown in FIG. 9 was prepared, and the mass concentration of ammonium sulfate particles in the gas was quantified.
  • the aerosol containing monodisperse ammonium sulfate particles was produced by spraying and drying an ammonium sulfate aqueous solution to produce polydisperse particles, and passing through a differential electric mobility classifier (DMA).
  • DMA differential electric mobility classifier
  • 10 ⁇ 3 to 10 ⁇ 2 [Torr], 10 ⁇ 5 to 10 ⁇ 4 [Torr], and 10 ⁇ 7 to 10 ⁇ 6 [Torr] are disposed in the chambers of the decompression chambers 11a, 11b, and 11c, respectively.
  • the flow rate of the gas introduced into the aerodynamic lens 1 was adjusted to 80 to 90 [cc / min].
  • the three-way valve is switched, and the introduction of the aerosol containing the ammonium sulfate particles is started. After 10 minutes, the three-way valve is switched again to switch to the carrier gas air to introduce the aerosol. Stopped.
  • the laser supplier 5 was operated to irradiate the capturing body 7 with a laser for 2 minutes, and the desorbed component was measured with the mass spectrometer 10.
  • the introduction of the aerosol containing the ammonium sulfate particles was continuously operated from the start. As mass peaks, m / z 48 (SO signal) and m / z 64 (SO 2 signal), which are major mass peaks of sulfate, were measured.
  • FIG. 13 shows the result of measuring the mass peak m / z64.
  • the signal reached a peak immediately after laser irradiation ( ⁇ 5 seconds), and then the signal almost converged by 30 seconds after laser irradiation. Therefore, it became clear that the desorption component from the capturing body 7 can be generated instantaneously by laser irradiation, and that the analysis can be completed with high time resolution.
  • the result of the mass peak m / z 48 is not shown in the figure, the relationship is almost proportional to the result of the mass peak m / z 64, and the same result was obtained.
  • Tests similar to those of Test Example 1 were performed by changing the mass concentration of aerosol ammonium sulfate particles introduced into the apparatus to 36, 37, 52, 61, 93, 137, and 199 ⁇ g / m 3 .
  • FIG. 14 shows the relationship of the ion signal time integrated amount (sum of m / z 48 and m / z 64) with respect to the integrated value of the fine particle mass introduced into the apparatus.
  • the trapping efficiency of the dried potassium nitrate particles was determined. More specifically, the aqueous solution of potassium nitrate is sprayed with a particle generator, dried through a drying tube to produce polydisperse particles, and then passed through a first classifier (DMA1) to contain monodispersed potassium nitrate particles. Aerosol was used.
  • DMA1 first classifier
  • the aerosol is coated with oil (oleic acid) so as to pass through the oil-coated tube through the branching flow path through the switching valve, and further passed through the second classifier (DMA2), with the oil (oleic acid).
  • An aerosol containing coated monodispersed potassium nitrate particles was obtained.
  • Each aerosol flow path was controlled by a switching valve so that it could be introduced into the particle composition analyzer, and each was measured. For the mass peak, m / z 30 (NO signal) and m / z 46 (NO 2 signal) were measured.
  • a regression line (straight line indicated by A in the figure) representing the correlation between the fine particle accumulated mass and the time accumulated amount of the ion signal, and oil (oleic acid)
  • the regression line (the straight line indicated by B in the figure) representing the correlation between the fine particle accumulated mass and the time accumulated amount of the ion signal with respect to the coated potassium nitrate particles has a good measurement linearity. It almost overlapped on the extrapolation line. This confirms that the trapping efficiency of the dried potassium nitrate particles is close to 100%, and the trapping efficiency is significantly improved compared to the conventional method of measuring by irradiating tungsten, molybdenum, etc. with fine particle beam. It became clear.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 大気微粒子の化学組成別の質量濃度をオンラインで定量的に分析することができる、微粒子組成分析方法及び微粒子組成分析装置を提供する。 気体試料中の微粒子の粒子線を収束させ、余剰の気相成分を除去して前記粒子線中の微粒子を捕捉するためのメッシュ状の構造体を有する捕捉体の狭い領域に照射して該微粒子を捕捉させた後、前記狭い領域にエネルギー線を集中照射して前記捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生じせしめて、これを分析する。 また、その微粒子組成分析方法のために、減圧チェンバー11a~cと、微粒子の粒子線生成器1と、微粒子を捕捉するためのメッシュ状の構造体を有する捕捉体7と、エネルギー線供給器5と、捕捉体保持容器17と、前記捕捉体保持容器に接続された導管8と、微粒子の脱離成分を分析するための分析器10とを少なくとも備えた微粒子組成分析装置50を構成する。

Description

微粒子組成分析方法及び微粒子組成分析装置
 本発明は、例えば、空気中に浮遊する微粒子(エアロゾル)の化学組成別の質量濃度などを定量するのに適した微粒子組成分析方法及び微粒子組成分析装置に関するものである。
 近年、大気環境による健康への影響について、大気微粒子濃度についての新たな環境基準が設定されるなど、関心が高まっている。例えば、ディーゼル排気微粒子は、肺胞などの気道の奥に沈着するなどして健康に害を与える。微粒子の粒子の大きさは、健康リスクにとって重要なファクターであり、粒子の大きさが小さいほど、人の呼吸器である口、鼻、気管から気管支を経て、肺胞にまで達して健康に害を与える危険が大きくなる。そこで、空気力学径が2.5μm以下の粒子(PM2.5)の大気中濃度に基づく基準なども知られている。また、クリーンルーム、製造環境、医療環境など、より高度な大気環境の清浄性が要請される特殊環境にあっては、より感度の高い大気微粒子濃度の計測方法が求められる。
 健康影響リスクの回避や、クリーンルーム、製造環境、医療環境などの特殊大気環境を利用した製品やサービスの質の劣化のリスク低減のためには、大気微粒子による汚染濃度の状況をモニターすることが重要であるが、更に進んで、大気微粒子の化学組成別の質量濃度の情報を得ることが、発生原因を特定して大気環境を改善する目的のために重要である。
 従来、大気微粒子の化学組成を計測する方法として、フィルター捕集・オフライン化学分析法が広く用いられてきた。大気を吸引してフィルターに微粒子を捕集し、分析室等に移送した後に溶液抽出又は熱処理等を経て化学分析する手法である。しかしながら、この方法では、平均的な大気環境濃度レベルを分析するために概して数時間から数日の捕集時間が必要となる。揮発性の高い成分については捕集・移送の際に蒸発することがあり、また気相成分が捕集中に吸着し干渉となる場合もあるため、定量性に問題がある。また、オフライン分析であるため、 長期間にわたってデータを継続的に取得するには多大な労力を要する。
 したがって、大気微粒子の化学組成や特性等をオンライン計測する方法の開発が望まれている。そのようなオンライン計測に応用可能性のある装置・方法としては、例えば、下記特許文献1に、粒子を高真空チェンバーに導入し、飛行する粒子にレーザーを照射して構成成分をイオン化してこれを質量分析する方法が記載されている。また、下記特許文献2、下記非特許文献1,2には、気体中の微粒子の粒子線を生成する粒子線生成器(エアロダイナミックレンズ)で生成した粒子線を高真空チェンバーに導入し、モリブデン箔を表面に配した銅基板やタングステンなどを熱したものに粒子を衝突させて加熱ガス化してこれをイオン化して質量分析する方法が記載されている。
米国特許第4,383,171号明細書 米国特許第6,040,574号明細書
HERBERT J. TOBIAS、ほか8名、「Chemical Analysis of Diesel Engine Nanoparticles Using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer」、2001年、ENVIRONMENTAL SCIENCE & TECHNOLOGY, 35 (11), p.2233-2243 John T. Jayne、ほか7名、「Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles」、2000年、Aerosol Science and Technology, 33, p.49-70
 しかしながら、上記特許文献1に記載の方法では、飛行する粒子の構成成分をイオン化するために必要な強度のレーザーが照射される微粒子は全体のごく一部であることや、粒子の物性の違いがイオン化効率に大きく影響を与えてしまうことなどから、定性的な分析にしか適用できず定量的な分析には適用できなかった。また、上記特許文献2、非特許文献1,2に記載の方法では、真空に導入される微粒子の粒子線は毎秒数十から数百メートルの速度を持ち、例えば、一部無機塩、煤、一部有機物等から成る微粒子が加熱ガス化のために配された基板等に衝突すると、その大部分又は全てが跳ね返ってしまって加熱ガス化することができないことなどから、そのような微粒子に対しては定性的な分析にしか適用できず定量的な分析には適用できなかった。
 したがって、本発明の目的は、大気微粒子の化学組成別の質量濃度をオンラインで定量的に分析することができる、微粒子組成分析方法及び微粒子組成分析装置を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究した結果、メッシュ状の構造体を有する捕捉体を用いることで、粒子線生成器(エアロダイナミックレンズ)で生成した大気微粒子の粒子線からその微粒子を、比較的狭い空間領域に効率よく濃縮し、捕捉することができ、更に、捕捉された微粒子にエネルギー線を照射して、分析に供される脱離成分を効率よく生じせしめて、これを分析部分に導入することができることを見出し、本発明を完成するに至った。
 すなわち、本発明の微粒子組成分析方法は、気体試料中の微粒子の粒子線を収束させ、余剰の気相成分を除去して前記粒子線中の微粒子を捕捉するためのメッシュ状の構造体を有する捕捉体の狭い領域に照射して該微粒子を捕捉させた後、前記狭い領域にエネルギー線を集中照射して前記捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生じせしめ、前記脱離成分を分析することを特徴とする。
 本発明の微粒子組成分析方法によれば、気体試料中の微粒子の粒子線を収束させ、更に余剰の気相成分を除去してメッシュ状の構造体を有する捕捉体に気体試料中の微粒子の粒子線を照射してその微粒子を捕捉するので、大気微粒子を、比較的狭い空間領域に効率よく濃縮し、捕捉することができる。そして、捕捉体にエネルギー線を照射して捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生じせしめるので、捕捉された大気微粒子にエネルギーを集中させることができ、短時間に高濃度の脱離成分を生じせしめてこれを分析することができる。これにより、大気微粒子の化学組成別の質量濃度をオンラインで定量的に分析することができる。その一方で、捕捉体にエネルギー線を照射すると、捕捉体に捕捉された大気微粒子は短時間に脱離して、捕捉体は次の微粒子を捕捉できる状態となるので、平均的な大気環境濃度レベルに対しても高い時間分解能(数分~1時間)でオンライン計測が可能である。
 更に、前記微粒子を構成する成分のエネルギー吸収特性に応じて前記エネルギー線を選択、制御することによって、種々多様な化学組成の微粒子に対応することが可能である。
 更に、前記微粒子を捕捉体に捕捉するときに、前記捕捉体の温度を、前記捕捉体に捕捉された微粒子の揮発性の高い成分の蒸発が低減される温度に制御することにより、揮発性の高い成分を捕捉・分析することができる。
 更に、触媒体を用いて前記脱離成分を他の物質に変換し、変換された前記物質を分析することにより、例えば、有機物から加熱脱離する複数種の炭素化合物を全て酸化して二酸化炭素に変換し、その有機物を集約的かつ効率的に検出することができる。
 本発明の微粒子組成分析方法においては、前記メッシュ状の構造体は、触媒作用を有する貴金属で構成されたものであることが好ましい。これによれば、前記捕捉体が、大気微粒子を効率よく捕捉する捕捉作用を有するとともに、前記脱離成分を分析に供する形態に変換する触媒作用も合わせ有する。
 本発明の微粒子組成分析方法においては、前記メッシュ状の構造体は、前記粒子線が照射される正面側に所定空隙率の第1のメッシュ状の構造体を配し、該第1のメッシュ状の構造体に連なる前記粒子線が照射される反対面側に、前記第1のメッシュ状の構造体よりも空隙率の小さい第2のメッシュ状の構造体を配して構成されたものであることが好ましい。これによれば、一度メッシュ状の構造体の内部に入り込んだ微粒子を、前記第1のメッシュ状の構造体で捕捉することができ、前記第1のメッシュ状の構造体を通り抜けた微粒子を前記第2のメッシュ状の構造体で捕捉することができ、更に前記第1のメッシュ状の構造体を通り抜けた微粒子であって前記第2のメッシュ状の構造体によって跳ね返された微粒子を前記第1のメッシュ状の構造体で捕捉することができる。よって、微粒子を外部に取り逃がすことを防ぎ、大気微粒子を効率よく捕捉することができる。
 本発明の微粒子組成分析方法においては、前記メッシュ状の構造体は、前記粒子線が照射される正面側に所定空隙率のメッシュ状の構造体が配され、該メッシュ状の構造体に連なる前記粒子線が照射される反対面側に、空隙を有さない板体が配されたものであることが好ましい。これによれば、一度メッシュ状の構造体を通り抜けた微粒子であって、前記板体によって跳ね返された微粒子を前記メッシュ状の構造体で捕捉することができる。よって、微粒子を外部に取り逃がすことを防ぎ、大気微粒子を効率よく捕捉することができる。
 一方、本発明の微粒子組成分析装置は、
 チェンバー内が減圧され、チェンバー内に所定の気流が生成される減圧チェンバーと、
 一端が前記チェンバー外に配され、他端が前記チェンバー内に配され、前記減圧チェンバーの減圧により外気を取り込み前記外気中の微粒子の粒子線を前記チェンバー内に照射するように構成された粒子線生成器と、
 前記チェンバー内の前記粒子線が照射される位置に配され、前記粒子線中の微粒子を捕捉するためのメッシュ状の構造体を有する捕捉体と、
 前記捕捉体にエネルギー線を照射して、前記捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生成するためのエネルギー線供給器と、
 前記粒子線の入射口および前記エネルギー線が入射する光学窓が設けられ、前記捕捉体が内部に配置されて、前記入射口から余剰の気相成分が除去された前記粒子線を前記捕捉体に照射させるように配された捕捉体保持容器と、
 前記捕捉体保持容器に接続された導管と、
 前記捕捉体保持容器内の前記脱離成分が前記導管を介して供給され、前記脱離成分を分析するための分析器と、
を備えたことを特徴とする。
 本発明の微粒子組成分析装置によれば、前記粒子線生成器により、気体中の微粒子がビーム状に濃縮した粒子線を形成し、余剰の気相成分を除去して前記捕捉体保持容器内のメッシュ状の構造体を有する前記捕捉体に照射して保持させる。したがって、大気微粒子を、比較的狭い空間領域に効率よく濃縮し、捕捉することができる。そして、前記エネルギー線供給器により、捕捉体にエネルギー線を照射して捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生じせしめるので、捕捉された大気微粒子にエネルギーを集中させることができ、短時間に高濃度の脱離成分を生じせしめることができる。そして、生じた脱離成分を、前記捕捉体保持容器により拡散するのを防ぎつつ前記導管により前記分析器に効率よく誘導して、これを分析することができる。これにより、大気微粒子の化学組成別の質量濃度をオンラインで定量的に分析することができる。その一方で、捕捉体にエネルギー線を照射すると、捕捉体に捕捉された大気微粒子は短時間に脱離して、捕捉体は次の微粒子を捕捉できる状態となるので、平均的な大気環境濃度レベルに対しても高い時間分解能(数分~1時間)でオンライン計測が可能である。
 更に、前記減圧チェンバーに、前記粒子線生成器が配された第1空間と前記捕捉体保持容器が配された第2空間とを隔てる第1隔壁を設け、前記第1隔壁には前記粒子線の通過口を設け、前記粒子線の通過口と前記捕捉体保持容器の前記粒子線入射口とをそれぞれスキマー構成とし、前記第2空間の気圧が前記第1空間の気圧よりも低圧となるように前記第1、第2空間を減圧することにより、粒子線を第1空間から第2空間に効率的に導入しつつ、第1空間と第2空間に圧力差を設け、第1空間の減圧状態を保つうえで、余剰の空気を取り除くことができる。更に、捕捉体保持容器には、余剰の気相成分を除去して粒子線を入射させることができる。
 更に、捕捉体に温度制御手段を設け、前記微粒子を捕捉体に捕捉するときに、捕捉体の温度を、捕捉体に捕捉された微粒子の揮発性の高い成分の蒸発が低減される温度に制御することにより、揮発性の高い成分を捕捉・分析することができる。
 更に、前記導管の空間内部に、前記脱離成分を他の物質に変換する触媒体を設けることにより、脱離成分が分析器に誘導される一連の過程で脱離成分を他の物質に変換し、変換された物質を分析することができ、例えば、有機物から加熱脱離する複数種の炭素化合物を全て酸化して二酸化炭素に変換し、その有機物を集約的かつ効率的に検出することができる。
 更に、前記減圧チェンバーに、前記捕捉体保持容器が配置された第2空間と前記分析器が配置された第3空間とを隔てる第2隔壁を設け、前記第3空間の気圧が前記第2空間の気圧よりも低圧となるように第2、第3空間を減圧するとともに、前記第2隔壁に前記導管を貫通させ、前記捕捉体保持容器内の前記脱離成分を前記分析器に誘導することにより、第2空間側から第3空間側へと緩やかな気流を生じさせ、エネルギー線の照射により生じせしめた脱離成分を効率的に分析器に誘導することができる。
 更に、前記導管に流路制御機構を設け、前記分析器による前記脱離成分の分析時に、前記流路制御機構により前記導管の流路空間を遮蔽し又は絞り、前記第3空間を真空に減圧することにより、分析部は真空でなければならない質量分析を行うことができる。また、揮発性の高い物質などを分析する際に捕捉部分を大気圧にし、分析部分を真空にすることもできる。
 更に、前記導管を複数に分岐することにより、前記捕捉体保持容器内の前記脱離成分を、複数の前記分析器に誘導することができる。
 本発明の微粒子組成分析装置においては、前記メッシュ状の構造体は、触媒作用を有する貴金属で構成されたものであることが好ましい。これによれば、前記捕捉体が、大気微粒子を効率よく捕捉する捕捉作用を有するとともに、前記脱離成分を分析に供する形態に変換する触媒作用も合わせ有する。
 本発明の微粒子組成分析装置においては、前記メッシュ状の構造体は、前記粒子線が照射される正面側に所定空隙率の第1のメッシュ状の構造体を配し、該第1のメッシュ状の構造体に連なる前記粒子線が照射される反対面側に、前記第1のメッシュ状の構造体よりも空隙率の小さい第2のメッシュ状の構造体を配して構成されたものであることが好ましい。これによれば、一度メッシュ状の構造体の内部に入り込んだ微粒子を、前記第1のメッシュ状の構造体で捕捉することができ、前記第1のメッシュ状の構造体を通り抜けた微粒子を前記第2のメッシュ状の構造体で捕捉することができ、更に前記第1のメッシュ状の構造体を通り抜けた微粒子であって前記第2のメッシュ状の構造体によって跳ね返された微粒子を前記第1のメッシュ状の構造体で捕捉することができる。よって、微粒子を外部に取り逃がすことを防ぎ、大気微粒子を効率よく捕捉することができる。
 本発明の微粒子組成分析装置においては、前記メッシュ状の構造体は、前記粒子線が照射される正面側に所定空隙率のメッシュ状の構造体が配され、該メッシュ状の構造体に連なる前記粒子線が照射される反対面側に、空隙を有さない板体が配されたものであることが好ましい。これによれば、一度メッシュ状の構造体を通り抜けた微粒子であって、前記板体によって跳ね返された微粒子を前記メッシュ状の構造体で捕捉することができる。よって、微粒子を外部に取り逃がすことを防ぎ、大気微粒子を効率よく捕捉することができる。
 本発明の微粒子組成分析方法によれば、気体試料中の微粒子の粒子線を収束させ、更に余剰の気相成分を除去してメッシュ状の構造体を有する捕捉体に気体試料中の微粒子の粒子線を照射してその微粒子を捕捉するので、大気微粒子を、比較的狭い空間領域に効率よく濃縮し、捕捉することができる。そして、捕捉体にエネルギー線を照射して捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生じせしめるので、捕捉された大気微粒子にエネルギーを集中させることができ、短時間に高濃度の脱離成分を生じせしめてこれを分析することができる。これにより、大気微粒子の化学組成別の質量濃度をオンラインで定量的に分析することができる。また、その一方で、捕捉体にエネルギー線を照射すると、捕捉体に捕捉された大気微粒子は短時間に脱離して、捕捉体は次の微粒子を捕捉できる状態となるので、平均的な大気環境濃度レベルに対しても高い時間分解能(数分~1時間)でオンライン計測が可能である。
 本発明の微粒子組成分析装置によれば、前記粒子線生成器により、気体中の微粒子がビーム状に濃縮した粒子線を形成し、余剰の気相成分を除去して前記捕捉体保持容器内のメッシュ状の構造体を有する前記捕捉体に照射して保持させる。したがって、大気微粒子を、比較的狭い空間領域に効率よく濃縮し、捕捉することができる。そして、前記エネルギー線供給器により、捕捉体にエネルギー線を照射して捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生じせしめるので、捕捉された大気微粒子にエネルギーを集中させることができ、短時間に高濃度の脱離成分を生じせしめることができる。そして、生じた脱離成分を、前記捕捉体保持容器により拡散するのを防ぎつつ前記導管により前記分析器に効率よく誘導して、これを分析することができる。これにより、大気微粒子の化学組成別の質量濃度をオンラインで定量的に分析することができる。また、その一方で、捕捉体にエネルギー線を照射すると、捕捉体に捕捉された大気微粒子は短時間に脱離して、捕捉体は次の微粒子を捕捉できる状態となるので、平均的な大気環境濃度レベルに対しても高い時間分解能(数分~1時間)でオンライン計測が可能である。
本発明の微粒子組成分析方法の概念図である。 エアロダイナミックレンズの一例を表した模式図である。 捕捉体のメッシュ状の構造体の一例を表した模式図(A)及びそのメッシュ状の構造体に連なるように空隙を有さない板体を配した態様を表した模式図(B)である。 捕捉体のメッシュ状の構造体を構成するメッシュ構造基板の一例を表した斜視図であり(A)は上部側から見た斜視図であり(B)は下部側から見た斜視図である。 メッシュ構造基板のメッシュの部分の拡大図(A)及び図4(A)に図示したA-A’線におけるメッシュ構造基板の断面図(B)である。 メッシュ構造基板を複数積層してメッシュ状の構造体を有する微細加工成形体を形成する説明図である。 捕捉体のメッシュ状の構造体の他の一例を表した模式図であり(A)は粒子線照射方向からの模式図であり(B)は捕捉体の断面方向からの模式図である。 捕捉体のメッシュ状の構造体の更に他の一例を表した模式図であり(A)は粒子線照射方向からの模式図であり(B)は捕捉体の断面方向からの模式図である。 本発明の微粒子組成分析装置の一実施形態を示す図である。 捕捉体の拡大図(A)及び捕捉体保持容器の拡大図(B)である。 本発明で用いられる捕捉体保持容器及びこれに接続された導管の別の例を示す図である。 本発明で用いられる捕捉体保持容器及びこれに接続された導管の更に別の例を示す図である。 質量ピークm/z 64のイオン信号の経時的変化を示す図である。 硫酸アンモニウム粒子に対して、微粒子積算質量とイオン信号の時間積算量との正の相関性を示す図である。 油(オレイン酸)で被覆された単分散の硝酸カリウム粒子を含むエアロゾルを生成する工程を表すフローチャートである。 硝酸カリウム粒子に対して、微粒子積算質量とイオン信号の時間積算量との正の相関性を示す図である。
 図1には、本発明の微粒子組成分析方法の概念図を示す。
 図1に示すように、本発明の微粒子組成分析方法においては、粒子線生成部分で気体試料中の微粒子の粒子線を収束し、その粒子線を、余剰の気相成分を除去しつつ、メッシュ状の構造体を有する粒子捕捉部分の狭い領域に照射し、その微粒子を粒子捕捉部分に捕捉する。ここで、「狭い領域」とは、後述のエネルギー線を照射したときに、捕捉された微粒子にエネルギーを効率よく付与できる程度に狭い領域をいう。好ましくは、微粒子が入射する捕捉体の被照射面により形成される粒子線の断面円状の投影像の直径にして1mm~3mm程度の領域をいう。
 また、エネルギー線供給部分で生成したエネルギー線をメッシュ状の構造体を有する粒子捕捉部分に向けて集中照射し、そのエネルギー線のエネルギーによって、粒子捕捉部分に捕捉した微粒子を気化、昇華又は反応させて脱離成分を生じせしめる。ここで、「集中照射」とは、エネルギー線を照射したときに、そのエネルギーを捕捉された微粒子に効率よく付与できる程度に集中して照射することをいう。好ましくは、エネルギー線が入射する捕捉体の被照射面により形成されるエネルギー線の断面円状の投影像の直径にして0.1mm~5mm程度のエネルギー線を照射することをいう。このとき、上記微粒子が捕捉された狭い領域をスキャンするようにエネルギー線を照射することもできる。
 また、粒子捕捉部分に捕捉した微粒子を気化、昇華又は反応させて生じせしめた脱離成分を組成分析部分に誘導し、その脱離成分を組成分析部分で分析する。ここで、「脱離成分」とは、捕捉体から脱離して、組成分析部分に移動できる状態になった成分をいう。具体的には、微粒子の構成成分の酸化によって生じるCO、HO、NO、SOなどである。
 本発明の微粒子組成分析方法においては、微粒子を構成する成分のエネルギー吸収特性に応じて上記エネルギー線を選択、制御してもよい。具体的には、微粒子を構成する成分が硫酸塩、硝酸塩、有機物などであるときは、赤外レーザーを照射し、微粒子を構成する成分が、すす、金属などであるときは、可視又は赤外レーザーを照射する。これにより種々多様な化学組成の微粒子に対応することが可能である。
 本発明において、気体試料中の微粒子の粒子線とは、固体又は液体で構成された微粒子の空力学的特性を利用して、微粒子が浮遊した気体試料(エアロゾル)から、各微粒子が気体試料中で同じような飛行・移動特性を持つようにビーム状に離隔濃縮されてなる微粒子の粒子線である。このような粒子線は、エアロダイナミックレンズのような、オリフィス、ノズル又はそれらの組み合わせ等の機構を具備した粒子線生成器を用いて、例えば、その粒子線生成器の一端を減圧チェンバー外に配し、その他端を減圧チェンバー内に配して、減圧チェンバーの減圧により外気を取り込むことにより生成することが可能である。
 図2には、エアロダイナミックレンズの機構の模式図を示す。このエアロダイナミックレンズ1は、チューブ状のハウジング20の内部に数段のオリフィス21a~dを連ねた構造をしており、その一端の側面には、気体試料が流入する試料入口22が設けられ、その他端の側面には、生成した微粒子の粒子線を排出する試料出口23が設けられている。この図では、試料入口22は外気に配され、試料出口23は減圧雰囲気に配された状態となっている。その圧力差によって、外気側から試料入口22を通って気体試料が流入し、エアロダイナミックレンズを気体試料が通り抜けるときには、その媒質である気体は拡散しながら移動するので、オリフィス21により直線的な移動が妨げられるのに対して、固体又は液体で構成された微粒子は、気体分子に比べて直進性が高いので、初段のオリフィス21aを通過した微粒子の移動が、2段目以降のオリフィス21b~dにより大きく妨げられることなく、各微粒子がビーム状に収束しつつ、試料出口23を通って減圧雰囲気側に微粒子の粒子線を排出することができる。なお、このエアロダイナミックレンズ1では、試料出口23にはノズル24が設けられ生成した微粒子の粒子線を、より収束し加速させるようになっている。
 このようなビーム状の粒子線を生成することができる微粒子の大きさはエアロダイナミックレンズの構造や圧力に依存し、通常、空気力学径が3μm程度以下の微粒子であるが、本願発明の微粒子組成分析方法の適用される範囲は、必ずしもこれらの微粒子の大きさに制限されるわけではない。また、気体試料中の微粒子の粒子線の生成方法も、エアロダイナミックレンズによる方法に制限されるわけではない。
 本発明において、メッシュ状の構造体を有する捕捉体とは、上記粒子線中の微粒子を捕捉するための捕捉体である。図3(A)には、本発明で用いられる捕捉体のメッシュ状の構造体の一例を表した模式図を示す。図3(A)に示すように、このメッシュ状の構造体40は、構造のうえで、複数のメッシュ層40a~dを複数積層して全体としてメッシュ状の構造体となっているものと、みなすことができる。そして、上記微粒子の粒子線を捕捉体に照射すると、個々の微粒子は、固有の確率で、メッシュ層の空隙を通ってある深さまで通過し(図中手前側から微粒子の粒子線2を照射するものとする。)、その深さに位置するメッシュ層に衝突して一部は捕捉され他は減速されながら跳ね返る。跳ね返った粒子は手前側に位置するメッシュ層に更に衝突し、一部が捕捉され他は減速されながら跳ね返る。その後同様の作用を繰り返しながら、跳ね返った粒子はやがては速度を失い、上記捕捉体に捕捉される。
 図3(B)には、図3(A)のメッシュ状の構造体において、微粒子の粒子線が照射される反対面側に、そのメッシュ状の構造体に連なるように空隙を有さない板体43が配されている態様のメッシュ状の構造体45を示す。この態様によれば、一度メッシュ状の構造体を通り抜けた微粒子であって、板体によって跳ね返された微粒子を前記メッシュ状の構造体で捕捉することができる。
 上記メッシュ状の構造体の材質としては、微粒子を気化、昇華又は反応させて脱離成分を生じせしめるエネルギー線を繰り返し照射しても、その構造に実質的に変化しないものであることが好ましい。これにより、複数回の使用に耐え、一定時間をかけて採集、集積した微粒子について分析を行なった後、更に、次の一定時間をかけて採集、集積した微粒子について分析を行なうことが可能となり、これを連続的に行なうことも可能となる。そのような材質としては、白金、金、パラジウム、ロジウム、イリジウム、及びそれらの合金などが挙げられる。なお、これら材質は、上記メッシュ状の構造体を成形するための骨格、骨組み、枠組みなどに用いられた部材の表面への薄膜形成等により、上記メッシュ状の構造体の表面に配するようにしてもよい。
 このようなメッシュ状の構造体としては、金属、合金、又はその化合物の繊維よりなる不織布で構成されているものを利用することができる。例えば、市販の白金不織布「白金シート」(田中貴金属社製、平均空隙率:約24%、厚さ0.1mm程度)などを用いることができる。
 また、メッシュ状の構造体は、微細加工によって形成したメッシュ状のシートを複数積層して形成された微細加工成形体で構成されているものを利用してもよい。そのような微細加工成形体は、例えば、シリコン、金属等の微細加工によって得ることができる。
 図4~6には、微細加工成形体で構成された捕捉体のメッシュ状の構造体の一例を示す。このメッシュ状の構造体は、SOI基板をフォトエッチングにより加工したメッシュ構造基板を、複数枚貼り合わせることにより積層して形成されている。
 図4(A)には、メッシュ構造基板100を上部側から見た斜視図を示す。また、図4(B)には、メッシュ構造基板100を下部側から見た斜視図を示す。メッシュ構造基板100は、格子状の開口部を形成するメッシュ101と、そのメッシュの外周を支持する支持枠体102とで構成されている。その大きさは、典型的には、縦横5~8mm四方程度であり、そのメッシュ101の領域がφ3~8mm程度であり、支持枠体102の厚みが100~300μm程度である。
 図5(A)には、メッシュの部分の拡大図を示す。図5(A)に示すように、メッシュには微細加工により格子状の開口部が形成されている。その格子サイズは、典型的には、枠幅1~10μm程度、孔開き10~100μm程度である。
 図5(B)には、図4(A)に図示したA-A’線におけるメッシュ構造基板100の断面図を示す。図4(B)と併せて示されるように、メッシュ101の下部には、微細加工により、メッシュ101とメッシュの外周を支持する支持枠体102とで囲まれた、円柱状に空洞化された空間が形成されている。ここで、メッシュ101の厚さは典型的には10~100μm程度、支持枠体102の厚みは前述したように100~300μm程度である。
 図6には微細加工成形体200を示す。このような微細加工成形体200は、例えば、上記メッシュ101のシリコン材質の部分に予め白金、金、パラジウム、ロジウム、イリジウム、及びそれらの合金などの薄膜形成等を施し、上記支持枠体102のシリコン材質の部分を貼り合わせることにより得ることができる。図6ではメッシュ構造基板100の複数枚(100a~100eの5枚)を貼り合わせて形成されている。貼り合わせる方法としては、例えば、低融点ガラスを300℃~500℃で加熱溶解させこれを介して接着することができる。また、ガラス基板を利用した陽極接合による貼り合わせでもよい。また、メッシュ構造基板100の上記支持枠体102のシリコン材質の部分に白金、金、パラジウム、ロジウム、イリジウム、及びそれらの合金などの薄膜形成等を施して、その薄膜層を介して接合してもよい。更に、メッシュ構造基板100の材質が金属の場合には、他の接着用の材料を介さずに直接接合してもよい。あるいは、その構造が許す場合には単に重ねるだけでもよい。
 上記メッシュ構造基板100を1層で、又は典型的には2~10層、好ましくは3~6層を貼り合わせて積層して微細加工成形体200を形成すると、そのメッシュ状の構造体の空隙率が80~99%程度のものを得ることができる。なお、ここでの微細加工成形体200で構成されるメッシュ状の構造体は、そのメッシュの部分が、その下部に形成された円柱状に空洞化された空間を介して複数層に積層した構造により構成されている。したがってその空隙率は、そのメッシュの部分が微粒子が入射する方向から見て奥行きに達するまでに占める体積当たりの空隙率をいい、円柱状空洞及び支持枠体を含めない空隙率である。
 微細加工成形体200のメッシュの孔開きパターンは、典型的には四角形状の格子パターンであるが、形状やピッチに特に制限はなく、円形、楕円形、多角形などの形状を採用してもよく、複数の形状の組み合わせを採用してもよい。ハニカム構造なども挙げられる。また、形状やピッチやそれらの位相は、積層する層ごとにずらしたり、異なるものにしたりしてもよい。
 本発明においては、上記メッシュ状の構造体は、上記粒子線が照射される正面側に所定空隙率の第1のメッシュ状の構造体を配し、前記粒子線が照射される反対面側に、第1のメッシュ状の構造体よりも空隙率の小さい第2のメッシュ状の構造体を配して構成されたものであることが好ましい。
 図7には、そのように構成された他のメッシュ状の構造体の一例を示す。図7(A)は粒子線照射方向からの模式図であり、図7(B)は捕捉体の断面方向からの模式図である。
 このメッシュ状の構造体40は、粒子線が照射される正面側に比較的空隙率の大きい第1のメッシュ状の構造体41が配されている。また、粒子線が照射される反対面側に、第1のメッシュ状の構造体よりも空隙率の小さい第2のメッシュ状の構造体42が配されている。第1のメッシュ状の構造体41としては、前述の微細加工成形により得られ、その大きさは縦横3~8mm四方程度、格子サイズが枠幅1~10μm程度、孔開き10~100μm程度、格子の厚み10~100μm程度、スペーサー厚み100~300μm程度、層の数1~10層程度の微細加工成形体で構成されたものを用いることができる。このような微細加工成形体は、上述のとおりそのメッシュ状の構造体の空隙率が80~99%程度となっている。また、第2のメッシュ状の構造体42としては、前述の白金不織布「白金シート」(田中貴金属社製、平均空隙率:約24%、厚さ0.1mm程度)などを用いることができる。
 この態様によれば、第1のメッシュ状の構造体41の空隙率が比較的大きくとられているので、上記粒子線中の微粒子が捕捉体の表面で跳ね返る確率が小さく、第1のメッシュ状の構造体41の内部や第2のメッシュ状の構造体42に到達し易くなっている。そして、微粒子は第1又は第2のメッシュ状の構造体で捕捉されるか、あるいは、第2のメッシュ状の構造体42から跳ね返ったとしても、第1のメッシュ状の構造体41を構成するいずれかの格子層(図7(B)では、41a、41b、又は41c)に衝突して速度が弱められ捕捉されるので、メッシュ状の構造体40の空隙中に微粒子を確実に捕捉することができる。
 本発明の別の態様においては、上記メッシュ状の構造体は、上記粒子線が照射される正面側に所定空隙率のメッシュ状の構造体が配され、そのメッシュ状の構造体に連なる前記粒子線が照射される反対面側に、空隙を有さない板体が配されたものであることが好ましい。
 図8には、そのように構成されたメッシュ状の構造体の一例を示す。図8(A)は粒子線照射方向からの模式図であり、図8(B)は捕捉体の断面方向からの模式図である。
 このメッシュ状の構造体45には、粒子線が照射される正面側に、図7に説明した比較的空隙率の大きい第1のメッシュ状の構造体41が配されている。また、粒子線が照射される反対面側に、図7に説明した第2のメッシュ状の構造体42のかわりに空隙を有さない板体43が配されている。その板体43としては、微粒子を反射する材質のものであればよく、具体的には、白金、金、パラジウム、ロジウム、イリジウム、及びそれらの合金等を用いることができる。また、その表面が、微粒子の乱反射を引き起こす凹凸を有するものであることが好ましい。
 この態様によれば、第1のメッシュ状の構造体41の空隙率が比較的大きくとられているので、上記粒子線中の微粒子が捕捉体の表面で跳ね返る確率が小さく、第1のメッシュ状の構造体41の内部や板体43に到達し易くなっている。そして、微粒子は第1のメッシュ状の構造体で捕捉されるか、あるいは、板体43で跳ね返えされて、第1のメッシュ状の構造体41を構成するいずれかの格子層(図8(B)で、41a、41b、又は41c)に衝突して速度が弱められ捕捉されるので、第1のメッシュ状の構造体41及び板体43により形成された空隙中に微粒子を確実に捕捉することができる。
 上記捕捉体の別の態様としては、微粒子の粒子線から微粒子を捕捉するためのメッシュ状の構造体であって、粒子線の照射面側に配置された第1メッシュ状構造体と、粒子線の照射面に対して背面側に配置された第2メッシュ状構造体又は空隙を有さない板体とを有し、その第1メッシュ状構造体は、所定空隙率のメッシュ状の構造体からなり、その第2メッシュ状構造体は、第1メッシュ状構造体よりも空隙率の小さいメッシュ状の構造体からなるものであるメッシュ状の構造体、を具備するものであってもよい。
 この場合、上記第1メッシュ状構造体と上記第2メッシュ状構造体とは粒子線の照射面側から背面側にむけて徐々に、又は段階的に、又は空洞を挟んだ層状に空隙率が小さくなるように形成された一体のメッシュ状構造体で構成されていてもよい。更に、上記第1メッシュ状構造体と上記第2メッシュ状構造体とは、それぞれが徐々に、又は段階的に、又は空洞を挟んだ層状に空隙率が変化するように形成されたメッシュ状構造体で構成されていてもよい。
 また、上記第1メッシュ状構造体は、空隙率が80~99%程度であることが好ましい。
 また、上記第1メッシュ状構造体は、格子状の開口部を有するメッシュと、そのメッシュの外周を支持する支持枠体とで形成されたメッシュ構造基板を、複数枚積層して構成されていることが好ましい。メッシュ構造基板の層の数は、典型的には2~10層であり、3~6層であることが好ましい。なお、積層間隔部分の空洞や支持枠体の体積は空隙率に含めないものとする。
 この場合、各メッシュ基板単体に関しては、粒子線が照射される側から見た所定の第一方向に対し(例えば基板が平らな場合は基板に垂直な方向)、その第一方向に直交する面にメッシュを投影したときの面積空隙率が80~99%程度であることが好ましい。さらに、第一方向から所定角度離れた第二方向に対し(例えば45度程度)、第二方向に直交する面にメッシュを投影したときの面積空隙率が上記より小さくなることが好ましい。これを実現するためには、上記格子状の開口部を有するメッシュの格子枠は、例えばその格子枠の平面方向から見た線幅は、1~10μmであり、その格子枠の側面方向から見た高さは10~100μmであり、その格子枠による孔径幅は10~100μmであるようにすることが好ましい。さらに、上記第1メッシュ状構造体における上記メッシュの積層間隔は100~300μmであるようにすることが好ましい。
 このように構成することで、上記第1メッシュ状構造体では、粒子線が照射される側から見た面積空隙率が比較的大きくとられているので、微粒子が捕捉体の表面で跳ね返る確率が小さく、微粒子がメッシュ状構造体の内部にまで到達しやすい。そして、いったん内部に入り込んだ微粒子が跳ね返るときには角度をもって跳ね返るので、その微粒子が上記格子枠の側面の部分で捕捉されるか、または更に跳ね返って他の部分に衝突して速度が弱められて捕捉される。これにより微粒子を外部に取り逃がすことを防ぎ、大気微粒子を効率よく捕捉することができる。
 さらに、上記メッシュ構造基板が複数枚積層して構成された上記メッシュ状構造体の空隙率や積層間隔が比較的大きくとられているので、微粒子の脱離成分を生じせるために照射するエネルギー線も、内部にまで到達しやすく、エネルギー線のエネルギーを、微粒子が捕捉されたメッシュ状の構造体の全体に効率よくいきわたらせることができる。例えばエネルギー線がレーザー光の場合、枠体における反射や回折等を利用するか、あるいは照射方向をスキャンするなどすることにより、効率よくいきわたらせることができる。
 本発明においては、上記微粒子の粒子線が照射されているときに、上記捕捉体の温度を、上記捕捉体に捕捉された微粒子の揮発性の高い成分の蒸発が低減される温度に制御することもできる。温度制御は、捕捉体に接し支持する捕捉体支持部(後述)を熱伝導性のある銅等の材質で構成し、これに熱電対温度計や、ペルチエ冷却素子を埋め込むことにより行うことができる。これにより、揮発性の高い成分を捕捉・分析することができる。
 例えば、揮発性の高い硝酸塩や一部有機物(炭化水素など)を被測定対象とする場合、捕捉体の温度を-20~0℃の範囲に冷却することにより殆ど蒸発は回避できる。
 本発明において、エネルギー線は、上記捕捉体に捕捉された微粒子を気化、昇華又は反応させて、微粒子の組成分析に適する脱離成分を生じせしめるものであればよく、特に制限はないが、例えば、赤外レーザーの供給器、可視レーザーの供給器、紫外レーザーの供給器、X線の供給器、及びイオンビームの供給器により供給されるエネルギー線であることが好ましい。これによれば、レーザー光、X線、イオンビームにより狭い領域にエネルギーを集中させて、上記微粒子の脱離成分を効率よく生じせしめることができる。
 本発明において、上記エネルギー線は、予め検出の目的とされた成分のエネルギー吸収特性に応じて、その種類、波長、強度等を選択することができる、これにより、複数の成分を同時に定量分析することも可能となる。
 上記脱離成分を生じせしめた後の捕捉体は、微粒子が捕捉体から脱離して次の微粒子を採集、集積して捕捉できる状態になる。したがって、上述のとおり、一定時間をかけて採集、集積した微粒子について分析を行なった後、更に、次の一定時間をかけて採集、集積した微粒子について分析を行なうことが可能である。また、これを連続的に行なうことも可能である。このとき、微粒子の粒子線の照射や分析を行なう操作モードとは別に、脱離成分を生じせしめる第1のエネルギー線を捕捉体に更に照射して、捕捉体に残着した成分を高温に加熱して、捕捉体をより完全に清浄化する操作モードを設けてもよい。また、その清浄化のため、微粒子の脱離成分を生じせしめるために用いられたエネルギー線とは別に、捕捉体に残着した成分を高温に加熱して捕捉体をより完全に清浄化するための第2のエネルギー線を照射してもよい。
 本発明においては、上記脱離成分を分析する手段に特に制限はなく、通常の当業者に用いることができる分析手段を適宜選択して適用することができる。特に、オンライン計測のためには、上記脱離成分の分子種に対応する信号を瞬時に、又は高い時間分解能で検出する機構を有する手段であることが好ましい。例えば、質量分析、分光分析などを好ましく例示できる。また、これらの組み合わせによって分析してもよい。
 本発明においては、触媒体を用いて上記脱離成分を他の物質に変換し、変換された物質を分析することもできる。触媒体の材質としては、白金、金、パラジウム、ロジウム、イリジウム、及びそれらの化合物又は合金などが挙げられる。
 触媒体による他の物質への変換は、捕捉体保持容器に接続された導管(後述)の流路内部に触媒体を載置して、上記脱離成分が分析部分に誘導される間に接触させることで行うことができる。
 また、上記メッシュ状の構造体を、触媒作用を有する貴金属で構成してもよい。これによれば、上記捕捉体が、大気微粒子を効率よく捕捉する捕捉作用を有するとともに、上記脱離成分を分析に供する形態に変換する触媒作用も合わせ有する。そのような貴金属としては、上記白金不織布の白金に加えて、金、パラジウム、ロジウム、イリジウム、及びそれらの合金などが挙げられる。なお、これら材質は、上記メッシュ状の構造体を成形するための骨格、骨組み、枠組みなどに用いられた部材の表面への薄膜形成等により、上記メッシュ状の構造体の表面に配するようにしてもよい。
 次に、図9を参照して、本発明の微粒子組成分析装置の一実施形態について説明する。
 この微粒子組成分析装置50では、減圧チェンバー11a、11b、11cが、第1隔壁12、第2隔壁13によって区切られており、全体として3つに分室した構造の減圧チェンバー11を構成している。減圧チェンバー11a、11b、11cが、それぞれ排気装置14a、14b、14cによって減圧されるようになっている。そして、減圧チェンバー11aと11bとを隔てる第1隔壁12には後述するスキマー3を構成する連通口が形成され、減圧チェンバー11bと11cとを隔てる第2隔壁13には、後述する導管8の部分に連通口が形成されている。この減圧チェンバー11は、そのチェンバー内が外気雰囲気に対して減圧された状態を形成することができるとともに、各排気装置14a~cによる、各減圧チェンバー11a~cの減圧の度合いを調整することによって、所定の気流を生じさせることができるようになっており、この減圧チェンバー11a、11b、11cは、それぞれ気圧の異なる第1空間、第2空間、第3空間を提供している。
 また、上記図2に説明した、気体中の微粒子の粒子線を生成する粒子線生成器であるエアロダイナミックレンズ1が、減圧チェンバー11aの外気雰囲気に接する側壁を、減圧を損なわないように貫通して配設されており、その一端の試料入口22が減圧チェンバー11のチェンバー外に配され、その他端の試料出口23が減圧チェンバー11aのチェンバー内に配されている。
 上記減圧チェンバー11aのチェンバー内に配された試料出口23は、減圧チェンバー11aと11bとの第1隔壁12に形成された連通口に向けられており、生成した微粒子の粒子線2が、この連通口を通り減圧チェンバー11bのチェンバー内に達するようになっている。また、減圧チェンバー11bが提供する第2空間の気圧が、減圧チェンバー11aが提供する第1空間の気圧よりも低圧となるように、排気装置14a、14b及び第1隔壁12により調整されている。したがって、減圧チェンバー11aから減圧チェンバー11bへの気流が生じており、微粒子の粒子線2の減圧チェンバー11a側から減圧チェンバー11b側への飛行を助ける。
 また、減圧チェンバー11aと11bとの隔壁に形成された連通口は、微粒子の粒子線2が入射する方向に向けて口細に構成されたスキマー3とされており、粒子線2を減圧チェンバー11aから11bに効率的に導入しつつ、余剰の気相成分は取り除かれるようになっている。また、そのスキマー3の開口が先細になっていることにより、減圧チェンバー11aが提供する第1空間の気圧と、減圧チェンバー11bが提供する第2空間の気圧との圧力差を維持するのを助けている。
 次に、図10を参照して捕捉体及び捕捉体保持容器について説明する。
 図10(A)には、捕捉体の拡大図を示す。この例では、捕捉体7が、メッシュ状の構造体40と、それを支持する捕捉体支持部7aとで構成されており、その捕捉体支持部7aの一側面には、斜めに傾斜する支持面が形成され、これにメッシュ状の構造体40が載置されている。これにより、上記微粒子の粒子線2が上記捕捉体7に入射する角度と、上記エネルギー線供給器5からのレーザー5aが上記捕捉体7に入射する角度との、両者の角度を調整して、上記捕捉体7による微粒子の捕捉効率と、上記エネルギー線による微粒子の脱離成分の生成効率の両方を最適なものにすることができる。
 また、この態様では、上記メッシュ状構造体40の温度を制御する温度制御機構を備えている。すなわち、捕捉体支持部7aが熱伝導性の高い金属、例えば銅で形成されており、熱電対温度センサ15及びペルチエ冷却素子16が埋め込まれている。そして、微粒子を捕捉体に捕捉するときに、捕捉体の温度を、捕捉体に捕捉された微粒子の揮発性の高い成分の蒸発が低減される温度に下げることができるようになっている。また、エネルギー線を照射するときには、冷却を止めて、温度が上昇するようになっている。これによれば、揮発性の高い成分を捕捉・分析することに都合がよい。
 図10(B)には、捕捉体保持容器の拡大図を示す。捕捉体保持容器17には上記捕捉体7が一体として保持されている。そして、この態様では、捕捉体保持容器17には、微粒子の粒子線2が入射する方向に向けては、口細に構成されたスキマー部4が形成されており、更に、微粒子の脱離成分を分析器10に供給するための導管8が一体として形成されている。また、捕捉体保持容器17の一側壁には光学窓6bが設けられている。
 図9に示す実施形態では、上記減圧チェンバー11bのチェンバー内には、上記図10に説明した、捕捉体7が、この捕捉体を保持する捕捉体保持容器17に保持され、上記エアロダイナミックレンズ1の試料出口23から排出される微粒子の粒子線2が照射される位置に配されており、上記微粒子の粒子線2を構成する微粒子が捕捉体7に捕捉される。このとき捕捉体保持容器17のスキマー部4により、捕捉体保持容器内の捕捉体に向けて粒子線2を効率的に導入しつつ、上記スキマー3と同様に、余剰の気相成分は取り除かれるようになっている。
 また、上記減圧チェンバー11の外部には、エネルギー線供給器としてレーザー供給器5が配されている。そのレーザー5aは、上記減圧チェンバー11bの外気雰囲気に接する側壁に形成された光学窓6aと、上記捕捉体保持容器17の一側壁を形成された光学窓6bとを通って、上記捕捉体7に照射されるようになっており、このレーザー5aの照射により、上記捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生成させることができる。
 前述したように、各減圧チェンバー11a~cのチェンバー内は、各排気装置14a~cによる制御によって、所定の気流を生じさせることができるようになっている。図9に示す実施形態では、減圧チェンバー11cが提供する第3空間の気圧が、減圧チェンバー11bが提供する第2空間の気圧よりも低圧となるように、排気装置14b、14c及び第2隔壁13により調整されている。したがって、減圧チェンバー11bから減圧チェンバー11cへの気流が生じており、これにより、上記レーザー5aの照射により生じさせた脱離成分が組成分析部分に誘導されるようになっている。
 このとき、上記捕捉体保持容器17は、上記レーザー5aの照射により生じさせた脱離成分を、減圧チェンバー11bのチェンバー内に拡散しないようにする役割も果たす。すなわち、前述のとおり、捕捉体保持容器17は、その減圧チェンバー11c側の端部が延伸して、脱離成分を減圧チェンバー11cへと導く導管8が一体として形成されている。そして、この導管8は、減圧チェンバー11bと11cとを隔てる第2隔壁13を貫通して、その端部が、上記減圧チェンバー11cのチェンバー内に配されている。また、その端部は先細形状になっており、減圧チェンバー11bが提供する第2空間の気圧と、減圧チェンバー11cが提供する第3空間の気圧との圧力差を維持するのを助けている。これにより、上記エネルギー線の照射により生じせしめた脱離成分を、減圧チェンバー11bのチェンバー内に散逸させることなく効率的に組成分析部分に誘導することができる。
 図9に示す実施形態では、上記減圧チェンバー11cのチェンバー内には、質量分析計10が設置されている。この質量分析計10の試料導入部には、イオン化領域9が設けられ、更に、そのイオン化領域9に近接した位置に、上記導管8の出口が配されている。これにより、上記エネルギー線の照射により生じせしめた脱離成分が上記導管8を通ってその出口からイオン化領域9に移動し、イオン化されて、質量分析計10での分析に供されるようになっている。
 図11,12には、本発明で用いられる捕捉体保持容器17及びこれに接続された導管8の別の例を示す。
 図11では、導管8の空間内部に、微粒子の脱離成分を他の物質に変換する触媒体18が載置されている。この例では、触媒体18は微粒子の脱離成分を通すことができる孔を有するハニカム構造体であり、微粒子の脱離成分が分析部分に誘導される間に、触媒体に接触させるようになっている。触媒体としては、例えば酸化触媒作用を有する白金触媒を用いることができる。この場合、触媒体を100~400℃程度に加熱し、触媒体の酸化触媒作用を高めることが好ましい。酸化触媒を用いると、例えば、有機物から加熱脱離する複数種の炭素化合物を全て酸化して、その炭素を二酸化炭素に集約できるので、気体試料中の有機物の濃度を効率的に定量することができる。
 図12(A)では、導管8に流路制御機構が設けられている。すなわち、導管8が2つの導管8aと8bに枝分かれしており、これにより、微粒子の脱離成分を複数の前記分析器に誘導することができる。また、図12(B)では、更に、枝分かれ部分に弁19が設けられており、導管8の流路空間を遮蔽し又は絞ることができるようになっている。この場合、必要に応じ、弁19を、導管8a,8bのそれぞれに接続された分析器へ異なる比率で脱離成分を誘導する構成としてもよい。また、図12(C)のように、枝分かれした導管8a,8bに独立に2つの弁19a、19bを設けることもできる。更に枝分かれした導管8a、8bのいずれか又は両方に上記触媒体18を載置することもできる。
 また、例えば、分析器として質量分析計を用いる場合、その分析を真空の雰囲気下で行なうことが要請される。図9に示す実施形態では、導管8の先端が先細形状をしており、その開口が径3mm程度のピンホールであるため、これにより、減圧チェンバー11cが提供する第3空間を真空に保つのを助けている。他の態様においては、その分析器による脱離成分の分析時に、上記弁19などにより導管8の流路空間を遮蔽し又は絞り、前記第3空間を真空に減圧することもできる。
 以下実施例を挙げて本発明を更に詳細に説明するが、これらの実施例は本発明の範囲を限定するものではない。
 <試験例1> (硫酸塩エアロゾルの計測) 
 図9に示した微粒子組成分析装置50の構成を備えた微粒子組成分析装置を作成し、気体中の硫酸アンモニウム粒子の質量濃度の定量を行った。単分散の硫酸アンモニウム粒子を含むエアロゾルは、硫酸アンモニウム水溶液を噴霧・乾燥して多分散粒子を生成し、微分型電気移動度分級装置(DMA)を通過させて生成した。
 微粒子組成分析装置は、減圧チェンバー11a、11b、11cのチェンバー内をそれぞれ10-3~10-2[Torr]、10-5~10-4[Torr]、10-7~10-6[Torr]とし、エアロダイナミックレンズ1に導入される気体の流量が80~90[cc/min]となるように調整した。キャリアガスの空気を予備的に導入した後、三方弁を切り替えて、上記硫酸アンモニウム粒子を含むエアロゾルの導入を開始し、10分後に再び三方弁を切り替えてキャリアガスの空気に切り替えて、エアロゾルの導入を止めた。その後にレーザー供給器5を作動させて捕捉体7にレーザーを2分間照射し、脱離成分を質量分析計10で計測した。上記硫酸アンモニウム粒子を含むエアロゾルの導入を開始時から継続的に動作させた。質量ピークとしては、硫酸塩の主要な質量ピークであるm/z48(SOのシグナル)とm/z64(SOのシグナル)とを測定した。
 図13には質量ピークm/z64を測定した結果を示す。その結果、レーザー照射直後(~5秒)にはシグナルはピークに達し、その後、レーザー照射後30秒までには、シグナルはほぼ収束した。したがって、レーザー照射によって瞬時に捕捉体7からの脱離成分を生成せしめることができ、その分析も、高い時間分解能で完了できることが明らかとなった。なお、質量ピークm/z48の結果は図示しないが、質量ピークm/z64の結果とほぼ比例する関係であり、同様の結果が得られた。
 <試験例2> (計測の直線性・定量性)
 装置に導入するエアロゾルの硫酸アンモニウム粒子の質量濃度を36、37、52、61、93、137、199μg/mと変えて、試験例1と同様の試験を行った。図14には、装置に導入した微粒子質量の積算値に対する、イオン信号の時間積算量(m/z48とm/z64の和)の関係を示す。
 その結果、微粒子積算質量とイオン信号の時間積算量とは正の相関があり、試験を行った微粒子の質量の範囲で、両者の相関にはよい直線性が認められた。したがって、定量的に分析できることが明らかとなった。
 <試験例3> (硝酸塩エアロゾルの計測および微粒子の捕捉効率の検討)
 捕捉体の粒子捕捉効率を検討した。試験例1と同様にして硝酸カリウム粒子を含むエアロゾルの計測を行った。
 なお、捕捉効率を測るためには、装置に導入して捕捉体に照射した微粒子が100%計測される状態を把握する必要がある。そこで、油(オレイン酸)で被覆された硝酸カリウム粒子を生成して計測し、その把握を図った。すなわち、従来の研究から、乾燥した硝酸カリウムや硫酸アンモニウムなどの固体粒子は高速で面に衝突するとかなりの部分が跳ね返るが、油などの液体粒子または液体である程度被覆された固体粒子はほとんど全て跳ね返らないことが知られている。つまり、後者を計測すれば、装置に導入して捕捉体に照射した微粒子が100%計測されたとみなしてよい。
 そこで、図15に示すフローチャートで、乾燥した硝酸カリウム粒子に対する信号強度と、被覆した粒子に対する信号強度(いずれの場合も単位質量の硝酸カリウムを基準とした信号強度)とを測定して比較することにより、乾燥した硝酸カリウム粒子の捕捉効率を求めた。より具体的には、粒子発生装置で硝酸カリウム水溶液を噴霧し、乾燥管に通して乾燥して多分散粒子を生成した後、第1の分級装置(DMA1)に通して単分散の硝酸カリウム粒子を含むエアロゾルとした。また、そのエアロゾルが切替弁を介して枝分かれ流路により油被膜管を通るようにして油(オレイン酸)で被覆し、更に第2の分級装置(DMA2)に通して、油(オレイン酸)で被覆された単分散の硝酸カリウム粒子を含むエアロゾルとした。各エアロゾルの流路を切替弁により制御して微粒子組成分析装置に導入できるようにし、それぞれを計測した。質量ピークはm/z30(NOのシグナル)とm/z46(NOのシグナル)を計測した。
 その結果、図16に示すように、乾燥した硝酸カリウム粒子に対する、微粒子積算質量とイオン信号の時間積算量との相関関係を表す回帰直線(図中Aで指し示す直線)と、油(オレイン酸)で被覆された硝酸カリウム粒子に対する、微粒子積算質量とイオン信号の時間積算量との相関関係を表す回帰直線(図中Bで指し示す直線)とは、いずれにも良い計測の直線性が認められ、両者はその外挿線上にほぼ重なり合うものであった。これにより、乾燥した硝酸カリウム粒子の捕捉効率が100%に近いことが確認され、タングステン、モリブデンなどに微粒子の粒子線を照射して測定する従来法に比べて格段に捕集効率が向上することが明らかとなった。
符合の説明
1 エアロダイナミックレンズ
2 微粒子の粒子線
3 スキマー
4 スキマー部
5 レーザー供給器
5a レーザー
6a、6b 光学窓
7 捕捉体
7a 捕捉体支持部
8、8a、8b 導管
9 イオン化領域
10 質量分析計
11a、11b、11c 減圧チェンバー
12 第1隔壁
13 第2隔壁
14a、14b、14c 排気装置
15 熱電対温度センサ
16 ペルチエ冷却素子
17 捕捉体保持容器
18 触媒体
19、19a、19b 弁
20 ハウジング
21a、21b、21c、21d オリフィス
22 試料入口
23 試料出口
24 ノズル
40、45 メッシュ状の構造体
40a、40b、40c、40d メッシュ層
41 第1のメッシュ状の構造体
41a、41b、41c 格子層
42 第2のメッシュ状の構造体
43 空隙を有さない板体
50 微粒子組成分析装置
100、100a、100b、100c、100d、100e メッシュ構造基板
101 メッシュ
102 支持枠体
200 微細加工成形体

Claims (18)

  1.  気体試料中の微粒子の粒子線を収束させ、余剰の気相成分を除去して前記粒子線中の微粒子を捕捉するためのメッシュ状の構造体を有する捕捉体の狭い領域に照射して該微粒子を捕捉させた後、前記狭い領域にエネルギー線を集中照射して前記捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生じせしめ、前記脱離成分を分析することを特徴とする微粒子組成分析方法。
  2.  前記微粒子を構成する成分のエネルギー吸収特性に応じて前記エネルギー線を選択、制御する請求項1記載の微粒子組成分析方法。
  3.  前記狭い領域は、直径1mm~3mmである請求項1又は2記載の微粒子組成分析方法。
  4.  前記メッシュ状の構造体は、触媒作用を有する貴金属で構成されたものである請求項1~3のいずれか1つに記載の微粒子組成分析方法。
  5.  前記メッシュ状の構造体は、前記粒子線が照射される正面側に所定空隙率の第1のメッシュ状の構造体を配し、該第1のメッシュ状の構造体に連なる前記粒子線が照射される反対面側に、前記第1のメッシュ状の構造体よりも空隙率の小さい第2のメッシュ状の構造体を配して構成されたものである請求項1~4のいずれか1つに記載の微粒子組成分析方法。
  6.  前記メッシュ状の構造体は、前記粒子線が照射される正面側に所定空隙率のメッシュ状の構造体が配され、該メッシュ状の構造体に連なる前記粒子線が照射される反対面側に、空隙を有さない板体が配されたものである請求項1~4のいずれか1つに記載の微粒子組成分析方法。
  7.  前記微粒子を捕捉体に捕捉するときに、前記捕捉体の温度を、前記捕捉体に捕捉された微粒子の揮発性の高い成分の蒸発が低減される温度に制御する請求項1~6のいずれか1つに記載の微粒子組成分析方法。
  8.  触媒体を用いて前記脱離成分を他の物質に変換し、変換された前記物質を分析する請求項1~7のいずれか1つに記載の微粒子組成分析方法。
  9.  チェンバー内が減圧され、チェンバー内に所定の気流が生成される減圧チェンバーと、
     一端が前記チェンバー外に配され、他端が前記チェンバー内に配され、前記減圧チェンバーの減圧により外気を取り込み前記外気中の微粒子の粒子線を前記チェンバー内に照射するように構成された粒子線生成器と、
     前記チェンバー内の前記粒子線が照射される位置に配され、前記粒子線中の微粒子を捕捉するためのメッシュ状の構造体を有する捕捉体と、
     前記捕捉体にエネルギー線を照射して、前記捕捉体に捕捉された微粒子を気化、昇華又は反応させて脱離成分を生成するためのエネルギー線供給器と、
     前記粒子線の入射口および前記エネルギー線が入射する光学窓が設けられ、前記捕捉体が内部に配置されて、前記入射口から余剰の気相成分が除去された前記粒子線を前記捕捉体に照射させるように配された捕捉体保持容器と、
     前記捕捉体保持容器に接続された導管と、
     前記捕捉体保持容器内の前記脱離成分が前記導管を介して供給され、前記脱離成分を分析するための分析器と、
    を備えたことを特徴とする微粒子組成分析装置。
  10.  前記減圧チェンバーには、前記粒子線生成器が配された第1空間と前記捕捉体保持容器が配された第2空間とを隔てる第1隔壁が設けられ、前記第1隔壁には前記粒子線の通過口が設けられ、前記粒子線の通過口と前記捕捉体保持容器の前記粒子線入射口とをそれぞれスキマー構成とし、前記第2空間の気圧が前記第1空間の気圧よりも低圧となるように前記第1、第2空間を減圧することができるように構成されている請求項9記載の微粒子組成分析装置。
  11.  前記メッシュ状の構造体は、触媒作用を有する貴金属で構成されたものである請求項9又は10記載の微粒子組成分析装置。
  12.  前記メッシュ状の構造体は、前記粒子線が照射される正面側に所定空隙率の第1のメッシュ状の構造体を配し、該第1のメッシュ状の構造体に連なる前記粒子線が照射される反対面側に、前記第1のメッシュ状の構造体よりも空隙率の小さい第2のメッシュ状の構造体を配して構成されたものである請求項9~11のいずれか1つに記載の微粒子組成分析装置。
  13.  前記メッシュ状の構造体は、前記粒子線が照射される正面側に所定空隙率のメッシュ状の構造体が配され、該メッシュ状の構造体に連なる前記粒子線が照射される反対面側に、空隙を有さない板体が配されたものである請求項9~11のいずれか1つに記載の微粒子組成分析装置。
  14.  前記捕捉体には、温度制御手段が設けられ、前記微粒子を捕捉体に捕捉するときに、前記捕捉体の温度を、前記捕捉体に捕捉された微粒子の揮発性の高い成分の蒸発が低減される温度に制御することができるように構成されている請求項9~13のいずれか1つに記載の微粒子組成分析装置。
  15.  前記導管の空間内部には、前記脱離成分を他の物質に変換する触媒体が設けられている請求項9~14のいずれか1つに記載の微粒子組成分析装置。
  16.  前記減圧チェンバーには、前記捕捉体保持容器が配置された第2空間と前記分析器が配置された第3空間とを隔てる第2隔壁が設けられ、前記第3空間の気圧が前記第2空間の気圧よりも低圧となるように第2、第3空間を減圧することができるように構成されているとともに、前記第2隔壁に前記導管を貫通させ、前記捕捉体保持容器内の前記脱離成分を前記分析器に誘導することができるように構成されている請求項9~15のいずれか1つに記載の微粒子組成分析装置。
  17.  前記導管に流路制御機構を設け、前記分析器による前記脱離成分の分析時に、前記流路制御機構により前記導管の流路空間を遮蔽し又は絞り、前記第3空間を真空に減圧することができるように構成されている請求項16記載の微粒子組成分析装置。
  18.  前記導管が複数に分岐していることにより、前記捕捉体保持容器内の前記脱離成分を、複数の前記分析器に誘導することができるように構成されている請求項9~17のいずれか1つに記載の微粒子組成分析装置。
PCT/JP2010/071818 2010-03-17 2010-12-06 微粒子組成分析方法及び微粒子組成分析装置 WO2011114587A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012505454A JP5659351B2 (ja) 2010-03-17 2010-12-06 微粒子組成分析方法及び微粒子組成分析装置
US13/635,304 US9285298B2 (en) 2010-03-17 2010-12-06 Method of analyzing microparticle composition and microparticle composition analyzing device
CN201080065448.1A CN103026199B (zh) 2010-03-17 2010-12-06 微粒组成分析方法及微粒组成分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010060467 2010-03-17
JP2010-060467 2010-03-17

Publications (1)

Publication Number Publication Date
WO2011114587A1 true WO2011114587A1 (ja) 2011-09-22

Family

ID=44648705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071818 WO2011114587A1 (ja) 2010-03-17 2010-12-06 微粒子組成分析方法及び微粒子組成分析装置

Country Status (4)

Country Link
US (1) US9285298B2 (ja)
JP (1) JP5659351B2 (ja)
CN (1) CN103026199B (ja)
WO (1) WO2011114587A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087746A1 (ja) * 2012-12-03 2014-06-12 富士電機株式会社 粒子線成形装置
WO2014141994A1 (ja) * 2013-03-15 2014-09-18 国立大学法人 東京大学 粒子分析方法及び粒子分析装置
CN104769412A (zh) * 2012-08-14 2015-07-08 托夫沃克股份公司 用于判定气溶胶颗粒尺寸的方法和设备
JP2017009466A (ja) * 2015-06-23 2017-01-12 富士電機株式会社 粒子複合分析装置の校正方法及び粒子複合分析装置
JP2017053718A (ja) * 2015-09-09 2017-03-16 富士電機株式会社 微粒子組成分析装置
JP2017133925A (ja) * 2016-01-27 2017-08-03 富士電機株式会社 粒子分析装置
JP2017161348A (ja) * 2016-03-09 2017-09-14 富士電機株式会社 粒子分析装置および粒子分析方法
JP2017167103A (ja) * 2016-03-18 2017-09-21 富士電機株式会社 粒子成分分析装置
JP2017167110A (ja) * 2016-03-18 2017-09-21 富士電機株式会社 粒子成分分析装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267869B2 (en) * 2013-08-07 2016-02-23 Aerodyne Research, Inc. Particle capture device
JP2017187405A (ja) * 2016-04-06 2017-10-12 富士電機株式会社 粒子成分分析装置、粒子複合分析装置および粒子成分分析装置の使用方法
JP6672996B2 (ja) * 2016-04-28 2020-03-25 富士電機株式会社 発生源分析装置および発生源分析方法
US10217621B2 (en) * 2017-07-18 2019-02-26 Applied Materials Israel Ltd. Cleanliness monitor and a method for monitoring a cleanliness of a vacuum chamber
US20230366831A1 (en) * 2019-08-19 2023-11-16 Christopher Lee Boortz Particulate matter detection device
EP3832302A1 (en) * 2019-12-02 2021-06-09 Aerosol d.o.o. A heating chamber for measuring carbonaceous aerosol, and a device comprising said chamber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270542A (en) * 1992-12-31 1993-12-14 Regents Of The University Of Minnesota Apparatus and method for shaping and detecting a particle beam
JPH07505218A (ja) * 1992-05-01 1995-06-08 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド 炭素微粒子モニタ
JP2000180316A (ja) * 1998-12-21 2000-06-30 Mitsubishi Heavy Ind Ltd ダイオキシン類の抽出方法及び定量分析方法並びにそのシステム
JP2001511257A (ja) * 1997-03-21 2001-08-07 エアロソール ダイナミクス インコーポレイテッド 総合粒子収集気化化学モニタリング
JP2001351569A (ja) * 2000-06-02 2001-12-21 Hitachi Ltd ガス測定用オンラインモニター装置
JP2002506201A (ja) * 1998-03-05 2002-02-26 エアロダイン・リサーチ,インコーポレイテッド 大気中粒子の分析器
JP2004028741A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Ind Co Ltd パーティクルカウンタ装置およびパーティクル計数方法
JP2007309878A (ja) * 2006-05-22 2007-11-29 Horiba Ltd 質量分析計

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383171A (en) 1980-11-17 1983-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Particle analyzing method and apparatus
CA2101237C (en) * 1992-09-11 1999-04-13 Stephen Ward Downey Apparatus comprising means for mass spectrometry
JP2001307673A (ja) * 2000-04-19 2001-11-02 Horiba Ltd メンブレンインレット質量分析計
JP2001357815A (ja) * 2000-06-16 2001-12-26 Jeol Ltd ネブライザー
EP1317950A1 (en) 2001-12-07 2003-06-11 N.V. Bekaert S.A. Filter medium for diesel soot filtration
CN2755601Y (zh) * 2003-03-31 2006-02-01 中国科学院安徽光学精密机械研究所 激光汽化电离的气溶胶连续监测仪的结构
JP2007255939A (ja) * 2006-03-20 2007-10-04 Horiba Ltd 浮遊粒子状物質測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505218A (ja) * 1992-05-01 1995-06-08 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド 炭素微粒子モニタ
US5270542A (en) * 1992-12-31 1993-12-14 Regents Of The University Of Minnesota Apparatus and method for shaping and detecting a particle beam
JP2001511257A (ja) * 1997-03-21 2001-08-07 エアロソール ダイナミクス インコーポレイテッド 総合粒子収集気化化学モニタリング
JP2002506201A (ja) * 1998-03-05 2002-02-26 エアロダイン・リサーチ,インコーポレイテッド 大気中粒子の分析器
JP2000180316A (ja) * 1998-12-21 2000-06-30 Mitsubishi Heavy Ind Ltd ダイオキシン類の抽出方法及び定量分析方法並びにそのシステム
JP2001351569A (ja) * 2000-06-02 2001-12-21 Hitachi Ltd ガス測定用オンラインモニター装置
JP2004028741A (ja) * 2002-06-25 2004-01-29 Matsushita Electric Ind Co Ltd パーティクルカウンタ装置およびパーティクル計数方法
JP2007309878A (ja) * 2006-05-22 2007-11-29 Horiba Ltd 質量分析計

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALLAN J D ET AL.: "Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis.", J GEOPHYS RES, vol. 108, no. D3, 16 February 2003 (2003-02-16), pages AAC1.1 - AAC1.10 *
ALLAN J D ET AL.: "Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities.", J GEOPHYS RES, vol. 108, no. D3, 16 February 2003 (2003-02-16), pages AAC2.1 - AAC2.15, XP008084098, DOI: doi:10.1029/2002JD002359 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769412A (zh) * 2012-08-14 2015-07-08 托夫沃克股份公司 用于判定气溶胶颗粒尺寸的方法和设备
CN104769412B (zh) * 2012-08-14 2017-10-27 托夫沃克股份公司 用于判定气溶胶颗粒尺寸的方法和设备
US9574984B2 (en) 2012-12-03 2017-02-21 Fuji Electric Co., Ltd Particle beam forming device
CN104736995A (zh) * 2012-12-03 2015-06-24 富士电机株式会社 粒子束形成装置
JP5611493B1 (ja) * 2012-12-03 2014-10-22 富士電機株式会社 粒子線成形装置
WO2014087746A1 (ja) * 2012-12-03 2014-06-12 富士電機株式会社 粒子線成形装置
WO2014141994A1 (ja) * 2013-03-15 2014-09-18 国立大学法人 東京大学 粒子分析方法及び粒子分析装置
JP2017009466A (ja) * 2015-06-23 2017-01-12 富士電機株式会社 粒子複合分析装置の校正方法及び粒子複合分析装置
US10012628B2 (en) 2015-06-23 2018-07-03 Fuji Electric Co., Ltd. Multifunctional particle analysis device and method of calibrating the same
JP2017053718A (ja) * 2015-09-09 2017-03-16 富士電機株式会社 微粒子組成分析装置
CN106525673A (zh) * 2015-09-09 2017-03-22 富士电机株式会社 微粒子组成分析装置
JP2017133925A (ja) * 2016-01-27 2017-08-03 富士電機株式会社 粒子分析装置
JP2017161348A (ja) * 2016-03-09 2017-09-14 富士電機株式会社 粒子分析装置および粒子分析方法
JP2017167103A (ja) * 2016-03-18 2017-09-21 富士電機株式会社 粒子成分分析装置
JP2017167110A (ja) * 2016-03-18 2017-09-21 富士電機株式会社 粒子成分分析装置

Also Published As

Publication number Publication date
US20130011930A1 (en) 2013-01-10
CN103026199B (zh) 2016-01-13
CN103026199A (zh) 2013-04-03
JP5659351B2 (ja) 2015-01-28
JPWO2011114587A1 (ja) 2013-06-27
US9285298B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5659351B2 (ja) 微粒子組成分析方法及び微粒子組成分析装置
Lopez-Hilfiker et al. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)
Noble et al. Real‐time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols
Nash et al. Aerosol mass spectrometry: An introductory review
US8245564B1 (en) Chemical sample collection and detection system
Sipin et al. Recent advances and some remaining challenges in analytical chemistry of the atmosphere
JP6810191B2 (ja) 音響コータを用いたエアロゾル粒子のコーティング
JP7403881B2 (ja) エアロゾル粒子を迅速かつ自律的に検出するシステムおよび方法
Yatavelli et al. Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS)
CN102854240A (zh) 真空紫外光电离有机气溶胶离子阱质谱仪
WO2007131739A2 (de) Gasdetektor mit akustischer messzelle und selektiv adsorbierender oberfläche
Humayun et al. Ubiquitous low-cost functionalized multi-walled carbon nanotube sensors for distributed methane leak detection
Sullivan et al. Characterization of individual aerosol particles
RU2414697C1 (ru) Способ детектирования и идентификации химических соединений и устройство для его осуществления
Gaie-Levrel et al. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM) for organic aerosol studies
WO2014141994A1 (ja) 粒子分析方法及び粒子分析装置
JP2007171064A (ja) ガス分析用Jet−REMPI装置
JP2017187405A (ja) 粒子成分分析装置、粒子複合分析装置および粒子成分分析装置の使用方法
Brüggemann et al. Analysis of organic aerosols using a micro-orifice volatilization impactor coupled to an atmospheric-pressure chemical ionization mass spectrometer
JP6686586B2 (ja) 粒子成分分析装置
JP7085326B2 (ja) 液中粒子の捕集装置及び捕集方法
Allan A thesis submitted to UMIST for the degree of Doctor of Philosophy
Coe et al. Mass spectrometric methods for aerosol composition measurements
Allan An Aerosol Mass Spectrometer
JP5381110B2 (ja) ガス分析用Jet−REMPI装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065448.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505454

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847993

Country of ref document: EP

Kind code of ref document: A1