WO2014141994A1 - 粒子分析方法及び粒子分析装置 - Google Patents

粒子分析方法及び粒子分析装置 Download PDF

Info

Publication number
WO2014141994A1
WO2014141994A1 PCT/JP2014/055748 JP2014055748W WO2014141994A1 WO 2014141994 A1 WO2014141994 A1 WO 2014141994A1 JP 2014055748 W JP2014055748 W JP 2014055748W WO 2014141994 A1 WO2014141994 A1 WO 2014141994A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
analysis
analysis region
light
Prior art date
Application number
PCT/JP2014/055748
Other languages
English (en)
French (fr)
Inventor
暢之 竹川
拓真 宮川
直希 武田
雅哉 田原
和裕 小泉
平山 紀友
有剛 金谷
文一 竹谷
Original Assignee
国立大学法人 東京大学
富士電機株式会社
独立行政法人 海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 富士電機株式会社, 独立行政法人 海洋研究開発機構 filed Critical 国立大学法人 東京大学
Publication of WO2014141994A1 publication Critical patent/WO2014141994A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/144Imaging characterised by its optical setup
    • G01N2015/1445Three-dimensional imaging, imaging in different image planes, e.g. under different angles or at different depths, e.g. by a relative motion of sample and detector, for instance by tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Definitions

  • the present invention relates to a particle analysis method and particle analysis apparatus suitable for analyzing particles suspended in the air (aerosol particles) and the like.
  • a filter / impactor collection method has been widely used as an analysis method of the composition and mixed state of particles.
  • the air is sucked in to collect the particles on a filter or impactor and transferred to the analysis chamber for analysis.
  • An electron microscope or the like is used for the analysis.
  • it is difficult to correctly grasp the characteristics of the floating state because the particles may be damaged during collection or the particles may be altered during collection / transfer.
  • the number of particles that can be analyzed is limited.
  • laser light irradiation means for irradiating a predetermined particle measurement region with laser light, and scattered light when particles to be measured contained in sample air pass the laser light in the particle measurement region.
  • a particle measuring device for measuring the particles to be measured based on a light receiving level of scattered light received by the light receiving unit, wherein the outer circumference of the sample air is wrapped with clean sheath air.
  • a sample air discharge unit that discharges the particle measurement region from a direction orthogonal to the laser light irradiation direction, and is opposed to the sample air discharge unit across the particle measurement region, and is discharged from the sample air discharge unit.
  • Sample air separation and recovery means for separating and recovering the sample air from a mixed airflow of the sample air and the sheath air Particle measuring apparatus characterized disclosed that.
  • Patent Document 2 as an example of an analysis method using a laser-induced incandescent method, a suspended particle is irradiated with a pulsed laser light beam to generate incandescent light, and the particle volume fraction of a fine particle is measured. It is disclosed. According to such a laser-induced incandescent method, particles containing soot or part of metal can be selectively detected.
  • particles containing soot or a part of metal can be selectively detected, but other compositions (for example, organic substances) cannot be discriminated in the same particle.
  • An object of the present invention is to provide a particle analysis method and a particle analyzer that can efficiently analyze the composition and mixed state of particles in a floating state.
  • the particle analysis method of the present invention transfers sample air containing particles to be analyzed along a predetermined flow path to a plurality of analysis regions provided on the sample air flow path.
  • a particle analysis method for analyzing the particles in a state where the particles are suspended in a gas At least in each analysis region, the particles contained in the sample air are transferred in the form of a beam, In each analysis region, the particle beam is irradiated with analysis light, and signal light emitted from the particle irradiated with the analysis light is detected by light detection means, The composition and characteristics of the particles are analyzed by combining information based on the signal light detected by the light detection means in each analysis region.
  • the particles in the sample air are transported in the form of a beam, and the analysis light is irradiated in each analysis region to detect the signal light emitted from the particles.
  • Various characteristics such as the composition, size, and mixing state of the particles can be analyzed while the particles are floating. And in a plurality of analysis regions provided along the flow path of the sample air, analysis by different analysis light and light detection means, by combining those information, the composition of particles contained in the sample air, Various characteristics such as size and mixed state can be analyzed from various aspects.
  • the identity of the particles passing through each analysis region is determined, and the same passing through each analysis region is determined. It is preferable to analyze the composition and various characteristics of the particles by combining information based on the signal light detected by the light detection means for the particles.
  • the time during which the same particle passes between each analysis region can be obtained from the frequency distribution. It is possible to identify whether or not they are the same particle by the difference in detection time of the signal light. As a result, the same particle can be analyzed by different analysis light and light detection means, and by combining these information, the composition of the particle can be analyzed more efficiently.
  • the particle diameter derived using the signal light emitted from the particles passing through each analysis region is used.
  • the signal light emitted from the particles passing through each analysis region is detected at a time interval greater than the detection time difference of the signal light emitted from the same particles passing through each analysis region.
  • the sample air is preferably diluted and transferred.
  • the sample air is diluted so that the signal light emitted from the particles passing through each analysis region is detected with a time interval greater than the detection time difference of the signal light emitted from the same particles passing through each analysis region.
  • the signal light emitted from the particles passing through each analysis region is detected with a time interval greater than the detection time difference of the signal light emitted from the same particles passing through each analysis region.
  • the particles contained in the sample air may be at least each analysis region by one or a different combination selected from the group consisting of a sheath air nozzle, an aerodynamic lens, and a light-transmitting capillary. It is preferable to transport in the form of a beam.
  • laser light is used as the analysis light
  • the light detection means includes a laser light scattering detection device, a laser light scattering polarization separation detection device, a laser induced fluorescence detection device, and a laser induced incandescent light detection device. , And a combination of one or more selected from the group consisting of laser-induced breakdown spectrometers.
  • the analysis region at least a first analysis region and a second analysis region arranged along the flow path of the sample air are provided, and the first analysis region and the second analysis are provided. It is preferable that detection is performed by a laser-induced fluorescence detection device in one of the regions, and detection is performed by a laser-induced incandescent light detection device in either one of the regions.
  • the identity of the particles can be identified by obtaining the detection time difference of the signal light emitted from the particles passing through each analysis region by the device arranged in each analysis region.
  • particles containing organic substances can be detected by a laser-induced fluorescence detection device, and particles containing soot can be detected by a laser-induced incandescent light detection device.
  • a laser-induced fluorescence detection device is disposed in the first analysis region and a laser-induced incandescent light detection device is disposed in the second analysis region, the presence or absence of an organic component that emits fluorescence in a specific wavelength range for the same particle, The presence or absence of wrinkles can be detected, and the mixing state can be known by combining information from both devices.
  • particles containing soot are heated and sublimated in the first analysis region.
  • the particles that are erased and pass through the second analysis region can be limited to particles that do not contain soot, and the analysis target in the second analysis region can be limited.
  • the particles after detection in each analysis region are further detected by a mass spectrometer, or the particles are collected by a particle collector.
  • the particles after the detection are bulk analyzed offline to supplement the data that cannot be obtained by the above online analysis, and the composition and characteristics of the particles are more precise. Can be analyzed.
  • the particle analyzer of the present invention is a particle analyzer for analyzing particles in the sample air, and is provided on a transfer means for transferring the sample air along a predetermined flow path, and on the flow path of the sample air.
  • the transfer means has particle beam generation means for making particles contained in the sample air into a beam shape at least in each analysis region, Each analysis region is provided with light irradiation means for irradiating the particle beam with analysis light, and light detection means for detecting signal light emitted from the particles irradiated with the analysis light, Using particle detection means for judging the identity of the particles that have passed through each analysis region, using the detection time difference of the signal light emitted from the particles that pass through each analysis region, The composition and characteristics of the particles are analyzed by combining information based on the signal light detected by the light detection means for the same particles passing through each analysis region.
  • the particles in the sample air are transported in the form of a beam, and the analysis light is irradiated in each analysis region to detect the signal light emitted from the particles.
  • Various characteristics such as the composition, size, and mixing state of the particles can be analyzed while the particles are floating. Then, by detecting the detection time difference of the signal light emitted from the particles passing through each analysis region, the time required for the same particle to pass between each analysis region is obtained from the frequency distribution, so the signal detected in each analysis region Whether the particles are the same or not can be identified by the difference in the detection time of light.
  • the same particle can be analyzed by different analysis light and light detection means, and by combining these information, various characteristics such as the composition, size, and mixing state of the particles contained in the sample air can be obtained. Analysis.
  • the particle identification means derives using the signal light emitted from the particles passing through each analysis region, together with the detection time difference of the signal light emitted from the particles passing through each analysis region. It is preferable that the identity of the particles that have passed through each analysis region is determined using the particle size to be determined.
  • signal light emitted from particles passing through each analysis region is detected at a time interval greater than a detection time difference between signal light emitted from the same particles passing through each analysis region. It is preferable to have a diluting device for diluting the sample air.
  • the sample air is diluted so that the signal light emitted from the particles passing through each analysis region is detected with a time interval greater than the detection time difference of the signal light emitted from the same particles passing through each analysis region.
  • the signal light emitted from the particles passing through each analysis region is detected with a time interval greater than the detection time difference of the signal light emitted from the same particles passing through each analysis region.
  • the particle beam generating means is made of one type selected from the group consisting of a sheath air nozzle, an aerodynamic lens, and a light-transmitting capillary, or a different combination thereof.
  • the analysis light is laser light
  • the light detection means is a laser light scattering detection device, a laser light scattering polarization separation detection device, a laser induced fluorescence detection device, a laser induced incandescent light detection device. And a combination of one or more selected from the group consisting of laser-induced breakdown spectrometers.
  • the analysis region includes at least a first analysis region and a second analysis region arranged along the flow path of the sample air, and the first analysis region and the first analysis region are provided. It is preferable that a laser-induced fluorescence detection device is disposed in any one of the two analysis regions, and a laser-induced incandescent light detection device is disposed in either one.
  • the identity of the particles can be identified by obtaining the detection time difference of the signal light emitted from the particles passing through each analysis region by the device arranged in each analysis region.
  • particles containing organic substances can be detected by a laser-induced fluorescence detection device, and particles containing soot can be detected by a laser-induced incandescent light detection device.
  • a laser-induced fluorescence detection device is disposed in the first analysis region and a laser-induced incandescent light detection device is disposed in the second analysis region, the presence or absence of an organic component that emits fluorescence in a specific wavelength range for the same particle, The presence or absence of wrinkles can be detected, and the mixing state can be known by combining information from both devices.
  • particles containing soot are heated and sublimated in the first analysis region.
  • the particles that are erased and pass through the second analysis region can be limited to particles that do not contain soot, and the analysis target in the second analysis region can be limited.
  • a mass spectrometer for performing detection by mass spectrometry or a particle collector for collecting the particles after detection in the respective analysis regions. It is preferable to provide.
  • the particles after the detection are bulk analyzed offline to supplement the data that cannot be obtained by the above online analysis, and the composition and characteristics of the particles are more precise. Can be analyzed.
  • the particle analysis method and the particle analysis apparatus of the present invention by detecting the signal light emitted from the particles by irradiating the analysis light in each analysis region while transferring the particles in the sample air in the form of a beam, Various characteristics such as particle composition, size, and mixed state can be analyzed in a state where the particles are suspended in the sample air. And in a plurality of analysis regions provided along the flow path of the sample air, analysis by different analysis light and light detection means, by combining those information, the composition of particles contained in the sample air, Various characteristics such as size and mixed state can be analyzed from various aspects. In particular, the same particle can be analyzed by different analysis light and light detection means, and by combining these information, the composition of the particle can be analyzed more efficiently.
  • FIG. 6A is an example of a method for diluting sample air
  • FIG. 6A is an explanatory diagram of a method using a T-shaped tube
  • FIG. 6B is a Y-shaped tube
  • FIG. 6A is an example of a method for diluting sample air
  • FIG. 6A is an explanatory diagram of a method using a T-shaped tube
  • FIG. 6B is a Y-shaped tube
  • FIG. 2 is a schematic configuration diagram of a mass spectrometer 250.
  • FIG. It is a schematic block diagram of the particle collector 207 and the collector holding container 217 formed integrally with it. It is a graph which shows the frequency distribution of the detection time difference in a fluorescence detection part and an incandescent light detection part when PSL standard particles (particle size: 0.4, 0.5, 0.6,, or 1.0 ⁇ m) are used in a particle analyzer in Test Example 1.
  • . 10 is a chart showing an example of results obtained by measuring aerosol particles generated from a mixed solution of tryptophan and black carbon for each single particle in Test Example 2.
  • FIG. 1 is a conceptual diagram showing an embodiment of the particle analysis method of the present invention.
  • sample air containing particles to be analyzed is transferred along a predetermined flow path, as indicated by the arrows in FIG.
  • a plurality of analysis regions are provided on the flow path of the sample air, and in each analysis region, particles suspended in the gas are analyzed.
  • the first analysis region and the second analysis region are provided as analysis regions.
  • a third analysis region may be further provided on the downstream side of the second analysis region, and further thereafter on the downstream side.
  • An analysis area may be provided.
  • FIG. 1 illustrates a mode in which particles are discharged from the analysis area at the final stage, but the transfer of particles may be completed within the analysis area at the final stage.
  • the particle analysis method of the present invention it is necessary to transfer particles contained in the sample air in the form of a beam at least in each analysis region. This is because by concentrating the flow of particles to be analyzed in a narrow region, analysis in a state where the particles are suspended in the gas can be performed using analysis light such as laser light. Therefore, the particle beam is generated so that the particles are distributed laterally with respect to the traveling direction, preferably in a range of about 0.1 mm to 1 mm in diameter, and more preferably in a range of about 0.1 mm to 0.5 mm in diameter. It is preferable.
  • the particle analysis method of the present invention can be used, for example, for monitoring the air environment, vehicle / ship exhaust gas, or clean room cleanliness, etc.
  • the particles targeted by the present invention include, for example, diesel-derived soot Examples include particles, plant-derived organic particles such as pollen, and floating dust.
  • the particle diameter is not particularly limited, but is typically 0.01 to 100 ⁇ m, more typically 0.01 to 10 ⁇ m, and even more typically 0.1 to 3 ⁇ m.
  • Examples of means for turning such particles into a beam include a sheath air nozzle, an aerodynamic lens, and a light-transmitting capillary. These may be composed of one kind thereof, or may be composed of different combinations thereof.
  • the features of the particle beam generating means will be described below.
  • FIG. 2 is a cross-sectional view schematically showing a sheath air nozzle and a pair of separation and recovery nozzles as an example of the particle beam generating means.
  • the sheath air nozzle 24 has a double structure of an internal nozzle 24a and an external nozzle 24b disposed outside the internal nozzle 24a and having a diameter larger than the external diameter of the internal nozzle 24a.
  • a duct (not shown) for introducing the sample air 21 is connected to one end (the upper end side in FIG. 2) of the internal nozzle 24a, and the sheath air 22 is connected to one end (the upper end side in FIG. 2) of the external nozzle 24b.
  • sheath air 22 having a flow rate of 5 to 10 times the flow rate ratio with respect to the sample air 21 flows by a flow rate adjusting means (not shown). Further, the other end (the lower end side in FIG. 2) of the external nozzle 24b is formed in a tapered shape.
  • the sample air 21 is wrapped around the outer periphery of the sheath air 22 which is clean air, and is discharged from the sheath air nozzle 24 as a very thin air stream.
  • the particles contained in the sample air 21 are transported in a beam shape in the analysis region by passing through the analysis region by the analysis light such as laser light.
  • FIG. 2 shows a separation / recovery nozzle 25 disposed opposite to the sheath air nozzle 24.
  • the separation / recovery nozzle 25 has a double structure substantially similar to the sheath air nozzle 24, and includes an inner nozzle 25a and an outer nozzle 25b.
  • the tip of the inner nozzle 25a and the outer nozzle 25b (the upper end side in FIG. 2). ) are each formed in a tapered shape.
  • the cross-sectional shape of the tip of the internal nozzle 25a is equivalent to the cross-sectional shape of the flow path of the sample air 21 immediately before being sucked into the separation / recovery nozzle 25, so The discharged sample air 21 is sucked, and the sheath air 22 discharged from the sheath air nozzle 24 is sucked into an annular portion between the inner nozzle 25a and the outer nozzle 25b which is the outer peripheral portion.
  • the shape of the separation / recovery nozzle 25 (inner diameter of each nozzle 25a, 25b, etc.) is such that the flow rates of the sample air 21 and the sheath air 22 before and after being sucked do not change significantly. .
  • the sample air 21 is not diluted by the sheath air 22 having a flow rate of 5 to 10 times, so that it can be smoothly transferred to the next analysis region. .
  • FIG. 3 is a cross-sectional view schematically showing an aerodynamic lens as an example of the particle beam generating unit.
  • the aerodynamic lens 3 includes a diaphragm mechanism that stands inside on the inside of a tubular structure, and has a structure that emits particles in a beam shape through the sample air inside the tubular structure. That is, it has a structure in which several stages of orifices 31a to 31d are connected to the inside of the tubular housing 30, and an inlet 32 through which sample air flows is provided on one side surface, and on the other side surface, An outlet 33 for emitting the particle beam of particles is provided.
  • a nozzle 34 is provided at the inlet 32 and a nozzle 35 is provided at the outlet 33 so that the particle beam is more converged.
  • this aerodynamic lens 3 When this aerodynamic lens 3 is attached to a decompression vessel equipped with a suitable working exhaust mechanism and the inside of the vessel is decompressed to about 10 ⁇ 3 to 10 ⁇ 5 Torr, the sample air flows in through the inlet 32 due to the pressure difference. To do.
  • the carrier gas of the particles moves while diffusing, so that the linear movement is prevented by the orifice 31, whereas the particles made of solid or liquid are gas. Since the linearity is higher than that of molecules, the movement of particles that have passed through the first-stage orifice 31a is not greatly hindered by the second-stage and subsequent orifices 31b to d, and the particles contained in the sample air converge in a beam shape. While exiting through the outlet 33, it is emitted into the decompression vessel.
  • the generation of the particle beam can also be achieved by using a capillary having an appropriate shape as a transfer means for transferring the sample air along a predetermined flow path.
  • a capillary having an appropriate shape include a quartz glass tube having an inner diameter of about 0.1 to 1 mm and a length of about 10 mm. By passing the sample air containing the particles to be analyzed through this, the condition of the particle beam diameter can be satisfied. Since quartz has a high light transmittance in a wide range from ultraviolet to near infrared, it can cover the wavelength range normally used in laser fluorescence and incandescent methods.
  • the particle beam is irradiated with the analysis light, the signal light emitted from the particle irradiated with the analysis light is detected, and information based on the detected signal light is obtained.
  • the composition and characteristics of the particles are analyzed.
  • laser light is preferably exemplified, and as the light detection means, a laser light scattering detection device, a laser light scattering polarization separation detection device, a laser induced fluorescence detection device, a laser induced incandescent light detection device, a laser induced breakdown spectroscopy. Examples thereof include devices. These combinations and order can be arbitrarily changed.
  • FIG. 4 shows an example of a mode for analyzing the composition and characteristics of particles.
  • the particles are classified into a group A and a group B based on the signal light detected by the light detection means in the analysis region 1.
  • classification based on the particle size or shape of the particles may be mentioned by a laser light scattering detection device, a laser light scattering polarization separation detection device, a laser induced fluorescence detection device, or the like.
  • the method of classification is arbitrary, and is not limited to two categories, and may be three or more categories.
  • the particles are classified into C group and D group based on the signal light detected by the light detecting means in the analysis region 2.
  • classification by the presence / absence of a specific component contained in the particles by a laser-induced incandescent light detection device, a laser-induced breakdown spectroscopy detection device, or the like can be mentioned.
  • the method of classification is arbitrary, and is not limited to two categories, and may be three or more categories.
  • the optical particle size of the particles can be measured from the light scattering signal.
  • the optical particle size is desirably calibrated with polystyrene latex (PSL) standard particles or the like.
  • PSL polystyrene latex
  • the laser light scattering / polarization separation / detection device by calculating the ratio or difference of the polarization components of the light scattering signal, it is possible to classify particles close to a sphere and the others.
  • the laser-induced fluorescence detection apparatus an organic substance in a particle can be excited by an ultraviolet laser, and the particle can be classified into a plurality of types using fluorescence emitted at that time.
  • the soot or light-absorbing metal in the particles is heated by a visible or infrared laser, and these components are selectively detected using the incandescent light emitted at that time.
  • a laser-induced breakdown spectrometer an ultraviolet, visible, or infrared laser is used to excite a metal in a particle to generate a plasma, and these components are selectively selected using the light emission specific to the metal species. Can be detected.
  • the particles are classified into a group consisting of A group and C group. , A group and D group, B group and C group, and B and D group (FIGS. 4A and 4B).
  • FIG. 5 shows another example of a mode for analyzing the composition and characteristics of particles.
  • a laser-induced incandescent light detection device is used in the first analysis region.
  • particles containing a component that absorbs laser light energy such as soot are struck by the laser light and heated to the incandescent temperature, and the incandescent light is detected to detect particles belonging to the F group Can do.
  • Particles belonging to group F are heated and sublimated by the heat absorbed at that time, and the analysis target in the second analysis region is limited to only particles belonging to group E that have not been heated and sublimated in the first analysis region.
  • the E group is further classified into a G group and an H group.
  • the light detection means and the manner of classification are arbitrary as described above, and are not limited to two categories, and may be three or more categories.
  • the same particle may be detected in each analysis region. That is, in FIG. 4, it is detected whether a particle in the first analysis region belongs to the A group or the B group, and whether the same particle belongs to the C group in the second analysis region. Detect whether it belongs to.
  • a particle in the first analysis region is detected using a laser-induced incandescent light detection device, and particles that are not detected by the laser-induced incandescent light detection device (or particles that are not heated or sublimated). If there is, it is detected whether the same particle belongs to the G group or the H group in the second analysis region. Thereby, the composition of the particles can be analyzed more accurately.
  • Whether or not they are the same particle can be determined based on the detection time difference of the signal light emitted from the particle passing through each analysis region. That is, the frequency distribution of the time for the same particle to pass between each analysis region is determined based on the data obtained by preliminary experiments or the data accumulated during the implementation by setting the specifications of the apparatus to predetermined conditions.
  • the sample air is set so that it is detected at a time interval greater than the detection time difference of the signal light emitted from the same particle passing through each analysis region. It is preferable to dilute and transfer.
  • sample air dilution means as shown in FIG. 6, clean air containing no particles is mixed using a T-shaped tube (FIG. 6A), Y-shaped tube (FIG. 6B), or double tube (FIG. 6C). The method of doing is mentioned.
  • Whether the particles are the same or not is compared by combining the detection time difference of the signal light emitted from the particles passing through each analysis region and the particle size derived using the signal light emitted from the particles passing through each analysis region. This can also be determined. That is, when the particle sizes derived by light detected during a short time corresponding to the passage time in each analysis region are substantially the same, for example, the difference in particle size is ⁇ 20% or ⁇ 10%.
  • the predetermined range the possibility that they are the same particle is not excluded, but when a detection result outside the range is obtained, it can be determined that the particle is a different particle. Thereby, identification can be performed with higher accuracy.
  • the particle size is linked with the particle detection signal and the particle size derived therefrom.
  • analysis light such as laser light.
  • the particles after detection in each analysis region may be further detected by a mass spectrometer, or may be collected by a particle collector. According to this, by performing off-line analysis of particles in bulk, it is possible to supplement data that cannot be obtained by the above-mentioned online analysis, and to analyze the composition and characteristics of the particles more precisely.
  • FIG. 7 is a schematic configuration diagram of a principal part showing an embodiment of the particle analyzer of the present invention.
  • This particle analyzer 10 passes through the first analysis container 1, the second analysis container 2, the duct 41 passing through one side wall of the first analysis container 1, the other side wall of the first analysis container 1, And a duct 51 penetrating one side wall of the second analysis container 2.
  • Sample air is supplied from one end of the duct 41 disposed outside the first analysis container 1, and sample air is supplied to the other end of the duct 41 disposed in the first analysis container 1.
  • a discharge nozzle 14 for discharging into the first analysis container 1 is formed.
  • a collecting probe 15 that collects sample air discharged from the discharge nozzle 14 is formed at one end of the duct 51 disposed in the first analysis container 1 at a position facing the discharge nozzle 14.
  • a discharge nozzle 16 having the same function and structure as the tip of the duct 41 is formed at one end disposed in the second analysis container 2 of 51. Further, a duct 42 is connected outside the first analysis container 1 near the discharge nozzle 14 to the duct 41, and a duct 52 is connected outside the second analysis container 2 near the discharge nozzle 16 on the tip side of the duct 51. Is connected. From the ducts 42 and 52, clean air can be supplied at a predetermined flow rate via an air filter and flow rate adjusting means (not shown), and the sample introduced into the duct 41 or the duct 51 by a so-called sheath flow method. The outer periphery of the air is wrapped with sheath air, and particles in the sample air can be transferred in the form of a beam.
  • the discharge nozzles 14 and 16 adopt the structure of the sheath air nozzle 24 described in FIG. Moreover, although the said collection probe 15 is not employ
  • a duct 61 that passes through the other side wall of the second analysis container 2 opposite to the side wall through which the duct 51 passes is provided, and the sample air is exhausted through the duct 61. Yes.
  • Each of the first analysis container 1 and the second analysis container 2 is provided with a duct 43 and a duct 53 so that excess air can be exhausted by an exhaust pump (not shown).
  • the particle analyzer 10 further includes a fluorescence laser light irradiation means 71 corresponding to the laser-induced fluorescence detection apparatus, and an incandescent laser light irradiation means 81 corresponding to the laser-induced incandescence detection apparatus.
  • the sample light is emitted in the direction of the arrow in the drawing, and is irradiated to the particle beam of the sample air in the first analysis region in the first analysis container 1 and the second analysis region in the second analysis container 2. Be able to.
  • the apparatus includes a fluorescence detection means 72 constituting the laser-induced fluorescence detection apparatus and an incandescent light detection means 82 constituting the laser-induced incandescence detection apparatus, and in each of them, the signal light emitted from the particles irradiated with the analysis light is provided. It can be detected.
  • FIG. 8 shows a schematic configuration diagram of a main part of the laser-induced fluorescence detection apparatus.
  • This apparatus includes a YAG laser 131 (wavelength 266 nm) as an ultraviolet pulse laser for fluorescence excitation, a semiconductor laser 132 (wavelength 635 nm) as a visible continuous wave laser for particle detection, and a multi-anode for fluorescence detection.
  • Pulse / delay generation that emits a pulse laser from the YAG laser 131 at a predetermined timing in response to signals from a photomultiplier tube (PMT) -equipped spectroscope 133, scattered light detector 134, and scattered light detector 134 And an optical chamber 136 through which a particle beam in the sample air passes.
  • the presence of the particles is determined based on the scattered light of the particles by the semiconductor laser 132, and the pulse laser is irradiated from the YAG laser 131 to the particles using this as a trigger.
  • the spectroscope 133 detects fluorescence emitted from the particles.
  • a simple fluorescence detector that combines an optical filter taking into account the fluorescence wavelength to be measured and PMT may be used.
  • the particle size of particles based on the intensity of the scattered light by detecting the scattered light from the semiconductor laser 132 (wavelength 635 nm) for particle detection.
  • the relationship between the particle size and the scattered light intensity can be obtained in advance using PSL standard particles and the particle size can be derived from the scattered light intensity emitted from the particles to be detected using the relationship.
  • a threshold value of the particle diameter is set in advance, and when the particle diameter derived from the scattered light from the semiconductor laser 132 is not within the range, the YAG laser 131 (wavelength 266 nm) for excitation of fluorescence is not irradiated. May be set. This eliminates unnecessary detection.
  • FIG. 9 as an example of the performance of this laser-induced fluorescence detection apparatus, four types of substances such as tyrosine, tryptophan, NADH, or riboflavin are used as model particles of biogenic organic substances that emit fluorescence.
  • the result of detecting particles is shown. Specifically, each substance was made into an aqueous solution, formed into particles with a nebulizer, dried through a diffusion dryer, and introduced into the cell of the laser-induced fluorescence detection apparatus. At this time, since polydisperse particles are generated, a threshold is set such that the fluorescence measurement laser oscillates when a particle size of 0.5 ⁇ m or more is detected.
  • FIG. 9 as an example of the performance of this laser-induced fluorescence detection apparatus, four types of substances such as tyrosine, tryptophan, NADH, or riboflavin are used as model particles of biogenic organic substances that emit fluorescence. The result of detecting particles is shown. Specifically, each substance was made into an aqueous
  • the fluorescence intensity peak wavelength of each substance is 310 nm for tyrosine, 340 nm for tryptophan, 450 nm for NADH, and 560 nm for riboflavin. It was. Thus, the substance contained in the particle can be estimated based on the peak wavelength of the detected fluorescence.
  • FIG. 10 shows a schematic configuration diagram of a main part of the laser-induced incandescent light detection apparatus.
  • This equipment is a laser light irradiation means such as a semiconductor-pumped Nd: YVO 4 laser or Nd: YAG laser (wavelength 1064 nm), a cavity that forms an analysis region, a scattered light detection device having an avalanche photodiode, etc.
  • a laser-induced incandescent light detection device having a photomultiplier tube and an optical chamber.
  • a laser beam having a wavelength of, for example, 1064 nm is irradiated from the laser beam irradiation means to the particle beam passing through the analysis region in the cavity, and the direction of the light emitted from the particle irradiated with the laser beam is changed.
  • two laser-induced incandescent light detectors incandescent ch1, ch2
  • two scattered light detectors scattered ch1, ch2
  • a polarizing prism or the like can be arranged in the light receiving path, and detection can be performed separately for S-polarized light and P-polarized light, whereby the shape and particle size can be detected.
  • the particles contain soot (black carbon), the soot is instantaneously heated to several thousand K and emits incandescent light. Therefore, it is possible to distinguish the soot and the metal from the incandescent temperature.
  • the particle analyzer 10 is further provided with particle identification means 91 for determining the identity of the particles that have passed through each analysis region. That is, the particle identification unit 91 includes a signal from the fluorescence detection unit 72 disposed in the first analysis region in the first analysis container 1 and an incandescent light detection unit disposed in the second analysis region in the second analysis container 2. 82, the detection time difference of the signal light emitted from the particles passing through each analysis region is calculated from the signal from 82, and if the time difference is within a predetermined range, it is determined as the same particle, otherwise It is determined that they are not the same particle.
  • the particle identification unit 91 determines whether or not they are the same particle based on both data of the detection time difference of the signal light emitted from the particle passing through each analysis region and the particle size of the particle passing through each analysis region. It may be determined. In that case, if the detection time difference of the signal light detected in each analysis region is within a predetermined range, and the difference in particle size of the particles detected in each analysis region is within the predetermined range, the same particle Therefore, more accurate identification is possible.
  • FIG. 11 shows a schematic configuration diagram of a main part showing another embodiment of the particle analyzer of the present invention.
  • the aerodynamic lens 3 described with reference to FIG. 3 is used as the particle beam generating means, and penetrates one side wall of the decompression vessel 112 so as not to impair the decompression mechanism. One end thereof is disposed outside the decompression vessel 112, and the other end is disposed inside the decompression vessel 112. Sample air is taken from the particle source storage vessel 102 and the particle beam of the particles 101 is introduced into the decompression vessel 112. It is configured as follows.
  • the decompression vessel 112 is divided into a front exhaust chamber 112a in which the aerodynamic lens 3 is disposed and a rear exhaust chamber 112b with a partition wall therebetween. Then, for example, with respect to a particle source under atmospheric pressure, the front exhaust chamber 112a is decompressed to a pressure of about 10 ⁇ 3 Torr by an exhaust device (not shown) connected to the exhaust port of the front exhaust chamber, and is shown in FIG.
  • the downstream exhaust chamber 112b is depressurized to a relatively high degree of vacuum of about 10 ⁇ 5 Torr by the exhaust device that does not perform the differential exhaust, the sample air supplied from the particle source storage container 102 is aerodynamic lens.
  • the particle 101 becomes a beam and is guided to the front exhaust chamber 112 a and further to the rear exhaust chamber 112 b.
  • the exhaust port 113 of the rear exhaust chamber 112b also serves as a discharge port for taking out the particle beam from the rear exhaust chamber 112b.
  • a skimmer 106 made of a substantially conical passage having a narrow opening on the front exhaust chamber 112a side is provided on a partition wall separating the front exhaust chamber 112a and the rear exhaust chamber 112b of the decompression vessel 112.
  • the particle beam passes through the skimmer 106 from the front exhaust chamber 112a and is introduced into the rear exhaust chamber 112b.
  • the shape of the skimmer 106 helps to efficiently exhaust the carrier gas mixed in the particle beam. That is, since the particle beam contains gas molecules, a gas having a large diffusion rate sideward in comparison with the particles is selectively exhausted, while the gas beam has a small diffusion rate sideward in the direction of travel compared to gas molecules.
  • the particles can selectively pass through the skimmer 106.
  • the pressure difference between the front exhaust chamber 112a and the rear exhaust chamber 112b is maintained by the partition wall having a sufficiently large area with respect to the diameter of the skimmer 106.
  • the skimmer has an effect of greatly changing the properties of the particle beam depending on the shape thereof. Therefore, it is more preferable that the skimmer has a structure that can be replaced with a skimmer having another shape.
  • the particle analyzer 100 further includes a fluorescence laser beam corresponding to a laser-induced fluorescence detector for irradiating a particle beam passing through the front exhaust chamber 112a with a fluorescence laser beam.
  • Irradiating means 71 and incandescent laser light irradiating means 81 corresponding to a laser-induced incandescent light detecting device for irradiating the incandescent laser light to the particle beam passing through the rear exhaust chamber 112b are provided. That is, in this embodiment, the first analysis region is provided in the front exhaust chamber 112a, and the second analysis region is provided in the rear exhaust chamber 112b.
  • a fluorescence detection means 72 constituting a laser-induced fluorescence detection device is provided corresponding to the first analysis region in the front exhaust chamber 112a, and laser induction is performed in correspondence with the second analysis region in the rear exhaust chamber 112b.
  • Incandescent light detection means 82 constituting an incandescent light detection device is provided, and in each of them, signal light emitted from particles irradiated with analysis light can be detected.
  • a particle identification unit 91 that receives signals from the fluorescence detection unit 72 and the incandescent light detection unit 82 and determines the identity of the particles that have passed through each analysis region is provided.
  • FIG. 12 shows a schematic configuration diagram of a main part showing still another embodiment of the particle analyzer of the present invention.
  • the particle analyzer 200 employs a configuration further including a mass spectrometer 250 in addition to the configuration of the particle analyzer 10 shown in FIG. That is, in the mass spectrometer 250, particles that have been detected in the first analysis region in the first analysis container 1 and detected in the second analysis region in the second analysis container 2 are connected to the duct 61. The aerodynamic lens 3 is introduced. The particles are collected by the particle collecting device 207 of the mass spectrometer 250, and the collected particles can be analyzed by the mass spectrometer 210. Hereinafter, the mass spectrometer 250 will be further described.
  • FIG. 13 shows a schematic configuration diagram of the mass spectrometer 250.
  • the decompression chambers 211a, 211b, and 211c are divided by a first partition 212 and a second partition 213, and constitute a decompression chamber having a structure divided into three as a whole.
  • the decompression chambers 211a, 211b and 211c are decompressed by exhaust devices 214a, 214b and 214c, respectively.
  • the first partition 212 that separates the decompression chamber 211a and the decompression chamber 211b is formed with a communication port that forms a skimmer 203 described later, and the second partition 213 that separates the decompression chamber 211b and the decompression chamber 211c is described later.
  • a communication port is formed in the portion of the conduit 208.
  • the aerodynamic lens 3 described in FIG. 3 is disposed through the side wall of the decompression chamber 211a that is in contact with the outside air so as not to impair the decompression.
  • the sample outlet 33 at the other end is arranged outside the chamber, and is arranged in the chamber of the decompression chamber 211a.
  • the sample outlet 33 arranged in the chamber of the decompression chamber 211a is directed to the communication port formed in the first partition 212 of the decompression chamber 211a and the decompression chamber 211b, and the generated particle beam 202 is directed to the communication port. And reaches the inside of the chamber of the decompression chamber 211b. Further, the exhaust devices 214a and 214b and the first partition 212 are adjusted so that the pressure in the second space provided by the decompression chamber 211b is lower than the pressure in the first space provided by the decompression chamber 211a. Therefore, an air flow is generated from the decompression chamber 211a to the decompression chamber 211b, and the flight of the particle beam 202 from the decompression chamber 211a side to the decompression chamber 211b side is aided.
  • the communication port formed in the partition wall between the decompression chamber 211a and the decompression chamber 211b is a skimmer 203 that is narrowly formed in the direction in which the particle beam 202 is incident, and the particle beam 202 is reduced to the decompression chamber 211a.
  • a skimmer 203 that is narrowly formed in the direction in which the particle beam 202 is incident, and the particle beam 202 is reduced to the decompression chamber 211a.
  • excess gas phase components are removed while efficiently introducing into the decompression chamber 211b.
  • the tapered opening of the skimmer 203 helps maintain the pressure difference between the atmospheric pressure in the first space provided by the decompression chamber 211a and the atmospheric pressure in the second space provided by the decompression chamber 211b. ing.
  • a laser supply unit 205 is disposed as an energy beam supply unit outside the decompression chamber.
  • the laser 205a passes through an optical window 206a formed on the side wall of the decompression chamber 211b in contact with the outside air atmosphere and an optical window 206b formed on one side wall of a collector holding container 217, which will be described later. It comes to be irradiated.
  • the particles collected in the particle collecting device 207 can be vaporized, sublimated or reacted to generate a desorbed component.
  • the particle collection device 207 includes a collection body 240 and a collection body support portion 207a that supports the collection body 240, and on one side surface of the collection body support portion 207a, An obliquely inclined support surface is formed, and the collector 240 is placed on the support surface.
  • the collector 240 is preferably a mesh-like structure having a predetermined porosity.
  • the nonwoven fabric which consists of a fiber of a metal, an alloy, or its compound can be utilized.
  • Commercially available platinum nonwoven fabric “Platinum sheet” manufactured by Tanaka Kikinzoku Co., Ltd., average porosity: about 24%, thickness of about 0.1 mm
  • Platinum nonwoven fabric “Platinum sheet” manufactured by Tanaka Kikinzoku Co., Ltd., average porosity: about 24%, thickness of about 0.1 mm
  • such a mesh-like structure can be obtained by laminating a plurality of mesh-like sheets formed by fine processing such as silicon and metal.
  • the particles 240 of the particle beam 202 irradiated to the particle collecting device 207 can be efficiently collected by the collector 240.
  • a noble metal such as platinum, gold, palladium, rhodium, iridium, or an alloy thereof as the material of the collector 240 because this also has a catalytic action for generating a desorption component of particles.
  • the angle between the angle at which the particle beam 202 is incident on the particle collector 207 and the angle at which the laser 205a from the laser supplier 205 is incident is adjusted. It is possible to optimize both the particle collection efficiency by the particle collection device 207 and the generation efficiency of the particle desorption component by the energy beam.
  • the collector support part 207a is made of a metal having high thermal conductivity, for example, copper, and a thermocouple temperature sensor 215 and a Peltier cooling element 216 are embedded therein. When collecting particles, the temperature of the particle collecting device 207 can be lowered in order to prevent evaporation of highly volatile components among the collected particles. On the other hand, when the energy beam is irradiated, the cooling is stopped and the temperature rises.
  • the particle collecting device 207 is integrally held by the collector holding container 217.
  • the collector holding container 217 is formed with a narrow skimmer portion 204 in the direction in which the particle beam 202 is incident, and supplies the desorption component of the particles to the mass spectrometer 210.
  • a conduit 208 is formed in the direction.
  • the optical window 206b is provided on one side wall of the collector holding container 217, and the laser 205a is irradiated from the laser supply unit 205 through the optical window 206b to collect the particles in the particle collector 207.
  • the desorption component can be generated by vaporizing, sublimating or reacting the particles.
  • the particle collecting device 207 is disposed in the chamber of the decompression chamber 211b, and the particle beam 202 is irradiated to the chamber.
  • the skimmer 203 of the collector holding container 217 efficiently introduces the particle beam 202 toward the particle collecting device 207 in the collector holding container 217, an excess gas phase is obtained as in the skimmer 203. Ingredients are to be removed.
  • a predetermined air flow can be generated in the chambers of the decompression chambers 211a to 211c by the control of the exhaust devices 214a to 214c.
  • the exhaust devices 214b and 214c and the second partition 213 adjust the air pressure in the third space provided by the decompression chamber 211c to be lower than the air pressure in the second space provided by the decompression chamber 211b. Accordingly, an air flow from the decompression chamber 211b to the decompression chamber 211c is generated, and thereby, a desorption component of particles generated by the irradiation of the energy beam is guided to the mass spectrometer 210.
  • the collector holding container 217 also serves to prevent the desorption component generated by the irradiation of the laser 205a from diffusing into the chamber of the decompression chamber 211b. That is, as described above, the collector holding container 217 has an end portion on the decompression chamber 211c side that is extended, and a conduit 208 that guides the desorbed component to the decompression chamber 211c is integrally formed. The conduit 208 passes through the second partition wall 213 that separates the decompression chamber 211b and the decompression chamber 211c, and an end portion thereof is disposed in the chamber of the decompression chamber 211c.
  • the end portion has a tapered shape, and helps to maintain a pressure difference between the atmospheric pressure of the second space provided by the decompression chamber 211b and the atmospheric pressure of the third space provided by the decompression chamber 211c.
  • the desorption component of the particles generated by the irradiation of the laser 205a can be efficiently guided to the mass spectrometer 210 without being dissipated in the chamber of the decompression chamber 211b.
  • a mass spectrometer 210 is installed in the chamber of the decompression chamber 211c.
  • An ionization region 209 is provided in the sample introduction portion of the mass spectrometer 10, and an outlet of the conduit 208 is disposed at a position close to the ionization region 209.
  • the desorbed component generated by the irradiation of the energy beam moves from the outlet to the ionization region 209 through the conduit 208, is ionized, and is used for analysis by the mass spectrometer 210. Yes.
  • the particle analyzer 200 described with reference to FIGS. 12 to 14 includes the mass analyzer 250, which generates a desorbed component from the particles collected by the particle collector 207 by irradiation with energy rays and performs mass spectrometry on the generated particles. Although guided to the total 210, it is also possible to take out the collector 240 from the particle collector 207 in a state where the particles are collected, and to use it for a desired analysis.
  • FIG. 15 shows the measurement result of the frequency distribution of the detection time difference.
  • the detection time difference peak was in the range of 0.3 to 0.4 seconds, and most of the particles were in the range of 0.2 to 0.9 seconds. Furthermore, the difference in detection time was almost unchanged for different particle sizes.
  • the theoretical detection time difference obtained from the inner diameter, length, and flow rate of the particle transfer unit is about 0.4 seconds on average. The detection time difference when using the particle analyzer was in good agreement with the theoretical prediction.
  • Particles are generated from a mixed solution of fluorescent tryptophan and incandescent black carbon using a nebulizer and monodispersed using a differential electric mobility classifier (DMA), and the particle number concentration is about 10 seconds. It was adjusted to such an extent that particles were detected once, and used for the particle analyzer. Tryptophan is known to emit strong fluorescence at 300-400 nm, and it was predicted that a strong signal could be seen in FL1 among the three fluorescence detection channels. Moreover, since it was a mixed solution, in addition to the particle
  • FIG. 16 shows measurement results of typical 19 particles detected within a predetermined measurement time.
  • particles containing tryptophan in which only fluorescence was detected, particles containing black carbon in which only incandescent light was detected, both tryptophan and black carbon in which both fluorescence and incandescent light were detected Three patterns of particles, including particles, were detected separately.
  • the particle size of the particle derived from the scattered light intensity of the semiconductor laser 132 (wavelength 635 nm), which is a visible continuous wave laser for particle detection, provided in the laser-induced fluorescence detection device is 0.4 to 0.6 ⁇ m. It was confirmed that it was within the range. Therefore, it became clear that various properties such as the composition, size, and mixed state of the particles of the same particle can be analyzed in a state where the particles are suspended in the sample air.
  • First analysis container 2 Second analysis container 3: Aerodynamic lens 10, 100, 200: Particle analyzer 14, 16: Discharge nozzle 15: Collection probe 21: Sample air 22: Sheath air 24: Sheath air nozzle 24a, 25a: Internal nozzle 24b, 25b: External nozzle 25: Separation and recovery nozzle 30: Housing 31a, 31b, 31c, 31d: Orifice 32: Inlet 33: Outlet 34, 35: Nozzle 41, 42, 43, 51, 52, 53 61: Duct 71: Fluorescence laser light irradiation means 72: Fluorescence detection means 81: Incandescent laser light irradiation means 82: Incandescent light detection means 91: Particle identification means 101: Particles 102: Particle source storage containers 106, 203: Skimmer 112 : Decompression vessel 112a: front exhaust chamber 112b: rear exhaust chamber 113: exhaust port 1 31: YAG laser 132: Semiconductor laser 133: Spectrometer 134: Scat

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 粒子の組成や混合状態を浮遊状態で効率的に分析することができる粒子分析方法及び粒子分析装置を提供する。 分析すべき粒子を含有する試料空気を所定の流路に沿って移送させ、その試料空気の流路上に設けられた複数の分析領域にて、粒子が気体中に浮遊した状態で、その粒子の分析を行う。このとき、少なくとも前記各分析領域において、前記試料空気中に含まれる粒子をビーム状にして移送し、各分析領域にて、粒子ビームに分析光を照射し、その分析光を照射された粒子から発せられる信号光を光検出手段によって検出し、各分析領域の光検出手段にて検出された信号光に基づく情報を組合せることより、粒子の組成及び諸特性を分析する。その分析においては、前記各分析領域を通過した粒子の同一性を判断し、各分析領域を通過する同一粒子について前記光検出手段により検出された信号光に基づく情報を組合せることにより、粒子の組成及び諸特性を分析することが好ましい。

Description

粒子分析方法及び粒子分析装置
 本発明は、空気中に浮遊する粒子(エアロゾル粒子)などを分析するのに適した粒子分析方法及び粒子分析装置に関するものである。
 近年、大気環境における微小粒子(PM2.5)の健康リスク低減のため、新たに環境モニタリングが開始されるなど関心が高まっている。粒子は発生時にはその発生源に特徴的な組成を持っている。例えば、ディーゼル排気粒子には煤や芳香族炭化水素が特徴的に含まれる。一方、粒子が大気に拡散する過程で、他の起源を持つ粒子と衝突・併合する、あるいは気相物質が粒子に凝縮することで、その組成は変化する。粒子の発生源や変質の履歴を把握してその環境への影響を明らかにし、適切な対策につなげるためには、粒子の組成、特に同一粒子内に複数の組成が混在しているかどうか(混合状態)を分析することが望まれる。
 従来、粒子の組成や混合状態の分析法として、フィルター・インパクタ捕集法が広く用いられている。大気を吸引してフィルターやインパクタに粒子を捕集し、分析室に移送した後に分析を行う。分析には電子顕微鏡などが用いられる。この方法では、捕集の際に粒子が破損する若しくは捕集・移送の際に粒子が変質することがあるため、浮遊状態の特性を正しく把握することが難しい。また、分析できる粒子数に制限がある。
 一方、下記特許文献1には、レーザー光を所定の粒子測定領域に照射するレーザー光照射手段と、サンプルエアに含まれる被測定粒子が前記粒子測定領域で前記レーザー光を通過するときの散乱光を受光する受光手段と、前記受光手段で受光した散乱光の受光レベルに基づいて、前記被測定粒子を測定する粒子測定装置であって、前記サンプルエアの外周を清浄なシースエアで包み込み、これを前記レーザー光の照射方向に直交する方向から前記粒子測定領域に吐出するサンプルエア吐出手段と、前記粒子測定領域を挟んで前記サンプルエア吐出手段に対向配置され、前記サンプルエア吐出手段から吐出される前記サンプルエアと前記シースエアとの混合気流から、前記サンプルエアを分離し回収するサンプルエア分離回収手段と、を備えることを特徴とする粒子測定装置が開示されている。
 また、下記特許文献2には、レーザー誘起白熱法による分析方法の一例として、浮遊状態の粒子にパルス化レーザー光ビームを照射して白熱光を生じさせ、微粒子体の粒子容積分率を測定することが開示されている。このようなレーザー誘起白熱法によれば、煤又は一部金属を含む粒子を選択的に検出することができる。
特開2012-189483号公報 特開2000-55800号公報
 しかしながら、レーザー誘起白熱法では、煤又は一部金属を含む粒子を選択的に検出することはできるが、同一粒子内に混在して他の組成(例えば有機物など)は判別することができない。
 したがって、気体中に浮遊している粒子が、どのような組成のもので構成されているかなどについて、より効率的に分析できる方法の開発が望まれている。
 本発明の目的は、粒子の組成や混合状態を浮遊状態で効率的に分析することができる粒子分析方法及び粒子分析装置を提供することにある。
 上記目的を達成するため、本発明の粒子分析方法は、分析すべき粒子を含有する試料空気を所定の流路に沿って移送させ、前記試料空気の流路上に設けられた複数の分析領域にて、前記粒子が気体中に浮遊した状態で、前記粒子の分析を行う粒子分析方法であって、
 少なくとも前記各分析領域において、前記試料空気中に含まれる粒子をビーム状にして移送し、
 前記各分析領域にて、前記粒子ビームに分析光を照射し、該分析光を照射された粒子から発せられる信号光を光検出手段によって検出し、
 前記各分析領域の前記光検出手段にて検出された信号光に基づく情報を組合せることより、粒子の組成及び諸特性を分析することを特徴とする。
 本発明の粒子分析方法によれば、試料空気中の粒子をビーム状にして移送しつつ、各分析領域において分析光を照射して粒子から発せられる信号光を検出することにより、試料空気中に粒子が浮遊した状態で、粒子の組成や、大きさ、混合状態などの諸特性を分析することができる。そして、試料空気の流路に沿って設けられた複数の分析領域で、異なる分析光及び光検出手段による分析を行い、それらの情報を組み合わせることにより、試料空気中に含まれる粒子の組成や、大きさ、混合状態などの諸特性を多面的に分析することができる。
 本発明の粒子分析方法においては、前記各分析領域を通る粒子から発せられる信号光の検出時間差を用いて、前記各分析領域を通過した粒子の同一性を判断し、各分析領域を通過する同一粒子について前記光検出手段により検出された信号光に基づく情報を組合せることにより、粒子の組成及び諸特性を分析することが好ましい。
 これによれば、各分析領域を通る粒子から発せられる信号光の検出時間差を検出することにより、その頻度分布から同一粒子が各分析領域間を通過する時間が求められるので、各分析領域で検出された信号光の検出時間差によって同一粒子かどうかを同定することができる。その結果、同一粒子について、異なる分析光及び光検出手段による分析が可能となり、それらの情報を組み合わせることにより、粒子の組成などをより効率的に分析することができる。
 本発明の粒子分析方法においては、前記各分析領域を通る粒子から発せられる信号光の検出時間差とともに、更に前記各分析領域を通る粒子から発せられる信号光を利用して導出される粒径を用いて、前記各分析領域を通過した粒子の同一性を判断することが好ましい。これによれば、各分析領域で導出される粒子の粒径が異なる場合には同一粒子ではないと判断できるので、より高い精度で同一粒子かどうかの同定を行うことができる。
 本発明の粒子分析方法においては、各分析領域を通る粒子から発せられる信号光が、前記各分析領域を通る同一粒子から発せられる信号光の検出時間差以上の時間間隔をおいて検出されるように、前記試料空気を希釈して移送させることが好ましい。
 これによれば、各分析領域を通る粒子から発せられる信号光が、各分析領域を通る同一粒子から発せられる信号光の検出時間差以上の時間間隔をおいて検出されるように、試料空気を希釈して移送させることにより、同一粒子であるか否かの同定をし易くすることができる。
 本発明の粒子分析方法においては、前記試料空気中に含まれる粒子を、シースエアノズル、エアロダイナミックレンズ、及び光透過性キャピラリからなる群から選ばれた1種又はその異なる組み合わせにより、少なくとも各分析領域においてビーム状にして移送することが好ましい。
 これによれば、試料空気中の粒子を各分析領域でビーム状にして、レーザー光を照射し易くすることができる。
 本発明の粒子分析方法においては、前記分析光としてレーザー光を用い、前記光検出手段として、レーザー光散乱検出装置、レーザー光散乱偏光分離検出装置、レーザー誘起蛍光検出装置、レーザー誘起白熱光検出装置、及びレーザー誘起ブレークダウン分光装置からなる群から選ばれた1種又は2種以上の組み合わせを用いることが好ましい。
 これによれば、各分析領域において、異なる光検出手段を採用し、得られる情報を組み合わせることより、粒子の大きさ、形状、組成などを多面的に分析することができる。
 本発明の粒子分析方法においては、前記分析領域として、前記試料空気の流路に沿って配置された第1分析領域と第2分析領域とを少なくとも設け、前記第1分析領域と前記第2分析領域のいずれか一方でレーザー誘起蛍光検出装置による検出を行い、いずれか他方でレーザー誘起白熱光検出装置による検出を行うことが好ましい。
 これによれば、それぞれの分析領域に配置された装置によって、各分析領域を通る粒子から発せられる信号光の検出時間差を求めて、粒子の同一性を同定することができる。
 また、レーザー誘起蛍光検出装置によって、有機物を含む粒子を検出することができ、レーザー誘起白熱光検出装置によって、煤を含む粒子を検出することができる。
 更に、第1分析領域にレーザー誘起蛍光検出装置を配置し、第2分析領域にレーザー誘起白熱光検出装置を配置した場合は、同一粒子について、特定波長域の蛍光を発する有機物成分の有無と、煤の有無とを検出することができ、両装置からの情報を組合わせることにより、混合状態を知ることができる。
 更にまた、第1分析領域にレーザー誘起白熱光検出装置を配置し、第2分析領域にレーザー誘起蛍光検出装置を配置した場合は、第1分析領域において、煤を含む粒子を加熱・昇華させて消去し、第2分析領域を通る粒子は、煤を含まない粒子だけにして、第2分析領域における分析対象を限定することができる。
 本発明の粒子分析方法においては、前記各分析領域での検出後の粒子について、更に、質量分析装置による検出を行ない、又は粒子捕集装置による粒子の捕集を行うことが好ましい。
 これによれば、上記各分析領域における検出に加え、その検出後の粒子をバルク的にオフライン分析することにより、上記オンライン分析では得られないデータを補足し、粒子の組成及び諸特性をより緻密に分析することができる。
 一方、本発明の粒子分析装置は、試料空気中の粒子を分析する粒子分析装置であって、前記試料空気を所定の流路に沿って移送させる移送手段と、前記試料空気の流路上に設けられた複数の分析領域とを備え、
 前記移送手段は、少なくとも前記各分析領域において、前記試料空気中に含まれる粒子をビーム状にする粒子ビーム生成手段を有しており、
 前記各分析領域には、前記粒子ビームに分析光を照射する光照射手段と、該分析光を照射された粒子から発せられる信号光を検出する光検出手段とが設けられており、
 前記各分析領域を通る粒子から発せられる信号光の検出時間差を用いて、前記各分析領域を通過した粒子の同一性を判断する粒子同定手段を有し、
 各分析領域を通過する同一粒子について前記光検出手段により検出された信号光に基づく情報を組合せることにより、粒子の組成及び諸特性を分析するように構成されていることを特徴とする。
 本発明の粒子分析装置によれば、試料空気中の粒子をビーム状にして移送しつつ、各分析領域において分析光を照射して粒子から発せられる信号光を検出することにより、試料空気中に粒子が浮遊した状態で、粒子の組成や、大きさ、混合状態などの諸特性を分析することができる。そして、各分析領域を通る粒子から発せられる信号光の検出時間差を検出することにより、その頻度分布から同一粒子が各分析領域間を通過する時間が求められるので、各分析領域で検出された信号光の検出時間差によって同一粒子かどうかを同定することができる。その結果、同一粒子について、異なる分析光及び光検出手段による分析が可能となり、それらの情報を組み合わせることにより、試料空気中に含まれる粒子の組成や、大きさ、混合状態などの諸特性を多面的に分析することができる。
 本発明の粒子分析装置においては、前記粒子同定手段は、前記各分析領域を通る粒子から発せられる信号光の検出時間差とともに、更に前記各分析領域を通る粒子から発せられる信号光を利用して導出される粒径を用いて、前記各分析領域を通過した粒子の同一性を判断するものであることが好ましい。
 これによれば、各分析領域で導出される粒子の粒径が異なる場合には同一粒子ではないと判断できるので、より高い精度で同一粒子かどうかの同定を行うことができる。
 本発明の粒子分析装置においては、各分析領域を通る粒子から発せられる信号光が、前記各分析領域を通る同一粒子から発せられる信号光の検出時間差以上の時間間隔をおいて検出されるように、前記試料空気を希釈する希釈装置を有することが好ましい。
 これによれば、各分析領域を通る粒子から発せられる信号光が、各分析領域を通る同一粒子から発せられる信号光の検出時間差以上の時間間隔をおいて検出されるように、試料空気を希釈して移送させることにより、同一粒子であるか否かの同定をし易くすることができる。
 本発明の粒子分析装置においては、前記粒子ビーム生成手段は、シースエアノズル、エアロダイナミックレンズ、及び光透過性キャピラリからなる群から選ばれた1種又はその異なる組み合わせからなることが好ましい。
 これによれば、試料空気中の粒子を各分析領域でビーム状にして、レーザー光を照射し易くすることができる。
 本発明の粒子分析装置においては、前記分析光がレーザー光であり、前記光検出手段が、レーザー光散乱検出装置、レーザー光散乱偏光分離検出装置、レーザー誘起蛍光検出装置、レーザー誘起白熱光検出装置、及びレーザー誘起ブレークダウン分光装置からなる群から選ばれた1種又は2種以上の組み合わせからなることが好ましい。
 これによれば、各分析領域において、異なる光検出手段を採用し、得られる情報を組み合わせることより、粒子の大きさ、形状、組成などを多面的に分析することができる。
 本発明の粒子分析装置においては、前記分析領域は、前記試料空気の流路に沿って配置された第1分析領域と第2分析領域とを少なくとも備えており、前記第1分析領域と前記第2分析領域のいずれか一方にレーザー誘起蛍光検出装置が配置され、いずれか他方にレーザー誘起白熱光検出装置が配置されていることが好ましい。
 これによれば、それぞれの分析領域に配置された装置によって、各分析領域を通る粒子から発せられる信号光の検出時間差を求めて、粒子の同一性を同定することができる。
 また、レーザー誘起蛍光検出装置によって、有機物を含む粒子を検出することができ、レーザー誘起白熱光検出装置によって、煤を含む粒子を検出することができる。
 更に、第1分析領域にレーザー誘起蛍光検出装置を配置し、第2分析領域にレーザー誘起白熱光検出装置を配置した場合は、同一粒子について、特定波長域の蛍光を発する有機物成分の有無と、煤の有無とを検出することができ、両装置からの情報を組合わせることにより、混合状態を知ることができる。
 更にまた、第1分析領域にレーザー誘起白熱光検出装置を配置し、第2分析領域にレーザー誘起蛍光検出装置を配置した場合は、第1分析領域において、煤を含む粒子を加熱・昇華させて消去し、第2分析領域を通る粒子は、煤を含まない粒子だけにして、第2分析領域における分析対象を限定することができる。
 本発明の粒子分析装置においては、更に、前記各分析領域での検出後の粒子について、質量分析による検出を行うための質量分析装置、又はその粒子の捕集を行うための粒子捕集装置を備えていることが好ましい。
 これによれば、上記各分析領域における検出に加え、その検出後の粒子をバルク的にオフライン分析することにより、上記オンライン分析では得られないデータを補足し、粒子の組成及び諸特性をより緻密に分析することができる。
 本発明の粒子分析方法及び粒子分析装置によれば、試料空気中の粒子をビーム状にして移送しつつ、各分析領域において分析光を照射して粒子から発せられる信号光を検出することにより、試料空気中に粒子が浮遊した状態で、粒子の組成や、大きさ、混合状態などの諸特性を分析することができる。そして、試料空気の流路に沿って設けられた複数の分析領域で、異なる分析光及び光検出手段による分析を行い、それらの情報を組み合わせることにより、試料空気中に含まれる粒子の組成や、大きさ、混合状態などの諸特性を多面的に分析することができる。特に同一粒子について、異なる分析光及び光検出手段による分析が可能となり、それらの情報を組み合わせることにより、粒子の組成などをより効率的に分析することができる。
本発明の粒子分析方法の一実施形態を表す概念図である。 シースエアノズルとそれと一対をなす分離回収ノズルを模式的に表す断面図である。 エアロダイナミックレンズを模式的に表す断面図である。 粒子の組成及び諸特性を分析する態様の一例の説明図である。 粒子の組成及び諸特性を分析する態様の他の一例の説明図である。 試料空気を希釈する方法の例であり、図6AはT字管、図6BはY字管、図6Cは二重管を用いた方法の説明図である。 本発明の粒子分析装置の一実施形態を表す要部概略構成図である。 レーザー誘起蛍光検出装置の要部概略構成図である。 蛍光を発する生物起源有機物のモデル粒子としてチロシン、トリプトファン、NADH、リボフラビンの4種類の物質を用いてレーザー誘起蛍光検出装置にて測定した結果を示す図表である。 レーザー誘起白熱光検出装置の要部概略構成図である。 本発明の粒子分析装置の他の実施形態を表す要部概略構成図である。 本発明の粒子分析装置の更に他の実施形態を表す要部概略構成図である。 質量分析装置250の概略構成図である。 粒子捕集装置207とそれと一体として形成された捕集体保持容器217の概略構成図である。 試験例1においてPSL標準粒子(粒径:0.4, 0.5, 0.6, または1.0μm)を粒子分析装置に供したときの蛍光検出部と白熱光検出部での検出時間差の頻度分布を示す図表である。 試験例2においてトリプトファン、ブラックカーボンの混合溶液から生成したエアロゾル粒子を単一粒子ごとに測定した結果の一例を示す図表である。
 以下、図面を参照しつつ、本発明を具体的に説明する。
 図1は、本発明の粒子分析方法の一実施形態を表す概念図である。
 本発明の粒子分析方法においては、図1中の矢印で表わすように、分析すべき粒子を含有する試料空気を所定の流路に沿って移送させる。その試料空気の流路上には、複数の分析領域が設けられ、それぞれの分析領域において、気体中に浮遊した状態の粒子の分析を行う。この実施形態では分析領域として第1分析領域と第2分析領域とが設けられているが、更に第2分析領域の下流側に第3分析領域を設けてもよく、更にその下流側にそれ以降の分析領域を設けてもよい。また、図1には最終段の分析領域から粒子が排出される態様を例示するが、粒子の移送は最終段の分析領域内で完了してもよい。
 本発明の粒子分析方法においては、少なくともそれぞれの分析領域において、試料空気中に含まれる粒子をビーム状にして移送する必要がある。分析すべき粒子の流れを狭い領域に集中させることにより、粒子が気体中に浮遊した状態での分析を、例えばレーザー光などの分析光を用いて行うことが可能となるからである。よって、粒子ビームを、その進行方向に対して側方に、好ましくは直径0.1mm~1mm程度、より好ましくは直径0.1mm~0.5mm程度の範囲内に粒子が分布するように生成することが好ましい。
 本発明の粒子分析方法は、例えば、大気環境や車両・船舶排ガスのモニタリング、あるいはクリーンルームの清浄度監視等に利用することができ、本発明が対象とする粒子としては、例えば、ディーゼル由来の煤粒子や、花粉など植物由来の有機物粒子、浮遊塵埃などが挙げられる。その粒子径は、特に限定されないが、典型的には0.01~100μm、より典型的には0.01~10μm、更により典型的には0.1~3μmである。
 そのような粒子をビーム状にするための手段としては、例えば、シースエアノズル、エアロダイナミックレンズ、光透過性キャピラリなどが挙げられる。これらは、その1種から構成されていてもよく、あるいはその異なる組み合わせから構成されていてもよい。以下にはそれら粒子ビーム生成手段の特徴を説明する。
[シースエアノズル]
 図2には、粒子ビーム生成手段の一例としてシースエアノズルと、それと一対をなす分離回収ノズルを模式的に表す断面図を示す。このシースエアノズル24は、内部ノズル24aと、内部ノズル24aの外側に配置され内部ノズル24aの外径よりも大きい径を有する外部ノズル24bとの2重構造となっている。内部ノズル24aの一端(図2の上端側)には、試料空気21を導入するためのダクト(図示せず)が連結され、外部ノズル24bの一端(図2の上端側)には、シースエア22を導入するためのダクト(図示せず)が連結され、シースエアノズル24が装着される容器の内外圧力差等によって、内部ノズル24aの内部には試料空気21が流れるとともに、その外周部である内部ノズル24aと外部ノズル24bとの間の環状部分には、図示しない流量調整手段によって、試料空気21に対する流量比にして5~10倍の流量のシースエア22が流れるようになっている。また、外部ノズル24bの他端(図2の下端側)はテーパ状に形成されている。
 このような構成により、試料空気21は、その外周を清浄な空気であるシースエア22で包み込まれ、非常に細い気流となってシースエアノズル24から吐出される。そして、その状態で、レーザー光等の分析光による分析領域を通過することで、試料空気21に含まれる粒子が、その分析領域においてビーム状に移送されることとなる。
 図2には、シースエアノズル24に加えて、それに対向して配置された分離回収ノズル25が示されている。この分離回収ノズル25は、シースエアノズル24と概ね同じような2重構造となっており、内部ノズル25aと外部ノズル25bとから構成され、内部ノズル25a及び外部ノズル25bの先端(図2の上端側)は、それぞれテーパ状に形成されている。そして、内部ノズル25aの先端の断面形状が、分離回収ノズル25に吸引される直前の試料空気21の流路断面形状と同等となっていることにより、内部ノズル25aの内部にはシースエアノズル24から吐出された試料空気21が吸引され、その外周部である内部ノズル25aと外部ノズル25bとの間の環状部分にはシースエアノズル24から吐出されたシースエア22が吸引されるようになっている。また、分離回収ノズル25の形状(各ノズル25a,25bの内径等)は、吸引される前後での試料空気21及びシースエア22の流速が大きく変化しないような形状とされている。。
 このような構成により、試料空気21は、5~10倍の流量であるシースエア22により、その粒子数濃度が希釈されることがないので、次の分析領域にスムーズに移送させることが可能である。
[エアロダイナミックレンズ]
 図3には、粒子ビーム生成手段の一例として、エアロダイナミックレンズを模式的に表す断面図を示す。このエアロダイナミックレンズ3は、管状構造体の内部に内側に立設する絞り機構を備え、その管状構造体の内部に試料空気を通して粒子をビーム状に出射する構造となっている。すなわち、管状のハウジング30の内部に数段のオリフィス31a~dを連ねた構造をしており、その一端の側面には、試料空気が流入する入口32が設けられ、その他端の側面には、粒子の粒子線を出射する出口33が設けられている。また、このエアロダイナミックレンズ3では、入口32にノズル34が設けられ出口33にノズル35が設けられ、粒子線をより収束させるようになっている。
 このエアロダイナミックレンズ3を、適当な作動排気機構が備わる減圧容器に装着して容器内を10-3~10-5Torr程度に減圧すると、その圧力差によって、入口32を通って試料空気が流入する。そして、エアロダイナミックレンズを試料空気が通り抜けるときには、粒子の搬送気体は拡散しながら移動するので、オリフィス31により直線的な移動が妨げられるのに対して、固体又は液体で構成された粒子は、気体分子に比べて直進性が高いので、初段のオリフィス31aを通過した粒子の移動が、2段目以降のオリフィス31b~dにより大きく妨げられることなく、試料空気に含まれる粒子がビーム状に収束しつつ、出口33を通って減圧容器内に出射される。
 このような構成により、減圧容器中では粒子の移動を遮る気体分子が少ないので、粒子ビームの飛行距離が1m程度のとき、進行方向に対して側方に半径1mm程度(広がり角で1mrad程度)の範囲内に分布するような、収束度の高い粒子ビームを生成することが可能である。
[光透過性キャピラリ]
 粒子ビームの生成は、試料空気を所定の流路に沿って移送させる移送手段として、適当な形状のキャピラリを用いることによっても成し得る。例えば、内径0.1~1mm程度、長さ10mm程度の石英ガラス管などが挙げられる。これに分析すべき粒子を含有する試料空気を通すことで、前記の粒子ビーム径の条件を満たすことができる。石英は紫外から近赤外まで幅広い範囲で高い光透過率を有するので、レーザー蛍光・白熱法で通常用いられる波長範囲をカバーできる。
 本発明の粒子分析方法においては、それぞれの分析領域にて、粒子ビームに分析光を照射し、分析光を照射された粒子から発せられる信号光を検出し、検出された信号光に基づく情報を組合せることより、粒子の組成及び諸特性を分析する。分析光としては、レーザー光が好ましく例示でき、光検出手段としては、レーザー光散乱検出装置、レーザー光散乱偏光分離検出装置、レーザー誘起蛍光検出装置、レーザー誘起白熱光検出装置、レーザー誘起ブレークダウン分光装置などが挙げられる。これらの組み合わせ及び順番は任意に変更できる。
 図4には、粒子の組成及び諸特性を分析する態様の一例を示す。この例では、分析領域1の光検出手段にて検出された信号光に基づいて、粒子をA群とB群に分類している。例えばレーザー光散乱検出装置、レーザー光散乱偏光分離検出装置、レーザー誘起蛍光検出装置などによって、粒子の粒径や形状に基づいて分類することが挙げられる。分類の仕方は任意であり、2分類に限らず、3分類以上であってもよい。また、分析領域2の光検出手段にて検出された信号光に基づいて、粒子をC群とD群に分類している。例えばレーザー誘起白熱光検出装置、レーザー誘起ブレークダウン分光検出装置などによって、粒子に含まれる特定成分の存在の有無によって分類することが挙げられる。分類の仕方は任意であり、2分類に限らず、3分類以上であってもよい。
 具体的には、レーザー光散乱検出装置によれば、光散乱信号から粒子の光学的粒径を測定することができる。光学的粒径は、ポリスチレンラテックス(PSL)標準粒子などにより校正されることが望ましい。レーザー光散乱偏光分離検出装置によれば、光散乱信号の偏光成分の比又は差を算出することにより、球形に近い粒子とそれ以外を分類することができる。レーザー誘起蛍光検出装置によれば、紫外レーザーにより粒子中の有機物を励起し、その際に発せられる蛍光を利用して粒子を複数の型に分類することができる。レーザー誘起白熱光検出装置によれば、可視又は赤外レーザーにより粒子中の煤または光吸収性の金属を加熱し、その際に発せられる白熱光を利用してこれらの成分を選択的に検出することができる。レーザー誘起ブレークダウン分光装置によれば、紫外、可視又は赤外レーザーを用いて粒子中の金属を励起してプラズマを生成し、金属種に特有の発光を利用してこれらの成分を選択的に検出することができる。
 そして、試料空気の流路に沿って設けられた複数の分析領域で、異なる分析を行い、それらの情報を組み合わせることにより、例えば図4で言えば、粒子をA群且つC群からなる群と、A群且つD群からなる群と、B群且つC群からなる群と、B群且つD群からなる群とに分類することができる(図4A,B)。
 図5には、粒子の組成及び諸特性を分析する態様の他の一例を示す。この例では、第1分析領域において、レーザー誘起白熱光検出装置が用いられている。レーザー誘起白熱光検出装置によると、煤など、レーザー光エネルギーを吸収する成分を含む粒子にレーザー光が当り白熱温度まで加熱され、その白熱光を検出することによりF群に属する粒子を検出することができる。その際に吸収される熱によりF群に属する粒子は加熱・昇華されて、第2分析領域における分析対象は、第1分析領域において加熱・昇華されなかったE群に属する粒子だけに限定される。第2分析領域においては、この例では、E群をさらにG群とH群に分類している。その光検出手段と分類の仕方は、上述したとおり任意であり、2分類に限らず、3分類以上であってもよい。
 本発明においては、各分析領域において同一粒子について検出を行うようにしてもよい。すなわち、図4において説明すると、第1分析領域においてある粒子について、A群に属するかB群に属するかの検出を行ない、その同じ粒子について、第2分析領域において、C群に属するかD群に属するかの検出を行う。あるいは、図5において説明すると、第1分析領域においてある粒子について、レーザー誘起白熱光検出装置を用いた検出を行ない、もしレーザー誘起白熱光検出装置により検出されない粒子(あるいは加熱・昇華されない粒子)であるなら、その同じ粒子について、第2分析領域において、G群に属するかH群に属するかの検出を行う。これにより、粒子の組成などをより正確に分析することができる。
 同一粒子かどうかは、各分析領域を通る粒子から発せられる信号光の検出時間差に基づいて判断することができる。すなわち、装置の仕様等を所定の条件に定めて、予備実験により求めたデータもしくは実施中に蓄積されるデータに基づいて、各分析領域間を同一粒子が通過する時間の頻度分布が求められるので、大部分の粒子、例えば80%とか90%とかの粒子が入る通過時間の範囲を定めることができる。したがって、各分析領域で検出された信号光の時間差が、上記大部分の粒子が入る通過時間の範囲となる場合には、同一粒子であると同定することができる。この場合、同一粒子であるか否かの同定をし易くするために、各分析領域を通る同一粒子から発せられる信号光の検出時間差以上の時間間隔をおいて検出されるように、試料空気を希釈して移送させることが好ましい。試料空気の希釈手段としては、図6に示すように、粒子を含まない清浄空気をT字管(図6A)、Y字管(図6B)、若しくは二重管(図6C)を用いて混合する方法などが挙げられる。
 また、同一粒子かどうかは、各分析領域を通る粒子から発せられる信号光の検出時間差と、各分析領域を通る粒子から発せられる信号光を利用して導出される粒径とを組合わせて比較することによっても、判断することができる。すなわち、各分析領域で前記通過時間に相当する短い時間の間に検出された光によって導出された粒径がほぼ同じである場合、例えば粒径の差が±20%とか、±10%とかの所定範囲に入る場合には、同一粒子である可能性が排除されないが、その範囲を外れた検出結果が得られた場合には、別粒子であると判断できる。それによって、より高い精度で同定を行うことが可能となる。
 また、後述のレーザー誘起蛍光検出装置などのように、粒子検出のための可視連続発振レーザーを備えた手段を用いれば、その粒子検出シグナルとそれから導出される粒径に連動して、粒径として所定の範囲に入らない場合にはレーザー光等の分析光を照射しないようにすることが可能である。これによれば、例えば、実大気や排気ガスのように粒子の濃度や種類を適正範囲に制御することが難しい場合には、複数の粒子が時間的に近接して検出されたり、全く所望しない粒子を検出してしまったりすることがあるが、予め所望する粒子の範囲を定めておくことで、これらの不必要な検出を省ける。
 本発明においては、上記各分析領域での検出後の粒子について、更に、質量分析装置による検出を行ない、又は粒子捕集装置による粒子の捕集を行うようにしてもよい。これによれば、粒子をバルク的にオフライン分析することにより、上記オンライン分析では得られないデータを補足し、粒子の組成及び諸特性をより緻密に分析することができる。
 一方、図7は、本発明の粒子分析装置の一実施形態を表す要部概略構成図である。
 この粒子分析装置10は、第1分析容器1と、第2分析容器2と、第1分析容器1の一側壁を貫通するダクト41と、第1分析容器1の他の側壁を貫通し、更に第2分析容器2の一側壁を貫通するダクト51とを備えている。ダクト41の第1分析容器1外に配置された一端からは、試料空気が供給されるようになっており、ダクト41の第1分析容器1内に配置された他端には、試料空気を第1分析容器1内に吐出する吐出ノズル14が形成されている。また、ダクト51の第1分析容器1内に配置された一端には、吐出ノズル14と対向する位置に、吐出ノズル14から吐出された試料空気を捕集する捕集プローブ15が形成され、ダクト51の第2分析容器2内に配置された一端には、ダクト41の先端と同様の機能・構造の吐出ノズル16が形成されている。更に、ダクト41には吐出ノズル14の近傍の第1分析容器1外にダクト42が接続されており、ダクト51にはその先端側の吐出ノズル16の近傍の第2分析容器2外にダクト52が接続されている。このダクト42,52からは、図示しないエアフィルター及び流量調節手段を介して清浄なエアーを所定流量で供給できるようになっており、所謂シースフロー方式により、ダクト41又はダクト51に導入された試料空気の外周をシースエアで包み込み、試料空気中の粒子をビーム状にして移送することができるようになっている。なお、上記吐出ノズル14,16は、図2で説明したシースエアノズル24の構造を採用している。また、上記捕集プローブ15は、この粒子分析装置10では採用していないが、図2で説明した分離回収ノズル25の構造を採用することもできる。
 更に、この実施形態では、第2分析容器2の、ダクト51が貫通する側壁とは反対側の他の側壁を貫通するダクト61が設けられ、ダクト61を通じて試料空気が排気されるようになっている。また、第1分析容器1と第2分析容器2のそれぞれには、ダクト43とダクト53が設けられ、図示しない排気ポンプにより余剰エアを排気できるようになっている。
 図7に示すように、この粒子分析装置10は、更に、レーザー誘起蛍光検出装置に対応した蛍光用レーザー光照射手段71と、レーザー誘起白熱光検出装置に対応した白熱用レーザー光照射手段81とを備え、それぞれから図中矢印の方向に分析光を発し、第1分析容器1内の第1分析領域と、第2分析容器2内の第2分析領域において、試料空気の粒子ビームに照射することができるようになっている。また、レーザー誘起蛍光検出装置を構成する蛍光検出手段72と、レーザー誘起白熱光検出装置を構成する白熱光検出手段82とを備え、それぞれにおいて、分析光を照射された粒子から発せられる信号光を検出することができるようになっている。
[レーザー誘起蛍光検出装置]
 図8は、レーザー誘起蛍光検出装置の要部概略構成図を示す。この装置は、蛍光励起のための紫外パルスレーザーとしてYAGレーザー131(波長266 nm)と、粒子検出のための可視連続発振レーザーとして半導体レーザー132(波長635 nm)と、蛍光検出のためのマルチアノード光電子増倍管(PMT)搭載の分光器133と、散乱光検出装置134と、散乱光検出装置134からの信号を受けて、所定のタイミングでYAGレーザー131からパルスレーザーを発光させるパルス・遅延発生器135と、試料空気中の粒子ビームが通過する光学チェンバー136などから構成される。半導体レーザー132による粒子の散乱光に基づいて粒子の存在を判定し、それをトリガーにしてYAGレーザー131からパルスレーザーを粒子に照射する。そして、粒子から発せられる蛍光を分光器133により検出する。なお、マルチアノードPMTの代わりに、測定する蛍光波長を勘案した光学フィルターとPMTを組み合わせた簡便な蛍光検出器を用いてもよい。
 このレーザー誘起蛍光検出装置では、粒子検出のための半導体レーザー132(波長635 nm)による散乱光を検出することにより、その散乱光強度に基づいて粒子の粒径を導出することも可能である。具体的には、PSL標準粒子などで粒径と散乱光強度の関係をあらかじめ求めておき、その関係を用いて検出すべき粒子から発せられる散乱光強度から粒径を導出することができる。更に、予め粒径の閾値を定めておき、半導体レーザー132による散乱光から導出される粒径がその範囲にない場合には、蛍光励起のためのYAGレーザー131(波長266 nm)を照射しないように設定してもよい。これにより不必要な検出を省ける。
 図9には、このレーザー誘起蛍光検出装置の性能の一例として、蛍光を発する生物起源有機物のモデル粒子として、チロシン、トリプトファン、NADH、又はリボフラビンの4種類の物質を用いて、それぞれの多分散の粒子を検出した結果を示す。具体的には、それぞれの物質を水溶液にし、ネブライザーで粒子化させた後、拡散ドライヤーを通して乾燥させ、レーザー誘起蛍光検出装置のセル内に導入した。このとき、多分散の粒子が生成するため、0.5 μm以上の粒径を検出したときに蛍光測定用レーザーが発振するような閾値をセットした。図9には、分光器で得られた各波長の蛍光強度を最大値で規格化したのち、粒子100個分について平均した結果を、各物質についてまとめて示す。文献値によれば、各物質の蛍光強度ピーク波長は、チロシンが310 nm、トリプトファンが340 nm、NADHが450 nm、リボフラビンが560 nmであり、各物質についてそれと整合する蛍光発光スペクトルの結果が得られた。このように、検出される蛍光のピーク波長によって、粒子中に含まれる物質を推定できる。
[レーザー誘起白熱光検出装置]
 図10は、レーザー誘起白熱光検出装置の要部概略構成図を示す。この装置は、半導体励起Nd:YVO4レーザーまたはNd:YAGレーザー(波長1064 nm)等のレーザー光照射手段、分析領域を形成するキャビティ、アバランシェフォトダイオードなどを有する散乱光検出装置、白熱光検出のための光電子増倍管を有するレーザー誘起白熱光検出装置、光学チェンバーなどから構成される。そして、レーザー光照射手段から、キャビティ内の分析領域を通過する粒子ビームに対して、例えば波長1064 nmのレーザー光が照射され、上記レーザー光を照射された粒子から発せられる光を、方向を変えて配置された2つのレーザー誘起白熱光検出装置(白熱ch1、ch2)と、同じく方向を変えて配置された2つの散乱光検出装置(散乱ch1、ch2)とで、検出するようになっている。それぞれの検出装置には、必要により、受光経路に偏光プリズム等を配置して、S偏光とP偏光とに分けて検出することもでき、それによって形状や粒径を検出することが可能となる。また、粒子が煤(ブラックカーボン)を含む場合は、煤が瞬時に数千Kに加熱され白熱光を発するので、この白熱温度から煤と金属を区別することも可能である。
 図7に示すように、この粒子分析装置10には、更に、各分析領域を通過した粒子の同一性を判断する粒子同定手段91が設けられている。すなわち、粒子同定手段91は、第1分析容器1内の第1分析領域に配置された蛍光検出手段72からの信号と、2分析容器2内の第2分析領域に配置された白熱光検出手段82からの信号とから、各分析領域を通る粒子から発せられる信号光の検出時間差を算出し、その時間差があらかじめ定められた所定の範囲内であれば同一粒子と判断し、それ以外であれば同一粒子ではないと判断するようになっている。
 また、粒子同定手段91は、各分析領域を通る粒子から発せられる信号光の検出時間差と、各分析領域を通る粒子の粒径との両方のデータに基づいて、同一粒子であるか否かを判断するものであってもよい。その場合には、各分析領域で検出された信号光の検出時間差が所定範囲内にあり、かつ、各分析領域で検出された粒子の粒径の差が所定範囲内にある場合に同一粒子として同定することとなり、より正確な同定が可能となる。
 図11には、本発明の粒子分析装置の他の実施形態を表す要部概略構成図を示す。
 この粒子分析装置100では、粒子ビーム生成手段として、図3において説明したエアロダイナミックレンズ3が用いられ、減圧容器112の一側壁をその減圧機構を損なうことのないように貫通している。そして、その一端が減圧容器112の外部に配され、その他端が減圧容器112の内部に配され、粒子源貯留容器102から試料空気を取り込んで減圧容器112内に粒子101の粒子ビームを導入するように構成されている。
 減圧容器112は、エアロダイナミックレンズ3が配設される前段排気室112aと、それに対して隔壁を隔てた後段排気室112bとに分かれている。そして、例えば大気圧下の粒子源に対して、前段排気室の排気口に通じた図示しない排気装置により前段排気室112aが10-3Torr程度の圧力に減圧され、排気口113に通じた図示しない排気装置により後段排気室112bが10-5Torr程度の比較的高い真空度まで減圧されると、これにより差動排気となるため、粒子源貯留容器102から供給される試料空気はエアロダイナミックレンズ3を通って、その粒子101がビーム状となり、前段排気室112a、更に後段排気室112bへと導かれる。なお、後段排気室112bの排気口113は、粒子線を後段排気室112bから取り出すための吐出口を兼ねている。
 減圧容器112の前段排気室112aと後段排気室112bとを隔てる隔壁には、前段排気室112a側を口細とする略円錐形状の通過口からなるスキマー106が設けられている。粒子ビームは、前段排気室112aからこのスキマー106を通り後段排気室112bへ導入される。このスキマー106の形状は、粒子ビームに混在している搬送気体を効率的に排気するのを助けている。即ち、粒子ビームは気体分子を含んでいるため、粒子に比べ進行方向側方に大きな拡散速度を持つ気体が選択的に排気され、一方で気体分子に比べ進行方向側方に小さな拡散速度を持つ粒子は選択的にスキマー106を通過することができる。また、スキマー106の口径に対して十分に大きな面積の隔壁によって、前段排気室112aと後段排気室112bとの圧力差は維持される。このように、スキマーには、その形状によって粒子線の性質を大きく変える効果があるため、他の形状のスキマーと交換できる構造にしておくことがより好ましい。
 図11に示すように、この粒子分析装置100は、更に、前段排気室112a内を通る粒子ビームに対して蛍光用レーザー光を照射するための、レーザー誘起蛍光検出装置に対応した蛍光用レーザー光照射手段71と、後段排気室112b内を通る粒子ビームに対して白熱用レーザー光を照射するための、レーザー誘起白熱光検出装置に対応した白熱用レーザー光照射手段81とを備えている。すなわち、この実施形態では、前段排気室112a内に第1分析領域が設けられ、後段排気室112b内に第2分析領域が設けられている。また、前段排気室112a内の第1分析領域に対応して、レーザー誘起蛍光検出装置を構成する蛍光検出手段72が設けられ、後段排気室112b内の第2分析領域に対応して、レーザー誘起白熱光検出装置を構成する白熱光検出手段82とが設けられ、それぞれにおいて、分析光を照射された粒子から発せられる信号光を検出することができるようになっている。更に、蛍光検出手段72と白熱光検出手段82との信号を受けて、各分析領域を通過した粒子の同一性を判断する粒子同定手段91が備えられている。
 図12には、本発明の粒子分析装置の更に他の実施形態を表す要部概略構成図を示す。
 この粒子分析装置200では、図7に示した粒子分析装置10の構成に加えて、更に質量分析装置250を備えた構成を採用している。すなわち、この質量分析装置250には、第1分析容器1内の第1分析領域における検出と、第2分析容器2内の第2分析領域における検出とを終えた粒子が、ダクト61に接続されたエアロダイナミックレンズ3を通じて導入されるようになっている。そして、質量分析装置250の粒子捕集装置207により粒子を捕集し、その捕集した粒子について質量分析計210により分析することができるようになっている。以下には、その質量分析装置250について更に説明する。
 図13には、質量分析装置250の概略構成図を示す。この質量分析装置250では、減圧チェンバー211a、211b、211cが、第1隔壁212、第2隔壁213によって区切られており、全体として3つに分室した構造の減圧チェンバーを構成している。減圧チェンバー211a、211b、211cが、それぞれ排気装置214a、214b、214cによって減圧されるようになっている。そして、減圧チェンバー211aと減圧チェンバー211bとを隔てる第1隔壁212には後述するスキマー203を構成する連通口が形成され、減圧チェンバー211bと減圧チェンバー211cとを隔てる第2隔壁213には、後述する導管208の部分に連通口が形成されている。これらの減圧チェンバーは、そのチェンバー内が外気雰囲気に対して減圧された状態を形成することができるとともに、各排気装置214a~cによる、各減圧チェンバー211a~cの減圧の度合いを調整することによって、所定の気流を生じさせることができるようになっており、その減圧チェンバー211a、211b、211cは、それぞれ気圧の異なる第1空間、第2空間、第3空間を提供している。
 また、図3において説明したエアロダイナミックレンズ3が、減圧チェンバー211aの外気雰囲気に接する側壁を、減圧を損なわないように貫通して配設されており、その一端の試料入口32が減圧チェンバー211aのチェンバー外に配され、その他端の試料出口33が減圧チェンバー211aのチェンバー内に配されている。
 減圧チェンバー211aのチェンバー内に配された試料出口33は、減圧チェンバー211aと減圧チェンバー211bとの第1隔壁212に形成された連通口に向けられており、生成した粒子ビーム202が、この連通口を通り減圧チェンバー211bのチェンバー内に達するようになっている。また、減圧チェンバー211bが提供する第2空間の気圧が、減圧チェンバー211aが提供する第1空間の気圧よりも低圧となるように、排気装置214a、214b及び第1隔壁212により調整されている。したがって、減圧チェンバー211aから減圧チェンバー211bへの気流が生じており、粒子ビーム202の減圧チェンバー211a側から減圧チェンバー211b側への飛行を助ける。
 また、減圧チェンバー211aと減圧チェンバー211bとの隔壁に形成された連通口は、粒子ビーム202が入射する方向に向けて口細に構成されたスキマー203とされており、粒子ビーム202を減圧チェンバー211aから減圧チェンバー211bに効率的に導入しつつ、余剰の気相成分は取り除かれるようになっている。また、そのスキマー203の開口が先細になっていることにより、減圧チェンバー211aが提供する第1空間の気圧と、減圧チェンバー211bが提供する第2空間の気圧との圧力差を維持するのを助けている。
 また、減圧チェンバーの外部には、エネルギー線供給器としてレーザー供給器205が配されている。そのレーザー205aは、減圧チェンバー211bの外気雰囲気に接する側壁に形成された光学窓206aと、後述する捕集体保持容器217の一側壁を形成された光学窓206bとを通って、粒子捕集装置207に照射されるようになっている。このレーザー205aによるエネルギー線の照射により、粒子捕集装置207に捕集した粒子を気化、昇華又は反応させて脱離成分を生成させることができる。
 次に、図14を参照して粒子捕集装置207及びそれと一体として形成された捕集体保持容器217について説明する。
 図14Aに示すように、この実施形態では、粒子捕集装置207が、捕集体240と、それを支持する捕集体支持部207aとで構成され、その捕集体支持部207aの一側面には、斜めに傾斜する支持面が形成され、これに捕集体240が載置されている。捕集体240としては、所定の空隙率を有するメッシュ状の構造体であることが好ましい。例えば、金属、合金、又はその化合物の繊維よりなる不織布で構成されているものを利用することができる。市販の白金不織布「白金シート」(田中貴金属社製、平均空隙率:約24%、厚さ0.1mm程度)などを用いることもできる。更に、そのようなメッシュ状の構造体は、シリコン、金属等の微細加工によって形成したメッシュ状のシートを複数積層することによっても得ることができる。この捕集体240により粒子捕集装置207に照射した粒子ビーム202の粒子を効率よく捕集することができる。なお、捕集体240の材質として、白金、金、パラジウム、ロジウム、イリジウム、又はそれらの合金など貴金属を用いれば、これが粒子の脱離成分を生じせしめるための触媒作用も併せ有するので、より好ましい。
 図14Aに示すように、この実施形態では、粒子ビーム202が粒子捕集装置207に入射する角度と、レーザー供給器205からのレーザー205aが入射する角度との、両者の角度を調整して、粒子捕集装置207による粒子の捕集効率と、上記エネルギー線による粒子の脱離成分の生成効率の両方を最適なものにすることができる。また、捕集体支持部207aが熱伝導性の高い金属、例えば銅で形成されており、熱電対温度センサ215及びペルチエ冷却素子216が埋め込まれている。そして、粒子を捕集するときには、捕集された粒子のうち揮発性の高い成分の蒸発を防ぐため、粒子捕集装置207の温度を下げることができるようになっている。一方、上記エネルギー線を照射するときには、冷却を止めて、温度が上昇するようになっている。
 図14Bに示すように、この実施形態では、粒子捕集装置207は、捕集体保持容器217に一体として保持されている。そして、捕集体保持容器217には、粒子ビーム202が入射する方向に向けては、口細に構成されたスキマー部204が形成されており、粒子の脱離成分を質量分析計210に供給する方向に向けては、導管208が形成されている。また、上述したように捕集体保持容器217の一側壁には光学窓206bが設けられており、この光学窓206bを通してレーザー供給器205からレーザー205aを照射し、粒子捕集装置207に捕集した粒子を気化、昇華又は反応させて脱離成分を生成させることができるようになっている。
 図13に示されるように、粒子捕集装置207は、減圧チェンバー211bのチェンバー内に配置され、これに粒子ビーム202が照射されるようになっている。このとき捕集体保持容器217のスキマー部204により、捕集体保持容器217内の粒子捕集装置207に向けて粒子ビーム202を効率的に導入しつつ、上記スキマー203と同様に、余剰の気相成分は取り除かれるようになっている。
 上述したように、各減圧チェンバー211a~cのチェンバー内は、各排気装置214a~cによる制御によって、所定の気流を生じさせることができるようになっている。そして、減圧チェンバー211cが提供する第3空間の気圧が、減圧チェンバー211bが提供する第2空間の気圧よりも低圧となるように、排気装置214b、214c及び第2隔壁213により調整されている。したがって、減圧チェンバー211bから減圧チェンバー211cへの気流が生じており、これにより、上記エネルギー線の照射により生じさせた粒子の脱離成分が質量分析計210に誘導されるようになっている。
 このとき、捕集体保持容器217は、上記レーザー205aの照射により生じさせた脱離成分を、減圧チェンバー211bのチェンバー内に拡散しないようにする役割も果たす。すなわち、上述のとおり、捕集体保持容器217は、その減圧チェンバー211c側の端部が延伸して、脱離成分を減圧チェンバー211cへと導く導管208が一体として形成されている。そして、この導管208は、減圧チェンバー211bと減圧チェンバー211cとを隔てる第2隔壁213を貫通して、その端部が、減圧チェンバー211cのチェンバー内に配されている。また、その端部は先細形状になっており、減圧チェンバー211bが提供する第2空間の気圧と、減圧チェンバー211cが提供する第3空間の気圧との圧力差を維持するのを助けている。これにより、上記レーザー205aの照射により生じせしめた粒子の脱離成分を、減圧チェンバー211bのチェンバー内に散逸させることなく効率的に質量分析計210に誘導することができる。
 減圧チェンバー211cのチェンバー内には、質量分析計210が設置されている。この質量分析計10の試料導入部には、イオン化領域209が設けられ、更に、そのイオン化領域209に近接した位置に、導管208の出口が配されている。これにより、上記エネルギー線の照射により生じせしめた脱離成分が導管208を通ってその出口からイオン化領域209に移動し、イオン化されて、質量分析計210での分析に供されるようになっている。
 なお、上記図12~14で説明した粒子分析装置200では、質量分析装置250を備え、粒子捕集装置207に捕集した粒子からエネルギー線の照射により脱離成分を生成せしめてそれを質量分析計210に誘導するものであったが、粒子が捕集された状態で捕集体240を粒子捕集装置207から取り出して、所望の分析に供することもできる。
 <試験例1>
 上記図7に示した構成の、レーザー誘起蛍光検出装置及びレーザー誘起白熱光検出装置を備えた粒子分析装置を使用して、その粒子検出性能の評価を行った。なお、装置の蛍光検出部としては、光学フィルターとPMTを用いた3波長帯(FL1: 335-379 nm、FL2: 420-500 nm、FL3: 500-600 nm)の検出器を用いた。
 具体的には、PSL標準粒子(粒径:0.4, 0.5, 0.6, または1.0μm)を用いて、その粒子数濃度を約10秒に1回粒子を検出する程度に調整し、上記粒子分析装置に供し蛍光検出部と白熱光検出部で散乱光が検出される時間差を測定した。図15には、検出時間差の頻度分布の測定結果を示す。
 図15に示されるように、いずれの粒径のPSL粒子においても、検出時間差のピークは0.3~0.4秒にあり、かつ大部分の粒子が0.2~0.9秒の範囲に存在していた。さらに、異なる粒径に対して検出時間差はほぼ変わらなかった。ここで、粒子移送部の内径、長さ、流量から求めた理論的な検出時間差は、平均0.4秒程度である。上記粒子分析装置を使用したときの検出時間差はその理論予測とよく整合する結果であった。
<試験例2>
 試験例1と同じく、上記図7に示した構成の、レーザー誘起蛍光検出装置及びレーザー誘起白熱光検出装置を備えた粒子分析装置を使用して、更に、その粒子検出性能の評価を行った。具体的には以下のような試験を行なった。
 蛍光を発するトリプトファンと白熱光を発するブラックカーボンの混合溶液から、ネブライザを用いて粒子を発生させ、微分型電気移動度分級器(DMA)により単分散化した後に、その粒子数濃度を約10秒に1回粒子を検出する程度に調整し、上記粒子分析装置に供した。トリプトファンは300-400 nmに強く蛍光を発することが知られており、3つの蛍光検出チャンネルのうちFL1に強い信号が見られることが予測された。また、混合溶液のため、各成分のみを含む粒子に加えて、両方が混合した粒子が検出されることが予測された。図16には、所定測時間内に検出された典型的な19個の粒子の測定結果を示す。
 図16に示されるように、蛍光のみが検出されたトリプトファンを含む粒子、白熱光のみが検出されたブラックカーボンを含む粒子、蛍光・白熱光両方が検出された、トリプトファンとブラックカーボンとの両方を含む粒子、の3つのパターンの粒子が分離して検出された。また、レーザー誘起蛍光検出装置に備わる、粒子検出のための可視連続発振レーザーである半導体レーザー132(波長635 nm)の散乱光強度に基づいて導出された粒子の粒径サイズが、0.4~0.6μmの範囲であることを確認できた。したがって、試料空気中に粒子が浮遊した状態で、同一粒子の粒子の組成や、大きさ、混合状態などの諸特性を分析できることが明らかとなった。
符合の説明
 1:第1分析容器
 2:第2分析容器
 3:エアロダイナミックレンズ
 10、100、200:粒子分析装置
 14,16:吐出ノズル
 15:捕集プローブ
 21:試料空気
 22:シースエア
 24:シースエアノズル
 24a、25a:内部ノズル
 24b、25b:外部ノズル
 25:分離回収ノズル
 30:ハウジング
 31a、31b、31c、31d:オリフィス
 32:入口
 33:出口
 34、35:ノズル
 41、42、43、51、52、53、61:ダクト
 71:蛍光用レーザー光照射手段
 72:蛍光検出手段
 81:白熱用レーザー光照射手段
 82:白熱光検出手段
 91:粒子同定手段
 101:粒子
 102:粒子源貯留容器
 106、203:スキマー
 112:減圧容器
 112a:前段排気室
 112b:後段排気室
 113:排気口
 131:YAGレーザー
 132:半導体レーザー
 133:分光器
 134:散乱光検出装置
 135:パルス・遅延発生器
 136:光学チェンバー
 202:粒子ビーム
 204:スキマー部
 205:レーザー供給器
 205a:レーザー
 206a、206b:光学窓
 207:粒子捕集装置
 208:導管
 209:イオン化領域
 210:質量分析計
 211a、211b、211c:減圧チェンバー
 212:第1隔壁
 213:第2隔壁
 214a、214b、214c:排気装置
 215:熱電対温度センサ
 216:ペルチエ冷却素子
 217:捕集体保持容器
 240:捕集体
 250:質量分析装置

Claims (15)

  1.  分析すべき粒子を含有する試料空気を所定の流路に沿って移送させ、前記試料空気の流路上に設けられた複数の分析領域にて、前記粒子が気体中に浮遊した状態で、前記粒子の分析を行う粒子分析方法であって、
     少なくとも前記各分析領域において、前記試料空気中に含まれる粒子をビーム状にして移送し、
     前記各分析領域にて、前記粒子ビームに分析光を照射し、該分析光を照射された粒子から発せられる信号光を光検出手段によって検出し、
     前記各分析領域の前記光検出手段にて検出された信号光に基づく情報を組合せることより、粒子の組成及び諸特性を分析することを特徴とする粒子分析方法。
  2.  前記各分析領域を通る粒子から発せられる信号光の検出時間差を用いて、前記各分析領域を通過した粒子の同一性を判断し、各分析領域を通過する同一粒子について前記光検出手段により検出された信号光に基づく情報を組合せることにより、粒子の組成及び諸特性を分析する請求項1記載の粒子分析方法。
  3.  前記各分析領域を通る粒子から発せられる信号光の検出時間差とともに、更に前記各分析領域を通る粒子から発せられる信号光を利用して導出される粒径を用いて、前記各分析領域を通過した粒子の同一性を判断する請求項2記載の粒子分析方法。
  4.  各分析領域を通る粒子から発せられる信号光が、前記各分析領域を通る同一粒子から発せられる信号光の検出時間差以上の時間間隔をおいて検出されるように、前記試料空気を希釈して移送させる請求項2又は3記載の粒子分析方法。
  5.  前記試料空気中に含まれる粒子を、シースエアノズル、エアロダイナミックレンズ、及び光透過性キャピラリからなる群から選ばれた1種又はその異なる組み合わせにより、少なくとも各分析領域においてビーム状にして移送する請求項1~4のいずれか1つに記載の粒子分析方法。
  6.  前記分析光としてレーザー光を用い、前記光検出手段として、レーザー光散乱検出装置、レーザー光散乱偏光分離検出装置、レーザー誘起蛍光検出装置、レーザー誘起白熱光検出装置、及びレーザー誘起ブレークダウン分光装置からなる群から選ばれた1種又は2種以上の組み合わせを用いる請求項1~5のいずれか1つに記載の粒子分析方法。
  7.  前記分析領域として、前記試料空気の流路に沿って配置された第1分析領域と第2分析領域とを少なくとも設け、前記第1分析領域と前記第2分析領域のいずれか一方でレーザー誘起蛍光検出装置による検出を行い、いずれか他方でレーザー誘起白熱光検出装置による検出を行う請求項6記載の粒子分析方法。
  8.  前記各分析領域での検出後の粒子について、更に、質量分析装置による検出を行ない、又は粒子捕集装置による粒子の捕集を行う請求項1~7のいずれか1つに記載の粒子分析方法。
  9.  試料空気中の粒子を分析する粒子分析装置であって、前記試料空気を所定の流路に沿って移送させる移送手段と、前記試料空気の流路上に設けられた複数の分析領域とを備え、
     前記移送手段は、少なくとも前記各分析領域において、前記試料空気中に含まれる粒子をビーム状にする粒子ビーム生成手段を有しており、
     前記各分析領域には、前記粒子ビームに分析光を照射する光照射手段と、該分析光を照射された粒子から発せられる信号光を検出する光検出手段とが設けられており、
     前記各分析領域を通る粒子から発せられる信号光の検出時間差を用いて、前記各分析領域を通過した粒子の同一性を判断する粒子同定手段を有し、
     各分析領域を通過する同一粒子について前記光検出手段により検出された信号光に基づく情報を組合せることにより、粒子の組成及び諸特性を分析するように構成されていることを特徴とする粒子分析装置。
  10.  前記粒子同定手段は、前記各分析領域を通る粒子から発せられる信号光の検出時間差とともに、更に前記各分析領域を通る粒子から発せられる信号光を利用して導出される粒径を用いて、前記各分析領域を通過した粒子の同一性を判断するものである請求項9記載の粒子分析装置。
  11.  各分析領域を通る粒子から発せられる信号光が、前記各分析領域を通る同一粒子から発せられる信号光の検出時間差以上の時間間隔をおいて検出されるように、前記試料空気を希釈する希釈装置を有する請求項9又は10記載の粒子分析装置。
  12.  前記粒子ビーム生成手段は、シースエアノズル、エアロダイナミックレンズ、及び光透過性キャピラリからなる群から選ばれた1種又はその異なる組み合わせからなる請求項9~11のいずれか1つに記載の粒子分析装置。
  13.  前記分析光がレーザー光であり、前記光検出手段が、レーザー光散乱検出装置、レーザー光散乱偏光分離検出装置、レーザー誘起蛍光検出装置、レーザー誘起白熱光検出装置、及びレーザー誘起ブレークダウン分光装置からなる群から選ばれた1種又は2種以上の組み合わせからなる請求項9~12のいずれか1つに記載の粒子分析装置。
  14.  前記分析領域は、前記試料空気の流路に沿って配置された第1分析領域と第2分析領域とを少なくとも備えており、前記第1分析領域と前記第2分析領域のいずれか一方にレーザー誘起蛍光検出装置が配置され、いずれか他方にレーザー誘起白熱光検出装置が配置されている請求項13記載の粒子分析装置。
  15.  更に、前記各分析領域での検出後の粒子について、質量分析による検出を行うための質量分析装置、又はその粒子の捕集を行うための粒子捕集装置を備えている請求項9~14のいずれか1つに記載の粒子分析装置。
     
     
     
     
PCT/JP2014/055748 2013-03-15 2014-03-06 粒子分析方法及び粒子分析装置 WO2014141994A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-053681 2013-03-15
JP2013053681 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141994A1 true WO2014141994A1 (ja) 2014-09-18

Family

ID=51536658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055748 WO2014141994A1 (ja) 2013-03-15 2014-03-06 粒子分析方法及び粒子分析装置

Country Status (1)

Country Link
WO (1) WO2014141994A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290084A (zh) * 2015-06-23 2017-01-04 富士电机株式会社 粒子复合分析装置的校正方法以及粒子复合分析装置
CN106323823A (zh) * 2015-07-02 2017-01-11 富士电机株式会社 粒子测量装置
CN107966389A (zh) * 2017-12-31 2018-04-27 苏州铁树医药设备有限公司 一种尘埃粒子检测传感器及包括该传感器的粉尘检测仪
CN114993897A (zh) * 2022-07-18 2022-09-02 广东省麦思科学仪器创新研究院 气溶胶颗粒束束宽及颗粒分布的检测装置、套装和方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611433A (ja) * 1992-06-25 1994-01-21 Hitachi Electron Eng Co Ltd 微粒子計測装置及び微粒子検出方法
JPH07151670A (ja) * 1993-11-26 1995-06-16 Hitachi Ltd 流体中異物測定装置
JPH09184808A (ja) * 1995-12-28 1997-07-15 Toshiba Corp エアロゾル分析装置
JPH1137974A (ja) * 1997-07-17 1999-02-12 Shimadzu Corp 粒子組成分析装置
JP2004144647A (ja) * 2002-10-25 2004-05-20 Japan Science & Technology Agency トータルエアロゾル分析装置
JP2005156256A (ja) * 2003-11-21 2005-06-16 Toyota Central Res & Dev Lab Inc 浮遊凝集体の測定方法及び装置
JP2006071492A (ja) * 2004-09-02 2006-03-16 Mitsubishi Heavy Ind Ltd ガス中の微粒子成分計測装置及び方法
JP2007533971A (ja) * 2003-09-30 2007-11-22 シンギュレックス・インコーポレイテッド 粒子検出の分析精度を改善する方法
JP2007309895A (ja) * 2006-05-22 2007-11-29 Univ Nagoya 粒子分析装置
WO2011114587A1 (ja) * 2010-03-17 2011-09-22 国立大学法人 東京大学 微粒子組成分析方法及び微粒子組成分析装置
JP2012516428A (ja) * 2008-12-10 2012-07-19 リバモア インストゥルメンツ インコーポレイテッド エアロゾル粒子のサイズおよび化学組成のリアルタイム測定システムおよび方法
JP2012189483A (ja) * 2011-03-11 2012-10-04 Fuji Electric Co Ltd 粒子測定装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611433A (ja) * 1992-06-25 1994-01-21 Hitachi Electron Eng Co Ltd 微粒子計測装置及び微粒子検出方法
JPH07151670A (ja) * 1993-11-26 1995-06-16 Hitachi Ltd 流体中異物測定装置
JPH09184808A (ja) * 1995-12-28 1997-07-15 Toshiba Corp エアロゾル分析装置
JPH1137974A (ja) * 1997-07-17 1999-02-12 Shimadzu Corp 粒子組成分析装置
JP2004144647A (ja) * 2002-10-25 2004-05-20 Japan Science & Technology Agency トータルエアロゾル分析装置
JP2007533971A (ja) * 2003-09-30 2007-11-22 シンギュレックス・インコーポレイテッド 粒子検出の分析精度を改善する方法
JP2005156256A (ja) * 2003-11-21 2005-06-16 Toyota Central Res & Dev Lab Inc 浮遊凝集体の測定方法及び装置
JP2006071492A (ja) * 2004-09-02 2006-03-16 Mitsubishi Heavy Ind Ltd ガス中の微粒子成分計測装置及び方法
JP2007309895A (ja) * 2006-05-22 2007-11-29 Univ Nagoya 粒子分析装置
JP2012516428A (ja) * 2008-12-10 2012-07-19 リバモア インストゥルメンツ インコーポレイテッド エアロゾル粒子のサイズおよび化学組成のリアルタイム測定システムおよび方法
WO2011114587A1 (ja) * 2010-03-17 2011-09-22 国立大学法人 東京大学 微粒子組成分析方法及び微粒子組成分析装置
JP2012189483A (ja) * 2011-03-11 2012-10-04 Fuji Electric Co Ltd 粒子測定装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AIZAWA T ET AL.: "2-D Imaging of Soot Formation Process in a Transient Spray Flame by Laser -induced Fluorescence and Incandescence Techniques.", SAE TECH PAP SER (SOC AUTOMOT ENG, 2002, pages 10P *
FUMIKAZU TAKETANI ET AL.: "Laser Yuki Keikoho o Mochiita Taiki Aerosol Ryushi no Sokutei", SYMPOSIUM ON AEROSOL SCIENCE AND TECHNOLOGY, vol. 28 TH, 27 August 2011 (2011-08-27), pages 97 - 98 *
IKEZAWA SATOSHI ET AL.: "Development of Carbonaceous Particle Size Analyzer Using Laser -induced Incandescence Technology", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN E, vol. 131, no. 5, 2011, pages 171 - 177 *
IKEZAWA SATOSHI ET AL.: "Optical Analytical Technique for Carbonaceous Particles Using Laser -Induced Electro-Avalanche Fluorescence and Laser - Induced Incandescence", SENS MATER, vol. 25, no. 1, pages 57 - 77 *
WU JUNTAO ET AL.: "Reduction of PAH and soot in premixed ethylene-air flames by addition of ethanol", COMBUST FLAME, vol. 144, no. 4, March 2006 (2006-03-01), pages 675 - 687 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290084A (zh) * 2015-06-23 2017-01-04 富士电机株式会社 粒子复合分析装置的校正方法以及粒子复合分析装置
JP2017009466A (ja) * 2015-06-23 2017-01-12 富士電機株式会社 粒子複合分析装置の校正方法及び粒子複合分析装置
CN106323823A (zh) * 2015-07-02 2017-01-11 富士电机株式会社 粒子测量装置
JP2017015587A (ja) * 2015-07-02 2017-01-19 富士電機株式会社 粒子計測装置
CN107966389A (zh) * 2017-12-31 2018-04-27 苏州铁树医药设备有限公司 一种尘埃粒子检测传感器及包括该传感器的粉尘检测仪
CN114993897A (zh) * 2022-07-18 2022-09-02 广东省麦思科学仪器创新研究院 气溶胶颗粒束束宽及颗粒分布的检测装置、套装和方法
CN114993897B (zh) * 2022-07-18 2022-11-18 广东省麦思科学仪器创新研究院 气溶胶颗粒束束宽及颗粒分布的检测装置、套装和方法

Similar Documents

Publication Publication Date Title
EP3150993B1 (en) Measurement device and measurement method
US20210140867A1 (en) Detecting nanoparticles on production equipment and surfaces
JP4145651B2 (ja) 空気中のバイオエアロゾル粒子を検出して同定する方法および装置
US7260483B2 (en) Real-time detection method and system for identifying individual aerosol particles
US10222363B2 (en) Measurement device and measurement method
US5895922A (en) Fluorescent biological particle detection system
JP5391429B2 (ja) 空中に浮遊している化学物質、生体物質、及び爆発性物質をリアルタイムで分析するための分析方法及び分析装置
US7256396B2 (en) Sensitive glow discharge ion source for aerosol and gas analysis
US20090183554A1 (en) Particle concentration measurement technology
US9541479B2 (en) Apparatus and method for liquid sample introduction
US9804183B2 (en) Apparatus and method for liquid sample introduction
WO2014141994A1 (ja) 粒子分析方法及び粒子分析装置
US10176976B2 (en) Ion source and method for generating elemental ions from aerosol particles
JP6412004B2 (ja) 低温プラズマ中の粒子を分析するための方法およびシステム
JP6858851B2 (ja) サイクロン捕集器
JPH06186157A (ja) 微粒子分析装置および微粒子分析方法
CN111220515A (zh) 一种用于在线分析单颗粒中金属元素的装置及方法
Sullivan et al. Characterization of individual aerosol particles
US6122050A (en) Optical interface for a radially viewed inductively coupled argon plasma-Optical emission spectrometer
KR102100774B1 (ko) 초미세입자의 크기-성분 측정 장치 및 크기-성분 측정 방법
JP2004219250A (ja) 粒子中の化学成分測定方法
Taketani et al. Analysis of the mixing state of airborne particles using a tandem combination of laser-induced fluorescence and incandescence techniques
JP2941762B2 (ja) ダイオキシン分析装置
JP2023532361A (ja) レーザ誘起プラズマ分光法を使用してエアロゾル形態の生物学的粒子を特徴付ける方法および関連するシステム
CN116403883A (zh) 一种单个细胞的质谱检测装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP