WO2011112031A2 - 공기 정화 모듈 - Google Patents

공기 정화 모듈 Download PDF

Info

Publication number
WO2011112031A2
WO2011112031A2 PCT/KR2011/001705 KR2011001705W WO2011112031A2 WO 2011112031 A2 WO2011112031 A2 WO 2011112031A2 KR 2011001705 W KR2011001705 W KR 2011001705W WO 2011112031 A2 WO2011112031 A2 WO 2011112031A2
Authority
WO
WIPO (PCT)
Prior art keywords
air
filter unit
purification module
air purification
heater
Prior art date
Application number
PCT/KR2011/001705
Other languages
English (en)
French (fr)
Other versions
WO2011112031A3 (ko
Inventor
류병훈
공재경
Original Assignee
주식회사 이엠따블유에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유에너지 filed Critical 주식회사 이엠따블유에너지
Priority to US13/583,217 priority Critical patent/US20130004376A1/en
Priority to JP2012556986A priority patent/JP2013521098A/ja
Priority to CN2011800105224A priority patent/CN102781554A/zh
Priority to EP11753636.7A priority patent/EP2545981A4/en
Publication of WO2011112031A2 publication Critical patent/WO2011112031A2/ko
Publication of WO2011112031A3 publication Critical patent/WO2011112031A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines

Definitions

  • the present invention relates to an air purification module, and more particularly, an air for purifying air by heating a filter part in which an inorganic coating including a plurality of pores and a catalyst mother liquid is supported on a part or all of the inorganic coating, and a catalyst layer in which a catalyst layer is formed. It relates to a purification module.
  • the exhaust gas purification filter part is produced by coating a noble metal such as platinum, which is a catalyst material for exhaust gas purification, on a carrier mainly made of ceramic.
  • a noble metal such as platinum
  • the carrier formed of the ceramic material is weak in impact and not high in durability. And there is a problem in that the weight is increased due to the nature of the high density ceramic.
  • the carrier formed of a ceramic material has a problem that it is difficult to produce a large amount because the manufacturing cost is expensive.
  • an inorganic membrane made of a porous inorganic film is prepared using an anodic oxidation reaction, and applied to the carrier to purify the gas.
  • a carrier structure usable for gas reaction and a method for producing the carrier are provided.
  • the carrier structure is operated by catalysis at a predetermined temperature condition, preferably 200 to 250 ° C., it will be said that the carrier structure is mainly used to purify hot gas that is already heated, such as the exhaust gas of the prime mover. That is, there is a problem that it is difficult to purify air at room temperature only with the carrier structure of the prior art.
  • An object of the present invention for solving the problems of the prior art is to purify the air by heating the filter portion formed with a catalyst layer by heating a catalyst mother liquid on an inorganic coating including a plurality of pores and a portion or all of the inorganic coating with a heater It is to provide an air purification module.
  • an inorganic film including a plurality of pores is formed on the surface, the catalyst mother liquid is supported on part or all of the inorganic film
  • a filter layer to form a catalyst layer and to purify air by catalytic reaction with the catalyst layer at a predetermined temperature condition;
  • a heater for heating the filter unit to the predetermined temperature condition.
  • the air purification module may further include a cooling heat exchanger for cooling the heated air while passing through the filter unit.
  • the air purification module may further include a heat exchanger for heating the air before passing through the filter unit.
  • the cooling and heating comprises a plurality of first slots formed in the longitudinal direction and a plurality of second slots formed in the transverse direction between the plurality of first slots. Further comprising a heat exchanger, wherein any one of the slot of the first or second slots to pass the air before passing through the filter portion, the remaining slots to pass the heated air after passing through the filter portion, This may be characterized in that the air before passing through the filter portion is heated and the heated air after passing through the filter portion is cooled.
  • the inorganic film may be formed by anodization.
  • the catalyst layer may be characterized in that the platinum (Pt) or rhodium (Rh) catalyst layer.
  • the predetermined temperature condition may be characterized in that 200 to 250 ° C.
  • the filter unit may be formed by allowing a plurality of plates spaced apart from each other to be configured to allow ventilation between the plates.
  • the plate may be characterized in that a plurality of vent holes are formed.
  • the heater may be characterized in that the rod is bonded to the plate while penetrating the plate.
  • the heater may be bonded to penetrate through a predetermined distance away from the center of the plate to be close to the air inflow direction in the plate.
  • the heat generated from the heater may be characterized in that it further comprises a heat insulating material to block the transfer to the remaining components other than the filter unit.
  • the air purification module according to the present invention has the advantages of being robust and light compared to the ceramic carrier.
  • the air purification module of the present invention even when using a small amount of catalyst compared to the conventional ceramic carrier has the advantage of reducing the manufacturing cost because it shows the same or better purification effect.
  • the air purification module of the present invention has the advantage of effectively purifying air at room temperature because the carrier is composed of a material having high thermal conductivity.
  • FIG. 1 is a cross-sectional view showing an inorganic film including a plurality of pores formed on the surface of a filter part, and a catalyst layer formed by supporting a catalyst mother liquid on the inorganic film.
  • FIG. 2 is a block diagram showing an air purification module according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing an air purification module according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing an air purification module according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing an air purification module according to an embodiment of the present invention.
  • Figure 6 is a perspective view and a partially enlarged view showing the structure of a heat exchanger for cooling and heating of the air purification module according to an embodiment of the present invention.
  • Figure 7 is a perspective view showing a state in which the filter unit and the heater of the air purification module according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing an air purification module according to an embodiment of the present invention.
  • a structure that supports and supports a catalyst is called a carrier, and a carrier made of ceramic material may be used.
  • a carrier having a form in which an inorganic film including a plurality of pores is formed on the surface of the support of the metal material may be used.
  • the present invention intends to use the catalyst mother liquid on the support to form a catalyst layer to be used as a filter.
  • the inorganic film including a plurality of pores on the surface of the carrier of the metal material may be formed through an anodization reaction.
  • Anodization is an oxidation phenomenon occurring during anodization, and by using this, a process of growing an oxide or nitride film formed on a metal surface using an electrolysis reaction can be performed.
  • the electrolyte When a direct current flows through the electrolyte, hydrogen is generated in the cathode metal and oxygen is produced in the anode metal (metals such as aluminum (Al) alloy, titanium (Ti), zinc (Zn), magnesium (Mg) and niobium (Nb)).
  • the formed oxygen reacts with the anode metal to form a metal oxide film.
  • the electrolyte dissolves the resulting oxide film finely.
  • a plurality of pores having a diameter of 10 to 150 nm are formed on the surface of the anode metal. do.
  • the electrolyte and the electric current can come into contact with the metal substrate existing under the oxide film, and as a result, a much thicker film than the oxide film formed by the spontaneous metal oxidation can be formed.
  • the film formed through such a process has various properties depending on the process conditions. The thicker the film is formed by using a low concentration of electrolyte and a high current or voltage.
  • the oxide film formed by the above method can be used as the inorganic film of the air purification module according to an embodiment of the present invention.
  • the inorganic coating thus formed it is possible to manufacture a low cost, high performance air purification module.
  • the inorganic coating can be produced using a conductive metal, and aluminum can be used as an example of such a conductive metal.
  • aluminum oxide which is aluminum oxide, is gradually laminated, and the alumina film thus formed is used as the inorganic coating of the present invention.
  • a platinum (Pt) or rhodium (Rh) catalyst layer may be inserted between the pores of the inorganic film.
  • the catalyst layer is completed by supporting the catalyst mother liquid to form a catalyst layer and drying.
  • the cross section of the structure in which the inorganic film 113 formed on it is shown is shown.
  • a plurality of pores included in the inorganic coating 113 can be seen to form platinum (Pt) as an example of the catalyst layer.
  • Part of the catalyst layer which substantially contributes to the chemical reaction for air purification is to form a catalyst layer by supporting the catalyst mother liquor on a carrier, rather than using the metal forming the catalyst layer alone as a filter, thereby increasing the surface area. Is advantageous.
  • the metal such as platinum (Pt) forming the catalyst layer is expensive, there is an advantage in terms of cost.
  • the most basic form of the air purification module is composed of a filter unit 100 and a heater 200 for heating the filter unit 100.
  • the filter unit 100 is a structure 100 that is configured to be ventilated, which means that the air ventable means a structure configured to allow gas to pass through. That is, the particles in the air to be purified should be a structure that can pass while colliding with the surface of the filter unit 100.
  • the filter unit 100 may be configured to allow ventilation between the plates 120 by forming a plurality of plates 120 spaced apart from each other. Or it may be configured to allow a gas to pass through the inside of the cylinder by being formed in a cylindrical shape such as a cylinder. Alternatively, it may be rolled in a spiral form and configured to be breathable. As described above, the filter unit 100 may be configured in various ways, and thus, the present invention is not limited to the shape, and if the filter unit 100 is configured to be ventilated, it should be understood as representing the technical idea of the present invention.
  • An inorganic film including a plurality of pores is formed on the surface of the filter part 100, and a catalyst layer is formed by supporting a catalyst mother liquid on a part or all of the inorganic film, which is formed by causing an anodic oxidation reaction as described above. It may be.
  • the air purification module including the filter unit 100 and the heater 200 for heating the filter unit 100 may allow the air passing through the filter unit 100 to cause a catalytic reaction. It is preferable to keep the filter unit 100 at 200 to 250 ° C.
  • environmental hormones such as volatile organic substances and formaldehyde are changed into carbon dioxide and water, which are harmless to the human body, by a catalytic reaction.
  • Biochemical contaminants such as mold and spores are also chemically burned and removed by catalytic reaction.
  • toxic substances such as carbon monoxide and nitrogen monoxide are also converted into carbon dioxide, nitrogen and water by a catalytic reaction.
  • the air purification module may further include a cooling heat exchanger (310).
  • the high temperature air passing through the filter unit 100 may be cooled by the cooling heat exchanger 310 and discharged to the outside.
  • the cooling heat exchanger 310 may be a structure capable of cooling the hot air through air cooling at room temperature.
  • the air purification module may further include a heat exchanger 320 for heating.
  • the heat exchanger 320 for heating helps to activate the catalytic reaction by heating the air before passing through the filter unit 100. That is, if the air before purification is maintained at room temperature until just before reaching the filter unit 100 and starts to be heated immediately after reaching the filter unit 100, the efficiency of the catalytic reaction may be lowered. The air before reaching) is preheated to increase the efficiency of the catalytic reaction.
  • the cooling and heating heat exchanger 330 which simultaneously performs the role of the cooling heat exchanger 310 and the heating heat exchanger 320. ) May be included. That is, it may be characterized by including a filter unit 100, a heater 200, a heat exchanger 330 for cooling and heating.
  • the cooling and heating heat exchanger 330 includes a plurality of first slots 331 formed through in the longitudinal direction and a plurality of first slots 331 formed in the transverse direction between the plurality of first slots 331.
  • One of the first or second slots 332 cools the air after passing through the filter unit 100, and the other slot heats the air before passing through the filter unit 100.
  • the air passing through the second slot 332 is hot air and the air passing through the first slot 331 is air at room temperature
  • the air passing through the second slot 332 is for cooling and heating.
  • the heat is transferred to the heat exchanger 330, and the transferred heat is transmitted to air at room temperature passing through the first slot 331. Therefore, the air passing through the first slot 331 is heated, and the air passing through the second slot 332 is cooled.
  • the expression of the longitudinal direction and the transverse direction does not mean the longitudinal direction and the transverse direction with respect to the absolute standard, but expresses the relative standards for each will not be limited to the technical spirit intended by the present invention.
  • first slot 331 is used for heating and the second slot 332 is used for cooling
  • first slot 331 is used for cooling
  • second slot 332 is changed. May be changed to be used for heating.
  • the filter unit 100 of the air purification module is formed by allowing a plurality of plates 120 to be spaced apart from each other to allow ventilation between the plates 120. It may be characterized by.
  • the plate 120 may be characterized in that a plurality of vent holes 130 are formed. As some air is drawn out between the vent holes 130 rather than passing air between the plates 120 at a time, the contact area is increased when the plurality of plates 120 is excessive, which can cause a catalytic reaction more effectively. There is an advantage.
  • the heater 200 may have a rod shape and may be bonded to the plate 120 while penetrating the plate 120.
  • the heater 200 may use a PTC heater, and the number of the heaters 200 may be adjusted according to the width or the number of the plates 120.
  • the heater 200 may be penetrated and spaced apart by a predetermined distance to be close to the air inflow direction from the center of the plate 120. Since the inlet air is lower than the filter unit 100, the plate 120 is cooled and the temperature of the plate 120 is not uniform. In order to cause a catalytic reaction, a predetermined temperature condition, preferably 200 to 250 ° C., should be maintained, but the efficiency of the catalytic reaction may be lowered because the temperature is relatively low at a position where air is introduced from the plate 120. Therefore, by combining the heater 200 in the direction in which the air is introduced, the incoming air is first heated, thereby increasing the efficiency of the catalytic reaction as a whole.
  • the heat insulating material 400 for blocking the heat generated from the heater 200 is not transmitted to the remaining components except the filter unit 100 It may be characterized in that it further comprises.
  • the passage part 510 is an empty space, and serves as a passage through which air can pass.
  • the air flow guide part 520 is a place where air is blocked from passing, and serves to guide the direction in which air flows. Arrows indicate the flow of air, the air at room temperature prior to purification is heated while passing through the heat exchanger 330 for cooling and heating in the longitudinal direction, and passes through the filter unit 100 heated by the heater 200. It is purified while.
  • the heated air falls to the lower right side and then rises again, but is cooled while passing in the transverse direction of the heat exchanger 330 for cooling and heating.
  • the cooled air will escape to the upper left.
  • the reference direction of the above-described content only means the direction shown in FIG. 8 and the direction in which the air purification module is installed may be relative.
  • the air purification module according to the present invention may be mounted and used in an air purification device, but may be applied to various devices such as an air conditioner or a hot air fan, and used as a part for air purification purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 다수의 기공을 포함하는 무기 피막과 상기 무기 피막의 일부 또는 전부에 촉매 모액을 담지시켜 촉매층이 형성된 필터부를 히터로 가열하여 공기를 정화하는 공기 정화 모듈에 관한 것이다. 본 발명의 일 실시예에 의하면, 통기(通氣) 가능하게 구성되면서, 표면에는 다수의 기공을 포함하는 무기 피막이 형성되고, 상기 무기 피막의 일부 또는 전부에 촉매 모액을 담지시켜 촉매층이 형성되며, 공기가 소정 온도 조건에서 상기 촉매층과 촉매 반응을 일으켜서 정화되도록 하는 필터부; 및 상기 필터부를 상기 소정 온도 조건으로 가열하는 히터를 포함하는 것을 특징으로 하는 공기 정화 모듈이 제공된다.

Description

공기 정화 모듈
본 발명은 공기 정화 모듈에 관한 것으로서, 더욱 상세하게는 다수의 기공을 포함하는 무기 피막과 상기 무기 피막의 일부 또는 전부에 촉매 모액을 담지시켜 촉매층이 형성된 필터부를 히터로 가열하여 공기를 정화하는 공기 정화 모듈에 관한 것이다.
일반적으로 배기 가스 정화용 필터부는 세라믹을 주재료로 하는 담체에 배기 가스 정화용 촉매 물질인 백금 등 귀금속을 코팅하여 생산한다. 그러나 세라믹 재질로 형성되는 담체는 충격에 약하여 내구성이 높지 않다. 그리고 밀도가 높은 세라믹의 특성상 무게가 증가하는 문제점이 있다. 또한 세라믹 재질로 형성되는 담체는 제조 비용이 고가이기 때문에 대량으로 생산하기 곤란한 문제점이 있다.
이러한 문제점을 해결하기 위하여, 본 출원인이 기 출원한 대한민국 특허출원 제2009-0036439호에 의하면, 양극 산화 반응을 이용하여 다공질의 무기 피막으로 이루어지는 무기막을 제조하고, 이를 담체에 적용함으로써, 가스 정화 등 기체 반응에 이용 가능한 담체 구조와 그 담체의 제조 방법이 제공된다.
그러나 이러한 담체 구조는 소정 온도 조건, 바람직하게는 200 내지 250°C에서 촉매 반응을 함으로써 동작하게 되므로, 원동기의 배기 가스와 같이 이미 가열된 고온의 기체를 정화하는데 주로 사용되는 구조라고 할 것이다. 즉, 종래 기술의 담체 구조만으로는 상온의 공기를 정화하기 어려운 문제점이 있다.
따라서 견고하고, 가벼우며, 제조 비용이 적게 소요되면서, 상온의 공기도 쉽게 정화하여 배출할 수 있는 공기 정화 모듈의 개발이 요구되는 실정이다.
상기한 종래기술의 문제점을 해결하기 위한 본 발명의 목적은 다수의 기공을 포함하는 무기 피막과 상기 무기 피막의 일부 또는 전부에 촉매 모액을 담지시켜 촉매층이 형성된 필터부를 히터로 가열하여 공기를 정화하는 공기 정화 모듈을 제공하는 것이다.
상기한 목적을 달성하기 위하여 본 발명의 일 실시예에 의하면, 통기(通氣) 가능하게 구성되면서, 표면에는 다수의 기공을 포함하는 무기 피막이 형성되고, 상기 무기 피막의 일부 또는 전부에 촉매 모액을 담지시켜 촉매층이 형성되며, 공기가 소정 온도 조건에서 상기 촉매층과 촉매 반응을 일으켜서 정화되도록 하는 필터부; 및 상기 필터부를 상기 소정 온도 조건으로 가열하는 히터를 포함하는 것을 특징으로 하는 공기 정화 모듈이 제공된다.
또한 본 발명의 일 실시예에 의한 공기 정화 모듈은, 상기 필터부를 통과하면서 가열된 공기를 냉각하는 냉각용 열교환기를 더 포함하는 것을 특징으로 할 수도 있다.
또한 본 발명의 일 실시예에 의한 공기 정화 모듈은, 상기 필터부를 통과하기 전의 공기를 가열하는 가열용 열교환기를 더 포함하는 것을 특징으로 할 수도 있다.
또한 본 발명의 일 실시예에 의한 공기 정화 모듈은, 종방향으로 관통 형성된 다수의 제1 슬롯과, 상기 다수의 제1 슬롯 사이마다 횡방향으로 관통 형성된 다수의 제2 슬롯을 포함하는 냉각 및 가열용 열교환기를 더 포함하되, 상기 제1 또는 제2 슬롯 중 어느 하나의 슬롯은 상기 필터부를 통과하기 전의 공기가 통과되도록 하고, 나머지 슬롯은 상기 필터부를 통과한 후의 가열된 공기가 통과되도록 하여, 열교환이 이루어짐으로써 상기 필터부를 통과하기 전의 공기는 가열되고 상기 필터부를 통과한 후의 가열된 공기는 냉각되도록 하는 것을 특징으로 할 수도 있다.
또한 상기 무기 피막은 양극 산화 현상으로 형성된 것을 특징으로 할 수 있다.
또한 상기 촉매층은 백금(Pt) 또는 로듐(Rh) 촉매층인 것을 특징으로 할 수 있다.
또한 상기 소정 온도 조건은 200 내지 250°C인 것을 특징으로 할 수 있다.
또한 상기 필터부는 다수의 판이 이격 적층되어 형성됨으로써 상기 판 사이로 통기(通氣) 가능하게 구성되는 것을 특징으로 할 수 있다.
또한 상기 판에는 다수의 통기공이 형성되는 것을 특징으로 할 수 있다.
또한 상기 히터는 막대 형상이고 상기 판을 관통하면서 상기 판과 접합되는 것을 특징으로 할 수 있다.
또한 상기 히터는 상기 판에서 공기 유입 방향에 가까워지게 상기 판의 중심으로부터 소정 거리 이격하여 관통하며 접합되는 것을 특징으로 할 수 있다.
또한 상기 히터에서 발생한 열이 상기 필터부를 제외한 나머지 구성 요소에 전달되지 않도록 차단하는 단열재를 더 포함하는 것을 특징으로 할 수 있다.
본 발명에 의한 공기 정화 모듈은, 세라믹 담체에 비해 견고하고, 가벼운 장점이 있다.
또한 본 발명의 공기 정화 모듈에 의하면, 기존 세라믹 담체에 비해 적은양의 촉매를 사용하더라도 동일하거나 더 우수한 정화 효과를 나타내기 때문에 제조 비용을 절감할 수 있는 장점이 있다.
또한 본 발명의 공기 정화 모듈은, 열전도율이 높은 소재로 담체를 구성하기 때문에 상온의 공기도 효과적으로 정화 가능한 장점이 있다.
도 1은 필터부의 표면에 형성된 다수의 기공을 포함하는 무기 피막과, 상기 무기 피막에 촉매 모액을 담지시켜 형성된 촉매층을 나타낸 단면도이다.
도 2는 본 발명의 일 실시예에 의한 공기 정화 모듈을 나타낸 블록도이다.
도 3은 본 발명의 일 실시예에 의한 공기 정화 모듈을 나타낸 블록도이다.
도 4는 본 발명의 일 실시예에 의한 공기 정화 모듈을 나타낸 블록도이다.
도 5는 본 발명의 일 실시예에 의한 공기 정화 모듈을 나타낸 블록도이다.
도 6은 본 발명의 일 실시예에 의한 공기 정화 모듈의 냉각 및 가열용 열교환기의 구조를 나타낸 사시도 및 부분확대도이다.
도 7은 본 발명의 일 실시예에 의한 공기 정화 모듈의 필터부와 히터가 결합된 모습을 나타낸 사시도이다.
도 8은 본 발명의 일 실시예에 의한 공기 정화 모듈을 나타낸 단면도이다.
이하, 발명에 따른 다양한 실시예들을 첨부한 도면을 참조하여 상세히 설명하기로 한다. 다만, 본 발명의 요지를 흐릴 수 있다고 판단되는 공지기술 및 그 구성에 대한 구체적인 설명은 생략하기로 한다. 또한, 도면을 참조하여 본 발명을 설명함에 있어서, 동일한 기능을 수행하는 구성 요소에 대하여는 동일한 부호를 부여하여 설명하기로 한다.
일반적으로 촉매를 담지하여 지지해 주는 구조를 담체라고 하고, 세라믹 소재의 담체를 사용하기도 한다. 세라믹 소재가 아니라, 금속 소재의 담체 표면에 다수의 기공을 포함하는 무기 피막이 형성된 형태의 담체를 사용할 수도 있는데, 본 발명은 이러한 담체에 촉매모액을 담지시켜 촉매층을 형성하여 필터부로 사용하고자 한다. 금속 소재의 담체 표면에 다수의 기공을 포함하는 무기 피막은 양극 산화 반응을 통해 형성될 수도 있다.
양극 산화라는 것은 양극 반응시 일어나는 산화 현상으로서, 이를 이용하면 전해 반응을 이용하여 금속 표면에 형성되는 산화물이나 질화물의 피막을 성장시키는 공정을 수행할 수 있다.
이러한 양극 산화 시에는 금속 표면의 미시적인 형태 변화, 또는 결정 구조의 변화가 일어날 수 있는데, 양극 산화의 일례를 설명하면 다음과 같다.
전해액을 통해 직류 전류를 흘리면 음극 금속에서는 수소가 발생하고 양극 금속(알루미늄(Al) 합금, 티타늄(Ti), 아연(Zn), 마그네슘(Mg), 니오븀(Nb) 등의 금속)에서는 산소가 발생하는데, 이 때 형성된 산소는 양극 금속과 반응하여 금속 산화물 피막을 형성시킨다. 이 과정에서 전해액은 생성된 산화물 피막을 미세하게 용해시키게 되는데, 이 때 용해 속도와 상기 산화물 피막의 형성 속도가 균형을 이루게 되면, 상기 양극 금속 표면에 10~150nm의 직경을 갖는 다수의 기공이 형성된다.
이러한 기공이 생기게 되면, 전해액과 전류가 산화물 피막의 하부에 존재하는 금속 기질과 접촉할 수 있게 되며, 그 결과 자발적인 금속의 산화 반응에 의해 형성되는 산화물 피막보다 월등히 두꺼운 피막이 형성될 수 있게 된다.
이러한 과정을 거쳐 형성되는 피막은 그 공정 조건에 따라 여러 가지 물성을 지니는데 낮은 농도의 전해액과 높은 크기의 전류 또는 전압을 이용할수록 두꺼운 피막이 형성되게 된다.
상기와 같은 방법으로 형성되는 산화물 피막을 본 발명의 일 실시예에 의한 공기 정화 모듈의 무기 피막으로 사용할 수 있다. 이렇게 형성된 무기 피막을 사용하게 되면 저비용, 고성능의 공기 정화 모듈을 제조할 수 있다.
무기 피막은 전도성 금속을 이용하여 제조될 수 있는데, 이러한 전도성 금속의 일례로서 알루미늄을 사용할 수 있다. 알루미늄을 양극으로 하여 양극 산화 반응을 일으키면 산화 알루미늄인 알루미나가 서서히 적층되고, 이렇게 형성된 알루미나 피막이 본 발명의 무기 피막으로 이용되는 것이다.
이후 무기 피막의 기공 사이에는 백금(Pt) 또는 로듐(Rh) 촉매층이 삽입될 수 있다. 상기 촉매층은 촉매 모액을 담지시켜 촉매층을 형성한 후 건조시켜 완성된다.
도 1에 의하면, 필터부의 베이스가 되는 금속층(111)과 상기 금속층(111) 위에 상기 금속층(111)을 구성하는 금속과 상기 금속의 산화물이 공존하는 전이층(112) 및 상기 전이층(112) 위에 형성되는 무기 피막(113)이 형성된 구조의 단면이 나타난다. 무기 피막(113)에 포함된 다수의 기공에는 촉매층의 일례로서 백금(Pt)이 형성된 모습을 볼 수 있다.
공기 정화를 위한 화학 반응에 실질적으로 기여하는 부분은 촉매층인데, 촉매층을 형성하는 금속을 단독으로 필터로서 사용하는 것보다는 담체 위에 촉매 모액을 담지시켜 촉매층을 형성하는 것이 표면적을 넓히는 효과를 얻을 수 있기 때문에 유리하다. 또한 촉매층을 형성하는 백금(Pt)과 같은 금속은 고가이기 때문에 비용 측면에서도 이점이 있다.
이하에서는, 본 발명의 다양한 실시예에 의한 공기 정화 모듈의 구조에 대해 상세히 설명하기로 한다.
도 2를 참조하면, 본 발명의 일 실시예에 의한 공기 정화 모듈의 가장 기본적인 형태는 필터부(100)와 상기 필터부(100)를 가열하는 히터(200)로 구성된다. 상기 필터부(100)는 통기(通氣) 가능하게 구성되는 구조(100)인데, 통기 가능하다는 의미는 기체가 통과할 수 있도록 구성되는 구조를 의미한다. 즉 정화될 공기 중의 입자가 필터부(100)의 표면과 충돌하면서 통과할 수 있는 구조가 되어야 한다.
상기 필터부(100)는 다수의 판(120)이 이격 적층되어 형성됨으로써 상기 판(120) 사이로 통기 가능하게 구성될 수 있다. 또는 원통 등과 같이 통형으로 형성됨으로써 통 내부를 기체가 통과할 수 있게 구성될 수도 있다. 또는 스파이럴(spiral) 형태로 롤링되어 통기 가능하게 구성될 수도 있다. 이와 같이 상기 필터부(100)는 다양한 구조가 가능할 것이므로 그 형상을 한정하지 않고, 통기 가능하게 구성되는 것이라면 본 발명의 기술적 사상을 대변하는 것으로 이해되어야 할 것이다.
상기 필터부(100)의 표면에는 다수의 기공을 포함하는 무기 피막이 형성되고, 상기 무기 피막의 일부 또는 전부에 촉매 모액을 담지시켜 촉매층이 형성되는데, 이는 상술한 바와 같이 양극 산화 반응을 일으켜서 형성할 수도 있다.
이와 같이 필터부(100)와 상기 필터부(100)를 가열하는 히터(200)로 구성된 공기 정화 모듈은, 상기 필터부(100)를 통과하는 공기가 촉매 반응을 일으킬 수 있도록, 상기 히터(200)가 상기 필터부(100)를 가열하여 200 내지 250°C로 유지하는 것이 바람직하다. 상기 필터부(100)가 가열된 상태에서는 휘발성 유기물질이나 포름알데히드 같은 환경호르몬이 촉매 반응에 의해 인체에 무해한 이산화탄소와 물로 변화된다. 그리고 곰팡이나 포자 등 생화학적 오염물질도 촉매 반응에 의해 화학 연소되어 제거된다. 또한 일산화탄소와 일산화질소 등 독성 물질도 촉매 반응에 의해 이산화탄소, 질소와 물로 변화된다.
도 3을 참조하면, 본 발명의 일 실시예에 의한 공기 정화 모듈에는 냉각용 열교환기(310)를 더 포함할 수도 있다. 상기 필터부(100)를 통과한 고온의 공기는 상기 냉각용 열교환기(310)에 의해 냉각되어 외부로 배출될 수 있다. 상기 냉각용 열교환기(310)는 고온의 공기를 상온의 외부 공기를 통해 공랭식으로 식힐 수 있는 구조가 될 수 있다.
상기 냉각용 열교환기(310)를 따라서 공기 정화 모듈이 탑재된 기기의 사용자들은 상온에 가깝게 식혀진 공기가 배출되는 것으로 느낄 수 있기 때문에, 소비자들의 사용 만족도를 높일 수 있는 장점이 있다.
도 4를 참조하면, 본 발명의 일 실시예에 의한 공기 정화 모듈에는 가열용 열교환기(320)를 더 포함할 수도 있다. 상기 가열용 열교환기(320)는 상기 필터부(100)를 통과하기 전의 공기를 가열하여 촉매 반응을 활성화시키는데 일조한다. 즉 정화 전의 공기가 상기 필터부(100)에 도달하기 직전까지는 상온으로 유지되다가 상기 필터부(100)에 도달한 직후부터 가열되기 시작하면 촉매 반응의 효율이 떨어질 수 있기 때문에, 상기 필터부(100)에 도달하기 전의 공기를 미리 가열하여 촉매 반응의 효율을 높일 수 있도록 한다.
도 5를 참조하면, 본 발명의 일 실시예에 의한 공기 정화 모듈은, 상기 냉각용 열교환기(310)와 상기 가열용 열교환기(320)의 역할을 동시에 수행하는 냉각 및 가열용 열교환기(330)를 포함할 수도 있다. 즉 필터부(100), 히터(200), 냉각 및 가열용 열교환기(330)를 포함하는 것을 특징으로 할 수도 있다.
도 6을 참조하면, 상기 냉각 및 가열용 열교환기(330)는, 종방향으로 관통 형성된 다수의 제1 슬롯(331)과, 상기 다수의 제1 슬롯(331) 사이마다 횡방향으로 관통 형성된 다수의 제2 슬롯(332)을 포함한다. 상기 제1 또는 제2 슬롯(332) 중 어느 한 슬롯은 상기 필터부(100)를 통과한 후의 공기를 냉각하고, 다른 한 슬롯은 상기 필터부(100)를 통과하기 전의 공기를 가열하게 된다.
예를 들어 제2 슬롯(332)을 통과하는 공기가 고온의 공기이고 제1 슬롯(331)을 통과하는 공기가 상온의 공기라면, 제2 슬롯(332)을 통과하는 공기가 상기 냉각 및 가열용 열교환기(330)에 열을 전달하게 되고, 전달된 열은 제1 슬롯(331)을 통과하는 상온의 공기에 전해지게 된다. 따라서 제1 슬롯(331)을 통과하는 공기는 가열되는 효과가 있고, 제2 슬롯(332)을 통과하는 공기는 냉각되는 효과가 있다.
한편 종방향과 횡방향이라는 표현은 절대적 기준에 대한 종방향과 횡방향을 의미하는 것이 아니라, 각각에 대한 상대적인 기준을 표현하는 것으로서 본 발명이 의도하는 기술적 사상이 한정되어 해석되어서는 아니될 것이다.
그리고 도 5에서는 제1 슬롯(331)을 가열용으로 사용하고 제2 슬롯(332)을 냉각용으로 사용하고 있지만, 이를 바꾸어 제1 슬롯(331)을 냉각용으로 사용하고 제2 슬롯(332)을 가열용으로 사용하도록 바꾸어도 무방하다.
도 7을 참조하면, 본 발명의 일 실시예에 의한 공기 정화 모듈의 필터부(100)는 다수의 판(120)이 이격 적층되어 형성됨으로써 상기 판(120) 사이로 통기(通氣) 가능하게 구성되는 것을 특징으로 할 수도 있다.
이 때 상기 판(120)에는 다수의 통기공(130)이 형성되는 것을 특징으로 할 수도 있다. 상기 판(120) 사이로 공기가 한번에 통과하는 것보다 통기공(130) 사이로 일부 공기가 빠져나가게 되면서 여러개의 판(120)을 지나치게 되면 접촉 면적이 늘어나는 효과가 있기 때문에 촉매 반응을 더욱 효과적으로 일으킬 수 있는 장점이 있다.
도 7에 도시한 바와 같이, 상기 히터(200)는 막대 형상이면서 상기 판(120)을 관통하며 상기 판(120)과 접합되는 것을 특징으로 할 수도 있다. 상기 히터(200)는 PTC 히터를 사용할 수도 있고, 상기 판(120)의 넓이나 개수에 따라 상기 히터(200)의 개수도 조절할 수 있을 것이다.
상기 히터(200)를 상기 판(120)의 중심에서 공기 유입 방향에 가까워지도록 소정 거리 이격하여 관통하며 접합되도록 할 수도 있다. 유입 공기는 상기 필터부(100)에 비해서 저온이기 때문에 상기 판(120)을 식히게 되고 상기 판(120)의 온도가 균일하지 않게 되는 문제가 있다. 촉매 반응을 일으키기 위해서는 소정 온도 조건, 바람직하게는 200 내지 250°C를 유지해야 되는데, 상기 판(120)에서 공기가 유입되는 위치에서는 온도가 상대적으로 낮기 때문에 촉매 반응의 효율이 떨어질 수 있다. 따라서 공기가 유입되는 방향에 히터(200)를 결합함으로써 유입되는 공기가 먼저 가열되도록 하고, 이를 통해 촉매 반응의 효율을 전체적으로 높일 수 있는 것이다.
도 8을 참조하면, 본 발명의 일 실시예에 의한 공기 정화 모듈은, 상기 히터(200)에서 발생한 열이 상기 필터부(100)를 제외한 나머지 구성 요소에 전달되지 않도록 차단하는 단열재(400)를 더 포함하는 것을 특징으로 할 수도 있다. 도 8에서 통로부(510)는 내부가 비어있는 공간으로서, 공기가 통과할 수 있는 통로 역할을 하게 된다. 그리고 공기흐름유도부(520)는 공기가 통과하지 못하게 막혀있는 곳으로서, 공기가 흘러가는 방향을 유도하는 역할을 한다. 화살표는 공기의 흐름을 나타내는데, 상방으로 들어온 정화 전 상온의 공기는 냉각 및 가열용 열교환기(330)를 종방향으로 지나면서 가열되고, 히터(200)에 의해 가열된 필터부(100)를 통과하면서 정화된다. 정화 후 가열된 공기는 하방 우측으로 빠진 후 다시 상승하되 냉각 및 가열용 열교환기(330)의 횡방향으로 지나면서 냉각된다. 냉각된 공기는 좌측 상방으로 빠져 나오게 된다. 다만 상술한 내용의 기준 방향은 도 8에 도시된 방향을 의미하는 것일 뿐 공기 정화 모듈이 설치되는 방향은 상대적일 수 있음을 이해하여야 한다.
본 발명에 의한 공기 정화 모듈은 공기 정화 장치에 장착되어 사용될 수도 있지만, 에어컨이나 온풍기 등 다양한 기기에 적용되어 공기 정화 목적의 일 부품으로서 사용될 수도 있다.
이상, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조로 설명하였다. 여기서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.

Claims (12)

  1. 통기(通氣) 가능하게 구성되면서, 표면에는 다수의 기공을 포함하는 무기 피막이 형성되고, 상기 무기 피막의 일부 또는 전부에 촉매 모액을 담지시켜 촉매층이 형성되며, 공기가 소정 온도 조건에서 상기 촉매층과 촉매 반응을 일으켜서 정화되도록 하는 필터부; 및
    상기 필터부를 상기 소정 온도 조건으로 가열하는 히터를 포함하는 것을 특징으로 하는 공기 정화 모듈.
  2. 제1항에 있어서,
    상기 필터부를 통과하면서 가열된 공기를 냉각하는 냉각용 열교환기를 더 포함하는 것을 특징으로 하는 공기 정화 모듈.
  3. 제2항에 있어서,
    상기 필터부를 통과하기 전의 공기를 가열하는 가열용 열교환기를 더 포함하는 것을 특징으로 하는 공기 정화 모듈.
  4. 제1항에 있어서,
    종방향으로 관통 형성된 다수의 제1 슬롯과, 상기 다수의 제1 슬롯 사이마다 횡방향으로 관통 형성된 다수의 제2 슬롯을 포함하는 냉각 및 가열용 열교환기를 더 포함하되,
    상기 제1 또는 제2 슬롯 중 어느 하나의 슬롯은 상기 필터부를 통과하기 전의 공기가 통과되도록 하고, 나머지 슬롯은 상기 필터부를 통과한 후의 가열된 공기가 통과되도록 하여, 열교환이 이루어짐으로써 상기 필터부를 통과하기 전의 공기는 가열되고 상기 필터부를 통과한 후의 가열된 공기는 냉각되도록 하는 것을 특징으로 하는 공기 정화 모듈.
  5. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 무기 피막은 양극 산화 현상으로 형성된 것을 특징으로 하는 공기 정화 모듈.
  6. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 촉매층은 백금(Pt) 또는 로듐(Rh) 촉매층인 것을 특징으로 하는 공기 정화 모듈.
  7. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 소정 온도 조건은 200 내지 250°C인 것을 특징으로 하는 공기 정화 모듈.
  8. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 필터부는 다수의 판이 이격 적층되어 형성됨으로써 상기 판 사이로 통기(通氣) 가능하게 구성되는 것을 특징으로 하는 공기 정화 모듈.
  9. 제8항에 있어서,
    상기 판에는 다수의 통기공이 형성되는 것을 특징으로 하는 공기 정화 모듈.
  10. 제8항에 있어서,
    상기 히터는 막대 형상이고 상기 판을 관통하면서 상기 판과 접합되는 것을 특징으로 하는 공기 정화 모듈.
  11. 제10항에 있어서,
    상기 히터는 상기 판에서 공기 유입 방향에 가까워지게 상기 판의 중심으로부터 소정 거리 이격하여 관통하며 접합되는 것을 특징으로 하는 공기 정화 모듈.
  12. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 히터에서 발생한 열이 상기 필터부를 제외한 나머지 구성 요소에 전달되지 않도록 차단하는 단열재를 더 포함하는 것을 특징으로 하는 공기 정화 모듈.
PCT/KR2011/001705 2010-03-11 2011-03-11 공기 정화 모듈 WO2011112031A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/583,217 US20130004376A1 (en) 2010-03-11 2011-03-11 Air-purifying module
JP2012556986A JP2013521098A (ja) 2010-03-11 2011-03-11 空気浄化モジュール
CN2011800105224A CN102781554A (zh) 2010-03-11 2011-03-11 空气净化模块
EP11753636.7A EP2545981A4 (en) 2010-03-11 2011-03-11 AIR CLEANING MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100021949A KR101154855B1 (ko) 2010-03-11 2010-03-11 공기 정화 모듈
KR10-2010-0021949 2010-03-11

Publications (2)

Publication Number Publication Date
WO2011112031A2 true WO2011112031A2 (ko) 2011-09-15
WO2011112031A3 WO2011112031A3 (ko) 2012-01-05

Family

ID=44564019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001705 WO2011112031A2 (ko) 2010-03-11 2011-03-11 공기 정화 모듈

Country Status (6)

Country Link
US (1) US20130004376A1 (ko)
EP (1) EP2545981A4 (ko)
JP (1) JP2013521098A (ko)
KR (1) KR101154855B1 (ko)
CN (1) CN102781554A (ko)
WO (1) WO2011112031A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104394940A (zh) * 2012-06-21 2015-03-04 Emw能源有限公司 便携式空气净化器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103830972B (zh) * 2014-03-19 2015-09-09 潘子奇 雾霾净化车
KR102270611B1 (ko) * 2014-09-03 2021-06-30 엘지전자 주식회사 유해가스 제거용 조성물, 그 제조 방법, 필터 및 이를 포함하는 공기 조화기
KR101783707B1 (ko) 2015-07-08 2017-11-16 (주)엠에스피엠 공기 정화 장치
KR20170094936A (ko) * 2016-02-12 2017-08-22 주식회사 리크릭스 공기 정화 모듈 및 이를 구비하는 저온 저장 장치
KR101973371B1 (ko) * 2018-05-09 2019-05-24 주식회사 이엠따블유 공기 정화 장치
KR20200046986A (ko) 2018-10-26 2020-05-07 주식회사 씨에로그린 촉매 필터 유닛 및 이를 포함하는 촉매 필터 모듈
WO2021260677A1 (en) * 2020-06-24 2021-12-30 Dusmit Ltd Air treatment systems and methods
KR102449469B1 (ko) * 2021-08-19 2022-09-30 (주)케스피온 공기 정화 모듈

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090036439A (ko) 2007-10-09 2009-04-14 주식회사 하이닉스반도체 딜레이 유닛을 포함하는 스큐 방지 유닛 및 이를 구비한신호 전달 회로

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1462090A (fr) * 1965-01-04 1966-12-09 Engelhard Ind Procédé d'élimination des impuretés organiques d'un effluent gazeux, provenant en particulier d'un four de revêtement
JPH02172538A (ja) * 1988-12-23 1990-07-04 Matsushita Electric Ind Co Ltd 排気ガス浄化触媒体
JP2616516B2 (ja) * 1991-06-27 1997-06-04 松下電器産業株式会社 有害成分加熱浄化装置および浄化方法
JPH06210168A (ja) * 1993-01-18 1994-08-02 Matsushita Electric Ind Co Ltd 脱臭装置
JPH11309341A (ja) * 1998-04-28 1999-11-09 Daikin Ind Ltd 触媒構造体及び触媒構造体を備える空気調和機
JP2000051333A (ja) * 1998-06-05 2000-02-22 Daikin Ind Ltd 脱臭デバイスとこれを備えた空気調和機及び脱臭機
JP2000140578A (ja) * 1998-11-06 2000-05-23 Ishikawajima Shibaura Mach Co Ltd 脱臭装置
US6409896B2 (en) * 1999-12-01 2002-06-25 Applied Materials, Inc. Method and apparatus for semiconductor wafer process monitoring
JP2001259004A (ja) * 2000-03-22 2001-09-25 Daikin Ind Ltd 脱臭装置
JP2002126452A (ja) * 2000-08-18 2002-05-08 Matsushita Electric Ind Co Ltd 脱臭装置及びそれを備えた生ごみ処理機
HK1037473A2 (en) * 2001-09-20 2002-03-15 Kui Wong Yeung An air-ventilator with high efficiency thermal exchanger and air filter
JP2003236342A (ja) * 2002-02-20 2003-08-26 Daikin Ind Ltd 排気ガス用脱臭機
JP2004232904A (ja) * 2003-01-29 2004-08-19 Gac Corp 空気浄化装置
KR20050064083A (ko) * 2003-12-23 2005-06-29 재단법인 포항산업과학연구원 금속지지체 산화촉매를 이용한 악취제거장치
KR200348764Y1 (ko) 2004-01-15 2004-04-30 정의택 촉매산화식 필터재생장치
JP4534154B2 (ja) * 2005-08-22 2010-09-01 株式会社 アルマイト触媒研究所 触媒式燃焼装置
JP2009090206A (ja) * 2007-10-09 2009-04-30 Panasonic Corp 空気浄化装置および空気浄化方法
WO2010008104A1 (en) * 2008-07-16 2010-01-21 E.M.W. Energy Co., Ltd. A formation ventilation gas purification coating structure using inorganic membrane, and method for manufacturing thereof
KR20100009470A (ko) * 2008-07-17 2010-01-27 주식회사 이엠따블유에너지 무기막을 이용한 담체 구조와 그 담체의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090036439A (ko) 2007-10-09 2009-04-14 주식회사 하이닉스반도체 딜레이 유닛을 포함하는 스큐 방지 유닛 및 이를 구비한신호 전달 회로

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104394940A (zh) * 2012-06-21 2015-03-04 Emw能源有限公司 便携式空气净化器
US20150321030A1 (en) * 2012-06-21 2015-11-12 Emw Energy Co., Ld. Portable air purifier
US9968809B2 (en) * 2012-06-21 2018-05-15 Rekrix Co., Ltd. Portable air purifier

Also Published As

Publication number Publication date
EP2545981A2 (en) 2013-01-16
CN102781554A (zh) 2012-11-14
US20130004376A1 (en) 2013-01-03
KR101154855B1 (ko) 2012-06-18
EP2545981A4 (en) 2015-01-14
JP2013521098A (ja) 2013-06-10
KR20110102765A (ko) 2011-09-19
WO2011112031A3 (ko) 2012-01-05

Similar Documents

Publication Publication Date Title
WO2011112031A2 (ko) 공기 정화 모듈
WO2013191468A1 (ko) 휴대용 공기 정화기
US6824907B2 (en) Tubular solid oxide fuel cell stack
JP2006520087A (ja) 燃料電池構造体および組立体
US20050000792A1 (en) Water photolysis system and process
JP2017201594A (ja) 触媒部品ならびにこれを含む通気フィルター、通気栓および鉛蓄電池
WO2005088752A1 (ja) 燃料電池システム
WO2003028138A1 (en) Functional integration of multiple components for a fuel cell power plant
WO2020256448A1 (ko) 폭발을 방지하기 위한 촉매형 수소 제거장치
CN107808969A (zh) 一种高温质子交换膜的制备方法
KR20060126446A (ko) 염화수소 수용액 또는 클로르알칼리 수용액의 전기분해방법
WO2011047441A1 (en) Recombinator for flowing electrolyte battery
WO2019132606A1 (ko) 유체의 흐름 방향 제어가 가능한 연료전지 막가습기
TW200421657A (en) Oxidant flow system for submerged metal air electrochemical cell
EP1626452A1 (en) Fuel cell system, electrical apparatus and method for recovering water formed in fuel cell system
WO2011132875A2 (ko) 공기 정화 장치 및 그 제어 방법
WO1996028589A1 (fr) Pompe pneumatique permselective aux gaz et incubateur l'utilisant
CN102148345A (zh) 一种具有内环境净化功能的电池隔板
JP2000340247A (ja) 燃料電池システム、この燃料電池システムでの一酸化炭素ガスの変成方法および混合ガス中における一酸化炭素ガスの変成方法
US20030148157A1 (en) Functional integration of multiple components for a fuel cell power plant
WO2019045302A1 (ko) 금속지지체형 고체산화물 연료전지 및 그 제조방법
WO2014196673A1 (ko) 제습장치를 포함하는 연료전지 시스템
CN218602487U (zh) 一种氢燃料电池尾气处理系统
JP2000126593A (ja) 一酸化炭素低減用触媒体
JPS63236270A (ja) 燃料電池の運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010522.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753636

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012556986

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13583217

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011753636

Country of ref document: EP