WO2014196673A1 - 제습장치를 포함하는 연료전지 시스템 - Google Patents

제습장치를 포함하는 연료전지 시스템 Download PDF

Info

Publication number
WO2014196673A1
WO2014196673A1 PCT/KR2013/004982 KR2013004982W WO2014196673A1 WO 2014196673 A1 WO2014196673 A1 WO 2014196673A1 KR 2013004982 W KR2013004982 W KR 2013004982W WO 2014196673 A1 WO2014196673 A1 WO 2014196673A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
dehumidifier
protective case
moisture
Prior art date
Application number
PCT/KR2013/004982
Other languages
English (en)
French (fr)
Inventor
권기욱
박종철
신현길
임종구
Original Assignee
지에스칼텍스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스(주) filed Critical 지에스칼텍스(주)
Priority to PCT/KR2013/004982 priority Critical patent/WO2014196673A1/ko
Publication of WO2014196673A1 publication Critical patent/WO2014196673A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system, and more particularly, to a fuel cell system having improved stability and durability by providing a dehumidifying apparatus for removing moisture leaked from a fuel cell stack.
  • Such a fuel cell converts chemical energy released in the process into electricity by oxidizing an active material such as hydrogen such as LNG, LPG, methanol, etc. through an electrochemical reaction. Produced hydrogen and oxygen in the air are used.
  • Fuel gas containing hydrogen and oxidizing gas containing oxygen are supplied to the fuel cell stack to generate power.
  • condensate is generated by an electrochemical reaction therein, and humidifying water exists to humidify the fuel gas and the oxidizing gas.
  • the fuel cell stack includes a membrane membrane made of a permeable material, through which the moisture inside the fuel cell stack may evaporate to the outside.
  • An object of the present invention is to improve the durability and stability of a fuel cell system by sealing a fuel cell stack releasing moisture and keeping the sealed space dry.
  • the present invention also provides a dehumidifying apparatus using oxidizing gas or fuel gas supplied to a fuel cell stack as a refrigerant.
  • the present invention for achieving the above object is a fuel cell stack for supplying fuel gas and oxidizing gas to produce electricity; A protective case forming a sealed space for accommodating the fuel cell stack; And a dehumidifier installed in communication with the inside of the protective case to remove moisture by inhaling gas in the protective case and returning the moisture to the protective case.
  • the protective case may further accommodate a humidifier for humidifying oxidizing gas and fuel gas.
  • the protective case and the dehumidifier is connected to a moisture supply pipe that transfers the gas inside the protective case to the dehumidifier, and a dry air return pipe that returns the air dehumidified by the dehumidifier to the protective case.
  • a means for forcibly feeding gas may be installed in at least one of the moisture supply pipe and the dry air return pipe.
  • the dehumidifier may include a condensation chamber provided between the moisture supply pipe and the dry season return pipe, and a heat exchanger formed inside the condensation chamber to maintain a temperature lower than a temperature inside the protective case.
  • the heat exchanger includes a refrigerant pipe through which refrigerant communicates, and a cooling fin formed on an outer circumferential surface of the refrigerant pipe to secure a contact area with the gas.
  • the refrigerant may be a fuel gas or an oxidizing gas supplied to the fuel cell stack, or may be supplied through a separate refrigerant cycle.
  • the condensation chamber may include a condensate storage unit configured to store condensate at a lower portion thereof, and a discharge valve for discharging condensate stored in the condensate storage unit.
  • the dehumidifier may include a dehumidification chamber disposed between the moisture supply pipe and the dry season return pipe, and a dehumidification filter installed in the dehumidification chamber.
  • the dehumidifier may further include a blower installed inside the dehumidification chamber for forced circulation of the gas.
  • the fuel cell system according to the present invention has the effect of improving the durability and stability of the fuel cell system by blocking the moisture discharged from the membrane of the fuel cell stack from affecting other electrical components.
  • FIG. 1 is a partial cross-sectional view showing a laminated structure of a fuel cell stack
  • FIG. 2 is a conceptual diagram showing the structure of a fuel cell system according to the present invention.
  • FIG. 3 is a configuration diagram showing a first embodiment of a fuel cell system dehumidifier of the present invention
  • FIG. 4 is a configuration diagram showing a vertical structure of the first embodiment of the fuel cell system dehumidifier of the present invention
  • FIG. 5 is a configuration diagram showing a second embodiment of the fuel cell system dehumidifier of the present invention.
  • Fig. 6 is a block diagram showing the dehumidification filter regeneration of the second embodiment of the fuel cell system dehumidifying apparatus of the present invention.
  • blower 340 heat exchanger
  • dehumidification chamber 440 dehumidification filter
  • FIG. 1 is a partial cross-sectional view showing a stacked structure of a fuel cell stack.
  • the fuel cell stack is formed by stacking a membrane membrane 10 and a separator plate 20.
  • a catalyst layer 12 is formed on both sides of the membrane membrane 10, and the separator plate 20 has a gasket 22 along an edge thereof. ) Is formed.
  • the gasket 22 presses both surfaces of the membrane membrane 10. At this time, the membrane membrane 10 has a portion exposed to the outside of the gasket.
  • Moisture present in the membrane membrane 10 is moved through diffusion therein, and moisture is evaporated out of the fuel cell stack through the membrane membrane 10 exposed outside the gasket 22.
  • Moisture exhausted through the membrane membrane makes the surroundings of the fuel cell stack humid, increasing the risk of corrosion of internal components and electrical leakage.
  • the moisture discharged to the outside of the fuel cell stack thus corrodes metal parts of the fuel cell to weaken durability, and increases the probability of occurrence of an electrical short in the electrical component, thereby causing a deterioration of the operation stability.
  • FIG. 2 is a conceptual diagram illustrating a structure of a fuel cell system according to the present invention.
  • the protective case 100 may accommodate the humidifiers 60 and 70 together with the fuel cell stack 50.
  • the humidifiers 60 and 70 are devices for supplying moisture to the oxidizing gas or the fuel gas supplied to the fuel cell stack 50, and in the form of the humidifiers 60 and 70 (particularly in the case of a plate humidifier, a separator plate and a membrane membrane are stacked). Moisture) can be evaporated through the membrane in the same manner as the fuel cell stack.
  • the humidifiers 60 and 70 are also accommodated in the protective case 100 together with the fuel cell stack 50. desirable.
  • the protective case 100 and the dehumidifier 200 are connected to each other by a moisture supply pipe 250 and a dry air return pipe 260.
  • the gas inside the protective case 100 is sent to the dehumidifier 200 through the moisture supply pipe 250, and the gas from which the moisture is removed from the dehumidifier 200 through the dry air return pipe 260 is the protective case 100. Is sent).
  • the dehumidifier may be configured in various forms.
  • the first embodiment is a type for removing moisture by condensing water vapor using a heat exchanger
  • the second embodiment is for removing water by adsorbing water vapor using a dehumidification filter. to be.
  • FIG. 3 is a configuration diagram showing a first embodiment of a fuel cell system dehumidifying apparatus of the present invention.
  • Dehumidifying apparatus 300 forcibly pressurizing the gas and the condensation chamber 310 provided between the moisture supply pipe 250 and the dry air return pipe 260 generates a flow of gas And a heat exchanger 340 formed inside the condensation chamber 310 to maintain a temperature lower than a temperature inside the protective case.
  • the blower 320 is illustrated as being installed in the condensation chamber 310 provided between the moisture supply pipe 250 and the dry air return pipe 260, but is not limited thereto, and various modifications are possible.
  • a means for forcibly feeding gas may be installed in at least one of the moisture supply pipe or the dry air return pipe.
  • the blower 320 is provided at the front end of the heat exchanger 340, the blower 320 may be provided at the rear end of the heat exchanger 340, or may be provided at both front and rear ends.
  • the blower may be provided in any one or more of the moisture supply pipe or the dry-weather return pipe inside the protective case housing the fuel cell stack.
  • the blower 320 may be configured inside the dehumidifier 300, and the blower 320 may be provided independently of the outside of the dehumidifier 300.
  • a blower has been described as an example, but at the same time as or in place of installing the blower, various means for forced circulation of a gas such as a circulation pump or a blower may be installed in the condensation chamber or It may be used in any one or more of the moisture supply pipe or dry season return pipe.
  • a circulation pump or a blower may be installed in the condensation chamber or It may be used in any one or more of the moisture supply pipe or dry season return pipe.
  • the heat exchanger 340 is for condensing water vapor by cooling the gas.
  • the heat exchanger 340 is formed on the outer circumferential surface of the coolant pipe 342 and the coolant pipe 342 through which a coolant is communicated, and secures a contact area with the gas.
  • a pin 344 is provided on the outer circumferential surface of the coolant pipe 342 and the coolant pipe 342 through which a coolant is communicated, and secures a contact area with the gas.
  • the refrigerant supplied to the heat exchanger 340 may be supplied through a separate refrigerant cycle.
  • the fuel gas or the oxidized gas supplied to the fuel cell stack may be communicated to the refrigerant pipe 342 to be utilized as the refrigerant.
  • a circulation pump may be installed to communicate the refrigerant supplied to the heat exchanger.
  • gaseous oxygen when oxygen is supplied to the fuel cell stack as an oxidizing gas, gaseous oxygen may be used as the refrigerant.
  • the liquid oxygen When oxygen is used as the oxidizing gas, the liquid oxygen is vaporized and supplied. The oxygen vaporized in the liquid may be used as a refrigerant of the heat exchanger because the temperature is low enough.
  • the oxidizing gas or the fuel gas supplied to the fuel cell stack is used as the refrigerant without using the refrigerant supplied from a separate refrigerant cycle, there is an effect of reducing the operating cost and simplifying the equipment.
  • FIG. 4 is a configuration diagram showing the vertical structure of the first embodiment of the fuel cell system dehumidifier of the present invention.
  • the condensed water In the case of removing the water by condensation as in the first embodiment, the condensed water must be stored and discharged to continuously remove water.
  • the condensation chamber 310 may form a condensate storage unit 315 under the heat exchanger 340, and discharge condensate stored in the condensate storage unit 315 to the outside. It is preferable to have a discharge valve 317.
  • the condensate storage unit 315 which is a space for accommodating condensate, may be formed under the heat exchanger 340 to store the condensate.
  • the lower end of the condensate storage unit 315 is provided with a discharge valve 317 for discharging the condensate.
  • the discharge valve 317 may be controlled to be opened at predetermined time intervals or may include a separate level sensor in the condensate storage unit 315 so that the discharge valve 317 is opened when the condensate reaches a predetermined level.
  • FIG. 5 is a configuration diagram showing a second embodiment of the fuel cell system dehumidifier of the present invention.
  • the dehumidifier 400 removes moisture by using a dehumidification filter that absorbs and removes moisture.
  • the dehumidification chamber 410 is disposed between the moisture supply pipe 250 and the dry air return pipe 260. And a blower 420 installed inside the dehumidification chamber to force circulation of the gas, and a dehumidification filter 440 installed inside the dehumidification chamber 410 to adsorb water vapor contained in the gas.
  • the blower 420 performs the same role as the blower of the first embodiment and description thereof will be omitted.
  • the dehumidification filter 440 uses a material that adsorbs moisture, such as zeolite and silica gel, and may form a moisture absorption material in a plate shape by using a mesh.
  • Moisture adsorption by the dehumidification filter 440 is not discharged to the condensed water, but the dehumidifying material absorbs and removes moisture. If the dehumidifying material is not continuously regenerated, continuous moisture removal is difficult.
  • the dehumidifier releases moisture.
  • the present invention is a heater 450 for heating the dehumidification filter 440, the discharge fan 460 for discharging the moisture discharged from the dehumidification filter 440 to the outside for the regeneration of the dehumidification filter 440 and It includes a moisture outlet 470 that is opened during the operation of the discharge fan 460.
  • FIG. 6 is a configuration diagram showing a dehumidification filter regeneration of the second embodiment of the fuel cell system dehumidification apparatus of the present invention.
  • the heater 450 and the discharge fan 460 operate, and the moisture discharge port 470 is opened.
  • the heater 450 is operated to heat the dehumidification filter 440, and the air passing through the dehumidification filter 440 by operating the discharge fan 460 is transferred to the dehumidification chamber 410 through the moisture outlet 470 by the discharge fan. To the outside.
  • Regeneration of the dehumidification filter 440 may be performed at regular time intervals, or may be performed when the fuel cell is stopped.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

연료전지 시스템에 관한 것으로, 보다 상세하게는 연료전지 스택에서 누설되는 수분을 제거하는 제습장치를 구비함으로써 안정성과 내구성을 향상시킨 연료전지 시스템에 관하여 개시한다. 본 발명은 연료가스와 산화가스를 공급받아 전기를 생산하는 연료전지 스택; 상기 연료전지 스택을 수용하는 밀폐공간을 형성하는 보호케이스; 및 상기 보호케이스 내부와 연통하게 설치되어 상기 보호케이스 내부의 기체를 흡기하여 수분을 제거하고 상기 보호케이스로 돌려 보내는 제습장치;를 포함하는 연료전지 시스템을 제공한다.

Description

제습장치를 포함하는 연료전지 시스템
본 발명은 연료전지 시스템에 관한 것으로, 보다 상세하게는 연료전지 스택에서 누설되는 수분을 제거하는 제습장치를 구비함으로써 안정성과 내구성을 향상시킨 연료전지 시스템에 관한 것이다.
일반적으로 연료전지는 기존의 발전방식과 비교할 때 발전 효율이 높을 뿐만 아니라 발전에 따른 공해 물질의 배출이 전혀 없어서 미래의 발전 기술로 평가 받고 있으며 다양한 연료를 사용할 수 있어 미래의 전지로 각광받고 있다.
이와 같은 연료전지는 수소 등의 활성을 갖는 물질, 예를 들어 LNG, LPG, 메탄올 등을 전기화학 반응을 통해 산화시켜 그 과정에서 방출되는 화학에너지를 전기로 변환시키는 것으로, 주로 천연가스에 의해 쉽게 생산해 낼 수 있는 수소와 공기중의 산소가 사용된다.
수소를 포함하는 연료가스와, 산소를 포함하는 산화가스를 연료전지 스택으로 공급하여 발전을 하게 된다.
연료전지 스택은 내부에서 전기화학반응으로 응축수가 발생하게 되며, 연료가스 및 산화가스를 가습하기 위한 가습수가 존재한다.
또한, 연료전지 스택은 투과성 재질인 멤브레인 막을 포함하는데, 멤브레인 막을 통해서 연료전지 스택 내부의 수분이 외부로 증발하기도 한다.
본 발명은 습기를 방출하는 연료전지 스택을 밀폐하고, 밀폐된 공간을 건조하게 유지될 수 있도록 함으로써, 연료전지 시스템의 내구성과 안정성을 향상시키는 것을 목적으로 한다.
또한, 본 발명은 연료전지 스택으로 공급되는 산화가스나 연료가스를 냉매로 이용하는 제습장치를 제공함에 있다.
이러한 목적을 달성하기 위한 본 발명은 연료가스와 산화가스를 공급받아 전기를 생산하는 연료전지 스택; 상기 연료전지 스택을 수용하는 밀폐공간을 형성하는 보호케이스; 및 상기 보호케이스 내부와 연통하게 설치되어 상기 보호케이스 내부의 기체를 흡기하여 수분을 제거하고 상기 보호케이스로 돌려 보내는 제습장치;를 포함하는 연료전지 시스템을 제공한다.
상기 보호케이스는 산화가스와 연료가스를 가습하는 가습기를 더 수용할 수 있다.
상기 보호케이스와 상기 제습장치는 보호케이스의 내부의 기체를 상기 제습장치로 이송하는 습기공급관과, 제습장치에서 제습된 공기를 보호케이스로 돌려 보내는 건기회송관으로 연결된다.
상기 연료전지 시스템은 기체를 강제 압송하기 위한 수단이 상기 습기공급관 또는 상기 건기회송관 중 어느 하나 이상에 설치될 수 있다.
상기 제습장치는 상기 습기공급관과 상기 건기회송관 사이에 구비되는 응축챔버와, 상기 응축챔버 내부에 형성되어 상기 보호케이스 내부의 온도보다 낮은 온도를 유지하는 열교환기를 포함할 수 있다.
상기 제습장치는 기체를 강제 압송하기 위한 송풍기가 상기 열교환기 전단 또는 후단 중 어느 하나 이상에 설치될 수 있다.
상기 열교환기는 내부에 냉매가 소통되는 냉매관과, 상기 냉매관의 외주면에 형성되어 기체와의 접촉면적을 확보하는 냉각핀을 포함한다.
상기 냉매로는 상기 연료전지 스택에 공급되는 연료가스 또는 산화가스를 이용하거나, 별도의 냉매싸이클을 통해 공급되는 것을 이용할 수 있다.
그리고, 상기 응축챔버는 하부에 형성되어 응축수를 저장하는 응축수 저장부와, 상기 응축수 저장부에 저장된 응축수를 배출하기 위한 배출밸브를 구비하는 것이 바람직하다.
한편, 상기 제습장치는 상기 습기공급관과 상기 건기회송관의 사이에 배치되는 제습챔버와, 상기 제습챔버 내부에 설치되는 제습필터를 포함할 수 있다.
이 경우, 상기 제습필터를 가열하기 위한 히터와, 상기 제습필터에서 증발된 습기를 제습챔버의 외부로 배출하기 위한 배출팬과, 상기 배출팬의 작동시 개방되는 습기배출구를 구비하는 것이 바람직하다.
상기 제습장치는 상기 제습챔버 내부에 설치되어 기체를 강제순환시키는 송풍기를 더 포함할 수 있다.
본 발명에 따른 연료전지 시스템은 연료전지 스택의 멤브레인에서 배출되는 습기가 다른 전장품들에 영향을 주지 못하도록 차단함으로써 연료전지 시스템의 내구성과 안정성을 향상시키는 효과를 가져온다.
도 1은 연료전지 스택의 적층구조를 나타낸 일부 단면도,
도 2는 본 발명에 따른 연료전지 시스템의 구조를 나타낸 개념도,
도 3은 본 발명의 연료전지 시스템 제습장치의 제1 실시예를 나타낸 구성도,
도 4는 본 발명의 연료전지 시스템 제습장치의 제1 실시예의 수직 구조를 나타낸 구성도,
도 5는 본 발명의 연료전지 시스템 제습장치의 제2 실시예를 나타낸 구성도,
도 6은 본 발명의 연료전지 시스템 제습장치의 제2 실시예의 제습필터 재생을 나타낸 구성도임.
50 : 연료전지 스택 100 : 보호케이스
200, 300, 400 : 제습장치 250 : 습기공급관
260 : 건기회송관 310 : 응축챔버
320, 420 : 송풍기 340 : 열교환기
410 : 제습챔버 440 : 제습필터
450 : 히터 460 : 배출팬
470 : 습기배출구
이하 본 발명에 따른 제습장치를 포함하는 연료전지 시스템을 도면을 참조하여 상세하게 설명한다.
본 발명의 장점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
또한, 도면에서 발명을 구성하는 구성요소들의 크기는 명세서의 명확성을 위하여 과장되어 기술된 것이며, 어떤 구성요소가 다른 구성요소의 "내부에 존재하거나, 연결되어 설치된다"고 기재된 경우, 상기 어떤 구성요소가 상기 다른 구성요소와 접하여 설치될 수 있고, 소정의 이격거리를 두고 설치될 수도 있으며, 이격거리를 두고 설치되는 경우엔 상기 어떤 구성요소를 상기 다른 구성요소에 고정 내지 연결시키기 위한 제3의 수단에 대한 설명이 생략될 수도 있다.
도 1은 연료전지 스택의 적층구조를 나타낸 일부 단면도이다.
연료전지 스택은, 멤브레인 막(10)과 분리판(20)이 적층되어 구성되는데, 멤브레인 막(10)의 양면에는 촉매층(12)이 형성되고, 분리판(20)에는 테두리를 따라 가스켓(22)이 형성되어 있다.
도시된 바와 같이, 멤브레인 막(10)의 양측에 분리판(20)이 적층되면 멤브레인 막(10)의 양면을 가스켓(22)이 가압하게 된다. 이 때 멤브레인 막(10)은 가스켓 외부로 노출되는 부분이 존재하게 된다.
멤브레인 막(10)에 존재하는 수분은 내부에서 확산을 통해 이동하게 되며, 가스켓(22) 외측으로 노출된 멤브레인 막(10)을 통해 수분이 연료전지 스택의 외부로 증발하게 된다.
이러한 현상은 멤브레인 막을 사용하는 판형 가습기에도 동일하게 발생한다.
멤브레인 막을 통해서 배출된 습기는 연료전지 스택 주변을 다습한 환경으로 만들고, 이로 인해 내부 부품의 부식이나 전기적인 누전이 발생할 우려가 높아진다.
이렇게 연료전지 스택 외부로 배출된 수분은 연료전지의 금속류 부품을 부식시켜 내구성을 약화시키며, 전장품에 누전 발생 확률을 높여 동작의 안정성을 저해하는 원인이 된다.
도 2는 본 발명에 따른 연료전지 시스템의 구조를 나타낸 개념도이다.
도시된 바와 같이, 본 발명에 따른 연료전지 시스템은 연료가스와 산화가스를 공급받아 전기를 생산하는 연료전지 스택(50)과, 내부에 연료전지 스택(50)을 수용하고 밀폐공간을 형성함으로써 연료전지 스택(50)에서 증발되는 수분의 확산을 차단하는 보호케이스(100)와, 보호케이스(100) 내부와 연통하게 설치되어 상기 보호케이스(100) 내부의 다습한 기체를 흡기하여 수분을 제거한 후 건조 기체를 상기 보호케이스(100)로 돌려 보내는 제습장치(200)를 포함한다.
상기 보호케이스(100)는 연료전지 스택(50)과 함께 가습기(60, 70)를 수용할 수도 있다. 가습기(60, 70)는 연료전지 스택(50)으로 공급되는 산화가스 또는 연료가스에 수분을 공급하기 위한 장치로, 가습기(60, 70)의 형태(특히 판형가습기의 경우 분리판과 멤브레인 막이 적층되는 구조를 가짐)에 따라서 연료전지 스택과 동일하게 멤브레인을 통해서 수분이 증발될 수 있는데, 이 경우 연료전지 스택(50)과 함께 가습기(60, 70)도 보호케이스(100) 내부에 수용되는 것이 바람직하다.
보호케이스(100)와 제습장치(200)는 습기공급관(250) 및 건기회송관(260)으로 서로 연결된다. 습기공급관(250)을 통해서는 보호케이스(100) 내부의 기체가 제습장치(200)로 보내지며, 건기회송관(260)을 통해서 제습장치(200)에서 수분이 제거된 기체가 보호케이스(100)로 보내진다.
제습장치는 여러가지 형태로 구성될 수 있는데, 제 1 실시예는 열교환기를 이용하여 수증기를 응축시켜 수분을 제거하는 타입이고, 제 2 실시예는 제습필터를 이용하여 수증기를 흡착시켜 수분을 제거하는 타입이다.
도 3은 본 발명의 연료전지 시스템 제습장치의 제1 실시예를 나타낸 구성도이다.
본 발명의 제 1 실시예에 따른 제습장치(300)는 습기공급관(250)과, 상기 건기회송관(260) 사이에 구비되는 응축챔버(310)와, 기체를 강제 압송하여 기체의 흐름을 발생시키기 위한 송풍기(320)와, 응축챔버(310) 내부에 형성되어 보호케이스 내부의 온도보다 낮은 온도를 유지하는 열교환기(340)를 포함한다.
도시한 실시예에서는 상기 송풍기(320)가 습기공급관(250)과 건기회송관(260) 사이에 구비되는 응축챔버(310) 내에 설치된 것으로 도시되어 있으나, 이에 한정되지 않고, 다양한 변형예가 가능하다. 예를 들어, 상기 송풍기(320)의 대안으로, 또는, 추가적으로, 기체를 강제 압송하기 위한 수단이 상기 습기공급관 또는 상기 건기회송관 중 어느 하나 이상에 설치될 수 있다.
도시한 실시예의 경우 열교환기(340)의 전단에 송풍기(320)가 구비되어 있으나, 송풍기(320)는 열교환기(340)의 후단에 구비될 수도 있고, 전후단에 모두 구비될 수도 있다. 또한, 송풍기는 연료전지 스택을 수용하는 보호케이스 내부나 상기 습기공급관 또는 건기회송관 중 어느 하나 이상에 구비될 수도 있다. 다시말해, 송풍기(320)는 제습장치(300)의 내부에 구성되어 있을 수도 있고, 송풍기(320)는 제습장치(300)의 외부에 독립적으로 구비될 수도 있다.
도시한 실시예에서는 송풍기를 예로 들어 설명하였으나, 송풍기를 설치하는 것과 동시에 또는 이를 대체하여 순환펌프(circulation pump) 또는 블로어(blower)등 기체를 강제순환시키기 위한 다양한 수단을 응축챔버 내부에 설치하거나 상기 습기공급관 또는 건기회송관 중 어느 하나 이상에 사용될 수도 있다.
열교환기(340)는 기체를 냉각시킴으로써 수증기를 응축하기 위한 것으로, 내부에 냉매가 소통되는 냉매관(342)과, 상기 냉매관(342)의 외주면에 형성되어 기체와의 접촉면적을 확보하는 냉각핀(344)을 포함한다.
이 때, 열교환기(340)에 공급되는 냉매는 별도의 냉매싸이클을 통해 공급될 수 있다.
다른 방식으로는, 연료전지 스택에 공급되는 연료가스 또는 산화가스를 냉매관(342)으로 소통시켜 냉매로 활용할 수 있다.
또한, 열교환기에 공급되는 냉매를 소통시키기 위해 순환펌프(circulation pump)를 설치할 수 있다.
특히, 연료전지 스택에 산화가스로 산소가 공급되는 경우에는, 기체 산소를 냉매로 활용할 수 있다. 산화가스로 산소가 사용되는 경우 액체 산소를 기화시켜 공급하게 되는데, 액체에서 기화된 산소는 온도가 충분히 낮아 열교환기의 냉매로 사용될 수 있다.
별도의 냉매 싸이클에서 공급되는 냉매를 사용하지 않고, 연료전지 스택에 공급되는 산화가스나 연료가스를 냉매로 활용하게 되면, 운전 비용을 절감하고 장비를 간소화할 수 있는 효과가 있다.
도 4는 본 발명의 연료전지 시스템 제습장치의 제1 실시예의 수직 구조를 나타낸 구성도이다.
제 1 실시예와 같이 수중기를 응축시켜 제거하는 경우, 응축수를 저장하고 배출해야 지속적인 수분제거가 가능하다.
따라서, 도 4에 도시된 바와 같이, 응축챔버(310)는 열교환기(340)의 하부에 응축수 저장부(315)를 형성하고, 응축수 저장부(315)에 저장된 응축수를 외부로 배출할 수 있는 배출밸브(317)를 구비하는 것이 바람직하다.
기체가 열교환기(340)에 의하여 냉각되면, 열교환기(340)의 표면에는 응축수가 맺히게 되고, 응축수는 중력에 의하여 하부로 흐르게 된다. 따라서, 열교환기(340) 하부에 응축수를 수용할 수 있는 공간인 응축수 저장부(315)를 형성하여, 응축수를 저장할 수 있다.
응축수 저장부(315)의 하단에는 응축수를 배출할 수 있는 배출밸브(317)가 구비된다. 배출밸브(317)는 일정 시간 간격으로 개방되도록 제어되거나, 응축수 저장부(315)에 별도의 수위센서를 구비하여, 응축수가 일정 수위에 도달하면 배출밸브(317)가 개방되도록 구성할 수 있다.
도 5는 본 발명의 연료전지 시스템 제습장치의 제2 실시예를 나타낸 구성도이다.
제 2 실시예에 따른 제습장치(400)는 습기를 흡착하여 제거하는 제습필터를 이용하여 수분을 제거하는 것으로, 습기공급관(250)과 건기회송관(260)의 사이에 배치되는 제습챔버(410)와, 제습챔버 내부에 설치되어 기체를 강제순환시키는 송풍기(420)와, 제습챔버(410) 내부에 설치되어 기체에 포함된 수증기를 흡착하는 제습필터(440)를 포함한다.
송풍기(420)는 제 1 실시예의 송풍기와 동일한 역할을 수행하는 것으로 중복 설명은 생략한다.
제습필터(440)는 제올라이트, 실리카겔과 같이 수분을 흡착하는 물질을 이용하는 것으로, 망체를 이용하여 수분흡착 물질을 판상형으로 구성할 수 있다.
제습필터(440)에 의한 수분흡착은 응축수로 배출되는 것이 아니라, 제습 물질이 습기를 흡착하여 제거하는 것으로, 제습물질을 지속적으로 재생하지 않으면 연속적인 습기 제거가 곤란하다.
제습물질에 가열된 건조 공기를 공급하게 되면, 제습물질은 습기를 배출하게 된다.
본 발명은 제습필터(440)의 재생을 위하여, 제습필터(440)를 가열하기 위한 히터(450)와, 상기 제습필터(440)에서 배출된 습기를 외부로 배출하기 위한 배출팬(460)과, 상기 배출팬(460)의 작동시 개방되는 습기배출구(470)를 포함한다.
도 6은 본 발명의 연료전지 시스템 제습장치의 제2 실시예의 제습필터 재생을 나타낸 구성도이다.
제습필터(440) 재생시에는 히터(450)와, 배출팬(460)이 동작하고, 습기배출구(470)가 개방된다. 히터(450)를 작동하여 제습필터(440)를 가열하고, 배출팬(460)을 작동하여 제습필터(440)를 통과한 공기가 배출팬에 의하여 습기배출구(470)를 통하여 제습챔버(410)의 외부로 배출시킨다.
이러한 제습필터(440)의 재생은 일정 시간 간격으로 이루어지거나, 연료전지 운전 정지시에 이루어질 수 있다.
첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 변형될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (13)

  1. 연료가스와 산화가스를 공급받아 전기를 생산하는 연료전지 스택;
    상기 연료전지 스택을 수용하는 밀폐공간을 형성하는 보호케이스; 및
    상기 보호케이스 내부와 연통하게 설치되어 상기 보호케이스 내부의 기체를 흡기하여 수분을 제거하고 상기 보호케이스로 돌려 보내는 제습장치;를 포함하는 연료전지 시스템.
  2. 제 1 항에 있어서,
    상기 보호케이스는
    산화가스와 연료가스를 가습하는 가습기를 더 수용하는 것을 특징으로 하는 연료전지 시스템.
  3. 제 1 항에 있어서,
    상기 보호케이스와 상기 제습장치는
    보호케이스의 내부의 기체를 상기 제습장치로 이송하는 습기공급관과,
    제습장치에서 제습된 공기를 보호케이스로 돌려 보내는 건기회송관으로 연결되는 것을 특징으로 하는 연료전지 시스템.
  4. 제 3 항에 있어서, 기체를 강제 압송하기 위한 수단이 상기 습기공급관 또는 상기 건기회송관 중 어느 하나 이상에 설치되어 있는 것을 특징으로 하는 연료전지 시스템.
  5. 제 3 항에 있어서,
    상기 제습장치는
    상기 습기공급관과 상기 건기회송관 사이에 구비되는 응축챔버와,
    상기 응축챔버 내부에 형성되어 상기 보호케이스 내부의 온도보다 낮은 온도를 유지하는 열교환기를 포함하는 것을 특징으로 하는 연료전지 시스템.
  6. 제 5 항에 있어서,
    상기 제습장치는 기체를 강제 압송하기 위한 송풍기가 상기 열교환기 전단 또는 후단 중 어느 하나 이상에 설치되는 것을 특징으로 하는 연료전지 시스템.
  7. 제 5 항에 있어서,
    상기 열교환기는
    내부에 냉매가 소통되는 냉매관과,
    상기 냉매관의 외주면에 형성되어 기체와의 접촉면적을 확보하는 냉각핀;을 포함하는 것을 특징으로 하는 연료전지 시스템.
  8. 제 7 항에 있어서,
    상기 냉매는
    상기 연료전지 스택에 공급되는 연료가스 또는 산화가스인 것을 특징으로 하는 연료전지 시스템.
  9. 제 7 항에 있어서,
    상기 냉매는
    별도의 냉매싸이클을 통해 공급되는 것을 특징으로 하는 연료전지 시스템.
  10. 제 5 항에 있어서,
    상기 응축챔버는
    하부에 형성되어 응축수를 저장하는 응축수 저장부와,
    상기 응축수 저장부에 저장된 응축수를 배출하기 위한 배출밸브를 구비하는 것을 특징으로 하는 연료전지 시스템.
  11. 제 3 항에 있어서,
    상기 제습장치는
    상기 습기공급관과 상기 건기회송관의 사이에 배치되는 제습챔버와,
    상기 제습챔버 내부에 설치되는 제습필터를 포함하는 것을 특징으로 하는 연료전지 시스템.
  12. 제 11 항에 있어서,
    상기 제습장치는
    상기 제습필터를 가열하기 위한 히터와,
    상기 제습필터에서 증발된 습기를 제습챔버의 외부로 배출하기 위한 배출팬과,
    상기 배출팬의 작동시 개방되는 습기배출구를 구비하는 것을 특징으로 하는 연료전지 시스템.
  13. 제 11 항에 있어서,
    상기 제습장치는 상기 제습챔버 내부에 설치되어 기체를 강제순환시키는 송풍기를 더 포함하는 것을 특징으로 하는 연료전지 시스템.
PCT/KR2013/004982 2013-06-05 2013-06-05 제습장치를 포함하는 연료전지 시스템 WO2014196673A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/004982 WO2014196673A1 (ko) 2013-06-05 2013-06-05 제습장치를 포함하는 연료전지 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/004982 WO2014196673A1 (ko) 2013-06-05 2013-06-05 제습장치를 포함하는 연료전지 시스템

Publications (1)

Publication Number Publication Date
WO2014196673A1 true WO2014196673A1 (ko) 2014-12-11

Family

ID=52008295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004982 WO2014196673A1 (ko) 2013-06-05 2013-06-05 제습장치를 포함하는 연료전지 시스템

Country Status (1)

Country Link
WO (1) WO2014196673A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993329A (zh) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 一种燃料电池高温尾气中水回用方法
WO2022207450A1 (de) * 2021-03-30 2022-10-06 Mahle International Gmbh Brennstoffzellensystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652878A (ja) * 1992-07-29 1994-02-25 Sanyo Electric Co Ltd 燃料電池装置
KR20030019248A (ko) * 2001-08-30 2003-03-06 산요 덴키 가부시키가이샤 연료 전지
KR20070016366A (ko) * 2005-08-03 2007-02-08 삼성에스디아이 주식회사 냉각장치를 구비한 고온용 연료전지 시스템 및 작동방법
KR20080048215A (ko) * 2006-11-28 2008-06-02 (주)퓨얼셀 파워 연료전지 시스템의 수분제거장치
KR100923448B1 (ko) * 2009-05-27 2009-10-27 한국기계연구원 밀폐형 연료전지 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652878A (ja) * 1992-07-29 1994-02-25 Sanyo Electric Co Ltd 燃料電池装置
KR20030019248A (ko) * 2001-08-30 2003-03-06 산요 덴키 가부시키가이샤 연료 전지
KR20070016366A (ko) * 2005-08-03 2007-02-08 삼성에스디아이 주식회사 냉각장치를 구비한 고온용 연료전지 시스템 및 작동방법
KR20080048215A (ko) * 2006-11-28 2008-06-02 (주)퓨얼셀 파워 연료전지 시스템의 수분제거장치
KR100923448B1 (ko) * 2009-05-27 2009-10-27 한국기계연구원 밀폐형 연료전지 시스템

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993329A (zh) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 一种燃料电池高温尾气中水回用方法
CN112993329B (zh) * 2019-12-12 2022-03-15 中国科学院大连化学物理研究所 一种燃料电池高温尾气中水回用方法
WO2022207450A1 (de) * 2021-03-30 2022-10-06 Mahle International Gmbh Brennstoffzellensystem

Similar Documents

Publication Publication Date Title
CN108474565B (zh) 家用能源中心和用于操作家用能源中心的方法
WO2019235800A1 (ko) 연료전지 막가습기
CN101680671B (zh) 加湿器和燃料电池系统
US6871844B2 (en) Humidifier
JP2000090954A (ja) 燃料電池スタック
WO2021107679A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
JP2005032707A (ja) エア冷却式燃料電池の冷却装置
JP4320774B2 (ja) 燃料電池装置
KR101299626B1 (ko) 제습장치를 포함하는 연료전지 시스템
WO2019066371A1 (ko) 조립형 카트리지 블록 및 이를 포함하는 중공사막 모듈
WO2018124483A1 (ko) 연료전지용 가습냉각 장치
WO2014196673A1 (ko) 제습장치를 포함하는 연료전지 시스템
WO2019132606A1 (ko) 유체의 흐름 방향 제어가 가능한 연료전지 막가습기
WO2021107668A1 (ko) 연료전지용 가습기
WO2022097870A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
JP2002260708A (ja) 燃料電池積層構造体
WO2022196963A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
JP2001272058A (ja) 空調システム
JP2007042490A (ja) 燃料電池ケースの除湿構造
KR101091662B1 (ko) 가습성능이 향상되는 연료전지 시스템
KR100823928B1 (ko) 연료전지를 이용한 제습 장치
WO2022265298A1 (ko) 연료전지 막가습기
WO2023033344A1 (ko) 연료전지 막가습기
WO2023033343A1 (ko) 연료전지 막가습기
WO2022169177A1 (ko) 바이패스 유량 조절이 가능한 연료전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886462

Country of ref document: EP

Kind code of ref document: A1