WO2011111367A1 - 固体電解質膜用の補強シート - Google Patents

固体電解質膜用の補強シート Download PDF

Info

Publication number
WO2011111367A1
WO2011111367A1 PCT/JP2011/001337 JP2011001337W WO2011111367A1 WO 2011111367 A1 WO2011111367 A1 WO 2011111367A1 JP 2011001337 W JP2011001337 W JP 2011001337W WO 2011111367 A1 WO2011111367 A1 WO 2011111367A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing sheet
glass fiber
solid electrolyte
organic binder
electrolyte membrane
Prior art date
Application number
PCT/JP2011/001337
Other languages
English (en)
French (fr)
Inventor
大西正輝
毛塚昌道
坂口修平
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to US13/583,339 priority Critical patent/US20130040225A1/en
Priority to JP2012504322A priority patent/JP5490217B2/ja
Priority to EP11753032.9A priority patent/EP2546910B1/en
Publication of WO2011111367A1 publication Critical patent/WO2011111367A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/1095Coating to obtain coated fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/04Polyadducts obtained by the diene synthesis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a sheet material (reinforcing sheet) for reinforcing a solid electrolyte membrane used in a polymer electrolyte fuel cell or the like.
  • a membrane (solid electrolyte membrane) made of proton-conductive organic polymer is used as a solid electrolyte of a polymer electrolyte fuel cell (PEFC).
  • PEFC polymer electrolyte fuel cell
  • proton-conductive organic polymers have perfluoroalkylene as the main chain and have ion-exchange groups (for example, sulfonic acid groups and carboxylic acid groups) at the end of the side chain having a structure in which perfluorovinyl ether is polymerized.
  • ion-exchange groups for example, sulfonic acid groups and carboxylic acid groups
  • a solid polymer fuel cell using a solid electrolyte membrane made of a fluorine-based polymer material is limited to the heat-resistant temperature of the fluorine-based polymer material and is usually operated in a relatively low temperature range of 70 to 90 ° C.
  • solid electrolyte membranes using heat-resistant aromatic polymer materials such as polybenzimidazole, polyethersulfone and polyetheretherketone have been proposed as proton-conductive organic polymers.
  • the strength of the solid electrolyte membrane made of these aromatic polymer materials is not sufficient, and the solid electrolyte membrane may be damaged when the membrane-electrode assembly is formed.
  • the solid electrolyte membrane made of a fluorine-based polymer material also contains water and swells, this swelling may cause an increase in the size of the membrane and a decrease in strength, as well as the occurrence of creep during long-time operation. Under these circumstances, the solid electrolyte membrane is required to be improved in strength and dimensional stability.
  • Patent Document 1 discloses polymer fibers (acrylic, polyester, polypropylene, fluororesin, etc.), natural materials (silk, cotton, paper, etc.), glass fibers, and those. Woven fabrics and the like.
  • Patent Document 1 describes that, among these, it is preferable to use glass fibers and glass fiber fabrics because they are excellent in strength and affinity with the material constituting the solid electrolyte membrane.
  • the present applicant has so far provided a reinforcing material (reinforcing sheet) in which an inorganic binder or an organic binder is contained in a molded body (glass fiber molded body) such as a woven fabric and a nonwoven fabric of glass fiber, and a solid electrolyte using the same.
  • a reinforcing material in which an inorganic binder or an organic binder is contained in a molded body (glass fiber molded body) such as a woven fabric and a nonwoven fabric of glass fiber, and a solid electrolyte using the same.
  • a molded body glass fiber molded body
  • Patent Document 5 a proton conductive solid electrolyte membrane manufactured from a solution in which Nafion serving as a solid electrolyte and short glass fibers are dispersed.
  • Patent Document 6 discloses a solidified nonwoven fabric in which fibers are bonded with an organic binder such as an acrylate polymer, SBR / NBR, polyvinyl ester or polyurethane dispersion as a reinforcing sheet.
  • SBR / NBR is a mixed latex of SBR (styrene-butadiene rubber) excellent in strength and the like and NBR (acrylonitrile-butadiene rubber) excellent in heat resistance and the like.
  • the glass fiber molded body to which the organic binder is adhered has a significantly improved brittle fracture strength as compared with the glass fiber molded body to which the binder is not adhered and the glass fiber molded body reinforced only with the inorganic binder.
  • the organic polymer constituting the organic binder decomposes and elutes in a fuel cell usage environment characterized by high temperature, low pH, and the presence of active chemical species, and the solid electrolyte membrane by the reinforcing sheet
  • the strength and dimensional stability of the resin may be hindered, or the characteristics of the solid electrolyte membrane may be affected.
  • an ester group contained in an acrylate polymer (acrylic polymer) is hydrolyzed under acidic conditions in the presence of water, which is a general use environment inside a fuel cell.
  • the acrylic polymer is not suitable as an organic binder for maintaining the strength and dimensional stability of the solid electrolyte membrane for a long time, in other words, for improving the durability of the membrane.
  • the epoxy polymer is not suitable as an organic binder for maintaining the characteristics of the solid electrolyte membrane for a long period of time, in other words, for eliminating the influence on the chemical stability of the membrane.
  • the problem to be solved by the present invention is that the organic binder contained in the reinforcing sheet inhibits the improvement of the durability of the solid electrolyte membrane by the reinforcing sheet, or reduces the chemical stability of the solid electrolyte membrane. It is. Although this problem has not attracted attention at the present time, it is considered that the improvement of the characteristics of the fuel cell progresses and, for example, becomes apparent when the fuel cell is used at a higher temperature.
  • An object of the present invention is to provide a reinforcing sheet suitable for improving durability and maintaining chemical stability of a solid electrolyte membrane.
  • the present invention is a reinforcing sheet for a solid electrolyte membrane, Comprising a glass fiber and an organic binder adhered to the glass fiber, Having a void in the reinforcing sheet for filling the solid electrolyte,
  • the organic binder is (I) an organic polymer containing no elements other than carbon, hydrogen and fluorine, or (ii) having a main chain and a side chain, wherein the main chain is perfluoroalkylene, and at least a terminal of the side chain
  • An organic polymer having a sulfonic acid group or a carboxylic acid group. Provide a reinforcing sheet.
  • the organic binder contained in the reinforcing sheet of the present invention is less likely to hinder the improvement of the strength and dimensional stability of the solid electrolyte membrane by the reinforcing sheet when the reinforcing sheet is used for reinforcing the proton conductive solid electrolyte membrane. In addition, it hardly affects the chemical stability of the solid electrolyte constituting the membrane. Therefore, according to the present invention, a reinforcing sheet suitable for improving the durability of the solid electrolyte membrane and maintaining the chemical stability can be provided.
  • the reinforcing sheet according to the present invention includes a glass fiber and an organic binder attached to the glass fiber, and has a space for filling the solid electrolyte therein.
  • the glass constituting the glass fiber is not particularly limited as long as it is suitable for improving the strength of the solid electrolyte membrane.
  • Preferred glass includes silicate glass containing an alkali component.
  • the alkali component-containing silicate glass is excellent in chemical stability and can be suitably applied to a production method for producing glass fibers by ejecting molten glass from fine holes and solidifying the glass.
  • the environment inside and around the solid electrolyte membrane is an acidic environment. Therefore, as the glass constituting the glass fiber, as represented by C glass, alkali-containing silicate glass having a composition in which elution of alkali components is small in an acidic environment is more preferable.
  • the fiber diameter of the glass fiber is preferably 0.1 ⁇ m to 20 ⁇ m, more preferably 0.3 ⁇ m to 8 ⁇ m from the viewpoint of improving the strength.
  • the variation in the fiber diameter of the glass fiber is small.
  • the strength of the reinforcing sheet can be improved by mixing a plurality of types of glass fibers having different fiber diameters.
  • the glass fiber constitutes a glass fiber molded body from the viewpoint of improving the strength of the solid electrolyte membrane.
  • the glass fiber molded body refers to an aggregate of glass fibers in which glass fibers are integrated to maintain a predetermined shape.
  • the glass fiber molded body is typically a woven fabric (glass fiber woven fabric) or a nonwoven fabric (glass fiber nonwoven fabric).
  • the glass fiber molded body is an aggregate of glass fibers integrated by interposing an organic binder between dispersed glass fibers in that the integrity is maintained even after the attached organic binder is removed. Is different.
  • the strength of the reinforcing sheet is particularly improved.
  • a glass fiber nonwoven fabric is suitable for thinning the reinforcing sheet. This is because the glass fiber nonwoven fabric can be formed using glass fibers having a small fiber diameter. Therefore, the use of the glass fiber nonwoven fabric is particularly suitable for the production of a reinforcing sheet used for a small fuel cell.
  • the glass fiber has a non-woven fabric form.
  • the glass fiber molded body has voids therein, and an organic binder is attached to a part of the voids. The remainder of the void is filled with the solid electrolyte. From the viewpoint of improving the strength, the density of the glass fiber molded body is preferably 0.1 g / cm 3 to 0.4 g / cm 3 .
  • the thickness of the glass fiber molded body is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less. In order to ensure the strength as the reinforcing sheet, the thickness of the glass fiber molded body is preferably 5 ⁇ m or more.
  • the basis weight (mass per unit area) of the glass fiber molded body is preferably 2 g / m 2 to 50 g / m 2 .
  • the basis weight is preferably 2 g / m 2 to 50 g / m 2 .
  • the basis weight is too small, the entanglement between the glass fibers is reduced, and the effect of improving the strength by the reinforcing sheet is reduced.
  • the basis weight is too large, the glass fiber molded body used for the reinforcing sheet of the solid electrolyte membrane becomes too thick.
  • a more suitable basis weight of the glass fiber molded body is 3 g / m 2 to 25 g / m 2 .
  • the porosity of the reinforcing sheet that is, the ratio of the void to the apparent volume of the reinforcing sheet is preferably 60 to 98% by volume.
  • the porosity is more preferably 80 to 98% by volume, further preferably 85 to 98% by volume, and particularly preferably 90 to 95% by volume.
  • the value of the porosity of the reinforcing sheet is the nominal thickness of the reinforcing sheet (strictly, the value obtained by measuring with a dial gauge after pressurizing to 20 kPa), the mass per unit area of the reinforcing sheet, glass fiber, and organic It can be calculated from the true density of the binder (the true density means the density inherent in the material without voids; the true density of the glass fiber is about 2.5 g / cm 3 ), and the mass ratio of the organic binder to the glass fiber.
  • a glass fiber nonwoven fabric suitable as a glass fiber molded body is illustrated.
  • a reinforcing sheet having a porosity in the above-described preferred range can be obtained.
  • the organic binder As the organic binder, the above (i) or (ii) can be used.
  • the organic binder belonging to (i) is an organic polymer consisting only of carbon and hydrogen, an organic polymer consisting only of carbon and fluorine, or an organic polymer consisting only of carbon, hydrogen and fluorine.
  • an organic polymer consisting only of carbon and hydrogen is preferable.
  • the organic polymer composed of only carbon and hydrogen include (i-1) polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), etc., which do not have a double bond in the molecule.
  • Aliphatic hydrocarbon polymers (i-2) Aromatic hydrocarbon polymers that do not have double bonds in the molecule, such as polystyrene (PS), (i-3) Polybutadiene, ethylene-propylene-diene copolymer Polymer (EPDM), isobutene-isoprene copolymer (IIR) and other aliphatic hydrocarbon polymers having a double bond in the molecule, (i-4) styrene-butadiene copolymer (SBR) and other molecules
  • hydrocarbon polymers having a double bond in the molecule are preferred because they are particularly difficult to deteriorate.
  • Examples of the organic polymer composed only of carbon and fluorine include polytetrafluoroethylene (PTFE).
  • examples of the organic polymer composed only of carbon, hydrogen, and fluorine include ethylene-tetrafluoroethylene copolymer (ETFE) and polyvinylidene fluoride (PVEF).
  • the organic polymer belonging to (i) does not contain an element other than carbon, hydrogen and fluorine, particularly oxygen and nitrogen, and therefore does not contain a highly reactive functional group represented by an ester group and an epoxy group.
  • the organic polymer belonging to (i) does not contain functional groups that may be decomposed under the use environment of the fuel cell, such as amide group and nitrile group (cyano group).
  • a typical example of an organic polymer belonging to (ii) is Nafion from DuPont.
  • the organic polymer belonging to (ii) is not limited to this product.
  • the organic polymer belonging to (ii) has perfluoroalkylene as the main chain, and has high chemical stability and heat resistance.
  • the sulfonic acid group and / or carboxylic acid group present at the end of the side chain is a functional group that stably functions as an ion exchange group even in the environment where the fuel cell is used, and its presence is a solid electrolyte membrane. It does not degrade the characteristics.
  • the side chain of the organic polymer belonging to (ii) does not contain elements other than carbon, hydrogen and fluorine except for the above-described ion exchange group.
  • the side chain of the organic polymer belonging to (ii) does not contain elements other than carbon, hydrogen and fluorine except for the above-described ion exchange group.
  • oxygen atoms that form an ether bond are included as in the side chain of Nafion that is actually used in fuel cells.
  • the ether bond is less reactive than the ester bond.
  • the molecular weight, degree of polymerization, etc. of the organic polymer may be appropriately determined according to the type of the selected organic polymer. Moreover, it is preferable to determine by performing experiment as needed.
  • the reinforcing sheet may contain an organic binder and an inorganic binder to the extent that the characteristics of the solid electrolyte membrane are not impaired.
  • an inorganic binder an inorganic material having acid resistance and heat resistance, for example, silica (silicon oxide) can be used.
  • the addition amount of the inorganic binder is preferably 0.5 to 10% by mass of the glass fiber.
  • a reinforcing sheet containing an inorganic binder in an amount within this range can further improve the strength of the membrane without significantly reducing the proton conductivity of the solid electrolyte membrane.
  • Examples of the method for attaching the organic binder to the glass fiber include a method in which a solution or dispersion containing the organic binder is applied to the glass fiber molded body or impregnated. Specifically, a spraying method and a dipping method can be applied.
  • a method of adding the organic binder to a solvent for producing the glass fiber nonwoven fabric may be used.
  • the binder may be added as a fibrous binder.
  • a fibrous binder By adding a fibrous binder, the strength of the reinforcing sheet can be improved.
  • a fibrous binder for example, a fluororesin fiber is suitable.
  • the addition amount of the fibrous binder is preferably 1 to 40% by mass of the glass fiber. When the addition amount is too low, the effect of improving the strength by the binder becomes low. If the amount added is too large, the dispersion of the glass fibers may be insufficient, or the solid electrolyte may be difficult to fill between the glass fibers due to the coating formed by the fibrous binder.
  • the organic binder may be locally peeled due to the difference in thermal expansion coefficient between the organic binder and glass fiber.
  • a silane coupling agent treatment is effective in suppressing this peeling. Specifically, before attaching the organic binder, it is preferable to perform a treatment of bringing the silane coupling agent into contact with the surface of the glass fiber. When the process which makes a silane coupling agent contact the surface of the glass fiber which the organic binder adhered, the adhesiveness of glass fiber and an organic binder will improve, and peeling of an organic binder can be suppressed.
  • the silane coupling agent treatment is preferable for enhancing the reinforcing effect of the glass fiber molded body by the organic binder.
  • the adhesion amount of the silane coupling agent is preferably 0.5 mg to 200 mg per 1 m 2 of the surface area of the glass fiber.
  • a silane coupling agent cannot fully cover the glass fiber surface, and the effect of an adhesive improvement falls.
  • it will become easy to form the layer which consists only of silane between glass fiber and an organic binder.
  • a layer composed only of silane is formed, the effect of improving the adhesive strength between the glass fiber and the organic binder decreases due to the breakage in the layer.
  • Example 1 a glass fiber molded body and a liquid organic binder raw material were prepared.
  • a glass fiber molded product “TGP-005F” manufactured by Nippon Sheet Glass Co., Ltd. was used.
  • This glass fiber molded body is a glass fiber nonwoven fabric obtained by papermaking glass fibers (C glass) having an average fiber diameter of 0.6 ⁇ m and glass fibers (C glass) having 4.0 ⁇ m.
  • the glass fiber nonwoven fabric has a nominal thickness of 50 ⁇ m and an apparent density of about 0.2 g / cm 3 .
  • the porosity calculated from the density of the glass fiber and the apparent density of the glass fiber nonwoven fabric is 91% by volume.
  • This glass fiber nonwoven fabric was cut into a size of about 100 mm square and used.
  • styrene-butadiene copolymer (SBR) “AL-2001” total solid content 48%) manufactured by Nippon A & L Co., Ltd. was used. This was diluted to obtain a liquid organic binder raw material. “AL-2001” is an uncrosslinked SBR.
  • the glass fiber nonwoven fabric was dipped in the liquid organic binder raw material, then pulled up (dipping method), and dried at 80 ° C. for 60 minutes.
  • an organic binder was adhered to the glass fiber nonwoven fabric to obtain a reinforcing sheet.
  • the following tests were conducted on each reinforcing sheet obtained by changing the SBR concentration (% by mass) in the liquid organic binder raw material as shown in Table 1.
  • the breaking strength per 25 mm width was measured.
  • seat and the mass of the glass fiber nonwoven fabric before being immersed in a liquid organic binder raw material were measured using the electronic balance, and the mass of the organic binder adhering to the reinforcement sheet was computed from the difference of both mass.
  • the external dimension of the reinforcing sheet was measured using a micrometer, and the apparent density of the reinforcing sheet was calculated.
  • the reinforcing sheet improves as the concentration of the liquid organic binder raw material increases (as the amount of organic binder attached increases).
  • the reinforcing sheet preferably has a certain degree of porosity (for example, 80% by volume or more, preferably 85% by volume or more).
  • the concentration of the liquid organic binder raw material is preferably 0.01 to 5% by mass, and more preferably 0.1 to 1% by mass.
  • the strength of the reinforcing sheet was improved when the adhesion amount of the organic binder to the glass fiber was in the range of 0.1 to 51% by mass, but the adhesion amount of the organic binder was 0.7 to 9% by mass. More preferred.
  • a reinforcing sheet having a porosity of 85% by volume or more and an adhesion amount of the organic binder to the glass fiber of 0.7% by mass or more is particularly suitable.
  • Example 2 A reinforcing sheet was prepared and evaluated in the same procedure as in Example 1 except that Nafion, which is a polymer solid electrolyte, was used as the organic binder. However, in Example 2, a reinforcing sheet in which the surface of the glass fiber was treated with aminosilane (silane coupling agent treatment) was also prepared before dipping the glass fiber molded body. Specifically, the silane coupling agent treatment was performed by applying aminosilane to the surface of the glass fiber. The results are shown in Table 2.
  • Table 2 shows that the strength of the reinforcing sheet was improved by the silane coupling agent treatment.
  • the reinforcing sheet according to the present invention is useful for improving the strength of the solid electrolyte membrane of the fuel cell.
  • the reinforcing sheet according to the present invention is also useful as a reinforcing material for improving the strength of various primary or secondary batteries, separators such as capacitors, and current collectors thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuel Cell (AREA)
  • Reinforced Plastic Materials (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明による補強シートは、ガラス繊維とガラス繊維に付着した有機バインダーとを備え、その内部に固体電解質を充填するための空隙を有する。有機バインダーは、(i)炭素、水素およびフッ素以外の元素を含まない有機高分子、または(ii)主鎖および側鎖を有し、主鎖がパーフルオロアルキレンであり、側鎖の少なくとも一部の末端にスルホン酸基またはカルボン酸基を有する有機高分子である。本発明による補強シートは、固体電解質膜の耐久性の改善および化学的安定性の維持に適している。

Description

固体電解質膜用の補強シート
 本発明は、固体高分子型の燃料電池などに使用される固体電解質膜を補強するためのシート材料(補強シート)に関するものである。
 固体高分子型燃料電池(PEFC)の固体電解質にはプロトン伝導性の有機高分子からなる膜(固体電解質膜)が用いられている。現在のところ、プロトン伝導性の有機高分子としては、パーフルオロアルキレンを主鎖とし、パーフルオロビニルエーテルが重合した構造を有する側鎖の末端にイオン交換基(例えば、スルホン酸基、カルボン酸基)を有するフッ素系高分子材料(例えば、米国デュポン社のナフィオン(「NAFION」は登録商標))が主に用いられている。
 フッ素系高分子材料からなる固体電解質膜を用いた固体高分子型燃料電池は、フッ素系高分子材料の耐熱温度に制限され、通常、70~90℃の比較的低い温度領域で運転される。しかし、固体高分子型燃料電池は、一酸化炭素による貴金属触媒の被毒の低減、および廃熱利用による総合的な発電効率の向上のため、より高い温度で運転することが望ましい。このため、プロトン伝導性の有機高分子として、耐熱性の芳香族系高分子材料、例えばポリベンズイミダゾール、ポリエーテルスルホンおよびポリエーテルエーテルケトン、を用いた固体電解質膜が提案されている。
 しかし、これらの芳香族系高分子材料からなる固体電解質膜の強度は十分ではなく、膜-電極接合体を形成する際に固体電解質膜が破損することがある。また、フッ素系高分子材料からなる固体電解質膜も含水して膨潤するため、この膨潤が膜の寸法の増大および強度の低下、さらには長時間運転の際のクリープ発生をもたらすことがある。これらの事情から、固体電解質膜については、強度および寸法安定性の向上が求められている。
 強度および寸法安定性に優れた固体電解質膜を得るために、有機繊維または無機繊維の織布などからなる補強シートを用いて固体電解質膜を補強することが提案されている(例えば特許文献1および2)。このような補強用の繊維として、特許文献1には、高分子素材の繊維(アクリル、ポリエステル、ポリプロピレン、フッ素樹脂など)、天然素材系の繊維(絹、綿、紙など)、ガラス繊維およびそれらの織物などが挙げられている。特許文献1には、これらの中では、強度および固体電解質膜を構成する材料との親和性に優れるため、ガラス繊維およびガラス繊維の織物を用いることが好ましいと記載されている。
 本出願人は、これまでに、ガラス繊維の織布および不織布などの成形体(ガラス繊維成形体)に、無機バインダーまたは有機バインダーを含ませた補強材(補強シート)およびこれを用いた固体電解質膜を提案してきた(特許文献3および4)。
 また、本出願人は、固体電解質となるナフィオンとガラス短繊維とを分散させた溶液から製造したプロトン伝導性固体電解質膜を提案した(特許文献5)。
 特許文献6には、補強シートとして、アクリレートポリマー、SBR/NBR、ポリビニルエステルまたはポリウレタン分散材などの有機バインダーで繊維を接着した固化不織布が開示されている。SBR/NBRは、強度などに優れるSBR(スチレン-ブタジエンゴム)と耐熱性などに優れるNBR(アクリロニトリル-ブタジエンゴム)との混合ラテックスである。
 有機バインダーが付着したガラス繊維成形体は、バインダーが付着していないガラス繊維成形体および無機バインダーのみで強化されたガラス繊維成形体に比べて、脆性破壊強度が大きく向上する。
特開2001-307545号公報 特開2007-018995号公報 特開2004-319421号公報 国際公開第2005/086265号パンフレット 国際公開第2006/057239号パンフレット 特表2009-545841号公報
 しかし、有機バインダーを構成する有機高分子は、高温、低pHおよび活性な化学種の存在などを特徴とする燃料電池の使用環境において、分解し、さらには溶出して、補強シートによる固体電解質膜の強度および寸法安定性の向上を阻害し、あるいは固体電解質膜の特性に影響を与えることがある。例えば、アクリレートポリマー(アクリル系高分子)に含まれるエステル基は、燃料電池内部の一般的な使用環境である水共存下の酸性条件において加水分解する。このため、アクリル系高分子は、固体電解質膜の強度および寸法安定性を長期間維持するための、言い換えれば膜の耐久性を向上させるための有機バインダーとしては適していない。また例えば、エポキシ系高分子に含まれるエポキシ基からは反応性の高い酸素ラジカルが生じ、この酸素ラジカルは固体電解質膜を構成する材料と反応する。このため、エポキシ系高分子は、固体電解質膜の特性を長期間維持するための、言い換えれば膜の化学的安定性への影響を排除するための有機バインダーとしては適していない。
 すなわち、本発明が解決しようとする問題点は、補強シートに含まれる有機バインダーが、補強シートによる固体電解質膜の耐久性の向上を阻害し、あるいは固体電解質膜の化学的安定性を低下させることである。この問題点は、現時点では注目を集めていないものの、燃料電池の特性の改善が進展し、例えば燃料電池がより高い温度で使用されることになると顕在化すると考えられる。本発明は、固体電解質膜の耐久性の改善および化学的安定性の維持に適した補強シートを提供することを目的とする。
 本発明は、固体電解質膜用の補強シートであって、
 ガラス繊維と前記ガラス繊維に付着した有機バインダーとを備え、
 固体電解質を充填するための空隙を前記補強シート内に有し、
 前記有機バインダーが、
 (i)炭素、水素およびフッ素以外の元素を含まない有機高分子、または
 (ii)主鎖および側鎖を有し、前記主鎖がパーフルオロアルキレンであり、前記側鎖の少なくとも一部の末端にスルホン酸基またはカルボン酸基を有する有機高分子、である、
 補強シートを提供する。
 本発明の補強シートに含まれる有機バインダーは、補強シートがプロトン伝導性固体電解質膜の補強のために用いられた場合に、補強シートによる固体電解質膜の強度および寸法安定性の向上を阻害しにくく、膜を構成する固体電解質の化学的安定性にも影響を及ぼしにくい。したがって、本発明によれば、固体電解質膜の耐久性の改善および化学的安定性の維持に適した補強シートを提供することができる。
 本発明による補強シートは、ガラス繊維と、ガラス繊維に付着した有機バインダーとを備え、その内部に、固体電解質を充填するための空隙を有している。
 ガラス繊維を構成するガラスは、固体電解質膜の強度の向上に適したものであれば、その種類に特に制限はない。好ましいガラスとしては、アルカリ成分を含有するシリケート系ガラスが挙げられる。アルカリ成分含有シリケート系ガラスは、化学的安定性に優れ、溶融ガラスを微細孔から噴出させて固化させることによりガラス繊維を製造する製造方法に好適に適用できる。燃料電池に実装されたときに、固体電解質膜の内部と周辺の環境は酸性の環境となる。したがって、ガラス繊維を構成するガラスとしては、Cガラスに代表されるように、酸性の環境でアルカリ成分の溶出が小さい組成を有するアルカリ含有シリケート系ガラスがより好ましい。
 ガラス繊維の繊維径は、強度向上の観点などから、0.1μm~20μmが好ましく、0.3μm~8μmがより好ましい。なお、ガラス繊維の分散性の観点からは、ガラス繊維の繊維径のばらつきは小さい方が好ましい。ただし、繊維径の異なる複数種類のガラス繊維を混合することにより補強シートの強度向上を図ることもできる。
 本発明による補強シートにおいては、固体電解質膜の強度向上の観点から、ガラス繊維がガラス繊維成形体を構成していることが好ましい。ここで、ガラス繊維成形体とは、ガラス繊維が一体となって所定の形状を保持しているガラス繊維の集合体をいう。ガラス繊維成形体は、典型的には、織布(ガラス繊維織布)または不織布(ガラス繊維不織布)である。ガラス繊維成形体は、付着した有機バインダーを除去しても一体性を保持している点において、分散した状態のガラス繊維の間に有機バインダーが介在することにより一体となったガラス繊維の凝集物とは相違する。
 ガラス繊維成形体がガラス繊維織布である場合、補強シートの強度は特に向上する。一方、補強シートを薄くするためには、ガラス繊維不織布が適している。ガラス繊維不織布は、繊維径の小さなガラス繊維を用いて形成できるためである。したがって、ガラス繊維不織布の使用は、小型の燃料電池に用いる補強シートの作製に特に適している。本発明の好ましい一形態では、ガラス繊維が、不織布の形態を有する。
 ガラス繊維成形体は、その内部に空隙を有し、この空隙の一部に有機バインダーが付着している。空隙の残部には固体電解質が充填されることになる。強度向上の観点から、ガラス繊維成形体の密度は0.1g/cm3~0.4g/cm3が好ましい。
 固体電解質膜の機能を確保するためには、ガラス繊維成形体(特にガラス繊維不織布)の厚さは100μm以下、特に50μm以下が好ましい。補強シートとしての強度を確保するためには、ガラス繊維成形体の厚さは5μm以上が好ましい。
 ガラス繊維成形体(特にガラス繊維不織布)の目付(単位面積あたりの質量)は、2g/m2~50g/m2が好ましい。目付が小さすぎると、ガラス繊維同士の絡み合いが少なくなり、補強シートによる強度向上の効果が小さくなる。一方、目付が大きすぎると、固体電解質膜の補強シートに用いるガラス繊維成形体としては厚くなりすぎる。なお、厚すぎるガラス繊維成形体を薄くするためにプレスすると、ガラス繊維が隣接するガラス繊維との接点で折れて補強シートの引張強度が低下するために注意を要する。より適切なガラス繊維成形体の目付は3g/m2~25g/m2である。
 補強シートの空隙率、すなわち補強シートの見かけ上の体積に対する空隙の比率は、60~98体積%が好ましい。空隙率が過度に高いと、強度が著しく低くなるとともに、剛性も著しく低下して固体電解質膜の収縮による変形を抑えにくくなる。一方、空隙率が小さすぎると、固体電解質膜のプロトン伝導率が低下する。空隙率は、80~98体積%がより好ましく、85~98体積%がさらに好ましく、90~95体積%が特に好ましい。
 補強シートの空隙率の値は、補強シートの呼び厚み(厳密には20kPaに加圧してダイヤルゲージで測定して得た値を採用する)、補強シートの単位面積当たりの質量、ガラス繊維および有機バインダーの真密度(真密度は空隙を含まない材料固有の密度を意味する;ガラス繊維の真密度は約2.5g/cm3である)、ならびにガラス繊維に対する有機バインダーの質量比から算出できる。
 ガラス繊維成形体として適したガラス繊維不織布の作製例を例示する。平均直径0.6μm、平均長さ3mmのガラス繊維60質量%と、平均直径5μm、平均長さ約6mmのガラス繊維40質量%とを混合し、機械的な圧縮を加えずに湿式抄造すると、厚さ30μmで空隙率95体積%程度のガラス繊維不織布が得られる。このガラス繊維不織布に適量の有機バインダーを付着させることにより、空隙率が上述の好ましい範囲となった補強シートを得ることができる。
 有機バインダーとしては、上記(i)または(ii)を用いることができる。(i)に属する有機バインダーは、具体的には、炭素および水素のみからなる有機高分子、炭素およびフッ素のみからなる有機高分子、または炭素、水素およびフッ素のみからなる有機高分子である。
 (i)に属する有機高分子としては、炭素および水素のみからなる有機高分子が好ましい。炭素および水素のみからなる有機高分子としては、具体的には、(i-1)ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)など、分子内に二重結合を有さない脂肪族系炭化水素高分子、(i-2)ポリスチレン(PS)など、分子内に二重結合を有さない芳香族系炭化水素高分子、(i-3)ポリブタジエン、エチレンープロピレンージエン共重合体(EPDM)、イソブテン-イソプレン共重合体(IIR)など、分子内に二重結合を有する脂肪族系炭化水素高分子、(i-4)スチレン-ブタジエン共重合体(SBR)など、分子内に二重結合を有する芳香族系炭化水素高分子、が挙げられる。これらの中では、分子内に二重結合を有する炭化水素高分子が特に劣化しにくいため好ましい。
 炭素およびフッ素のみからなる有機高分子としては、ポリテトラフルオロエチレン(PTFE)が挙げられる。炭素、水素およびフッ素のみからなる有機高分子としては、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVEF)が挙げられる。
 (i)に属する有機高分子は、炭素、水素およびフッ素以外の元素、特に酸素および窒素を含まないため、エステル基およびエポキシ基に代表される反応性が高い官能基を含んでいない。また、(i)に属する有機高分子は、アミド基およびニトリル基(シアノ基)などの燃料電池の使用環境下では分解する可能性がある官能基も含んでいない。
 (ii)に属する有機高分子の代表的な例は、デュポン社のナフィオンである。しかし、(ii)に属する有機高分子がこの商品に限られるわけではない。(ii)に属する有機高分子は、主鎖としてパーフルオロアルキレンを有しており、化学的安定性および耐熱性が高い。側鎖の末端に存在するスルホン酸基および/またはカルボン酸基は、周知のとおり、燃料電池の使用環境下においてもイオン交換基として安定して作用する官能基であり、その存在が固体電解質膜の特性を低下させることはない。
 (ii)に属する有機高分子の側鎖は、上述したイオン交換基を除いて、炭素、水素およびフッ素以外の元素を含まないことが好ましい。ただし、現実に燃料電池に使用されているナフィオンの側鎖におけるように、エーテル結合を形成する酸素原子が含まれていても支障はない。エーテル結合は、エステル結合などと比較して反応性が低い。
 有機高分子の分子量、重合度などは、選択した有機高分子の種類に応じて適宜決定するとよい。また、必要に応じ、実験を行って決定することが好ましい。
 補強シートは、有機バインダーとともに、固体電解質膜の特性を損なわない程度に無機バインダーを含んでいてもよい。無機バインダーとしては、耐酸性および耐熱性を有する無機材料、例えばシリカ(酸化ケイ素)を用いることができる。無機バインダーの添加量は、ガラス繊維の0.5~10質量%が好ましい。この範囲の量で無機バインダーを含む補強シートは、固体電解質膜のプロトン伝導性を大きく低下させることなく膜の強度をより向上させることができる。
 ガラス繊維に有機バインダーを付着させる方法としては、有機バインダーを含む溶液または分散液をガラス繊維成形体に塗布し、または含漬させる方法を挙げることができる。具体的には、噴霧法およびディッピング法を適用できる。ガラス繊維不織布に有機バインダーを付着させるべき場合には、ガラス繊維不織布を抄造する際の溶媒に有機バインダーを添加する方法を用いてもよい。なお、有機バインダーを構成する有機高分子の種類、混合比、分子量および重合度などは、ガラス繊維成形体の寸法および形状に応じて適宜調整するとよい。無機バインダーを添加する場合も同様である。
 バインダーは、繊維状バインダーとして添加してもよい。繊維状バインダーの添加により、補強シートの強度を向上させることができる。繊維状バインダーとしては、例えばフッ素樹脂繊維が好適である。繊維状バインダーの添加量は、ガラス繊維の1~40質量%が好ましい。添加量が低すぎると、バインダーによる強度向上の効果が低くなる。添加量が多すぎると、ガラス繊維の分散が不充分になったり、繊維状バインダーにより形成された被膜により固体電解質がガラス繊維の間に充填されにくくなったりすることがある。
 有機バインダーとガラス繊維との熱膨張係数の相違により、有機バインダーが局所的に剥離することがある。この剥離の抑制にはシランカップリング剤処理が有効である。具体的には、有機バインダーを付着させる前に、ガラス繊維の表面にシランカップリング剤を接触させる処理を施しておくとよい。有機バインダーが付着したガラス繊維の表面にシランカップリング剤を接触させる処理が施されていると、ガラス繊維と有機バインダーとの接着性が向上し、有機バインダーの剥離を抑えることができる。シランカップリング剤処理は、有機バインダーによるガラス繊維成形体の補強効果を高める上で好ましい。
 シランカップリング剤処理を施す場合、シランカップリング剤の付着量は、ガラス繊維の表面積1m2あたり0.5mg~200mgが好ましい。付着量が少なすぎるとシランカップリング剤がガラス繊維表面を十分に覆うことができず、接着性向上の効果が低下する。付着量が多すぎると、ガラス繊維と有機バインダーとの間にシランのみからなる層が形成されやすくなる。シランのみからなる層が形成されると、この層内における破壊により、ガラス繊維と有機バインダーとの接着力向上の効果が低下する。
 シランカップリング剤としては、特に限定されないが、アミノシランを例示できる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明は実施例に記載された発明に限定されるものではない。
(実施例1)
 まず、ガラス繊維成形体および液状有機バインダー原料を準備した。ガラス繊維成形体としては、日本板硝子株式会社製「TGP-005F」を用いた。このガラス繊維成形体は、平均繊維径が0.6μmのガラス繊維(Cガラス)と4.0μmのガラス繊維(Cガラス)とを抄造して得たガラス繊維不織布である。このガラス繊維不織布の呼び厚みは50μm、見かけ密度は約0.2g/cm3である。また、ガラス繊維の密度とガラス繊維不織布の見かけ密度とから計算した空隙率は91体積%である。このガラス繊維不織布を約100mm角の大きさに切断して使用した。
 有機バインダーとしては、日本エイアンドエル株式会社製のスチレン-ブタジエン共重合体(SBR)「AL-2001」(全固形分48%)を用いた。これを希釈して液状有機バインダー原料とした。なお、「AL-2001」は未架橋のSBRである。
 次に、ガラス繊維不織布を液状有機バインダー原料に浸漬させてから引き上げ(ディッピング法)、80℃で60分間乾燥させた。こうして、ガラス繊維不織布に有機バインダーを付着させ、補強シートを得た。液状有機バインダー原料におけるSBRの濃度(質量%)を表1のように変化させて得た各補強シートについて、下記の試験を行った。
 補強シートを切断して得た試験片を用い、幅25mmあたりの破断強度を測定した。また、電子天秤を用いて補強シートの質量と液状有機バインダー原料に浸漬させる前のガラス繊維不織布の質量とを測定し、両質量の差から補強シートに付着した有機バインダーの質量を算出した。さらに、マイクロメータを用いて補強シートの外形寸法を測定し、補強シートの見かけ密度を算出した。補強シートの質量および見かけ密度、ガラス繊維不織布の質量、ガラス繊維の真密度、ならびに有機バインダーの付着量(ガラス繊維に対する付着量)および密度(真密度)に基づいて、補強シートの空隙率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、液状有機バインダー原料の濃度が高くなるほど(有機バインダーの付着量が増加するほど)、補強シートの強度が向上することがわかる。固体電解質を充填することを考慮すると、補強シートはある程度の空隙率(例えば80体積%以上、好ましくは85体積%以上)を有することが好ましい。これらを考慮すると、液状有機バインダー原料の濃度は0.01~5質量%が好ましく、0.1~1質量%がより好ましい。また、ガラス繊維に対する有機バインダーの付着量は、0.1~51質量%の範囲で補強シートの強度が向上したことが確認されたが、有機バインダーの付着量は0.7~9質量%がより好ましい。空隙率と強度との両立には、空隙率が85体積%以上であって、ガラス繊維に対する有機バインダーの付着量が0.7質量%以上である補強シートが特に適している。
(実施例2)
 有機バインダーとして高分子固体電解質であるナフィオンを用いた以外は、実施例1と同様の手順で補強シートを作製し、評価した。ただし、実施例2では、ガラス繊維成形体に対してディッピングを行う前に、ガラス繊維の表面をアミノシランで処理(シランカップリング剤処理)した補強シートも作製した。シランカップリング剤処理は、具体的にはアミノシランをガラス繊維の表面に塗布することにより実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、シランカップリング剤処理により、補強シートの強度が向上したことがわかる。
 本発明による補強シートは、燃料電池の固体電解質膜の強度を向上させるものとして有用である。また、本発明による補強シートは、各種の一次または二次電池、およびコンデンサなどのセパレータならびにこれらの集電体の強度を向上させる補強材、としても有用である。

Claims (7)

  1.  固体電解質膜用の補強シートであって、
     ガラス繊維と前記ガラス繊維に付着した有機バインダーとを備え、
     固体電解質を充填するための空隙を前記補強シート内に有し、
     前記有機バインダーが、
     (i)炭素、水素およびフッ素以外の元素を含まない有機高分子、または
     (ii)主鎖および側鎖を有し、前記主鎖がパーフルオロアルキレンであり、前記側鎖の少なくとも一部の末端にスルホン酸基またはカルボン酸基を有する有機高分子、である、
     補強シート。
  2.  前記有機バインダーが、炭素および水素のみからなる有機高分子である、請求項1に記載の補強シート。
  3.  前記有機高分子が、分子内に二重結合を有する炭化水素高分子である、請求項2に記載の補強シート。
  4.  前記有機バインダーが付着した前記ガラス繊維の表面にシランカップリング剤を接触させる処理が施されている、請求項1に記載の補強シート。
  5.  前記ガラス繊維が不織布の形態を有する、請求項1に記載の補強シート。
  6.  空隙率が60~98体積%である、請求項1に記載の補強シート。
  7.  空隙率が85体積%以上であり、
     前記ガラス繊維に対する前記有機バインダーの付着量が0.7質量%以上である、請求項6に記載の補強シート。
PCT/JP2011/001337 2010-03-08 2011-03-07 固体電解質膜用の補強シート WO2011111367A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/583,339 US20130040225A1 (en) 2010-03-08 2011-03-07 Reinforcing sheet for solid electrolyte membrane
JP2012504322A JP5490217B2 (ja) 2010-03-08 2011-03-07 固体電解質膜用の補強シート
EP11753032.9A EP2546910B1 (en) 2010-03-08 2011-03-07 Reinforcing sheet for solid electrolyte membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-050019 2010-03-08
JP2010050019 2010-03-08

Publications (1)

Publication Number Publication Date
WO2011111367A1 true WO2011111367A1 (ja) 2011-09-15

Family

ID=44563201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001337 WO2011111367A1 (ja) 2010-03-08 2011-03-07 固体電解質膜用の補強シート

Country Status (4)

Country Link
US (1) US20130040225A1 (ja)
EP (1) EP2546910B1 (ja)
JP (1) JP5490217B2 (ja)
WO (1) WO2011111367A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001707A1 (ja) * 2013-07-01 2015-01-08 日本板硝子株式会社 プロトン伝導性膜用補強材並びにこれを含んだプロトン伝導性膜および固体高分子型燃料電池
JP2018101641A (ja) * 2018-03-19 2018-06-28 古河機械金属株式会社 固体電解質シート、全固体型リチウムイオン電池、および固体電解質シートの製造方法
JP2019035156A (ja) * 2017-08-10 2019-03-07 帝人フロンティア株式会社 繊維シートおよびその製造方法
US11920138B2 (en) 2012-07-24 2024-03-05 The Trustees Of Columbia University In The City Of New York Fusion proteins and methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879844B2 (ja) * 2017-06-30 2021-06-02 帝人株式会社 釣り具用部材及びそれを用いた釣り用リールのドラグ装置
EP3757081A1 (de) * 2019-06-27 2020-12-30 Heraeus Quarzglas GmbH & Co. KG Verfahren zur herstellung eines dreidimensionalen objektes aus glas und dafür geeignete glasfaser
US20220069270A1 (en) * 2020-09-03 2022-03-03 GM Global Technology Operations LLC Battery, methods of manufacture thereof and articles comprising the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307545A (ja) 1999-09-17 2001-11-02 Natl Inst Of Advanced Industrial Science & Technology Meti プロトン伝導性膜、その製造方法及びそれを用いた燃料電池
JP2002083612A (ja) * 2000-09-07 2002-03-22 Takehisa Yamaguchi 電解質膜及びその製造方法、並びに燃料電池及びその製造方法
JP2003192464A (ja) * 2001-12-20 2003-07-09 Nippon Sheet Glass Co Ltd 無機系多孔質プレート
JP2004319421A (ja) 2003-02-27 2004-11-11 Nippon Sheet Glass Co Ltd プロトン伝導性膜用補強材、プロトン伝導性膜およびそれを用いた燃料電池
WO2005086265A1 (ja) 2004-03-04 2005-09-15 Nippon Sheet Glass Company, Limited プロトン伝導性膜用補強材およびそれを用いたプロトン伝導性膜および燃料電池
WO2005101428A1 (ja) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. プロトン伝導体、電解質膜、電極および燃料電池
WO2006057239A1 (ja) 2004-11-26 2006-06-01 Nippon Sheet Glass Company, Limited プロトン伝導性膜およびそれを用いた燃料電池、ならびにプロトン伝導性膜の製造方法
JP2006286631A (ja) * 2005-03-31 2006-10-19 Samsung Sdi Co Ltd 燃料電池用高分子電解質膜とその製造方法,燃料電池用膜−電極接合体,および燃料電池システム
JP2007018995A (ja) 2004-12-22 2007-01-25 Asahi Glass Co Ltd 電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP2009064777A (ja) * 2007-08-10 2009-03-26 Japan Gore Tex Inc 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
JP2009181788A (ja) * 2008-01-30 2009-08-13 Sekisui Chem Co Ltd 電解質膜の製造方法、電解質膜、膜−電極接合体及び固体高分子形燃料電池
JP2009545841A (ja) 2006-08-02 2009-12-24 ビーエーエスエフ、フューエル、セル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 性能の改善された膜電極接合体および燃料電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9822571D0 (en) * 1998-10-16 1998-12-09 Johnson Matthey Plc Substrate binder
JP2011096633A (ja) * 2009-09-30 2011-05-12 Dainippon Printing Co Ltd プロトン伝導性電解質膜、及びそれを用いた、触媒層−電解質膜積層体、膜−電極接合体及び燃料電池、並びにその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307545A (ja) 1999-09-17 2001-11-02 Natl Inst Of Advanced Industrial Science & Technology Meti プロトン伝導性膜、その製造方法及びそれを用いた燃料電池
JP2002083612A (ja) * 2000-09-07 2002-03-22 Takehisa Yamaguchi 電解質膜及びその製造方法、並びに燃料電池及びその製造方法
JP2003192464A (ja) * 2001-12-20 2003-07-09 Nippon Sheet Glass Co Ltd 無機系多孔質プレート
JP2004319421A (ja) 2003-02-27 2004-11-11 Nippon Sheet Glass Co Ltd プロトン伝導性膜用補強材、プロトン伝導性膜およびそれを用いた燃料電池
WO2005086265A1 (ja) 2004-03-04 2005-09-15 Nippon Sheet Glass Company, Limited プロトン伝導性膜用補強材およびそれを用いたプロトン伝導性膜および燃料電池
WO2005101428A1 (ja) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. プロトン伝導体、電解質膜、電極および燃料電池
WO2006057239A1 (ja) 2004-11-26 2006-06-01 Nippon Sheet Glass Company, Limited プロトン伝導性膜およびそれを用いた燃料電池、ならびにプロトン伝導性膜の製造方法
JP2007018995A (ja) 2004-12-22 2007-01-25 Asahi Glass Co Ltd 電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP2006286631A (ja) * 2005-03-31 2006-10-19 Samsung Sdi Co Ltd 燃料電池用高分子電解質膜とその製造方法,燃料電池用膜−電極接合体,および燃料電池システム
JP2009545841A (ja) 2006-08-02 2009-12-24 ビーエーエスエフ、フューエル、セル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 性能の改善された膜電極接合体および燃料電池
JP2009064777A (ja) * 2007-08-10 2009-03-26 Japan Gore Tex Inc 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
JP2009181788A (ja) * 2008-01-30 2009-08-13 Sekisui Chem Co Ltd 電解質膜の製造方法、電解質膜、膜−電極接合体及び固体高分子形燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546910A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11920138B2 (en) 2012-07-24 2024-03-05 The Trustees Of Columbia University In The City Of New York Fusion proteins and methods thereof
WO2015001707A1 (ja) * 2013-07-01 2015-01-08 日本板硝子株式会社 プロトン伝導性膜用補強材並びにこれを含んだプロトン伝導性膜および固体高分子型燃料電池
JP2019035156A (ja) * 2017-08-10 2019-03-07 帝人フロンティア株式会社 繊維シートおよびその製造方法
JP2018101641A (ja) * 2018-03-19 2018-06-28 古河機械金属株式会社 固体電解質シート、全固体型リチウムイオン電池、および固体電解質シートの製造方法

Also Published As

Publication number Publication date
JPWO2011111367A1 (ja) 2013-06-27
EP2546910B1 (en) 2017-06-14
EP2546910A1 (en) 2013-01-16
EP2546910A4 (en) 2016-08-24
US20130040225A1 (en) 2013-02-14
JP5490217B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5490217B2 (ja) 固体電解質膜用の補強シート
JP4971789B2 (ja) プロトン伝導性膜用補強材およびそれを用いたプロトン伝導性膜および燃料電池
KR101376362B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
KR101818547B1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
JP2013503436A (ja) 燃料電池用の高分子電解質膜及びその製造方法
JP5124097B2 (ja) 電解質膜及び固体高分子形燃料電池
JP5151063B2 (ja) 燃料電池用電解質膜用多孔質材料、その製造方法、固体高分子型燃料電池用電解質膜、膜−電極接合体(mea)、及び燃料電池
WO2007052650A1 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
WO2009022728A1 (ja) 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
WO2009151013A1 (ja) 固体高分子形燃料電池用膜電極接合体
KR20080040225A (ko) 다층구조를 가진 전해질 강화막의 제조 방법
JP2013191435A (ja) ガス拡散層およびそれを用いてなる燃料電池
Liao et al. Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes
JP4833087B2 (ja) 電解質膜補強材およびそれを用いた電解質膜と燃料電池ならびに電解質膜補強材の製造方法
KR20160009584A (ko) 가스 확산 전극용 기재
JP5432033B2 (ja) 高分子電解質膜
JP5164569B2 (ja) プロトン伝導性膜用補強材およびそれを用いたプロトン伝導性膜、並びに燃料電池
JP5284143B2 (ja) 燃料電池用接着剤及びこれを用いた膜電極構造体
JP2005332801A (ja) プロトン伝導性膜、複合化プロトン伝導性膜及び燃料電池
JP2004319421A (ja) プロトン伝導性膜用補強材、プロトン伝導性膜およびそれを用いた燃料電池
WO2006057239A1 (ja) プロトン伝導性膜およびそれを用いた燃料電池、ならびにプロトン伝導性膜の製造方法
JP5322212B2 (ja) 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池
JP2010061947A (ja) 燃料電池用複合電解質膜及びその製造方法
US20220123327A1 (en) Hybrid Gas Diffusion Layer for Electrochemical Cells
JP2010138308A (ja) 改質炭化水素系陽イオン交換膜およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13583339

Country of ref document: US

Ref document number: 2012504322

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011753032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011753032

Country of ref document: EP