WO2011105582A1 - スクリーン印刷用メッシュ部材 - Google Patents

スクリーン印刷用メッシュ部材 Download PDF

Info

Publication number
WO2011105582A1
WO2011105582A1 PCT/JP2011/054393 JP2011054393W WO2011105582A1 WO 2011105582 A1 WO2011105582 A1 WO 2011105582A1 JP 2011054393 W JP2011054393 W JP 2011054393W WO 2011105582 A1 WO2011105582 A1 WO 2011105582A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
mesh member
metal foil
aperture ratio
rolled metal
Prior art date
Application number
PCT/JP2011/054393
Other languages
English (en)
French (fr)
Inventor
啓吾 高岡
一男 吉川
隆 古保里
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Priority to CN201180010074.8A priority Critical patent/CN102762386B/zh
Priority to KR1020127022121A priority patent/KR101479825B1/ko
Priority to KR1020147017010A priority patent/KR20140085608A/ko
Publication of WO2011105582A1 publication Critical patent/WO2011105582A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • B41N1/247Meshes, gauzes, woven or similar screen materials; Preparation thereof, e.g. by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic

Definitions

  • the present invention relates to a mesh member used for screen printing, and in particular, in printing using a high-viscosity paste used for printing on a surface electrode of a solar cell, there is no printing blur and there is little difference in height, and printing position accuracy is high.
  • the present invention relates to a mesh member for screen printing that realizes high printing.
  • Screen printing is used not only for the production of electronic components such as multilayer chip capacitors, but also for the formation of current collecting main electrodes (bus bars) and current collecting grid electrodes (finger electrodes), which are the surface electrodes of solar cells.
  • mesh members knitted with fine wires made of metal or resin are used for printing plates (screen plates) used for screen printing.
  • a mesh fabric knitted with fine polyester wires hereinafter sometimes referred to as “polyester mesh fabric”
  • metal mesh fabric woven with stainless steel fine wires
  • the combination mask is made by attaching a mesh fabric woven with polyester fine wires on an aluminum formwork, bonding the metal mesh fabric, and cutting the polyester mesh fabric overlapping the metal mesh fabric after drying. Thereafter, a photosensitive emulsion is applied, and a desired printing pattern is exposed and developed on a metal mesh fabric to produce a printing plate.
  • the amount of the paste to be transmitted increases as the aperture ratio (the total area ratio of the openings shown in FIG. 1 described later) increases.
  • a metal mesh fabric having an aperture ratio of about 50 to 60% is used for printing the surface electrodes of solar cells.
  • the power generation efficiency is improved by reducing the electrode resistance while increasing the light receiving area of the surface electrode of the solar cell. For this reason, efforts have been made to increase the aspect ratio of the surface electrode as much as possible, that is, the electrode width is narrow and the electrode height is high. However, when the printing width is as narrow as about 50 ⁇ m, screen printing using a metal mesh fabric does not sufficiently discharge the paste, and the printed electrode height may be low.
  • FIG. 1 is a partially enlarged explanatory view of a printing plate usually used for screen printing.
  • a mesh member (mesh fabric) knitted with fine wires 1 made of metal or polyester is stretched on a screen frame (not shown)
  • resin 4 photosensitive emulsion
  • the photosensitive emulsion 4 is cured by exposing only the part, and the photosensitive emulsion 4 in the part to be printed is removed to produce a printing plate 5 [in the figure, 2 is the opening of the mesh member (mesh opening). Show].
  • the resin 4 (photosensitive emulsion) is about 10 to 30 ⁇ m thicker than the mesh member.
  • a method for manufacturing a mesh member As a method for manufacturing a mesh member, a method of depositing nickel or the like in a mesh shape by electroforming has been proposed (for example, Patent Documents 2 and 3). However, it is known that the metal foil produced by the electroforming method has a variation in strength, and the mesh produced by the electroforming method may have a variation in strength. In addition, it is conceivable to use a mesh member formed by punching an electrolytic foil such as nickel by etching or the like. However, as in the case of a mesh member formed by electroforming, variation in strength occurs.
  • the present invention has been made in view of such a situation, and the object thereof is that even when a high-viscosity paste is used, printing is not blurred and printing can be performed with little difference in height, and high printing position accuracy is achieved. Is to provide a mesh member for screen printing.
  • a mesh member for screen printing for forming a printing pattern with a photosensitive emulsion
  • the mesh member for screen printing is composed of a rolled metal foil and corresponds to a printing region of a printing object.
  • the foil portion has a large number of holes so as to spread toward the printing object, the line portion maximum width A on the printing object side in the portion of the rolled metal foil corresponding to the printing region, and the holes and holes.
  • a mesh member for screen printing wherein a maximum line width coefficient defined by a ratio (A / B) of the interval B is less than 0.40.
  • the rolled metal foil has a portion corresponding to a non-printing area of the printing object in addition to a portion corresponding to the printing area of the printing object, and a hole is formed in the portion corresponding to the non-printing area.
  • the mesh member according to (1) which is not provided.
  • the rolled metal foil has a portion corresponding to a non-printing area of the printing object in addition to a portion corresponding to the printing area of the printing object, and the portion corresponding to the non-printing area includes a printing area.
  • the mesh member according to (1) wherein a large number of holes are formed with an opening ratio smaller than the opening ratio of the holes in the corresponding part.
  • the outline of the boundary between the portion of the rolled metal foil corresponding to the printing region and the portion of the rolled metal foil corresponding to the non-printing region is at least partially rounded (2) to (5 ) The mesh member according to any one of the above.
  • the rolled metal foil is one of (1) to (7) selected from the group consisting of stainless steel, titanium, titanium alloy, nickel, nickel alloy, copper, copper alloy, and aluminum alloy The mesh member as described in any one.
  • the mesh member for screen printing of the present invention is defined by the ratio (A / B) of the line portion maximum width A on the printing object side in the portion of the rolled metal foil corresponding to the printing region and the hole-to-hole interval B. Since the maximum line width coefficient is properly defined, even when using a high-viscosity paste, there is no blurring, printing with little difference in height, and screen printing that provides high printing position accuracy.
  • the mesh member for screen printing can be used for the manufacture of electronic components, the main electrode for current collection (bus bar), which is the surface electrode of solar cells, and the grid electrode (finger electrode) for current collection. Very useful for formation.
  • FIG. 1 is a partially enlarged explanatory view of a printing plate usually used for screen printing.
  • FIGS. 2A to 2C are diagrams for explaining a filling state of paste in screen printing according to a conventional technique.
  • FIG. 3 is an enlarged view for explaining the opening shape of the hole.
  • FIG. 4 is an enlarged view for explaining another opening shape of the hole.
  • FIG. 5 is a graph showing the relationship between the minimum cross-sectional area per unit width (mm 2 / cm) and the tensile strength per unit width (N / cm).
  • 6 (a) to 6 (b) are explanatory diagrams showing an example of the form of the mesh member of the present invention.
  • 7 (a) to 7 (c) are explanatory views showing other examples of the shape of the mesh member of the present invention.
  • FIG. 8 is an explanatory view showing still another example of the form of the mesh member of the present invention.
  • FIGS. 9A to 9C are diagrams for explaining the filling state of the paste in screen
  • the inventors of the present invention have investigated the reason why the metal mesh fabric, which is the prior art, cannot perform good thick film printing when the printing pattern is thin.
  • a conductive silver paste Toyo Ink Manufacturing Co., Ltd .: “RAFS” was used as the paste.
  • etching is optimal in terms of opening accuracy and opening speed.
  • the shape of the hole is such that the hole expands from one side to the other side, but the paste may stay by forming the hole so as to expand toward the printing object. Can be avoided.
  • the viscosity of the paste is 1000 Pa ⁇ s
  • the paste is completely discharged from the mesh member 20 msec after passing through the squeegee, whereas In this case, even after 25 msec after the squeegee passed, a part of the paste adhered to the printing surface side of the mesh member, and the difference in ejection properties was more remarkable.
  • the difference between the aperture ratio on the printing surface side and the aperture ratio on the squeegee surface side can be about 5 to 80%. Considering the paste dischargeability and the like, it is preferably about 20 to 50%.
  • the present inventors sprayed an etching solution from only one side on a rolled stainless steel foil (Toyo Seiki Co., Ltd .: Standard SUS304-H) having a thickness of 16 ⁇ m to produce a mesh member.
  • the interval (pitch) between the holes was 80 ⁇ m [number of meshes: 320 (lines / inch)].
  • the aperture ratio of one surface was 64%, and the aperture ratio of the other surface was 32% (average aperture ratio of both surfaces was 48%).
  • the observation was performed using a microscope in the same manner as the paste printing process of the metal mesh fabric.
  • the discharge of the paste is more uniform than the mesh member constituted by the metal mesh fabric.
  • the rolled metal foil mesh member no paste remained in the holes (openings) as observed in the fine wire mesh fabric. Note that no paste remained in both the case where the holes were expanded toward the printing surface side and the case where the holes were narrowed on the printing surface side.
  • a rolled metal foil mesh member is manufactured by punching a stainless steel rolled foil (manufactured by Toyo Seiki Co., Ltd .: Standard SUS304-H) on one side of the printed material with a thickness of 21 ⁇ m by etching.
  • a printing test was performed using a printing plate prepared so that the holes widened and a printing plate prepared such that the holes narrowed on the printing surface side.
  • the opening ratio of one surface of the mesh member was 73%, and the opening ratio of the other surface was 37% (average opening ratio of both surfaces was 55%).
  • the outer shape of the hole was formed so as to spread toward the printing object.
  • the present inventors also conducted a printing test in order to evaluate the printability of the rolled metal foil mesh member. Holes are punched by etching from one side into rolled stainless steel foils with a thickness of 16 ⁇ m and 21 ⁇ m (manufactured by Toyo Seiki Co., Ltd .: Standard SUS304-H). A mesh member having a different size was produced. As a result of etching from one side, the opening ratio on the side sprayed with the etching solution is high, and the opening ratio on the opposite surface is low.
  • the aperture ratios (opening ratio on the printing surface side) shown in Table 1 below were calculated from the opening width on the printing surface side (opening width of the hole: ⁇ m) 2 / pitch ( ⁇ m) 2 ⁇ 100 (%). Is. Further, when the hole shape is widened toward the printing surface side (printing object side) as in the mesh member of the present invention, the aperture ratio is different between the printing surface side and the squeegee side. Unless otherwise specified, the aperture ratio of such a mesh member is an average value of the aperture ratio on the printing surface side and the aperture ratio on the squeegee side.
  • the maximum width A of the line portion at which the distance between the holes on the printing surface side becomes the maximum is determined, and the interval (pitch) B between the holes.
  • FIG. 3 shows the opening shape of the hole (opening) in the mesh member of the present invention.
  • a large number of holes (opening shape) are formed in a substantially quadrangular shape (the shape corresponding to the printing area of the mesh member is a lattice shape) as shown in FIG.
  • the four corners of the hole 2 are rounded, but in such a shape, the widest part of the line part 1a is the line part maximum width A, This line portion maximum width A affects the characteristics of the mesh member.
  • interval (pitch) B of a hole means the distance from one side of a certain hole 2 to one side of the other adjacent hole 2 as shown in FIG.
  • FIG. 3 assumes an opening shape in which the portions where the line portions 1a intersect each other have a cross shape.
  • the portions where the line portions 1a intersect each other are substantially omitted.
  • the opening shape may be a T-shape.
  • the maximum width of the line portions varies depending on the direction (A and C shown in FIG. 4).
  • the shape of the holes is basically the same in the printing region, and the holes are formed at equal intervals.
  • the size of the holes and the interval between the holes may be changed.
  • the line width on the squeegee surface side is secured and the necessary strength is maintained.
  • the line width on the squeegee surface side is preferably 15 ⁇ m or more.
  • the difference between the line width on the printing surface side and the line width on the squeegee side is usually preferably about 5 to 30 ⁇ m, more preferably about 10 to 20 ⁇ m.
  • the maximum line width coefficient maximum line width A ⁇ pitch B
  • the test No. A printing plate having a printing pattern width of 50 ⁇ m was prepared using 4 to 8, and a printing test was performed using the same conductive silver paste to evaluate the presence or absence of printing blur and variation in printing width.
  • the variation in the printing width at this time was determined by measuring the maximum printing width and the minimum printing width with a laser microscope (manufactured by Keyence Corporation: model VK-9700) and measuring the difference. The results are shown in Table 2 below.
  • the aperture ratio means the average aperture ratio of the aperture ratio of one surface and the aperture ratio of another surface (hereinafter, when the aperture ratio of one surface is different from the aperture ratio of another surface, the average aperture ratio is Simply referred to as the aperture ratio). Therefore, in screen printing using a rolled metal foil mesh and a high-viscosity paste, it is desirable to increase the aperture ratio of the region through which the paste permeates. When printing is performed using a paste having a relatively high viscosity among conductive silver pastes, it is desirable that the aperture ratio be 50% or more, ideally 70% or more. However, since an excessively high aperture ratio leads to a decrease in strength of the mesh member, it is preferably about 80% when the thickness is 15 ⁇ m and about 85% when the thickness is 20 ⁇ m.
  • the rolled metal foil has a portion corresponding to the non-printing area of the printing object, in addition to the portion corresponding to the printing area of the printing object, and a portion corresponding to the non-printing area.
  • the rolled metal foil has a portion corresponding to the non-printing area of the printing object in addition to the part corresponding to the printing area of the printing object.
  • the portion corresponding to the non-printing area includes a form in which a large number of holes are formed with an opening ratio smaller than the opening ratio of the hole in the part corresponding to the printing area.
  • these forms increase the opening ratio.
  • it is comprised from a viewpoint of improving intensity
  • the inventors of the present invention have developed a rolled metal foil mesh with a 55% aperture ratio obtained by punching the entire surface of a rolled stainless steel foil having a thickness of 16 ⁇ m (manufactured by Toyo Seiki Co., Ltd .: Standard SUS304-H), and a printing pattern.
  • a rolled metal foil mesh having an aperture ratio of 55% only in an area (150 mm ⁇ 150 mm) for exposing and a peripheral aperture ratio of 5% was produced.
  • Two kinds of rolled metal foil meshes were adhered to a polyester fine wire mesh that was stretched on an aluminum frame with a tension of 0.65 mm and a tension gauge (manufactured by Tokyo Process Service Co., Ltd .: model STG75B).
  • the polyester fine wire mesh in the rolled metal foil mesh part was cut off, and the rolled metal foil mesh was observed to break.
  • the rolled metal foil mesh having a high aperture ratio only in the printed pattern region was not broken, but the rolled metal foil mesh having the same overall aperture ratio was broken.
  • the aperture ratio of the area for the printing pattern (that is, the rolled metal foil portion corresponding to the printing area of the printing object) is increased, and the other areas
  • the aperture ratio of the rolled metal foil corresponding to the non-printing area of the printing object (hereinafter referred to as “printing area-corresponding part”), the opening area of the printing object is reduced.
  • non-printing area corresponding portion the portion corresponding to the non-printing area of the printing object. It was found that the durability against the tension during the production of the combination mask can be improved because of the low aperture ratio.
  • the strength of the joint with the polyester fine wire mesh where stress is concentrated during printing can be increased, so the life of the mesh can be increased. It can be expected to improve.
  • a part of the printing object may be mixed on the printing object, and the mesh member may be broken when contacting the squeegee during printing, and the mesh member may break.
  • the test which compares the durability with respect to the contamination foreign material of a fine wire (metal) mesh fabric and a rolled stainless steel foil was implemented.
  • the metal mesh fabric had a wire diameter of 18 ⁇ m, a thickness of 20 ⁇ m, and an aperture ratio of 50%, and the rolled stainless steel foil had a thickness of 21 ⁇ m.
  • Each was placed on a piece of silicon having a height of 3 mm, passed through a squeegee, and then observed with a microscope (manufactured by Keyence Corporation: Model VHX-2000).
  • the stainless steel fine wire was broken, whereas the rolled stainless steel foil was not broken. That is, it was found that the stainless steel foil is higher in durability against foreign matters such as silicon pieces than the metal mesh fabric. Therefore, by reducing the aperture ratio of the portion corresponding to the non-printing region of the rolled metal foil mesh, the portion corresponding to the non-printing region is improved in durability against mixed foreign matters, and even when foreign matters are mixed during printing, the mesh member Can be expected to be difficult to break.
  • the area around the printed pattern area through which the paste permeates (the non-printed area corresponding portion) has an aperture ratio of 0% (that is, a rolled metal foil in which no holes are formed) Itself). That is, by not forming a hole in a portion corresponding to the non-printing region of the rolled metal foil, the strength is sufficient.
  • the adhesiveness with the rolled metal foil is lowered, and there is a concern that the photosensitive emulsion may be peeled off during repeated printing. For this reason, it is preferable to set the aperture ratio of the portion corresponding to the non-printing area in consideration of the adhesiveness of the photosensitive emulsion (and the type of rolled metal foil that affects the adhesiveness).
  • the opening width of at least a part of the hole provided in the portion corresponding to the non-printing region is larger than the opening width of the hole provided in the portion corresponding to the printing region.
  • the opening width of at least a part of the holes provided in the non-printing region corresponding portion is larger than the opening width of the hole provided in the printing region corresponding portion.
  • the thickness of the mesh member (that is, the thickness of the rolled metal foil) is preferably 30 ⁇ m or less, which is preferable for printing with a small difference in height.
  • This thickness is more preferably 10 ⁇ m or more from the viewpoint of securing strength.
  • the mesh member when the thickness of the printing plate is the same, the higher the aperture ratio of the portion corresponding to the printing area, the thicker the printing can be performed. However, increasing the aperture ratio decreases the strength of the mesh member. Therefore, using a mesh member with different aperture ratio and strength, the mesh member was pulled with a metal clamp simulating an aluminum frame for screen printing, and a load test was performed. In this load test, in a state where the mesh member is pulled, a urethane rubber squeegee for screen printing sandwiched between chucks using a compression tester (Instron) is pressed against the mesh member in the same manner as during screen printing. It was observed whether it was able to withstand the tension applied to the mesh member and the printing pressure of the squeegee.
  • a compression tester Instron
  • the breaking load (N) when the tensile test is performed is converted per 1 cm of the width of the tensile test piece) is 20 N / cm or more
  • the mesh It was found that the member did not break.
  • the tensile strength of the mesh member is preferably 20 N / cm or more.
  • a test piece having a width of 15 mm and a mark distance of 100 mm was cut out from the mesh member, and a tensile test was performed at a tensile rate of 10 mm / min using a tensile tester (Orientec Co., Ltd.). Carried out.
  • the aperture ratio of the portion corresponding to the printing area is less than 25%, print fading is likely to occur. Therefore, the aperture ratio is preferably 25% or more. Further, since the tensile strength per unit width of the mesh member is preferably 20 N / cm or more, even when the thickness is different, the opening ratio (at the maximum opening calculated) at least the tensile strength per unit width is 20 N / cm. Ratio) must be the following aperture ratio. As a result of the test, the tensile strength per unit width of the mesh member produced by perforating the rolled metal foil is proportional to the minimum cross-sectional area per unit width (mm 2 / cm: equivalent to the cross-sectional area of the line portion). I understood that. FIG.
  • the aperture ratio of the mesh member (the aperture ratio of the portion corresponding to the printing area) is 25% or more, which is an aperture ratio necessary for screen printing, and a tensile strength of 20 N / cm or more per unit width is secured. It is preferable that the aperture ratio is equal to or less than the calculated maximum aperture ratio calculated by the above equation (1).
  • the mesh member of the present invention defines the maximum line width coefficient of the portion corresponding to the printing area, and includes those having the non-printing area corresponding portion for ensuring the strength, but there are various forms. Is mentioned.
  • FIGS. 6A and 6B are explanatory views showing an example of the form of the mesh member of the present invention, and FIG. 6A is a plan view (the holes corresponding to the non-printing area are not shown).
  • FIG. 6B is a partially enlarged view thereof.
  • the mesh member 10 has a non-printing region equivalent portion 12 (a portion with a low aperture ratio) around a printing region equivalent portion 11 (a portion with a high aperture ratio).
  • the mesh member 10 of the present invention has a print region equivalent portion 11 (a portion with a high aperture ratio) at the center and a non-print region equivalent portion 12 (a portion with a low aperture ratio) around it.
  • FIG. 7 (a) which has a plurality of print region equivalent portions 11 (portions in which the aperture ratio increases) in the central portion, and a non-print region equivalent portion 12 (a portion in which the aperture ratio decreases) in the periphery. What has [FIG.
  • the stress concentration during tension is Analysis was performed by a finite element method (FEM).
  • FEM finite element method
  • the center portion of the mesh member is 86.8 MPa
  • the corner portion was 128.3 MPa, and it was found that stress was concentrated on the corner portion.
  • the mesh member breaks during pulling, there is a high possibility that the mesh member breaks from the corner portion of the boundary between the region with a high aperture ratio and the region with a low aperture ratio.
  • the angle of the corner portion is larger than 90 degrees (a rounded shape)
  • the stress of the corner portion is 104.5 MPa, which is a stress compared to the case where the corner portion is 90 degrees. I found out I didn't concentrate.
  • the outline of the boundary between the areas 11 and 12 having different aperture ratios is formed by removing the corners and rounding at least partially. Stress concentration can be reduced, and a mesh member that is difficult to break can be obtained. In particular, it can be expected that even when the mesh member is thin (about 30 ⁇ m or less), the aperture ratio in a region with a high aperture ratio is increased, and even when the mesh member is stretched with a higher tension, breakage can be prevented.
  • the boundary D between the print area equivalent portion and the non-print area equivalent portion is set based on the end of the opening of the print area equivalent portion. This is a reference for calculating the aperture ratios of the corresponding portion and the non-printing region corresponding portion.
  • the aperture ratio of a portion with a low aperture ratio may be high near a portion with a high aperture ratio, and may decrease with increasing distance.
  • Each part in the mesh member of the present invention is a range where the aperture ratio is the same in the rolled metal foil, and a range where the aperture ratio is different is a different part. Even if the aperture ratio is the same, if the aperture ratio is divided at different parts, it is regarded as another part (for example, a plurality of parts with a high aperture ratio are scattered in parts with a low aperture ratio. If you want to).
  • the aperture ratio is gradually changed (usually increased) toward a portion with a high aperture ratio for exposing the printed pattern, the range for each aperture ratio is regarded as one area, and the area with a high aperture ratio is A plurality of regions exist.
  • the material of the rolled metal foil is not particularly limited as long as it can be made into a foil shape using stainless steel, titanium or titanium alloy, nickel or nickel alloy, copper or copper alloy, aluminum alloy, or the like.
  • stainless steel titanium or titanium alloy, nickel or nickel alloy, copper or copper alloy, aluminum alloy, or the like.
  • SUS304-H for stainless steel JIS4600 80 for titanium alloy, JISCS2520 (1986) NCHRW1 for nickel alloy, JIS3130 C1720R-H for copper alloy, aluminum alloy, etc.
  • Examples include JISH4000 5052.
  • such a rolled metal foil is generally commercially available and can be easily obtained.
  • the mesh member of the present invention it is preferable to form a large number of holes extending toward the printing object by etching in the rolled metal foil.
  • at least one surface constituting the line portion is at least one side.
  • the squeegee 6 has a flat surface compared to a mesh knitted with fine lines having irregularities on the surface. The movement becomes smooth [FIG. 9 (a)], the paste 7 is easily stretched uniformly [FIG. 9 (b)], and a pattern having a relatively thick printed film thickness d2 can be printed, which is preferable [FIG. 9 (c)].
  • 9A to 9C also show a state in which the outer shape of the hole 2 is formed so as to expand toward the printing surface side (the lower side of FIG. 9A) (FIG. 9).
  • the upper side of (a) is the squeegee side).
  • the mesh member of the present invention it is preferable to form a large number of holes in the rolled metal foil by a hole forming process by etching, and the procedure is as follows. First, a state in which a rolled metal foil is stretched and attached to a fixed plate having a flat surface such as glass, or a roll in which the rolled metal foil is wound is stretched, that is, the rolled metal foil has no wrinkles. The following processing is performed in a stretched state. First, a photosensitive resist is applied as thinly as possible to the rolled metal foil, and then the opening pattern of the mesh drawn on the mask is exposed and developed to form the opening pattern on the rolled metal foil.
  • a mesh member having a non-printing area equivalent part in addition to the printing area equivalent part, and having a large number of holes in the non-printing area equivalent part with an opening ratio smaller than the opening ratio of the hole in the printing area equivalent part.
  • Example 1 A rolled metal foil mesh was prepared by punching a commercially available rolled stainless steel foil having a thickness of 16 ⁇ m (manufactured by Toyo Seiki Co., Ltd .: Standard SUS304-H) by etching from one side.
  • the area with a high aperture ratio is a shape that matches the shape of the surface electrode pattern of the solar cell, and the portion where the finger electrode print pattern is exposed / developed is exposed to a width of 500 ⁇ m, a length of 150 mm, and a bus bar pattern.
  • the part to be developed has a width of 2.4 mm and a length of 150 mm.
  • the shape of the hole is a shape in which the opening widens toward the printing surface side.
  • the pitch on the printing surface side of the portion with a high aperture ratio (corresponding to the printing region) is 80 ⁇ m, the line portion maximum width A on the printed material side is 27 ⁇ m, and the maximum line width coefficient is 0.34.
  • the aperture ratio is 62% for a portion with a high aperture ratio (portion corresponding to a printing region) and 12% for a portion with a low aperture ratio (portion corresponding to a non-printing region).
  • the boundary between the high aperture ratio portion and the low aperture portion is linear.
  • this mesh member was joined to a polyester fine wire mesh, and after applying a photosensitive emulsion, a printing pattern having a finger electrode width of 100 ⁇ m and a bus bar width of 2 mm was exposed and developed to prepare a printing plate.
  • a printing plate was similarly prepared using a stainless fine wire mesh fabric having a thickness of 35 ⁇ m, a wire diameter of 16 ⁇ m, an aperture ratio of 63%, and a pitch of 78 ⁇ m [number of meshes: 325 (lines / inch)].
  • the thickness of the photosensitive emulsion was 20 ⁇ m thicker than the thickness of the mesh member.
  • the printing height of the products 1 to 4 of the present invention is 19.2 to 27.3 ⁇ m, which is higher than the comparative product of 13.9 ⁇ m, and the height difference (maximum height-minimum height) of the products of the present invention.
  • the product of 4.0 to 6.3 ⁇ m and the comparative product was 8.5 ⁇ m, and the product of the present invention was smaller.
  • Example 2 An area with a low aperture ratio is formed on a mask in which an aperture (mesh) pattern with a high aperture ratio is drawn on a commercially available stainless steel rolled foil (made by Toyo Seiki Co., Ltd .: Standard SUS304-H) having a thickness of 21 ⁇ m.
  • the film mask for drawing a pattern was overlaid and exposed. After development, holes were formed by etching from one side to produce a rolled metal foil mesh.
  • the portion with a high aperture ratio matches the shape of the surface electrode pattern of the solar cell, and the portion that exposes and develops the finger electrode print pattern is the width: 500 ⁇ m, length: 150 mm, and the bus bar pattern is exposed and developed.
  • the portion to be made has a width of 2.4 mm and a length of 150 mm.
  • the shape of the hole is such that the opening is widened toward the printing surface side.
  • the pitch on the printing surface side of the portion with a high aperture ratio is 100 ⁇ m [number of meshes: 250 (lines / inch)], the line portion maximum width A on the printed material side is 30 ⁇ m, and the maximum line width coefficient is 0.30.
  • the aperture ratio of the high aperture ratio is 66%, and the low aperture ratio is 9%.
  • the boundary between the high aperture ratio portion and the low aperture portion is straight or rounded (see FIG. 8).
  • a printing plate was prepared using this mesh member.
  • the photosensitive emulsion is 20 ⁇ m thicker than the mesh member.
  • RAFS conductive silver paste
  • Example 3 A commercially available rolled stainless steel foil having a thickness of 30 ⁇ m (manufactured by Toyo Seiki Co., Ltd .: Standard SUS304-H) was punched from one side to produce a rolled metal foil mesh.
  • a portion with a high aperture ratio is 70 mm ⁇ 70 mm at the center of the mesh member.
  • the pitch of the portion with a high aperture ratio is 200 ⁇ m
  • the line portion maximum width A on the printed material side is 59 ⁇ m
  • the maximum line width coefficient is 0.30.
  • the shape of the hole is a shape in which the opening widens toward the printing surface side.
  • the aperture ratio of the high aperture ratio is 74%
  • the pitch of the low aperture ratio is 300 ⁇ m [85 meshes (inch / inch)]
  • the aperture ratio is 9%.
  • the boundary between the high aperture ratio portion and the low aperture portion is straight or rounded (see FIG. 8).
  • a printing plate was prepared using this mesh member.
  • the photosensitive emulsion is 10 ⁇ m thicker than the mesh member. When actual printing was performed using this printing plate, it was confirmed that there was no fading and printing with a height difference of 6 ⁇ m was possible.
  • Example 4 A rolled metal foil mesh was prepared by punching a commercially available stainless steel rolled foil (Toyo Seiki Co., Ltd., Standard SUS304-H) having a thickness of 20 ⁇ m by etching from one side.
  • the portion with a high aperture ratio matches the shape of the surface electrode pattern of the solar cell, and the portion where the finger electrode print pattern is exposed and developed exposes and develops the width: 500 ⁇ m, length: 150 mm, and the bus bar pattern
  • the part has a width of 2.4 mm and a length of 150 mm.
  • the pitch of the portion with a high aperture ratio is 100 ⁇ m [number of meshes 250 (lines / inch)], the line portion maximum width A on the printed material side is 20 ⁇ m, and the maximum line width coefficient is 0.20.
  • the opening is widened toward the printing surface, the opening ratio of the portion with a high opening ratio is 86%, and the periphery of the portion with a low opening ratio is a stainless steel rolled foil itself (opening ratio of 0%). .
  • the boundary between the high opening ratio and the stainless steel rolled foil itself (opening ratio 0%) is straight or rounded (see FIG. 8).
  • a printing plate was prepared using this mesh member.
  • the photosensitive emulsion is 10 ⁇ m thicker than the mesh member. When actual printing was performed using this printing plate, it was confirmed that there was no fading and printing with a height difference of 4 ⁇ m was possible.
  • Example 5 In order to evaluate the printing position accuracy, a rolled metal foil mesh was prepared by punching a rolled stainless steel foil having a thickness of 16 ⁇ m (manufactured by Toyo Seiki Co., Ltd .: Standard SUS304-H) by etching from one side.
  • the region with a high aperture ratio is 200 mm ⁇ 200 mm at the center of the mesh member.
  • the pitch of the area with a high aperture ratio is 80 ⁇ m (mesh is 320 mesh (lines / inch)), the line portion maximum width on the printing object side is 20 ⁇ m, and the maximum line width coefficient is 0.25.
  • the hole has a shape that widens toward the printing surface side, the aperture ratio of the high aperture ratio area is 57%, and the periphery of the high aperture ratio area is the rolled stainless steel foil itself (open area ratio of 0%). ing.
  • the boundary between the region with a high aperture ratio and the rolled stainless steel foil itself (the aperture ratio is 0%) is straight or rounded (see FIG. 8).
  • the printing position 5000 printing positions were measured.
  • the printing position deviation from the first printing position is within ⁇ 15 ⁇ m
  • the printing position deviation in the conventional metal mesh fabric is ⁇ 30 ⁇ m (for example, “Electronic High Quality Screen Printing Technology” supervised by Takao Someya , 2005, p. 44). From this result, it can be seen that a mesh member obtained by perforating a rolled metal foil can achieve high printing accuracy.
  • the mesh member for screen printing of the present invention is defined by the ratio (A / B) of the line portion maximum width A on the printing object side in the portion of the rolled metal foil corresponding to the printing region and the hole-to-hole interval B. Since the maximum line width coefficient is properly defined, a mesh member for screen printing that can print with little height difference and obtain high printing position accuracy even when using a high-viscosity paste is realized. Such a screen printing mesh member is extremely useful for the manufacture of electronic components and the formation of current collecting main electrodes (bus bars) and current collecting grid electrodes (finger electrodes), which are surface electrodes of solar cells. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 高粘度のペーストを用いた場合にでも、印刷かすれがなく、高低差が少ない印刷ができると共に、高い印刷位置精度が得られるスクリーン印刷用メッシュ部材を提供する。本発明は、感光性乳剤で印刷パターンを形成するためのスクリーン印刷用メッシュ部材であって、前記スクリーン印刷用メッシュ部材は圧延金属箔によって構成されており、印刷対象物の印刷領域に相当する圧延金属箔の部分に、印刷対象物に向かって広がるように多数の孔を有し、前記印刷領域に相当する圧延金属箔の部分における印刷対象物側の線部最大幅Aと、前記孔と孔の間隔Bの比A/Bで規定される最大線幅係数が0.40未満であるスクリーン印刷用メッシュ部材に関する。

Description

スクリーン印刷用メッシュ部材
 本発明は、スクリーン印刷に用いられるメッシュ部材に関するものであり、特に太陽電池の表面電極の印刷等に用いられる高粘度ペーストを使った印刷において、印刷かすれがなく高低差が少なく、印刷位置精度が高い印刷を実現するスクリーン印刷用メッシュ部材に関するものである。
 スクリーン印刷は積層チップコンデンサ等の電子部品の製造をはじめ、太陽電池の表面電極である集電用メイン電極(バスバー)や集電用グリッド電極(フィンガー電極)の形成にも利用されている。スクリーン印刷に使われる印刷版(スクリーン版)には、金属または樹脂(ポリエステル)からなる細線を編んだメッシュ部材が使われている。また、ステンレス鋼細線を編んだメッシュ織物(以下、「金属メッシュ織物」と呼ぶことがある)の周辺にポリエステル細線を編んだメッシュ織物(以下、「ポリエステルメッシュ織物」と呼ぶことがある)を接合させた印刷版(コンビネーションマスク)も広く利用されている。
 コンビネーションマスクは、ポリエステル細線を編んだメッシュ織物をアルミニウム製の型枠に張った後に、金属メッシュ織物を接着し、乾燥後金属メッシュ織物と重なった部分のポリエステルメッシュ織物を切断する。その後感光性乳剤を塗布し、金属メッシュ織物上に目的の印刷パターンを露光・現像し、印刷版を作製する。細線を編んだメッシュ織物で同じ厚みの場合、開口率(後記図1に示す開口部の合計面積率)が高いほど透過するペーストの量は多くなる。太陽電池の表面電極の印刷等には、開口率50~60%程度の金属メッシュ織物が利用されている。
 太陽電池の表面電極の印刷のように、高粘度のペーストを使って印刷幅が100μm~2mm程度の印刷を行う場合には、スクリーン印刷が広く利用されている(例えば、特許文献1)。しかしながら、金属メッシュ織物を使って高粘度のペーストで印刷する場合には、メッシュ痕が残りやすく、印刷の高低差にばらつきが出やすいという問題がある。太陽電池の表面電極のような集電用電極の場合には、高低差のばらつきや電極高さの低い部分が存在すると抵抗が高くなるため、なるべく高低差の少ない印刷ができるメッシュ部材が求められている。
 また太陽電池の表面電極では受光面積を大きくしながら、電極の抵抗を小さくすると発電効率が向上することになる。そのため、表面電極はできる限りアスペクト比を高く、すなわち電極の幅は狭く、電極高さは高くする努力がなされている。しかしながら、印刷幅が50μm程度と狭い場合には、金属メッシュ織物を使ったスクリーン印刷では十分にペーストが吐出しないため、印刷された電極の高さが低くなることがある。
 更に、金属メッシュ織物は印刷を繰り返すと伸び、印刷位置がずれることが知られている。そのため、高い印刷位置精度が求められる印刷の場合には、印刷回数が少ない段階で印刷版を交換する必要があるという問題もある。
 図1は、スクリーン印刷に通常用いられている印刷版の一部拡大説明図である。金属やポリエステルからなる細線1を編んだメッシュ部材(メッシュ織物)を、スクリーン枠(図示せず)に張った後、全面に樹脂4(感光性乳剤)を塗布してからマスクで覆い、印刷しない部分のみに露光して、感光性乳剤4を硬化させ、印刷したい部分の感光性乳剤4を除去し、印刷版5を作製する[図中、2はメッシュ部材の開口部(メッシュ開口部)を示す]。尚、樹脂4(感光性乳剤)は、メッシュ部材よりも10~30μm程度厚くされる場合が多い。
 スクリーン印刷においては、図2(a)~(c)に示すように、スキージ6を移動させることにより印刷パターン部3(前記図1参照)のメッシュ開口部2にペースト7を充填すると共に、印刷対象物8にペースト7を付着させる。スキージ6が通過した後は、印刷版の張力(テンション)により印刷版5(前記図1参照)と印刷対象物8が離れるが、ペースト7は印刷対象物8に残り、感光性乳剤4が除去されたパターン通りに印刷される。印刷された直後のペースト7は、メッシュ開口部2に対応する部分には厚く、細線1に対応する部分は薄くなっているが[図2(b)]、ペースト7の粘性と表面張力により平坦化(レべリング)する[図2(c)]。この際、印刷版5のメッシュ開口部2を越えてペースト7が広がることとなる。このペーストの広がりを印刷の滲みと称す[図2(c)中、7aで示す]。
 尚、印刷膜厚(印刷対象物8に塗布されたペースト7の厚さd1)は、印刷版5の厚さと、メッシュ部材の開口率(開口部2の合計面積比率)によって決定され、同じ印刷面積の場合、印刷膜厚(μm)=印刷版の厚さ(μm)×開口率(%)の関係が成り立つことが知られている。
 メッシュ部材を製造する方法としては、電鋳法によりニッケルなどをメッシュ状に堆積させる方法が提案されている(例えば、特許文献2、3)。しかしながら電鋳法で作製した金属箔には強度のばらつきが生じることが知られており、電鋳法で作製したメッシュにも強度のばらつきが生じる恐れがある。またニッケルなどの電解箔にエッチングなどで孔開け加工したものをメッシュ部材とすることも考えられるが、電鋳法によるメッシュ部材と同様に強度のばらつきが生じる。
 金属メッシュ織物よりもペーストの吐出性を向上させるために、メタルマスクを利用することも提案されている。例えば特許文献4には、太陽電池の表面電極の印刷において、よりペーストの吐出性を向上させるために、金属板に開口部を設け、開口の間にメタル部分よりも厚みの小さい支持体部(「ブリッジ」と呼ばれることもある)をかけてマスクを保持しながらペーストの吐出性を向上させるメタルマスクが提案されている。しかしながら、この技術では、印刷パターン部をつなぐ支持体部が存在するために、印刷幅がより小さい場合には、支持体部にペーストが十分回りこまず、支持体部の印刷高さが十分得られないことが懸念される。また開口部の中に遮蔽部がいわゆる島状に存在する場合、強度を維持するために支持体部の幅を大きくしたり、支持体部の数を増やす必要があるため、ペーストが吐出しない支持体部が原因で、印刷かすれが生じることも懸念される。
 こうしたことから、太陽電池の表面電極の印刷に使われる導電性銀ペーストのように、高粘度のペーストを用いた場合にでも、印刷かすれがなく、メッシュ痕が残りにくい(即ち、電極の高低差が少ない)印刷ができると共に、印刷位置精度が高いスクリーン印刷用メッシュ部材が求められている。
日本国特開2005-150540号公報 日本国特許第3516882号公報 日本国特許第2847746号公報 日本国特開2006-341547号公報
 本発明はこのような状況に鑑みてなされたものであって、その目的は、高粘度のペーストを用いた場合にでも、印刷かすれがなく、高低差が少ない印刷ができると共に、高い印刷位置精度が得られるスクリーン印刷用メッシュ部材を提供することにある。
 本発明は以下の態様を含む。
(1)感光性乳剤で印刷パターンを形成するためのスクリーン印刷用メッシュ部材であって、前記スクリーン印刷用メッシュ部材は圧延金属箔によって構成されており、印刷対象物の印刷領域に相当する圧延金属箔の部分に、印刷対象物に向かって広がるように多数の孔を有し、前記印刷領域に相当する圧延金属箔の部分における印刷対象物側の線部最大幅Aと、前記孔と孔の間隔Bの比(A/B)で規定される最大線幅係数が0.40未満であることを特徴とするスクリーン印刷用メッシュ部材。
(2)前記圧延金属箔は、印刷対象物の印刷領域に相当する部分以外に、印刷対象物の非印刷領域に相当する部分を有し、該非印刷領域に相当する部分には孔が開けられていないものである(1)に記載のメッシュ部材。
(3)前記圧延金属箔は、印刷対象物の印刷領域に相当する部分以外に、印刷対象物の非印刷領域に相当する部分を有し、該非印刷領域に相当する部分には、印刷領域に相当する部分における孔の開口率よりも小さい開口率で多数の孔が開けられたものである(1)に記載のメッシュ部材。
(4)前記印刷領域に相当する圧延金属箔の部分における印刷対象物側の線部最大幅Aが30μm未満である(1)~(3)のいずれか一つに記載のメッシュ部材。
(5)厚みが5μm以上、30μm以下である(1)~(4)のいずれか一つに記載のメッシュ部材。
(6)前記印刷領域に相当する圧延金属箔の部分と、該非印刷領域に相当する圧延金属箔の部分の境界の輪郭は、少なくとも一部が丸みを帯びたものである(2)~(5)のいずれか一つに記載のメッシュ部材。
(7)線部を構成する少なくとも片面が平坦である(1)~(6)のいずれかに記載のメッシュ部材。
(8)前記圧延金属箔は、ステンレス鋼、チタン、チタン合金、ニッケル、ニッケル合金、銅、銅合金、およびアルミ合金から成る群から選択される1種からなる(1)~(7)のいずれか一つに記載のメッシュ部材。
 本発明のスクリーン印刷用メッシュ部材によれば、印刷領域に相当する圧延金属箔の部分における印刷対象物側の線部最大幅Aと、孔と孔の間隔Bの比(A/B)で規定される最大線幅係数を適正に規定するようにしたので、高粘度のペーストを用いた場合にでも、印刷かすれがなく、高低差が少ない印刷ができると共に、高い印刷位置精度が得られるスクリーン印刷用メッシュ部材が実現でき、このようなスクリーン印刷用メッシュ部材は、電子部品の製造をはじめ、太陽電池の表面電極である集電用メイン電極(バスバー)や集電用グリッド電極(フィンガー電極)の形成に極めて有用である。
図1は、スクリーン印刷に通常使われている印刷版の部分拡大説明図である。 図2(a)~(c)は、従来技術でのスクリーン印刷におけるペーストの充填状態を説明するための図である。 図3は、孔の開口形状を説明するための拡大図である。 図4は、孔の他の開口形状を説明するための拡大図である。 図5は、単位幅当りの最小断面積(mm/cm)と、単位幅当りの引張強度(N/cm)の関係を示すグラフである。 図6(a)~(b)は、本発明のメッシュ部材の形態の一例を示す説明図である。 図7(a)~(c)は、本発明のメッシュ部材の形態の他の例を示す説明図である。 図8は、本発明のメッシュ部材の形態の更に他の例を示す説明図である。 図9(a)~(c)は、本発明のメッシュ部材を用いたときのスクリーン印刷におけるペーストの充填状態を説明するための図である。
 本発明者らは、従来技術である金属メッシュ織物で、印刷パターンが細い場合に良好な厚膜印刷ができない原因を調べた。ステンレス鋼細線のメッシュ織物[厚さ35μm、メッシュ数:325(本/インチ)]とポリエステルメッシュを組み合わせたコンビネーションマスクを作製し、印刷線幅:80μmによるスクリーン印刷過程を高速動画が撮影できるマイクロスコープ(株式会社キーエンス製:型式VW-6000)で観察した。このときペーストは導電性銀ペースト(東洋インキ製造株式会社製:「RAFS」)を使用した。
 観察の結果、特に金属メッシュ織物の交差部において、ペーストの回り込みが悪くなると共に、印刷後の金属メッシュ織物の孔(開口部)にペーストが残存する傾向があることが判明した。こうした現象が生じるために、メッシュ織物が存在した部分の印刷高さが低くなり、印刷高さのばらつき(高低差)が生じたり、印刷対象物に印刷されるペーストの量が少なくなり、印刷高さが低くなったりすると思われた。また孔にペーストが残存する原因は、ステンレス鋼細線の交差部に付着したペーストが、表面張力の影響を受けて版離れの際に周辺のペーストとともにメッシュに付着したままとなるためと考えられた。観察結果から、金属メッシュ織物の課題を解決するために、スクリーン印刷時の版離れの際にペーストがメッシュに残存しない構成について検討した。
 金属メッシュ織物のような交差部がないメッシュ部材を得るために、圧延金属箔にエッチング、レーザー加工、ショットブラストにより孔開け加工を試みた。その結果、開口精度と開口速度の点から、エッチングによるのが最適であることが判明した。尚、エッチングによって孔開け加工するに際して、両面からのエッチングにより孔開けした場合には、孔の一部に凸部が形成されるため、スクリーン印刷時にペーストが滞留する恐れがある。そこで、一方面からエッチングにより孔開け加工するのが良い。その結果、孔の形状(外観形状)は、一方側から他方側に向かって広がるような形状になるが、印刷対象物に向かって広がるように孔を形成することによって、ペーストが滞留する事態も回避できる。
 孔の外観形状は印刷対象物に向かって広がる場合と、垂直となる場合でペーストの吐出性が異なるかを検討するために、解析を行なった。解析方法は、気液二相非圧縮性流動解析のレベルセット法を用い、解析ソフトはCOMSOL社(スウエーデン)製「COMSOL Multiphysics」を使用した。孔の外観形状が印刷対象物に向かって広がる場合の開口率は、スキージ面側は38%で、印刷面側(即ち、印刷対象物側)で77%(両面の平均開口率は58%)とし、垂直となる場合の開口率は、スキージ面側と印刷面側ともに58%と仮定した。またメッシュ部材の厚さは15μmで、ペーストの粘度は高粘度の200Pa・sと仮定した。
 解析の結果、孔の外観形状が印刷対象物に向かって広がる場合は、スキージが通過後20msecでペーストがメッシュ部材から完全に吐出するのに対して、垂直となる場合はスキージが通過後20msecでもペーストの一部がメッシュ部材の印刷面側に付着していた。またペーストの粘度を1000Pa・sと仮定したときは、孔の外観形状が印刷対象物に向かって広がる場合は、スキージ通過後20msecでペーストがメッシュ部材から完全に吐出するのに対して、垂直となる場合はスキージが通過後25msecでもペーストの一部がメッシュ部材の印刷面側に付着し、吐出性の差がより顕著であった。この解析結果から、高粘度ペーストを使ってスクリーン印刷を行なうには、孔の外観形状が印刷対象物に向かって広がるように孔加工したほうが、垂直に加工するよりもペーストの吐出性が良好であると考えられる。尚、印刷面側の開口率とスキージ面側の開口率の差は、5~80%程度とすることができる。ペーストの吐出性等を考慮すれば、20~50%程度であることが好ましい。
 本発明者らは、厚さ16μmの圧延ステンレス鋼箔(東洋精箔株式会社製:規格SUS304-H)に、片側からのみエッチング液をスプレーして孔開け加工し、メッシュ部材を作製した。孔と孔の間隔(ピッチ)は80μm[メッシュ数:320(本/インチ)]とした。また、片方の面の開口率は64%、別の面の開口率は32%(両面の開口率の平均48%)であった。金属メッシュ織物によって構成されるメッシュ部材とのペーストの吐出性を比較するために、金属メッシュ織物のペースト印刷過程の観察と同様にマイクロスコープを用いて観察を行った。その結果、圧延金属箔によって構成されるメッシュ部材(圧延金属箔メッシュ部材)では、ペーストの吐出が金属メッシュ織物によって構成されるメッシュ部材に比べて均一であることが判明した。また、圧延金属箔メッシュ部材では、細線メッシュ織物で観察されたような孔(開口部)にペーストは残存していなかった。尚、印刷面側に向かって孔が広がるようにした場合、および印刷面側に孔が狭くなるようにした場合のいずれもペーストの残存は認められなかった。
 これらの結果から、圧延金属箔に孔開け加工することによって構成されるメッシュ部材では、ペーストの吐出が均一となり、スクリーン印刷後に開口部にペーストが残存しないものとなることが判明したのである。
 上記のような圧延金属箔メッシュ部材(厚さ:16μm、ピッチ:80μm)の印刷位置精度を測定するために、繰り返し印刷試験を実施した。圧延金属箔メッシュ部材をポリエステルメッシュ織物と接合したコンビネーションマスクを作製し、感光性乳剤を塗布後、テスト用印刷パターンを露光・現像して、印刷版を作製した。この印刷版を用いて、5000回の繰り返し印刷後の印刷位置を測定した結果、印刷位置精度は15μm以内であった。金属メッシュ織物の場合は、30μm程度の印刷位置精度であることが知られており、圧延金属箔メッシュ部材は、金属メッシュ織物よりも印刷位置精度が高いことが分かった。
 次に、圧延金属箔メッシュ部材の孔の広がり方向について検討した。厚さ21μmの印刷物側にステンレス鋼圧延箔(東洋精箔株式会社製:規格SUS304-H)に片側からエッチングで孔開け加工して、圧延金属箔メッシュ部材を作製し、印刷面側に向かって孔が広がるように印刷版を作製したものと、印刷面側に孔が狭くなるように印刷版を作製したもので、印刷試験を行った。尚、メッシュ部材の片方の面の開口率は73%、別の面の開口率は37%(両面の開口率の平均55%)であった。その結果、印刷面側に向かって孔が広がるメッシュ部材では良好な印刷ができたが、印刷面側に孔が狭くなるメッシュ部材は印刷がかすれ、良好な印刷ができないことが分かった。これらの結果から、本発明のメッシュ部材では、孔の外観形状は印刷対象物に向かって広がるように形成されたものとした。
 本発明者らは、圧延金属箔メッシュ部材の印刷性を評価するために、印刷試験をも実施した。厚さ16μmと21μmのステンレス鋼圧延箔(東洋精箔株式会社製:規格SUS304-H)に片側からエッチングで孔開け加工し(孔の形状は後記図3参照)、開口部のピッチと開口率の異なるメッシュ部材を作製した。尚、片側からエッチングした結果、エッチング液をスプレーした側の開口率は高く、反対面開口率は低くなっている。
 これらのメッシュ部材を、アルミニウム枠に張ったポリエステル細線メッシュと、開口率の高い面が印刷対象物側になるように接合して、コンビネーションマスクを作製した。感光性乳剤塗布後、印刷パターン幅:80μmの印刷版を作製した。これらの印刷版と導電性銀ペースト(東洋インキ製造株式会社製:「RAFS」)を用いて印刷試験を行い、印刷ラインにかすれ(断線)がないかを評価した。光学顕微鏡による観察で、印刷ラインに印刷かすれ(断線)がない場合を良好(〇)、印刷かすれがある場合を不良(×)と判定した。その結果を、下記表1(試験No.1~8)に示す。尚、下記表1に示した開口率(印刷面側の開口率)とは、印刷面側の開口幅(孔の開口幅:μm)2/ピッチ(μm)2×100(%)から計算したものである。また、本発明のメッシュ部材のように、孔の形状が印刷面側(印刷対象物側)に向かって広がっているものでは、開口率は印刷面側とスキージ側とでは異なるものとなる。特に、断らない限りは、このようなメッシュ部材の開口率は、印刷面側の開口率とスキージ側の開口率の平均値である。
Figure JPOXMLDOC01-appb-T000001
 
 印刷試験の結果から、印刷かすれに影響を及ぼす因子を解析した結果、印刷面側の孔と孔の間の距離が最大となる線部最大幅Aを、孔と孔との間隔(ピッチ)Bで除した最大線幅係数(最大線幅係数=線部最大幅A÷ピッチB)が、印刷かすれの有無に大きく影響しており、印刷面側の最大線幅係数が0.40未満であれば、印刷かすれのない、良好な印刷ができることが判明した。
 印刷面側の開口率も印刷性に影響する傾向があったが、印刷面側の開口率が50%以上と高い場合でも印刷面側の最大線幅係数が0.40以上では印刷かすれが発生することが分かった。即ち、圧延金属箔に孔開け加工し、ペーストが透過する印刷パターン領域の最大線幅係数(最大線幅係数=線部最大幅A÷ピッチB)を0.40未満とすることで、印刷かすれのない電極を印刷することができる。
 本発明のメッシュ部材における孔(開口部)の開口形状を図3(拡大図)に示す。本発明のメッシュ部材において、多数形成される孔の形状(開口部形状)は、図3に示すような略四角形状(メッシュ部材の印刷相当領域の形状が格子状)が、開口率を確保しながら、強度を保持する上で望ましい。尚、図3では、孔2の四隅が丸みを帯びた形状のものを示したが、このような形状の場合には、線部1aの最も幅が広くなる部分が線部最大幅Aとなり、この線部最大幅Aがメッシュ部材の特性に影響が与えることになる。また、孔と孔の間隔(ピッチ)Bは、図3に示したように或る孔2の一辺から隣接する他の孔2の一辺までの距離を意味する。
 上記図3では、線部1aが相互に交差する部分が十字型になるような開口形状を想定したものであるが、例えば図4に示すように、線部1aが相互に交差する部分が略T字型になるような開口形状であっても良い。
 線部1aが相互に交差する部分が略T字型である場合は、線部最大幅は、方向によって異なるものとなる(図4に示したAとC)。このような場合には、線部最大幅が最大となるAを採用して、前記最大線幅係数(最大線幅係数=線部最大幅A÷ピッチB)を計算する。尚、印刷面側の線部最大幅Aと、印刷面側の孔と孔の間隔(ピッチ)を測定する場合は、隣接する2つの孔を用いることになる。
 印刷膜厚を一定にするために、印刷領域においては、孔の形状は基本的に同じ形状のものとし、孔を等間隔で形成することになる。但し、印刷箇所によって印刷膜厚を変える場合等、印刷目的によっては、孔の大きさを変えたり、孔と孔の間隔を変えることがある。このような場合にも、隣接する孔と孔について、最大となる線幅を線部最大幅Aとし、この線部最大幅Aと、孔と孔との間隔(ピッチ)Bから最大線幅係数(最大線幅係数=線部最大幅A÷ピッチB)を計算することになる。
 印刷面側の開口率を高くするほど、孔と孔の間隔(ピッチ)は小さくなり、最小で0(ゼロ)となる。但し、この場合は、スキージ面側の線幅を確保して、必要な強度を保持することになる。例えば、ステンレス鋼で厚さ20μmのメッシュ部材において、メッシュ数が250(本/インチ)で線部最大幅Aが0となる場合には、スキージ面側の線幅を15μm以上とすることが好ましい。印刷面側の線幅とスキージ側の線幅の差は、通常5~30μm程度とすることが好ましく、より好ましくは10~20μm程度である。また、線部最大幅Aが0となる場合には、最大線幅係数(最大線幅係数=線部最大幅A÷ピッチB)も0になるが、上記のようにスキージ面側で線幅を確保して、必要となる強度を保持することは可能であるため、最大線幅係数(最大線幅係数=線部最大幅A÷ピッチB)の下限は0となる。
 上記表1に示したもののうち、印刷かすれがなかった試験No.4~8のものを用いて、印刷パターン幅が50μmの印刷版を作製し、同じ導電性銀ペーストを用いて印刷試験を実施し、印刷かすれの有無と印刷幅のばらつきを評価した。このときの印刷幅のばらつきは、レーザー顕微鏡(株式会社キーエンス製:形式VK-9700)で最大印刷幅と最小印刷幅を測定し、その差を計測することによって判定した。その結果を、下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 この結果から、次のように考察できる。全てのメッシュ部材で印刷かすれはなかったが、印刷幅のばらつきに差が認められた。印刷面側の線部最大幅Aが30μm以上の場合には、印刷幅のばらつきが20μm以上であったが、印刷面側の線部最大幅Aが30μm未満の場合には、印刷幅のばらつきが20μm未満と比較的小さくすることができる。即ち、圧延金属箔に孔開け加工し、印刷面側の最大線幅係数を0.40未満とすると共に、印刷面側の線部最大幅Aを30μm未満とすれば、印刷幅を細くした場合にも、印刷幅のばらつきが少ない印刷ができるものとなるので、好ましい。
 ところで、メッシュ部材の開口率は高いほうが、同一面積あたりのペーストの透過量は多くなる。ここで、開口率とは、片面の開口率と別の面の開口率の平均開口率を意味する(以後、片面の開口率と別の面の開口率が異なる場合、その平均開口率を、単に、開口率と称す場合がある)。そのため圧延金属箔メッシュと高粘度ペーストを用いたスクリーン印刷では、ペーストが透過するための領域の開口率は高くするのが望ましい。導電性銀ペーストのうち比較的粘度の高いペーストを使って印刷する場合には、開口率は50%以上、理想的には70%以上とすることが望ましい。但し、開口率をあまり高くすることはメッシュ部材の強度低下に繋がることから、厚さが15μmの場合は80%程度まで、厚さが20μmの場合は85%程度までとすることが好ましい。
 ペーストの吐出性を向上させためには、開口率を高くすることが望ましいが、上述のように開口率をあまり高くすると、残りの線部の断面積が小さくなるため、メッシュ部材の強度が低下する。そこで、開口率を高くしながら強度を向上させる方法を検討した。
 本発明のメッシュ部材は、(1)圧延金属箔は、印刷対象物の印刷領域に相当する部分以外に、印刷対象物の非印刷領域に相当する部分を有し、非印刷領域に相当する部分には孔が開けられていないものである形態や、(2)圧延金属箔は、印刷対象物の印刷領域に相当する部分以外に、印刷対象物の非印刷領域に相当する部分を有し、非印刷領域に相当する部分には、印刷領域に相当する部分における孔の開口率よりも小さい開口率で多数の孔が開けられた形態等も含むものであるが、これらの形態は開口率を高くしながら強度を向上させるという観点から構成されたものである。
 本発明者らは、厚さ16μmの圧延ステンレス鋼箔(東洋精箔株式会社製:規格SUS304-H)に、エッチングで全面に孔開け加工した開口率55%の圧延金属箔メッシュと、印刷パターンを露光するための領域(150mm×150mm)のみ開口率55%とし、その周辺の開口率を5%とした圧延金属箔メッシュを作製した。2種類の圧延金属箔メッシュをテンションゲージ(東京プロセスサービス社製:型式STG75B)の目盛りで、0.65mmと非常に高いテンションでアルミニウム枠に紗張りしたポリエステル細線メッシュに接着した。接着後、圧延金属箔メッシュ部分のポリエステル細線メッシュを切り離し、圧延金属箔メッシュが破断するかを観察した。観察の結果、印刷パターン領域のみ開口率を高くした圧延金属箔メッシュは破断しなかったが、全面開口率が同じ圧延金属箔メッシュは破断した。
 この結果から、圧延金属箔に孔開け加工したメッシュ部材で、印刷パターンのための領域(即ち、印刷対象物の印刷領域に相当する圧延金属箔の部分)の開口率を高くし、その他の領域(即ち、印刷対象物の非印刷領域に相当する圧延金属箔の部分)の開口率を低くすることで、印刷対象物の印刷領域に相当する部分(以下、「印刷領域相当部分」と呼ぶことがある)の開口率が高いためにペーストの吐出量が多くなり、アスペクト比のより高い印刷が実現できると共に、印刷対象物の非印刷領域に相当する部分(以下、「非印刷領域相当部分」と呼ぶことがある)の開口率は低いためにコンビネーションマスク作製時のテンションに対する耐久性が向上できることが判明したのである。
 また、非印刷領域相当部分の開口率を低くしてメッシュ部材の強度を高めることにより、印刷時に応力が集中するポリエステル細線メッシュとの接合部の強度を高くすることができるため、メッシュの寿命が向上することが期待できる。
 スクリーン印刷においては、印刷対象物の一部などが印刷対象物上に混入し、印刷時にスキージと接触する際にメッシュ部材を破り、メッシュ部材が破断することがある。そこで、細線(金属)メッシュ織物と圧延ステンレス鋼箔の混入異物に対する耐久性を比較する試験を実施した。金属メッシュ織物は、線径:18μm、厚さ:20μm、開口率:50%とし、圧延ステンレス鋼箔は、厚さ:21μmとした。夫々を、高さ3mmのシリコン片の上に設置し、スキージを通過させた後、マイクロスコープ(株式会社キーエンス製:型式VHX-2000)で観察した。その結果、金属メッシュ織物はステンレス鋼細線が破断したのに対して、圧延ステンレス鋼箔は破断しなかった。即ち、ステンレス鋼箔はシリコン片などの混入異物に対する耐久性が金属メッシュ織物よりも高いことが分かった。このことから、圧延金属箔メッシュの非印刷領域相当部分の開口率を低くすることにより、非印刷領域相当部分は混入異物に対する耐久性が向上し、印刷中に異物が混入した場合にもメッシュ部材が破断し難いことが期待できる。
 メッシュ部材の強度を向上させるためには、ペーストが透過する印刷パターン領域の周辺の領域(非印刷領域相当部分)は、開口率を0%すること(即ち、孔を形成していない圧延金属箔そのもの)もできる。即ち、圧延金属箔の非印刷領域相当部分に孔を形成しないものとすることによって、強度の点では十分なものとなる。但し、感光性乳剤の種類によっては圧延金属箔との接着性が低くなるために、繰り返し印刷する途中で剥離することがあることが懸念される。そのため、非印刷領域相当部分の開口率は、感光性乳剤の接着性(および接着性に影響を及ぼす圧延金属箔の種類等)を考慮して設定するのがよい。
 また、非印刷領域相当部分の開口率が同じであっても、非印刷領域相当部分に設けられた孔の少なくとも一部の開口幅を、印刷領域相当部分に設けられた孔の開口幅よりも大きくすると、感光性乳剤との密着性が向上する。そのため、非印刷領域相当部分に設けられた孔の少なくとも一部の開口幅は、印刷領域相当部分に設けられた孔の開口幅よりも大きいことが好ましい。
 メッシュ部材の厚さが厚いほど、即ち印刷版の厚さが厚い場合は、厚い印刷ができるが、印刷に使用するペーストによってはメッシュ部材の厚さが厚すぎると印刷高さの高低差が生じやすくなる。このような事態が予想される場合には、メッシュ部材の厚さ(即ち、圧延金属箔の厚さ)を30μm以下にすることで、高低差の少ない印刷をする上で好ましい。メッシュ部材の厚さは、薄いほど高低差の少ない印刷ができやすいが、厚さが5μm未満の圧延金属箔は入手が困難で、強度を確保することも難しいため、メッシュ部材の厚さは5μm以上とすることが好ましい。この厚さは、より強度を確保するという観点から、より好ましくは10μm以上である。
 一方、印刷版の厚さが同じ場合、印刷領域相当部分の開口率が高いほど厚い印刷ができるが、開口率を高くすることはメッシュ部材の強度を低下させる。そこで、開口率を変えて、強度を変えたメッシュ部材を用いて、スクリーン印刷用アルミ枠を模擬した金属製クランプでメッシュ部材を引張り、負荷試験を実施した。この負荷試験では、メッシュ部材を引張った状態で、圧縮試験機(インストロン社製)を用いてチャックに挟んだスクリーン印刷用ウレタンゴム製のスキージをスクリーン印刷時と同様にメッシュ部材に押しあて、メッシュ部材にかかる張力とスキージの印圧に耐えられるかを観察した。
 その結果、単位幅あたりの引張強度(単位:N/cm、引張試験を行ったときの破断荷重(N)を引張試験片の幅1cm当たりに換算)が20N/cm以上の場合には、メッシュ部材の破断が生じないことが判明した。これによって、メッシュ部材の引張強度は、20N/cm以上であることが好ましい。尚、上記の引張試験においては、メッシュ部材から、幅:15mm、標点距離:100mmの試験片を切り出し、引張試験機(株式会社オリエンテック製)を用いて引張速度:10mm/分で引張試験を実施した。
 上記の結果[メッシュの厚さ(μm)、メッシュ数(本/インチ)、単位幅当りの最小断面積、開口率(%)、印刷面側の最大線幅係数、単位幅当りの引張強度(N/cm)、印刷かすれの有無、負荷試験結果]を、下記表3に示す。表3において、負荷試験の評価は、メッシュ部材の線部が破れるときは、メッシュ部材全体が破損するため、観察は目視により行い、メッシュ部材の線部に破れがなかった場合を「○」、メッシュ部材の線部が1箇所でも破れた場合を「×」と判定した。
Figure JPOXMLDOC01-appb-T000003
 
 印刷領域相当部分の開口率が25%未満の場合には、印刷かすれが生じやすいため、この開口率は25%以上とすることが好ましい。また、メッシュ部材の単位幅当りの引張強度は20N/cm以上であることが好ましいので、厚みが異なる場合でも、少なくとも単位幅当りの引張強度が20N/cmとなる開口率(計算上の最大開口率)以下の開口率とする必要がある。試験の結果、圧延金属箔に孔開け加工して作製したメッシュ部材の単位幅当りの引張強度は、単位幅当りの最小断面積(mm/cm:線部の断面積に相当)に比例することが分かった。単位幅当りの最小断面積(mm/cm)と、単位幅当りの引張強度(N/cm)の関係を、図5示す(前記表3)。このことにより、メッシュ部材の計算上の最大開口率は、下記(1)式で算出できることになる。
Figure JPOXMLDOC01-appb-M000004
 即ち、メッシュ部材の開口率(印刷領域相当部分の開口率)は、スクリーン印刷に必要な開口率である25%以上を確保すると共に、単位幅当りの引張強度20N/cm以上を確保するために、上記(1)式で算出される計算上の最大開口率以下とすることが好ましい。
 本発明のメッシュ部材は、印刷領域相当部分の最大線幅係数を規定したものであり、また強度を確保するための非印刷領域相当部分を有するものも含むものであるが、その形態については様々なものが挙げられる。例えば、図6(a)及び(b)は、本発明のメッシュ部材の形態の一例を示す説明図であり、図6(a)は平面図(非印刷領域相当部分の孔は図示していない)、図6(b)はその一部拡大図である。この形態では、メッシュ部材10は、印刷領域相当部分11(開口率が高くなる部分)の周囲に非印刷領域相当部分12(開口率が低くなる部分)を有するものである。
 図7(a)~(c)は、本発明のメッシュ部材の形態の他の例を示す説明図である。本発明のメッシュ部材10は、中央部に1箇所の印刷領域相当部分11(開口率が高くなる部分)を有し、その周囲に非印刷領域相当部分12(開口率が低くなる部分)を有するもの[図7(a)]、中央部に複数個の印刷領域相当部分11(開口率が高くなる部分)を有し、その周囲に非印刷領域相当部分12(開口率が低くなる部分)を有するもの[図7(b)]、中央部に非印刷領域相当部分12(開口率が低くなる部分)を有し、その周囲に印刷領域相当部分11(開口率が高くなる部分)を有し、更にその周囲に非印刷領域相当部分12(開口率が低くなる部分)を有するもの[図7(c)]、等様々な形態が挙げられる。
 中央部に印刷領域相当部分を有し、その周囲に非印刷領域相当部分を有するメッシュ部材(圧延金属部箔メッシュ部材)について(例えば、前記図7(a))、引張り時の応力集中を、有限要素法(FEM)で解析した。解析の結果、平均応力を100MPaとした場合には、メッシュ部材の中央部は86.8MPa、開口率の高い領域(印刷領域相当部分)と開口率の低い部分(非印刷領域相当部分)の境界のコーナー部(角度90度)は、128.3MPaとなり、コーナー部に応力が集中することが分かった。即ち、引張り時にメッシュ部材が破断する場合は、開口率の高い領域と開口率の低い領域の境界のうちコーナー部から破断する可能性が高い。これに対して、コーナー部の角度を90度よりも大きくした(丸みを帯びた形状とした)場合には、コーナー部の応力は104.5MPaとなり、コーナー部が90度の場合に比べて応力集中しないことが分かった。
 即ち、図8に示すように、開口率の異なる領域11,12の境界(仮想線Dで示す)の輪郭は、角をなくして少なくとも一部が丸みを帯びたものとすることで、引張り時の応力集中を低減でき、破断しにくいメッシュ部材を得ることができる。特にメッシュ部材の厚さが薄く(30μm程度以下)、開口率の高い領域の開口率を高くし、さらに高いテンションで紗張りした場合でも破断を防止できることが期待できる。
 印刷領域相当部分と非印刷領域相当部分の境界Dは、図8に示したように、印刷領域相当部分の開口部の端部を基準に設定されるものであり、この境界Dが、印刷領域相当部分と該非印刷領域相当部分の夫々の開口率を計算するときの基準となる。
 隣接する部分(印刷領域相当部分と非印刷領域相当部分)の開口率の差が大きい場合には、引張りの際に境界Dに応力が集中し、開口率の高い(強度の低い)部分の線部から破断する恐れがある。その場合には、境界Dで開口率(剛性)の差が小さくなるように、高い開口率と低い開口率の中間の開口率を有する第三の部分を設けることも有用である。或は、開口率の低い部分の開口率を、開口率の高い部分の近くでは高く、離れるにしたがって低くしてもよい。
 本発明のメッシュ部材における各部分とは、圧延金属箔のうち開口率が同一である範囲のことであり、開口率が異なる範囲は別の部分とする。開口率が同一であっても、開口率が異なる部分で分断されている場合には、別の部分とみなしている(例えば、複数の開口率の高い部分が、開口率の低い部分に点在する場合)。印刷パターンを露光するための開口率の高い部分に向かって、徐々に開口率を変える(通常は高くする)場合は、同一開口率ごとの範囲を一つの領域と見なし、開口率の高い領域に向かって複数の領域が存在することになる。
 圧延金属箔の素材としては、特に限定されるものではないが、ステンレス鋼の他、チタン若しくはチタン合金、ニッケル若しくはニッケル合金、銅若しくは銅合金、アルミ合金等で箔状にできるものであれば良く、例えばステンレス鋼であればSUS304-H等、チタン合金であればJISH4600 80種等、ニッケル合金であればJISCS2520(1986)NCHRW1等、銅合金であればJISH3130 C1720R-H等、アルミ合金であればJISH4000 5052等が挙げられる。また、このような圧延金属箔は、一般的に市販されており、容易に入手できる。
 本発明のメッシュ部材は、圧延金属箔にエッチングによって、印刷対象物に向かって広がるような多数の孔を形成することが好ましいものであるが、こうしたメッシュ部材では、線部を構成する少なくとも片面が平坦なものとなるので、例えば図9(a)~(c)(ペーストの充填状態を説明するための図)に示すように、表面に凹凸を有する細線を編んだメッシュに比べてスキージ6の移動がスムースになり[図9(a)]、ペースト7を均一に引き伸ばし易くなると共に[図9(b)]、印刷膜厚d2が比較的厚いパターンの印刷を行なうことができるので好ましい[図9(c)]。また、このような平坦な面を有することによって、コンビネーションマスク(周囲が樹脂メッシュで中央が金属メッシュのマスク)を作製するときに、樹脂メッシュとの接着が容易になるという利点もある。尚、図9(a)~(c)では、孔2の外観形状が印刷面側(図9(a)の下側)に向かって広がるように形成されている状態も示している(図9(a)の上側はスキージ側)。
 本発明のメッシュ部材は、エッチングによる孔開け加工によって圧延金属箔に多数の孔を形成することが好ましいものであるが、その手順は下記の通りである。まず、圧延金属箔を張ってガラスなどの表面が平坦な固定板に貼り付けた状態、または圧延金属箔を巻きつけたロールを張った状態、即ち圧延金属箔に皺(しわ)がないように張った状態で以下の加工を行う。まず圧延金属箔に感光性レジストをなるべく薄く塗布した後、マスクに描画したメッシュの開口部のパターンを露光、現像して、開口部のパターンを圧延金属箔に形成する。
 印刷領域相当部分以外に非印刷領域相当部分を有し、非印刷領域相当部分に印刷領域相当部分における孔の開口率よりも小さい開口率で多数の孔が開けられたメッシュ部材を製造するに当っては、圧延金属箔に感光性レジストを塗布した後、印刷領域相当部分の開口パターンを描画したマスクの上に非印刷領域相当部分の開口パターンを描画したマスクを重ねて配置して露光・現像し、引き続きエッチングするようにすれば良く、これによって比較的簡単な手順にて、開口率の高い部分と低い部分を有するメッシュ部材を製造することができる。
 以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
[実施例1]
 厚さ16μmの市販のステンレス鋼圧延箔(東洋精箔株式会社製:規格SUS304-H)に片側からエッチングで孔開け加工し、圧延金属箔メッシュを作製した。開口率の高い領域は、太陽電池の表面電極パターンの形状に合わせた形状であり、フィンガー電極の印刷パターンを露光・現像する部分は、幅:500μm、長さ:150mm、バスバーのパターンを露光・現像する部分は、幅:2.4mm、長さ150mmとなっている。また、孔の形状は、印刷面側に向かって開口が広がる形状となっている。開口率の高い部分(印刷領域相当部分)の印刷面側のピッチは80μm、印刷物側の線部最大幅Aは27μm、最大線幅係数は0.34となっている。開口率は、開口率の高い部分(印刷領域相当部分)は62%、開口率の低い部分(非印刷領域相当部分)は12%となっている。開口率の高い部分と低い部分間の境界は直線状となっている。
 比較試験を行うため、このメッシュ部材をポリエステル細線メッシュと接合し、感光性乳剤を塗布後、フィンガー電極幅100μm、バスバー幅:2mmの印刷パターンを露光・現像して印刷版を作製した。比較のため、厚さ:35μm、線径:16μm、開口率:63%、ピッチ:78μm[メッシュ数325(本/インチ)]のステンレス細線メッシュ織物を使って同様に印刷版を作製した。いずれの印刷版も感光性乳剤の厚さは、メッシュ部材の厚さよりも20μm厚くした。これらの印刷版を用いて導電性銀ペースト(東洋インキ製造株式会社製:「RAFS」)を使った印刷を行い、レーザー顕微鏡(株式会社キーエンス製:型式VK-9700)で印刷高さを測定した。その結果を、下記表4に示す。
Figure JPOXMLDOC01-appb-T000005
 
 印刷高さは、本発明品1~4では19.2~27.3μmであり、比較品の13.9μmよりも高くなると共に、高低差(最大高さ-最小高さ)は本発明品が4.0~6.3μm、比較品は8.5μmであり、本発明品の方が小さかった。
[実施例2]
 厚さ21μmの市販のステンレス鋼圧延箔(東洋精箔株式会社製:規格SUS304-H)に、開口率が高い領域の開口(メッシュ)パターンを描画したマスクの上に、開口率の低い領域のパターンを描画するためのフィルムマスクを重ね合わせて露光した。現像後、片側からエッチングで孔開け加工し、圧延金属箔メッシュを作製した。開口率の高い部分は、太陽電池の表面電極パターンの形状に合わせた形状で、フィンガー電極の印刷パターンを露光・現像する部分は、幅:500μm、長さ:150mm、バスバーのパターンを露光・現像する部分は幅:2.4mm、長さ:150mmとなっている。また孔の形状は、印刷面側に向かって開口が広がる形状となっている。開口率の高い部分の印刷面側のピッチは100μm[メッシュ数:250(本/インチ)]、印刷物側の線部最大幅Aは30μm、最大線幅係数は0.30となっている。
 また開口率の高い部分の開口率は66%で、開口率の低い部分は9%となっている。開口率の高い部分と低い部分間の境界は直線または丸みを帯びている(前記図8参照)。このメッシュ部材を用いて印刷版を作成した。なお、感光性乳剤の厚さはメッシュ部材の厚さよりも20μm厚い。この印刷版を用いて導電性銀ペースト(東洋インキ製造株式会社製:「RAFS」)を使った印刷を行なったところ、印刷かすれがなく、高低差が5μmの印刷ができることが確認できた。
[実施例3]
 厚さ30μmの市販のステンレス鋼圧延箔(東洋精箔株式会社製:規格SUS304-H)に片側からエッチングで孔開け加工し、圧延金属箔メッシュを作製した。開口率の高い部分はメッシュ部材の中央部で、70mm×70mmとなっている。開口率の高い部分のピッチは200μm、印刷物側の線部最大幅Aは59μm、最大線幅係数は0.30となっている。また孔の形状は、印刷面側に向かって開口が広がる形状となっている。開口率の高い部分の開口率は74%、開口率の低い部分のピッチは300μm[メッシュ数85(本/インチ)]、開口率は9%となっている。開口率の高い部分と低い部分間の境界は直線または丸みを帯びている(前記図8参照)。このメッシュ部材を用いて印刷版を作成した。なお、感光性乳剤の厚さはメッシュ部材の厚さよりも10μm厚い。この印刷版を使って実際の印刷を行ったところ、印刷かすれがなく、高低差が6μmの印刷ができることが確認できた。
[実施例4]
 厚さ20μmの市販のステンレス鋼圧延箔(東洋精箔株式会社製、規格SUS304-H)に片側からエッチングで孔開け加工し、圧延金属箔メッシュを作製した。開口率の高い部分は太陽電池の表面電極パターンの形状に合わせた形状で、フィンガー電極の印刷パターンを露光・現像する部分は、幅:500μm、長さ:150mm、バスバーのパターンを露光・現像する部分は、幅:2.4mm、長さ:150mmとなっている。開口率の高い部分のピッチは100μm[メッシュ数250(本/インチ)]、印刷物側の線部最大幅Aは20μm、最大線幅係数は0.20となっている。印刷面側に向かって開口が広がる形状となっており、開口率の高い部分の開口率は86%、開口率の低い部分の周辺はステンレス鋼圧延箔そのもの(開口率0%)となっている。開口率の高い部分とステンレス鋼圧延箔そのもの(開口率0%)の境界は直線または丸みを帯びている(前記図8参照)。このメッシュ部材を用いて印刷版を作成した。なお、感光性乳剤の厚さはメッシュ部材の厚さよりも10μm厚い。この印刷版を使って実際の印刷を行ったところ、印刷かすれがなく、高低差が4μmの印刷ができることが確認できた。
 [実施例5]
 印刷位置精度を評価するため、厚さ16μmの圧延ステンレス鋼箔(東洋精箔株式会社製:規格SUS304-H)に、片側からエッチングで孔開け加工し、圧延金属箔メッシュを作製した。開口率の高い領域はメッシュ部材の中央部で、200mm×200mmとなっている。開口率の高い領域のピッチは80μm(メッシュは320メッシュ(本/インチ))、印刷対象物側の線部最大幅は20μm、最大線幅係数は0.25となっている。
 また、孔は印刷面側に向かって広がる形状となっており、開口率の高い領域の開口率は57%、開口率の高い領域の周辺は圧延ステンレス鋼箔そのもの(開口率0%)となっている。開口率の高い領域と圧延ステンレス鋼箔そのもの(開口率0%)の境界は、直線または丸みを帯びている(前記図8参照)。
 このメッシュ部材を用いて、印刷回数:5000回の印刷位置を測定した。その結果、1回目の印刷位置からの印刷位置ずれは、±15μm以内であり、従来技術である金属メッシュ織物での印刷位置ずれの±30μm(例えば、「エレクトロニクス高品質スクリーン印刷技術」 染谷隆夫監修、2005年発行、第44頁)よりも少なかった。この結果より、圧延金属箔に孔開け加工したメッシュ部材は、高い印刷精度を実現できることが分かる。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年2月26日出願の日本特許出願(特願2010-043159)、2011年2月23日出願の日本特許出願(特願2011-037569)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のスクリーン印刷用メッシュ部材によれば、印刷領域に相当する圧延金属箔の部分における印刷対象物側の線部最大幅Aと、孔と孔の間隔Bの比(A/B)で規定される最大線幅係数を適正に規定するようにしたので、高粘度のペーストを用いた場合にでも、高低差が少ない印刷ができると共に、高い印刷位置精度が得られるスクリーン印刷用メッシュ部材が実現でき、このようなスクリーン印刷用メッシュ部材は、電子部品の製造をはじめ、太陽電池の表面電極である集電用メイン電極(バスバー)や集電用グリッド電極(フィンガー電極)の形成に極めて有用である。
1 細線
1a 線部
2 孔(開口部)
3 印刷パターン部
4 感光性乳剤
5 印刷版
6 スキージ
7 ペースト
7a 滲み
8 印刷対象物
10 メッシュ部材
11 印刷領域相当部分
12 非印刷領域相当部分

Claims (9)

  1.  感光性乳剤で印刷パターンを形成するためのスクリーン印刷用メッシュ部材であって、前記スクリーン印刷用メッシュ部材は圧延金属箔によって構成されており、印刷対象物の印刷領域に相当する圧延金属箔の部分に、印刷対象物に向かって広がるように多数の孔を有し、前記印刷領域に相当する圧延金属箔の部分における印刷対象物側の線部最大幅Aと、前記孔と孔の間隔Bの比A/Bで規定される最大線幅係数が0.40未満であるスクリーン印刷用メッシュ部材。
  2.  前記圧延金属箔は、印刷対象物の印刷領域に相当する部分以外に、印刷対象物の非印刷領域に相当する部分を有し、該非印刷領域に相当する部分には孔が開けられていないものである請求項1に記載のメッシュ部材。
  3.  前記圧延金属箔は、印刷対象物の印刷領域に相当する部分以外に、印刷対象物の非印刷領域に相当する部分を有し、該非印刷領域に相当する部分には、印刷領域に相当する部分における孔の開口率よりも小さい開口率で多数の孔が開けられたものである請求項1に記載のメッシュ部材。
  4.  前記印刷領域に相当する圧延金属箔の部分における印刷対象物側の線部最大幅Aが30μm未満である請求項1に記載のメッシュ部材。
  5.  メッシュ部材の厚みが5μm以上、30μm以下である請求項1に記載のメッシュ部材。
  6.  前記印刷領域に相当する圧延金属箔の部分と、該非印刷領域に相当する圧延金属箔の部分の境界の輪郭は、少なくとも一部が丸みを帯びたものである請求項2に記載のメッシュ部材。
  7.  前記印刷領域に相当する圧延金属箔の部分と、該非印刷領域に相当する圧延金属箔の部分の境界の輪郭は、少なくとも一部が丸みを帯びたものである請求項3に記載のメッシュ部材。
  8.  線部を構成する少なくとも片面が平坦である請求項1に記載のメッシュ部材。
  9.  前記圧延金属箔は、ステンレス鋼、チタン、チタン合金、ニッケル、ニッケル合金、銅、銅合金、およびアルミ合金から成る群から選択される1種からなる請求項1に記載のメッシュ部材。
PCT/JP2011/054393 2010-02-26 2011-02-25 スクリーン印刷用メッシュ部材 WO2011105582A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180010074.8A CN102762386B (zh) 2010-02-26 2011-02-25 网版印刷用网状构件
KR1020127022121A KR101479825B1 (ko) 2010-02-26 2011-02-25 스크린 인쇄용 메시 부재
KR1020147017010A KR20140085608A (ko) 2010-02-26 2011-02-25 스크린 인쇄용 메시 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-043159 2010-02-26
JP2010043159 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105582A1 true WO2011105582A1 (ja) 2011-09-01

Family

ID=44506979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054393 WO2011105582A1 (ja) 2010-02-26 2011-02-25 スクリーン印刷用メッシュ部材

Country Status (5)

Country Link
JP (1) JP5547672B2 (ja)
KR (2) KR101479825B1 (ja)
CN (1) CN102762386B (ja)
TW (1) TWI486261B (ja)
WO (1) WO2011105582A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325839B2 (ja) 2010-06-16 2013-10-23 株式会社コベルコ科研 スクリーン印刷用メッシュ部材
WO2013094033A1 (ja) * 2011-12-21 2013-06-27 三洋電機株式会社 太陽電池の製造方法
CN103192588B (zh) * 2012-01-09 2016-12-14 昆山允升吉光电科技有限公司 一种金属型太阳能网板的制作新工艺
CN103192589B (zh) * 2012-01-09 2016-12-14 昆山允升吉光电科技有限公司 双面蚀刻制作金属型太阳能网板的方法
JP5433051B2 (ja) 2012-06-19 2014-03-05 株式会社コベルコ科研 スクリーン印刷用メッシュ部材およびスクリーン印刷版
CN104822534B (zh) * 2012-11-13 2017-03-15 奔马有限公司 印刷用悬挂金属掩膜及其制造方法
JP6004907B2 (ja) * 2012-11-16 2016-10-12 日本メクトロン株式会社 配線基板およびタッチパネルセンサシート
JP6081187B2 (ja) * 2012-12-21 2017-02-15 日本メクトロン株式会社 配線基板、タッチパネルセンサシートおよび太陽電池用電極基板
KR20160043867A (ko) 2014-10-14 2016-04-22 삼성전자주식회사 엑스선 검출기 및 엑스선 검출기의 제조방법
JP2017217874A (ja) 2016-06-09 2017-12-14 株式会社コベルコ科研 スクリーン印刷用メッシュ部材及びスクリーン印刷版
TWI616347B (zh) * 2016-07-21 2018-03-01 Printed steel plate structure for battery positive silver electrode printing
JP2018029145A (ja) * 2016-08-19 2018-02-22 株式会社コベルコ科研 スクリーン印刷版
TWI609236B (zh) * 2017-01-20 2017-12-21 維銘有限公司 網版及其製作方法
TWI755486B (zh) 2017-02-16 2022-02-21 美商康寧公司 具有一維調光的背光單元
US11186518B2 (en) * 2017-02-16 2021-11-30 Corning Incorporated Methods of making a glass article with a structured surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180395A (ja) * 1989-12-08 1991-08-06 Sony Corp スクリーン印刷用スクリーン
JPH03281391A (ja) * 1990-03-30 1991-12-12 Rohm Co Ltd 電子装置製造用スクリーン
JPH05285298A (ja) * 1992-04-10 1993-11-02 Tomita Kogyo Kk 純ステンレス製物干竿及びその製造方法
JPH09226265A (ja) * 1996-02-23 1997-09-02 Shinsei:Kk 金属プレートメッシュ及びその成形方法
JPH1142867A (ja) * 1997-07-28 1999-02-16 Process Lab Micron:Kk スクリーン印刷用マスク、その製造方法および使用方法
JP2005170055A (ja) * 2004-12-24 2005-06-30 Ngk Insulators Ltd スクリーンマスク及びその製造方法並びに配線基板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4057748B2 (ja) * 1999-07-14 2008-03-05 三井金属鉱業株式会社 フレキシブルプリント配線基板およびその製造方法
JP2003024442A (ja) 2001-07-13 2003-01-28 Olympus Optical Co Ltd 医用噴霧装置
JP4314969B2 (ja) * 2003-11-04 2009-08-19 株式会社村田製作所 スクリーン印刷版の製造方法
JP4860960B2 (ja) * 2005-08-22 2012-01-25 株式会社東芝 電力ネットワークの制御システム
JP4847081B2 (ja) * 2005-09-20 2011-12-28 九州日立マクセル株式会社 メタルマスクおよびその製造方法
JP2007307717A (ja) * 2006-05-16 2007-11-29 Bonmaaku:Kk スクリーン印刷版およびその製造方法
JP5242034B2 (ja) * 2006-09-25 2013-07-24 株式会社Nbcメッシュテック 薄膜印刷用スクリーン、その製造方法及び薄膜印刷用スクリーン版
JP4927511B2 (ja) * 2006-11-29 2012-05-09 株式会社ボンマーク マスクの製造方法
JP2008213215A (ja) * 2007-03-01 2008-09-18 Bonmaaku:Kk メタルマスクおよびそれを用いたメタルマスクスクリーン版
TW200906250A (en) * 2007-07-27 2009-02-01 Samsung Electro Mech Mask for screen printing and screen printing method using the same
JP2009033035A (ja) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd 印刷版およびプリント配線板
JP2009107208A (ja) * 2007-10-30 2009-05-21 Mitsubishi Paper Mills Ltd スクリーン印刷用マスク及びスクリーン印刷用マスクの作製方法
JP2009297925A (ja) * 2008-06-10 2009-12-24 Noritake Co Ltd スクリーンマスク

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180395A (ja) * 1989-12-08 1991-08-06 Sony Corp スクリーン印刷用スクリーン
JPH03281391A (ja) * 1990-03-30 1991-12-12 Rohm Co Ltd 電子装置製造用スクリーン
JPH05285298A (ja) * 1992-04-10 1993-11-02 Tomita Kogyo Kk 純ステンレス製物干竿及びその製造方法
JPH09226265A (ja) * 1996-02-23 1997-09-02 Shinsei:Kk 金属プレートメッシュ及びその成形方法
JPH1142867A (ja) * 1997-07-28 1999-02-16 Process Lab Micron:Kk スクリーン印刷用マスク、その製造方法および使用方法
JP2005170055A (ja) * 2004-12-24 2005-06-30 Ngk Insulators Ltd スクリーンマスク及びその製造方法並びに配線基板

Also Published As

Publication number Publication date
TW201200357A (en) 2012-01-01
KR20140085608A (ko) 2014-07-07
CN102762386A (zh) 2012-10-31
JP5547672B2 (ja) 2014-07-16
JP2011194885A (ja) 2011-10-06
CN102762386B (zh) 2015-05-20
KR20120113277A (ko) 2012-10-12
TWI486261B (zh) 2015-06-01
KR101479825B1 (ko) 2015-01-06

Similar Documents

Publication Publication Date Title
JP5547672B2 (ja) スクリーン印刷用メッシュ部材
JP5325839B2 (ja) スクリーン印刷用メッシュ部材
JP4886905B2 (ja) スクリーン印刷用メッシュ部材の製造方法
CN104411504B (zh) 丝网印刷用网眼部件以及丝网印刷版
US8802487B2 (en) Silk-screen stencil for printing onto a photovoltaic cell
JP2007237618A (ja) スクリーン印刷用版及びその製造方法並びに電子部品の製造方法
JP5584530B2 (ja) スクリーン印刷用メッシュ部材
KR102069384B1 (ko) 솔라셀의 표면전극 형성을 위한 고효율 스크린제판 및 그 제조방법
TW201809890A (zh) 網版印刷用網狀構件及網版印刷版
JP2012000844A (ja) スクリーン印刷用メッシュ部材
JP5522726B2 (ja) メタルマスク印刷版
TWI656981B (zh) 網版印刷版
KR101893306B1 (ko) 솔라셀의 표면전극 형성을 위한 금속박판 스크린제판 및 그 제조방법
JP6309676B1 (ja) スクリーン印刷用金属箔メッシュ部材、スクリーン印刷版、及び、該スクリーン印刷版を用いた太陽電池の製造方法
TWM507849U (zh) 經緯線結構改良之網布
JP2015229287A (ja) スクリーン印刷版

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010074.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022121

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747538

Country of ref document: EP

Kind code of ref document: A1