WO2011105508A1 - マイクロニードルデバイス及びその製造方法 - Google Patents

マイクロニードルデバイス及びその製造方法 Download PDF

Info

Publication number
WO2011105508A1
WO2011105508A1 PCT/JP2011/054177 JP2011054177W WO2011105508A1 WO 2011105508 A1 WO2011105508 A1 WO 2011105508A1 JP 2011054177 W JP2011054177 W JP 2011054177W WO 2011105508 A1 WO2011105508 A1 WO 2011105508A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
physiologically active
composition
bioactive
bioactive composition
Prior art date
Application number
PCT/JP2011/054177
Other languages
English (en)
French (fr)
Inventor
俊之 松戸
真平 西村
誠治 徳本
久美 森本
Original Assignee
久光製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久光製薬株式会社 filed Critical 久光製薬株式会社
Priority to JP2012501859A priority Critical patent/JP5715617B2/ja
Priority to EP11747468.4A priority patent/EP2540337B1/en
Priority to US13/580,300 priority patent/US20130041330A1/en
Priority to CA2790923A priority patent/CA2790923C/en
Priority to SG2012061743A priority patent/SG183421A1/en
Priority to CN201180010839.8A priority patent/CN102770176B/zh
Priority to KR1020127024166A priority patent/KR101728194B1/ko
Publication of WO2011105508A1 publication Critical patent/WO2011105508A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a microneedle device and a manufacturing method thereof.
  • a microneedle device is known as a device for improving transdermal absorption of a drug.
  • Microneedles provided in a microneedle device are intended to puncture the stratum corneum, which is the outermost layer of the skin, and various sizes and shapes have been proposed, and are expected as non-invasive administration methods (for example, patents) Reference 1).
  • various methods have been proposed for applying drugs when using a microneedle device.
  • a microneedle device it is known to coat the surface of the microneedle with a drug, to provide a groove or a hollow part for allowing the drug or a biological component to permeate the microneedle, and to mix the drug with the microneedle itself.
  • the substance to be mixed together when coating the drug preferably contains a saccharide, and in particular, a stabilizing saccharide such as lactose, raffinose, trehalose or sucrose that forms glass (amorphous solid substance).
  • a stabilizing saccharide such as lactose, raffinose, trehalose or sucrose that forms glass.
  • Patent Document 3 discloses a device and method for transdermal delivery of a biologically active agent, including a delivery system having a microprojection member.
  • the biocompatible coating formulation applied to the microprojection member is at least one non-aqueous solvent such as ethanol, isopropanol, methanol, propanol, butanol, propylene glycol, dimethyl sulfoxide, glycerin, N , N-dimethylformamide, and polyethylene glycol 400, preferably the non-aqueous solvent is disclosed in the coating formulation in a range of about 1% to 50% by weight of the coating formulation. ing. It is also disclosed that the viscosity of the coating formulation is from 3 to about 500 centipoise (cps).
  • the bioactive composition is used as a solvent.
  • the manufacturing method of adhering onto the microneedles after being accommodated in a container where volatilization may occur is employed, there may be a problem when the bioactive composition is adhered onto a large number of microneedle arrays (on the microneedles). found. That is, when trying to manufacture a microneedle device continuously by such a method, the amount of the bioactive composition applied on the microneedle greatly varies, and a microneedle device with a stable application amount is manufactured. It turns out that the problem of not being able to occur. Changing the amount of drug depending on the individual microneedle device being manufactured is undesirable both medically (therapeutically) and economically, especially when using highly active or expensive bioactive substances. .
  • the object of the present invention is to reduce the variation in the amount of the physiologically active substance adhered to the microneedles to a practically sufficient level even when the above continuous production method using a mask plate is employed. It is providing the manufacturing method of a microneedle device. Another object of the present invention is to provide a microneedle device that can be obtained by such a manufacturing method.
  • the present invention relates to a method for producing a microneedle device in which a bioactive composition containing a bioactive substance and a solvent capable of dispersing or dissolving the bioactive substance is attached to the microneedle,
  • a production method in which at least one polyhydric alcohol selected from glycerin, ethylene glycol, propylene glycol and 1,3-butylene glycol is used as the solvent, and water is not used.
  • the change in viscosity of the bioactive composition with time during production is small and uniform on the microneedle.
  • a microneedle device to which a physiologically active composition containing a small amount of a physiologically active substance is attached can be stably obtained. It can be considered that the microneedle device in which the amount of the physiologically active substance adhered is obtained by such a production method is largely due to the fact that water is not contained in the solvent.
  • Stabilization of the amount of bioactive substance attached is that the container is a mask plate having an opening formed therein, and the microneedle is inserted into the opening after the opening is filled with the bioactive composition.
  • the manufacturing method for attaching the physiologically active composition on the microneedles is applied, it becomes particularly remarkable.
  • a physiologically active composition containing a physiologically active substance and a solvent capable of dispersing or dissolving the physiologically active substance is contained in a liquid reservoir having an open top.
  • a method of applying a pump or the like and moving it to the periphery of the microneedle, for example, and applying it by spraying can be used.
  • the mass ratio of the bioactive substance and the polyhydric alcohol is preferably 20:80 to 80:20, and the bioactive composition at room temperature (25 ° C.) has a viscosity of 600 to 45000 cps. Preferably there is.
  • a physiologically active composition containing a physiologically active substance and a solvent capable of dispersing or dissolving the physiologically active substance is placed in a container that can cause volatilization of the solvent, and then deposited on the microneedle.
  • at least one polyhydric alcohol selected from glycerin, ethylene glycol, propylene glycol and 1,3-butylene glycol is used as the solvent, and water is not used. It can also be grasped as a method for stabilizing the adhesion amount of the composition.
  • a microneedle device comprising a substrate, a microneedle provided on the substrate, and a bioactive composition attached to the microneedle and / or the substrate.
  • the bioactive composition includes a microbe containing at least one polyhydric alcohol selected from glycerin, ethylene glycol, propylene glycol and 1,3-butylene glycol, and a bioactive substance, and does not substantially contain water.
  • a needle device is provided.
  • substantially not containing water means that the bioactive composition is contained by moisture absorption from the atmosphere after the attachment. This means that the water content does not exceed the water content, and typically the water content is 7% by mass or less, preferably 5% by mass or less, based on the total amount of the bioactive composition adhered thereto, 3% by mass or less.
  • the bioactive composition attached to the microneedle and / or the substrate is selected from hydroxypropylcellulose, polyethylene glycol, chondroitin sulfate, hyaluronic acid, dextran, croscarmellose sodium and magnesium chloride. It is preferable to further contain at least one compound.
  • the microneedle device When the microneedle device has such a configuration, the viscosity of the bioactive composition is improved, and the height of the bioactive composition adhering to the microneedle and / or the substrate and the content of the bioactive substance can be adjusted. It can be controlled to a higher degree.
  • the bioactive composition adhering to the microneedles and / or the substrate is dried and fixed after being applied onto the microneedles and / or the substrate.
  • a method for manufacturing a microneedle device in which variation in the amount of physiologically active substance to be attached to the microneedle is reduced to a practically sufficient level is provided.
  • FIG. 2 is a sectional view taken along line II-II in FIG. (A)-(c) is a figure which shows an example of the manufacturing method of a microneedle device. It is a graph which shows a time-dependent change of the content of the bioactive substance in the bioactive composition adhering on the microneedle at the time of manufacturing the microneedle device by repeating the filling and attachment process of the bioactive composition. It is a graph which shows the time-dependent change of the blood lixenatide density
  • 3 is a graph showing changes over time in blood ⁇ -interferon concentration when ⁇ -interferon is administered by administration with a microneedle device and subcutaneous administration.
  • FIG. 1 is a perspective view showing an embodiment of a microneedle device according to the present invention.
  • the microneedle device 1 includes a microneedle substrate 2 and a plurality of microneedles 3 arranged two-dimensionally on the microneedle substrate 2.
  • the microneedle substrate 2 is a base for supporting the microneedles 3.
  • the form of the microneedle substrate 2 is not particularly limited.
  • the microneedle substrate 2 may be formed so that a plurality of through holes 4 are two-dimensionally arranged.
  • the microneedles 3 and the through holes 4 are alternately arranged in the diagonal direction of the microneedle substrate 2.
  • the through-hole 4 it becomes possible to administer the physiologically active composition from the back surface of the microneedle substrate 2. But you may use the board
  • the area of the microneedle substrate 2 is 0.5 to 10 cm 2 , preferably 1 to 5 cm 2 , more preferably 1 to 3 cm 2 .
  • a plurality of microneedle substrates 2 may be connected to form a substrate having a desired size.
  • the microneedle 3 has a fine structure, and its height (length) is preferably 50 to 600 ⁇ m.
  • the length of the microneedle 3 is set to 50 ⁇ m or more in order to ensure the transdermal administration of the physiologically active substance, and the length of 600 ⁇ m or less avoids the microneedle from contacting the nerve. This is to reduce the possibility of pain and to avoid the possibility of bleeding.
  • the length of the microneedle 3 is 500 ⁇ m or less, an amount of a physiologically active substance that should enter the skin can be efficiently administered, and in some cases, it can be administered without perforating the skin. is there.
  • the length of the microneedle 3 is particularly preferably 300 to 500 ⁇ m.
  • the microneedle means a convex structure and a needle shape in a broad sense or a structure including a needle shape.
  • the microneedle is not limited to a needle shape having a sharp tip, and includes a shape having a sharp tip.
  • the diameter at the base is about 50 to 200 ⁇ m.
  • the microneedle 3 has a conical shape, but a polygonal pyramid such as a quadrangular pyramid or a microneedle having another shape may be used.
  • the microneedles 3 are typically spaced apart to provide a density of about 1 to 10 per millimeter (mm) for a row of needles. In general, adjacent rows are separated from each other by a substantially equal distance with respect to the space of the needles in the row and have a density of 100-10000 needles per cm 2 . When there is a needle density of 100 or more, the skin can be efficiently perforated. On the other hand, when the needle density exceeds 10,000, it is difficult to maintain the strength of the microneedles 3.
  • the density of the microneedles 3 is preferably 200 to 5000, more preferably 300 to 2000, and most preferably 400 to 850.
  • Examples of the material of the microneedle substrate 2 or the microneedle 3 include silicon, silicon dioxide, ceramic, metal (stainless steel, titanium, nickel, molybdenum, chromium, cobalt, etc.) and synthetic or natural resin materials.
  • biodegradable polymers such as polylactic acid, polyglycolide, polylactic acid-co-polyglycolide, pullulan, capronolactone, polyurethane, polyanhydride, polycarbonate which is a non-degradable polymer, Synthetic or natural resin materials such as polymethacrylic acid, ethylene vinyl acetate, polytetrafluoroethylene, and polyoxymethylene are particularly preferred.
  • polysaccharides such as hyaluronic acid, sodium hyaluronate, pullulan, dextran, dextrin or chondroitin sulfate.
  • Microneedle substrate 2 or microneedle 3 can be produced by wet etching or dry etching using a silicon substrate, precision machining using metal or resin (electric discharge machining, laser machining, dicing machining, hot embossing, injection, etc. Molding processing, etc.), machine cutting, and the like.
  • the needle portion and the support portion are integrally molded.
  • Examples of the method for hollowing the needle part include a method of performing secondary processing by laser processing or the like after the needle part is manufactured.
  • FIGS. 3A to 3C are diagrams showing an example of a manufacturing method of the microneedle device 1.
  • the physiologically active composition 10 is swept in the direction of arrow A with a spatula 12 on a mask plate 11.
  • the opening 13 is filled with the physiologically active composition.
  • the microneedle 3 is inserted into the opening 13 of the mask plate 11.
  • the microneedle 3 is pulled out from the opening 13 of the mask plate 11.
  • the bioactive composition 10 is adhered (in this case, applied) to the microneedle 3.
  • the bioactive composition on the microneedles is dried by a known method of air drying, vacuum drying, freeze drying, or a combination thereof.
  • the solid bioactive composition 10 is fixed to the microneedle 3 as the bioactive composition 5 attached on the microneedle 3.
  • the microneedle device is manufactured. “Fixed” refers to maintaining a state in which the physiologically active composition adheres almost uniformly to the object.
  • the height H of the bioactive composition adhering on the microneedle 3 is adjusted by a clearance (gap) C shown in FIG.
  • This clearance C is defined by the distance from the base of the microneedle to the mask surface (the substrate thickness is not involved), and is set according to the tension of the mask plate 11 and the length of the microneedle 3.
  • the distance range of the clearance C is preferably 0 to 500 ⁇ m. When the distance of the clearance C is 0, it means that the bioactive composition is attached to the entire microneedle 3.
  • the height H of the bioactive composition 5 adhering to the microneedles 3 varies depending on the height h of the microneedles 3, but can be 0 to 500 ⁇ m, usually 10 to 500 ⁇ m, and preferably 30 About 300 ⁇ m.
  • the thickness of the physiologically active composition 5 adhered on the microneedle 3 is less than 50 ⁇ m, preferably less than 40 ⁇ m, more preferably 1 to 30 ⁇ m.
  • the thickness of the bioactive composition attached on the microneedle 3 is an average thickness measured over the surface of the microneedle 3 after drying.
  • the thickness of the bioactive composition attached on the microneedle 3 is generally increased by applying a plurality of coatings of the bioactive composition, that is, the bioactive composition is attached on the microneedle 3. It can be increased by repeating the process.
  • the temperature and humidity of the installation environment of the apparatus are controlled to be constant.
  • the component (B) described later which is used in the physiologically active composition as necessary, is “at least one polyhydric alcohol selected from the group consisting of glycerin, ethylene glycol, propylene glycol and 1,3-butylene glycol. It can also be filled with a “solvent consisting of”. Thereby, the evaporation of the solvent in the physiologically active composition can be prevented as much as possible.
  • the bioactive composition comprises (A) a “bioactive substance” and (B) a solvent comprising at least one polyhydric alcohol selected from the group consisting of “glycerin, ethylene glycol, propylene glycol, and 1,3-butylene glycol”. And containing.
  • the physiologically active composition contains substantially no water.
  • “substantially not containing water” means that the bioactive composition does not contain water exceeding the water content that would be contained by moisture absorption from the atmosphere. Specifically, the water content is 20% by mass or less, preferably 10% by mass or less, and further 5% by mass or less based on the total amount of the physiologically active composition.
  • the component (B) is preferably “a solvent comprising only at least one polyhydric alcohol selected from the group consisting of glycerin, ethylene glycol, propylene glycol and 1,3-butylene glycol”.
  • Biologically active substances are those that have some effect on the living body, and include low molecular compounds, peptides, proteins, derivatives thereof, and the like.
  • the “solvent” is a compound capable of dispersing or dissolving the physiologically active substance.
  • the physiologically active substance (drug) may be a high molecular compound such as peptide, protein, DNA, RNA or the like, but is not particularly limited. If the molecular weight is about 1000, vaccine, low molecular peptide, sugar, nucleic acid Etc.
  • physiologically active substance examples include lixenatide, naltrexone, cetrorelix acetate, tartilelin, nafarelin acetate, prostaglandin A1, alprostadil, ⁇ -interferon, ⁇ -interferon for multiple sclerosis, erythropoietin, folliculin Tropine ⁇ , follitropin ⁇ , G-CSF, GM-CSF, human chorionic gonadotropin, luteinizing hormone, salmon calcitonin, glucagon, GNRH antagonist, insulin, human growth hormone, filgrastin, heparin, small molecule Examples include heparin, somatropin, incretin, and GLP-1 derivatives.
  • vaccines include Japanese encephalitis vaccine, rotavirus vaccine, Alzheimer's disease vaccine, arteriosclerosis vaccine, cancer vaccine, nicotine vaccine, diphtheria vaccine, tetanus vaccine, pertussis vaccine, Lyme disease vaccine, rabies vaccine, pneumococcus pneumoniae Vaccines, yellow fever vaccines, cholera vaccines, seed urticaria vaccines, tuberculosis vaccines, rubella vaccines, measles vaccines, mumps vaccines, botulinum vaccines, herpes virus vaccines, other DNA vaccines, hepatitis B vaccines and the like.
  • hypnotic / sedative flurazepam hydrochloride, rilmazaphone hydrochloride, phenobarbital, amobarbital, etc.
  • antipyretic analgesics butorphanol tartrate, perisoxal citrate, acetaminophen, mefenamic acid, diclofenac sodium, aspirin, alclofenac, ketoprofen , Flurbiprofen, naproxen, piroxicam, pentazocine, indomethacin, glycol salicylate, aminopyrine, loxoprofen, etc.), steroidal anti-inflammatory agents (hydrocortisone, prednisolone, dexamethasone, betamethasone, etc.), stimulants / stimulants (methamphetamine hydrochloride, methylphenidate hydrochloride) Etc.), neuropsychiatric agents (imiplan, hydrochloride, diazepam, sertraline
  • the content of the (A) physiologically active substance in the physiologically active composition is 0.1 to 80% by mass, preferably 1 to 70% by mass, particularly preferably 5 to 60% by mass.
  • a solvent composed of at least one polyhydric alcohol selected from the group consisting of glycerin, ethylene glycol, propylene glycol, and 1,3-butylene glycol has a high boiling point and little volatilization in the filling and attaching steps. Even when the microneedle device is continuously manufactured, the change in viscosity of the bioactive composition is small, and the bioactive substance has high solubility or dispersibility. A microneedle device having a uniform content of the active composition can be obtained.
  • the blending ratio (A: B) of the component (A) and the component (B) in the physiologically active composition is preferably 20:80 to 80:20, more preferably 40:60 to 80:20, based on mass. Most preferably, it is 50:50 to 70:30.
  • the bioactive composition comprises (A) a “bioactive substance”, and (B) a solvent comprising at least one polyhydric alcohol selected from the group consisting of glycerin, ethylene glycol, propylene glycol and 1,3-butylene glycol.
  • a compound such as a polymer compound or metal chloride may be included.
  • the physiologically active composition contains a compound such as the polymer compound or metal chloride, the viscosity of the physiologically active composition can be improved.
  • the drug has a large molecular weight and high solubility in a solvent, the drug itself may function as a thickener.
  • a polymer compound or metal chloride different from the physiologically active substance is further added to the physiologically active composition to improve the viscosity of the physiologically active composition.
  • the polymer compound include polyethylene oxide, polyhydroxymethylcellulose, hydroxypropylcellulose, polyhydroxypropylmethylcellulose, polymethylcellulose, dextran, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, pullulan, carmellose sodium, chondroitin sulfate, and hyaluronic acid. Dextran, gum arabic and the like.
  • the polymer compound is preferably hydroxypropylcellulose, polyethylene glycol, chondroitin sulfate, hyaluronic acid, dextran or croscarmellose sodium.
  • the polymer compound when propylene glycol is used as a solvent for a physiologically active composition, is preferably hydroxypropyl cellulose, polyethylene glycol, chondroitin sulfate or hyaluronic acid, and when glycerin is used as a solvent,
  • the molecular compound is preferably dextran, croscarmellose sodium or chondroitin sulfate.
  • metal chlorides include sodium chloride, potassium chloride, magnesium chloride, potassium chloride, aluminum chloride, and zinc chloride.
  • the metal chloride is preferably magnesium chloride.
  • the bioactive composition contains the metal chloride, it is possible to suppress a decrease in the content of the drug on the microneedle and / or the substrate when the microneedle device is stored for a long time.
  • the metal chloride is preferably magnesium chloride. Therefore, when propylene glycol is used as the solvent for the bioactive composition, the bioactive composition attached on the microneedles is selected from hydroxypropylcellulose, polyethylene glycol, chondroitin sulfate, hyaluronic acid and magnesium chloride. It is preferable to contain at least one compound.
  • the bioactive composition attached to the microneedles is at least one selected from dextran, croscarmellose sodium, chondroitin sulfate, and magnesium chloride. It is preferable that the compound is included.
  • the physiologically active composition includes, as necessary, a solubilizing agent or absorption promoter, such as propylene carbonate, crotamiton, l-menthol, mint oil, limonene, diisopropyl adipate, and the like, as a medicinal aid, methyl salicylate, Salicylic acid glycol, l-menthol, thymol, mint oil, nonylic acid vanillylamide, pepper extract, etc. may be added.
  • a solubilizing agent or absorption promoter such as propylene carbonate, crotamiton, l-menthol, mint oil, limonene, diisopropyl adipate, and the like
  • a solubilizing agent or absorption promoter such as propylene carbonate, crotamiton, l-menthol, mint oil, limonene, diisopropyl adipate, and the like
  • methyl salicylate Salicylic acid glycol, l-ment
  • the surfactant may be any of a nonionic active agent and an ionic active agent (cation, anion, amphoteric). From the viewpoint of safety, a nonionic active agent usually used for a pharmaceutical base is used. desirable.
  • sugar alcohol fatty acid esters such as sucrose fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, propylene glycol fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyethylene glycol fatty acid Examples thereof include esters, polyoxyethylene castor oil, and polyoxyethylene hydrogenated castor oil.
  • Physiologically active composition needs to have a certain degree of viscosity so as not to drip. Specifically, it needs a viscosity of about 100 to 100,000 cps at room temperature (25 ° C.). A more preferable viscosity of the bioactive composition is 100 to 60000 cps, and the viscosity in this range allows a desired amount of the bioactive composition to be attached at a time without depending on the material of the microneedle 3. It becomes possible. In general, the higher the viscosity, the more the amount of the bioactive composition to be attached tends to increase. When the viscosity is less than 600 cps, it becomes difficult to attach the minimum physiologically active substance to the microneedle 3. .
  • the bioactive substance content in the bioactive composition 5 adhering to the microneedles starts to decrease. From these characteristics, when the viscosity of the bioactive composition is 45000 cps or more, the content of the bioactive substance in the attached bioactive composition 5 according to the amount of the bioactive substance used cannot be expected.
  • the viscosity of the physiologically active composition is particularly preferably 600 to 45000 cps because it is not economically preferable.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the microneedle device 1 of the present invention includes a microneedle substrate 2, a microneedle 3 provided on the microneedle substrate 2, the microneedle 3 and / or the substrate. And a bioactive composition 5 attached thereto.
  • the attached physiologically active composition 5 is at least one selected from the group consisting of (A) “physiologically active substance” and (B) “glycerin, ethylene glycol, propylene glycol and 1,3-butylene glycol”. For example, and is manufactured through the steps shown in FIGS. 3 (a) to 3 (c).
  • the bioactive composition immediately after production of the microneedle device is at least one polyvalent selected from the group consisting of the above-mentioned “glycerin, ethylene glycol, propylene glycol, and 1,3-butylene glycol contained in the bioactive composition.
  • glycerin ethylene glycol, propylene glycol, and 1,3-butylene glycol contained in the bioactive composition.
  • a solvent such as moisture may be retained depending on the surrounding atmosphere.
  • the water content in this case is as described above.
  • Example 2 The composition of a physiologically active composition comprising a model physiologically active substance (octreotide acetate) and propylene glycol or glycene, the viscosity, and the physiologically active substance content in the physiologically active composition adhering to the microneedles ⁇ Setting conditions>
  • Microneedle material polylactic acid, height: 500 ⁇ m, density: 625 / cm 2 , preparation area of microneedle substrate: 1 cm 2 / patch
  • B Metal mask plate, pitch: 400 ⁇ m, mask thickness: 100 ⁇ m, opening: square shape (side 250 ⁇ m)
  • C Environmental setting: Room temperature (25 ° C)
  • ⁇ Viscosity measurement> As shown in Tables 3 and 4, octreotide acetate concentration and propylene glycol or glycerin concentration were set to prepare a physiologically active composition. The viscosity of the obtained bioactive composition was measured 10 times with a micro sample viscometer (RHEOSENSE INC. Micron Sample-Viscometer / Rheometer-on-a-chip VLOCTM), and the calculated average values are shown in Table 2 and Table 3. It was.
  • the bioactive composition on the attached microneedle is extracted with purified water, and the microneedle device 1 patch (octreotide standard) is extracted by the BCA method (octreotide standard).
  • the octreotide acetate content (adhesion amount) per sheet was measured 10 times, and the calculated average values are shown in Tables 3 and 4.
  • the viscosity of the bioactive composition increases with the increase in the content of octreotide acetate in the bioactive composition, but in the bioactive composition 5 attached on the microneedles It has been found that the octreotide acetate content increases with increasing viscosity up to a certain viscosity, but then starts decreasing after exceeding a certain viscosity.
  • the octreotide acetate content started to decrease from 21000 cps to 27000 cps, so the optimum viscosity is 2000 cps to 25000 cps, and a viscosity higher than this is not preferable from the viewpoint of administration efficiency.
  • Example 3 Test for measuring change in content of bioactive substance in bioactive composition adhering to microneedle when manufacturing process of microneedle device is repeatedly performed
  • a PP polypropylene
  • human plasma 40 parts by mass of albumin (HSA) and 60 parts by mass of glycerin were added and dissolved to obtain a physiologically active composition having a non-aqueous formulation.
  • a bioactive composition of an aqueous prescription used as a control a mixed solution of 40 parts by mass of human plasma albumin (HSA), 30 parts by mass of glycerin and 30 parts by mass of water was prepared and dissolved to obtain a bioactive composition.
  • Example 2 In order to produce a plurality of microneedle devices, the steps of filling and attaching these bioactive compositions were repeated under the same conditions as in Example 2. Immediately after the start of the attachment step, the content of human plasma albumin (HSA) in the bioactive composition attached on the microneedle of the microneedle device obtained after 20 minutes, 40 minutes, and 60 minutes was Measurement was performed in the same manner as in Example 2. The obtained measurement results are shown as a graph in FIG.
  • HSA human plasma albumin
  • the viscosity was stable over time, and there was almost no variation in the content of the physiologically active substance in the physiologically active composition adhering to the microneedles.
  • the water-based formulation an increase in viscosity with the evaporation of water over time was confirmed, and the content of the physiologically active substance in the physiologically active composition tended to decrease significantly with the passage of time.
  • Example 4 Viscosity imparting test to physiologically active composition in non-aqueous formulation
  • Polymer compounds shown in Tables 5 and 6 were added to propylene glycol and glycerin solvents, respectively, to prepare mixed solutions.
  • the concentration of the polymer compound is set in consideration of the molecular weight and the like.
  • the prepared mixed solution was stirred with a stirrer (1500 rpm, 12 hours, 25 ° C.), and the solubility of the polymer compound was visually evaluated according to the following criteria.
  • the viscosity of the liquid mixture or solution after stirring was measured at 25 ° C. using a micro sample viscometer.
  • the evaluation results of viscosity and solubility are shown in Tables 5 and 6. a: completely dissolved b: partially dissolved c: not dissolved
  • the measurement result of the viscosity and solubility in the example which added Dx40 and Dx70 by using glycerol as a solvent was obtained by setting the temperature at the time of stirring to 80 ° C.
  • PEG4000 in the table is a polyethylene glycol having a weight average molecular weight of 4,000
  • Dx40 and Dx70 are dextrans having a weight average molecular weight of about 40,000 and about 70,000, respectively.
  • PVA117, PVA220, and PVA617 are all weights.
  • HPC-H, HPC-M and HPC-L have weight average molecular weights of 250,000 to 400,000, 110,000 to 150,000, and 55,000, respectively.
  • ⁇ 70,000 hydroxypropylcellulose, HA is hyaluronic acid.
  • hydroxypropylcellulose has high solubility in propylene glycol, and the viscosity of the solution is greatly improved as compared to before addition of hydroxypropylcellulose.
  • HPC-H is expected to have a viscosity improving effect even with a small addition amount (low concentration).
  • HPC-H is considered the most suitable thickener for propylene glycol.
  • dextran was highly soluble in glycerin, and the viscosity of the solution was greatly improved as compared to before dextran was added. Further, there was a tendency that the viscosity of the solution was improved by increasing the molecular weight of dextran or increasing the concentration of dextran. Although croscarmellose sodium (Na) and chondroitin sulfate were not completely dissolved in glycerin, an effect of improving the viscosity of the solution or the mixed solution was observed.
  • Viscosity imparting test to physiologically active composition in non-aqueous formulation (Example 5) 7.3 parts by mass of propylene glycol, 0.7 parts by mass of sodium hydroxide and 2.0 parts by mass of magnesium chloride were stirred and mixed with a stirrer. Further, the obtained mixed solution and octreotide acetate were mixed at a mass ratio of 1: 1 to obtain a bioactive composition (50.0% by mass octreotide acetate / 3.5% by mass sodium hydroxide / 10.0% by mass magnesium chloride / 36.5 mass% propylene glycol) was obtained. Sodium hydroxide was added in the same number of moles as the acetic acid portion of octreotide acetate.
  • the bioactive composition was applied to the tip of a microneedle similar to that in Example 2, dried, and the height H of the bioactive composition adhering to the microneedle was measured by microscopic observation. Table 7 shows the evaluation results.
  • Example 1 A physiologically active composition (50.0% by mass octreotide acetate / 3.5% by mass sodium hydroxide / non-magnesium chloride was added in the same manner as in Example 5 except that the same mass of propylene glycol was added instead. 46.5 mass% propylene glycol) was obtained.
  • the bioactive composition was applied onto the microneedles in the same manner as in Example 5, and the height H of the bioactive composition adhering to the microneedles was measured. Table 7 shows the evaluation results.
  • Example 6 8.434 parts by mass of glycerin, 0.233 parts by mass of sodium hydroxide and 1.333 parts by mass of magnesium chloride were mixed with stirring with a stirrer. Further, the obtained mixed solution and LHRH (Luteinizing Hormone Releasing Hormone Acetate) were mixed at a mass ratio of 3: 1 to obtain a bioactive composition (25.0% by mass LHRH / 1.75% by mass sodium hydroxide / 10 0.0 mass% magnesium chloride / 63.25 mass% glycerin). Sodium hydroxide was added in the same number of moles as the acetic acid portion of LHRH. The bioactive composition was applied onto the microneedles in the same manner as in Example 5, and the height H of the bioactive composition adhering to the microneedles was measured. Table 7 shows the evaluation results.
  • Example 2 A physiologically active composition (25.0% by mass LHRH / 1.75% by mass sodium hydroxide / 73. 7% by mass) was added in the same manner as in Example 6 except that magnesium chloride was not added and instead the same mass of glycerin was added. 25 mass% glycerin) was obtained.
  • the bioactive composition was deposited on the microneedles in the same manner as in Example 5, and the height H of the bioactive composition deposited on the microneedles was measured. Table 7 shows the evaluation results.
  • Example 5 and Example 6 by adding magnesium chloride to the bioactive composition, the bioactive composition adhering to the microneedles is controlled to be thin (height H is reduced). We were able to. This is because the viscosity of the physiologically active composition is improved and dripping can be improved.
  • Test of stability of drug content of bioactive composition adhering to microneedle (Example 7) 9.444 parts by mass of propylene glycol and 0.556 parts by mass of magnesium chloride were mixed with stirring with a stirrer. Furthermore, the obtained mixed solution and octreotide acetate were mixed at a mass ratio of 9: 1 to obtain a physiologically active composition (10% by mass octreotide acetate / 5.0% by mass magnesium chloride / 85% by mass propylene glycol).
  • Example 2 10 mg of the above physiologically active composition was applied to the entire surface of the same microneedle as in Example 2, and dried at 50 ° C. for 30 minutes to obtain a microneedle device. Thereafter, the obtained microneedle device was enclosed in a packing material together with a preservative (Pharmace Keep KD; manufactured by Mitsubishi Gas Chemical), and the enclosed microneedle device was stored under conditions of 60 ° C. for 1 week. Furthermore, another encapsulated microneedle device was stored under conditions of 5 ° C. for 1 week.
  • a preservative Pharmace Keep KD
  • the content of the physiologically active substance on the microneedle device after storage was measured by high performance liquid chromatography (HPLC). And the residual rate of the bioactive substance on the microneedle preserve
  • Example 3 A physiologically active composition (10% by mass octreotide acetate / 90% by mass propylene glycol) was obtained in the same manner as in Example 7 except that magnesium chloride was not added and the same mass of propylene glycol was added instead.
  • a microneedle device was obtained in the same manner as in Example 7 using the bioactive composition. The obtained microneedle device was stored in the same manner as in Example 7, and the residual ratio of the physiologically active substance was calculated. Table 8 shows the calculation results.
  • Example 8 A microneedle device was obtained in the same manner as in Example 7 except that the type of drug was LHRH, and the residual ratio of the physiologically active substance was calculated. Table 8 shows the calculation results.
  • Comparative Example 4 A microneedle device was obtained in the same manner as in Comparative Example 3 except that the type of drug was LHRH, and the residual ratio of the physiologically active substance was calculated. Table 8 shows the calculation results.
  • the residual rate of the physiologically active substance could be maintained high by adding magnesium chloride to the physiologically active composition.
  • Hairless rat in vivo absorption test of lixenatide (Example 9) Lixenatide and propylene glycol were added to the tube in a mass ratio of 50:50 and mixed with a mixer, and the resulting mixture was used as a physiologically active composition.
  • the physiologically active composition was applied to the microneedles using a mask plate having a thickness of 50 ⁇ m. The content of the applied physiologically active substance was 12.2 ⁇ g / patch / head. Using a 0.4J applicator with a coated microneedle array, the physiologically active substance was administered to hairless rats (3 repeats).
  • the concentration of lixenatide in the blood was measured using Exendin-4 EIA Kit.
  • the measurement results are shown in FIG. Table 9 shows the AUC values (area under the content concentration-time curve) and the BA values (bioavailability) obtained from the graph of FIG.
  • the AUC value refers to the area under the blood concentration-time curve in the range from 0 minutes to 720 minutes after administration in the graph of FIG.
  • the BA value refers to the relative bioavailability value for subcutaneous administration.
  • Example 5 Lixenatide and physiological saline were added to the tube in a mass ratio of 50:50 and mixed with a mixer, and the resulting mixture was used as a physiologically active composition.
  • the physiologically active composition was subcutaneously administered to hairless rats under the conditions of 15.1 ⁇ g / 300 ⁇ L / head. Thereafter, the lixenatide concentration in the blood was measured in the same manner as in Example 9. The measurement results are shown in FIG. Table 9 shows the AUC value and BA value.
  • Hairless rat in vivo absorption test of ⁇ -interferon (Example 10) ⁇ -interferon and glycerin were added to the tube at a mass ratio of 30:70 and mixed with a mixer, and the resulting mixture was used as a physiologically active composition.
  • the bioactive composition was applied to the microneedles using a mask plate having a thickness of 100 ⁇ m.
  • the content of the applied physiologically active substance was 10.3 ⁇ g / patch / head.
  • the physiologically active substance was administered to hairless rats (3 repeats).
  • Example 6 (Comparative Example 6) ⁇ -interferon and physiological saline were added to the tube in a mass ratio of 50:50 and mixed with a mixer, and the resulting mixture was used as a physiologically active composition.
  • the physiologically active composition was subcutaneously administered to hairless rats under the conditions of 10 ⁇ g / 300 ⁇ L / head (3 repetitions). Thereafter, the ⁇ -interferon concentration in blood was measured in the same manner as in Example 10. The measurement results are shown in FIG.
  • the present invention it becomes possible to obtain a microneedle device in which the content change of the physiologically active substance in the physiologically active composition adhering to the microneedle over time is significantly reduced. It can be remarkably improved, and its industrial applicability is great.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 基板と、上記基板上に設けられた、マイクロニードルと、上記マイクロニードル上及び/又は基板上に付着している生理活性組成物と、を備えるマイクロニードルデバイスであって、上記生理活性組成物は、グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールから選ばれる少なくとも1種の多価アルコールと、生理活性物質とを含み、実質的に水を含有しないマイクロニードルデバイス。

Description

マイクロニードルデバイス及びその製造方法
 本発明はマイクロニードルデバイス及びその製造方法に関するものである。
 従来から、薬剤の経皮吸収を向上させるためのデバイスとしてマイクロニードルデバイスが知られている。マイクロニードルデバイスに設けられるマイクロニードルは、皮膚最外層である角質層を穿刺することを目的とし、様々なサイズや形状が提案されており、非侵襲的な投与方法として期待されている(例えば特許文献1)。
 また、マイクロニードルデバイスを利用した場合の薬剤の適用方法についても様々な方法が提案されている。例えば、薬剤をマイクロニードル表面にコーティングすること、マイクロニードルに薬剤又は生体成分を透過させるための溝又は中空部分を設けること、マイクロニードル自身に薬剤を混合すること等が知られている。このとき、薬剤をコーティングする際一緒に混ぜ合わせる物質は、好ましくは糖類を含有し、特に、ガラス(非晶質の固体物質)を形成するラクトース、ラフィノース、トレハロース若しくはスクロースのような安定化用糖類である旨の開示がある(特許文献2)。
 また、特許文献3には、微小突起部材を有する送達システムを含む、生物学的活性薬剤の経皮送達の装置及び方法が開示されている。その一態様においては、微小突起部材に適用されている生体適合性コーティング処方物は少なくとも1種類の非水性溶剤、例えば、エタノール、イソプロパノール、メタノール、プロパノール、ブタノール、プロピレングリコール、ジメチルスルホキシド、グリセリン、N,N-ジメチルホルムアミド、及びポリエチレングリコール400を含有し、好ましくは、非水性溶剤はコーティング処方物に中に、コーティング処方物の約1重量%~50重量%の範囲内で存在することが開示されている。また、当該コーティング処方物の粘度は3~約500センチポアズ(cps)であることが開示されている。
特表2001-506904号公報 特表2004-504120号公報 特表2007-536988号公報
 しかしながら、特許文献1~3に開示されたような生理活性物質と溶媒とを含有する組成物(生理活性組成物)を用いてマイクロニードルデバイスを製造するに当り、生理活性組成物を、溶媒の揮発が生じ得る容器に収容させた後に、マイクロニードル上に付着させる製造方法を採用すると、生理活性組成物を多数のマイクロニードルアレイ上に(マイクロニードル上に)付着させる場合において問題が生じることが判明した。すなわち、このような方法で連続的にマイクロニードルデバイスを製造しようとすると、マイクロニードル上に塗布される生理活性組成物の量が大きくばらついてしまい、塗布量が安定したマイクロニードルデバイスを製造することができないという問題が生じることが判明した。製造される個々のマイクロニードルデバイスによって、薬剤の量が変化することは、作用の強い、又は高価な生理活性物質を使用する場合には特に、医学(治療)的にも経済的にも好ましくない。
 そこで、本発明の目的は、マスク版を用いる上記のような連続製造方法を採用した場合においても、マイクロニードルに付着させた生理活性物質の付着量のばらつきが実用上充分なレベルまで低減されたマイクロニードルデバイスの製造方法を提供することにある。本発明の目的はまた、このような製造方法で得ることのできるマイクロニードルデバイスを提供することにある。
 本発明は、生理活性物質と当該生理活性物質を分散又は溶解可能な溶媒とを含有する生理活性組成物を、マイクロニードル上に生理活性組成物を付着させるマイクロニードルデバイスの製造方法であって、上記溶媒として、グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールから選ばれる少なくとも1種の多価アルコールを用い、水を用いない、製造方法を提供する。
 このような構成のマイクロニードルデバイスの製造方法によれば、連続製造を行った場合であっても、製造時の経時による生理活性組成物の粘度変化が小さく、マイクロニードル上に均一な(バラツキの少ない)量の生理活性物質を含有する生理活性組成物が付着しているマイクロニードルデバイスを安定して得ることができる。このような製造方法により、生理活性物質の付着量が安定したマイクロニードルデバイスが得られるのは、溶媒中に、水を含有させていないことが大きく寄与しているものと考えられる。
 生理活性物質の付着量の安定化は、容器が、開口部が形成されたマスク版であり、当該開口部に上記生理活性組成物を充填させた後に、上記開口部に上記マイクロニードルを挿入して引き出すことにより、上記マイクロニードル上に上記生理活性組成物を付着させる製造法を適用した場合に、特に顕著となる。
 このように、上記製造方法では生理活性物質の付着量の安定化が特に顕著であることから、生理活性組成物を充填させるマスク版として、1つのマイクロニードルを引き出した後にさらに別のマイクロニードルに対して同一のマスク版を再利用することも可能である。なお、マスク版を使用する当該方法以外としては、生理活性物質と当該生理活性物質を分散又は溶解可能な溶媒とを含有する生理活性組成物を、上部が開放された液溜部に収容させて、ポンプなどを適用し、それをマイクロニードルの例えば周辺まで移動させスプレー塗布する方法などが挙げられる。
 生理活性組成物中において、生理活性物質と多価アルコールの質量比率は、20:80~80:20であることが好ましく、室温(25℃)における生理活性組成物は、粘度が600~45000cpsであることが好ましい。このような条件を採用することにより、生理活性組成物での生理活性物質の使用量に応じた量の生理活性物質を、マイクロニードル上に付着している生理活性組成物中に確実に含有させることが容易になることから、生理活性物質の投与効率を高いマイクロニードルデバイスを得ることができる。
 なお上記製造方法は、生理活性物質と当該生理活性物質を分散又は溶解可能な溶媒とを含有する生理活性組成物を、上記溶媒の揮発が生じ得る容器に収容させた後に、マイクロニードル上に付着させてマイクロニードルデバイスを製造するに当り、上記溶媒として、グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールから選ばれる少なくとも1種の多価アルコールを用い、水を用いていない、生理活性組成物の付着量安定化方法として把握することもできる。
 よって、本発明によれば、基板と、当該基板上に設けられた、マイクロニードルと、当該マイクロニードル上及び/又は基板上に付着している生理活性組成物と、を備えるマイクロニードルデバイスであって、上記生理活性組成物は、グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールから選ばれる少なくとも1種の多価アルコールと、生理活性物質とを含み、実質的に水を含有しないマイクロニードルデバイスが提供される。
 ここで、マイクロニードル上及び/又は基板上に付着している生理活性組成物において、実質的に水を含有しないとは、生理活性組成物を付着後の大気からの吸湿によって含有することになる水分含有量を超す水分を含有しないことを意味し、典型的には、水分含有量は付着している生理活性組成物の全量基準で7質量%以下、好ましくは、5質量%以下、さらには3質量%以下である。
 上記マイクロニードルデバイスにおいて、マイクロニードル上及び/又は基板上に付着している生理活性組成物は、ヒドロキシプロピルセルロース、ポリエチレングリコール、コンドロイチン硫酸、ヒアルロン酸、デキストラン、クロスカルメロースナトリウム及び塩化マグネシウムから選ばれる少なくとも1種の化合物をさらに含むことが好ましい。
 マイクロニードルデバイスがこのような構成を有することにより、生理活性組成物の粘度を向上させ、マイクロニードル上及び/又は基板上に付着している生理活性組成物の高さや、生理活性物質の含量をより高度に制御することができる。
 また、マイクロニードル上及び/又は基板上に付着している生理活性組成物は前記マイクロニードル上及び/又は基板上に塗布後に乾燥し、固着化されていることが好ましい。
 本発明によれば、マスク版を用いる連続製造方法を採用した場合においても、マイクロニードルに付着させる生理活性物質の付着量のばらつきが実用上充分なレベルまで低減されたマイクロニードルデバイスの製造方法、並びに当該製造方法で得ることのできるマイクロニードルデバイスが提供される。
本発明の実施形態に係るマイクロニードルデバイスの一実施形態を示す斜視図である。 図1のII-II線断面図である。 (a)~(c)は、マイクロニードルデバイスの製造方法の一例を示す図である。 生理活性組成物の充填及び付着工程を繰り返してマイクロニードルデバイスを製造した際の、マイクロニードル上に付着している生理活性組成物中の生理活性物質の含量の経時変化を示すグラフである。 マイクロニードルデバイスによる投与と皮下投与により、リキセナチドを投与したときの血中リキセナチド濃度の経時変化を示すグラフである。 マイクロニードルデバイスによる投与と皮下投与により、β-インターフェロンを投与したときの血中β-インターフェロン濃度の経時変化を示すグラフである。
 以下、図面を参照しながら、好適な実施形態を説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明を省略する。また、図面は理解を容易にするため一部を誇張して描いており、寸法比率は説明のものとは必ずしも一致しない。
 図1は、本発明に係るマイクロニードルデバイスの一実施形態を示す斜視図である。図1に示すように、マイクロニードルデバイス1は、マイクロニードル基板2と、マイクロニードル基板2上に二次元状に配置された、複数のマイクロニードル3とを備える。
 マイクロニードル基板2は、マイクロニードル3を支持するための土台である。マイクロニードル基板2の形態は特に限定されるものではなく、例えばマイクロニードル基板2には、複数の貫通孔4が二次元状に配置されるように形成されていてもよい。マイクロニードル3と貫通孔4とは、マイクロニードル基板2の対角線方向において交互に配置されている。貫通孔4により、マイクロニードル基板2の背面から生理活性組成物を投与することが可能になる。もっとも、このような貫通孔のない基板を用いてもよい。マイクロニードル基板2の面積は、0.5~10cmであり、好ましくは1~5cm、より好ましくは1~3cmである。このマイクロニードル基板2を数個つなげることで所望の大きさの基板を構成するようにしてもよい。
 マイクロニードル3は微小構造であり、その高さ(長さ)は、好ましくは50~600μmである。ここで、マイクロニードル3の長さを50μm以上とするのは、生理活性物質の経皮投与を確実にするためであり、600μm以下とするのは、マイクロニードルが神経に接触するのを回避して痛みの可能性を減少させるとともに、出血の可能性を回避するためである。また、マイクロニードル3の長さが500μm以下であると、皮内に入るべき量の生理活性物質を効率良く投与することができ、場合によっては、皮膚を穿孔させずに投与することも可能である。マイクロニードル3の長さは、300~500μmであることが特に好ましい。
 ここで、マイクロニードルとは、凸状構造物であって広い意味での針形状、又は針形状を含む構造物を意味する。もっとも、マイクロニードルは、鋭い先端を有する針形状のものに限定されるものではなく、先の尖っていない形状のものも含む。マイクロニードル3が円錐状構造である場合には、その基底における直径は50~200μm程度である。本実施形態ではマイクロニードル3は円錐状であるが、四角錐などの多角錐状や、別の形状のマイクロニードルを用いてもよい。
 マイクロニードル3は、典型的には、針の横列について1ミリメートル(mm)当たり約1~10本の密度が提供されるように間隔を空けて設けられている。一般に、隣接する横列は横列内の針の空間に対して実質的に等しい距離だけ互いに離れており、1cm当たり100~10000本の針密度を有する。100本以上の針密度があると、効率良く皮膚を穿孔することができる。一方、10000本を超える針密度では、マイクロニードル3の強度を保つことが難しくなる。マイクロニードル3の密度は、好ましくは200~5000本、さらに好ましくは300~2000本、最も好ましくは400~850本である。
 マイクロニードル基板2又はマイクロニードル3の材質としては、シリコン、二酸化ケイ素、セラミック、金属(ステンレス、チタン、ニッケル、モリブテン、クロム、コバルト等)及び合成又は天然の樹脂素材等が挙げられるが、マイクロニードルの抗原性及び材質の単価を考慮すると、ポリ乳酸、ポリグリコリド、ポリ乳酸-co-ポリグリコリド、プルラン、カプロノラクトン、ポリウレタン、ポリ無水物等の生分解性ポリマーや、非分解性ポリマーであるポリカーボネート、ポリメタクリル酸、エチレンビニルアセテート、ポリテトラフルオロエチレン、ポリオキシメチレン等の合成又は天然の樹脂素材が特に好ましい。また、多糖類であるヒアルロン酸、ヒアルロン酸ナトリウム、プルラン、デキストラン、デキストリン若しくはコンドロイチン硫酸等も好適である。
 マイクロニードル基板2又はマイクロニードル3の製法としては、シリコン基板を用いたウエットエッチング加工又はドライエッチング加工、金属又は樹脂を用いた精密機械加工(放電加工、レーザー加工、ダイシング加工、ホットエンボス加工、射出成型加工等)、機械切削加工等が挙げられる。これらの加工法により、針部と支持部とが一体に成型される。針部を中空にする方法としては、針部を作製後にレーザー加工等で二次加工する方法が挙げられる。
 図3(a)~(c)は、マイクロニードルデバイス1の製造方法の一例を示す図である。この方法では、まず、図3(a)に示すように、生理活性組成物10をマスク版11上でヘラ12により矢印A方向に掃引する。これにより、開口部13に生理活性組成物が充填される。続いて、図3(b)に示すように、マスク版11の開口部13にマイクロニードル3を挿入する。その後、図3(c)に示すように、マスク版11の開口部13からマイクロニードル3を引き出す。これにより、マイクロニードル3には生理活性組成物10が付着(この場合は、塗布)される。その後、風乾、真空乾燥、凍結乾燥又はそれらの組み合わせの既知の方法により、マイクロニードル上の生理活性組成物を乾燥する。これにより、固形の生理活性組成物10は、マイクロニードル3上に付着している生理活性組成物5として、マイクロニードル3に固着化される。このようにして、マイクロニードルデバイスが製造される。「固着化される」とは、生理活性組成物が対象物にほぼ一様に付着している状態を保つことをいう。
 マイクロニードル3上(マイクロニードル3上及び/又は基板上)に付着している生理活性組成物の高さHは、図3(b)に示すクリアランス(ギャップ)Cで調整される。このクリアランスCは、マイクロニードルの基底からマスク表面までの距離(基板厚みは関与しない)で定義され、マスク版11のテンションとマイクロニードル3の長さとに応じて設定される。クリアランスCの距離の範囲は、好ましくは、0~500μmである。クリアランスCの距離が0の場合には、生理活性組成物がマイクロニードル3の全体に対して付着されることを意味する。マイクロニードル3上に付着している生理活性組成物5の高さHはマイクロニードル3の高さhによって変動するが、0~500μmとすることができ、通常10~500μmであり、好ましくは30~300μm程度である。
 マイクロニードル3上に付着している生理活性組成物5の厚さは50μm未満であり、好ましくは40μm未満、さらに好ましくは1~30μmである。一般に、マイクロニードル3上に付着している生理活性組成物の厚さは、乾燥後にマイクロニードル3の表面にわたって測定される平均の厚さである。マイクロニードル3上に付着している生理活性組成物の厚さは、一般に、生理活性組成物の複数の被膜を適用することにより増大させること、すなわち、生理活性組成物をマイクロニードル3上に付着させる工程を繰り返すことで増大させることができる。
 生理活性組成物をマイクロニードル3及び/又は基板2へ付着させる際には、装置の設置環境の温湿度は、一定に制御されることが好ましい。また、必要によっては生理活性組成物に使用する、後述する(B)成分である、「グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールからなる群から選択される少なくとも1つの多価アルコールからなる溶媒」を充満させることもできる。これにより、生理活性組成物中の溶媒の蒸散を極力防ぐことができる。
 生理活性組成物は、(A)「生理活性物質」と、(B)「グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールからなる群から選択される少なくとも1つの多価アルコールからなる溶媒」と、を含有する。また、生理活性組成物は実質的に水を含有しない。ここで、上記生理活性組成物において、実質的に水を含有しないとは、生理活性組成物が大気からの吸湿によって含有することになる水分含有量を超す水分を含有しないことを意味し、典型的には、水分含有量は生理活性組成物の全量基準で20質量%以下、好ましくは、10質量%以下、さらには5質量%以下である。上記(B)成分は「グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールからなる群から選択される少なくとも1つの多価アルコールのみからなる溶媒」であることが好ましい。「生理活性物質」とは、生体に何らかの作用を及ぼすものであり、低分子化合物、ペプチド、タンパク質及びそれら誘導体等を含むものである。「溶媒」とは、上記生理活性物質を分散又は溶解可能な化合物である。(A)生理活性物質(薬物)としては、ペプチド、タンパク質、DNA、RNA等の高分子化合物が考えられるが特に限定されず、分子量が1000程度であれば、ワクチン、低分子ペプチド、糖、核酸等であってもよい。生理活性物質としては、例えば、リキセナチド、ナルトレキソン、酢酸セトロレリクス、タルチレリン、ナファレリン酢酸塩、プロスタグランジンA1、アルプロスタジル、α-インターフェロン、多発性硬化症のためのβ-インターフェロン、エリスロポイエチン、フォリトロピンβ、フォリトロピンα、G-CSF、GM-CSF、ヒト絨毛性腺刺激ホルモン、黄体形成(leutinizing)ホルモン、サケカルシトニン、グルカゴン、GNRH アンタゴニスト、インスリン、ヒト成長ホルモン、フィルグラスチン、ヘパリン、低分子ヘパリン、ソマトロピン、インクレチン、GLP-1誘導体等が挙げられる。また、ワクチン類の例としては、日本脳炎ワクチン、ロタウィルスワクチン、アルツハイマー病ワクチン、動脈硬化ワクチン、癌ワクチン、ニコチンワクチン、ジフテリアワクチン、破傷風ワクチン、百日咳ワクチン、ライム病ワクチン、狂犬病ワクチン、肺炎双球菌ワクチン、黄熱病ワクチン、コレラワクチン、種痘疹ワクチン、結核ワクチン、風疹ワクチン、麻疹ワクチン、おたふくかぜワクチン、ボツリヌスワクチン、ヘルペスウイルスワクチン、他のDNAワクチン、B型肝炎ワクチン等が挙げられる。
 その他、例えば、催眠・鎮静剤(塩酸フルラゼパム、塩酸リルマザホン、フェノバルビタール、アモバルビタール等)、解熱消炎鎮痛剤(酒石酸ブトルファノール、クエン酸ペリソキサール、アセトアミノフェン、メフェナム酸、ジクロフェナックナトリウム、アスピリン、アルクロフェナク、ケトプロフェン、フルルビプロフェン、ナプロキセン、ピロキシカム、ペンタゾシン、インドメタシン、サリチル酸グリコール、アミノピリン、ロキソプロフェン等)、ステロイド系抗炎症剤(ヒドロコルチゾン、プレドニゾロン、デキサメタゾン、ベタメタゾン等)、興奮・覚醒剤(塩酸メタンフェタミン、塩酸メチルフェニデート等)、精神神経用剤(塩酸イミプラン、ジアゼパム、塩酸セルトラリン、マレイン酸フルボキサミン、塩酸パロキセチン、臭化水素酸シタロプラム、塩酸フルオキセチン、アルプラゾラム、ハロペリドール、クロミプラミン、アミトリプチリン、デシプラミン、アモクサピン、マプロチリン、ミアンセリン、セチプチリン、トラザドン、ロヘプラミン、ミルナシプラン、デュロキセチン、ベンラフェキシン、塩酸クロルプロマジン、チオリダジン、ジアゼパム、メプロバメート、エチゾラム等)、ホルモン剤(エストラジオール、エストリオール、プロゲステロン、酢酸ノルエチステロン、酢酸メテロノン、テストステロン等)、局所麻酔剤(塩酸リドカイン、塩酸プロカイン、塩酸テトラカイン、塩酸ジブカイン、塩酸プロピトカイン等)、泌尿器官用剤(塩酸オキシブチニン、塩酸タムスロシン、塩酸プロピベリン等)、骨格筋弛緩剤(塩酸チザニジン、塩酸エペリゾン、メシル酸プリジノール、塩酸スキサメトニウム、等)、生殖器官用剤(塩酸リトドリン、酒石酸メルアドリン)、抗てんかん剤(バルプロ酸ナトリウム、クロナゼパム、カルバマゼピン等)、自律神経用剤(塩化カルプロニウム、臭化ネオスチグミン、塩化ベタネコール等)、抗パーキンソン病剤(メシル酸ペルゴリド、メシル酸ブロモクリプチン、塩酸トリヘキシフェニジル、塩酸アマンタジン、塩酸ロピニロール、塩酸タリペキソール、カベルゴリン、ドロキシドパ、ピペリデン、塩酸セレギリン等)、利尿剤(ヒドロフルメチアジド、フロセミド等)、呼吸促進剤(塩酸ロベリン、ジモルホラミン、塩酸ナロキソン等)、抗片頭痛剤(メシル酸ジヒドロエルゴタミン、スマトリプタン、酒石酸エルゴタミン、塩酸フルナリジン、塩酸サイプロヘプタジン等)、抗ヒスタミン剤(フマル酸クレマスチン、タンニン酸ジフェンヒドラミン、マレイン酸クロルフェニラミン、塩酸ジフェニルピラリン、プロメタジン等)、気管支拡張剤(塩酸ツロブテロール、塩酸プロカテロール、硫酸サルブタモール、塩酸クレンブテロール、臭化水素酸フェノテロ-ル、硫酸テルブタリン、硫酸イソプレナリン、フマル酸ホルモテロール等)、強心剤(塩酸イソプレナリン、塩酸ドパミン等)、冠血管拡張剤(塩酸ジルチアゼム、塩酸ベラパミル、硝酸イソソルビド、ニトログリセリン、ニコランジル等)、末梢血管拡張剤(クエン酸ニカメタート、塩酸トラゾリン等)、禁煙補助薬(ニコチン等)、循環器官用剤(塩酸フルナリジン、塩酸ニカルジピン、ニトレンジピン、ニソルジピン、フェロジピン、ベシル酸アムロジピン、ニフェジピン、ニルバジピン、塩酸マニジピン、塩酸ベニジピン、マレイン酸エナラプリル、塩酸デモカプリル、アラセプリル、塩酸イミダプリル、シラザプリル、リシノプリル、カプトプリル、トランドラプリル、ペリンドプリルエルブミン、アテノロール、フマル酸ビソプロロール、酒石酸メトプロロール、塩酸ベタキソロール、塩酸アロチノロール、塩酸セリプロロール、カルベジロール、塩酸カルテオロール、塩酸ベバントロール、バルサルタン、カンデサルタンシレキセチル、ロサルタンカリウム、塩酸クロニジン等)、不整脈用剤(塩酸プロプラノロール、塩酸アルプレノロール、塩酸プロカインアミド、塩酸メキシチレン、ナドロール、ジソピラミド等)、抗悪性潰瘍剤(シクロフォスファミド、フルオロウラシル、デガフール、塩酸プロカルバジン、ラニムスチン、塩酸イリノテカン、フルリジン等)、抗脂血症剤(プラバスタチン、シンバスタチン、ベザフィブレート、プロブコール等)、血糖降下剤(グリベンクラミド、クロルプロパミド、トルブタミド、グリミジンナトリウム、グリブゾール、塩酸ブホルミン)、消化性潰瘍治療剤(プログルミド、塩酸セトラキサート、スピゾフロン、シメチジン、臭化グリコピロニウム)、利胆剤(ウルソデスオキシコール酸、オサルミド等)、消化管運動改善剤(ドンペリドン、シサプリド等)、肝臓疾患用剤(チオプロニン等)、抗アレルギー剤(フマル酸ケトチフェン、塩酸アゼラスチン等)、抗ウイルス剤(アシクロビル等)、鎮暈剤(メシル酸ベタヒスチン、塩酸ジフェニドール等)、抗生剤(セファロリジン、セフジニル、セフポドキシムプロキセチル、セファクロル、クラリスロマイシン、エリスロマイシン、メチルエリスロマイシン、硫酸カナマイシン、サイクロセリン、テトラサイクリン、ベンジルペニシリンカリウム、プロピシリンカリウム、クロキサシンナトリウム、アンピシリンナトリウム、塩酸バカンピシリン、カルベニシリンナトリウム、クロラムフェニコール、等)、習慣性中毒用剤(シアナミド等)、食欲抑制剤(マジンドール等)、化学療法剤(イソニアシド、エチオナミド、ピラジナミド等)、血液凝固促進剤(塩酸チクロピジン、ワルファリンカリウム)、抗アルツハイマー剤(フィゾスチグミン、塩酸ドネペジル、タクリン、アレコリン、キサノメリン等)、セロトニン受容体拮抗制吐剤(塩酸オンダンセトロン、塩酸グラニセトロン、塩酸ラモセトロン、塩酸アザセトロン等)、痛風治療剤(コルヒチン、プロベネシド、スルフィンピラゾン等)、麻薬系の鎮痛剤(クエン酸フェンタニル、硫酸モルヒネ、塩酸モルヒネ、リン酸コデイン、塩酸コカイン、塩酸ペチジン等)が挙げられる。
 なおこれらの薬物は単独で用いても2種類以上併用してもよく、薬学的に許容できる塩であれば、無機塩又は有機塩のいずれの形態の薬物も当然含まれる。生理活性組成物中の(A)生理活性物質の含有量は、0.1~80質量%であり、好ましくは1~70質量%であり、特に好ましくは5~60質量%である。
 (B)「グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールからなる群から選択される少なくとも1つの多価アルコールからなる溶媒」は、沸点が高く、充填及び付着工程における揮発が少ないため、マイクロニードルデバイスを連続して製造した場合であっても、生理活性組成物の粘度変化が小さく、また生理活性物質に対する高い溶解性又は分散性を有するため、マイクロニードル上に付着している生理活性組成物の含量が均一なマイクロニードルデバイスを得ることができる。生理活性組成物中の(A)成分と(B)成分との配合比率(A:B)は、好ましくは質量基準で20:80~80:20、より好ましくは40:60~80:20、最も好ましくは50:50~70:30である。
 生理活性組成物は、(A)「生理活性物質」、及び(B)「グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールからなる群から選択される少なくとも1つの多価アルコールからなる溶媒」の他、上記生理活性物質とは異なる高分子化合物又は金属塩化物等の化合物を含んでいてもよい。生理活性組成物が上記高分子化合物又は金属塩化物等の化合物を含むことにより、生理活性組成物の粘度を向上させることができる。薬物の分子量が大きく溶媒に対する溶解性が高い場合には、薬物自身が増粘剤として機能する場合がある。しかし、薬物の溶媒に対する溶解性が低い場合や薬物の分子量が小さい場合には、生理活性組成物の粘度を向上させるために生理活性組成物にさらに生理活性物質とは異なる高分子化合物又は金属塩化物等の化合物を含むことが必要になる場合がある。当該高分子化合物としては、例えば、ポリエチレンオキサイド、ポリヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ポリヒドロキシプロピルメチルセルロース、ポリメチルセルロース、デキストラン、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、プルラン、カルメロースナトリウム、コンドロイチン硫酸、ヒアルロン酸、デキストラン、アラビアゴム等が挙げられる。
 高分子化合物は、ヒドロキシプロピルセルロース、ポリエチレングリコール、コンドロイチン硫酸、ヒアルロン酸、デキストラン又はクロスカルメロースナトリウムであることが好ましい。特に生理活性組成物の溶媒としてプロピレングリコールを使用する場合には、高分子化合物はヒドロキシプロピルセルロース、ポリエチレングリコール、コンドロイチン硫酸又はヒアルロン酸であることが好ましく、溶媒としてグリセリンを使用する場合には、高分子化合物はデキストラン、クロスカルメロースナトリウム又はコンドロイチン硫酸であることが好ましい。
 金属塩化物としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カリウム、塩化アルミニウム、塩化亜鉛等が挙げられる。特に生理活性組成物の溶媒としてグリセリン及び/又はプロピレングリコールを使用する場合には、金属塩化物は塩化マグネシウムであることが好ましい。
 また、生理活性組成物が上記金属塩化物を含むことにより、マイクロニードルデバイスを長時間保存する場合の、マイクロニードル及び/又は基板上の薬物の含量の低下を抑制することができる。特に生理活性組成物の溶媒としてプロピレングリコールを使用する場合には、金属塩化物は塩化マグネシウムであることが好ましい。したがって、生理活性組成物の溶媒として、プロピレングリコールが用いられる場合には、マイクロニードル上に付着している生理活性組成物は、ヒドロキシプロピルセルロース、ポリエチレングリコール、コンドロイチン硫酸、ヒアルロン酸及び塩化マグネシウムから選ばれる少なくとも1種の化合物を含むことが好ましい。また、生理活性組成物の溶媒として、グリセリンが用いられる場合には、マイクロニードル上に付着している生理活性組成物は、デキストラン、クロスカルメロースナトリウム、コンドロイチン硫酸及び塩化マグネシウムから選ばれる少なくとも1種の化合物を含むことが好ましい。
 この他、生理活性組成物には、必要に応じて溶解補助剤又は吸収促進剤として、炭酸プロピレン、クロタミトン、l-メントール、ハッカ油、リモネン、ジイソプロピルアジペート等や、薬効補助剤として、サリチル酸メチル、サリチル酸グリコール、l-メントール、チモール、ハッカ油、ノニル酸ワニリルアミド、トウガラシエキス等を添加してもよい。
 さらに、生理活性組成物には、必要に応じて、安定化剤や抗酸化剤、乳化剤、界面活性剤、塩類等を添加してもよい。本発明において界面活性剤とは、非イオン性活性剤、イオン性活性剤(カチオン、アニオン、両性)のいずれでもよいが、安全性の面から通常医薬品基剤に用いられる非イオン性活性剤が望ましい。さらに詳しくは、ショ糖脂肪酸エステルなどの糖アルコール脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。
 他の既知の製剤補助物質は、それらが生理活性組成物の塗布に必要な溶解性及び粘度の特徴、並びに乾燥された生理活性組成物の性状及び物性に有害な影響を及ぼさない限り、生理活性組成物に添加されてもよい。
 生理活性組成物には、液だれすることのないよう、ある程度の粘性が必要であり、具体的には室温(25℃)で100~100000cps程度の粘度が必要である。生理活性組成物のより好ましい粘度は、100~60000cpsであり、粘度がこの範囲にあることにより、マイクロニードル3の材質に依存することなく、所望量の生理活性組成物を一度に付着させることが可能となる。また、一般的に粘度が高くなればなるほど付着する生理活性組成物の量が増える傾向にあり、粘度が600cps未満であるとき最低限の生理活性物質をマイクロニードル3に付着させることが困難になる。しかし、意外なことに45000cps以上であると逆に、マイクロニードル上に付着している生理活性組成物5中の生理活性物質含量が減少に転じる。このような特徴から、生理活性組成物の粘度を45000cps以上の粘度にすると、使用する生理活性物質の量に応じた、付着している生理活性組成物5中の生理活性物質の含量が望めなくなり、経済的に好ましくないため、生理活性組成物の粘度は、600~45000cpsとすることが特に好ましい。
 図2は図1のII-II線断面図である。図2に示すように、本発明のマイクロニードルデバイス1は、マイクロニードル基板2と、当該マイクロニードル基板2上に設けられた、マイクロニードル3と、当該マイクロニードル3上及び/又は当該基板上に付着している生理活性組成物5と、を備えるものである。付着している生理活性組成物5は、(A)「生理活性物質」と、(B)「グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールからなる群から選択される少なくとも1つの多価アルコールからなる溶媒」と、を含むものであり、例えば図3(a)~(c)に示される工程を経て製造される。なお、マイクロニードルデバイス製造直後の生理活性組成物は、生理活性組成物に含まれる上述の「グリセリン、エチレングリコール、プロピレングリコール、1,3-ブチレングリコールからなる群から選択される少なくとも1つの多価アルコールからなる溶媒」を含み、実質的に水を含有しないが、製造したマイクロニードルデバイスの保管において、取り巻く雰囲気により水分等の溶媒を保持することもある。この場合の水分含量は上記の通りである。
 以下、本発明の実施例を示して、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲での種々の変更が可能である。
(実施例1)溶媒に対する溶解性又は分散性試験
 表1に示す各種生理活性物質10質量部とプロピレングリコール又はグリセリン90質量部とを、約1時間混合して、混合液を得た。また表2に示すように生理活性物質OVA(オブアルブミン)43質量部とトリエタノールアミン、ジエタノールアミン、又はマクロゴール400 57質量部とを、上記と同様に混合して、混合液を得た。そして、得られた混合液について、生理活性物質の溶媒に対する溶解性又は分散性の評価を、以下の指標により目視にて行った。評価結果をそれぞれ表1、表2に示す。
a:生理活性物質は溶媒に溶解した(均一な液性)。
b:生理活性物質は溶媒に分散した(分散された液性)。
c:生理活性物質は溶媒に溶解せず、混合液には明らかな凝集物が認められた(不均一な液性)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例2)モデル生理活性物質(オクトレオチド酢酸塩)とプロピレングリコール又はグリセンからなる生理活性組成物の組成と、粘度及びマイクロニードル上に付着している生理活性組成物中の生理活性物質含量との関係
<設定条件>
(a)マイクロニードル
・材質:ポリ乳酸、高さ:500μm、密度:625本/cm、マイクロニードル基板の製剤面積:1cm/patch
(b)メタルマスク版
・ピッチ:400μm、マスク厚:100μm、開口部:四角形状(一辺250μm)
(c)環境設定:室温(25℃)
<粘度測定>
 表3及び表4に示すとおり、オクトレオチド酢酸塩濃度とプロピレングリコール又はグリセリン濃度を設定し、生理活性組成物を調製した。得られた生理活性組成物の粘度を微量サンプル粘度計(RHEOSENSE INC. Micron Sample-Viscometer/Rheometer-on-a-chip VROCTM)で10回測定し、算出した平均値を表2及び表3に示した。
<マイクロニードル上に付着している生理活性組成物中のオクトレオチド酢酸塩含量測定>
 表3及び表4に示すとおり、オクトレオチド酢酸塩濃度とプロピレングリコール又はグリセリン濃度を設定し、生理活性組成物を調製した。マイクロニードルへの生理活性組成物の付着を、上述の図3(a)~(c)に示す方法で行った。生理活性組成物をヘラにより掃引し、メタルマスク開口部に充填した。充填した開口部にマイクロニードル(針)を挿入させた後引き出すことにより、付着されたマイクロニードル上の生理活性組成物を精製水で抽出し、BCA法(オクトレオチド標準)により、マイクロニードルデバイス1patch(枚)当たりのオクトレオチド酢酸塩含量(付着量)を10回測定し、算出した平均値を表3及び表4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3及び表4に示すように、生理活性組成物中のオクトレオチド酢酸塩の含有量の上昇とともに生理活性組成物の粘度も上昇するが、マイクロニードル上に付着している生理活性組成物5中のオクトレオチド酢酸塩含量については、ある粘度までは粘度の上昇とともに上昇するが、ある粘度を超えるとその後減少に転じることが判明した。
 表3のプロピレングリコールにおいては粘度15000cpsから45000cpsにかけてオクトレオチド酢酸塩含量が減少に転じていることより、最適な粘度は200cpsから45000cpsであり、これ以上の粘度は投与効率の面から好ましくない。
 また、表4のグリセリンにおいては粘度21000cpsから27000cpsにかけてオクトレオチド酢酸塩含量が減少に転じていることより、最適な粘度は2000cpsから25000cpsであり、これ以上の粘度は投与効率の面から好ましくない。
(実施例3)マイクロニードルデバイスの製造工程を繰り返し行ったときの、マイクロニードル上に付着している生理活性組成物中の生理活性物質含量変化測定試験
 PP(ポリプロピレン)製マイクロチューブに、ヒト血漿アルブミン(HSA)40質量部、グリセリンを60質量部添加し、溶解したものを非水系処方の生理活性組成物とした。対照となる水系処方の生理活性組成物には、ヒト血漿アルブミン(HSA)40質量部、グリセリン30質量部及び水30質量部の混合液を調製し、溶解したもの生理活性組成物とした。複数のマイクロニードルデバイスの製造を行うため、実施例2と同様の条件でこれらの生理活性組成物の充填、付着の工程を繰り返し行った。上記付着工程の開始直後、20分、40分、及び60分経過後に得られたマイクロニードルデバイスのマイクロニードル上に付着している生理活性組成物中のヒト血漿アルブミン(HSA)の含量を、実施例2と同様に測定した。得られた測定結果をグラフとして図4に示す。
 非水系処方では、経時でも粘度が安定しており、マイクロニードル上に付着している生理活性組成物中の生理活性物質の含量の変動も殆ど見られなかった。一方、水系処方では、経時での水分蒸発に伴う粘度上昇が確認され、生理活性組成物中の生理活性物質の含量も経過時間に伴って著しく減少する傾向を示した。
(実施例4)非水系処方における生理活性組成物への粘度付与試験
 プロピレングリコール及びグリセリンの溶媒に対し、それぞれ表5及び表6に示す高分子化合物を加え、混合液を作製した。高分子化合物の濃度は分子量等を考慮して設定されたものである。作製した混合液をスターラーにより撹拌(1500rpm、12時間、25℃)し、高分子化合物の溶解性を目視にて以下の基準にしたがって評価した。また、撹拌後の混合液又は溶液の粘度を、微量サンプル粘度計を用いて25℃にて測定した。粘度及び溶解性の評価結果を表5及び6に示す。
a:完全に溶解している
b:一部溶解している
c:溶解していない
 なお、グリセリンを溶媒としてDx40及びDx70を加えた例における粘度及び溶解性の測定結果は、撹拌時の温度を80℃として得られたものである。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表中のPEG4000は重量平均分子量が4,000のポリエチレングリコールであり、Dx40及びDx70はそれぞれ重量平均分子量が約40,000及び約70,000のデキストランであり、PVA117、PVA220及びPVA617はいずれも重量平均分子量が約75,000のポリビニルアルコールであり、HPC-H、HPC-M及びHPC-Lはそれぞれ重量平均分子量が250,000~400,000、110,000~150,000、及び55,000~70,000のヒドロキシプロピルセルロースであり、HAはヒアルロン酸である。
 少量の高分子化合物で溶液の粘度を向上させると、塗布及び乾燥後の生理活性組成物を薄く制御することが可能となる。よって、このような高分子化合物はマイクロニードル上に付着している生理活性組成物の成分として特に好適である。表5に示すように、ヒドロキシプロピルセルロースはプロピレングリコールに対する溶解性が高く、ヒドロキシプロピルセルロース添加前と比べて溶液の粘度が大きく向上した。また、ヒドロキシプロピルセルロースの分子量を高くすることにより、溶液の粘度が向上する傾向があった。これらの結果から、HPC-Hは少ない添加量(低濃度)であっても粘度向上効果が期待される。HPC-Hの添加量を少なくすることにより、上記溶液にさらに生理活性物質を添加して生理活性組成物とし、マイクロニードル上の生理活性物質の含量をより高めることができる。したがって、表5中でHPC-Hがプロピレングリコールに対する最も適当な増粘剤であると考えられる。
 また、PEG4000、コンドロイチン硫酸及びHAは、プロピレングリコールに対して完全には溶解しなかったものの、溶液又は混合液の粘度向上効果が認められた。
 表6に示すように、デキストランはグリセリンに対する溶解性が高く、デキストラン添加前と比べて溶液の粘度が大きく向上した。また、デキストランの分子量を大きくする、又はデキストランの濃度を高くすることにより、溶液の粘度が向上する傾向があった。クロスカルメロースナトリウム(Na)及びコンドロイチン硫酸は、グリセリンに対して完全には溶解しなかったものの、溶液又は混合液の粘度向上効果が認められた。
 表5及び表6で示される結果より、プロピレングリコール及びグリセリンのそれぞれに対して粘度向上のために好適な高分子化合物が見出された。
非水系処方における生理活性組成物への粘度付与試験
(実施例5)
 プロピレングリコール7.3質量部、水酸化ナトリウム0.7質量部及び塩化マグネシウム2.0質量部をスターラーにより撹拌混合した。さらに得られた混合液と酢酸オクトレオチドを1:1の質量比で混合し、生理活性組成物(50.0質量%酢酸オクトレオチド/3.5質量%水酸化ナトリウム/10.0質量%塩化マグネシウム/36.5質量%プロピレングリコール)を得た。なお、水酸化ナトリウムは酢酸オクトレオチドの酢酸部分と同じモル数分、添加された。
 上記生理活性組成物を、実施例2と同様のマイクロニードルの先端部に、塗布、乾燥し、顕微鏡観察によりマイクロニードル上に付着している生理活性組成物の高さHを測定した。評価結果を表7に示す。
(比較例1)
 塩化マグネシウムを加えず、代わりに同じ質量分のプロピレングリコールを加えたこと以外は実施例5と同様にして、生理活性組成物(50.0質量%酢酸オクトレオチド/3.5質量%水酸化ナトリウム/46.5質量%プロピレングリコール)を得た。上記生理活性組成物を実施例5と同様にマイクロニードル上に塗布し、マイクロニードル上に付着している生理活性組成物の高さHを測定した。評価結果を表7に示す。
(実施例6)
 グリセリン8.434質量部、水酸化ナトリウム0.233質量部及び塩化マグネシウム1.333質量部をスターラーにて撹拌混合した。さらに得られた混合液とLHRH(黄体形成ホルモン放出ホルモン酢酸塩)を3:1の質量比で混合し、生理活性組成物(25.0質量%LHRH/1.75質量%水酸化ナトリウム/10.0質量%塩化マグネシウム/63.25質量%グリセリン)を得た。なお、水酸化ナトリウムはLHRHの酢酸部分と同じモル数分、添加された。上記生理活性組成物を実施例5と同様にマイクロニードル上に塗布し、マイクロニードル上に付着している生理活性組成物の高さHを測定した。評価結果を表7に示す。
(比較例2)
 塩化マグネシウムを加えず、代わりに同じ質量分のグリセリンを加えたこと以外は実施例6と同様にして、生理活性組成物(25.0質量%LHRH/1.75質量%水酸化ナトリウム/73.25質量%グリセリン)を得た。上記生理活性組成物を実施例5と同様にマイクロニードル上に付着させ、マイクロニードル上に付着している生理活性組成物の高さHを測定した。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すとおり、実施例5及び実施例6では、生理活性組成物に塩化マグネシウムを添加することにより、マイクロニードル上に付着している生理活性組成物を薄く(高さHを小さく)制御することができた。生理活性組成物の粘度が向上し、液だれを改善することができたためである。
マイクロニードル上に付着している生理活性組成物の薬物含量の安定性試験
(実施例7)
 プロピレングリコール9.444質量部、塩化マグネシウム0.556質量部をスターラーにて撹拌混合した。さらに得られた混合液と酢酸オクトレオチドを9:1の質量比で混合し、生理活性組成物(10質量%酢酸オクトレオチド/5.0質量%塩化マグネシウム/85質量%プロピレングリコール)を得た。
 上記生理活性組成物を実施例2と同様のマイクロニードルの全面に10mg塗布し、50℃30分乾燥してマイクロニードルデバイスを得た。その後、得られたマイクロニードルデバイスを保存剤(ファーマキープKD;三菱ガス化学製)とともに梱包材中に封入し、封入されたマイクロニードルデバイスを60℃1週間の条件下で保存した。さらに、封入された別のマイクロニードルデバイスを、5℃1週間の条件下で保存した。
 保存後のマイクロニードルデバイス上の生理活性物質の含量を高速液体クロマトグラフィー(HPLC)により測定した。そして、5℃で保存したマイクロニードル上の生理活性物質の含量に対する、60℃で保存したマイクロニードル上の生理活性物質の残存率を百分率として算出した。算出結果を表8に示す。
(比較例3)
 塩化マグネシウムを加えず、代わりに同じ質量分のプロピレングリコールを加えたこと以外は実施例7と同様にして、生理活性組成物(10質量%酢酸オクトレオチド/90質量%プロピレングリコール)を得た。上記生理活性組成物を用いて実施例7と同様に、マイクロニードルデバイスを得た。得られたマイクロニードルデバイスを実施例7と同様に保存し、生理活性物質の残存率を算出した。算出結果を表8に示す。
(実施例8)
 薬物の種類をLHRHとした以外は実施例7と同様にして、マイクロニードルデバイスを得、生理活性物質の残存率を算出した。算出結果を表8に示す。
(比較例4)
 薬物の種類をLHRHとした以外は比較例3と同様にして、マイクロニードルデバイスを得、生理活性物質の残存率を算出した。算出結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すとおり、実施例7及び実施例8では、生理活性組成物に塩化マグネシウムを添加することにより、生理活性物質の残存率を高く維持することができた。
リキセナチドのへアレスラット生体内吸収試験
(実施例9)
 チューブに、リキセナチドとプロピレングリコールを、50:50の質量比となるように加え、ミキサーで混合し、得られた混合物を生理活性組成物とした。生理活性組成物を、厚さ50μmのマスク版を用いて、マイクロニードルに塗布した。塗布された生理活性物質の含量は、12.2μg/patch/headであった。コーティングされたマイクロニードルアレイを有する0.4Jのアプリケータを用いて、生理活性物質をヘアレスラットに投与した(繰り返し試験数3回)。
 投与後10分、30分、60分、120分、240分、480分、720分が経過したときに、頸静脈より300μLの採血を行った。Exendin-4 EIA Kitを用いて、血中のリキセナチド濃度を測定した。測定結果を図5に示す。また、図5のグラフから得られたAUC値(area under the blood concentration-time curve)及びBA値(bioavailability)を表9に示す。なお、AUC値とは図5のグラフにおいて、投与してから0分後から720分後の範囲の血中濃度-時間曲線下面積を指す。BA値とは、皮下投与に対する相対的なバイオアベイラビリティー値を指す。
(比較例5)
 チューブに、リキセナチドと生理食塩水を、50:50の質量比となるように加え、ミキサーで混合し、得られた混合物を生理活性組成物とした。生理活性組成物を15.1μg/300μL/headの条件で、ヘアレスラットに皮下投与した。その後、実施例9と同様に血中のリキセナチド濃度を測定した。測定結果を図5に示す。また、AUC値及びBA値を表9に示す。
Figure JPOXMLDOC01-appb-T000009
β-インターフェロンのヘアレスラット生体内吸収試験
(実施例10)
 チューブに、β-インターフェロンとグリセリンを、30:70の質量比となるように加え、ミキサーで混合し、得られた混合物を生理活性組成物とした。生理活性組成物を、厚さ100μmのマスク版を用いて、マイクロニードルに塗布した。塗布された生理活性物質の含量は、10.3μg/patch/headであった。コーティングされたマイクロニードルアレイを有する0.4Jのアプリケータを用いて、生理活性物質をヘアレスラットに投与した(繰り返し試験数3回)。
 投与後30分、60分、90分、180分、300分、420分、1440分が経過したときに、頸静脈より300μLの採血を行った。Exendin-4 EIA Kitを用いて、血中のβ-インターフェロン濃度を測定した。測定結果を図6に示す。
(比較例6)
 チューブに、β-インターフェロンと生理食塩水を、50:50の質量比となるように加え、ミキサーで混合し、得られた混合物を生理活性組成物とした。生理活性組成物を10μg/300μL/headの条件で、ヘアレスラットに皮下投与した(繰り返し試験数3回)。その後、実施例10と同様に血中のβ-インターフェロン濃度を測定した。測定結果を図6に示す。
 本発明によれば、マイクロニードル上に付着している生理活性組成物中の生理活性物質の経時による含量変化を著しく低減したマイクロニードルデバイスを得ることが可能となるため、マイクロニードルの利用性を格段に高めることができるものであり、産業上の利用可能性は大きい。
 1…マイクロニードルデバイス、2…マイクロニードル基板、3…マイクロニードル、5…マイクロニードル上に付着している生理活性組成物、10…生理活性組成物。

Claims (9)

  1.  基板と、
     前記基板上に設けられた、マイクロニードルと、
     前記マイクロニードル上及び/又は基板上に付着している生理活性組成物と、を備えるマイクロニードルデバイスであって、
     前記生理活性組成物は、
     グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールから選ばれる少なくとも1種の多価アルコールと、生理活性物質とを含み、実質的に水を含有しないマイクロニードルデバイス。
  2.  前記生理活性組成物は、ヒドロキシプロピルセルロース、ポリエチレングリコール、コンドロイチン硫酸、ヒアルロン酸、デキストラン、クロスカルメロースナトリウム及び塩化マグネシウムから選ばれる少なくとも1種の化合物をさらに含む、請求項1に記載のマイクロニードルデバイス。
  3.  前記生理活性組成物は前記マイクロニードル上及び/又は基板上に固着化されている請求項1又は2に記載のマイクロニードルデバイス。
  4.  生理活性物質と当該生理活性物質を分散又は溶解可能な溶媒とを含有する生理活性組成物を、マイクロニードル上に付着させるマイクロニードルデバイスの製造方法であって、
     前記溶媒として、グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールから選ばれる少なくとも1種の多価アルコールを用い、水を用いない、製造方法。
  5.  前記容器は開口部が形成されたマスク版であり、
     前記開口部に前記生理活性組成物を充填させた後に、前記開口部に前記マイクロニードルを挿入して引き出すことにより、当該マイクロニードル上に前記生理活性組成物を付着させる、請求項4記載の製造方法。
  6.  前記生理活性組成物を充填させるマスク版として、
     前記マイクロニードルを引き出した後のマスク版を再利用する、請求項4又は5記載の製造方法。
  7.  生理活性物質と多価アルコールの質量比率が、20:80~80:20である、請求項4~6のいずれか一項に記載の製造方法。
  8.  前記生理活性組成物は、粘度が600~45000cpsである、請求項4~7のいずれか一項に記載の製造方法。
  9.  生理活性物質と当該生理活性物質を分散又は溶解可能な溶媒とを含有する生理活性組成物を、前記溶媒の揮発が生じ得る容器に収容させた後に、マイクロニードル上に付着させマイクロニードルデバイスを製造するに当り、
     前記溶媒として、グリセリン、エチレングリコール、プロピレングリコール及び1,3-ブチレングリコールから選ばれる少なくとも1種の多価アルコールを用い、水を用いない、生理活性組成物の付着量安定化方法。
PCT/JP2011/054177 2010-02-24 2011-02-24 マイクロニードルデバイス及びその製造方法 WO2011105508A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012501859A JP5715617B2 (ja) 2010-02-24 2011-02-24 マイクロニードルデバイス及びその製造方法
EP11747468.4A EP2540337B1 (en) 2010-02-24 2011-02-24 Micro-needle device and preparation method
US13/580,300 US20130041330A1 (en) 2010-02-24 2011-02-24 Micro-needle device and preparation method
CA2790923A CA2790923C (en) 2010-02-24 2011-02-24 Micro-needle device and preparation method
SG2012061743A SG183421A1 (en) 2010-02-24 2011-02-24 Micro-needle device and preparation method
CN201180010839.8A CN102770176B (zh) 2010-02-24 2011-02-24 微针装置及其制造方法
KR1020127024166A KR101728194B1 (ko) 2010-02-24 2011-02-24 마이크로 니들 디바이스 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-039318 2010-02-24
JP2010039318 2010-02-24

Publications (1)

Publication Number Publication Date
WO2011105508A1 true WO2011105508A1 (ja) 2011-09-01

Family

ID=44506910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054177 WO2011105508A1 (ja) 2010-02-24 2011-02-24 マイクロニードルデバイス及びその製造方法

Country Status (9)

Country Link
US (1) US20130041330A1 (ja)
EP (1) EP2540337B1 (ja)
JP (1) JP5715617B2 (ja)
KR (1) KR101728194B1 (ja)
CN (1) CN102770176B (ja)
CA (1) CA2790923C (ja)
MY (1) MY158687A (ja)
SG (1) SG183421A1 (ja)
WO (1) WO2011105508A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115207A1 (ja) * 2011-02-24 2012-08-30 久光製薬株式会社 マイクロニードルデバイス用生理活性非水組成物及びマイクロニードル上に付着している生理活性非水組成物
WO2013051568A1 (ja) * 2011-10-06 2013-04-11 久光製薬株式会社 アプリケータ
JP2013177376A (ja) * 2012-02-09 2013-09-09 Hisamitsu Pharmaceut Co Inc マイクロニードル用ゾルミトリプタン含有コーティング組成物及びマイクロニードルデバイス
WO2013191025A1 (ja) * 2012-06-22 2013-12-27 凸版印刷株式会社 針状体及び針状体製造方法
JPWO2012115208A1 (ja) * 2011-02-24 2014-07-07 久光製薬株式会社 マイクロニードルデバイス用glp−1アナログ組成物
EP2679242A4 (en) * 2011-02-25 2016-07-20 Hisamitsu Pharmaceutical Co AUXILIARY FOR TRANSDERMAL OR TRANSMUCOSAL ADMINISTRATION AND PHARMACEUTICAL PREPARATION THEREOF
JPWO2014034882A1 (ja) * 2012-08-30 2016-08-08 株式会社 メドレックス 薬剤組成物が塗布されたマイクロニードルアレイ
JP2017023511A (ja) * 2015-07-24 2017-02-02 凸版印刷株式会社 針状体
WO2017104491A1 (ja) * 2015-12-15 2017-06-22 久光製薬株式会社 マイクロニードル・シート
US9993549B2 (en) 2013-10-31 2018-06-12 Hisamitsu Pharmaceutical Co., Inc. Adjuvant composition, adjuvant preparation containing same, and kit
JP2019515949A (ja) * 2016-04-07 2019-06-13 ラブンピープル カンパニー リミテッドLabnpeople Co.,Ltd. 生体分解性金属を用いたマイクロニードル

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135244A2 (en) * 2018-01-07 2019-07-11 Avraham Amir High-load microneedles and compositions for skin augmentation
KR101435888B1 (ko) * 2012-10-23 2014-09-01 연세대학교 산학협력단 히알루론산을 이용한 생분해성 마이크로니들 제조방법
WO2014176325A2 (en) * 2013-04-23 2014-10-30 University Of Maryland, Baltimore Extending and maintaining micropore viability of microneedle treated skin with lipid biosynthesis inhibitors for sustained drug delivery
US20150335288A1 (en) * 2013-06-06 2015-11-26 Tricord Holdings, Llc Modular physiologic monitoring systems, kits, and methods
US10537723B2 (en) 2014-09-11 2020-01-21 Hisamitsu Pharmaceutical Co., Inc. Microneedle device
KR102497984B1 (ko) * 2015-03-19 2023-02-09 라이온 가부시키가이샤 마이크로 니들 제제 및 마이크로 니들 제제의 제조 방법
KR102203633B1 (ko) * 2015-04-14 2021-01-15 주식회사 엘지생활건강 칼슘채널 차단제 전달용 용해성 미세바늘
PL3284506T3 (pl) 2015-04-13 2021-10-25 Lg Household & Health Care Ltd. Rozpuszczalna mikroigła zawierająca składnik do kontroli uwalniania neuroprzekaźników
KR102139336B1 (ko) * 2015-04-20 2020-07-29 주식회사 엘지생활건강 유효 성분의 흡수속도가 개선된 용해성 마이크로니들 디바이스 및 이를 포함하는 키트
SI3359241T1 (sl) * 2015-10-09 2021-11-30 Radius Health, Inc. Formulacije PTHRP-analogov, transdermalni obliži le-teh in uporabe le-teh
ES2909043T3 (es) 2015-10-09 2022-05-05 Kindeva Drug Delivery Lp Composiciones de zinc para sistemas de microagujas recubiertos
USD801523S1 (en) * 2016-01-21 2017-10-31 Roger Khouri Needle cartridge
ES2904891T3 (es) 2016-04-18 2022-04-06 Radius Health Inc Formulaciones de abaloparatida, parche transdérmico de la misma y usos de la misma
WO2018056584A1 (ko) 2016-09-21 2018-03-29 삼성전자 주식회사 피부 상태 측정 방법 및 이를 위한 전자 장치
KR102038751B1 (ko) * 2016-11-18 2019-10-30 연세대학교 산학협력단 복합 제형이 적용된 마이크로니들 어레이 및 이의 제조방법
KR101942169B1 (ko) * 2017-01-02 2019-01-24 가천대학교 산학협력단 마이크로 니들 장치
EP3570833A4 (en) 2017-01-20 2020-08-05 Warsaw Orthopedic, Inc. ANESTHETIC COMPOSITIONS AND PROCEDURES USING IMIDAZOLINE COMPOUNDS
KR102033686B1 (ko) 2017-05-19 2019-10-18 보령제약 주식회사 도네페질을 함유하는 마이크로니들 경피 패치
US11690799B2 (en) 2018-04-19 2023-07-04 Lts Lohmann Therapie-Systeme Ag Microneedle system for applying interferon
BR112020020159A2 (pt) * 2018-04-19 2021-01-05 Lts Lohmann Therapie-Systeme Ag Sistema de microagulhas para a aplicação de interferon
WO2020004234A1 (ja) * 2018-06-26 2020-01-02 久光製薬株式会社 マイクロニードルデバイス及びそれを製造する方法
CN110947085A (zh) * 2018-09-27 2020-04-03 中科微针(北京)科技有限公司 一种加速聚乙烯醇可溶性微针成型和速溶给药的方法及制备的微针
JP6961859B1 (ja) * 2019-12-23 2021-11-05 久光製薬株式会社 マイクロニードルデバイス及びそれを製造する方法
US20220008007A1 (en) * 2020-07-13 2022-01-13 Icreate Technology (Zhuhai) Co., Ltd. Microneedle array and sensor including the same
CN111920942A (zh) * 2020-08-24 2020-11-13 深圳前海鹰岗生物科技有限公司 一种用于快速溶解痛风石的聚合物微针及制备方法和应用
CN111939458A (zh) * 2020-08-25 2020-11-17 四川大学 一种具有超薄柔性背衬层的微针贴片及其制备方法
CN114191376B (zh) * 2022-01-05 2024-03-01 中国药科大学 一种用于治疗阿尔兹海默症的微针贴片及其制备方法
CN116920260A (zh) * 2023-07-19 2023-10-24 北京化工大学 一种可准确控制涂层高度并易于批量化制备涂层微针的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926742B2 (ja) * 1989-03-31 1999-07-28 三宝製薬株式会社 薬物投与部材
JP2001506904A (ja) 1996-12-20 2001-05-29 アルザ・コーポレーション 経皮作用剤流量を強化するための組成物と方法
JP2004504120A (ja) 2000-07-21 2004-02-12 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム ワクチン
JP2007536988A (ja) 2004-05-13 2007-12-20 アルザ コーポレイション 副甲状腺ホルモン剤の経皮送達のための装置および方法
WO2009051147A1 (ja) * 2007-10-18 2009-04-23 Hisamitsu Pharmaceutical Co., Inc. マイクロニードルデバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100566669C (zh) * 2004-05-13 2009-12-09 阿尔扎公司 甲状旁腺激素药物的透皮释放装置
MX2007001667A (es) * 2004-08-11 2007-10-02 Johnson & Johnson Aparato y metodo para el suministro transdermico de peptidos natriureticos.
WO2006138719A2 (en) * 2005-06-17 2006-12-28 Georgia Tech Research Corporation Coated microstructures and method of manufacture thereof
ES2473620T3 (es) * 2007-02-06 2014-07-07 Hisamitsu Pharmaceutical Co., Inc. Dispositivo de microagujas para el diagnóstico de una alergia
EP2441437B1 (en) * 2009-06-10 2018-08-08 Hisamitsu Pharmaceutical Co., Inc. Microneedle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926742B2 (ja) * 1989-03-31 1999-07-28 三宝製薬株式会社 薬物投与部材
JP2001506904A (ja) 1996-12-20 2001-05-29 アルザ・コーポレーション 経皮作用剤流量を強化するための組成物と方法
JP2004504120A (ja) 2000-07-21 2004-02-12 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム ワクチン
JP2007536988A (ja) 2004-05-13 2007-12-20 アルザ コーポレイション 副甲状腺ホルモン剤の経皮送達のための装置および方法
WO2009051147A1 (ja) * 2007-10-18 2009-04-23 Hisamitsu Pharmaceutical Co., Inc. マイクロニードルデバイス

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012115208A1 (ja) * 2011-02-24 2014-07-07 久光製薬株式会社 マイクロニードルデバイス用glp−1アナログ組成物
WO2012115207A1 (ja) * 2011-02-24 2012-08-30 久光製薬株式会社 マイクロニードルデバイス用生理活性非水組成物及びマイクロニードル上に付着している生理活性非水組成物
JP5675952B2 (ja) * 2011-02-24 2015-02-25 久光製薬株式会社 マイクロニードルデバイス用glp−1アナログ組成物
EP2679242A4 (en) * 2011-02-25 2016-07-20 Hisamitsu Pharmaceutical Co AUXILIARY FOR TRANSDERMAL OR TRANSMUCOSAL ADMINISTRATION AND PHARMACEUTICAL PREPARATION THEREOF
WO2013051568A1 (ja) * 2011-10-06 2013-04-11 久光製薬株式会社 アプリケータ
JPWO2013051568A1 (ja) * 2011-10-06 2015-03-30 久光製薬株式会社 アプリケータ
US9498611B2 (en) 2011-10-06 2016-11-22 Hisamitsu Pharmaceutical Co., Inc. Applicator
JP2013177376A (ja) * 2012-02-09 2013-09-09 Hisamitsu Pharmaceut Co Inc マイクロニードル用ゾルミトリプタン含有コーティング組成物及びマイクロニードルデバイス
JPWO2013191025A1 (ja) * 2012-06-22 2016-05-26 凸版印刷株式会社 針状体及び針状体製造方法
WO2013191025A1 (ja) * 2012-06-22 2013-12-27 凸版印刷株式会社 針状体及び針状体製造方法
US9919141B2 (en) 2012-06-22 2018-03-20 Toppan Printing Co., Ltd. Needle-shaped body and method for manufacturing needle-shaped body
JPWO2014034882A1 (ja) * 2012-08-30 2016-08-08 株式会社 メドレックス 薬剤組成物が塗布されたマイクロニードルアレイ
US9993549B2 (en) 2013-10-31 2018-06-12 Hisamitsu Pharmaceutical Co., Inc. Adjuvant composition, adjuvant preparation containing same, and kit
JP2017023511A (ja) * 2015-07-24 2017-02-02 凸版印刷株式会社 針状体
WO2017104491A1 (ja) * 2015-12-15 2017-06-22 久光製薬株式会社 マイクロニードル・シート
JPWO2017104491A1 (ja) * 2015-12-15 2018-09-06 久光製薬株式会社 マイクロニードル・シート
US10987502B2 (en) 2015-12-15 2021-04-27 Hisamitsu Pharmaceutical Co., Inc. Microneedle sheet
JP2019515949A (ja) * 2016-04-07 2019-06-13 ラブンピープル カンパニー リミテッドLabnpeople Co.,Ltd. 生体分解性金属を用いたマイクロニードル

Also Published As

Publication number Publication date
CN102770176B (zh) 2015-11-25
EP2540337A4 (en) 2014-04-30
KR20120138235A (ko) 2012-12-24
EP2540337A1 (en) 2013-01-02
CA2790923C (en) 2017-10-31
JPWO2011105508A1 (ja) 2013-06-20
CN102770176A (zh) 2012-11-07
KR101728194B1 (ko) 2017-05-02
CA2790923A1 (en) 2011-09-01
US20130041330A1 (en) 2013-02-14
MY158687A (en) 2016-10-31
EP2540337B1 (en) 2019-04-03
SG183421A1 (en) 2012-09-27
JP5715617B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5715617B2 (ja) マイクロニードルデバイス及びその製造方法
JP5695731B2 (ja) マイクロニードルデバイス用生理活性非水組成物及びマイクロニードル上に付着している生理活性非水組成物
EP2005990B1 (en) Microneedle device and transdermal administration device provided with microneedles
US8911422B2 (en) Micro-needle device
EP2153863B1 (en) Method of coating microneedle
JP2020203127A (ja) 治療剤の送達のためのマイクロアレイ、使用方法および製造方法
WO2010074239A1 (ja) マイクロニードルデバイス
JP6246784B2 (ja) マイクロニードルコーティング用組成物及びマイクロニードルデバイス
JP2016512754A5 (ja)
JP6369992B2 (ja) 溶解型マイクロニードル製剤
CN105982842B (zh) 微针制剂以及微针制剂的制造方法
EP3391936B1 (en) Microneedle sheet
JP6033423B2 (ja) マイクロニードル製剤製造用システム及び空調方法
TWI631965B (zh) 微針裝置及其製造方法
JP6110485B2 (ja) マイクロニードル製剤製造用システム及び空調方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010839.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501859

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2790923

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12012501667

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004259

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 13580300

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127024166

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011747468

Country of ref document: EP