WO2011101948A1 - 焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム - Google Patents

焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム Download PDF

Info

Publication number
WO2011101948A1
WO2011101948A1 PCT/JP2010/052254 JP2010052254W WO2011101948A1 WO 2011101948 A1 WO2011101948 A1 WO 2011101948A1 JP 2010052254 W JP2010052254 W JP 2010052254W WO 2011101948 A1 WO2011101948 A1 WO 2011101948A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
washing
water
filtrate
ash
Prior art date
Application number
PCT/JP2010/052254
Other languages
English (en)
French (fr)
Inventor
典敏 田村
齋藤 紳一郎
健三朗 近藤
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to PCT/JP2010/052254 priority Critical patent/WO2011101948A1/ja
Priority to US13/579,160 priority patent/US9180499B2/en
Priority to DK10846088.2T priority patent/DK2537602T3/en
Priority to EP10846088.2A priority patent/EP2537602B1/en
Priority to KR1020127021581A priority patent/KR101658125B1/ko
Priority to CN201080063983.3A priority patent/CN102762317B/zh
Publication of WO2011101948A1 publication Critical patent/WO2011101948A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/062Purification products of smoke, fume or exhaust-gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/04Regenerating the washing fluid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method and system for washing dust contained in combustion gas extracted from a kiln exhaust gas passage from a kiln bottom of a cement kiln to a lowermost cyclone, which is generated when incineration of municipal waste, etc. About.
  • Incineration ash generated when municipal waste is incinerated has recently been recycled as a raw material for cement in view of the danger of depleting the final disposal site.
  • fly ash that is carried with gas and collected by the dust collector contains 10 to 20% chlorine, so it is necessary to remove the chlorine before recycling as cement raw material. . Therefore, water-washing desalination equipment such as a belt filter is used to wash away water-soluble chlorine compounds contained in the incineration fly ash and use them as cement raw materials.
  • a chlorine bypass facility is used for extracting chlorine from a part of the kiln exhaust gas flow path to remove chlorine.
  • Chlorine Bypass Dust is used without causing environmental pollution by purifying and filtering the chlorine and using the obtained desalted cake as a raw material for cement and purifying wastewater to remove heavy metals such as copper and lead. Is being used effectively.
  • selenium (Se) and thallium (Tl) are provided in addition to the copper and lead.
  • pulverized coal supplied to kilns and calcining furnaces contains about 1 ppm of thallium and waste tires contain about 8 ppm of thallium.
  • This thallium has a low boiling point, volatilizes between the kiln and the preheater of the cement baking apparatus, and most of the thallium is concentrated in the preheater, so that it is contained in the waste water treated with chlorine bypass dust.
  • Patent Document 3 discloses that incineration ash and chlorine bypass dust are washed with water at the same time, and at least one substance selected from thallium, lead, and selenium eluted in the filtrate obtained after washing with a sulfiding agent and / or A method has been proposed for reducing the facility cost and the operating cost when recycling municipal waste incineration ash or the like as a cement raw material by removing it by adding a reducing agent.
  • the present invention has been made in view of the problems in the above-described conventional technology, and in response to an increase in the amount of chlorine bypass dust generated when washing incineration ash and cement kiln combustion gas extraction dust with water.
  • the purpose is to minimize the adverse effects on the operation due to the adhesion of the scale, and to keep the operation cost including the equipment cost and the chemical cost low.
  • the present invention is a method for washing incineration ash and cement kiln combustion gas extraction dust, which is extracted from the incineration ash and the kiln exhaust gas passage from the bottom of the cement kiln to the bottom cyclone.
  • the incineration ash is dissolved in water
  • the dust is dissolved in water
  • a filtration device is shared
  • the slurry containing the incineration ash is filtered
  • the dust is included The slurry is filtered separately.
  • the slurry containing the incinerated ash and the slurry containing the dust are separately filtered by a common filtration device, it is possible to perform processing according to the characteristics of each slurry in the subsequent stage,
  • Each of the slurries can be filtered by the above filtration device, and the equipment cost and the operation cost can be kept low in washing the incineration ash and the cement kiln combustion gas extraction dust with water.
  • the filtration device it is possible to avoid mixing the incinerated ash washing filtrate with high calcium concentration and the chlorine bypass dust washing washing solution with high SO 4 concentration. Scale adhesion in the process can be prevented, and stable operation can be maintained without adding an expensive scale inhibitor (sodium carbonate).
  • the filtrate of the slurry containing the incineration ash discharged from the filtration device and the filtrate of the slurry containing the dust may be separately treated with water. It can. Thereby, the water treatment can be performed using the chemicals corresponding to the target components of the water treatment of the filtrate of each slurry, and the chemical cost can be reduced.
  • the filtrate of the slurry containing the incineration ash and the filtrate of the slurry containing the dust are separately treated with water.
  • the filtrates can be combined.
  • concentration of a specific component can also be made low.
  • the facilities after joining the respective filtrates are shared, the facility cost can be reduced.
  • the operation of the filtration of the slurry containing incinerated ash and the filtration of the slurry containing dust can be easily performed by using the above filtration device as a batch type filtration device.
  • the water treatment target component of the incinerated ash washing filtrate can be one or more selected from the group consisting of lead, zinc, and copper
  • the water treatment target component of the dust washing filtrate One or more selected from the group consisting of selenium, thallium, lead, zinc, and copper can be used.
  • one or more selected from the group consisting of hydrochloric acid, ferrous chloride, ferrous sulfate, sodium hydrosulfide, sodium sulfide, caustic soda, and lime milk may be used. it can.
  • the washing filtrate of the incineration ash can be discharged after drainage treatment, and the washing solution of dust can be used effectively.
  • Dust washing filtrate can be used as raw materials such as chemical fertilizers, reagents and food additives, cleaning chemicals, and other chemical industrial raw materials.
  • the adverse effect on the operation due to the adhesion of scale is minimized while corresponding to the increase in the amount of chlorine bypass dust generated. Therefore, the operation cost including the equipment cost and the drug cost can be kept low.
  • FIG. 1 shows an embodiment of a flushing system for incinerated ash and cement kiln combustion gas extraction dust (hereinafter referred to as “water washing system”) according to the present invention.
  • the flushing system 1 is roughly divided into cement kiln kilns.
  • the dust washing treatment system 2 is provided for purifying the filtrate L1 by removing heavy metals from the filtrate L1 generated after washing the dust D with water and removing chlorine, and a dust tank 21 for storing the dust D. And a dissolution tank 22 for adding water to dust D to generate slurry S1, a filtrate tank 23 for storing filtrate L1 generated by solid-liquid separation of slurry S1 by vertical filter press 11, and filtrate L1.
  • a chemical solution reaction tank 24 (24A to 24C) for removing heavy metals, a slurry tank 25, a filter press 26, and a filtrate tank 27 are configured.
  • the chemical reaction tank 24A is provided to add sodium hydrosulfide (NaSH) as a sulfiding agent to the filtrate L1 and sulfidize lead and thallium in the filtrate L1 to generate lead sulfide (PbS) and thallium sulfide.
  • NaSH sodium hydrosulfide
  • PbS lead sulfide
  • a ferrous compound that functions as a flocculant and a selenium reducing agent in the illustrated example, ferrous chloride (FeCl 2 )
  • FeCl 2 ferrous chloride
  • the chemical reaction tank 24B also has a role of discharging carbonate radical, which is an interference element for removing selenium, as a gas by adding hydrochloric acid to a pH of 4 or less.
  • carbonate radical which is an interference element for removing selenium
  • lime milk is added as an alkaline agent to the filtrate L1 to which the pH is adjusted to 4 or less by adding a sulfurizing agent and a ferrous compound, and the pH is adjusted to 7.5 or more and 11 or less.
  • the filter press 26 is provided for solid-liquid separation of the slurry from the slurry tank 25 and for separating thallium sulfide, lead sulfide and selenium from the slurry.
  • the ash / water washing treatment system 3 is provided to remove the heavy metals from the generated filtrate L3 after washing the fly ash A with water and removing chlorine, and to store the fly ash A in order to purify the filtrate L3.
  • a chemical reaction tank 34 34A to 34C for removing heavy metals from the filtrate L2 and a sedimentation separator 35.
  • the chemical reaction tank 34A is provided for adding sodium hydrosulfide as a sulfiding agent to the filtrate L3 to sulfidize lead in the filtrate L1 to generate lead sulfide.
  • the chemical reaction tank 34B is agglomerated. It is provided for adding heavy metals such as lead by adding ferrous chloride as a reducing agent and reducing agent.
  • the chemical reaction tank 34C is provided for adding a polymer flocculant for the purpose of increasing the cohesiveness of heavy metals or the like and facilitating sedimentation.
  • the sedimentation separator 35 is provided for sedimenting and collecting heavy metals and the like.
  • the sedimentation separator 35 is an inclined plate sedimentation separator having a plurality of separation plates inclined at a predetermined angle.
  • the vertical filter press 11, the mixing tank 12 and the drum filter 13 are equipment commonly used for the dust washing system 2 and the ash washing system 3.
  • the vertical filter press 11 is provided to separately perform solid-liquid separation of the slurry S1 supplied from the dissolution tank 22 and solid-liquid separation of the slurry S2 supplied from the dissolution tank 32.
  • the vertical filter press 11 includes a plurality of filter plates that are horizontally arranged and stacked in a vertical direction, a jack (not shown) that raises and lowers each filter plate, and a plurality of guide rollers that are arranged laterally.
  • a batch-type filtration device comprising an endless filter cloth wound around the plurality of guide rollers, and configured to run on the upper surface of each filter plate.
  • the mixing tank 12 and the drum filter 13 are provided for collecting suspended substances such as heavy metals remaining in the filtrate from the sedimentation separator 35 and the filtrate tank 27 and purifying the waste water.
  • the filtration and water treatment of the slurry containing dust D are performed using the dust water washing treatment system 2 and the common system, and the filtration and water treatment of the slurry containing fly ash A are carried out by the ash water washing treatment system. 3 and common system.
  • the operation of the dust washing system 2 using the common system will be described.
  • the dust D from the dust tank 21 is mixed with water to produce a slurry S1, and the chlorine content contained in the dust D is dissolved in water.
  • the slurry S1 is supplied from the dissolution tank 22 to the vertical filter press 11, and the slurry S1 is solid-liquid separated.
  • the cake C1 produced by the vertical filter press 11 is charged into a cement kiln or the like as a cement raw material or the like, while the filtrate L1 containing chlorine is supplied to the filtrate tank 23 and temporarily stored.
  • the filtrate L1 stored in the filtrate tank 23 is supplied to the chemical reaction tank 24A, and sodium hydrosulfide as a sulfiding agent is added to the filtrate L1 in the chemical reaction tank 24A.
  • sodium hydrosulfide as a sulfiding agent
  • lead and thallium in the filtrate L1 are sulfided to produce lead sulfide and thallium sulfide.
  • sodium sulfide Na 2 S
  • Na 2 S sodium sulfide
  • an alkaline agent is added to the filtrate L1 having a pH of 4 or less due to the addition of the above-mentioned chemicals, and the pH is adjusted to 7.5 or more and 11 or less, which is optimal for reducing selenium.
  • the filtrate L1 from the chemical reaction tank 24C is solid-liquid separated by the filter press 26 through the slurry tank 25, and lead sulfide, thallium sulfide and selenium are recovered, and the secondary filtrate L2 is removed from the filtrate tank. 27 to supply to the mixing tank 12.
  • the secondary cake C2 generated by the filter press 26 is reused as a cement raw material or the like.
  • the fly ash A from the fly ash tank 31 is mixed with water to produce slurry S2, and the chlorine content contained in the fly ash A is dissolved in water.
  • the slurry S2 is supplied from the dissolution tank 32 to the vertical filter press 11, and the slurry S2 is solid-liquid separated.
  • the cake C3 produced by the vertical filter press 11 is put into a cement kiln or the like as a cement raw material or the like, while the filtrate L3 containing a chlorine content is supplied to the filtrate tank 33 and temporarily stored.
  • the filtrate L3 from the filtrate tank 33 is supplied to the chemical reaction tank 34A, and lead in the filtrate L3 is sulfided to lead sulfide.
  • lead sulfide is precipitated by the aggregating action of ferrous chloride, and in the chemical liquid reaction tank 34C, the precipitate is aggregated into larger particles by the polymer flocculant.
  • the sediment is separated by the sedimentation separator 35.
  • the sediment obtained by the sedimentation separator 35 is stored in a sludge pit (not shown), and then solid-liquid separated by a filter press or the like, and the cake can be reused as a cement raw material or the like.
  • the supernatant L4 from the sedimentation separator 35 is supplied to the mixing tank 12 and joined with the filtrate L2 from the filtrate tank 27 of the dust washing treatment system 2.
  • the heavy metal remaining in the supernatant L 4 from the sedimentation separator 35 and the filtrate L 2 from the filtrate tank 27 is collected, and remains in the filtrate from the mixing tank 12 by the drum filter 13. Remove heavy metals and suspended substances, add diluted water and discharge to sewers.
  • selenium, thallium and lead in the filtrate L1 are removed using the dust water washing treatment system 2 and the common system, but in addition to these, zinc, copper and the like can also be removed.
  • Sodium sulfide can be used instead of soda, and caustic soda can be used instead of lime milk. These can be used simultaneously.
  • the filtration of the slurry containing the dust D and the filtration of the slurry containing the fly ash A are performed using the common vertical filter press 11, and the mixing tank 12 and the drum filter 13 are shared. Therefore, equipment cost and operation cost can be kept low.
  • the vertical filter press 11 separately performs solid-liquid separation between the slurry S2 of fly ash A (see Table 1) having a high calcium concentration and the slurry S1 of dust D (see Table 2) having a high SO 4 concentration.
  • calcium sulfate (CaSO 4 ) scale does not occur in the vertical filter press 11, and stable operation of the vertical filter press 11 can be maintained without adding an expensive scale inhibitor (sodium carbonate).
  • the drug cost can be reduced.
  • the effect of reducing the drug cost will be specifically described by the following test examples.
  • Table 1 shows the concentration of heavy metals contained in the fly ash A plain water washing filtrate. As shown in the table, this filtrate contains lead and zinc, but selenium and thallium are not present, and copper is slightly present.
  • Table 2 shows the concentrations of heavy metals in the Dust D simple water washing filtrate. As shown in the table, since this filtrate contains selenium and thallium in addition to lead, it must be discharged after removing them by water treatment.
  • Table 3 shows the concentration of heavy metals in the filtrate when the fly ash A and dust D are mixed and washed with water.
  • the washing filtrate in the case of mixed water washing contains various heavy metals, so these are discharged as described in the third row of the table by water treatment.
  • ferrous chloride in order to remove selenium, it is necessary to add a large amount of ferrous chloride, and “6000” in the second stage in the table shows that after adding 6000 mg / l of ferrous chloride as Fe. The content of each heavy metal is shown. By adding this amount of ferrous chloride, the selenium concentration almost reaches the discharge standard value, and the other heavy metals have concentrations below the discharge standard value.
  • Table 4 shows the concentrations of heavy metals when 6000 mg / l of ferrous chloride is added as Fe to Dust D simple water-washed filtrate and then diluted with Flyash A plain water-washed filtrate.
  • Indicates. “6000” in the second row of the table indicates the concentration of each heavy metal after adding 6000 mg / l ferrous chloride as Fe.
  • “Dilution” in the third stage indicates the concentration of heavy metals after dilution with ferrous chloride and then with a fly ash A plain water washing filtrate. As described in the third column “Dilution”, all heavy metals including selenium have concentrations below the discharge standard value.
  • the fly ash A simple water washing filtrate In the case of dilution (Case B), the amount of ferrous chloride (as Fe) used when the fly ash A filtrate: 340 t / d and the dust D filtrate: 80 t / d are compared.
  • the specific gravity of the water washing filtrate is 1.09 kg / l.
  • FIG. 2 is a graph showing the relationship between the amount of ferrous chloride added and the selenium concentration of treated water when selenium (Se) is removed using ferrous chloride (FeCl 2 ).
  • the amount of ferrous chloride to be added increases as the selenium concentration decreases.
  • to reduce the selenium concentration from 0.5 mg / l to 0.1 mg / l it is necessary to add 6000 mg-Fe / l and a large amount of ferrous chloride.
  • the selenium concentration is lowered from 3.0 mg / l to 0.38 mg / l, it is necessary to add about 6000 mg-Fe / l of ferrous chloride.
  • by diluting with fly ash A washing filtrate that does not contain selenium, it becomes possible to achieve the discharge standard, and from the difference in the amount of filtrate to be processed, the amount of ferrous chloride added is greatly reduced. be able to.
  • the batch-type vertical filter press 11 is used as a filtration device for separately performing filtration of the slurry containing fly ash A and filtration of the slurry containing dust D has been described.
  • a batch type horizontal filter press can also be used, and a continuous belt filter can also be used.
  • the washing water of Dust D contains potassium used as a chemical fertilizer
  • the washing water can be directly used as an industrial material such as a raw material for chemical fertilizer.
  • this filtrate can be used as an industrial material after collecting suspended substances such as heavy metals with the drum filter 13 of FIG.
  • the salt D such as sodium chloride and potassium chloride is contained in the washing solution of Dust D
  • this salt can be recovered and used for industrial materials.
  • This salt can be recovered using a crystallizer or the like.
  • the crystallizer is a device that deposits the crystallized particle size of the solute in the water-washed filtrate by enlarging it, and recovers it through a centrifuge. It crystallizes sodium chloride for the heating type and potassium chloride for the cooling type. Can do.
  • salt can be collect
  • each device, the type of chemical solution, the processing amount per day of the processing object, etc. shown in the above embodiment are merely examples, and can be appropriately changed without departing from the spirit of the present invention. Of course.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】焼却灰及びセメントキルン燃焼ガス抽気ダストを水洗処理するにあたり、塩素バイパスダストの発生量の増加に対応しながら、スケールの付着による運転への悪影響を最小限に留め、設備コスト、及び薬剤コストを含む運転コストを低く抑える。 【解決手段】飛灰Aを水Wに溶解させる溶解槽32と、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より抽気された燃焼ガスに含まれるダストDを水Wに溶解させる溶解槽22と、溶解槽32から供給されたスラリーS2のろ過と、溶解槽22から供給されたスラリーS1のろ過とを、各々別々に行う縦型フィルタープレス11とを備える水洗システム1。縦型フィルタープレスから排出された飛灰を含むスラリーのろ液L3を水処理する水処理設備33~35と、ろ過装置から排出されたダストを含むスラリーのろ液L1を水処理する水処理設備23~27とを備えることができる。

Description

焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム
 本発明は、都市ごみなどを焼却した際に発生する焼却灰や、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より抽気した燃焼ガスに含まれるダストを水洗する方法及びシステムに関する。
 都市ごみなどを焼却した際に発生する焼却灰は、最終処分場の枯渇のおそれに鑑み、近年、セメント原料としてリサイクルしている。都市ごみ焼却灰のうち、気体とともに運ばれ、集塵装置で回収される飛灰は、10~20%の塩素分を含むため、セメント原料としてリサイクルするにあたって事前に塩素分を除去する必要がある。そこで、ベルトフィルタなどの水洗脱塩設備を用い、焼却飛灰に含まれる水溶性塩素化合物を水洗除去した後、セメント原料として利用している。
 一方、セメント製造設備におけるプレヒータの閉塞等の問題を引き起こす原因となる塩素、硫黄、アルカリなどの中で、塩素が特に問題となることに着目し、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を抽気して塩素を除去する塩素バイパス設備が用いられている。
 この塩素バイパス設備では、例えば、特許文献1に記載のように、抽気した排ガスを冷却して生成したダストの微粉側に塩素が偏在しているため、ダストを分級機によって粗粉と微粉とに分離し、粗粉をセメントキルン系に戻すとともに、分離された塩化カリウムなどを含む微粉(塩素バイパスダスト)を回収してセメント粉砕ミル系に添加していた。
 ところが、近年、上記焼却灰を含む廃棄物のセメント原料化又は燃料化によるリサイクルが推進され、廃棄物の処理量が増加するに従い、セメントキルンに持ち込まれる塩素等の揮発成分の量も増加し、塩素バイパスダストの発生量も増加している。そのため、塩素バイパスダストをすべてセメント粉砕工程で利用することができず、塩素バイパスダストについても水洗処理されていた。
 また、セメント製造設備における廃棄物の処理量の増加に伴い、セメントキルンに持ち込まれる重金属類の量も増加し、重金属類がセメント許容濃度を超えることが予測される。そのため、例えば、特許文献2に記載の廃棄物のセメント原料化処理方法では、従来水洗処理されている塩素バイパスダストなどを脱塩処理し、塩素を含む廃棄物に水を添加して廃棄物中の塩素を溶出させてろ過し、得られた脱塩ケークをセメント原料として利用するとともに、排水を浄化処理して銅や鉛等の重金属類を除去し、環境汚染を引き起こすことなく、塩素バイパスダストの有効利用を図っている。
 一方、セメント製造工程には、上記銅や鉛等に加え、セレン(Se)や、タリウム(Tl)がもたらされる。例えば、キルンや仮焼炉に供給される微粉炭中には1ppm程度、廃タイヤには8ppm程度のタリウムが含まれる。このタリウムは、沸点が低く、セメント焼成装置のキルンからプレヒータの間で揮発し、大部分がプレヒータにおいて濃縮されるため、塩素バイパスダストを処理した排水等に含まれることとなる。
 上述のように、従来、都市ごみ焼却灰等をセメント原料としてリサイクルするにあたり、飛灰と塩素バイパスダストから塩素分を除去する必要があるとともに、塩素バイパスダストを水洗して得られたろ液からタリウム、鉛、セレンなどの重金属類を除去する必要があるケースがあるため、複数の処理設備が必要になるとともに、各々の処理設備に配員する必要があるなど、設備コスト及び運転コストが高騰するという問題があった。
 そこで、特許文献3には、焼却灰と塩素バイパスダストの水洗を同時に行うとともに、水洗後得られたろ液に溶出するタリウム、鉛、セレンから選択される一つ以上の物質を硫化剤及び/又は還元剤の添加により除去することで、都市ごみ焼却灰等をセメント原料としてリサイクルするにあたり、設備コスト及び運転コストを低く抑える方法が提案されている。
国際公開第97/21638号パンフレット 日本特開2000-281398号公報 日本特開2007-268398号公報
 しかし、最近では、上記焼却灰を含む廃棄物の処理量がさらに増加し、これに伴い、塩素バイパスダストの発生量も増加の一途を辿っている。そのため、上記特許文献3に記載の焼却灰の処理方法によって焼却灰と塩素バイパスダストの水洗を同時に行うと、焼却灰には含まれていないが、塩素バイパスダストに含まれるセレンやタリウムなどの重金属類を除去するための薬剤が水洗後のろ液全体に分散するため、多量の薬剤を消費し、薬剤コストが高騰するという問題があった。また、カルシウム濃度の高い焼却灰の水洗ろ液と、SO4濃度の高い塩素バイパスダストの水洗ろ液とを混合すると硫酸カルシウム(CaSO4)が生じ、ろ過装置や後段の排水処理工程においてスケールの付着によって安定運転が阻害されるという問題があった。一方、焼却灰と塩素バイパスダストの水洗を別々に行うように各々独立した水洗設備を設けると、設備コスト及び運転コストが倍増するという問題があった。
 そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、焼却灰及びセメントキルン燃焼ガス抽気ダストを水洗処理するにあたり、塩素バイパスダストの発生量の増加に対応しながら、スケールの付着による運転への悪影響を最小限に留め、設備コスト、及び薬剤コストを含む運転コストを低く抑えることを目的とする。
 上記目的を達成するため、本発明は、焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法であって、焼却灰と、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より抽気された燃焼ガスに含まれるダストを水洗するにあたり、前記焼却灰を水に溶解させ、前記ダストを水に溶解させ、ろ過装置を共用し、前記焼却灰を含むスラリーのろ過、及び前記ダストを含むスラリーのろ過を各々別々に行うことを特徴とする。
 そして、本発明によれば、焼却灰を含むスラリー、及びダストを含むスラリーのろ過を各々別々に共通のろ過装置によって行うため、後段において各々のスラリーの特性に応じた処理を可能としながら、共通のろ過装置によって各々のスラリーのろ過を行うことができ、焼却灰及びセメントキルン燃焼ガス抽気ダストを水洗するにあたり、設備コスト及び運転コストを低く抑えることができる。これに加え、ろ過装置において、カルシウム濃度の高い焼却灰の水洗ろ液と、SO4濃度の高い塩素バイパスダストの水洗ろ液との混合を回避することができるため、ろ過装置や後段の排水処理工程におけるスケール付着を防止することができ、高価なスケール防止剤(炭酸ナトリウム)を添加しなくとも安定運転を維持することができる。
 上記焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法において、前記ろ過装置から排出された前記焼却灰を含むスラリーのろ液、及び前記ダストを含むスラリーのろ液を各々別々に水処理することができる。これによって、各々のスラリーのろ液の水処理の対象成分に対応する薬剤を用いて水処理を行うことができ、薬剤コストを低減することができる。
 また、上記焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法において、前記焼却灰を含むスラリーのろ液、及び前記ダストを含むスラリーのろ液を各々別々に水処理した後、各々の水処理後のろ液を合流させることができる。これにより、特定成分の濃度を低くすることもできる。さらに、各々のろ液を合流した後の設備を共用するため、設備コストを低減することができる。
 さらに、上記ろ過装置をバッチ式のろ過装置とすることで、焼却灰を含むスラリーのろ過と、ダストを含むスラリーのろ過の運転の切換を容易に行うことができる。
 前記焼却灰の水洗ろ液の水処理の対象成分を、鉛、亜鉛、及び銅からなる群から選択される一以上とすることができ、前記ダストの水洗ろ液の水処理の対象成分を、セレン、タリウム、鉛、亜鉛、及び銅からなる群から選択される一以上とすることができる。また、前記ダストの水洗ろ液の水処理において、塩酸、塩化第一鉄、硫酸第一鉄、水硫化ソーダ、硫化ソーダ、苛性ソーダ、及び石灰乳からなる群から選択される一以上を用いることができる。
 さらに、上記焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法において、前記焼却灰の水洗ろ液を排水処理後放流し、前記ダストの水洗ろ液を有効利用することができる。ダストの水洗ろ液は、化学肥料、試薬及び食品添加物等の原料、洗浄用薬剤、その他化学工業原料等として利用することができる。ダストの水洗ろ液を再利用することで、排水処理の手間を省くことができ、運転コストを低く抑えることもできる。
 以上のように、本発明によれば、焼却灰及びセメントキルン燃焼ガス抽気ダストを水洗処理するにあたり、塩素バイパスダストの発生量の増加に対応しながら、スケールの付着による運転への悪影響を最小限に留め、設備コスト、及び薬剤コストを含む運転コストを低く抑えることができる。
本発明にかかる水洗システムの一実施の形態を示すフローチャートである。 塩化第一鉄を用いてセレンの除去を行った場合の塩化第一鉄の添加量と、処理水のセレン濃度の関係を示すグラフである。
  次に、本発明の実施の形態について図面を参照しながら詳細に説明する。
 図1は、本発明にかかる焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗システム(以下、「水洗システム」という)の一実施の形態を示し、この水洗システム1は、大別して、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より抽気した燃焼ガスに含まれるダスト(以下「ダスト」と略称する)Dを水洗処理するためのダスト水洗処理システム2と、焼却灰(以下「飛灰」という)Aを水洗処理するための灰水洗処理システム3と、これら両システムに共通して用いられる縦型フィルタープレス11、混合タンク12及びドラムフィルタ13の共通システムとを備える。
 ダスト水洗処理システム2は、ダストDを水洗して塩素を除去した後、発生したろ液L1から重金属類を除去し、ろ液L1を浄化するために設けられ、ダストDを貯留するダストタンク21と、ダストDに水を添加してスラリーS1を生成する溶解槽22と、縦型フィルタープレス11によるスラリーS1の固液分離によって生じたろ液L1を貯留するろ液タンク23と、ろ液L1から重金属類を除去するための薬液反応槽24(24A~24C)、スラリータンク25、フィルタプレス26及びろ液タンク27とで構成される。
 薬液反応槽24Aは、ろ液L1に硫化剤として水硫化ソーダ(NaSH)を添加し、ろ液L1中の鉛及びタリウムを硫化して硫化鉛(PbS)及び硫化タリウムを生成するために備えられ、薬液反応槽24Bは、硫化剤が添加されたろ液L1に、凝集剤及びセレン還元剤として機能する第一鉄化合物(図示の例は、塩化第一鉄(FeCl2))を添加し、硫化鉛及び硫化タリウムを凝集させるとともに、ろ液L1中の6価又は4価のセレンを0価のセレンに還元するために備えられる。また、薬液反応槽24Bは、塩酸を添加してpHを4以下とすることで、セレン除去の妨害元素である炭酸根をガスとして排出する役割も有する。薬液反応槽24Cは、硫化剤及び第一鉄化合物が添加されてpHが4以下に調整されたろ液L1に、アルカリ剤として石灰乳を添加し、pHを7.5以上11以下とすることで、セレンの還元に最適なpHとするために備えられる。
 フィルタプレス26は、スラリータンク25からのスラリーを固液分離し、スラリーから硫化タリウム、硫化鉛及びセレンを分離するために設けられる。
 一方、灰水洗処理システム3は、飛灰Aを水洗して塩素を除去した後、発生したろ液L3から重金属類を除去し、ろ液L3を浄化するために設けられ、飛灰Aを貯留する飛灰タンク31と、飛灰Aに水を添加してスラリーS2を生成する溶解槽32と、縦型フィルタープレス11によるスラリーS2の固液分離によって生じたろ液L3を貯留するろ液タンク33と、ろ液L2から重金属類を除去するための薬液反応槽34(34A~34C)及び沈降分離器35とで構成される。
 薬液反応槽34Aは、ろ液L3に、硫化剤としての水硫化ソーダを添加して、ろ液L1中の鉛を硫化して硫化鉛を生成するために備えられ、薬液反応槽34Bは、凝集剤及び還元剤としての塩化第一鉄等を添加して、鉛等の重金属類を析出させるために備えられる。薬液反応槽34Cは、重金属類等の凝集性を高めて沈降し易くする目的で高分子凝集剤を添加するために備えられる。
 沈降分離器35は、重金属類等を沈降させて回収するために備えられる。この沈降分離器35は、所定の角度に傾斜した複数の分離プレートを有する傾斜板沈降分離装置である。
 縦型フィルタープレス11、混合タンク12及びドラムフィルタ13は、上記ダスト水洗処理システム2と灰水洗処理システム3に共通して使用される設備である。
 縦型フィルタープレス11は、溶解槽22から供給されたスラリーS1の固液分離と、溶解槽32から供給されたスラリーS2の固液分離とを、各々別々に行うために備えられる。この縦型フィルタープレス11は、水平配置され、縦方向に段積み配置された複数のろ板と、各ろ板を昇降させるジャッキ(不図示)と、側方に配置された複数の案内ローラと、該複数の案内ローラに掛け回された無端状のろ布とを備え、各ろ板の上面上をろ布が走行するように構成されるバッチ式のろ過装置である。
 混合タンク12及びドラムフィルタ13は、沈降分離器35及びろ液タンク27からのろ液中に残存する重金属類等の懸濁物質を捕集して排水を浄化するために備えられる。
 次に、上記水洗システム1を用いた本発明にかかる水洗方法について、図1を参照しながら説明する。本発明にかかる水洗方法では、ダストDを含むスラリーのろ過及び水処理を、ダスト水洗処理システム2及び共通システムを用いて行い、飛灰Aを含むスラリーのろ過及び水処理を、灰水洗処理システム3及び共通システムを用いて行う。そこで、まず、共通システムを用いたダスト水洗処理システム2の動作について説明する。
 運転を開始すると、先ず、溶解槽22において、ダストタンク21からのダストDを水と混合してスラリーS1を生成し、ダストDに含まれる塩素分を水中に溶解させる。溶解槽22からスラリーS1を縦型フィルタープレス11に供給し、スラリーS1を固液分離する。縦型フィルタープレス11で生成されるケーキC1は、セメント原料等としてセメントキルンなどに投入され、一方、塩素分を含むろ液L1は、ろ液タンク23に供給されて一時的に貯留される。
 次に、ろ液タンク23に貯留したろ液L1を薬液反応槽24Aに供給し、薬液反応槽24Aにおいて、ろ液L1に硫化剤としての水硫化ソーダを添加する。これによって、ろ液L1中の鉛及びタリウムを硫化して硫化鉛及び硫化タリウムを生成する。尚、硫化剤として、水硫化ソーダの他に硫化ソーダ(Na2S)を用いることもできる。
 次に、薬液反応槽24Bにおいて、ろ液L1に塩酸を添加し、ろ液L1のpHを4以下に調整して溶解している炭酸根をガスとして排出するとともに、pH調整されたろ液L1に凝集剤及びセレン還元剤として機能する塩化第一鉄を添加し、硫化鉛及び硫化タリウムを凝集させるとともに、ろ液L1中の6価又は4価のセレンを0価のセレンに還元する。尚、塩化第一鉄に代えて硫酸第一鉄(FeSO4)を用いることもできる。
 次いで、薬液反応槽24Cにおいて、上記薬剤の添加によりpHが4以下となったろ液L1に、アルカリ剤を添加し、pHをセレンの還元に最適である7.5以上11以下とする。
 次に、スラリータンク25を介してフィルタプレス26によって、薬液反応槽24Cからのろ液L1を固液分離し、硫化鉛、硫化タリウム及びセレンを回収するとともに、2次ろ液L2をろ液タンク27を介して混合タンク12に供給する。フィルタプレス26で生成される2次ケーキC2は、セメント原料等として再利用される。
  次に、共通システムを用いた灰水洗処理システム3の動作について説明する。
 運転を開始すると、先ず、溶解槽32において、飛灰タンク31からの飛灰Aを水と混合してスラリーS2を生成し、飛灰Aに含まれる塩素分を水中に溶解させる。溶解槽32からスラリーS2を縦型フィルタープレス11に供給し、スラリーS2を固液分離する。縦型フィルタープレス11で生成されるケーキC3は、セメント原料等としてセメントキルンなどに投入され、一方、塩素分を含むろ液L3は、ろ液タンク33に供給されて一時的に貯留される。
 ろ液タンク33からのろ液L3を、薬液反応槽34Aに供給し、ろ液L3の鉛を硫化して硫化鉛とする。次に、薬液反応槽34Bにおいて、塩化第一鉄の凝集作用により硫化鉛を沈殿させ、薬液反応槽34Cにおいて、高分子凝集剤によって上記沈殿物をさらに大きな粒子になるように凝集させる。
 次に、沈降分離器35で上記沈殿物を沈降分離する。沈降分離器35で得られた沈殿物は、図示しないスラッジピットに貯留された後、フィルタープレスなどで固液分離され、ケーキをセメント原料等として再利用することができる。
 次に、沈降分離器35からの上澄液L4を混合タンク12に供給し、ダスト水洗処理システム2のろ液タンク27からのろ液L2と合流させる。
 混合タンク12において、沈降分離器35からの上澄液L4及びろ液タンク27からのろ液L2に残留する重金属類等を捕集し、ドラムフィルタ13で混合タンク12からのろ液に残留する重金属類、縣濁物質を除去し、希釈水を添加して下水道等に放流する。
 尚、上記実施の形態においては、ダスト水洗処理システム2及び共通システムを用いてろ液L1のセレン、タリウム、鉛を除去したが、これらの他に亜鉛、銅等を除去することもでき、水硫化ソーダに代えて硫化ソーダを、石灰乳に代えて苛性ソーダを用いることができ、これらを同時に用いることもできる。
 また、灰水洗処理システム3及び共通システムを用いてろ液L3を水処理する場合でも、鉛以外に、亜鉛、銅等を除去することができ、水硫化ソーダに代えて硫化ソーダ、液体キレート、塩化第一鉄に代えて塩化第二鉄を用いることもでき、これらを同時に用いることもできる。さらに、pH調整等のために苛性ソーダを用いることができる。
 以上のように、本発明では、ダストDを含むスラリーのろ過、及び飛灰Aを含むスラリーのろ過を共通の縦型フィルタープレス11を用いて行うとともに、混合タンク12及びドラムフィルタ13を共用するため、設備コスト及び運転コストを低く抑えることができる。また、カルシウム濃度の高い飛灰A(表1参照)のスラリーS2と、SO4濃度の高いダストD(表2参照)のスラリーS1との固液分離を縦型フィルタープレス11によって別々に行うため、縦型フィルタープレス11に硫酸カルシウム(CaSO4)のスケールが発生せず、高価なスケール防止剤(炭酸ナトリウム)を添加しなくとも縦型フィルタープレス11の安定運転を維持することができる。さらに、ダストDを含むスラリーS1の水処理、及び飛灰Aを含むスラリーS2の水処理を別々に、各々のスラリーの特性に応じて行うため、薬剤コストを低減することができる。この薬剤コストの低減効果について、以下の試験例によって具体的に説明する。
 表1は、飛灰A単味の水洗ろ液に含まれる重金属類の濃度を示す。同表に示すように、このろ液には、鉛や亜鉛が含まれるが、セレン及びタリウムは存在せず、銅が僅かに存在する。
Figure JPOXMLDOC01-appb-T000001
 表2は、ダストD単味の水洗ろ液の重金属類の濃度を示す。同表に示すように、このろ液には、鉛の他に、セレン及びタリウムが存在するため、水処理によってこれらを除去した後、放流する必要がある。
Figure JPOXMLDOC01-appb-T000002
 表3は、飛灰AとダストDを混合して水洗した場合のろ液の重金属類の濃度を示す。ここで、飛灰AとダストDの混合割合は、図1に示す一日あたりの各々の処理量の比に合わせたものとなっている。すなわち、飛灰A:85t/d(1日あたりの処理量(トン))、ダストD:20t/dの処理量であるから、ダストDの全体に対する割合が、20/(85+20)×100=19.1%となっている。
Figure JPOXMLDOC01-appb-T000003
 同表の1段目に示すように、混合水洗を行った場合の水洗ろ液には、種々の重金属類が含まれているため、水処理によってこれらを同表の3段目に記載の放流基準値以下にする必要がある。特に、セレンを除去するためには、塩化第一鉄を多量に添加する必要があり、同表の2段目の「6000」は、Feとして6000mg/lの塩化第一鉄を添加した後の各重金属類の含有率を示す。この量の塩化第一鉄を添加することでセレン濃度が略々放流基準値に達し、他の重金属類は放流基準値以下の濃度となっている。
 一方、表4は、ダストD単味の水洗ろ液に、Feとして6000mg/lの塩化第一鉄を添加した後、飛灰A単味の水洗ろ液で希釈した場合の各重金属類の濃度を示す。同表の2段目の「6000」は、Feとして6000mg/lの塩化第一鉄を添加した後の各重金属類の各重金属類の濃度を示す。3段目の「希釈」は、上記塩化第一鉄後に飛灰A単味の水洗ろ液で希釈した後の重金属類の濃度を示す。3段目の「希釈」の欄に記載のように、セレンを含むすべての重金属類について放流基準値以下の濃度となっている。
Figure JPOXMLDOC01-appb-T000004
 ここで、上記飛灰AとダストDの混合水洗を行う場合(ケースA)と、ダストD単味の水洗ろ液に塩化第一鉄を添加した後、飛灰A単味の水洗ろ液で希釈する場合(ケースB)とで、飛灰Aのろ液:340t/d、ダストDのろ液:80t/dを処理した場合の塩化第一鉄(Feとして)の使用量を比較する。尚、水洗ろ液の比重は、1.09kg/lである。
 ケースAの場合には、
6000mg/l÷1.09kg/l×(340+80)t/d=2,311kg/d
となり、2,311kg/dの鉄(Fe)を消費する。
 一方、ケースBの場合には、
6000mg/l÷1.09kg/l×80t/d=440kg/d
となり、440kg/dの鉄(Fe)を消費する。
 以上より、ケースBでは、ケースAの5分の1の(FeCl2)使用量で済むことが判る。
 図2は、塩化第一鉄(FeCl2)を用いてセレン(Se)の除去を行った場合の塩化第一鉄の添加量と、処理水のセレン濃度の関係を示すグラフである。同図に示すように、セレンの濃度が低くなるに従って、添加すべき塩化第一鉄の量が増大することが判る。特に、セレン濃度を0.5mg/lから0.1mg/lまで下げるには、6000mg-Fe/lと多量の塩化第一鉄を添加する必要がある。一方、セレン濃度を3.0mg/lから0.38mg/lまで下げる場合にも、約6000mg-Fe/lの塩化第一鉄の添加が必要である。その後、セレンを含有していない飛灰Aの水洗ろ液で希釈することで、放流基準の達成が可能となり、処理するろ液量の差から、塩化第一鉄の添加量を大幅に低下させることができる。
 尚、上記実施の形態においては、飛灰Aを含むスラリーのろ過と、ダストDを含むスラリーのろ過とを各々別々に行うろ過装置としてバッチ式の縦型フィルタープレス11を用いる場合について説明したが、バッチ式の横型のフィルタープレスを用いることもでき、また、連続式のベルトフィルタなどを用いることもできる。
 また、上記実施の形態には、飛灰Aの水洗ろ液とダストDの水洗ろ液を混合タンク12にて合流させる場合を示しているが、ダストDの水洗ろ液の全部又は一部を別の用途に有効利用することができる。
 例えば、ダストDの水洗ろ液中には、化学肥料として用いられるカリウムが含まれるため、この水洗ろ液を直接化学肥料原料等の工業材料として利用することができる。また、このろ液を図1のドラムフィルタ13等にて重金属類等の懸濁物質を捕集し、排水処理した後に工業材料として利用することもできる。
 さらに、ダストDの水洗ろ液には塩化ナトリウムや塩化カリウム等の塩も含まれることから、この塩を回収して工業材料等に利用することができる。この塩は晶析装置等を用いて回収することができる。晶析装置は、水洗ろ液中の溶質の結晶粒径を大きくして析出させ、遠心分離機を経て回収する装置であり、加熱型では塩化ナトリウムを、冷却型では塩化カリウムを晶析させることができる。また、水洗ろ液から重金属等を除去するための排水処理した後に塩を回収することができる。
  また、上記実施の形態においては、焼却灰として飛灰を水洗する場合を例示したが、飛灰に代えて主灰を水洗する場合にも本発明を適用することができ、また、飛灰と主灰を同時に水洗することもできる。
 さらに、上記実施の形態で示した、各装置、薬液の種類、処理対象物の一日あたりの処理量等は例示に過ぎず、本発明の趣旨を逸脱しない範囲で適宜変更することができることはもちろんである。
1 水洗システム
2  ダスト水洗処理システム
3  灰水洗処理システム
11 縦型フィルタープレス
12 混合タンク
13 ドラムフィルタ
21 ダストタンク
22 溶解槽
23 ろ液タンク
24(24A~24C) 薬液反応槽
25 スラリータンク
26 フィルタプレス
27 ろ液タンク
31 飛灰タンク
32 溶解槽
33 ろ液タンク
34(34A~34C) 薬液反応槽
35 沈降分離器
A  飛灰
C1~C3 ケーキ
D ダスト
L1~L3 ろ液
L4 上澄液
S1~S2スラリー

Claims (8)

  1.  焼却灰と、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より抽気された燃焼ガスに含まれるダストを水洗するにあたり、
     前記焼却灰を水に溶解させ、
     前記ダストを水に溶解させ、
     ろ過装置を共用し、前記焼却灰を含むスラリーのろ過、及び前記ダストを含むスラリーのろ過を各々別々に行うことを特徴とする焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法。
  2.  前記ろ過装置から排出された前記焼却灰を含むスラリーのろ液、及び前記ダストを含むスラリーのろ液を各々別々に水処理することを特徴とする請求項1に記載の焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法。
  3.  前記焼却灰を含むスラリーのろ液、及び前記ダストを含むスラリーのろ液を各々別々に水処理した後、各々の水処理後のろ液を合流させることを特徴とする請求項1又は2に記載の焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法。
  4.  前記ろ過装置は、バッチ式のろ過装置であることを特徴とする請求項1、2又は3に記載の焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗システム。
  5.  前記焼却灰の水洗ろ液の水処理の対象成分は、鉛、亜鉛、及び銅からなる群から選択される一以上であることを特徴とする請求項2、3又は4に記載の焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法。
  6.  前記ダストの水洗ろ液の水処理の対象成分は、セレン、タリウム、鉛、亜鉛、及び銅からなる群から選択される一以上であることを特徴とする請求項2、3又は4に記載の焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法。
  7.  前記ダストの水洗ろ液の水処理において、塩酸、塩化第一鉄、硫酸第一鉄、水硫化ソーダ、硫化ソーダ、苛性ソーダ、及び石灰乳からなる群から選択される一以上を用いることを特徴とする請求項2、3又は4に記載の焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法。
  8.  前記焼却灰の水洗ろ液を排水処理後放流し、前記ダストの水洗ろ液を有効利用することを特徴とする請求項1乃至7のいずれかに記載の焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法。
PCT/JP2010/052254 2010-02-16 2010-02-16 焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム WO2011101948A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/052254 WO2011101948A1 (ja) 2010-02-16 2010-02-16 焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム
US13/579,160 US9180499B2 (en) 2010-02-16 2010-02-16 Method for washing incineration ash and dust contained in extracted cement kiln combustion gas
DK10846088.2T DK2537602T3 (en) 2010-02-16 2010-02-16 Method and system for washing combustion ash and dust contained in combustion gas extracted from a cement furnace
EP10846088.2A EP2537602B1 (en) 2010-02-16 2010-02-16 Method and system for washing incineration ash and dust contained in extracted cement kiln combustion gas
KR1020127021581A KR101658125B1 (ko) 2010-02-16 2010-02-16 소각재 및 시멘트 킬른 연소 가스 추기 더스트의 수세 방법
CN201080063983.3A CN102762317B (zh) 2010-02-16 2010-02-16 焚烧灰和水泥窑燃烧气体抽气粉尘的水洗方法及水洗系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052254 WO2011101948A1 (ja) 2010-02-16 2010-02-16 焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム

Publications (1)

Publication Number Publication Date
WO2011101948A1 true WO2011101948A1 (ja) 2011-08-25

Family

ID=44482572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052254 WO2011101948A1 (ja) 2010-02-16 2010-02-16 焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム

Country Status (6)

Country Link
US (1) US9180499B2 (ja)
EP (1) EP2537602B1 (ja)
KR (1) KR101658125B1 (ja)
CN (1) CN102762317B (ja)
DK (1) DK2537602T3 (ja)
WO (1) WO2011101948A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014779A (ja) * 2012-07-10 2014-01-30 Taiheiyo Cement Corp 排水処理方法
JP2014014780A (ja) * 2012-07-10 2014-01-30 Taiheiyo Cement Corp 排水処理方法
JP2014133676A (ja) * 2013-01-09 2014-07-24 Sumitomo Osaka Cement Co Ltd 燃焼灰の処理方法及びセメントの製造方法
CN104858174A (zh) * 2015-04-22 2015-08-26 中国矿业大学 一种采石场废渣和建筑用砂清洗工艺及系统
CN109280567A (zh) * 2018-11-19 2019-01-29 金川集团股份有限公司 一种流化床气化炉生产煤气过程中处理飞灰的装置及方法
JP2021154190A (ja) * 2020-03-25 2021-10-07 宇部興産株式会社 水洗処理システム、及び水洗処理システムの制御方法
CN114682615A (zh) * 2022-04-15 2022-07-01 蒋永富 一种垃圾焚烧飞灰处理系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550084B2 (en) * 2012-05-23 2017-01-24 University Of Wyoming Removal of elements from coal fly ash
CN106746124A (zh) * 2017-01-04 2017-05-31 浙江万银节能环保科技有限公司 垃圾飞灰水洗预处理及水泥窑协同资源化处置系统
CN106929683B (zh) * 2017-04-07 2018-07-20 环境保护部华南环境科学研究所 一种冶矿炉气中铊的在线资源化回收装置
KR101968111B1 (ko) 2017-09-28 2019-08-13 성신양회 주식회사 시멘트 바이패스 더스트를 이용한 염화칼륨 제조 방법
KR102576793B1 (ko) * 2018-09-10 2023-09-08 다이헤이요 세멘토 가부시키가이샤 염소 함유 분체의 수세 처리 방법 및 염소 함유 분체의 수세 처리 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021638A1 (fr) 1995-12-11 1997-06-19 Chichibu Onoda Cement Corporation Procede de traitement de gaz d'echappement d'un four par derivation du chlore et appareil correspondant
JP2000281398A (ja) 1999-03-31 2000-10-10 Taiheiyo Cement Corp 廃棄物のセメント原料化処理方法
JP2003326232A (ja) * 2002-05-14 2003-11-18 Taiheiyo Cement Corp カルシウム含有ダストの水洗方法及び水洗装置
JP2004337797A (ja) * 2003-05-19 2004-12-02 Taiheiyo Cement Corp 塩素バイパスダストの水洗ろ過処理方法および水洗ろ過処理システム
JP2007268398A (ja) 2006-03-31 2007-10-18 Taiheiyo Cement Corp 焼却灰の処理方法及び処理設備
JP2009202077A (ja) * 2008-02-27 2009-09-10 Taiheiyo Cement Corp ダストの水洗方法
JP2009255066A (ja) * 2008-03-26 2009-11-05 Ube Ind Ltd ダストの処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737459B2 (ja) * 2002-07-02 2006-01-18 太平洋セメント株式会社 廃棄物の再資源化処理方法
KR101026663B1 (ko) * 2003-09-10 2011-04-04 다이헤이요 세멘토 가부시키가이샤 소각 비산회의 처리 방법 및 장치
JP4785438B2 (ja) * 2005-06-15 2011-10-05 太平洋セメント株式会社 セメント製造工程からの重金属回収方法
JP4075909B2 (ja) * 2005-06-16 2008-04-16 三菱マテリアル株式会社 セメント製造設備からの排ガス中の有機塩素化合物低減方法
JP2007054801A (ja) * 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd 飛灰処理装置及び飛灰の処理方法
JP5085027B2 (ja) * 2005-10-17 2012-11-28 住友大阪セメント株式会社 塩素含有廃棄物の処理方法及び処理装置
JP4958171B2 (ja) * 2007-10-30 2012-06-20 太平洋セメント株式会社 排水処理方法
JP2011156473A (ja) * 2010-01-29 2011-08-18 Nippon Steel Corp ダストの処理方法
JP5003786B2 (ja) * 2010-03-31 2012-08-15 住友大阪セメント株式会社 塩素含有廃棄物のセメント原料化処理方法及び処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021638A1 (fr) 1995-12-11 1997-06-19 Chichibu Onoda Cement Corporation Procede de traitement de gaz d'echappement d'un four par derivation du chlore et appareil correspondant
JP2000281398A (ja) 1999-03-31 2000-10-10 Taiheiyo Cement Corp 廃棄物のセメント原料化処理方法
JP2003326232A (ja) * 2002-05-14 2003-11-18 Taiheiyo Cement Corp カルシウム含有ダストの水洗方法及び水洗装置
JP2004337797A (ja) * 2003-05-19 2004-12-02 Taiheiyo Cement Corp 塩素バイパスダストの水洗ろ過処理方法および水洗ろ過処理システム
JP2007268398A (ja) 2006-03-31 2007-10-18 Taiheiyo Cement Corp 焼却灰の処理方法及び処理設備
JP2009202077A (ja) * 2008-02-27 2009-09-10 Taiheiyo Cement Corp ダストの水洗方法
JP2009255066A (ja) * 2008-03-26 2009-11-05 Ube Ind Ltd ダストの処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2537602A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014779A (ja) * 2012-07-10 2014-01-30 Taiheiyo Cement Corp 排水処理方法
JP2014014780A (ja) * 2012-07-10 2014-01-30 Taiheiyo Cement Corp 排水処理方法
JP2014133676A (ja) * 2013-01-09 2014-07-24 Sumitomo Osaka Cement Co Ltd 燃焼灰の処理方法及びセメントの製造方法
CN104858174A (zh) * 2015-04-22 2015-08-26 中国矿业大学 一种采石场废渣和建筑用砂清洗工艺及系统
CN109280567A (zh) * 2018-11-19 2019-01-29 金川集团股份有限公司 一种流化床气化炉生产煤气过程中处理飞灰的装置及方法
JP2021154190A (ja) * 2020-03-25 2021-10-07 宇部興産株式会社 水洗処理システム、及び水洗処理システムの制御方法
JP7434014B2 (ja) 2020-03-25 2024-02-20 Ube三菱セメント株式会社 水洗処理システム、及び水洗処理システムの制御方法
CN114682615A (zh) * 2022-04-15 2022-07-01 蒋永富 一种垃圾焚烧飞灰处理系统

Also Published As

Publication number Publication date
US20130199567A1 (en) 2013-08-08
EP2537602A4 (en) 2014-07-09
CN102762317B (zh) 2015-06-17
DK2537602T3 (en) 2017-10-30
KR20120117885A (ko) 2012-10-24
CN102762317A (zh) 2012-10-31
KR101658125B1 (ko) 2016-09-20
US9180499B2 (en) 2015-11-10
EP2537602A1 (en) 2012-12-26
EP2537602B1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
WO2011101948A1 (ja) 焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム
CN102811967B (zh) 含氯废料的水泥原料化处理方法和处理装置
JP4958171B2 (ja) 排水処理方法
JP5355431B2 (ja) 焼却飛灰及びセメントキルン燃焼ガス抽気ダストの処理方法及び処理装置
JP5317421B2 (ja) 塩含有粉体の処理方法及び処理システム
JP2006347794A (ja) セメント製造工程からの重金属除去・回収方法
JP2007268398A (ja) 焼却灰の処理方法及び処理設備
JP5709199B2 (ja) 焼却飛灰及びセメントキルン燃焼ガス抽気ダストの処理方法及び処理装置
JP4986958B2 (ja) 焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法及び水洗システム
JP4974245B2 (ja) 焼却灰及びセメントキルン燃焼ガス抽気ダストの水洗方法
JP4777327B2 (ja) 排水処理方法
JP2009202077A (ja) ダストの水洗方法
JP5545754B2 (ja) 塩素含有物の処理時に発生した溶液の処理方法
JP5911100B2 (ja) 排水処理方法
JP5019831B2 (ja) セメントキルン燃焼ガス抽気ダストの処理方法
JP5114227B2 (ja) 水溶性塩素含有廃棄物の処理方法及び処理装置
TWI586923B (zh) 焚化灰燼及水泥窯燃燒氣體抽氣粉塵之水洗方法以及水洗系統
JP6809915B2 (ja) 焼却灰の重金属回収方法及び焼却灰の重金属回収処理システム
JP5877588B2 (ja) 排水処理方法
JP2014171923A (ja) 塩素バイパスダスト水洗排水の処理方法及び処理装置
JP2003286050A (ja) キルン排ガスダストの処理方法
JP5184688B2 (ja) ダストの水洗方法
JP2010201293A (ja) 排ガスダストの処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063983.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846088

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010846088

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010846088

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021581

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13579160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP