WO2011099117A1 - プログラマブルコントローラ - Google Patents

プログラマブルコントローラ Download PDF

Info

Publication number
WO2011099117A1
WO2011099117A1 PCT/JP2010/051873 JP2010051873W WO2011099117A1 WO 2011099117 A1 WO2011099117 A1 WO 2011099117A1 JP 2010051873 W JP2010051873 W JP 2010051873W WO 2011099117 A1 WO2011099117 A1 WO 2011099117A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
unit
memory
supply unit
Prior art date
Application number
PCT/JP2010/051873
Other languages
English (en)
French (fr)
Inventor
貴裕 大石
孝一 新開
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/051873 priority Critical patent/WO2011099117A1/ja
Priority to TW099119833A priority patent/TW201128907A/zh
Publication of WO2011099117A1 publication Critical patent/WO2011099117A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/058Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/14Plc safety
    • G05B2219/14053Power failure, loss, abnormal battery
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24137Non volatile memory to store program on power loss

Definitions

  • the present invention relates to a programmable controller that controls industrial equipment.
  • a programmable controller (hereinafter simply referred to as a PLC) includes input / output data to / from a controlled device and intermediate data necessary for executing a user program by executing a user program described in a ladder language or the like. Generate and update device data sequentially. In order for the PLC to realize high-speed control, device data is usually stored in a volatile memory that operates as fast as possible, such as a high-speed SRAM.
  • a backup memory is provided separately from the high-speed memory in which the device data is stored, and the device data stored in the high-speed memory is transferred to the backup memory when the power is turned off.
  • the backup memory for example, a low power consumption type SRAM in which stored contents are held by a backup power source can be adopted.
  • an electric double layer capacitor is provided inside a unit that needs to be backed up, and when power supply is interrupted, the electric double layer capacitor is charged with power from the volatile high-speed memory for execution.
  • a technique for transferring data that needs to be backed up to a low-speed memory is disclosed.
  • the present invention has been made in view of the above, and an object thereof is to obtain a PLC as compact as possible that saves device data when the power is turned off.
  • the present invention includes a CPU unit and a power supply unit that generates a power supply for driving the CPU unit from a commercial power supply, and the CPU unit is volatile.
  • a first memory a control unit for storing device data, which is data for controlling the controlled device, in the first memory, and sequentially updating the stored device data based on a user program; and battery backup
  • a second memory a power supply circuit for generating power to drive the control unit and the first memory from power supplied from the power supply unit; and storing power based on the power supplied from the power supply unit;
  • a tantalum capacitor that supplies the stored power to the power supply circuit when the power from the unit is cut off; When the supply of commercial power to the power supply unit is stopped, the control unit uses the power stored in the tantalum capacitor to read the device data stored in the first memory and read the device data A save process for writing device data to the second memory is executed.
  • FIG. 1 is a diagram showing a configuration of a PLC according to an embodiment of the present invention.
  • FIG. 2 is a timing chart for explaining the operation of the PLC according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a PLC according to an embodiment of the present invention.
  • the PLC 1 includes a CPU (Central Processing Unit) unit 2 and a power supply unit 3.
  • the PLC 1 includes an optional unit (not shown) as a controlled device such as a temperature control unit, a network unit, and an analog unit that performs D / A conversion, which are selected according to the application.
  • the option unit controls the industrial equipment based on the output data output from the CPU unit 2 and inputs result data such as responses from the industrial equipment and various measurement data to the CPU unit 2.
  • the CPU unit 2 creates output data based on the input result data (input data).
  • the input / output data between the CPU unit 2 and the option unit and the intermediate data generated to calculate the output data are collectively referred to as device data.
  • the power supply unit 3 generates, for example, DC 5V voltage power to be supplied to each unit included in the PLC 1 from a commercial power source that is supplied with a voltage of AC 100V, for example, and supplies the generated power to each unit.
  • the power supply unit 3 supplies the generated power to the CPU unit 2 via the inter-unit power supply line.
  • the power supply unit 3 monitors the voltage of the commercial power supply and the voltage of the power supply supplied from the own power supply unit 3 to the CPU unit 2. When the voltage supplied to the CPU unit 2 by the power supply unit 3 falls below a predetermined threshold value, a reset signal is transmitted to the CPU unit 2.
  • the power supply unit 3 can continue to supply power to the CPU unit 2 at a voltage exceeding the threshold value for transmitting the reset signal only for a short time after the commercial power supply is turned off.
  • the transmission of the power-off notice signal here means that the signal line of the power-off notice signal is toggled from a high level to a low level.
  • the transmission of the reset signal means that the signal line of the reset signal is toggled from the high level to the low level.
  • the state where commercial power is supplied to the power supply unit 3 is referred to as a power-on state
  • the state where commercial power supply is stopped is referred to as a power-off state
  • the power interruption of the commercial power supply in the embodiment of the present invention includes not only the stop of the supply of the commercial power supply to the power supply unit 3 by the user but also the power interruption due to an accident such as a power failure.
  • the CPU unit 2 includes a power supply circuit 10, a processor 11, an ASIC (Application Specific Integrated Circuit) 12, a backup RAM (Random Access Memory) 13 as a second memory, a switching circuit 16, a battery 17, a diode 18, an OR circuit 19, A reset switch 20, an OR circuit 21, and a tantalum capacitor 22 are provided.
  • the processor 11 and the ASIC 12 are connected to each other by buses (address bus and data bus).
  • the ASIC 12 and the backup RAM 13 are connected to each other by buses (address bus and data bus).
  • the ASIC 12 includes an execution engine 121, a user program 122, and a high-speed RAM 123 as a first memory.
  • the execution engine 121 functions as a control unit of the embodiment of the present invention in cooperation with the processor 11.
  • the device data 124 is stored in a high-speed RAM 123 that is a volatile memory that can be accessed at high speed from the execution engine 121.
  • a high-speed RAM 123 for example, an SRAM (Static Random Access Memory) capable of high-speed access can be employed.
  • the execution engine 121 executes a sequence program repetitive process based on the user program 122 and sequentially updates the device data 124 stored in the high-speed RAM 123. More specifically, the execution engine 121 reads the intermediate data of the device data 124 and the input data from the option unit from the high-speed RAM 123 and scans the read intermediate data and input data every time the sequence program processing is performed. Based on the above, the user program is executed to generate output data to the option unit, and the generated output data is overwritten on the high-speed RAM 123.
  • the power-off warning signal transmitted from the power supply unit 3 is input to the input terminal of the OR circuit 21.
  • An operation signal for a reset switch 20 described later is input to another input terminal of the OR circuit 21.
  • the power-off notice signal output from the output terminal of the OR circuit 21 is input to the ASIC 12.
  • the ASIC 12 transfers the power-off notice signal to the processor 11 via the dedicated line.
  • the processor 11 receives the power-off notice signal, the processor 11 saves the device data 124 stored in the high-speed RAM 123 to the backup RAM 13 that is a volatile memory backed up by the battery 17 in the power-off state.
  • the backup RAM 13 for example, an SRAM of a type that is slower than the high-speed RAM 123 but consumes less power is used in order to extend the life of the battery 17 as much as possible.
  • An operation signal generated by pressing the reset switch 20 is input to another input terminal of the OR circuit 21. That is, the OR circuit 21 transmits a power-off notice signal to the ASIC 12 not only when it receives a power-off notice signal from the power supply unit 3 but also when it receives an operation signal from the reset switch 20.
  • the processor 11 transmits a command (backup command) for saving the device data 124 stored in the high-speed RAM 123 to the backup RAM 13 to the execution engine 121 of the ASIC 12.
  • the backup command is transmitted via the bus.
  • the backup command is, for example, an instruction that designates the address where the device data 124 is stored in the high-speed RAM 123 and the size of the device data 124, reads the data of the designated size from the designated address, and writes it to the backup RAM 13. is there. Note that a particularly important part of the device data 124 may be written to the backup RAM 13 by this command.
  • the execution engine 121 When the execution engine 121 completes the execution of the backup command, it transmits a save completion notification signal to the processor 11 via the dedicated line. Upon receiving the save completion notification signal from the execution engine 121, the processor 11 transfers the received save completion notification signal to the OR circuit 19 described later. Here, the transmission of the evacuation completion notification signal is assumed to be to toggle the dedicated line of the evacuation completion notification signal from the high level to the low level.
  • the reset signal transmitted by the power supply unit 3 is input to the input terminal of the OR circuit 19.
  • the reset signal output from the output terminal of the OR circuit 19 is branched into two and input to the processor 11 and the ASIC 12 respectively.
  • the processor 11 and the ASIC 12 (execution engine 121) that have received the reset signal each perform an operation of resetting itself.
  • An operation signal for the reset switch 20 is input to another input terminal of the OR circuit 19. That is, the OR circuit 19 can transmit the reset signal to the processor 11 and the ASIC 12 not only when the reset signal is received from the power supply unit 3 but also when the operation signal is received from the reset switch 20.
  • the OR circuit 19 logically inverts and accepts the save completion notification signal transferred from the processor 11 separately from the input of the reset signal and the operation signal of the reset switch 20.
  • the OR circuit 19 uses the save completion notification signal as a control signal for determining whether or not to output a calculation result based on the input of the reset signal and the operation signal of the reset switch 20. Specifically, the OR circuit 19 outputs a calculation result when the save completion notification signal is at a low level. That is, the OR circuit 19 functions as a reset signal delay transmission unit that transmits the reset signal to the processor 11 and the ASIC 12 when the backup operation is completed after receiving the reset signal transmitted from the power supply unit 3.
  • the electric power supplied from the power supply unit 3 through the inter-unit power supply line is input to the power supply circuit 10 via the diode 18 for preventing a reverse current flow.
  • the power supply circuit 10 generates power for driving the processor 11, the ASIC 12, and the backup RAM 13 using the input power.
  • the processor 11 and the ASIC 12 are connected to the power supply circuit 10 through power supply lines (not shown) between components. In FIG. 1, the processor 11 and the ASIC 12 are described as being supplied with the same voltage power, but the voltages supplied to each may not be the same.
  • the power for driving the backup RAM 13 is supplied to the backup RAM 13 via the switching circuit 16.
  • the switching circuit 16 is connected to a battery 17 for battery backup of the backup RAM 13.
  • the switching circuit 16 monitors the voltage of power supplied to the backup RAM 13, and when the voltage falls below a predetermined threshold, the power supply source supplied from the power supply circuit 10 to the battery 17 is supplied to the backup RAM 13. Switch. That is, in the power-off state, the stored contents of the backup RAM 13 are backed up by the backup current from the battery 17.
  • one or more (here, three) tantalum capacitors 22 that store power supplied from the power supply unit 3 are connected.
  • the power is turned off and the voltage of the power from the power supply unit 3 input to the power supply circuit 10 is lowered, the power stored in the tantalum capacitor 22 is discharged from the tantalum capacitor 22 and supplied to the power supply circuit 10. Is done.
  • the tantalum capacitor 22 has a capacity sufficient to compensate for the power required for the operation from the transition from the power-on state to the power-off state until the processor 11 and the ASIC 12 complete the reset operation. Since the tantalum capacitor 22 has a smaller equivalent series resistance than the electric double layer capacitor, the electric double layer capacitor is used because less wasted power is consumed without being actually supplied to the power supply circuit 10. The required amount of power can be stored with a smaller capacitor capacity than in the case. Further, since the tantalum capacitor 22 is smaller in size than the electric double layer capacitor, it can be stored in a smaller space than the electric double layer capacitor. Therefore, according to the embodiment of the present invention, the size of PLC 1 can be made compact as compared with the case where an electric double layer capacitor is used. Moreover, since the tantalum capacitor 22 has a longer life than the electric double layer capacitor, the life of the PLC 1 can be extended.
  • FIG. 2 is a timing chart for explaining the operation of the PLC 1.
  • FIG. 2 shows, in order from the top, (a) transition of the power supply voltage (AC100V) supplied to the power supply unit 3, and (b) transition of the power-off notice signal transmitted from the power supply unit 3 to the processor 11 via the ASIC 12.
  • AC100V power supply voltage
  • the power supply unit 3 transmits a power-off notice signal as shown in (b).
  • the power-off notice signal is transmitted immediately after the supply of commercial power to the power supply unit 3 is interrupted (here, at a timing of 5 msec after the supply of commercial power is interrupted).
  • the power off notice signal is transferred to the processor 11 via the ASIC 12.
  • the CPU unit 2 performs a normal operation (RUN) until the processor 11 receives the power-off notice signal. That is, the execution engine 121 executes the user program 122 and updates the device data 124 stored in the high-speed RAM 123.
  • the processor 11 receives the power off notice signal
  • the processor 11 starts the power off process of the CPU unit 2 using the power off notice signal as a trigger.
  • the power-off process is a process for writing a log such as a power-off time in the backup RAM 13 or the like, for example.
  • the CPU unit 2 starts a backup operation for saving the device data 124 to the backup RAM 13 according to a backup command from the processor 11.
  • the ASIC 12 transmits a save completion notification signal.
  • the transmitted save completion notification signal is input to the OR circuit 19 via the processor 11.
  • the OR circuit 19 outputs a reset signal from the power supply unit 3 to the processor 11 and the ASIC 12 using the input save completion notification signal as a trigger.
  • the processor 11 and the ASIC 12 receive the reset signal, they reset themselves.
  • the power supply from the power supply unit 3 to the CPU unit 2 has a voltage of 5 V for a while (20 msec in this case) after the supply of commercial power to the power supply unit 3 is interrupted. Supplied while keeping.
  • the power-off process and backup operation described above are executed while consuming electric power supplied to the CPU unit 2 after the supply of commercial power to the power supply unit 3 is interrupted.
  • the tantalum capacitor 22 is automatically turned on as shown in (h). The electric discharge is started. The power-off process and the backup operation are continued by the discharge current of the tantalum capacitor 22.
  • the switching circuit 16 switches the power supplied to the backup RAM 13 from the power supply unit 3 to the battery 17 as shown in (i).
  • the backup operation that is, saving of the device data 124 to the backup RAM 13 is completed. That is, the device data 124 is backed up in a state immediately before the power is turned off.
  • the operation signal of the reset switch 20 is input to the input terminals of the OR circuit 19 and the OR circuit 21. That is, even when the reset switch 20 is pressed, the backup operation is executed. Specifically, assuming that the reset switch 20 is pressed and a power-off notice signal is transmitted to the ASIC 12 at the timing shown in FIG. 2B, the operation of the CPU unit 2, the transmission completion notification signal, and the ASIC 12 are transmitted. Transmission of the reset signal, discharge of the tantalum capacitor, and battery switching are performed at timings equal to the timings shown in (e), (f), (g), (h), and (i), respectively.
  • the tantalum capacitor 22 may be short-circuited between the electrodes as one of failure modes, and a large current may flow. Therefore, an overcurrent protection circuit may be interposed between the tantalum capacitor 22 and the power supply circuit 10 in order to prevent an excessive current from flowing when the tantalum capacitor 22 fails.
  • the overcurrent protection circuit may be a fuse, for example. Further, as the tantalum capacitor 22, a type having a built-in fuse may be adopted.
  • the CPU unit 2 stores power based on the power supplied from the power supply unit 3, and stores the power when the power from the power supply unit 3 stops.
  • a tantalum capacitor 22 that supplies power to the power supply circuit 10 is provided.
  • the processor 11 stores the power in the high-speed RAM 123 using the power stored in the tantalum capacitor 22. Since the device data 124 is saved in the backup RAM 13, the tantalum capacitor 22 has a smaller equivalent series resistance than the electric double layer capacitor and can store a large amount of power. It is possible to obtain a PLC that is as compact as possible and saves device data when disconnected.
  • an OR circuit 19 is further provided that transmits the reset signal transmitted from the power supply unit 3 to the processor 11 and the ASIC 12 when the backup operation is completed. Since configured, the processor 11 and the ASIC 12 can be prevented from performing the reset operation until the backup operation is completed.
  • the high-speed RAM 123 is provided in the ASIC 12 in order to execute access to the device data 124 as fast as possible. However, the high-speed RAM 123 is provided outside the ASIC 12. May be.
  • execution engine 121 and the processor 11 may be integrated into one processor that functions as a control unit.
  • the reset signal transmitted from the power supply unit 3 can be transmitted to the processor 11 and the ASIC 12 when the backup operation is completed after receiving the reset signal transmitted from the power supply unit 3, the reset signal is reset.
  • the configuration of the signal delay transmission unit may not be the configuration of the OR circuit.
  • the power supply unit 3 has been described as being able to continue supplying power to the CPU unit 2 at a voltage exceeding the threshold for transmitting the reset signal only for a short time after the commercial power supply is turned off.
  • the power supply to the CPU unit 2 may not be supplied immediately after the commercial power supply is turned off. In that case, a tantalum capacitor 22 having a capacity capable of driving the CPU unit 2 until the backup operation is completed is selected.
  • the PLC according to the present invention is suitable for application to a programmable controller that controls industrial equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Programmable Controllers (AREA)

Abstract

 電源断時にデバイスデータを退避する、できるだけコンパクトなPLCを得るために、CPUユニット(2)は、電源ユニット(3)から供給される電源に基づいて電力を蓄え、電源ユニット(3)からの電源が途絶えたとき、蓄えていた電力を電源回路(10)に供給するタンタルコンデンサ(22)を備え、電源ユニット(3)への商用電源の供給が停止したとき、プロセッサ(11)は、タンタルコンデンサ(22)に蓄えられていた電力を利用して、高速RAM(123)に格納されているデバイスデータ(124)をバックアップ用RAM(13)へ退避させる。

Description

プログラマブルコントローラ
 本発明は、産業用機器を制御するプログラマブルコントローラに関する。
 プログラマブルコントローラ(以下、単にPLC)は、ラダー言語などで記述されたユーザプログラムを実行することによって、被制御装置との間の入出力データやユーザプログラムを実行するにあたって必要となる中間データなどを含むデバイスデータを逐次生成・更新する。PLCが高速な制御を実現するために、デバイスデータは、通常、高速SRAMなど出来るだけ高速に動作する揮発性のメモリに格納される。
 PLCを用いた制御システムの多くは、電源断から復帰するとき、電源断の直前の状態と同じ状態に復帰することが求められる。すなわち、電源復帰時には、電源断の直前のデバイスデータを使用できるようにする必要がある。そのための1つの構成として、前記したデバイスデータが格納される高速メモリとは別にバックアップ用のメモリを別途備え、電源断の際に、高速メモリに格納されているデバイスデータをバックアップ用メモリに転送する構成が考えられる。バックアップ用メモリとしては、例えば、バックアップ電源により記憶内容が保持される低消費電力型のSRAMを採用することができる。
 例えば特許文献1には、バックアップが必要なユニット内部に電気二重層コンデンサを具備し、電源供給が途絶えたとき、電気二重層コンデンサに充電された電力により実行用の揮発性の高速メモリからバックアップ用の低速メモリへバックアップが必要なデータを転送する技術が開示されている。
特開2000-194607号公報
 しかしながら、電気二重層コンデンサは等価直列抵抗が大きいため、放電時の電圧降下が大きい。したがって、実行用のメモリからバックアップ用のメモリへの転送を実行するための電圧を確保するためには、必要以上の電圧で充電する必要があり、必要以上の容量の電気二重層コンデンサが必要となる。そのため、特許文献1の技術をPLCに適用すると、PLCが大型化するとともにPLCのコストが増大してしまうという問題があった。
 本発明は、上記に鑑みてなされたものであって、電源断時にデバイスデータを退避する、できるだけコンパクトなPLCを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、CPUユニットと、商用電源から前記CPUユニットを駆動する電源を生成する電源ユニットと、を備え、前記CPUユニットは、揮発性の第1メモリと、被制御装置を制御するためのデータであるデバイスデータを前記第1メモリに格納し、前記格納されたデバイスデータをユーザプログラムに基づいて逐次更新する制御部と、バッテリバックアップされた第2メモリと、前記電源ユニットから供給される電源から前記制御部および前記第1メモリを駆動する電源を生成する電源回路と、前記電源ユニットから供給される電源に基づいて電力を蓄え、前記電源ユニットからの電源が途絶えたとき、前記蓄えていた電力を前記電源回路に供給するタンタルコンデンサと、を備え、前記電源ユニットへの商用電源の供給が停止したとき、前記制御部は、前記タンタルコンデンサに蓄えられていた電力を利用して、前記第1メモリに格納されているデバイスデータを読み出して前記読み出したデバイスデータを前記第2メモリへ書き込む退避処理を実行する、ことを特徴とする。
 本発明によれば、電源断時にデバイスデータを退避する、できるだけコンパクトなPLCを得ることができるという効果を奏する。
図1は、本発明の実施の形態のPLCの構成を示す図である。 図2は、本発明の実施の形態のPLCの動作を説明するタイミングチャートである。
 以下に、本発明にかかるPLCの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本発明にかかる実施の形態のPLCの構成を示す図である。図示するように、PLC1は、CPU(Central Processing Unit)ユニット2と電源ユニット3とを備えている。PLC1は、CPUユニット2や電源ユニット3のほかに、用途に合わせて選択される温度制御ユニット、ネットワークユニット、D/A変換を行うアナログユニットなど被制御装置としてのオプションユニット(図示せず)を備える。オプションユニットは、CPUユニット2が出力する出力データに基づいて産業用機器を制御し、産業用機器からの応答や各種測定データなどの結果データをCPUユニット2へ入力する。CPUユニット2は、入力されてきた結果データ(入力データ)に基づいて出力データを作成する。なお、CPUユニット2とオプションユニットとの間の入出力データと出力データを算出するために生成される中間データとを合わせてデバイスデータということとする。
 電源ユニット3は、例えばAC100Vの電圧で電力供給される商用電源からPLC1が備える各ユニットに供給する例えばDC5Vの電圧の電力を生成し、生成した電力を各ユニットに供給する。ここでは、電源ユニット3は、生成した電力をユニット間電源供給線を介してCPUユニット2へ供給する。また、電源ユニット3は、商用電源の電圧および自電源ユニット3がCPUユニット2へ供給する電源の電圧を監視しており、商用電源の電源断を検知したとき、CPUユニット2へ電源オフ予告信号を送信し、自電源ユニット3がCPUユニット2へ供給する電圧が所定のしきい値を下回ったとき、CPUユニット2へリセット信号を送信する。なお、電源ユニット3は、商用電源の電源断後も短い間だけリセット信号を送信するしきい値を越える電圧でCPUユニット2へ電力を供給し続けることができるようになっている。
 なお、電源オフ予告信号を送信する、とは、ここでは、電源オフ予告信号の信号線をハイレベルからローレベルへトグルさせることであるとする。また、リセット信号を送信するとは、リセット信号の信号線をハイレベルからローレベルへトグルさせることであるとする。
 また、以降、電源ユニット3へ商用電源が供給されている状態のことを電源オン状態、商用電源の供給が停止した状態のことを電源オフ状態ということとする。なお、本発明の実施の形態における商用電源の電源断は、使用者による電源ユニット3への商用電源の供給の停止だけでなく、停電など、事故による電源断も含む。
 CPUユニット2は、電源回路10、プロセッサ11、ASIC(Application Specific Integrated Circuit)12、第2メモリとしてのバックアップ用RAM(Random Access Memory)13、切り替え回路16、バッテリ17、ダイオード18、オア回路19、リセットスイッチ20、オア回路21、およびタンタルコンデンサ22を備えている。
 プロセッサ11、ASIC12は夫々互いにバス(アドレスバスおよびデータバス)で接続されている。また、ASIC12およびバックアップ用RAM13の間は互いにバス(アドレスバスおよびデータバス)で接続されている。
 ASIC12は、実行エンジン121と、ユーザプログラム122と、第1メモリとしての高速RAM123とを備える。実行エンジン121は、プロセッサ11と協働して本発明の実施の形態の制御部として機能する。
 デバイスデータ124は、実行エンジン121からの高速なアクセスが可能な揮発性メモリである高速RAM123に格納される。高速RAM123としては、例えば、高速アクセスが可能なSRAM(Static Random Access Memory)を採用することができる。実行エンジン121は、ユーザプログラム122に基づいてシーケンスプログラムの繰り返し処理を実行し、高速RAM123に格納されているデバイスデータ124を逐次更新する。より具体的には、実行エンジン121は、シーケンスプログラム処理をするスキャン毎に、高速RAM123からデバイスデータ124のうちの中間データとオプションユニットからの入力データとを読み出して、読み出した中間データおよび入力データに基づいてユーザプログラムを実行してオプションユニットへの出力データを生成し、生成した出力データを高速RAM123に上書きする。
 電源ユニット3が送信した電源オフ予告信号は、オア回路21の入力端に入力される。オア回路21の別の入力端には、後述するリセットスイッチ20の操作信号が入力される。オア回路21の出力端から出力された電源オフ予告信号は、ASIC12に入力される。ASIC12は、電源オフ予告信号を専用線を介してプロセッサ11へ転送する。プロセッサ11は、電源オフ予告信号を受信すると、高速RAM123に格納されているデバイスデータ124を電源オフ状態においてバッテリ17によりバッテリバックアップされる揮発性メモリであるバックアップ用RAM13へ退避させる処理であるバックアップ処理を開始する。なお、バックアップ用RAM13としては、例えば、バッテリ17の寿命をできるだけ長くするために、高速RAM123よりも低速であるが消費電力が低いタイプのSRAMが採用される。
 オア回路21の別の入力端には、リセットスイッチ20が押下されることによって発生される操作信号が入力される。すなわち、オア回路21は、電源ユニット3から電源オフ予告信号を受信したときのほか、リセットスイッチ20から操作信号を受信したときにもASIC12へ電源オフ予告信号を送信する。
 バックアップ処理においては、プロセッサ11は、ASIC12の実行エンジン121へ、高速RAM123に格納されているデバイスデータ124をバックアップ用RAM13へ退避させる指令(バックアップ指令)を送信する。バックアップ指令は、バスを介して送信される。バックアップ指令は、例えば、高速RAM123におけるデバイスデータ124が格納されている番地とデバイスデータ124のサイズとを指定し、指定された番地から指定されたサイズのデータを読み出してバックアップ用RAM13へ書き込む命令である。なお、この命令によってデバイスデータ124のうちの特に重要な部分をバックアップ用RAM13へ書き込むように構成するようにしてもよい。
 実行エンジン121は、バックアップ指令を実行完了すると、専用線を介してプロセッサ11へ退避完了通知信号を送信する。プロセッサ11は、実行エンジン121から退避完了通知信号を受信すると、後述するオア回路19に前記受信した退避完了通知信号を転送する。なお、退避完了通知信号を送信するとは、ここでは、退避完了通知信号の専用線をハイレベルからローレベルへトグルすることであるとする。
 一方、電源ユニット3が送信したリセット信号は、オア回路19の入力端に入力される。オア回路19の出力端から出力されたリセット信号は、二つに分岐して夫々プロセッサ11、ASIC12へ入力される。リセット信号を受信したプロセッサ11、ASIC12(実行エンジン121)は、夫々、自身をリセットする動作を実行する。
 オア回路19の別の入力端には、リセットスイッチ20の操作信号が入力される。すなわち、オア回路19は、電源ユニット3からリセット信号を受信した場合の他、リセットスイッチ20から操作信号を受信した場合にも、リセット信号をプロセッサ11およびASIC12へ送信できるようになる。
 ここで、オア回路19は、リセット信号およびリセットスイッチ20の操作信号の入力とは別に、プロセッサ11から転送されてきた退避完了通知信号を論理反転して受け付ける。オア回路19は、退避完了通知信号を、リセット信号およびリセットスイッチ20の操作信号の入力に基づく演算結果を出力するか否かを決定する制御信号として使用する。具体的には、オア回路19は、退避完了通知信号がローレベルであるとき、演算結果を出力する。すなわち、オア回路19は、電源ユニット3から送信されてきたリセット信号を受信した後、バックアップ動作が終了したとき、リセット信号をプロセッサ11およびASIC12へ伝達するリセット信号遅延伝達部として機能する。
 ユニット間電源供給線を通じて電源ユニット3から供給されてきた電力は、電流の逆流を防止するためのダイオード18を介して電源回路10に入力される。電源回路10は入力された電力を用いてプロセッサ11、ASIC12、バックアップ用RAM13を駆動するための電力を生成する。プロセッサ11、ASIC12は、夫々、電源回路10との間で、構成要素間の電源供給線(図示せず)で接続されている。なお、図1において、プロセッサ11、ASIC12には同一の電圧の電力が供給されるものとして表記しているが、夫々に供給する電圧は同一でなくても構わない。
 バックアップ用RAM13を駆動するための電力は、切り替え回路16を介してバックアップ用RAM13へ供給される。また、切り替え回路16にはバックアップ用RAM13をバッテリバックアップするためのバッテリ17が接続されている。切り替え回路16は、バックアップ用RAM13へ供給される電力の電圧を監視し、該電圧が所定のしきい値を下回ったとき、バックアップ用RAM13へ供給する電力の供給元を電源回路10からバッテリ17へ切り替える。すなわち、電源オフ状態においては、バックアップ用RAM13の記憶内容はバッテリ17によるバックアップ電流によりバックアップされることとなる。
 ダイオード18と電源回路10との間には、電源ユニット3から供給される電力を蓄える1つ以上(ここでは3つ)のタンタルコンデンサ22が接続されている。電源がオフされて、電源回路10に入力される電源ユニット3からの電力の電圧が低下されてきたとき、タンタルコンデンサ22に蓄えられていた電力はタンタルコンデンサ22から放電されて電源回路10に供給される。
 なお、タンタルコンデンサ22は、電源オン状態から電源オフ状態に移行してからプロセッサ11およびASIC12がリセット動作を完了するまでの動作に必要となる電力を補うだけの容量のものが採用される。タンタルコンデンサ22は、電気二重層コンデンサに比べて等価直列抵抗が小さいので、蓄えた電力のうち実際に電源回路10に供給されないで消費される無駄な電力が少ないため、電気二重層コンデンサを使用する場合に比べて少ないコンデンサ容量で必要な電力量を蓄えることができる。また、タンタルコンデンサ22は、電気二重層コンデンサに比べて大きさが小さいため、電気二重層コンデンサに比べて小さいスペースに収めることができる。したがって、本発明の実施の形態によれば、電気二重層コンデンサを使用した場合に比べて、PLC1の寸法をコンパクトにすることができる。また、タンタルコンデンサ22は、電気二重層コンデンサに比べて寿命が長いため、PLC1を長寿命化することができる。
 次に、PLC1の動作を説明する。図2は、PLC1の動作を説明するタイミングチャートである。図2は、上段から順に、(a)電源ユニット3へ供給される電源電圧(AC100V)の遷移、(b)電源ユニット3からASIC12を介してプロセッサ11へ伝達される電源オフ予告信号の遷移、(c)電源ユニット3からCPUユニット2へ供給される電源電圧の遷移、(d)電源ユニット3からオア回路19へのリセット信号の遷移、(e)CPUユニットの動作、(f)ASIC12からプロセッサ11を介してオア回路19へ伝達される退避完了通知信号の遷移、(g)オア回路19からプロセッサ11、ASIC12へ送信されるリセット信号の遷移、(h)タンタルコンデンサの放電電流の遷移、および(i)バッテリ切り替えのタイミング、を示している。
 まず、(a)に示すタイミングで電源ユニット3への商用電源の供給が途絶えると、電源ユニット3は、(b)に示すように、電源オフ予告信号を送信する。電源オフ予告信号送信は、電源ユニット3への商用電源の供給が途絶えてからすぐに(ここでは商用電源の供給が途絶えてから5msec経ったタイミングで)送信される。電源オフ予告信号は、ASIC12を介してプロセッサ11へ転送される。
 (e)に示すように、プロセッサ11が電源オフ予告信号を受信するまでCPUユニット2は通常動作(RUN)を行っている。すなわち実行エンジン121は、ユーザプログラム122を実行して高速RAM123に格納されているデバイスデータ124を更新している。プロセッサ11が電源オフ予告信号を受信すると、電源オフ予告信号をトリガとしてプロセッサ11はCPUユニット2の電源オフ処理を開始させる。電源オフ処理とは、例えばバックアップ用RAM13などに電源オフ時刻などのログを書き込む処理である。電源オフ処理が終了すると、プロセッサ11によるバックアップ指令により、CPUユニット2はデバイスデータ124をバックアップ用RAM13に退避させるバックアップ動作を開始する。
 (f)に示すように、バックアップ動作が終了すると、ASIC12は、退避完了通知信号を送信する。送信された退避完了通知信号は、プロセッサ11を介してオア回路19へ入力される。(g)に示すように、オア回路19は、入力された退避完了通知信号をトリガとして電源ユニット3からのリセット信号をプロセッサ11およびASIC12へ出力する。プロセッサ11およびASIC12は、リセット信号を受信すると、夫々、自身をリセットする。
 一方、(c)に示すように、電源ユニット3からCPUユニット2への電源は、電源ユニット3への商用電源の供給が途絶えてからしばらくの間(ここでは20msecの間)、5Vの電圧を保ったまま供給される。前記した電源オフ処理およびバックアップ動作は、電源ユニット3への商用電源の供給が途絶えた後にCPUユニット2へ供給される電力を消費して実行される。
 電源オフ処理、バックアップ動作の途中で、商用電源の供給が途絶えてから電源ユニット3がCPUユニット2へDC5Vの電源を供給できなくなってきたとき、(h)に示すように、タンタルコンデンサ22は自動的に放電を開始する。電源オフ処理、バックアップ動作は、タンタルコンデンサ22の放電電流により、続行される。タンタルコンデンサ22の電圧が所定の電圧を下回ったとき、(i)に示すように、切り替え回路16は、バックアップ用RAM13へ供給する電源を電源ユニット3からバッテリ17へ切り替える。この切り替えが実行されるときにはバックアップ動作、すなわちデバイスデータ124のバックアップ用RAM13への退避が完了している。すなわち、デバイスデータ124は、電源オフ状態となる直前の状態でバックアップされる。
 なお、前述のように、リセットスイッチ20の操作信号は、オア回路19、オア回路21の夫々の入力端に入力される。すなわち、リセットスイッチ20を押下された場合でも、バックアップ動作が実行される。具体的には、リセットスイッチ20が押下されて図2の(b)に示すタイミングで電源オフ予告信号がASIC12へ伝達されたとすると、CPUユニット2の動作、退避完了通知信号の伝達、ASIC12へのリセット信号の伝達、タンタルコンデンサの放流、バッテリ切り替えが、夫々(e)、(f)、(g)、(h)、(i)に示したタイミングと等しいタイミングで実行される。
 なお、タンタルコンデンサ22は、故障モードのひとつとして、極間でショートし、大電流が流れることがある。したがって、タンタルコンデンサ22の故障時に過大な電流が流れることを防ぐために、過電流保護回路をタンタルコンデンサ22と電源回路10との間に介在させるようにしてもよい。過電流保護回路は例えばヒューズであっても構わない。また、タンタルコンデンサ22として、ヒューズを内蔵したタイプを採用するようにしてもよい。
 以上のべたように、本発明の実施の形態によれば、CPUユニット2は、電源ユニット3から供給される電源に基づいて電力を蓄え、電源ユニット3からの電源が途絶えたとき、蓄えていた電力を電源回路10に供給するタンタルコンデンサ22を備え、電源ユニット3への商用電源の供給が停止したとき、プロセッサ11は、タンタルコンデンサ22に蓄えられていた電力を利用して、高速RAM123に格納されているデバイスデータ124をバックアップ用RAM13へ退避させるように構成したので、タンタルコンデンサ22は電気二重層コンデンサに比べて等価直列抵抗が小さくかつ小型で大容量の電力を蓄えることができるので、電源断時にデバイスデータを退避する、できるだけコンパクトなPLCを得ることができる。
 また、電源ユニット3から送信されてきたリセット信号を受信した後、バックアップ動作が終了したとき、電源ユニット3から送信されてきたリセット信号をプロセッサ11およびASIC12へ伝達するオア回路19をさらに備えるように構成したので、プロセッサ11およびASIC12はバックアップ動作が完了するまでリセット動作が行われないようにすることができる。
 なお、実施の形態の説明においては、デバイスデータ124へのアクセスをできるだけ高速に実行するためにASIC12内に高速RAM123を備えさせるように構成したが、高速RAM123をASIC12の外に備えさせるように構成してもよい。
 また、実行エンジン121およびプロセッサ11を制御部として機能する一つのプロセッサに統合するようにしてもよい。
 また、電源ユニット3から送信されてきたリセット信号を受信した後、バックアップ動作が終了したとき、電源ユニット3から送信されてきたリセット信号をプロセッサ11およびASIC12へ伝達することができるのであれば、リセット信号遅延伝達部の構成はオア回路の構成でなくても構わない。
 また、電源ユニット3は、商用電源の電源断後も短い間だけリセット信号を送信するしきい値を越える電圧でCPUユニット2へ電力を供給し続けることができるとして説明したが、電源ユニット3は、商用電源の電源断後、すぐにCPUユニット2へ電力を供給できなくなるものであってもかまわない。その場合、タンタルコンデンサ22は、バックアップ動作が完了するまでCPUユニット2を駆動することができる容量を備えるものが選択されるようにしておく。
 以上のように、本発明にかかるPLCは、産業用機器を制御するプログラマブルコントローラに適用して好適である。
 1 PLC
 2 CPUユニット
 3 電源ユニット
 10 電源回路
 11 プロセッサ
 12 ASIC
 13 バックアップ用SRAM
 16 切り替え回路
 17 バッテリ
 18 ダイオード
 19 オア回路
 20 リセットスイッチ
 21 オア回路
 22 タンタルコンデンサ
 121 実行エンジン
 122 ユーザプログラム
 123 高速メモリ
 124 デバイスデータ

Claims (7)

  1.  CPUユニットと、
     商用電源から前記CPUユニットを駆動する電源を生成する電源ユニットと、
     を備え、
     前記CPUユニットは、
     揮発性の第1メモリと、
     被制御装置を制御するためのデータであるデバイスデータを前記第1メモリに格納し、前記格納されたデバイスデータをユーザプログラムに基づいて逐次更新する制御部と、
     バッテリバックアップされた第2メモリと、
     前記電源ユニットから供給される電源から前記制御部および前記第1メモリを駆動する電源を生成する電源回路と、
     前記電源ユニットから供給される電源に基づいて電力を蓄え、前記電源ユニットからの電源が途絶えたとき、前記蓄えていた電力を前記電源回路に供給するタンタルコンデンサと、
     を備え、
     前記電源ユニットへの商用電源の供給が停止したとき、前記制御部は、前記タンタルコンデンサに蓄えられていた電力を利用して、前記第1メモリに格納されているデバイスデータを読み出して前記読み出したデバイスデータを前記第2メモリへ書き込む退避処理を実行する、
     ことを特徴とするプログラマブルコントローラ。
  2.  前記電源ユニットは、前記商用電源の供給が停止したとき、前記制御部へ電源オフ予告信号を送信し、
     前記制御部は、前記電源ユニットが送信した電源オフ予告信号を受信したとき、前記退避処理を開始する、
     ことを特徴とする請求項1に記載のプログラマブルコントローラ。
  3.  前記電源ユニットは、前記商用電源の供給が停止した後、前記制御部をリセットするためのリセット信号を前記CPUユニットへ送信し、
     前記CPUユニットは、
     前記電源ユニットから送信されてきたリセット信号を受信した後、前記退避処理が終了したとき、前記電源ユニットから送信されてきたリセット信号を前記制御部へ伝達するリセット信号遅延伝達部をさらに備える、
     ことを特徴とする請求項1に記載のプログラマブルコントローラ。
  4.  前記制御部は、前記退避処理が終了したとき、退避完了通知信号を前記リセット信号遅延伝達部へ送信し、
     前記リセット信号遅延伝達部は、前記退避完了通知信号を受信したとき、前記電源ユニットから送信されてきたリセット信号を前記制御部へ伝達する、
     ことを特徴とする請求項3に記載のプログラマブルコントローラ。
  5.  前記タンタルコンデンサは、自タンタルコンデンサに蓄えていた電力を過電流保護回路を介して前記電源回路へ供給する、
     ことを特徴とする請求項1に記載のプログラマブルコントローラ。
  6.  前記第1メモリはSRAMである、ことを特徴とする請求項1に記載のプログラマブルコントローラ。
  7.  前記第2メモリは、前記第1メモリよりも低消費電力なSRAMである、
     ことを特徴とする請求項6に記載のプログラマブルコントローラ。
PCT/JP2010/051873 2010-02-09 2010-02-09 プログラマブルコントローラ WO2011099117A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/051873 WO2011099117A1 (ja) 2010-02-09 2010-02-09 プログラマブルコントローラ
TW099119833A TW201128907A (en) 2010-02-09 2010-06-18 Programmable controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051873 WO2011099117A1 (ja) 2010-02-09 2010-02-09 プログラマブルコントローラ

Publications (1)

Publication Number Publication Date
WO2011099117A1 true WO2011099117A1 (ja) 2011-08-18

Family

ID=44367428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051873 WO2011099117A1 (ja) 2010-02-09 2010-02-09 プログラマブルコントローラ

Country Status (2)

Country Link
TW (1) TW201128907A (ja)
WO (1) WO2011099117A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578387A (zh) * 2014-12-22 2015-04-29 上海致维自动化控制有限公司 可编程双路电源自动转换控制器及控制方法
JP2017021498A (ja) * 2015-07-08 2017-01-26 富士電機株式会社 制御システム、その制御装置
EP3159755A1 (en) * 2015-10-20 2017-04-26 LSIS Co., Ltd. Plc system
JP2018060482A (ja) * 2016-10-07 2018-04-12 オムロン株式会社 演算装置および制御装置
CN115885445A (zh) * 2020-10-20 2023-03-31 三菱电机株式会社 辅助电源适配器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6130800B2 (ja) * 2014-03-06 2017-05-17 株式会社日立製作所 計算機装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639604U (ja) * 1986-07-08 1988-01-22
JPH04118705A (ja) * 1990-09-10 1992-04-20 Fuji Electric Co Ltd プログラマブルコントローラ
JPH0594234A (ja) * 1991-10-01 1993-04-16 Toshiba Corp リセツト制御装置
JP2000181510A (ja) * 1998-12-18 2000-06-30 Matsushita Electric Works Ltd プログラマブルコントローラのバックアップデータ保護方法及びプログラマブルコントローラ
JP2000194607A (ja) * 1998-12-24 2000-07-14 Yamatake Corp メモリ・バックアップ方法
JP2003005871A (ja) * 2001-06-26 2003-01-08 Omron Corp データ処理装置のデータバックアップ方法および装置
JP2004036984A (ja) * 2002-07-02 2004-02-05 Asahi Kasei Chemicals Corp 電子雷管
JP2005339151A (ja) * 2004-05-26 2005-12-08 Hitachi Industrial Equipment Systems Co Ltd プログラマブルコントローラ
JP2008182884A (ja) * 2007-01-23 2008-08-07 Schneider Toshiba Inverter Europe Sas 電力用電子スイッチの制御装置および同装置を有する可変速駆動装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639604U (ja) * 1986-07-08 1988-01-22
JPH04118705A (ja) * 1990-09-10 1992-04-20 Fuji Electric Co Ltd プログラマブルコントローラ
JPH0594234A (ja) * 1991-10-01 1993-04-16 Toshiba Corp リセツト制御装置
JP2000181510A (ja) * 1998-12-18 2000-06-30 Matsushita Electric Works Ltd プログラマブルコントローラのバックアップデータ保護方法及びプログラマブルコントローラ
JP2000194607A (ja) * 1998-12-24 2000-07-14 Yamatake Corp メモリ・バックアップ方法
JP2003005871A (ja) * 2001-06-26 2003-01-08 Omron Corp データ処理装置のデータバックアップ方法および装置
JP2004036984A (ja) * 2002-07-02 2004-02-05 Asahi Kasei Chemicals Corp 電子雷管
JP2005339151A (ja) * 2004-05-26 2005-12-08 Hitachi Industrial Equipment Systems Co Ltd プログラマブルコントローラ
JP2008182884A (ja) * 2007-01-23 2008-08-07 Schneider Toshiba Inverter Europe Sas 電力用電子スイッチの制御装置および同装置を有する可変速駆動装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578387A (zh) * 2014-12-22 2015-04-29 上海致维自动化控制有限公司 可编程双路电源自动转换控制器及控制方法
JP2017021498A (ja) * 2015-07-08 2017-01-26 富士電機株式会社 制御システム、その制御装置
EP3159755A1 (en) * 2015-10-20 2017-04-26 LSIS Co., Ltd. Plc system
JP2017079059A (ja) * 2015-10-20 2017-04-27 エルエス産電株式会社Lsis Co., Ltd. Plcシステム
US9819346B2 (en) 2015-10-20 2017-11-14 Lsis Co., Ltd. PLC system
JP2018060482A (ja) * 2016-10-07 2018-04-12 オムロン株式会社 演算装置および制御装置
CN115885445A (zh) * 2020-10-20 2023-03-31 三菱电机株式会社 辅助电源适配器
CN115885445B (zh) * 2020-10-20 2024-05-28 三菱电机株式会社 辅助电源适配器

Also Published As

Publication number Publication date
TW201128907A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
WO2011099117A1 (ja) プログラマブルコントローラ
JP5562486B2 (ja) 実時間時計をプログラムするコンピュータ・システム、方法およびコンピュータ・プログラム・プロダクト
US8090988B2 (en) Saving information to flash memory during power failure
JP2010529548A5 (ja)
TWI514124B (zh) 狀態控制裝置、資訊處理裝置、電腦程式產品及半導體裝置
JPH0556577A (ja) 電源制御装置
CN105807885B (zh) 一种掉电保护方法及装置
JP2011197889A (ja) プログラマブルコントローラ
CN111697683B (zh) 具有断电保护功能的电源
US8977406B2 (en) Power supply system, power supply control method, power supply control device and program
WO2013186888A1 (ja) プログラマブルコントローラおよび電源切断対処方法
JP2016194878A (ja) 電源制御装置
US9720481B2 (en) Energy-saving mode for a rail system signaling system
JP2007151341A (ja) 待機回路
JP6183395B2 (ja) 電源制御システムおよび電源制御方法
CN106230099B (zh) 电源设备
JP6123282B2 (ja) プログラマブルコントローラおよび電源切断対処方法
JP2017021498A (ja) 制御システム、その制御装置
JP2011083835A (ja) ロボット制御装置およびロボット制御方法
TWI530779B (zh) Can open and close the DC standby power supply
CN218482701U (zh) 一种掉电保持电路和供电电路
WO2022176250A1 (ja) 制御システムおよび機能ユニット
JP7531386B2 (ja) 電池監視装置
JP2529707B2 (ja) 停電検知方式
JP2008187871A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP