WO2011098534A1 - Skalierbarer aufbau für laterale halbleiterbauelemente mit hoher stromtragfähigkeit - Google Patents

Skalierbarer aufbau für laterale halbleiterbauelemente mit hoher stromtragfähigkeit Download PDF

Info

Publication number
WO2011098534A1
WO2011098534A1 PCT/EP2011/051985 EP2011051985W WO2011098534A1 WO 2011098534 A1 WO2011098534 A1 WO 2011098534A1 EP 2011051985 W EP2011051985 W EP 2011051985W WO 2011098534 A1 WO2011098534 A1 WO 2011098534A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
fields
source
drain
control electrode
Prior art date
Application number
PCT/EP2011/051985
Other languages
English (en)
French (fr)
Inventor
Oliver Hilt
Hans-Joachim Wuerfl
Original Assignee
Forschungsverbund Berlin E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungsverbund Berlin E.V. filed Critical Forschungsverbund Berlin E.V.
Priority to JP2012552399A priority Critical patent/JP5738322B2/ja
Priority to EP20110706194 priority patent/EP2534685B1/de
Priority to US13/578,584 priority patent/US8901671B2/en
Publication of WO2011098534A1 publication Critical patent/WO2011098534A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4821Bridge structure with air gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the invention relates to a transistor cell according to the preamble of claim 1, a transistor, in particular a lateral transistor with high current carrying capacity, according to the preamble of claim 10, a method for producing a transistor according to the preamble of claim 14, and a diode according to the preamble of Claim 15.
  • Gallium nitride-based transistors can have a highly conductive layer at the AIGaN / GaN interface through contact between a gallium nitride (GaN) layer and an aluminum gallium nitride (AIGaN) layer, which can be used as the transistor channel of a field effect transistor.
  • the conductive layer is contacted via two metal surfaces deposited on the semiconductor surface, which constitute the source and drain of the transistor.
  • a control electrode applied between source and drain on the surface serves as the gate of the field effect transistor. Characteristic of such a structure is that all three transistor terminals are accessible via the top of the semiconductor. It is also characteristic that the current in the transistor channel flows parallel to the semiconductor surface. In such a transistor structure is called a lateral device.
  • GaN-based field effect transistors with a Schottky metal gate (HEMT) or a metal insulated by a dielectric as a gate (MISFET) are well advanced for applications as microwave amplifiers. Such devices typically have gate widths below 100 mm.
  • the arrangement of the source, drain and gate electrodes on the semiconductor surface is determined by the peculiarities of the electrical signal propagation in the frequency range of the microwaves and leads to alternating underlying source and drain fields, between which the gate electrodes are located. These are usually electrically connected to one another laterally of the source and drain fields on one side.
  • the development of GaN-based transistors as switching transistors in power electronics has not progressed so far.
  • transistors with a higher pulse current carrying capacity, typically above 50 A, and a larger gate width of typically above 100 mm are needed. Since the desired switching frequencies in the power electronics are well below 1 GHz and thus the length of the electromagnetic waves can be considered very large compared to the transistor dimensions, this gives rise to greater freedom in the arrangement of the source, drain and gate electrodes on the semiconductor surface.
  • the lateral structure of a GaN transistor for switching purposes in power electronics can differ both from the structure of a GaN microwave transistor, as well as the structure of a vertical switching transistor for the power electronics. Special attention must be paid to the efficient use of the semiconductor area, since GaN-based semiconductors have a particularly high cost per semiconductor area.
  • the transistor structure should be structured so that a simple scaling of the current carrying capacity of the transistors is possible.
  • the electrically active regions should be arranged so that the temperature of the electrically active regions in transistor operation is distributed as constant as possible on the semiconductor.
  • the inventive transistor cell according to claim 1 comprises a control electrode, a plurality of source fields and a plurality of sink fields.
  • the control electrode completely encloses at least one of the source fields and / or the sink fields. This enables an active transistor area on all edges of the at least one of the source fields and / or the sink fields.
  • the design variants presented here are motivated by the technology of the lateral GaN-based transistors, but they are equally applicable to lateral transistors based on other semiconductor technologies, for example field effect transistors and bipolar transistors.
  • control electrode may be base, emitter, and collector
  • field effect transistors may be gate, source, and drain
  • control electrode can thus be understood, for example, to be a base or a gate
  • a source can be understood to mean, for example, an emitter or a source
  • a depression can be understood as a collector or a drain a semiconductor surface designed to function as part of a well or sink.
  • the transistor cell according to the invention may further comprise a source contact field and / or a drain contact field, wherein the source fields are conductively connected to the source contact field and / or the drain fields are conductively connected to the drain contact field.
  • a source contact field or a sink contact field is to be understood as an area on a semiconductor surface which serves to establish contact with one or more source fields or sink fields. If a transistor cell has both a source contact field and a sink contact field, both the source fields can be connected to the source contact field and the sink fields can be connected to the sink contact field.
  • the sink fields of the transistor cell can be connectable to sink contact fields of one or more other transistor cells. Accordingly, the source fields of the transistor cell may be connectable to source contact fields of one or more other transistor cells when the transistor cell has only one drain contact field.
  • the source contact field and / or the drain contact field of the transistor cell according to the invention preferably has at least one bump, which is conductively connectable to a printed circuit board. This ensures that the source fields and / or the drain fields of the transistor cell can be connected as easily as possible to a printed circuit board.
  • a bump is understood to mean a structure, for example made of solder, which is located on a contact field is applied to allow the contacting of the contact pad from beyond the semiconductor surface.
  • the at least one bump is preferably designed to dissipate the generated heat loss.
  • the control electrode may be arranged concentrically around the at least one bump.
  • the thermal resistance between the active transistor region and the at least one bump is minimized, so that the at least one bump can be used particularly efficiently for dissipating the heat loss of the transistor to the printed circuit board.
  • the concentric control electrode and the active transistor area connected thereto are arranged such that the temperature of the active transistor area which is set during transistor operation does not increase with increasing distance to the at least one bump.
  • the source fields and / or the sink fields are rectangular.
  • the control electrode has a hexagonal arrangement. This ensures that the semiconductor surface can be covered without gaps with source fields and sink fields with bumps in the middle.
  • the control electrode has a polygonal arrangement, wherein the number of edges of the polygons is an integer multiple of 4. This ensures that the source fields and sink fields can be connected to the source contact fields or sink contact fields in a particularly simple manner via a metal bridge.
  • the inventive transistor according to claim 10 comprises a plurality of transistor cells on a semiconductor surface, wherein each of the transistor cells comprises a source contact pad and / or a drain contact field.
  • the source contact pads are conductively connected to each other beyond the semiconductor surface, and the drain contact pads are also conductively connected to each other beyond the semiconductor surface. This ensures that the high source and drain currents of the interconnected transistor cells do not flow on the surface of the semiconductor surface, so that the wiring on the semiconductor surface can be reduced and the current carrying capacity can be increased.
  • each of the transistor cells has the preferred features described above.
  • the transistor cells are laterally joined together on the semiconductor surface.
  • the bumps of the source contact fields are preferably conductively connected to one another via printed conductors on a printed circuit board, and the bumps of the sink contact fields are likewise conductively connected to one another via printed conductors on the printed circuit board.
  • the printed circuit board preferably has a high thermal conductivity. Compared with the usual in power electronics Drahtbonditati has the chip contacting a bump on a lower inductance, which allows very fast transistors.
  • control electrodes of the transistor cells on a different substrate are conductively connected to one another than the source contact fields and the drain contact fields.
  • control electrodes of the transistor cells can be conductively connected to one another at the level of the semiconductor surface.
  • the high source and drain currents of the interconnected transistor cells do not flow on the chip level, but preferably on a printed circuit board.
  • a substantial portion of the transistor wiring planes is shifted from the expensive semiconductor surface to a comparatively very inexpensive printed circuit board. It is also particularly simple to produce thick copper tracks on printed circuit boards which, with the same cross-section, exceed the conductivity of conductor tracks which can be realized by vapor deposition or sputtering processes on the semiconductor surface.
  • the individual transistor cells are independently operable. This offers the possibility to carry out the electrical characterization of the transistor by the electrical characterization of its transistor cells.
  • the current-carrying capacity of the measurement setup used must then correspond only to the transistor cells, defects can be limited to individual transistor cells, and the parameter dispersion of individual cells of the transistor can be determined. Also, in transistors with very many cells, individual defective cells can be eliminated by omitting the corresponding bumps from the transistor.
  • the inventive method according to claim 15 for the production of a transistor comprises the following steps: providing a substrate; Forming a plurality of transistor cells on the substrate each having a control electrode, a plurality of source cells fields and a plurality of sink fields; conducting the control electrodes together; Forming a source contact pad and / or a drain contact pad in each transistor cell; conducting the source fields of each transistor cell to a source contact pad; conductively connecting the drain fields of each transistor cell to a drain contact field; Forming at least one bump on each of the source contact pads and on each of the drain contact pads; Providing a printed circuit board; conducting the bumps of the source contact pads together via conductive traces on the printed circuit board; and conducting the bumps of the drain contact pads together via conductive traces on the printed circuit board.
  • the inventive diode according to claim 16 comprises a plurality of diode cells on a semiconductor surface, each of the diode cells comprising a cathode contact pad and / or an anode contact pad.
  • the cathode contact pads are conductively connected to each other beyond the semiconductor surface, and the anode contact pads are also conductively connected to each other beyond the semiconductor surface. This ensures that the high cathode and anode currents of the connected diode cells do not flow at the level of the semiconductor surface, so that the wiring on the semiconductor surface can be reduced and the current carrying capacity can be increased.
  • Figure 1 is a schematic cross-sectional view of a transistor according to the invention.
  • Figure 2 is a plan view of a first embodiment of an inventive
  • FIG. 3 is a plan view of a second embodiment of transistor cells according to the invention.
  • FIG. 4 shows a plan view of a third exemplary embodiment of transistor cells according to the invention.
  • Fig. 1 shows an example of the cross section of a transistor according to the invention.
  • the transistor is split on the semiconductor surface 102, which may be on a substrate 101, into a plurality of identical transistor cells 103, which in themselves constitute functional transistors.
  • the control electrodes of all transistor cells of the transistor are connected to one another on the semiconductor surface.
  • a complete connection of the sources and sinks of the transistor cells with each other is not - as usual - on the semiconductor surface.
  • the source and drain contact pads 104 of the transistor cells are each provided with a bump 105.
  • the control electrode contact of the entire transistor is provided with one or more bumps.
  • the bumps are connected in a flip-chip method with conductor tracks 106 on a printed circuit board 107 customary in electronic construction technology, which preferably has a high thermal conductivity.
  • the printed conductors on the printed circuit board are arranged in such a way that they interconnect all the source or sink bumps in parallel so that all the transistor cells produce a parallel-connected transistor with high current carrying capacity.
  • the size of the transistor cells is chosen so that their current carrying capacity is adapted to that of the bump contacts.
  • Figs. 2, 3 and 4 are plan views of embodiments of inventive transistor cells.
  • the transistor cells are constructed on the semiconductor surface as an alternating sequence of source fields 201, 301, 401 and drains 202, 302, 402 separated by a net-like continuous control electrode 203, 303, 403.
  • an active transistor region 204 is possible on all edges of the source and drain fields, unless the corresponding field is located on an outside of the transistor cell.
  • the control electrodes 203, 303, 403 of different transistor cells are electrically conductively connected to one another by metal strips 205, 304, 404 arranged on the semiconductor level.
  • the source and sink fields 201 and 202 are rectangular.
  • the source contact pads 206 and sink contact pads 207 with the bumps 208 are on opposite sides of the array of active transistor regions.
  • the electrically conductive connection between the source and drain fields and the associated contact fields is realized with metal bridges. These can be used as air bridge or be implemented as a bridge over a dielectric, which is open over the sources or sink fields to be contacted.
  • the source and drain fields 301, 401 and 302, 402 are concentric about a source or sink contact field 305, 405 and 306, 406, respectively Bump 307, 407 arranged.
  • the control electrodes 303, 403 result in a network of concentric and radial metallizations which are electrically conductively connected to the control electrodes of the remaining transistor cells of the transistor via metal strips 304, 404 arranged on the semiconductor level.
  • the advantage of the embodiments illustrated in FIGS. 3 and 4 lies in the minimized thermal resistance between the active transistor region and the bump, which can then be used particularly efficiently for dissipating the heat loss of the transistor to the printed circuit board.
  • the concentric arrangement of the control electrodes also makes it possible to increase their distance from one another with increasing distance from the bump in such a way that the temperature setting on the semiconductor surface during transistor operation does not increase with increasing distance to the bump.
  • the contacting of the source and drain fields is analogous to the described first embodiment.
  • the source fields in transistor cells having a source contact pad are connected to this source contact pad; the source fields in transistor cells having a drain contact pad are connected to the source contact pad of an adjacent transistor cell. The same applies to the sink fields.
  • the semiconductor surface can be covered without gaps with source and drain fields with source or drain bumps 307 located in the middle.
  • the arrangement of the control electrodes as shown in FIG. 4 on the basis of four transistor cells, is octagonal, then a transistor cell with central source contact field 405 is surrounded on all sides by transistor cells with central drain contact field 406 and vice versa.
  • This has the advantage that the individual source and drain fields 401 and 402 can be connected to the source and drain contact fields 405 and 406 particularly easily via a metal bridge.
  • the advantages described for the octagonal embodiment shown in FIG. 4 apply to all bump-centered polygonal embodiments in which the number of edges of the polygons is divisible by 4 in integers. Other embodiments of the lateral arrangements of the source and drain fields with the control electrodes therebetween are possible.
  • each of the described embodiments can also be transferred to a diode structure according to the invention.
  • the control electrodes and their contacts should be omitted and the source fields replaced by cathode fields, the source contact fields by cathode contact fields, the drain fields by anode fields and the drain contact fields by anode contact fields.
  • the cathode contact pads are conductively connected to a cathode beyond the semiconductor surface, and the anode contact pads are conductively connected to an anode beyond the semiconductor surface. This creates a diode with high current carrying capacity and efficient utilization of the semiconductor surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Wire Bonding (AREA)

Abstract

Die Erfindung betrifft Halbleiterbauelemente, insbesondere einen skalierbaren Aufbau für laterale Halbleiterbauelemente mit hoher Stromtragfähigkeit. Eine erfindungsgemäße Transistorzelle umfasst eine Steuerelektrode, (203) eine Vielzahl von Quellenfeldern (201) sowie eine Vielzahl von Senkenfeldern. (202) Die Steuerelektrode umschließt mindestens eines der Quellenfelder oder der Senkenfelder vollständig. Ein erfindungsgemäßer Transistor umfasst eine Vielzahl von Transistorzellen auf einem Substrat, deren jede ein Quellenkontaktfeld (206) und/oder ein Senkenkontaktfeld (207) umfasst. Die Quellenkontaktfelder sind jenseits des Substrats miteinander leitend verbunden, und die enkenkontaktfeider sind ebenfalls jenseits des Substrats miteinander leitend verbunden. Das erfindungsgemäße Verfahren zur Herstellung eines Transistors umfasst folgende Schritte: Bereitstellen eines Substrats; Ausbilden einer Vielzahl von Transistorzellen auf dem Substrat, deren jede eine Steuerelektrode, eine Vielzahl von Quellenfeldern und eine Vielzahl von Senkenfeldern umfasst; leitendes Verbinden der Steuerelektroden miteinander; Ausbilden eines Quellenkontaktfelds und/oder eines Senkenkontaktfelds in jeder Transistorzelle; leitendes Verbinden der Quellenfelder jeder Transistorzelle mit einem Quellenkontaktfeld; leitendes Verbinden der Senkenfelder jeder Transistorzelle mit einem Senkenkontaktfeld; Ausbilden mindestens eines Bumps (208) auf jedem der Quellenkontaktfelder und auf jedem der Senkenkontaktfeider; Bereitstellen einer Leiterplatine; leitendes Verbinden der Bumps der Quellenkontaktfelder miteinander über Leiterbahnen auf der Leiterplatine; und leitendes Verbinden der Bumps der Senkenkontaktfeider miteinander über Leiterbahnen auf der Leiterplatine. Die Anordnung der Bumps und der Leiterbahnen auf der Leiterplatine ermöglicht eine geringe Halbleiterflächenbelegung durch Verdrahtung. Die erfindungsgemäße Anordnung der Quellenfelder, Senkenfelder und Steuerelektroden bezüglich der Bumps ermöglicht einen geringen Wärmewiderstand zwischen den aktiven Transistorgebieten und den Bumps.

Description

Skalierbarer Aufbau für laterale Halbleiterbauelemente mit hoher Stromtragfähigkeit
Die Erfindung betrifft eine Transistorzelle gemäß dem Oberbegriff des Anspruchs 1 , einen Transistor, insbesondere einen lateralen Transistor mit hoher Stromtragfähigkeit, gemäß dem Oberbegriff des Anspruchs 10, ein Verfahren zur Herstellung eines Transistors gemäß dem Oberbegriff des Anspruchs 14, sowie eine Diode gemäß dem Obergriff des Anspruchs 15.
Galliumnitrid-basierte Transistoren können durch einen Kontakt zwischen einer Galliumnitrid- (GaN-)Schicht und einer Aluminiumgalliumnitrid-(AIGaN-)Schicht eine stark leitfähige Schicht an der AIGaN/GaN-Grenzfläche aufweisen, die sich als Transistorkanal eines Feldeffekttransistors einsetzen lässt. Die leitfähige Schicht wird über zwei auf der Halbleiteroberfläche aufgebrachte Metallflächen kontaktiert, welche Source und Drain des Transistors darstellen. Eine zwischen Source und Drain auf die Oberfläche aufgebrachte Steuerelektrode dient als Gate des Feldeffekttransistors. Kennzeichnend für einen derartigen Aufbau ist, dass alle drei Transistoranschlüsse über die Oberseite des Halbleiters zugänglich sind. Außerdem ist charakteristisch, dass der Strom im Transistorkanal parallel zur Halbleiteroberfläche fließt. Bei einem derartigen Transistoraufbau spricht man von einem lateralen Bauelement. Im Gegensatz dazu werden viele Transistoren z. B. in der Siliziumtechnologie als vertikale Bauelemente entworfen. Dabei ist mindestens ein Transistoranschluss - üblicherweise Source oder Drain - von der Unterseite des Halbleitersubstrats kontaktierbar.
Die Entwicklung GaN-basierter Feldeffekttransistoren mit einem Schottkymetall als Gate (HEMT) oder einem durch ein Dielektrikum isolierten Metall als Gate (MISFET) ist für Anwendungen als Mikrowellenverstärker weit fortgeschritten. Derartige Bauelemente haben typischerweise Gateweiten unterhalb 100 mm. Die Anordnung der Source-, Drain- und Gateelektroden auf der Halbleiteroberfläche wird dabei durch die Besonderheiten der elektrischen Signalausbreitung im Frequenzbereich der Mikrowellen bestimmt und führt zu untereinander liegenden abwechselnden Source- und Drainfeldern, zwischen denen die Gateelektroden liegen. Diese sind in der Regel seitlich der Source- und Drainfelder auf einer Seite elektrisch leitend miteinander verbunden. Die Entwicklung GaN-basierter Transistoren als Schalttransistoren in der Leistungselektronik ist noch nicht so weit fortgeschritten. Hier werden Transistoren mit einer höheren Pulsstromtragfähigkeit, typischerweise oberhalb 50 A, und einer größeren Gateweite von typischerweise oberhalb 100 mm benötigt. Da die angestrebten Schaltfrequenzen in der Leistungselektronik deutlich unterhalb 1 GHz liegen und somit die Länge der elektromagnetischen Wellen als sehr groß gegenüber den Transistorabmessungen betrachtet werden kann, ergeben sich hier größere Freiheiten in der Anordnung der Source-, Drain- und Gateelektroden auf der Halbleiteroberfläche.
Es ist somit erkennbar, dass sich der laterale Aufbau eines GaN-Transistors für Schaltzwecke in der Leistungselektronik sowohl von dem Aufbau eines GaN-Mikrowellentransistors unterscheiden kann, als auch von dem Aufbau eines vertikalen Schalttransistors für die Leistungselektronik. Besondere Aufmerksamkeit muss der effizienten Ausnutzung der Halbleiterfläche zukommen, da GaN-basierte Halbleiter besonders hohe Kosten pro Halbleiterfläche aufweisen.
Es ist eine Aufgabe der vorliegenden Erfindung, einen Transistoraufbau anzugeben, welcher die zur Verfügung stehende Halbleiterfläche möglichst effizient ausnutzt und bei gegebener Halbleiterfläche eine möglichst hohe Stromtragfähigkeit erzielt. Der Transistoraufbau soll so strukturiert sein, dass eine einfache Skalierung der Stromtragfähigkeit der Transistoren möglich ist. Die elektrisch aktiven Gebiete sollen so angeordnet werden, dass die im Transistorbetrieb sich einstellende Temperatur der elektrisch aktiven Gebiete auf dem Halbleiter möglichst konstant verteilt ist.
Diese Aufgaben werden durch eine Transistorzelle mit den in Anspruch 1 genannten Merkmalen, einen Transistor mit den in Anspruch 10 genannten Merkmalen bzw. ein Verfahren mit den in Anspruch 15 genannten Merkmalen gelöst.
Die erfindungsgemäße Transistorzelle nach Anspruch 1 umfasst eine Steuerelektrode, eine Vielzahl von Quellenfeldern sowie eine Vielzahl von Senkenfeldern. Die Steuerelektrode umschließt mindestens eines der Quellenfelder und/oder der Senkenfelder vollständig. Dadurch wird ein aktives Transistorgebiet an allen Kanten des mindestens einen der Quellenfelder und/oder der Senkenfelder ermöglicht. Die hier präsentierten Aufbauvarianten sind aus der Technologie der lateralen GaN- basierten Transistoren heraus motiviert, sie sind aber im gleichen Maße auf laterale Transistoren, die auf anderen Halbleitertechnologien beruhen, anwendbar, beispielsweise auf Feldeffekttransistoren und bipolare Transistoren. Die Anschlüsse allgemeiner Transistoren werden hier mit den allgemeinen Begriffen„Steuerelektrode",„Quelle" und„Senke" bezeichnet. Dabei kann es sich beispielsweise bei bipolaren Transistoren um Basis, Emitter und Kollektor und bei Feldeffekttransistoren um Gate, Source und Drain handeln. Unter einer Steuerelektrode kann somit beispielsweise eine Basis oder ein Gate verstanden werden; unter einer Quelle kann beispielsweise ein Emitter oder eine Source verstanden werden; und unter einer Senke kann beispielsweise ein Kollektor oder ein Drain verstanden werden. Unter einem Quellenfeld bzw. einem Senkenfeld ist ein Bereich auf einer Halbleiteroberfläche zu verstehen, der dazu ausgelegt ist, als Teil einer Quelle bzw. einer Senke zu fungieren.
Die erfindungsgemäße Transistorzelle kann ferner ein Quellenkontaktfeld und/oder ein Senken kontaktfeld aufweisen, wobei die Quellenfelder leitend mit dem Quellenkontaktfeld verbunden sind und/oder die Senkenfelder leitend mit dem Senkenkontaktfeld verbunden sind. Dabei ist unter einem Quellenkontaktfeld bzw. einem Senkenkontaktfeld ein Bereich auf einer Halbleiteroberfläche zu verstehen, der dazu dient, den Kontakt zu einem oder mehreren Quellenfeldern bzw. Senkenfeldern herzustellen. Weist eine Transistorzelle sowohl ein Quellenkontaktfeld als auch ein Senkenkontaktfeld auf, so können sowohl die Quellenfelder mit dem Quellenkontaktfeld verbunden sein als auch die Senkenfelder mit dem Senkenkontaktfeld verbunden sein. Weist eine Transistorzelle dagegen lediglich ein Quellenkontaktfeld auf, so können die Senkenfelder der Transistorzelle mit Senkenkontaktfeldern einer oder mehrerer anderer Transistorzellen verbindbar sein. Entsprechend können die Quellenfelder der Transistorzelle mit Quellenkontaktfeldern einer oder mehrerer anderer Transistorzellen verbindbar sein, wenn die Transistorzelle lediglich ein Senkenkontaktfeld aufweist.
Vorzugsweise weist das Quellenkontaktfeld und/oder das Senkenkontaktfeld der erfindungsgemäßen Transistorzelle mindestens einen Bump auf, der mit einer Leiterplatine leitend verbindbar ist. Dadurch wird erreicht, dass die Quellenfelder und/oder die Senkenfelder der Transistorzelle möglichst einfach mit einer Leiterplatine verbindbar sind. Dabei ist unter einem Bump eine Struktur, beispielsweise aus Lot, zu verstehen, die auf einem Kontaktfeld aufgebracht ist, um die Kontaktierung des Kontaktfeldes von jenseits der Halbleiteroberfläche zu ermöglichen.
Der mindestens eine Bump ist vorzugsweise dazu ausgelegt, die erzeugte Verlustwärme abzuführen. Die Steuerelektrode kann konzentrisch um den mindestens einen Bump angeordnet sein. Dadurch wird der Wärmewiderstand zwischen dem aktiven Transistorgebiet und dem mindestens einen Bump minimiert, so dass der mindestens eine Bump besonders effizient zur Abfuhr der Verlustwärme des Transistors zur Leiterplatine hin genutzt werden kann. Vorzugsweise sind die konzentrische Steuerelektrode und das damit verbundene aktive Transistorgebiet so angeordnet, dass die sich beim Transistorbetrieb einstellende Temperatur des aktiven Transistorgebiets mit zunehmendem Abstand zu dem mindestens einen Bump nicht zunimmt.
In einer bevorzugten Ausführung der erfindungsgemäßen Transistorzelle sind die Quellenfelder und/oder die Senkenfelder rechteckig. Dadurch wird eine besonders einfache flächenfüllende Anordnung erreicht. In einer weiteren bevorzugten Ausführung der erfindungsgemäßen Transistorzelle weist die Steuerelektrode eine hexagonale Anordnung auf. Dadurch wird erreicht, dass die Halbleiteroberfläche lückenlos mit Quellenfeldern und Senkenfeldern mit in der Mitte liegenden Bumps belegt werden kann. In noch einer weiteren bevorzugten Ausführung der erfindungsgemäßen Transistorzelle weist die Steuerelektrode eine polygonale Anordnung auf, wobei die Kantenanzahl der Polygone ein ganzzahliges Vielfaches von 4 ist. Dadurch wird erreicht, dass die Quellenfelder und Senkenfelder besonders einfach über eine Metallbrücke mit den Quellenkontaktfeldern bzw. Senkenkontaktfeldern verbunden werden können.
Der erfindungsgemäße Transistor nach Anspruch 10 umfasst eine Vielzahl von Transistorzellen auf einer Halbleiteroberfläche, wobei jede der Transistorzellen ein Quellenkontaktfeld und/oder ein Senken kontaktfeld umfasst. Die Quellenkontaktfelder sind jenseits der Halbleiteroberfläche miteinander leitend verbunden, und die Senkenkontaktfelder sind ebenfalls jenseits der Halbleiteroberfläche miteinander leitend verbunden. Dadurch wird erreicht, dass die hohen Quellen- und Senkenströme der zusammen geschalteten Transistorzellen nicht auf der Ebene Halbleiteroberfläche fließen, so dass die Verdrahtungen auf der Halbleiteroberfläche verringert werden und die Stromtragfähigkeit erhöht werden kann. Vorzugsweise weist jede der Transistorzellen die oben beschriebenen bevorzugten Merkmale auf. Vorzugsweise sind die Transistorzellen auf der Halbleiteroberfläche lateral zusammengefügt. Vorzugsweise sind die Bumps der Quellenkontaktfelder über Leiterbahnen auf einer Leiterplatine miteinander leitend verbunden und die Bumps der Senkenkontaktfelder ebenfalls über Leiterbahnen auf der Leiterplatine miteinander leitend verbunden. Die Leiterplatine weist vorzugsweise eine hohe Wärmeleitfähigkeit auf. Gegenüber der in der Leistungselektronik üblichen Drahtbondverbindung weist die Chipkontaktierung über einen Bump eine geringere Induktivität auf, wodurch sehr schnelle Transistoren ermöglicht werden.
Vorzugsweise sind die Steuerelektroden der Transistorzellen auf einem anderen Substrat miteinander leitend verbunden als die Quellenkontaktfelder und die Senkenkontaktfelder. Insbesondere können die Steuerelektroden der Transistorzellen auf der Ebene der Halbleiteroberfläche miteinander leitend verbunden sein.
In dem erfindungsgemäßen Transistor fließen die hohen Quellen- und Senkenströme der zusammen geschalteten Transistorzellen nicht auf der Chipebene, sondern vorzugsweise auf einer Leiterplatine. Somit wird ein wesentlicher Teil der Transistorverdrahtungsebenen von der teuren Halbleiteroberfläche auf eine vergleichsweise sehr preiswerte Leiterplatine verschoben. Auch können auf Leiterplatinen besonders einfach dicke Kupferbahnen erzeugt werden, die bei gleichem Querschnitt die Leitfähigkeit von Leiterbahnen, welche durch Aufdampf- oder Sputterprozesse auf der Halbleiteroberfläche realisierbar sind, übersteigen.
Auf der Waferebene - das heißt vor der Flip-Chip-Montage des Transistors auf der Leiterplatine - sind die einzelnen Transistorzellen unabhängig voneinander funktionsfähig. Dies bietet die Möglichkeit, die elektrische Charakterisierung des Transistors durch die elektrische Charakterisierung seiner Transistorzellen vorzunehmen. Die Stromtragfähigkeit des eingesetzten Messaufbaus muss dann nur den Transistorzellen entsprechen, Defekte lassen sich auf einzelne Transistorzellen eingrenzen, und die Parameterstreuung einzelner Zellen des Transistors kann bestimmt werden. Auch können bei Transistoren mit sehr vielen Zellen einzelne defekte Zellen durch das Weglassen der entsprechenden Bumps aus dem Transistor eliminiert werden.
Das erfindungsgemäße Verfahren nach Anspruch 15 zur Herstellung eines Transistors um- fasst folgende Schritte: Bereitstellen eines Substrats; Ausbilden einer Vielzahl von Transistorzellen auf dem Substrat, deren jede eine Steuerelektrode, eine Vielzahl von Quellen- feldern und eine Vielzahl von Senkenfeldern umfasst; leitendes Verbinden der Steuerelektroden miteinander; Ausbilden eines Quellenkontaktfelds und/oder eines Senkenkontaktfelds in jeder Transistorzelle; leitendes Verbinden der Quellenfelder jeder Transistorzelle mit einem Quellenkontaktfeld; leitendes Verbinden der Senkenfelder jeder Transistorzelle mit einem Senkenkontaktfeld; Ausbilden mindestens eines Bumps auf jedem der Quellenkontaktfelder und auf jedem der Senkenkontaktfelder; Bereitstellen einer Leiterplatine; leitendes Verbinden der Bumps der Quellenkontaktfelder miteinander über Leiterbahnen auf der Leiterplatine; und leitendes Verbinden der Bumps der Senkenkontaktfelder miteinander über Leiterbahnen auf der Leiterplatine.
Es ist eine weitere Aufgabe der vorliegenden Erfindung, einen Diodenaufbau mit den beschriebenen Vorteilen anzugeben.
Diese Aufgabe wird durch eine Diode mit den in Anspruch 16 genannten Merkmalen gelöst. Die erfindungsgemäße Diode nach Anspruch 16 umfasst eine Vielzahl von Diodenzellen auf einer Halbleiteroberfläche, wobei jede der Diodenzellen ein Kathodenkontaktfeld und/oder ein Anodenkontaktfeld umfasst. Die Kathodenkontaktfelder sind jenseits der Halbleiteroberfläche miteinander leitend verbunden, und die Anodenkontaktfelder sind ebenfalls jenseits der Halbleiteroberfläche miteinander leitend verbunden. Dadurch wird erreicht, dass die hohen Kathoden- und Anodenströme der zusammen geschalteten Diodenzellen nicht auf der Ebene der Halbleiteroberfläche fließen, so dass die Verdrahtungen auf der Halbleiteroberfläche verringert werden und die Stromtragfähigkeit erhöht werden kann.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine schematische Querschnittsansicht eines erfindungsgemäßen Transistors;
Figur 2 eine Aufsicht eines ersten Ausführungsbeispiels einer erfindungsgemäßen
Transistorzelle;
Figur 3 eine Aufsicht eines zweiten Ausführungsbeispiels erfindungsgemäßer Transistorzellen; und Figur 4 eine Aufsicht eines dritten Ausführungsbeispiels erfindungsgemäßer Transistorzellen.
Fig. 1 zeigt exemplarisch den Querschnitt eines erfindungsgemäßen Transistors. Der Transistor ist auf der Halbleiteroberfläche 102, die sich auf einem Substrat 101 befinden kann, in mehrere identische Transistorzellen 103 aufgeteilt, welche für sich genommen funktionsfähige Transistoren darstellen. Dabei sind die Steuerelektroden aller Transistorzellen des Transistors miteinander auf der Halbleiteroberfläche verbunden. Eine vollständige Verbindung der Quellen und Senken der Transistorzellen untereinander erfolgt nicht - wie sonst üblich - auf der Halbleiteroberfläche. Die Quellen- und Senkenkontaktfelder 104 der Transistorzellen werden jeweils mit einem Bump 105 versehen. Auch wird der Steuerelektrodenkontakt des kompletten Transistors mit einem oder mehreren Bumps versehen. Die Bumps sind in einem Flip-Chip-Verfahren mit Leiterbahnen 106 auf einer in der elektronischen Aufbautechnologie üblichen Leiterplatine 107 verbunden, die bevorzugt eine hohe Wärmeleitfähigkeit aufweist. Die Leiterbahnen auf der Leiterplatine sind derart angeordnet, dass sie alle Quellen- bzw. Senkenbumps parallel so verschalten, dass alle Transistorzellen einen parallel geschalteten Transistor mit hoher Stromtragfähigkeit ergeben. Die Größe der Transistorzellen ist so gewählt, dass deren Stromtragfähigkeit an die der Bump-Kontakte angepasst ist.
Fig. 2, 3 und 4 zeigen Aufsichten von Ausführungsbeispielen erfindungsgemäßer Transistorzellen. Die Transistorzellen sind auf der Halbleiteroberfläche als abwechselnde Folge von Quellenfeldern 201 , 301 , 401 und Drainfeldern 202, 302, 402 aufgebaut, die durch eine netzartig angeordnete zusammenhängende Steuerelektrode 203, 303, 403 voneinander getrennt sind. Somit ist ein aktives Transistorgebiet 204 an allen Kanten der Source- und Drainfelder möglich, sofern das entsprechende Feld nicht an einer Außenseite der Transistorzelle liegt. Die Steuerelektroden 203, 303, 403 unterschiedlicher Transistorzellen sind durch auf der Halbleiterebene angeordnete Metallstreifen 205, 304, 404 miteinander elektrisch leitend verbunden.
In einer ersten in Fig. 2 dargestellten möglichen Ausführung sind die Quellen- und Senkenfelder 201 und 202 rechteckig. Die Quellenkontaktfelder 206 und Senkenkontaktfelder 207 mit den Bumps 208 liegen an entgegengesetzten Seiten des Feldes mit den aktiven Transistorgebieten. Die elektrisch leitende Verbindung zwischen den Quellen- und Senkenfeldern und den zugehörigen Kontaktfeldern ist mit Metallbrücken realisiert. Diese können als Luft- brücke oder als Brücke über ein Dielektrikum realisiert sein, welches über den zu kontaktierenden Quellen- oder Senkenfeldern geöffnet ist.
In einer zweiten, in Fig. 3 dargestellten und einer dritten, in Fig. 4 dargestellten möglichen Ausführung sind die Quellen- und Senkenfelder 301 , 401 bzw. 302, 402 konzentrisch um ein Quellen- oder Senkenkontaktfeld 305, 405 bzw. 306, 406 mit Bump 307, 407 angeordnet. Die Steuerelektroden 303, 403 ergeben ein Netzwerk aus konzentrischen und radialen Metallisierungen, welche über auf der Halbleiterebene angeordnete Metallstreifen 304, 404 mit den Steuerelektroden der übrigen Transistorzellen des Transistors elektrisch leitend verbunden sind. Der Vorteil der in Fig. 3 und 4 dargestellten Ausführungen liegt in dem minimierten Wärmewiderstand zwischen dem aktiven Transistorgebiet und dem Bump, der dann besonders effizient zur Wärmeabfuhr der Verlustwärme des Transistors zur Leiterplatine hin genutzt werden kann. Auch ermöglicht es die konzentrische Anordnung der Steuerelektroden deren Abstand zueinander mit zunehmendem Abstand vom Bump derart zu erhöhen, dass sich die sich beim Transistorbetrieb einstellende Temperatur auf der Halbleiteroberfläche mit zunehmendem Abstand zum Bump nicht erhöht. Die Kontaktierung der Quellen- und Senkenfelder erfolgt analog zu der beschriebenen ersten Ausführung. Dabei werden die Quellenfelder in Transistorzellen, die ein Quellenkontaktfeld aufweisen, mit diesem Quellenkontaktfeld verbunden; die Quellenfelder in Transistorzellen, die ein Senkenkontaktfeld aufweisen, werden mit dem Quellenkontaktfeld einer benachbarten Transistorzelle verbunden. Entsprechendes gilt für die Senkenfelder.
Ist die Anordnung der Steuerelektroden, wie in Fig. 3 anhand von vier Transistorzellen dargestellt, hexagonal, so kann die Halbleiteroberfläche lückenlos mit Quellen- und Senkenfeldern mit in der Mitte liegenden Quellen- oder Senkenbumps 307 belegt werden.
Ist die Anordnung der Steuerelektroden, wie in Fig. 4 anhand von vier Transistorzellen dargestellt, oktagonal, so ist eine Transistorzelle mit zentralem Quellenkontaktfeld 405 zu allen Seiten von Transistorzellen mit zentralem Senkenkontaktfeld 406 umgeben und umgekehrt. Dies hat den Vorteil, dass die einzelnen Quellen- und Senkenfelder 401 und 402 besonders einfach über eine Metallbrücke mit den Quellen- und Senkenkontaktfeldern 405 und 406 verbunden werden können. Die für die in Fig. 4 dargestellte oktagonale Ausführung beschriebenen Vorteile gelten für alle bumpzentrierten polygonalen Ausführungen, bei denen die Kantenanzahl der Polygone ganzzahlig durch 4 teilbar ist. Andere Ausführungen der lateralen Anordnungen der Quellen- und Senkenfelder mit den dazwischen liegenden Steuerelektroden sind möglich.
Jede der beschriebenen Ausführungen lässt sich auch auf einen erfindungsgemäßen Diodenaufbau übertragen. Hierzu sind jeweils die Steuerelektroden und ihre Kontakte wegzulassen und die Quellenfelder durch Kathodenfelder, die Quellenkontaktfelder durch Kathodenkontaktfelder, die Senkenfelder durch Anodenfelder und die Senkenkontaktfelder durch Anodenkontaktfelder zu ersetzen. Die Kathodenkontaktfelder werden jenseits der Halbleiteroberfläche miteinander leitend zu einer Kathode verbunden, und die Anodenkontaktfelder werden jenseits der Halbleiteroberfläche miteinander leitend zu einer Anode verbunden. Dadurch entsteht eine Diode mit hoher Stromtragfähigkeit und effizienter Ausnutzung der Halbleiteroberfläche.
BEZUGSZEICHENLISTE
101 Substrat
102 Halbleiteroberfläche
103 Transistorzelle
104 Quellen-/Senkenkontaktfeld
105 Bump
106 Leiterbahn
107 Leiterplatine
201 , 301 , 401 Quellenfeld
202, 302, 402 Senkenfeld
203, 303, 403 Steuerelektrode
204 aktives Transistorgebiet
205, 304, 404 Metallstreifen
206, 305, 405 Quellenkontaktfeld
207, 306, 406 Senkenkontaktfeld
208, 307, 407 Bump

Claims

PATENTANSPRÜCHE
1 . Transistorzelle (103), umfassend:
eine Steuerelektrode (203, 303, 403);
eine Vielzahl von Quellenfeldern (201 , 301 , 401 ); und
eine Vielzahl von Senkenfeldern (202, 302, 402),
dadurch gekennzeichnet, dass
die Steuerelektrode (203, 303, 403) mindestens eines der Quellenfelder (201 , 301 , 401 ) und mindestens eines der Senkenfelder (202, 302, 402) vollständig umschließt.
2. Transistorzelle (103) gemäß Anspruch 1 ,
dadurch gekennzeichnet, dass
die Transistorzelle (103) ferner ein Quellenkontaktfeld (206, 305, 405) und/oder ein Senkenkontaktfeld (207, 306, 406) aufweist,
wobei die Quellenfelder (201 , 301 , 401 ) leitend mit dem Quellenkontaktfeld (206, 305,
405) verbunden sind und/oder die Senkenfelder (202, 302, 402) leitend mit dem Senkenkontaktfeld (207, 306, 406) verbunden sind.
3. Transistorzelle (103) gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Quellenkontaktfeld (206, 305, 405) und/oder das Senkenkontaktfeld (207, 306,
406) mindestens einen Bump (105, 208, 307, 407) aufweist, der mit einer Leiterplatine (107) leitend verbindbar ist.
4. Transistorzelle (103) gemäß Anspruch 3,
dadurch gekennzeichnet, dass
der mindestens eine Bump (105, 208, 307, 407) dazu ausgelegt ist, die erzeugte Verlustwärme abzuführen.
5. Transistorzelle (103) gemäß Anspruch 3 oder 4
dadurch gekennzeichnet, dass
die Steuerelektrode (303, 403) konzentrisch um den mindestens einen Bump (307,
407) angeordnet ist.
6. Transistorzelle (103) gemäß Anspruch 5,
dadurch gekennzeichnet, dass
die konzentrische Steuerelektrode (303, 403) so angeordnet ist, dass die sich beim Transistorbetrieb einstellende Temperatur der Steuerelektrode (303, 403) mit zunehmendem Abstand zu dem mindestens einen Bump (307, 407) nicht zunimmt.
7. Transistorzelle (103) gemäß einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
die Steuerelektrode (203) eine rechteckige Anordnung aufweist.
8. Transistorzelle (103) gemäß einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
die Steuerelektrode (303) eine hexagonale Anordnung aufweist.
9. Transistorzelle (103) gemäß einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
die Steuerelektrode (403) eine polygonale Anordnung aufweist, wobei die Kantenanzahl der Polygone ein ganzzahliges Vielfaches von 4 ist.
10. Transistor mit einer Vielzahl von Transistorzellen (103) auf einer Halbleiteroberfläche (102), wobei jede der Transistorzellen ein Quellenkontaktfeld (206, 305, 405) und/oder ein Senkenkontaktfeld (207, 306, 406) umfasst,
wobei
die Quellenkontaktfelder (206, 305, 405) jenseits der Halbleiteroberfläche (102) miteinander leitend verbunden sind; und
die Senkenkontaktfelder (207, 306, 406) jenseits der Halbleiteroberfläche (102) miteinander leitend verbunden sind,
dadurch gekennzeichnet, dass
jede der Transistorzellen (103) eine Transistorzelle gemäß einem der Ansprüche 1 bis 9 ist.
1 1 . Transistor gemäß Anspruch 10,
dadurch gekennzeichnet, dass
die Transistorzellen (103) auf der Halbleiteroberfläche (102) lateral zusammengefügt sind.
12. Transistor gemäß einem der Ansprüche 10 oder 1 1 mit Transistorzellen (103) gemäß Anspruch 3,
dadurch gekennzeichnet, dass
die Bumps (105, 208, 307, 407) der Quellenkontaktfelder (206, 305, 405) über Leiterbahnen auf einer Leiterplatine (107) miteinander leitend verbunden sind; und die Bumps (105, 208, 307, 407) der Senkenkontaktfelder (207, 306, 406) über Leiterbahnen auf der Leiterplatine (107) miteinander leitend verbunden sind.
13. Transistor gemäß einem der Ansprüche 10 bis 12,
dadurch gekennzeichnet, dass
die Steuerelektroden (203, 303, 403) der Transistorzellen (103) auf einem anderen Substrat miteinander leitend verbunden sind als die Quellenkontaktfelder (206, 305, 405) und die Senkenkontaktfelder (207, 306, 406).
14. Verfahren zur Herstellung eines Transistors, umfassend:
Bereitstellen einer Halbleiteroberfläche (102);
Ausbilden einer Vielzahl von Transistorzellen (103) auf der Halbleiteroberfläche (102), deren jede eine Steuerelektrode (203, 303, 403), eine Vielzahl von Quellenfeldern (201 , 301 , 401 ) und eine Vielzahl von Senkenfeldern (202, 302, 402) umfasst; und leitendes Verbinden der Steuerelektroden (203, 303, 403) miteinander,
Ausbilden eines Quellenkontaktfelds (206, 305, 405) und/oder eines Senkenkontakt- felds (207, 306, 406) in jeder Transistorzelle (103);
leitendes Verbinden der Quellenfelder (201 , 301 , 401 ) mit je einem Quellenkontaktfeld (206, 305, 405);
leitendes Verbinden der Senkenfelder (202, 302, 402) mit je einem Senken kontaktfeld (207, 306, 406);
Ausbilden mindestens eines Bumps (105, 208, 307, 407) auf jedem der Quellenkontaktfelder (206, 305, 405) und auf jedem der Senkenkontaktfelder (207, 306, 406); Bereitstellen einer Leiterplatine (107); leitendes Verbinden der Bumps (105, 208, 307, 407) der Quellenkontaktfelder (206,
305, 405) miteinander über Leiterbahnen auf der Leiterplatine (107); und
leitendes Verbinden der Bumps (105, 208, 307, 407) der Senkenkontaktfelder (207,
306, 406) miteinander über Leiterbahnen auf der Leiterplatine (107),
dadurch gekennzeichnet, dass
in jeder der Vielzahl von Transistorzellen (103) die Steuerelektrode (203, 303, 403) so ausgebildet wird, dass sie mindestens eines der Quellenfelder (201 , 301 , 401 ) und mindestens eines der Senkenfelder (202, 302, 402) vollständig umschließt.
15. Diode mit einer Vielzahl von Diodenzellen auf einer Halbleiteroberflache, wobei jede der Diodenzellen ein Kathodenkontaktfeld und/oder ein Anodenkontaktfeld umfasst, dadurch gekennzeichnet, dass
die Kathodenkontaktfelder jenseits der Halbleiteroberflache miteinander leitend verbunden sind; und
die Anodenkontaktfelder jenseits der Halbleiteroberflache miteinander leitend verbunden sind.
PCT/EP2011/051985 2010-02-10 2011-02-10 Skalierbarer aufbau für laterale halbleiterbauelemente mit hoher stromtragfähigkeit WO2011098534A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012552399A JP5738322B2 (ja) 2010-02-10 2011-02-10 高い電流許容能力を有するラテラル半導体構成エレメント用のスケーラビリティを有する構造
EP20110706194 EP2534685B1 (de) 2010-02-10 2011-02-10 Skalierbarer aufbau für laterale halbleiterbauelemente mit hoher stromtragfähigkeit
US13/578,584 US8901671B2 (en) 2010-02-10 2011-02-10 Scalable construction for lateral semiconductor components having high current-carrying capacity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010001788.4 2010-02-10
DE102010001788A DE102010001788A1 (de) 2010-02-10 2010-02-10 Skalierbarer Aufbau für laterale Halbleiterbauelemente mit hoher Stromtragfähigkeit

Publications (1)

Publication Number Publication Date
WO2011098534A1 true WO2011098534A1 (de) 2011-08-18

Family

ID=43983526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/051985 WO2011098534A1 (de) 2010-02-10 2011-02-10 Skalierbarer aufbau für laterale halbleiterbauelemente mit hoher stromtragfähigkeit

Country Status (5)

Country Link
US (1) US8901671B2 (de)
EP (1) EP2534685B1 (de)
JP (1) JP5738322B2 (de)
DE (1) DE102010001788A1 (de)
WO (1) WO2011098534A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9818857B2 (en) 2009-08-04 2017-11-14 Gan Systems Inc. Fault tolerant design for large area nitride semiconductor devices
KR20130088743A (ko) * 2010-04-13 2013-08-08 갠 시스템즈 인크. 아일랜드 토폴로지를 이용한 고밀도 질화 갈륨 디바이스

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084776A1 (en) * 2002-10-30 2004-05-06 Yutaka Fukuda Semiconductor equipment
EP1471581A2 (de) * 2003-04-18 2004-10-27 Samsung Electronics Co., Ltd. MOS Transistor mit gitterförmiger Gateelektrode
US20050133829A1 (en) * 2003-12-22 2005-06-23 Mitsubishi Denki Kabushiki Kaisha High-frequency semiconductor device
US20080157209A1 (en) * 2003-10-22 2008-07-03 Sehat Sutardja Integrated circuits and interconnect structure for integrated circuits
WO2011014951A1 (en) * 2009-08-04 2011-02-10 John Roberts Island matrixed gallium nitride microwave and power switching transistors

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625611B1 (fr) 1987-12-30 1990-05-04 Radiotechnique Compelec Circuit integre presentant un transistor lateral
EP0434234B1 (de) * 1989-12-22 1995-05-24 AT&T Corp. MOS-Bauteile mit einer verbesserten elektrischen Anpassung
JP2728322B2 (ja) * 1991-09-05 1998-03-18 三菱電機株式会社 半導体装置
JPH05166848A (ja) * 1991-12-17 1993-07-02 Nikko Kyodo Co Ltd 半導体装置
JP3136885B2 (ja) * 1994-02-02 2001-02-19 日産自動車株式会社 パワーmosfet
JP3355817B2 (ja) * 1994-10-20 2002-12-09 株式会社デンソー 半導体装置
US5689129A (en) * 1995-06-07 1997-11-18 Harris Corporation High efficiency power MOS switch
JPH0964053A (ja) 1995-08-18 1997-03-07 Mitsubishi Electric Corp ラテラル型トランジスタ
KR100503531B1 (ko) * 1996-11-05 2005-09-26 코닌클리케 필립스 일렉트로닉스 엔.브이. 반도체디바이스
JP2996641B2 (ja) * 1997-04-16 2000-01-11 松下電器産業株式会社 高周波半導体装置及びその製造方法
US6002156A (en) * 1997-09-16 1999-12-14 Winbond Electronics Corp. Distributed MOSFET structure with enclosed gate for improved transistor size/layout area ratio and uniform ESD triggering
JP3441353B2 (ja) * 1998-01-29 2003-09-02 京セラ株式会社 電界効果型トランジスタ
US6737301B2 (en) * 2000-07-13 2004-05-18 Isothermal Systems Research, Inc. Power semiconductor switching devices, power converters, integrated circuit assemblies, integrated circuitry, power current switching methods, methods of forming a power semiconductor switching device, power conversion methods, power semiconductor switching device packaging methods, and methods of forming a power transistor
US6768183B2 (en) * 2001-04-20 2004-07-27 Denso Corporation Semiconductor device having bipolar transistors
JP3524908B2 (ja) * 2002-01-21 2004-05-10 株式会社半導体理工学研究センター 半導体装置
US6724044B2 (en) * 2002-05-10 2004-04-20 General Semiconductor, Inc. MOSFET device having geometry that permits frequent body contact
DE10303932A1 (de) * 2002-09-05 2004-03-25 Infineon Technologies Ag Elektronisches Leistungsmodul mit mindestens zwei Leistungshalbleiterchips und Verfahren zur Herstellung desselben
KR100493059B1 (ko) * 2003-04-18 2005-06-02 삼성전자주식회사 게이트 캐패시턴스를 감소시킬 수 있는 트랜지스터
US20050045697A1 (en) * 2003-08-26 2005-03-03 Lacap Efren M. Wafer-level chip scale package
US7851872B2 (en) * 2003-10-22 2010-12-14 Marvell World Trade Ltd. Efficient transistor structure
WO2005057654A2 (en) * 2003-12-10 2005-06-23 Philips Intellectual Property & Standards Gmbh Wire-bonded semiconductor component with reinforced inner connection metallization
JP2005243928A (ja) * 2004-02-26 2005-09-08 Fujitsu Ltd トレンチアイソレーションで分離されたトランジスタ対を有する半導体装置
TWI261891B (en) * 2004-12-24 2006-09-11 Richtek Technology Corp Power metal oxide semiconductor transistor layout with lower output resistance and high current limit
US7701038B2 (en) 2005-10-31 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. High-gain vertex lateral bipolar junction transistor
JP5576113B2 (ja) 2006-04-03 2014-08-20 ヴォコレクト・インコーポレーテッド 音声認識システムにモデルを適合させるための方法およびシステム
US20080042221A1 (en) 2006-08-15 2008-02-21 Liming Tsau High voltage transistor
JP2009016780A (ja) * 2007-06-07 2009-01-22 Panasonic Corp 半導体装置
JP5307991B2 (ja) * 2007-07-27 2013-10-02 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 半導体装置
KR100838197B1 (ko) 2007-08-10 2008-06-16 서울옵토디바이스주식회사 개선된 전류분산 성능을 갖는 발광 다이오드

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084776A1 (en) * 2002-10-30 2004-05-06 Yutaka Fukuda Semiconductor equipment
EP1471581A2 (de) * 2003-04-18 2004-10-27 Samsung Electronics Co., Ltd. MOS Transistor mit gitterförmiger Gateelektrode
US20080157209A1 (en) * 2003-10-22 2008-07-03 Sehat Sutardja Integrated circuits and interconnect structure for integrated circuits
US20050133829A1 (en) * 2003-12-22 2005-06-23 Mitsubishi Denki Kabushiki Kaisha High-frequency semiconductor device
WO2011014951A1 (en) * 2009-08-04 2011-02-10 John Roberts Island matrixed gallium nitride microwave and power switching transistors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Field-effect transistor output driver", IBM TECHNICAL DISCLOSURE BULLETIN, INTERNATIONAL BUSINESS MACHINES CORP. (THORNWOOD), US, vol. 28, no. 8, 1 January 1986 (1986-01-01), XP002088269, ISSN: 0018-8689 *

Also Published As

Publication number Publication date
EP2534685B1 (de) 2015-04-29
EP2534685A1 (de) 2012-12-19
US20120306024A1 (en) 2012-12-06
US8901671B2 (en) 2014-12-02
JP5738322B2 (ja) 2015-06-24
JP2013520000A (ja) 2013-05-30
DE102010001788A1 (de) 2011-08-11

Similar Documents

Publication Publication Date Title
DE102014111252B4 (de) Elektronisches Bauteil und Verfahren
DE102015115805B4 (de) Elektronisches bauelement und verfahren zum herstellen eines elektronischen bauelements
EP2525397B2 (de) Leistungshalbleiter
DE102019112935B4 (de) Halbleitermodul
DE112015006984B4 (de) Halbleitervorrichtung und halbleitermodul, das mit derselben versehen ist
DE102015108909B4 (de) Anordnung mehrerer Leistungshalbleiterchips und Verfahren zur Herstellung derselben
DE69716081T2 (de) Rf leistungsbauteil mit einem doppelten erdschluss
DE102004046806B4 (de) Leistungshalbleitermodul
DE102015108253B4 (de) Elektronisches Modul und Verfahren zum Herstellen desselben
EP1764832A1 (de) Bondverbindung für Leistungshalbleiterbauelemente
DE102019112934A1 (de) Halbleitermodul
EP2534685B1 (de) Skalierbarer aufbau für laterale halbleiterbauelemente mit hoher stromtragfähigkeit
EP2091081B1 (de) Schaltungsanordnung mit Bondverbindung
DE19963883A1 (de) Leistungshalbleiter-Gehäuse
EP2162912B1 (de) Halbleiterbauelement mit ringförmig geschlossener kontaktierung
DE102022120081A1 (de) Leistungsschaltungsmodul
WO2022263543A1 (de) Leiterplattenanordnung
DE112014006786B4 (de) Leistungshalbleitervorrichtung
WO2006024330A1 (de) Leistungshalbleitermodul
DE112016007133B4 (de) Halbleitervorrichtung
DE102014203310A1 (de) Elektronikmodul
WO2019042653A1 (de) Schaltungsträger für leistungselektronik und leistungselektronikmodul mit einem schaltungsträger
DE102016119078A1 (de) Träger, Schaltkreis, Halbleiterbauelement-Paket
WO2024017952A1 (de) Leistungsmodul und verfahren zur herstellung desselben, stromrichter mit einem leistungsmodul
WO2024002568A1 (de) Leistungselektronische baugruppe mit bestückbaren leistungsmodulen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11706194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012552399

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011706194

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13578584

Country of ref document: US