WO2024017952A1 - Leistungsmodul und verfahren zur herstellung desselben, stromrichter mit einem leistungsmodul - Google Patents

Leistungsmodul und verfahren zur herstellung desselben, stromrichter mit einem leistungsmodul Download PDF

Info

Publication number
WO2024017952A1
WO2024017952A1 PCT/EP2023/070035 EP2023070035W WO2024017952A1 WO 2024017952 A1 WO2024017952 A1 WO 2024017952A1 EP 2023070035 W EP2023070035 W EP 2023070035W WO 2024017952 A1 WO2024017952 A1 WO 2024017952A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
power module
conducting elements
current conducting
cooler
Prior art date
Application number
PCT/EP2023/070035
Other languages
English (en)
French (fr)
Inventor
Alexander Sauermann
Harald VOLLATH
Rohit Katkar
Original Assignee
Vitesco Technologies Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies Germany Gmbh filed Critical Vitesco Technologies Germany Gmbh
Publication of WO2024017952A1 publication Critical patent/WO2024017952A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/46Structure, shape, material or disposition of the wire connectors prior to the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other

Definitions

  • the present invention relates to the technical field of power electronics.
  • the present invention relates in particular to a power module and a method for producing the same.
  • the present invention also relates to a power converter, in particular an inverter or a DC-DC converter, with a power module.
  • US 2017/154877 A1 describes a power module with several insulating layers between the cooler and electronic components. This structure takes up a lot of space and can also be improved in terms of heat conduction and the associated cooling efficiency.
  • the present invention is based on the object of providing a compact power module with improved cooling efficiency.
  • a power module comprising: a cooler having a surface, an electrically insulating (and thermally conductive) insulating layer formed on the surface of the cooler, an electrically conductive conductor layer structure formed on a surface facing away from the cooler Side of the insulating layer is formed, and a plurality of heat and current conducting elements made of a metal or a metal alloy or copper or a copper alloy, each with a top and a bottom, the respective heat and Current conducting elements are arranged over their respective undersides (directly) on the conductor layer structure and are electrically and thermally (conductively) connected to the conductor layer structure (directly or only via electrically and thermally conductive cohesive connections), semiconductor components, which are each on the top of the respective heat - and current conducting elements are arranged and are electrically and thermally (conductively) connected to the respective heat and current conducting elements (directly or only via electrically and thermally conductive cohesive connections).
  • the power module described is based on the knowledge that direct contact between the underside of the heat and current conduction elements, which also serve as heat distributors, and a conductor layer structure provided directly on the cooler enables very efficient heat conduction and thus good cooling efficiency in a compact structure.
  • the insulating layer is formed from an electrically insulating material, in particular from an organic electrically insulating material or a ceramic electrically insulating material.
  • the conductor layer structure is formed from an electrically and thermally conductive material or a metal or copper.
  • the insulating layer and the conductor layer structure or the electrical contact surfaces formed by them and possibly also conductor tracks are part of the cooler.
  • Semiconductor components can be attached to this conductor layer structure directly or via a carrier that is equipped with the semiconductor components, in particular after the insulating layer and the conductor layer structure have been attached to the cooler. Any support that may be present between the semiconductor components and the main body of the cooler is not part of the cooler; Rather, such a carrier (or the semiconductor component itself) on the conductive layer structure of the radiator, which is supported by the insulating layer of the radiator, an element that is placed on the radiator.
  • the cooler with a conductor layer structure and insulating layer can be provided as a separate component for heat dissipation and can be set up to carry the semiconductor components as mentioned.
  • the heat and current conducting elements are soldered or sintered or glued or welded onto the conductor layer structure via the underside.
  • the semiconductor components are each soldered or sintered or glued or welded onto the top of the respective heat and current conducting elements.
  • the insulating layer and the conductor layer structure can thus together provide a circuit board-like surface structure of the cooler, on which the heat and current conducting elements are mounted directly, e.g. B. can be soldered or sintered or glued or welded on.
  • the conductor layer structure has a plurality of surfaces that are physically and therefore electrically separated from one another.
  • the surfaces are rectangular, triangular, elliptical, circular or consist of one or more polygons.
  • Each surface preferably has a shape and size that correspond to the shape and size of the underside of at least one of the heat and current conducting elements or whose respective corresponding circumferences are only slightly larger.
  • At least one heat and current conducting element is arranged on each of the surfaces, which is electrically and thermally (conductively) connected to the respective surface.
  • the surfaces are arranged in groups of three. The three surfaces of the respective group of three each form (or provide) a negative current connection, a phase current connection or a positive current connection of the power module or a switching bridge.
  • Each group of three surfaces forms, for example, three electrical contact surfaces of a switching bridge for contacting the heat and current conducting elements.
  • the heat and current conducting elements are plate-shaped or block-shaped.
  • the heat and electricity conducting elements are punched or cut out of a copper sheet.
  • the heat and electricity conducting elements are arranged in groups of three.
  • the three heat and current conducting elements of the respective group of three each form (or provide) a negative current connection, a phase current connection or a positive current connection of the power module.
  • the power module further has electrically (and also thermally) conductive spacers, which are each soldered or sintered or glued or welded onto the top of the respective heat and current conducting elements.
  • the spacers are set up to provide electrical connections between the heat and current conducting elements on the one hand and external electrical contact partners, such as. B. Power connection rails (“bus bars”) of the power module on the other hand and at the same time spatial distance between the heat and power conducting elements on the one hand and the external electrical contact partners on the other hand, to produce or ensure.
  • the spacers are, for example, block-shaped or column-shaped.
  • the cooler has a heat sink and/or a liquid cooler, in particular an active liquid cooler.
  • a cooler is provided (step (a)).
  • An electrical insulating layer is formed on a surface of the cooler (step (b)).
  • An electrically conductive conductor layer structure is formed on a side of the insulating layer facing away from the cooler (step (c)).
  • a plurality of heat and current conducting elements (108A, 108B, 108C), each with a top and a bottom, are provided (step (d)).
  • the heat and electricity conducting elements are placed on a side facing away from the cooler.
  • the heat and current conducting elements are placed on the conductor layer structure via their respective undersides and electrically and thermally connected to the conductor layer structure (step (e)).
  • Semiconductor components are then prepared and arranged on the respective heat and current conducting elements.
  • the semiconductor components are each arranged on the respective corresponding heat and current conducting elements and electrically and thermally connected to the respective heat and current conducting elements (step (f)).
  • steps (b) and (c) can be carried out in different ways.
  • a material consisting of insulating material and conductor material can be applied to the surface of the cooler and the conductor layer structure can be provided by selectively removing conductor material.
  • the insulating layer can first be applied to the surface of the cooler applied and the conductor layer structure can then be created by applying conductor material to the insulating layer.
  • a power converter in particular an inverter or a DC-DC converter, is described with a power module according to the first aspect.
  • the power converter according to this third aspect thus benefits from the above-mentioned advantages of the power module.
  • Figure 1 shows a power module according to an exemplary embodiment.
  • Figure 2 shows three heat and current conducting elements according to an exemplary embodiment.
  • Figure 3 shows a switching bridge according to an exemplary embodiment.
  • Figure 4 shows a flowchart of a method for producing a power module according to an exemplary embodiment. It should be noted that the embodiments described below represent only a limited selection of possible embodiments of the invention.
  • FIG. 1 shows a power module 100 according to an exemplary embodiment.
  • the power module 100 includes a cooler 102, an insulating layer 104 provided on a surface of the cooler 102, a conductor layer structure 106A, 106B, 106C provided on the insulating layer 104, and a plurality of heat and current conducting elements in the form of Copper elements (i.e. made of copper or a copper alloy) 108A, 108B, 108C.
  • Copper elements i.e. made of copper or a copper alloy
  • Each copper element 108A, 108B, 108C serves as a heat distributor and at the same time as a power conductor or power connection and each has a top and a bottom.
  • the top is configured to form an electrical connection for an electronic component and the bottom is configured to directly contact the conductor layer structure.
  • the insulating layer 104 preferably consists of an electrically insulating material, for example an organic or ceramic material.
  • the conductor layer structure 106A, 106B, 106C is preferably formed from an electrically and thermally conductive material, in particular copper, and consists of several groups of three rectangular areas 106A, 106B, 106C on the insulating layer 104. For each group of three rectangular areas 106A, 106B, 106C A group of three 108 of copper elements or heat distributors 108A, 108B, 108C is provided. It should be noted that the surfaces 106A, 106B, 106C can also have shapes other than rectangular, in particular they can be triangular, elliptical or circular or consist of one or more polygons.
  • FIG. 2 shows three copper elements 108A, 108B, 108C of such a group of three 108 in more detail.
  • 2 shows a copper element 108A, which is set up as a heat distributor and as a negative connection for a switching bridge, a copper element 108B, which is set up as a heat distributor and as a phase current connection for a low-side semiconductor of a switching bridge, and a copper element 108C, which is set up as a heat distributor and as a plus connection for a high-side semiconductor of a switching bridge.
  • the shape and size of the copper elements 108A, 108B, 108C match the shape and size of the rectangular surfaces 106A, 106B, 106C, respectively.
  • Each copper element 108A, 108B, 108C has two block-shaped elements as spacers 109, which are designed to connect to one or more busbars.
  • FIG 3 shows a top view of a switching bridge 108 according to an exemplary embodiment, which is also shown in Figure 1.
  • the switching bridge has three copper elements 108A, 108B, 108C, which have just been described in connection with Figures 1 and 2.
  • Semiconductor components 110, 112 are attached to the copper elements 108B and 108C, which are at least partially surrounded by insulating material 114 and connected by means of bonding wires or bonding ribbons 111.
  • Figure 4 shows a flowchart 120 of a method for producing a power module 100 according to an exemplary embodiment.
  • the method begins at 122 by providing a cooler 102.
  • an insulating layer 104 is formed on a surface of the cooler 102 and at 126, conductor layer structure 106A, 106B, 106C is formed on the insulating layer 104.
  • a plurality of copper elements 108A, 108B, 108C are provided, each having a top and a bottom, with the top configured to form an electrical connection for an electronic component 110, 112 and the bottom configured to directly contact the conductor layer structure 106A, 106B, 106C are.
  • the function of the conductor layer structure as a heat conductor was particularly emphasized.
  • the conductor layer structure 106A, 106B, 106C can also be used for the wiring level of signals, electrical components or other functions (e.g. placement of a temperature sensor).
  • the conductor layer structure 106A, 106B, 106C can be used for both thermal and electrical conduction.

Abstract

Die Erfindung betrifft ein Leistungsmodul (100), das einen Kühler (102), eine auf einer Oberfläche des Kühlers vorgesehene Isolierschicht (104), eine auf der Isolierschicht vorgesehene Leiterschichtstruktur (106A, 106B, 106C) und eine Mehrzahl von Wärme- und Stromleitelementen (108A, 108B, 108C) mit jeweils einer Oberseite und einer Unterseite aufweist, wobei die Oberseite zum Bilden eines elektrischen Anschlusses für ein elektronisches Bauelement (110, 112) und die Unterseite zum direkten Kontaktieren der Leiterschichtstruktur (106A, 106B, 106C) konfiguriert sind. Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines solchen Leistungsmoduls (100) sowie einen Stromrichter mit einem solchen Leistungsmodul.

Description

Beschreibung
Leistungsmodul und Verfahren zur Herstellung desselben, Stromrichter mit einem Leistungsmodul
Die vorliegende Erfindung betrifft das technische Gebiet der Leistungselektronik.
Die vorliegende Erfindung betrifft insbesondere ein Leistungsmodul und ein Verfahren zur Herstellung desselben. Die vorliegende Erfindung betrifft auch einen Stromrichter, insb. einen Inverter oder einen Gleichspannungswandler, mit einem Leistungsmodul.
US 2017/154877 A1 beschreibt ein Leistungsmodul mit mehreren Isolierschichten zwischen Kühler und elektronischen Bauelementen. Diese Struktur nimmt viel Platz auf und ist auch hinsichtlich Wärmeleitung und damit verbundener Kühleffizienz verbesserungsfähig.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein kompaktes Leistungsmodul mit verbesserter Kühleffizienz bereitzustellen.
Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.
Gemäß einem ersten Aspekt der Erfindung wird ein Leistungsmodul beschrieben, das aufweist: einen Kühler mit einer Oberfläche, eine elektrisch isolierende (und thermisch leitende) Isolierschicht, die auf der Oberfläche des Kühlers gebildet ist, eine elektrisch leitende Leiterschichtstruktur, die auf einer dem Kühler abgewandten Seite der Isolierschicht gebildet ist, und eine Mehrzahl von Wärme- und Stromleitelementen aus einem Metall oder einer Metalllegierung oder Kupfer oder einer Kupferlegierung mit jeweils einer Oberseite und einer Unterseite, wobei die jeweiligen Wärme- und Strom leitelemente über deren jeweilige Unterseite (direkt) auf der Leiterschichtstruktur angeordnet sind und mit der Leiterschichtstruktur (direkt bzw. lediglich über elektrisch und thermisch leitende stoffschlüssige Verbindungen) elektrisch und thermisch (leitend) verbunden sind, Halbleiterbauelemente, die jeweils auf der Oberseite der jeweiligen Wärme- und Strom leitelemente angeordnet sind und (direkt bzw. lediglich über elektrisch und thermisch leitende stoffschlüssige Verbindungen) mit den jeweiligen Wärme- und Stromleitelementen elektrisch und thermisch (leitend) verbunden sind.
Dem beschriebenen Leistungsmodul liegt die Erkenntnis zugrunde, dass ein direkter Kontakt zwischen der Unterseite der auch als Wärmeverteiler dienenden Wärme- und Strom leitelemente und eine direkt auf dem Kühler vorgesehenen Leiterschichtstruktur eine sehr effiziente Wärmeleitung und somit gute Kühleffizienz in einer kompakten Struktur ermöglicht.
Gemäß einem Ausführungsbeispiel der Erfindung ist die Isolierschicht aus einem elektrisch isolierenden Material, insbesondere aus einem organischen elektrisch isolierenden Material oder einem keramischen elektrisch isolierenden Material, gebildet.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Leiterschichtstruktur aus einem elektrisch und thermisch leitenden Material oder einem Metall oder Kupfer gebildet.
Bspw. sind die Isolierschicht und die Leiterschichtstruktur bzw. die hiervon gebildeten elektrischen Kontaktflächen und ggf. auch Leiterbahnen Teil des Kühlers. Halbleiterbauelemente können auf dieser Leiterschichtstruktur direkt oder über einen Träger, der mit den Halbleiterbauelementen bestückt ist, befestigt werden, insbesondere nachdem die Isolierschicht und die Leiterschichtstruktur auf dem Kühler befestigt wurde. Ein ggf. vorhandener Träger zwischen den Halbleiterbauelementen und dem Hauptkörper des Kühlers ist nicht Teil des Kühlers; vielmehr ist ein derartiger Träger (bzw. das Halbleiterbauelement selbst) auf der Leiterschichtstruktur des Kühlers, die von der Isolierschicht des Kühlers getragen wird, ein Element, das auf dem Kühler angeordnet wird. Der Kühler mit Leiterschichtstruktur und Isolierschicht kann als eigenes Bauteil zur Entwärmung vorgesehen sein und eingerichtet sein, die Halbleiterbauelemente wie erwähnt zu tragen.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Wärme- und Strom leitelemente über die Unterseite auf die Leiterschichtstruktur aufgelötet oder aufgesintert oder aufgeklebt oder aufgeschweißt.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Halbleiterbauelemente jeweils auf die Oberseite der jeweiligen Wärme- und Strom leitelemente aufgelötet oder aufgesintert oder aufgeklebt oder aufgeschweißt.
Die Isolierschicht und die Leiterschichtstruktur können somit zusammen eine Leiterplattenähnliche Oberflächenstruktur des Kühlers bereitstellen, auf welcher die Wärme- und Strom leitelemente direkt montiert, z. B. aufgelötet oder aufgesintert oder aufgeklebt oder aufgeschweißt werden können.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Leiterschichtstruktur eine Mehrzahl von Flächen auf, die voneinander körperlich und somit elektrisch getrennt sind. Insbesondere sind die Flächen rechteckig, dreieckig, ellipsenförmig, kreisförmig geformt oder bestehenden aus einem oder mehreren Polygonen.
Jede Fläche hat vorzugsweise eine Form und Größe, die mit der Form und Größe der Unterseite von zumindest einem der Wärme- und Stromleitelemente übereinstimmen bzw. in deren jeweilige korrespondierende Umfänge lediglich geringfügig größer sind.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist auf jeder der Flächen jeweils mindestens ein Wärme- und Stromleitelement angeordnet, der mit der jeweiligen Fläche elektrisch und thermisch (leitend) verbunden ist. Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Flächen in Dreiergruppen angeordnet. Dabei bilden (bzw. stellen bereit) die drei Flächen der jeweiligen Dreiergruppe jeweils einen Minusstromanschluss, einen Phasenstromanschluss bzw. einen Plusstromanschluss des Leistungsmoduls bzw. einer Schaltbrücke.
Jede Flächen-Dreiergruppe bildet bspw. drei elektrische Kontaktflächen einer Schaltbrücke zum Kontaktieren der Wärme- und Strom leitelemente.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Wärme- und Strom leitelemente platten- oder blockförmig gebildet. Insb. sind die Wärme- und Strom leitelemente aus einem Kupferblech ausgestanzt oder ausgeschnitten.
Die Wahl zwischen relativ dünnen plattenförmigen Wärme- und Strom leitelementen oder relativ dickeren blockförmigen Wärme- und Stromleitelementen hängt von den Gegebenheiten, insbesondere der benötigten Wärmeleitung und -Verteilung ab.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Wärme- und Strom leitelemente in Dreiergruppen angeordnet. Dabei bilden (bzw. stellen bereit) die drei Wärme- und Strom leitelemente der jeweiligen Dreiergruppe jeweils einen Minusstromanschluss, einen Phasenstromanschluss bzw. einen Plusstromanschluss des Leistungsmoduls.
Gemäß einem weiteren Ausführungsbeispiel weist das Leistungsmodul ferner elektrisch (und auch thermisch) leitende Abstandshalter auf, die jeweils auf die Oberseite der jeweiligen Wärme- und Stromleitelemente aufgelötet oder aufgesintert oder aufgeklebt oder aufgeschweißt sind. Die Abstandshalter sind eingerichtet, elektrische Verbindungen zwischen den Wärme- und Stromleitelementen einerseits und externen elektrischen Kontaktpartnern, wie z. B. Stromanschlussschienen (auf Englisch „Bus bars“), des Leistungsmoduls andererseits herzustellen und zugleich räumlichen Abstand zwischen den Wärme- und Strom leitelementen einerseits und den externen elektrischen Kontaktpartnern andererseits herzustellen bzw. sicherzustellen. Dabei sind die Abstandshalter bspw. blockförmig öder säulenförmig gebildet.
Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Kühler einen Kühlkörper und/oder einen Flüssigkeitskühler, insbesondere einen aktiven Flüssigkeitskühler auf.
Gemäß einem zweiten Aspekt der Erfindung wird ein Verfahren zur Herstellung eines zuvor beschriebenen Leistungsmoduls beschrieben.
Gemäß dem Verfahren wird ein Kühler bereitgestellt (Schritt (a)). Auf einer Oberfläche des Kühlers wird eine elektrische Isolierschicht gebildet (Schritt (b)). Auf einer dem Kühler abgewandten Seite der Isolierschicht wird eine elektrisch leitende Leiterschichtstruktur gebildet (Schritt (c)). Eine Mehrzahl von Wärme- und Stromleitelementen (108A, 108B, 108C) mit jeweils einer Oberseite und einer Unterseite wird bereitgestellt (Schritt (d)). Die Wärme- und Strom leitelemente werden auf eine dem Kühler abgewandte Seite Leiterschichtstruktur. Dabei werden die Wärme- und Strom leitelemente über deren jeweilige Unterseite auf die Leiterschichtstruktur aufgelegt und mit der Leiterschichtstruktur elektrisch und thermisch verbunden (Schritt (e)). Anschließend werden Halbleiterbauelemente bereitstellt und auf die jeweiligen Wärme- und Strom leitelemente angeordnet. Dabei werden die Halbleiterbauelemente jeweils auf die jeweiligen korrespondierenden Wärme- und Strom leitelemente angeordnet und mit den jeweiligen Wärme- und Stromleitelementen elektrisch und thermisch verbunden (Schritt (f)).
Das beschriebene Verfahren basiert im Wesentlichen auf der gleichen Idee wie das oben Leistungsmodul gemäß dem ersten Aspekt und stellt insbesondere ein Verfahren zur Herstellung eines solchen Leistungsmoduls bereit. Dabei können insbesondere die Schritte (b) und (c) in verschiedener Art und Weise durchgeführt werden. Zum Beispiel kann ein Material bestehend aus Isoliermaterial und Leitermaterial auf die Oberfläche des Kühlers aufgebracht und die Leiterschichtstruktur durch gezieltes Entfernen von Leitermaterial bereitgestellt werden. Alternativ kann die Isolierschicht erst auf die Oberfläche des Kühlers aufgebracht und die Leiterschichtstruktur danach durch Aufbringen von Leitermaterial auf die Isolierschicht erstellt werden.
Gemäß einem dritten Aspekt der Erfindung wird ein Stromrichter, insb. ein Inverter oder ein Gleichspannungswandler, mit einem Leistungsmodul gemäß dem ersten Aspekt beschrieben. Der Stromrichter gemäß diesem dritten Aspekt profitiert somit von den oben erwähnten Vorteilen des Leistungsmoduls.
Es wird darauf hingewiesen, dass Ausführungsformen der Erfindung mit Bezug auf unterschiedliche Erfindungsgegenstände beschrieben wurden. Insbesondere sind einige Ausführungsformen der Erfindung mit Verfahrensansprüchen und andere Ausführungsformen der Erfindung mit Vorrichtungsansprüchen beschrieben. Dem Fachmann wird jedoch bei der Lektüre dieser Anmeldung sofort klar werden, dass, sofern nicht explizit anders angegeben, zusätzlich zu einer Kombination von Merkmalen, die zu einem Typ von Erfindungsgegenstand gehören, auch eine beliebige Kombination von Merkmalen möglich ist, die zu unterschiedlichen Typen von Erfindungsgegenständen gehören.
Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung einer bevorzugten Ausführungsform.
Figur 1 zeigt ein Leistungsmodul gemäß einer beispielhaften Ausführungsform.
Figur 2 zeigt drei Wärme- und Stromleitelemente gemäß einer beispielhaften Ausführungsform.
Figur 3 zeigt eine Schaltbrücke gemäß einer beispielhaften Ausführungsform.
Figur 4 zeigt ein Flussdiagramm eines Verfahrens zur Herstellung eines Leistungsmoduls gemäß einer beispielhaften Ausführungsform. Es wird darauf hingewiesen, dass die nachfolgend beschriebenen Ausführungsformen lediglich eine beschränkte Auswahl an möglichen Ausführungsvananten der Erfindung darstellen.
Die Figur 1 zeigt ein Leistungsmodul 100 gemäß einer beispielhaften Ausführungsform. Das Leistungsmodul 100 weist einen Kühler 102, eine Isolierschicht 104, die auf einer Oberfläche des Kühlers 102 vorgesehen ist, eine Leiterschichtstruktur 106A, 106B, 106C, die auf der Isolierschicht 104 vorgesehen ist, und eine Mehrzahl von Wärme- und Strom leitelementen in Form von Kupferelementen (also en aus Kupfer oder einer Kupferlegierung) 108A, 108B, 108C auf. Jedes Kupferelement 108A, 108B, 108C dient als Wärmeverteiler und zugleich als Stromleiter bzw. Stromanschluss und hat jeweils eine Oberseite und eine Unterseite. Die Oberseite ist zum Bilden eines elektrischen Anschlusses für ein elektronisches Bauelement und die Unterseite ist zum direkten Kontaktieren der Leiterschichtstruktur konfiguriert. Die Isolierschicht 104 besteht vorzugsweise aus einem elektrisch isolierenden Material, z.B. einem organischen oder keramischen Material. Die Leiterschichtstruktur 106A, 106B, 106C ist vorzugsweise aus einem elektrisch und thermisch leitenden Material, insbesondere Kupfer gebildet, und besteht aus mehreren Dreiergruppen von rechteckigen Flächen 106A, 106B, 106C auf der Isolierschicht 104. Für jede Dreiergruppe von rechteckigen Flächen 106A, 106B, 106C ist eine Dreiergruppe 108 von Kupferelementen bzw. Wärmeverteiler 108A, 108B, 108C vorgesehen. Es sei angemerkt, dass die Flächen 106A, 106B, 106C auch andere Formen als rechteckig aufweisen können, insbesondere können sie dreieckig, ellipsenförmig oder kreisförmig sein oder aus einem oder mehreren Polygonen bestehen.
Die Figur 2 zeigt drei Kupferelemente 108A, 108B, 108C einer solchen Dreiergruppe 108 in mehr Detail. Spezifischer zeigt die Figur 2 ein Kupferelement 108A, das als Wärmeverteiler und als Minus-Anschluss für eine Schaltbrücke eingerichtet ist, ein Kupferelement 108B, das als Wärmeverteiler und als Phasenstromanschluss für einen Low-Side-Halbleiter einer Schaltbrücke eingerichtet ist, und ein Kupferelement 108C, das als Wärmeverteiler und als Plus-Anschluss für einen High-Side-Halbleiter einer Schaltbrücke eingerichtet ist. Die Form und Größe der Kupferelemente 108A, 108B, 108C passt jeweils mit Form und Größe der rechteckigen Flächen 106A, 106B, 106C überein. Jedes Kupferelement 108A, 108B, 108C weist zwei blockförmige Elemente als Abstandhalter 109 auf, die zum Verbinden mit einem oder mehrere Busbars eingerichtet sind.
Die Figur 3 zeigt eine Draufsicht einer Schaltbrücke 108 gemäß einer beispielhaften Ausführungsform, die auch in der Figur 1 gezeigt ist. Die Schaltbrücke weist drei Kupferelemente 108A, 108B, 108C, die soeben in Verbindung mit der Figur 1 und Figur 2 beschrieben wurden. Auf die Kupferelemente 108B und 108C sind Halbleiterkomponenten 110, 112 angebracht, die von Isoliermaterial 114 zumindest teilweise umgeben und mittels Bonddrähte oder Bondbändchen 111 verbunden sind.
Die Figur 4 zeigt ein Flussdiagramm 120 eines Verfahrens zur Herstellung eines Leistungsmoduls 100 gemäß einer beispielhaften Ausführungsform. Das Verfahren beginnt bei 122 mit dem Bereitstellen eines Kühlers 102. Bei 124 wird eine Isolierschicht 104 auf einer Oberfläche des Kühlers 102 gebildet und bei 126 wird Leiterschichtstruktur 106A, 106B, 106C auf der Isolierschicht 104 gebildet. Bei 128 wird eine Mehrzahl von Kupferelementen 108A, 108B, 108C mit jeweils einer Oberseite und einer Unterseite bereitgestellt, wobei die Oberseite zum Bilden eines elektrischen Anschlusses für ein elektronisches Bauelement 110, 112 und die Unterseite zum direkten Kontaktieren der Leiterschichtstruktur 106A, 106B, 106C konfiguriert sind.
In den oben beschriebenen Ausführungsformen wurde die Funktion der Leiterschichtstruktur als Wärmeleiter insbesondere hervorgehoben. Es sei aber darauf hingewiesen, dass die Leiterschichtstruktur 106A, 106B, 106C auch zur Verdrahtungsebene von Signalen, elektrischen Bauteilen oder anderen Funktionen (z.B. Platzierung eines Temperatursensors) genutzt werden können. Mit anderen Worten kann die Leiterschichtstruktur 106A, 106B, 106C sowohl zum thermischen als auch zum elektrischen Leiten verwendet werden.

Claims

Patentansprüche
1 . Leistungsmodul (100) aufweisend einen Kühler (102), eine elektrische Isolierschicht (104) auf einer Oberfläche des Kühlers, eine elektrische Leiterschichtstruktur (106A, 106B, 106C) auf einer dem Kühler abgewandten Seite der Isolierschicht, und eine Mehrzahl von Wärme- und Stromleitelementen (108A, 108B, 108C) aus einem Metall oder einer Metalllegierung oder Kupfer oder einer Kupferlegierung mit jeweils einer Oberseite und einer Unterseite, wobei die Wärme- und Stromleitelemente über deren jeweilige Unterseite auf einer dem Kühler abgewandten Seite der Leiterschichtstruktur angeordnet sind und mit der Leiterschichtstruktur elektrisch und thermisch verbunden sind, Halbleiterbauelemente (110, 112), die jeweils auf der Oberseite der jeweiligen Wärme- und Stromleitelemente angeordnet sind und mit den jeweiligen Wärme- und Stromleitelementen elektrisch und thermisch verbunden sind.
2. Leistungsmodul gemäß Anspruch 1 , wobei die Isolierschicht aus einem organischen, elektrisch isolierenden Material oder aus einem keramischen, elektrisch isolierenden Material gebildet ist.
3. Leistungsmodul gemäß Anspruch 1 oder 2, wobei die Wärme- und
Strom leitelemente über die Unterseite auf die Leiterschichtstruktur aufgelötet oder aufgesintert oder aufgeklebt oder aufgeschweißt sind.
4. Leistungsmodul gemäß einem der vorhergehenden Ansprüche, wobei die Halbleiterbauelemente jeweils auf die Oberseite der jeweiligen Wärme- und Strom leitelemente aufgelötet oder aufgesintert oder aufgeklebt oder aufgeschweißt sind.
5. Leistungsmodul gemäß einem der vorhergehenden Ansprüche, wobei die Leiterschichtstruktur eine Mehrzahl von elektrisch leitenden Flächen aufweist, die voneinander körperlich und elektrisch getrennt sind.
6. Leistungsmodul gemäß Anspruch 5, wobei auf jeder der Flächen jeweils mindestens ein Wärme- und Stromleitelement angeordnet ist, das mit der jeweiligen korrespondierenden Fläche elektrisch und thermisch verbunden ist.
7. Leistungsmodul gemäß dem vorhergehenden Anspruch, wobei die Flächen in Dreiergruppen angeordnet sind, wobei die drei Flächen der jeweiligen Dreiergruppe jeweils einen Minusstromanschluss, einen Phasenstromanschluss und einen Plusstromanschluss des Leistungsmoduls bilden.
8. Leistungsmodul gemäß einem der vorhergehenden Ansprüche, wobei die Wärme- und Strom leitelemente platten- oder blockförmig gebildet sind.
9. Leistungsmodul gemäß einem der vorhergehenden Ansprüche, wobei die Wärme- und Strom leitelemente in Dreiergruppen (108) angeordnet sind, wobei die drei Wärme- und Stromleitelemente der jeweiligen Dreiergruppe jeweils einen Minusstromanschluss, einen Phasenstromanschluss und einen Plusstromanschluss des Leistungsmoduls bilden.
10. Leistungsmodul gemäß einem der vorhergehenden Ansprüche, das ferner elektrisch leitende Abstandshalter (109) aufweist, die jeweils auf die Oberseite der jeweiligen Wärme- und Strom leitelemente aufgelötet oder aufgesintert oder aufgeklebt oder aufgeschweißt sind und eingerichtet sind, elektrische Verbindungen zwischen den Wärme- und Strom leitelementen einerseits und externen elektrischen Kontaktpartnern des Leistungsmoduls andererseits herzustellen und zugleich räumlichen Abstand zwischen den Wärme- und Strom leitelementen einerseits und den externen elektrischen Kontaktpartnern andererseits herzustellen. Leistungsmodul nach Anspruch 10, wobei die Abstandshalter blockförmig öder säulenförmig gebildet sind. Verfahren zur Herstellung eines Leistungsmoduls nach einem der vorhergehenden Ansprüche, mit folgenden Schritten:
Bereitstellen (122) eines Kühlers (102),
Bilden (124) einer elektrischen Isolierschicht (104) auf einer Oberfläche des Kühlers,
Bilden (126) einer Leiterschichtstruktur (106A, 106B, 106C) auf eine dem Kühler abgewandte Seite der Isolierschicht,
Bereitstellen (128) einer Mehrzahl von Wärme- und Strom leitelementen (108A, 108B, 108C) aus einem Metall oder einer Metalllegierung oder Kupfer oder einer Kupferlegierung mit jeweils einer Oberseite und einer Unterseite,
Anordnen der Wärme- und Strom leitelemente auf eine dem Kühler abgewandte Seite der Leiterschichtstruktur, wobei die Wärme- und Strom leitelemente über deren jeweilige Unterseite auf die Leiterschichtstruktur aufgelegt werden und mit der Leiterschichtstruktur elektrisch und thermisch verbunden werden,
Anordnen von Halbleiterbauelementen (110, 112) auf die jeweiligen korrespondierenden Wärme- und Stromleitelemente und Verbinden der Halbleiterbauelemente mit den jeweiligen korrespondierenden Wärme- und Strom leitelementen elektrisch und thermisch. Stromrichter mit einem Leistungsmodul nach einem der Ansprüche 1 bis 11 .
PCT/EP2023/070035 2022-07-22 2023-07-19 Leistungsmodul und verfahren zur herstellung desselben, stromrichter mit einem leistungsmodul WO2024017952A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022207525.0A DE102022207525A1 (de) 2022-07-22 2022-07-22 Leistungsmodul und Verfahren zur Herstellung desselben, Stromrichter mit einem Leistungsmodul
DE102022207525.0 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024017952A1 true WO2024017952A1 (de) 2024-01-25

Family

ID=87474159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070035 WO2024017952A1 (de) 2022-07-22 2023-07-19 Leistungsmodul und verfahren zur herstellung desselben, stromrichter mit einem leistungsmodul

Country Status (2)

Country Link
DE (1) DE102022207525A1 (de)
WO (1) WO2024017952A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219852A1 (de) * 2014-10-29 2016-05-04 Hyundai Motor Company Leistungsmodul mit zweiseitiger Kühlung und Verfahren zur Herstellung desselben
DE112015002001T5 (de) * 2014-04-25 2017-01-26 Denso Corporation Halbleitermodul
DE102016214310A1 (de) * 2015-08-06 2017-02-09 Continental Automotive Gmbh Schaltungsträger, Leistungsschaltungsanordnung mit einem Schaltungsträger, Verfahren zum Herstellen eines Schaltungsträgers
US20170154877A1 (en) 2014-07-03 2017-06-01 Nissan Motor Co., Ltd. Half-bridge power semiconductor module and manufacturing method therefor
EP3404819A1 (de) * 2017-05-17 2018-11-21 Toyota Jidosha Kabushiki Kaisha Stromrichter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563364B2 (en) 2011-09-29 2013-10-22 Infineon Technologies Ag Method for producing a power semiconductor arrangement
WO2014006814A1 (ja) 2012-07-04 2014-01-09 パナソニック株式会社 半導体装置
EP2996144B1 (de) 2013-12-19 2017-09-06 Fuji Electric Co., Ltd. Halbleitermodul und elektrisch angetriebenes fahrzeug
DE102014105000B4 (de) 2014-04-08 2021-02-25 Infineon Technologies Ag Verfahren zur Herstellung und zum Bestücken eines Schaltungsträgers
JP6137267B2 (ja) 2015-10-08 2017-05-31 三菱マテリアル株式会社 ヒートシンク付きパワーモジュール用基板及びパワーモジュール
JP6601512B2 (ja) 2018-01-24 2019-11-06 三菱マテリアル株式会社 ヒートシンク付きパワーモジュール用基板及びパワーモジュール
JP7147502B2 (ja) 2018-11-19 2022-10-05 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法
EP3933913A1 (de) 2020-06-30 2022-01-05 Siemens Aktiengesellschaft Leistungsmodul mit mindestens zwei leistungseinheiten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015002001T5 (de) * 2014-04-25 2017-01-26 Denso Corporation Halbleitermodul
US20170154877A1 (en) 2014-07-03 2017-06-01 Nissan Motor Co., Ltd. Half-bridge power semiconductor module and manufacturing method therefor
DE102015219852A1 (de) * 2014-10-29 2016-05-04 Hyundai Motor Company Leistungsmodul mit zweiseitiger Kühlung und Verfahren zur Herstellung desselben
DE102016214310A1 (de) * 2015-08-06 2017-02-09 Continental Automotive Gmbh Schaltungsträger, Leistungsschaltungsanordnung mit einem Schaltungsträger, Verfahren zum Herstellen eines Schaltungsträgers
EP3404819A1 (de) * 2017-05-17 2018-11-21 Toyota Jidosha Kabushiki Kaisha Stromrichter

Also Published As

Publication number Publication date
DE102022207525A1 (de) 2024-01-25

Similar Documents

Publication Publication Date Title
EP0221399B1 (de) Leistungshalbleitermodul
DE102009005650B4 (de) Elektronikmodul und Verfahren zur Herstellung eines Elektronikmoduls
DE102007006447B4 (de) Elektronisches Modul und Verfahren zur Herstellung des elektronischen Moduls
DE102006037118B3 (de) Halbleiterschaltmodul für Bordnetze mit mehreren Halbleiterchips, Verwendung eines solchen Halbleiterschaltmoduls und Verfahren zur Herstellung desselben
DE112007000183T5 (de) Hochleistungsmodul mit offener Rahmenbaugruppe
EP2525397B1 (de) Leistungshalbleiter
DE102015115805B4 (de) Elektronisches bauelement und verfahren zum herstellen eines elektronischen bauelements
DE102019108988B3 (de) Leistungshalbleitermodul und verfahren zur herstellung desselben
DE102019112935B4 (de) Halbleitermodul
DE102015100480A1 (de) Elektronische Komponente, Anordnung und Verfahren
EP3095307B1 (de) Leiterplatte, schaltung und verfahren zur herstellung einer schaltung
DE102018132663A1 (de) Schaltnetzteil
DE102004046806B4 (de) Leistungshalbleitermodul
DE102015216779B4 (de) Leistungshalbleitervorrichtung
DE102015108253B4 (de) Elektronisches Modul und Verfahren zum Herstellen desselben
DE112017001346T5 (de) Schaltungsanordnung
DE3931551C2 (de) Verfahren zum Herstellen eines Substrates
DE102019135373A1 (de) Halbleitervorrichtung und Verfahren zum Herstellen derselben
WO2024017952A1 (de) Leistungsmodul und verfahren zur herstellung desselben, stromrichter mit einem leistungsmodul
EP4141923A1 (de) Leistungshalbleiterbauteil und verfahren zur herstellung eines leistungshalbleiterbauteils
DE102019113021A1 (de) Elektronikkomponente für ein Fahrzeug mit verbesserter elektrischer Kontaktierung eines Halbleiterbauelements sowie Herstellungsverfahren
DE102009040579A1 (de) Verfahren zum Produzieren von Halbleiter-Bauelementen
DE102014203310A1 (de) Elektronikmodul
DE19549097A1 (de) Halbleitergehäuse für die Oberflächenmontage
DE102016107249B4 (de) Leiterplatte mit einer Aussparung für ein elektrisches Bauelement, System mit der Leiterplatte und Verfahren zur Herstellung der Leiterplatte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745460

Country of ref document: EP

Kind code of ref document: A1