WO2011096533A1 - 癌の治療及び/又は予防用医薬組成物 - Google Patents
癌の治療及び/又は予防用医薬組成物 Download PDFInfo
- Publication number
- WO2011096533A1 WO2011096533A1 PCT/JP2011/052412 JP2011052412W WO2011096533A1 WO 2011096533 A1 WO2011096533 A1 WO 2011096533A1 JP 2011052412 W JP2011052412 W JP 2011052412W WO 2011096533 A1 WO2011096533 A1 WO 2011096533A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- cancer
- seq
- caprin
- amino acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
Definitions
- the present invention relates to a novel pharmaceutical use of an antibody against CAPRIN-1 or a fragment thereof as a therapeutic and / or prophylactic agent for cancer.
- Cancer is a disease that occupies the top cause of all deaths, and the current treatment is a combination of radiation therapy and chemotherapy, mainly surgery. Despite the recent development of new surgical methods and the discovery of new anti-cancer drugs, the therapeutic results of cancer have not improved much except for some cancers. In recent years, advances in molecular biology and cancer immunology have identified antibodies that react specifically with cancer, cancer antigens that are recognized by cytotoxic T cells, genes that encode cancer antigens, There is an increasing expectation for a specific cancer therapy targeting cancer antigens (Non-patent Document 1).
- Non-Patent Documents 4 to 4 9
- clinical studies of cell therapy using immune cells that specifically react with cancer antigens and cancer-specific immunotherapy such as vaccines containing cancer antigens are being conducted targeting a part of them.
- Cytoplasma-and promotion-associated protein 1 (CAPRIN-1) is expressed when quiescent normal cells are activated or undergo cell division, and also forms RNA and intracellular stress granules within the cell to transport mRNA It is an intracellular protein known to be involved in the control of translation.
- CAPRIN-1 Cytoplasma-and promotion-associated protein 1
- examples include GPI-anchored membrane protein 1 and Membrane component surface marker protein 1 (M11S1), and this protein is a cell membrane protein. There is a name as if it was known. These aliases originally originated from a report (Non-patent Document 10) that the gene sequence of CAPRIN-1 has a GPI-binding region and is expressed in colon cancer cells.
- the CAPRIN-1 gene sequence is incorrect, and the CAPRIN-1 gene sequence currently registered in GenBank et al. Lacks one base, resulting in a frameshift resulting in a deletion of 80 amino acids from the C-terminus.
- the resulting artifact (74 amino acids) is the GPI-binding portion in the previous report, and further there is a gene sequence error on the 5 ′ side, and 53 amino acids are deleted from the N-terminus (non-patent literature). 11). Further, it has been reported that the protein encoded by the gene sequence of CAPRIN-1 currently registered in GenBank et al. Is not a cell membrane protein (Non-patent Document 11).
- Patent Documents 2 and 3 include the name M11S1, and CAPRIN-1 is one of the cell membrane proteins and is used as a target for antibody drugs. It is described that it can be used for treatment (there is no mention of treatment using an antibody against this protein in the Examples).
- Non-Patent Document 11 from the time of filing of Patent Document 2 to the present, it has become common knowledge that CAPRIN-1 is not expressed on the cell surface, and CAPRIN-1 is a cell membrane protein. It is clear that the contents of Patent Documents 2 and 3 based only on false information that is not to be understood as technical common knowledge for those skilled in the art.
- An object of the present invention is to identify a cancer antigen protein that is specifically expressed on the surface of a cancer cell, and to provide a use of an antibody targeting it as a therapeutic and / or prophylactic agent for cancer.
- CAPRIN-1 having an amino acid sequence represented by an even sequence number among SEQ ID NOs: 2 to 30 based on the obtained gene and its human, bovine, horse, mouse, chicken homologous gene Antibodies against CAPRIN-1 were generated.
- CAPRIN-1 is specifically expressed in breast cancer, brain tumor, leukemia, lymphoma, lung cancer, cervical cancer, bladder cancer, esophageal cancer, colon cancer, stomach cancer, kidney cancer, ovarian cancer, prostate cancer and fibrosarcoma And, it was found that a part of the CAPRIN-1 protein is specifically expressed on the cell surface of these cancer cells. The inventors have found that an antibody against a portion of CAPRIN-1 expressed on the cell surface of each cancer cell damages cancer cells expressing CAPRIN-1, thereby completing the present invention.
- the present invention has the following features.
- the present invention relates to an amino acid sequence represented by SEQ ID NO: 37, or CAPRIN-1 represented by an even sequence number among SEQ ID NOs: 2 to 30 having an amino acid sequence having 80% or more sequence identity with the amino acid sequence.
- a pharmaceutical composition for the treatment and / or prevention of cancer, comprising an antibody or fragment thereof having immunological reactivity with the partial polypeptide as an active ingredient.
- the cancer is breast cancer, brain tumor, leukemia, lymphoma, lung cancer, cervical cancer, bladder cancer, esophageal cancer, colon cancer, stomach cancer, kidney cancer, ovarian cancer, prostate cancer or fibrosarcoma.
- the antibody is a monoclonal antibody or a polyclonal antibody.
- the antibody is a human antibody, a humanized antibody, a chimeric antibody, a single chain antibody, or a bispecific antibody.
- the antibody against CAPRIN-1 used in the present invention damages cancer cells. Therefore, antibodies against CAPRIN-1 are useful for the treatment and prevention of cancer.
- Reference number 1 the expression pattern of the gene encoding the CAPRIN-1 protein
- Reference number 2 the expression pattern of the GAPDH gene.
- the antitumor activity of the antibody against the polypeptide having an even sequence number among SEQ ID NOs: 2 to 30 used in the present invention is, as described later, by examining the suppression of tumor growth in a cancer-bearing animal in vivo, or It can be evaluated by examining whether tumor cells expressing the polypeptide in vitro exhibit cytotoxic activity via immune cells or complement.
- nucleotide sequences of the polynucleotides encoding the proteins consisting of the amino acid sequences of even numbers among SEQ ID NOs: 2 to 30 are respectively SEQ ID NOs: 1 to It is shown by the odd sequence number (namely, sequence number 1,3,5..27,29) among 29.
- amino acid sequences shown in SEQ ID NOs: 6, 8, 10, 12, and 14 in the sequence listing disclosed by the present invention are derived from cancer-bearing dogs by the SEREX method using a dog testis tissue-derived cDNA library and the serum of a dog with breast cancer.
- the amino acid sequences shown in SEQ ID NOs: 2 and 4 are human homologues (homologs), the amino acid sequence shown in SEQ ID NO: 16 is As the bovine homologous factor, the amino acid sequence shown in SEQ ID NO: 18 is the equine homologous factor, the amino acid sequence shown in SEQ ID NO: 20-28 is the mouse homologous factor, the amino acid sequence shown in SEQ ID NO: 30 is the It is an amino acid sequence of CAPRIN-1 isolated as a chicken homologous factor (see Example 1 described later). CAPRIN-1 is known to be expressed when quiescent normal cells are activated or undergo cell division.
- CAPRIN-1 was known not to be expressed on the cell surface, this study revealed that a part of the CAPRIN-1 protein is expressed on the cell surface of various cancer cells. And comprising the amino acid sequence represented by SEQ ID NO: 37 or an amino acid sequence having 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more of the amino acid sequence. It was revealed that an antibody that recognizes a partial polypeptide of the CAPRIN-1 protein exhibits antitumor activity.
- the antibody of the present invention includes all antibodies that bind to the CAPRIN-1 protein fragment and exhibit antitumor activity.
- the antibody against CAPRIN-1 used in the present invention may be any kind of antibody as long as it can exhibit antitumor activity, such as a monoclonal antibody, a polyclonal antibody, a recombinant antibody such as a synthetic antibody, multispecificity, etc.
- a monoclonal antibody such as a monoclonal antibody, a polyclonal antibody, a recombinant antibody such as a synthetic antibody, multispecificity, etc.
- a monoclonal antibody such as a monoclonal antibody, a polyclonal antibody, a recombinant antibody such as a synthetic antibody, multispecificity, etc.
- a monoclonal antibody such as a monoclonal antibody, a polyclonal antibody, a recombinant antibody such as a synthetic antibody, multispecificity, etc.
- scFv single chain antibodies
- human antibodies such as Fab, F (ab ′) 2 and Fv.
- These antibodies and fragments thereof can also
- the present invention has immunological reactivity with the CAPRIN-1 protein or a partial polypeptide thereof, that is, binds to the CAPRIN-1 protein via an antigen-antibody reaction, preferably specifically with the CAPRIN-1 protein.
- An antibody capable of binding is desirable and is preferably a monoclonal antibody, but may be a polyclonal antibody as long as a homogeneous antibody can be stably produced.
- a test subject is a human
- “specifically binds to CAPRIN-1 protein” means that it specifically binds to CAPRIN-1 protein and does not substantially bind to other proteins.
- the antitumor activity of the antibody that can be used in the present invention is determined by examining the suppression of tumor growth in cancer-bearing animals in vivo, or against tumor cells that express the polypeptide in vitro. Thus, it can be evaluated by examining whether or not it exhibits cytotoxic activity via immune cells or complement.
- the subject to be treated and / or prevented for cancer in the present invention is a mammal such as a human, a pet animal, livestock, a sport animal, etc., and a preferred subject is a human.
- the protein or fragment thereof used as a sensitizing antigen for obtaining an antibody against CAPRIN-1 used in the present invention is used for the animal species from which it is derived, such as humans, dogs, cows, horses, mice, rats, and chickens. Not limited. However, it is preferable to select in consideration of compatibility with the parent cell used for cell fusion. In general, a protein derived from a mammal is preferable, and a protein derived from a human is particularly preferable. For example, when CAPRIN-1 is human CAPRIN-1, human CAPRIN-1 protein, a partial peptide thereof, cells expressing human CAPRIN-1 and the like can be used.
- GenBank GenBank
- FASTA Altschul et al., Nucleic Acids Res. 25: 3389-3402, 1997.
- the base sequence or amino acid sequence of these ORFs or mature portions is 70% to 100%, preferably 80% to 100%, more preferably 90% to 100%, even more preferably 95% to 100%, such as 97% to 100%, 98% to 100%, 99% to 100% or 99.100%.
- a target is a nucleic acid or protein consisting of a sequence having 5% to 100% sequence identity.
- “% sequence identity” refers to the amino acid (or base) of two sequences when they are aligned (aligned) for maximum similarity with or without gaps. The percentage (%) of the same amino acid (or base) relative to the total number.
- the CAPRIN-1 protein fragment has a length less than the total length of the protein from the amino acid length of the epitope (antigenic determinant), which is the smallest unit recognized by the antibody.
- An epitope refers to a polypeptide fragment that has antigenicity or immunogenicity in a mammal, preferably a human, and its minimum unit consists of about 7 to 12 amino acids, such as 8 to 11 amino acids. Therefore, the antibody of the present invention has the amino acid sequence represented by SEQ ID NO: 37, or 80% or more, preferably 85% or more, more preferably 90% or more, and further preferably 95% or more of the amino acid sequence.
- amino acid sequences having a sequence of about 7 to 12 amino acids for example, 8 to 11 consecutive amino acids, and a fragment containing at least an epitope.
- polypeptides including human CAPRIN-1 protein and partial peptides thereof are synthesized according to chemical synthesis methods such as Fmoc method (fluorenylmethyloxycarbonyl method) and tBoc method (t-butyloxycarbonyl method), for example.
- Fmoc method fluorenylmethyloxycarbonyl method
- tBoc method t-butyloxycarbonyl method
- the polynucleotide encoding the above-mentioned polypeptide can be easily prepared by a known genetic engineering technique or a conventional method using a commercially available nucleic acid synthesizer.
- DNA containing the nucleotide sequence of SEQ ID NO: 1 is subjected to PCR using a pair of primers designed to amplify the nucleotide sequence described in SEQ ID NO: 1, using human chromosomal DNA or cDNA library as a template.
- PCR reaction conditions can be set as appropriate.
- the reaction is performed at 94 ° C. for 30 seconds (denaturation), and at 55 ° C. for 30 seconds.
- the reaction process consisting of seconds to 1 minute (annealing) and 2 minutes (extension) at 72 ° C. is defined as one cycle.
- the reaction can be performed at 72 ° C. for 7 minutes. It is not limited.
- the PCR method, conditions, etc. are described in, for example, Ausubel et al., Short Protocols in Molecular Biology, 3rd Edition, A compendium of Methods from Current Protocols in Molecular Biology (1995), J ing.
- probes and primers are prepared based on the nucleotide sequence and amino acid sequence information shown in SEQ ID NOs: 1 to 30 in the sequence listing in this specification, and a human or other cDNA library is screened using the probes and primers. By doing so, the desired DNA can be isolated.
- the cDNA library is preferably prepared from cells, organs or tissues expressing a protein having an even sequence number among SEQ ID NOs: 2 to 30. Examples of such cells and tissues are cells or tissues derived from cancer or tumors such as testis, leukemia, breast cancer, lymphoma, brain tumor, lung cancer, colon cancer and the like.
- the host cell may be any cell that can express the polypeptide.
- prokaryotic cells include Escherichia coli
- examples of eukaryotic cells include monkey kidney cells COS1, Chinese hamster ovary cells.
- examples include, but are not limited to, mammalian cells such as CHO, human fetal kidney cell line HEK293, mouse fetal skin cell line NIH3T3, yeast cells such as budding yeast and fission yeast, silkworm cells, and Xenopus egg cells.
- the expression vector When a prokaryotic cell is used as a host cell, the expression vector includes an origin, promoter, ribosome binding site, multicloning site, terminator, drug resistance gene, auxotrophic complementary gene, etc. that can be replicated in the prokaryotic cell. Is used. Examples of the expression vector for E. coli include pUC system, pBluescript II, pET expression system, pGEX expression system and the like.
- a prokaryotic host cell is transformed with the vector, and the resulting transformant is cultured, the polypeptide encoded by the DNA is prokaryotic. It can be expressed in a host cell. At this time, the polypeptide can also be expressed as a fusion protein with another protein.
- an expression vector for a eukaryotic cell having a promoter, a splicing region, a poly (A) addition site and the like is used as an expression vector.
- expression vectors include pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pcDNA3, pYES2, and the like.
- pIND / V5-His pFLAG-CMV-2, pEGFP-N1, pEGFP-C1, etc.
- a His tag eg (His) 6 to (His) 10
- FLAG tag eg (His) 10
- myc tag eg (His) 6 to (His) 10
- the polypeptide can be expressed as a fusion protein to which various tags such as HA tag and GFP are added.
- a well-known method such as electroporation, calcium phosphate method, liposome method, DEAE dextran method, microinjection, virus infection, lipofection, binding to a cell membrane-permeable peptide, etc. can be used. .
- An antibody is usually a heteromultimeric glycoprotein comprising at least two heavy chains and two light chains. Apart from IgM, it is a heterotetrameric glycoprotein of about 150 kDa composed of two identical light (L) chains and two identical heavy (H) chains. Typically, each light chain is linked to the heavy chain by one disulfide covalent bond, but the number of disulfide bonds between the heavy chains of different immunoglobulin isotypes varies. Each heavy and light chain also has intrachain disulfide bonds. Each heavy chain has at one end a variable domain (VH region) followed by several constant regions. Each light chain has a variable domain (VL region) and one constant region at the opposite end.
- VH region variable domain
- VL region variable domain
- the constant region of the light chain is aligned with the first constant region of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.
- the variable domain of an antibody confers binding specificity on the antibody by exhibiting specific variability, in which a specific region is called a complementarity determining region (CDR).
- CDR complementarity determining region
- the relatively conserved portion of the variable region is called the framework region (FR).
- the complete heavy and light chain variable domains each contain 4 FRs linked by 3 CDRs.
- the three CDRs are called CDRH1, CDRH2, CDRH3 from the N-terminal in the heavy chain, and similarly called CDRL1, CDRL2, CDRL3 in the light chain.
- CDRH3 is most important for the binding specificity of the antibody to the antigen.
- the CDRs of each chain are held together in a state closer to the FR region, and contribute to the formation of an antigen binding site of the antibody together with the CDR from the other chain.
- the constant region does not contribute directly to the binding of the antibody to the antigen, but is involved in various effector functions such as antibody-dependent cellular cytotoxicity (ADCC), phagocytosis through binding to Fc ⁇ receptors,
- Figure 6 shows half-life / clearance rate through neonatal Fc receptor (FcRn), complement dependent cytotoxicity (CDC) through the C1q component of the complement cascade.
- the anti-CAPRIN-1 antibody in the present invention means an antibody having immunological reactivity with the full length of a CAPRIN-1 protein or a fragment thereof.
- immunological reactivity means the property of binding between an antibody and a CAPRIN-1 antigen in vivo, and damages the tumor through such binding (eg, death, suppression or regression). Function. That is, the antibody used in the present invention binds to CAPRIN-1 protein and is a tumor such as leukemia, lymphoma, breast cancer, brain tumor, lung cancer, esophageal cancer, stomach cancer, kidney cancer, colon cancer, ovarian cancer, prostate cancer, fiber Any kind of sarcoma can be used as long as it can be damaged.
- antibodies include monoclonal antibodies, polyclonal antibodies, synthetic antibodies, multispecific antibodies, human antibodies, humanized antibodies, chimeric antibodies, single chain antibodies, antibody fragments (eg, Fab and F (ab ′) 2 ), and the like.
- the antibody may also be any class of immunoglobulin molecules, such as IgG, IgE, IgM, IgA, IgD and IgY, or any subclass, such as IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, and the like.
- the antibody may be further modified by acetylation, formylation, amidation, phosphorylation, or PEGylation.
- the antibody is a monoclonal antibody
- a breast cancer cell line SK-BR-3 expressing CAPRIN-1 is administered to the mouse for immunization, the spleen is extracted from the mouse, the cells are separated, A cell and a mouse myeloma cell are fused, and a clone producing an antibody having a cancer cell growth inhibitory action is selected from the obtained fused cells (hybridoma).
- It can be prepared by isolating a monoclonal antibody-producing hybridoma having cancer cell growth inhibitory action, culturing the hybridoma, and purifying the antibody from the culture supernatant by a general affinity purification method.
- a hybridoma producing a monoclonal antibody can also be produced, for example, as follows.
- an animal is immunized with a sensitizing antigen according to a known method.
- a sensitizing antigen is injected into a mammal intraperitoneally or subcutaneously.
- the sensitizing antigen is diluted to an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, or the like, and mixed with an appropriate amount of an ordinary adjuvant, for example, Freund's complete adjuvant, if necessary, and emulsified.
- PBS Phosphate-Buffered Saline
- physiological saline or the like
- an ordinary adjuvant for example, Freund's complete adjuvant, if necessary, and emulsified.
- the mammal is dosed several times every 4-21 days.
- an appropriate carrier can be used during immunization with the sensitizing antigen.
- immune cells are collected from the mammal and subjected to cell fusion. Can be mentioned.
- Mammalian myeloma cells are used as the other parent cells to be fused with the immune cells.
- This myeloma cell is known in various known cell lines such as P3U1 (P3-X63Ag8U1), P3 (P3x63Ag8.653) (J. Immunol. (1979) 123, 1548-1550), P3x63Ag8U. 1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7), NS-1 (Kohler. G. and Milstein, C. Eur. J. Immunol. (1976) 6, 511-511) (Margulies.
- the cell fusion between the immune cell and myeloma cell is basically performed by a known method, for example, the method of Kohler and Milstein et al. (Kohler, G. and Milstein, C. Methods Enzymol. (1981) 73, 3-46. ) And the like.
- the cell fusion is performed, for example, in a normal nutrient culture medium in the presence of a cell fusion promoter.
- a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ), or the like is used as the fusion promoter, and an auxiliary agent such as dimethyl sulfoxide can be added and used to increase the fusion efficiency as desired.
- the usage ratio of immune cells and myeloma cells can be arbitrarily set.
- the number of immune cells is preferably 1 to 10 times that of myeloma cells.
- the culture solution used for the cell fusion for example, RPMI1640 culture solution suitable for growth of the myeloma cell line, MEM culture solution, and other normal culture solutions used for this kind of cell culture can be used.
- Serum replacement fluid such as fetal calf serum (FCS) can be used in combination.
- a predetermined amount of the immune cells and myeloma cells are mixed well in the culture medium, and a PEG solution (for example, an average molecular weight of about 1000 to 6000) preliminarily heated to about 37 ° C. is usually 30 to 60% (
- the desired hybridoma is formed by adding at a concentration of w / v) and mixing.
- cell fusion agents and the like that are undesirable for the growth of the hybridoma are removed by sequentially adding an appropriate culture medium and centrifuging to remove the supernatant.
- the hybridoma thus obtained is selected by culturing in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Culturing with the HAT culture solution is continued for a sufficient time (usually several days to several weeks) for cells other than the target hybridoma (non-fusion cells) to die. Subsequently, the usual limiting dilution method is performed, and the hybridoma producing the target antibody is screened and single-cloned.
- a normal selective culture solution for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Culturing with the HAT culture solution is continued for a sufficient time (usually several days to several weeks) for cells other than the target hybridoma (non-fusion cells) to die. Subsequently, the usual limiting dilution method is performed, and the hybridoma producing the target antibody is screened
- human lymphocytes such as human lymphocytes infected with EB virus are sensitized in vitro with proteins, protein-expressing cells or lysates thereof. Lymphocytes can be fused with human-derived myeloma cells having permanent mitotic activity, for example, U266 (Registration No. TIB196) to obtain a hybridoma that produces a human antibody having a desired activity (for example, cell growth inhibitory activity).
- a desired activity for example, cell growth inhibitory activity
- the hybridoma producing the monoclonal antibody thus produced can be subcultured in a normal culture solution and can be stored for a long time in liquid nitrogen.
- a desired antigen or a cell expressing the desired antigen is used as a sensitizing antigen and immunized according to a normal immunization method, and the resulting immune cell is fused with a known parent cell by a normal cell fusion method. And can be prepared by screening monoclonal antibody-producing cells (hybridomas) by a normal screening method.
- a polyclonal antibody can be obtained, for example, as follows.
- This is prepared by, for example, purification using ammonium sulfate precipitation, protein A, protein G column, DEAE ion exchange chromatography, affinity column coupled with CAPRIN-1 protein or synthetic peptide, or the like.
- human antibody-producing mice for example, KM mice (Kirin Pharma / Medarex) and Xeno mice (Amgen) are known (for example, International Publication Nos. WO02 / 43478, WO02 / 092812, etc.).
- fully human polyclonal antibodies can be obtained from blood.
- spleen cells can be removed from the immunized mouse and a human monoclonal antibody can be prepared by a fusion method with myeloma cells.
- the antigen can be prepared according to, for example, a method using animal cells (Japanese Patent Publication No. 2007-530068), a method using baculovirus (eg, International Publication No. WO 98/46777).
- immunization may be performed by binding to an immunogenic macromolecule such as albumin.
- a recombinant antibody produced by cloning an antibody gene from a hybridoma, incorporating it into an appropriate vector, introducing it into a host, and producing it using a gene recombination technique (for example, Carl, AK Borrebaeck, James, W. Larrick, THERAPEUTIC MONOCLONAL, ANTIBODIES, Published in the United KingdomMIMILLAN PUBLISHERS 19).
- a gene recombination technique for example, Carl, AK Borrebaeck, James, W. Larrick, THERAPEUTIC MONOCLONAL, ANTIBODIES, Published in the United KingdomMIMILLAN PUBLISHERS 19.
- V region an antibody variable region
- DNA encoding the V region of the target antibody is obtained, it is ligated with DNA encoding the desired antibody constant region (C region) and incorporated into an expression vector.
- DNA encoding the V region of the antibody may be incorporated into an expression vector containing DNA of the antibody C region. It is incorporated into an expression vector so as to be expressed under the control of an expression control region such as an enhancer or promoter.
- host cells can be transformed with this expression vector to express the antibody.
- the anti-CAPRIN-1 antibody of the present invention is preferably a monoclonal antibody. However, it may be a polyclonal antibody, a genetically modified antibody (such as a chimeric antibody or a humanized antibody) and the like.
- Monoclonal antibodies include human monoclonal antibodies, non-human animal monoclonal antibodies (eg, mouse monoclonal antibodies, rat monoclonal antibodies, rabbit monoclonal antibodies, chicken monoclonal antibodies), chimeric monoclonal antibodies, and the like. Monoclonal antibodies are obtained by culturing hybridomas obtained by fusion of spleen cells and myeloma cells from non-human mammals immunized with CAPRIN-1 protein (eg, mice, human antibody-producing mice, chickens, rabbits, etc.). Can be made.
- CAPRIN-1 protein eg, mice, human antibody-producing mice, chickens, rabbits, etc.
- a chimeric antibody is an antibody produced by combining sequences derived from different animals, for example, an antibody comprising a mouse antibody heavy chain, a light chain variable region and a human antibody heavy chain, a light chain constant region, and the like. is there.
- a chimeric antibody can be prepared using a known method. For example, a DNA encoding an antibody V region and a DNA encoding a human antibody C region are ligated, incorporated into an expression vector, and introduced into a host. It is obtained by producing.
- the amino acid sequence represented by SEQ ID NO: 37, or an even sequence number among SEQ ID NOs: 2 to 30 having an amino acid sequence having 80% or more sequence identity with the amino acid sequence is represented.
- a monoclonal antibody having immunological reactivity with the CAPRIN-1 partial polypeptide was produced, and its antitumor effect was confirmed.
- These monoclonal antibodies include a heavy chain variable (VH) region having the amino acid sequence of SEQ ID NO: 43, SEQ ID NO: 47 or SEQ ID NO: 63, and a light chain variable (VL) region having the amino acid sequence of SEQ ID NO: 51 or SEQ ID NO: 67.
- CDR1 represented by the amino acid sequence of SEQ ID NO: 40, SEQ ID NO: 44 or SEQ ID NO: 60
- CDR2 represented by the amino acid sequence of SEQ ID NO: 41, SEQ ID NO: 45 or SEQ ID NO: 61 in the VH region
- CDR3 represented by the amino acid sequence of SEQ ID NO: 42, SEQ ID NO: 46 or SEQ ID NO: 62
- CDR1 SEQ ID NO: 49 or sequence represented by the amino acid sequence of SEQ ID NO: 48 or SEQ ID NO: 64 in the VL region
- CDR2 represented by the amino acid sequence of No. 65
- C represented by the amino acid sequence of SEQ ID No. 50 or SEQ ID No. 66 R3
- Polyclonal antibodies include antibodies obtained by immunizing human antibody-producing animals (eg, mice) with CAPRIN-1 protein.
- a humanized antibody is a modified antibody also called a reshaped human antibody.
- Humanized antibodies are constructed by transplanting CDRs of antibodies from immunized animals into the complementarity determining regions of human antibodies. The general gene recombination technique is also known.
- a DNA sequence designed to link a CDR of a mouse antibody or chicken antibody and a framework region (FR) of a human antibody was prepared so as to have an overlapping portion at the end. It is synthesized by PCR from several oligonucleotides. The obtained DNA is obtained by ligating with the DNA encoding the human antibody constant region, then incorporating it into an expression vector, introducing it into a host and producing it (European Patent Application Publication No. EP239400, International Publication No. WO96). No. 02576).
- FR of a human antibody linked through CDR a complementarity determining region that forms a favorable antigen binding site is selected.
- the amino acid of the framework region in the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen binding site (Sato K. et al., Cancer Research). 1993, 53: 851-856). Moreover, you may substitute by the framework area
- a region in which the complementarity determining region forms a favorable antigen binding site is selected. If necessary, the amino acid of the framework region in the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen binding site (Sato K. et al., Cancer). Research 1993, 53: 851-856).
- variable region e.g, FR
- constant region amino acids in the variable region or constant region may be substituted with other amino acids.
- Amino acid substitution is, for example, less than 15, less than 10, less than 8, less than 7, less than 6, less than 5, less than 4, less than 3, less than 2, or less than 2 amino acids, preferably 1 to 5 amino acids, more preferably 1 or 2 amino acids
- the substituted antibody should be functionally equivalent to the unsubstituted antibody.
- the substitution is preferably a conservative amino acid substitution, which is a substitution between amino acids with similar properties such as charge, side chain, polarity, aromaticity and the like.
- Amino acids with similar properties include, for example, basic amino acids (arginine, lysine, histidine), acidic amino acids (aspartic acid, glutamic acid), uncharged polar amino acids (glycine, asparagine, glutamine, serine, threonine, cysteine, tyrosine), nonpolar It can be classified into sex amino acids (leucine, isoleucine, alanine, valine, proline, phenylalanine, tryptophan, methionine), branched chain amino acids (threonine, valine, isoleucine), aromatic amino acids (phenylalanine, tyrosine, tryptophan, histidine).
- basic amino acids arginine, lysine, histidine
- acidic amino acids aspartic acid, glutamic acid
- uncharged polar amino acids glycine, asparagine, glutamine, serine, threonine, cysteine, tyrosine
- modified antibody examples include antibodies bound to various molecules such as polyethylene glycol (PEG).
- PEG polyethylene glycol
- the substance to be bound is not limited. In order to obtain such a modified antibody, it can be obtained by chemically modifying the obtained antibody. These methods are already established in this field.
- “functionally equivalent” means that the target antibody has the same biological or biochemical activity as the antibody of the present invention, specifically, a function of damaging a tumor, and is applied to humans. Sometimes refers to not essentially causing rejection. Examples of such activity include cell growth inhibitory activity or binding activity.
- an antibody that recognizes the epitope of the CAPRIN-1 protein recognized by the anti-CAPRIN-1 antibody can be obtained by methods known to those skilled in the art.
- the epitope of the CAPRIN-1 protein recognized by the anti-CAPRIN-1 antibody is determined by an ordinary method (eg, epitope mapping), and an antibody is produced using a polypeptide having the amino acid sequence contained in the epitope as an immunogen.
- This method can be obtained by a method, a method of determining an epitope of an antibody prepared by a usual method, and selecting an antibody having the same epitope as the anti-CAPRIN-1 antibody.
- epitope refers to a polypeptide fragment having antigenicity or immunogenicity in a mammal, preferably a human, and its minimum unit consists of about 7 to 12 amino acids, preferably 8 to 11 amino acids.
- the affinity constant Ka (k on / k off ) of the antibody of the present invention is preferably at least 10 7 M ⁇ 1 , at least 10 8 M ⁇ 1 , at least 5 ⁇ 10 8 M ⁇ 1 , at least 10 9 M ⁇ 1 , At least 5 ⁇ 10 9 M ⁇ 1 , at least 10 10 M ⁇ 1 , at least 5 ⁇ 10 10 M ⁇ 1 , at least 10 11 M ⁇ 1 , at least 5 ⁇ 10 11 M ⁇ 1 , at least 10 12 M ⁇ 1 , or alternatively At least 10 13 M ⁇ 1 .
- the antibody of the present invention can be conjugated with an antitumor agent.
- the bond between the antibody and the antitumor agent is a group reactive with an amino group, carboxyl group, hydroxy group, thiol group, etc. (for example, succinate imidyl group, formyl group, 2-pyridyldithio group, maleimidyl group, alkoxycarbonyl group). , A hydroxy group, etc.).
- antitumor agents include the following antitumor agents known in the literature, such as paclitaxel, doxorubicin, daunorubicin, cyclophosphamide, methotrexate, 5-fluorouracil, thiotepa, busulfan, improsulfan, piperosulfan, benzodopa (benzodopa) ), Carbocone, methredopa, uredopa, uretopa, altreamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide, trimethylolothramine , Camptothecin, bryostatin, calistatin ( allystatin), cryptophycin 1, cryptophycin 8, dolastatin, duocarmycin, eleuterbin, panclastatin, sarcodictin, spongestatin, chlorambucil, chloronaphazine, cholophosphamide, estram Ifosfamide, mechlore
- a higher therapeutic effect can be obtained by co-administering the antibody of the present invention and an antitumor agent.
- This technique can be applied to cancer patients expressing CAPRIN-1 either before or after surgery. In particular, after surgery, cancer recurrence and longer survival can be obtained for cancers expressing CAPRIN-1, which have been treated with an antitumor agent alone.
- antitumor agents used in combination administration with the antibody of the present invention include the following antitumor agents known in the literature, such as paclitaxel, doxorubicin, daunorubicin, cyclophosphamide, methotrexate, 5-fluorouracil, thiotepa, Busulfan, Improsulfan, Piposulfan, Benzodopa, Carbocon, Metredopa, Uredopa, Alteramine, Triethylenemelamine, Triethylenephosphoramide, Triethylenethiophosphoramide Trimethylolomeramine, bratacin, bratacinone, camptocete , Bryostatin, callystatin, cryptophysin 1, cryptophycin 8, dolastatin, duocarmycin, eleuterbin, panclatistatin, sarcodictin, spongestatin, chloramphazine, chloronaphazine, cholophosphamide ( chlorophosphamide), estramustine, pac
- the antibodies of the present invention include radioactive substances such as 211 At, 131 I, 125 I, 90 Y, 186 Re, 188 Re, 153 SM, 212 Bi, 32 P, 175 Lu, 176 Lu, which are known in the literature. It is also possible to combine isotopes. It is desirable that the radioisotope is effective for tumor treatment and diagnosis.
- the antibody of the present invention is an antibody immunologically reactive with CAPRIN-1, or an antibody that specifically recognizes CAPRIN-1, or an antibody that specifically binds to CAPRIN-1, and which is against cancer. It is an antibody that exhibits cytotoxic activity or tumor growth inhibitory action.
- the antibody should be an antibody having a structure such that little or no rejection is avoided in the subject animal to which it is administered. Examples of such antibodies include human antibodies, humanized antibodies, chimeric antibodies (eg, human-mouse chimeric antibodies), single chain antibodies, bispecific antibodies and the like when the target animal is human.
- the heavy and light chain variable regions are derived from human antibodies, or the heavy and light chain variable regions are derived from non-human animal antibody complementarity determining regions (CDR1, CDR2 and CDR3).
- CDR1, CDR2 and CDR3 non-human animal antibody complementarity determining regions
- a framework region derived from a human antibody, or the variable regions of the heavy and light chains are derived from a non-human animal antibody, and the constant regions of the heavy and light chains are human antibodies. It is a recombinant antibody that is derived from.
- Preferred antibodies are the previous two antibodies.
- DNA encoding a monoclonal antibody against human CAPRIN-1 eg, human monoclonal antibody, mouse monoclonal antibody, rat monoclonal antibody, rabbit monoclonal antibody, chicken monoclonal antibody, etc.
- DNA encoding the light chain variable region and heavy chain variable region of the antibody was prepared by RT-PCR method and the like, and Kabat EU numbering system (Kabat et al., Sequences of Proteins of Immunological Institute, 5th Ed. of Health, Bethesda, Md. (1991)) to determine the sequence or sequences of the CDR1, CDR2, CDR3 of the variable region of the light and heavy chains based on.
- DNA encoding each of these variable regions or DNA encoding each CDR can be obtained using a gene recombination technique (Sambrook et al., Molecular Cloning A Laboratory Manual, Cold Spring Harbor Press (1989)) or a DNA synthesizer. Make it.
- the human monoclonal antibody-producing hybridoma is prepared by immunizing a human antibody-producing animal (eg, mouse) with human CAPRIN-1, and then fusing spleen cells excised from the immunized animal with myeloma cells. Can do.
- DNA encoding the variable region and constant region of the light chain or heavy chain derived from a human antibody is prepared as necessary using a gene recombination technique or a DNA synthesizer.
- the CDR coding sequence in the DNA encoding the variable region of the light chain or heavy chain derived from the human antibody is derived from a non-human animal (for example, mouse, rat, chicken, etc.) corresponding thereto.
- a humanized antibody is encoded by preparing a DNA in which the CDR coding sequence of the antibody is replaced, and ligating the resulting DNA with a DNA encoding a constant region of a light chain or heavy chain derived from a human antibody, respectively. DNA can be produced.
- DNA encoding the light chain or heavy chain variable region of an antibody derived from an animal other than a human is used.
- a DNA encoding a chimeric antibody can be prepared by linking with a DNA encoding a region.
- this antibody is an antibody in which a heavy chain variable region and a light chain variable region are linearly linked via a linker, DNA encoding the heavy chain variable region, DNA encoding the linker And a DNA encoding a light chain variable region can be combined to produce a DNA encoding a single chain antibody.
- each of the heavy chain variable region and the light chain variable region is derived from a human antibody, or only the CDR is replaced by the CDR of an antibody derived from a non-human animal (eg, mouse, rat, chicken, etc.). Derived from human antibodies.
- the linker consists of 12 to 19 amino acids, and examples thereof include 15 amino acids (G 4 S) 3 (G.-B. Kim et al., Protein Engineering Design and Selection 2007, 20 (9): 425-432). .
- this antibody is an antibody that can specifically bind to two different epitopes, such as DNA encoding heavy chain variable region A, light chain variable region B.
- DNA, DNA encoding heavy chain variable region B, and DNA encoding light chain variable region A are joined in this order (however, DNA encoding light chain variable region B and DNA encoding heavy chain variable region B) Are linked via a DNA encoding a linker as described above), whereby a DNA encoding a bispecific antibody can be prepared.
- each of the heavy chain variable region and the light chain variable region is derived from a human antibody, or only the CDR is replaced by the CDR of an antibody derived from a non-human animal (eg, mouse, rat, chicken, etc.). Derived from human antibodies.
- Recombinant DNA produced as described above is incorporated into one or more appropriate vectors, introduced into host cells (eg, mammalian cells, yeast cells, insect cells, etc.), and (co) expressed
- host cells eg, mammalian cells, yeast cells, insect cells, etc.
- a recombinant antibody can be prepared (PJ Delves., ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES., 1997 WILEY, P. Shepherd and C. Dean. SNT. W. Gododing., Monoclonal Antibodies: principals and practices., 1993 ACADEMI PRESS).
- Examples of the antibody of the present invention prepared by the above method include the following antibodies (a), (b) or (c) obtained in Examples described later.
- amino acid sequences shown in SEQ ID NOs: 40, 41 and 42, SEQ ID NOs: 44, 45 and 46, SEQ ID NOs: 60, 61 and 62 are CDR1, CDR2 and CDR3 of the mouse antibody heavy chain variable region.
- amino acid sequences shown in Nos. 48, 49 and 50 and SEQ ID Nos. 64, 65 and 66 are the CDR1, CDR2 and CDR3 of the murine antibody light chain variable region, respectively.
- the humanized antibody, chimeric antibody, single chain antibody or bispecific antibody of the present invention is, for example, the following antibody (exemplified by antibody (a)).
- variable region of the heavy chain comprises the amino acid sequence of SEQ ID NOs: 40, 41 and 42 and the amino acid sequence of the framework region derived from a human antibody
- variable region of the light chain is the amino acid of SEQ ID NOs: 48, 49 and 50
- An antibody comprising the sequence and the amino acid sequence of the framework region derived from a human antibody preferably an antibody comprising the amino acid sequence of SEQ ID NO: 43 in the heavy chain variable region and the amino acid sequence of SEQ ID NO: 51 in the light chain variable region).
- variable region of the heavy chain comprises the amino acid sequence of SEQ ID NOs: 40, 41 and 42 and the amino acid sequence of the framework region derived from a human antibody
- constant region of the heavy chain comprises the amino acid sequence derived from a human antibody
- variable region of the light chain comprises the amino acid sequence of SEQ ID NOs: 48, 49 and 50 and the amino acid sequence of the framework region derived from a human antibody
- constant region of the light chain comprises the amino acid sequence derived from a human antibody.
- variable region of the heavy chain comprises the amino acid sequence of SEQ ID NO: 43
- constant region of the heavy chain comprises the amino acid sequence derived from a human antibody
- variable region of the light chain comprises the amino acid sequence of SEQ ID NO: 51
- constant region of the light chain comprises an amino acid sequence derived from a human antibody
- human IgG1 heavy chain constant region has registration number J00228, human IgG2 Registration number J00230 for the heavy chain constant region, registration number X03604 for the human IgG3 heavy chain constant region, registration number K01316 for the human IgG4 heavy chain constant region, registration numbers V00557, X64135, X64133, etc. for the human light chain kappa constant region
- sequences such as registration numbers X64132 and X64134 can be referred to.
- the above antibody preferably has cytotoxic activity, and can thereby exert an antitumor effect.
- a hybridoma capable of producing another human antibody or non-human animal antibody (eg, mouse antibody) against human CAPRIN-1 is prepared, and the monoclonal antibody produced by the hybridoma is recovered, and immunological binding to human CAPRIN-1 and It is determined whether or not the antibody is the target antibody using the cytotoxic activity as an index. After identifying the target monoclonal antibody-producing hybridoma, DNAs encoding the variable regions of the heavy and light chains of the target antibody were prepared from the hybridoma and sequenced as described above. Use for production.
- the antibody has the specificity of specifically recognizing CAPRIN-1, in the sequence of the framework region and / or the constant region of each of the antibodies (a) to (c), 1 or There may be several amino acid substitutions, deletions or additions.
- the term “several” means preferably 2 to 5, more preferably 2 or 3.
- the present invention further provides DNA encoding the antibody of the present invention, DNA encoding the heavy chain or light chain of the antibody, or DNA encoding the variable region of the heavy chain or light chain of the antibody.
- DNA is, for example, in the case of antibody (a), a DNA encoding a heavy chain variable region comprising a base sequence encoding the amino acid sequences of SEQ ID NOs: 40, 41 and 42, and amino acid sequences of SEQ ID NOs: 48, 49 and 50 DNA encoding a light chain variable region containing a nucleotide sequence encoding
- complementarity determining regions (CDRs) encoded by the DNA of these sequences are regions that determine the specificity of the antibody
- sequences that encode other regions of the antibody May be a sequence derived from another antibody.
- other antibodies include antibodies derived from organisms other than humans, but those derived from humans are preferable from the viewpoint of reducing side effects. That is, in the above DNA, the regions encoding the heavy chain and light chain framework regions and the constant regions preferably include a base sequence encoding a corresponding amino acid sequence derived from a human antibody.
- DNA encoding the antibody of the present invention is, for example, in the case of the antibody (a), a DNA encoding a heavy chain variable region comprising a base sequence encoding the amino acid sequence of SEQ ID NO: 43, a light chain variable region
- the region that encodes a DNA comprising a base sequence that encodes the amino acid sequence of SEQ ID NO: 51, and the like.
- an example of the base sequence encoding the amino acid sequence of SEQ ID NO: 43 is the base sequence of SEQ ID NO: 52.
- An example of a base sequence encoding the amino acid sequence of SEQ ID NO: 51 is the base sequence of SEQ ID NO: 53.
- the region encoding each heavy chain and light chain constant region includes a base sequence encoding a corresponding amino acid sequence derived from a human antibody.
- the DNA of these antibodies can be obtained, for example, by the above method or the following method.
- total RNA is prepared from a hybridoma related to the antibody of the present invention using a commercially available RNA extraction kit, and cDNA is synthesized by reverse transcriptase using a random primer or the like.
- the cDNA encoding the antibody is amplified by a PCR method using oligonucleotides having conserved sequences as primers.
- the sequence encoding the constant region can be obtained by amplifying a known sequence by the PCR method.
- the base sequence of DNA can be determined by a conventional method by incorporating it into a sequencing plasmid or phage.
- the anti-tumor effect of the anti-CAPRIN-1 antibody used in the present invention on CAPRIN-1-expressing cancer cells is considered to occur by the following mechanism.
- ADCC Effector cell antibody-dependent cytotoxicity
- CDC complement-dependent cytotoxicity
- the activity of the anti-CAPRIN-1 antibody used in the present invention is evaluated by the above-mentioned ADCC activity or CDC activity against cancer cells expressing CAPRIN-1 in vitro, as specifically shown in the Examples below. It can be evaluated by measuring.
- the anti-CAPRIN-1 antibody used in the present invention binds to the CAPRIN-1 protein on cancer cells and exhibits an antitumor action due to the above activity, and thus is considered useful for the treatment or prevention of cancer. That is, the present invention provides a pharmaceutical composition for treating and / or preventing cancer comprising an anti-CAPRIN-1 antibody as an active ingredient.
- the anti-CAPRIN-1 antibody is used for the purpose of administering it to the human body (antibody treatment), it is preferable to use a human antibody or a humanized antibody in order to reduce immunogenicity.
- the binding constant (affinity constant) Ka (k on / k off ) is preferably at least 10 7 M ⁇ 1 , at least 10 8 M ⁇ 1 , at least 5 ⁇ 10 8 M as the high binding affinity.
- ⁇ Binding to antigen-expressing cells The ability of an antibody to bind to CAPRIN-1 can be identified using binding assays such as those described in the Examples, such as ELISA, Western blotting, immunofluorescence and flow cytometry analysis.
- Antibodies that recognize CAPRIN-1 are inoculated with tissue obtained from patients during surgery or cell lines expressing CAPRIN-1 naturally or after transfection by immunohistochemistry in a manner well known to those skilled in the art
- tissue obtained from animals bearing selected xenografts using paraformaldehyde or acetone-fixed frozen sections or paraformaldehyde-fixed tissue sections Can do.
- an antibody reactive to CAPRIN-1 can be stained by various methods. For example, it can be visualized by reacting horseradish peroxidase-conjugated goat anti-mouse antibody or goat anti-chicken antibody.
- the target of the pharmaceutical composition for the treatment and / or prevention of cancer of the present invention is not particularly limited as long as it is a cancer (cell) expressing the CAPRIN-1 gene.
- tumor and cancer refer to malignant neoplasms and are used interchangeably.
- the target cancer in the present invention is a cancer expressing a gene encoding a CAPRIN-1 protein having an amino acid sequence of an even sequence number among SEQ ID NOs: 2 to 30, preferably breast cancer, brain tumor, Leukemia, lung cancer, lymphoma, mastocytoma, renal cancer, cervical cancer, bladder cancer, esophageal cancer, stomach cancer, colon cancer, ovarian cancer, prostate cancer and fibrosarcoma.
- These specific cancers include, for example, breast cancer, complex breast cancer, malignant mixed breast tumor, intraductal papillary carcinoma, lung adenocarcinoma, squamous cell carcinoma, small cell carcinoma, large cell carcinoma, neuroepithelial tissue Tumor glioma, ventricular ependymoma, neuronal tumor, fetal ectodermal tumor, schwannoma, neurofibroma, meningioma, chronic lymphocytic leukemia, lymphoma, gastrointestinal tract Lymphoma, digestive lymphoma, small to medium cell lymphoma, cecal cancer, ascending colon cancer, descending colon cancer, transverse colon cancer, sigmoid colon cancer, rectal cancer, ovarian epithelial cancer, germ cell tumor, stromal cell tumor Including, but not limited to.
- mammals for example, mammals including primates, pet animals, domestic animals, sport animals and the like, and humans, dogs and cats are particularly preferable.
- the antibody used in the present invention when used as a pharmaceutical composition, it can be formulated by methods known to those skilled in the art. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection of suspension.
- a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative
- a pharmaceutical preparation by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice. The amount of active ingredient in these preparations is such that an appropriate dose within the indicated range can be obtained.
- a sterile composition for injection can be formulated in accordance with normal pharmaceutical practice using a vehicle such as distilled water for injection.
- Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol and sodium chloride.
- Suitable solubilizers such as Alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM), HCO-60 may be used in combination.
- oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
- oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
- buffer for example, phosphate buffer, sodium acetate buffer, a soothing agent, for example, procaine hydrochloride, stabilizer, for example, benzyl alcohol, phenol, antioxidant.
- the prepared injection solution is usually filled into a suitable ampoule.
- Administration is oral or parenteral, preferably parenteral administration. Specific examples include injection, nasal administration, pulmonary administration, and transdermal administration. As an example of the injection form, it can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
- the administration method can be appropriately selected depending on the age, weight, sex, symptoms, etc. of the patient.
- the dosage of the pharmaceutical composition containing the antibody or the polynucleotide encoding the antibody can be selected, for example, in the range of 0.0001 mg to 1000 mg per kg body weight. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient, but is not necessarily limited to these values.
- the dose and administration method vary depending on the weight, age, sex, symptoms, etc. of the patient, but can be appropriately selected by those skilled in the art.
- Cancer preferably breast cancer, brain tumor, leukemia, lung cancer, lymphoma, mastocytoma, renal cancer, cervical cancer, bladder cancer, by administering to a subject the above pharmaceutical composition containing the antibody of the present invention or a fragment thereof, Esophageal cancer, stomach cancer and colon cancer can be treated and / or prevented.
- a method for treating and / or preventing cancer comprising administering the pharmaceutical composition of the present invention to a subject in combination with an antitumor agent or a pharmaceutical composition containing an antitumor agent as exemplified above.
- the antibody or fragment thereof of the present invention and the antitumor agent can be administered to a subject simultaneously or separately.
- any pharmaceutical composition may be earlier or later, and the administration interval, dosage, administration route and frequency of administration can be appropriately selected by a specialist.
- Another pharmaceutical dosage form to be administered at the same time includes, for example, a pharmaceutical composition obtained by mixing the antibody of the present invention or a fragment thereof and an antitumor agent in a pharmacologically acceptable carrier (or medium) and formulating it. Shall be included. Further, for any of the above pharmaceutical compositions and dosage forms containing an antitumor agent, the formulation, formulation, administration route, dose, cancer, etc. for the pharmaceutical composition and dosage form containing the antibody of the present invention The explanation can be applied.
- the present invention also provides a combination pharmaceutical product for treating and / or preventing cancer comprising the pharmaceutical composition of the present invention and a pharmaceutical composition comprising the antitumor agent as exemplified above.
- the present invention also provides a pharmaceutical composition for treating and / or preventing cancer comprising the antibody of the present invention or a fragment thereof and an antitumor agent together with a pharmacologically acceptable carrier.
- the present invention further provides the following polypeptides and DNAs related to the antibody (a), (b) or (c).
- a polypeptide comprising the amino acid sequences of SEQ ID NO: 51 and SEQ ID NO: 67, and a DNA encoding the polypeptide, which comprises the nucleotide sequences of SEQ ID NO: 53 and SEQ ID NO: 69.
- polypeptides and DNA can be prepared using gene recombination techniques as described above.
- CAPRIN-1 represented by an even sequence number among SEQ ID NOs: 2 to 30 having the amino acid sequence represented by SEQ ID NO: 37 or an amino acid sequence having 80% or more sequence identity with the amino acid sequence
- cancer is breast cancer, brain tumor, leukemia, lymphoma, lung cancer, mastocytoma, kidney cancer, cervical cancer, bladder cancer, esophageal cancer, stomach cancer or colon cancer.
- An antibody comprising a heavy chain variable region comprising SEQ ID NOs: 40, 41 and 42 and a light chain variable region comprising SEQ ID NOs: 48, 49 and 50, and having immunological reactivity with a CAPRIN-1 protein.
- An antibody comprising a heavy chain variable region comprising SEQ ID NOs: 44, 45 and 46 and a light chain variable region comprising SEQ ID NOs: 48, 49 and 50, and having immunological reactivity with a CAPRIN-1 protein.
- An antibody comprising a heavy chain variable region comprising SEQ ID NOs: 60, 61 and 62 and a light chain variable region comprising SEQ ID NOs: 64, 65 and 66, and having immunological reactivity with a CAPRIN-1 protein.
- the antibody according to any one of (5) to (9) above which is a human antibody, a humanized antibody, a chimeric antibody, a single chain antibody or a bispecific antibody.
- a pharmaceutical composition for treating and / or preventing cancer comprising the antibody or fragment thereof according to any one of (5) to (10) as an active ingredient.
- Treatment of cancer comprising administering to a subject the antibody or fragment thereof according to any of (5) to (10) above or the pharmaceutical composition according to (11) or (12) above And / or prevention methods.
- a method for treating and / or preventing cancer which comprises using, in a subject, each pharmaceutical composition of the combination drug according to (13) above.
- RNA was extracted from testicular tissue of a healthy dog by acid guanidinium-phenol-chloroform method (Acid guanidinium-phenol-chloroform method), PolyA RNA was purified using Oligotex-dT30 mRNA purification Kit (Takara Shuzo) according to the protocol attached to the kit.
- a dog testis cDNA phage library was synthesized using the obtained mRNA (5 ⁇ g).
- the cDNA phage library was prepared using cDNA Synthesis Kit, ZAP-cDNA Synthesis Kit, ZAP-cDNA GigapackIII Gold Clonig Kit (manufactured by STRATAGENE) according to the protocol attached to the kit.
- the size of the prepared cDNA phage library was 7.73 ⁇ 10 5 pfu / ml.
- the membrane was recovered, immersed in TBS (10 mM Tris-HCl, 150 mM NaCl pH 7.5) containing 0.5% nonfat dry milk, and shaken at 4 ° C. overnight to suppress nonspecific reaction.
- TBS 10 mM Tris-HCl, 150 mM NaCl pH 7.5
- This filter was reacted with serum of a patient dog diluted 500 times at room temperature for 2 to 3 hours.
- the serum pretreatment method is as follows. Specifically, ⁇ ZAP Express phage into which no foreign gene was inserted was infected with host E. coli (XL1-Blue MRF ′), and then cultured overnight at 37 ° C. on NZY plate medium. Next, a buffer of 0.2 M NaHCO 3 pH 8.3 containing 0.5 M NaCl was added to the plate and allowed to stand at 4 ° C. for 15 hours, and then the supernatant was recovered as an E. coli / phage extract. Next, the recovered E.
- coli / phage extract was passed through an NHS-column (GE Healthcare Bio-Science) to immobilize the protein derived from E. coli / phage.
- Serum dog serum was passed through and reacted with this protein-immobilized column, and antibodies adsorbed to E. coli and phage were removed from the serum.
- the serum fraction passed through the column was diluted 500 times with TBS containing 0.5% nonfat dry milk, and this was used as an immunoscreening material.
- phagemid host Escherichia coli prepared to have an absorbance OD 600 of 1.0 and 10 ⁇ l of the purified phage solution were mixed and reacted at 37 ° C. for 15 minutes, and 50 ⁇ l was treated with ampicillin (final concentration 50 ⁇ g / ml).
- SOLR phagemid host Escherichia coli
- the purified plasmid was analyzed for the full-length insert sequence by the primer walking method using the T3 primer shown in SEQ ID NO: 31 and the T7 primer shown in SEQ ID NO: 32.
- the gene sequences described in SEQ ID NOs: 5, 7, 9, 11, and 13 were obtained by this sequence analysis.
- the homology search program BLAST search http://www.ncbi.nlm.nih.gov/BLAST/
- BLAST search http://www.ncbi.nlm.nih.gov/BLAST/
- sequence identity of this gene with the gene encoding the human homologous factor was 94% for the nucleotide sequence and 98% for the amino acid sequence in the region translated into protein.
- the base sequences of human homologous factors are shown in SEQ ID NOs: 1 and 3, and the amino acid sequences are shown in SEQ ID NOs: 2 and 4.
- sequence identity of the obtained canine gene with the gene encoding the bovine homologous factor was 94% for the nucleotide sequence and 97% for the amino acid sequence in the region translated into protein.
- the base sequence of the bovine homologous factor is shown in SEQ ID NO: 15, and the amino acid sequence is shown in SEQ ID NO: 16.
- sequence identity between the gene encoding the human homologous factor and the gene encoding the bovine homologous factor was 94% in the base sequence and 93-97% in the amino acid sequence in the region translated into the protein.
- sequence identity with the gene which codes the equine homologous factor of the acquired canine gene was the base sequence 93% and the amino acid sequence 97% in the area
- the base sequence of the equine homologous factor is shown in SEQ ID NO: 17, and the amino acid sequence is shown in SEQ ID NO: 18.
- sequence identity between the gene encoding the human homologous factor and the gene encoding the equine homologous factor was 93% nucleotide sequence and 96% amino acid sequence in the region translated into protein.
- sequence identity of the obtained canine gene with the gene encoding the mouse homologous factor was 87 to 89% of the base sequence and 95 to 97% of the amino acid sequence in the region translated into the protein.
- the nucleotide sequence of the mouse homologous factor is shown in SEQ ID NO: 19, 21, 23, 25, 27, and the amino acid sequence is shown in SEQ ID NO: 20, 22, 24, 26, 28.
- the sequence identity between the gene encoding the human homologous factor and the gene encoding the mouse homologous factor was 89-91% of the base sequence and 95-96% of the amino acid sequence in the region translated into the protein.
- the sequence identity of the acquired canine gene with the gene encoding the chicken homologous factor was 82% for the nucleotide sequence and 87% for the amino acid sequence in the region translated into protein.
- the base sequence of the chicken homologous factor is shown in SEQ ID NO: 29, and the amino acid sequence is shown in SEQ ID NO: 30.
- the sequence identity between the gene encoding the human homologous factor and the gene encoding the chicken homologous factor was 81 to 82% of the base sequence and 86% of the amino acid sequence in the region translated into the protein.
- the above gene-specific primers are 206 to 632 in the nucleotide sequence of SEQ ID NO: 5 (canine CAPRIN-1 gene) and 698 to 1124 in the nucleotide sequence of SEQ ID NO: 1 (human CAPRIN-1 gene). It was intended to amplify the base region.
- GAPDH specific primers (described in SEQ ID NOs: 35 and 36) were also used. As a result, as shown in FIG. 1, strong expression was observed in testis in healthy dog tissues, while expression was observed in canine breast cancer and adenocarcinoma tissues.
- the expression of the human homologous factor of the obtained gene was also confirmed, it was found only in the testis that the expression was confirmed in normal tissues as in the canine CAPRIN-1 gene, but in cancer cells, breast cancer, brain tumor, leukemia Expression was detected in many types of cancer cell lines such as lung cancer and esophageal cancer cell lines, and in particular, expression was confirmed in many breast cancer cell lines. From this result, it was confirmed that CAPRIN-1 was not expressed in normal tissues other than testis, but was expressed in many cancer cells, particularly in breast cancer cell lines.
- reference number 1 on the vertical axis indicates the expression pattern of the gene identified above, and reference number 2 indicates the expression pattern of the GAPDH gene as a comparative control.
- a CAPRIN-1-derived peptide represented by SEQ ID NO: 37 was synthesized. 1 mg of this peptide was mixed with an equal volume of incomplete Freund's adjuvant (IFA) solution as an antigen, and this was administered subcutaneously to rabbits 4 times every 2 weeks. Thereafter, blood was collected to obtain an antiserum containing a polyclonal antibody. Furthermore, this antiserum was purified using a protein G carrier (manufactured by GE Healthcare Bioscience) to obtain a polyclonal antibody against the CAPRIN-1-derived peptide. Further, a serum obtained by purifying rabbit serum not administered with an antigen in the same manner as described above using a protein G carrier was used as a control antibody.
- IFA incomplete Freund's adjuvant
- the same operation as described above was performed using the control antibody prepared in the above (5) instead of the polyclonal antibody against the CAPRIN-1-derived peptide as a control.
- the cells to which the anti-human CAPRIN-1 antibody was added all had a fluorescence intensity increased by 30% or more compared to the control.
- MDA-MB-231V showed an increase in fluorescence intensity of 187% and SK-BR-3 showed an increase of 124%.
- the enhancement rate of the fluorescence intensity is represented by the increase rate of the average fluorescence intensity (MFI value) in each cell, and was calculated by the following calculation formula.
- renal cancer cell lines Caki-1, Caki-2, A498), ovarian cancer cell line (SKOV3), lung cancer cell line (QG56), prostate cancer cell line (PC3) Cervical cancer cell line (Hela), fibrosarcoma cell line (HT1080), two brain tumor cell lines (T98G, U87MG), two mouse colon cancer cell lines (CT26, colon26), one mouse breast cancer cell line (4T1) ), CAPRIN-1 expression was also analyzed in one mouse melanoma cell line (B16) and two mouse neuroblastoma cell lines (N1E-115, Neuro2a). Was confirmed.
- Each organ was cut in PBS and fixed at reflux overnight with 0.1 M phosphate buffer (pH 7.4) containing 4% paraformaldehyde (PFA). The reflux solution is discarded, and the tissue surface of each organ is rinsed with PBS.
- a PBS solution containing 10% sucrose is placed in a 50 ml centrifuge tube, and each tissue is placed therein and shaken at 4 ° C. for 2 hours using a rotor. That ’s it.
- the solution was replaced with a PBS solution containing 20% sucrose, allowed to stand at 4 ° C. until the tissue subsided, then replaced with a PBS solution containing 30% sucrose, and allowed to stand at 4 ° C. until the tissue subsided.
- the tissue was removed and the necessary part was cut out with a scalpel.
- an OCT compound manufactured by Tissue Tek
- Cryomold is placed on dry ice and rapidly frozen, then sliced into 10-20 ⁇ m using a cryostat (LEICA) and air-dried with a hair dryer for 30 minutes together with the slide glass, and the sliced tissue is placed.
- a slide glass was prepared.
- an operation of replacing PBS-T every 5 minutes in a staining bottle filled with PBS-T (physiological saline containing 0.05% Tween 20) was performed three times.
- the mouse tissue was MOM mouse Ig blocking reagent (VECTASTAIN) as the blocking solution, and the dog tissue was PBS containing 10% FBS.
- VECTASTAIN MOM mouse Ig blocking reagent
- Each -T solution was placed and allowed to stand at room temperature for 1 hour on a moist chamber.
- a polyclonal antibody against the CAPRIN-1-derived peptide (SEQ ID NO: 37) that reacts with the cancer cell surface prepared in the above (5) was added to a blocking solution at 10 ⁇ g / ml, and placed in a moist chamber at 4 ° C. Let stand under.
- a MOM biotin-labeled anti-IgG antibody manufactured by VECTASTAIN
- a blocking solution was placed and allowed to stand at room temperature for 1 hour in a moist chamber.
- avidin-biotin ABC reagent manufactured by VECTASTAIN was placed and allowed to stand at room temperature for 5 minutes in a moist chamber.
- a DAB coloring solution (DAB 10 mg + 30% H 2 O 2 10 ⁇ l / 0.05 M Tris-HCl (pH 7.6) 50 ml) was placed, and the mixture was placed in a moist chamber at room temperature for 30 minutes. Let stand for a minute. After rinsing with distilled water, a hematoxylin reagent (manufactured by DAKO) was placed and allowed to stand at room temperature for 1 minute, and then rinsed with distilled water. Each of the 70%, 80%, 90%, 95%, and 100% ethanol solutions was sequentially placed for 1 minute, and then allowed to stand overnight in xylene.
- CAPRIN-1 was slightly expressed in cells in the salivary gland, kidney, colon, and stomach tissues, but was not observed on the cell surface, and in tissues derived from other organs. No expression was observed. This result was obtained when the monoclonal antibody (monoclonal antibody # 1) against CAPRIN-1 having the heavy chain variable region of SEQ ID NO: 43 and the light chain variable region of SEQ ID NO: 51 obtained in Example 3 or the heavy chain of SEQ ID NO: 47 was used.
- a monoclonal antibody against monoclonal antibody (monoclonal antibody # 2) having a chain variable region and a light chain variable region of SEQ ID NO: 51 or a CAPRIN-1 having a heavy chain variable region of SEQ ID NO: 63 and a light chain variable region of SEQ ID NO: 67
- a monoclonal antibody (monoclonal antibody # 3) was used.
- a polyclonal antibody against the CAPRIN-1-derived peptide (SEQ ID NO: 37) prepared in (5) above was added to a solution prepared at 10 ⁇ g / ml with a PBS-T solution containing 5% FBS, and the solution was placed at 4 ° C. in a moist chamber. After allowing to stand overnight and washing three times with PBS-T for 10 minutes, an appropriate amount of Peroxidase Labeled Polymer Conjugated (manufactured by DAKO) was dropped, and the mixture was allowed to stand at room temperature for 30 minutes in a moist chamber.
- DAKO Peroxidase Labeled Polymer Conjugated
- CAPRIN-1 expressed in various human cancer tissues
- SEQ ID NO: 37 a polyclonal antibody against the -1 derived peptide
- Example 2 Production of Human CAPRIN-1 (1) Production of Recombinant Protein Based on the gene of SEQ ID NO: 1 obtained in Example 1, a recombinant protein of human homologous gene was produced by the following method. PCR was performed using 1 ⁇ l of cDNA that could be confirmed by RT-PCR method from various tissue and cell cDNAs prepared in Example 1, and two kinds of primers containing SacI and XhoI restriction enzyme cleavage sequences (described in SEQ ID NOs: 38 and 39).
- the purified DNA fragment was ligated to a cloning vector PCR-Blunt (manufactured by Invitrogen). After transforming this into E. coli, the plasmid was recovered, and it was confirmed by sequencing that the amplified gene fragment matched the target sequence.
- a plasmid corresponding to the target sequence was treated with SacI and XhoI restriction enzymes, purified with QIAquick Gel Extraction Kit, and then inserted into an expression vector pET30a (manufactured by Novagen) for Escherichia coli treated with SacI and XhoI restriction enzymes. .
- This vector a His-tagged recombinant protein can be produced.
- This plasmid was transformed into E. coli BL21 (DE3) for expression, and the target protein was expressed in E. coli by inducing expression with 1 mM IPTG.
- the cells were suspended in phosphate buffered saline and subjected to ultrasonic crushing on ice.
- the E. coli sonication solution was centrifuged at 6000 rpm for 20 minutes, and the resulting supernatant was used as a soluble fraction and the precipitate was used as an insoluble fraction.
- the soluble fraction was added to a nickel chelate column (carrier: Chelating Sepharose (trademark) Fast Flow (GE HealthCare), column volume 5 ml, equilibration buffer 50 mM hydrochloric acid buffer (pH 8.0)) prepared according to a conventional method.
- the unadsorbed fraction was washed with 10 mM column volume of 50 mM hydrochloric acid buffer (pH 8.0) and 20 mM imidazole-containing 20 mM phosphate buffer (pH 8.0), and immediately, 100 mM imidazole-containing 20 mM.
- Six beds were eluted with phosphate buffer (pH 8.0).
- Example 3 Preparation of mouse monoclonal antibody against CAPRIN-1 100 ⁇ g of the antigen protein (human CAPRIN-1) shown in SEQ ID NO: 2 prepared in Example 2 was mixed with an equal amount of MPL + TDM adjuvant (manufactured by Sigma) Was the antigen solution per mouse. The antigen solution was administered intraperitoneally to 6-week-old Balb / cc mice (manufactured by SLC, Japan), and immunization was completed 7 times every week.
- MPL + TDM adjuvant manufactured by Sigma
- the obtained spleen cells and mouse myeloma cells SP2 / 0 purchased from ATCC were mixed at a ratio of 10: 1, and 200 ⁇ l of RPMI 1640 medium containing 10% FBS heated to 37 ° C. and PEG 1500 (Boehringer) PEG solution prepared by mixing 800 ⁇ l was added and allowed to stand for 5 minutes for cell fusion.
- the cells were suspended in 150 ml of RPMI 1640 medium (HAT selective medium) containing 15% FBS to which 2% equivalent of Gibco's HAT solution was added. 100 ⁇ l per well of (made) was seeded on 15 plates. By culturing under conditions of 37 ° C. and 5% CO 2 for 7 days, a hybridoma in which spleen cells and myeloma cells were fused was obtained.
- RPMI 1640 medium HAT selective medium
- FBS Gibco's HAT solution
- Hybridomas were selected using as an index the binding affinity of the antibody produced by the prepared hybridomas to the CAPRIN-1 protein.
- 100 ⁇ l of 1 ⁇ g / ml of the CAPRIN-1 protein solution prepared in Example 2 was added per well of a 96-well plate and allowed to stand at 4 ° C. for 18 hours. Each well was washed 3 times with PBS-T, and then added with 400 ⁇ l of 0.5% Bovine Serum Albumin (BSA) solution (manufactured by Sigma) per well and allowed to stand at room temperature for 3 hours.
- BSA Bovine Serum Albumin
- hybridomas were added to the plate so that the number was 0.5 per well of the 96-well plate and cultured. One week later, hybridomas forming a single colony in the well were observed. The cells in these wells were further cultured, and hybridomas were selected using the binding affinity of the antibody produced by the cloned hybridomas to the CAPRIN-1 protein as an index. 100 ⁇ l of 1 ⁇ g / ml of the CAPRIN-1 protein solution prepared in Example 3 was added per well of a 96-well plate, and allowed to stand at 4 ° C. for 18 hours. After washing each well 3 times with PBS-T, 400 ⁇ l of 0.5% BSA solution was added per well and allowed to stand at room temperature for 3 hours.
- the fluorescence intensity was measured with a FACS caliber from Becton Dickinson.
- the same operation as described above was performed using a serum of 6-week-old Balb / c mice that had not been treated in place of the antibody diluted 500-fold with a medium for hybridoma culture, and used as a control.
- three monoclonal antibodies (# 1, # 2, and # 3) that had higher fluorescence intensity than the control, ie, reacted with the cell surface of breast cancer cells, were selected.
- Example 4 Characterization of Selected Antibody (1) Cloning of Variable Region Gene of Anti-CAPRIN-1 Mouse Monoclonal Antibody mRNA was extracted from each hybridoma strain that produced each of the three monoclonal antibodies selected in Example 3, Genes of heavy chain variable (VH) region and light chain variable (VL) region of all anti-CAPRIN-1 monoclonal antibodies by RT-PCR using primers specific to mouse FR1-derived sequence and mouse FR4-derived sequence Acquired. The genes were cloned into pCR2.1 vector (Invitrogen) for sequencing.
- VH heavy chain variable
- VL light chain variable
- RT-PCR MRNA was prepared from 10 6 hybridoma strains using mRNA micro purification kit (manufactured by GE Healthcare), and the resulting mRNA was reverse transcribed using SuperScript II 1st strand synthesis kit (manufactured by Invitrogen). cDNA was synthesized. These operations were performed according to the protocol attached to each kit.
- antibody genes were amplified by PCR.
- a primer specific for the mouse heavy chain FR1 sequence SEQ ID NO: 54
- a primer specific for the mouse heavy chain FR4 sequence SEQ ID NO: 55
- a primer specific for the mouse light chain FR1 sequence SEQ ID NO: 56
- a primer specific for the mouse light chain FR4 SEQ ID NO: 57
- Ex-taq (manufactured by Takara Bio Inc.) was used.
- a cDNA sample was added to 5 ⁇ l of 10 ⁇ EX Taq Buffer, 4 ⁇ l of dNTP Mixture (2.5 mM), 2 ⁇ l of each primer (1.0 ⁇ M) and 0.25 ⁇ l of Ex Taq (5 U / ⁇ l), and the total amount was made 50 ⁇ l with sterilized water.
- denaturation at 94 ° C. for 1 minute, annealing at 58 ° C. for 30 seconds, and extension reaction at 72 ° C. for 1 minute were performed under 30 cycles.
- the gene sequence encoding the heavy chain variable region of the obtained monoclonal antibody is represented by SEQ ID NO: 52, SEQ ID NO: 70 and SEQ ID NO: 68, and the amino acid sequence thereof is represented by SEQ ID NO: 43, SEQ ID NO: 47 and SEQ ID NO: 51.
- the gene sequence encoding the region is shown in SEQ ID NO: 53 and SEQ ID NO: 69, and the amino acid sequence thereof is shown in SEQ ID NO: 51 and SEQ ID NO: 67.
- monoclonal antibody # 1 consists of a heavy chain variable region of SEQ ID NO: 43 and a light chain variable region of SEQ ID NO: 51
- # 2 consists of a heavy chain variable region of SEQ ID NO: 47 and a light chain variable region of SEQ ID NO: 51
- Monoclonal antibody # 3 consisted of the heavy chain variable region of SEQ ID NO: 63 and the light chain variable region of SEQ ID NO: 67.
- Example 5 Identification of CAPRIN-1 epitope recognized by anti-CAPRIN-1 monoclonal antibodies # 1, # 2 and # 3 Monoclonal antibody # 1 against CAPRIN-1 which reacts with the cell surface of cancer cells obtained in Example 3 and Using # 2, we identified the CAPRIN-1 epitope regions that they recognize.
- 93 candidate peptides consisting of 12 to 16 amino acids in the amino acid sequence of human CAPRIN-1 protein were synthesized and dissolved in DMSO to a concentration of 1 mg / ml each. Each peptide was dissolved in 0.1 M sodium carbonate buffer (pH 9.6) to a concentration of 30 ⁇ g / ml, and 100 ⁇ l was added per well of a 96-well plate (Nunc, product number: 436006). And left at 4 ° C. overnight.
- Example 3 To this, 50 ⁇ l of cell culture supernatant containing the mouse monoclonal antibody (# 1, # 2, # 3) obtained in Example 3 was added per well, shaken at room temperature for 1 hour, and then the liquid was removed. Washed 3 times with PBST. Next, 50 ⁇ l each of a secondary antibody solution obtained by diluting an anti-mouse IgG (manufactured by Invitrogen) antibody labeled with HRP to the mouse monoclonal antibody 3000 to 4000 times with PBST was removed, and then the solution was removed. Washing was performed 6 times.
- a secondary antibody solution obtained by diluting an anti-mouse IgG (manufactured by Invitrogen) antibody labeled with HRP to the mouse monoclonal antibody 3000 to 4000 times with PBST was removed, and then the solution was removed. Washing was performed 6 times.
- a TMB substrate solution (manufactured by Thermo) was added at 100 ⁇ l per well and allowed to stand for 15 to 30 minutes for color development reaction. After color development, 100 ⁇ l of 1N sulfuric acid was added per well to stop the reaction, and absorbance values at 450 nm and 595 nm were measured using an absorptiometer.
- a polypeptide comprising the amino acid sequence of SEQ ID NO: 37 was identified as a partial sequence of CAPRIN-1 recognized by all of anti-CAPRIN-1 monoclonal antibodies # 1, # 2 and # 3.
- polypeptide of SEQ ID NO: 37 contained the epitope regions of anti-CAPRIN-1 antibodies # 1, # 2 and # 3.
- Example 6 Expression of CAPRIN-1 on the surface of various cancer cells using anti-CAPRIN-1 antibodies # 1, # 2 and # 3
- seven breast cancer cell lines in which the expression of the CAPRIN-1 gene was confirmed (MDA- MB-157, T47D, MRK-nu-1, MDA-MB-231V, BT20, SK-BR-3, DA-MB-231T) and three other breast cancer cell lines (MDA-MB-231C, MCF-7) , ZR75-1), 5 glioma cell lines (T98G, SNB19, U251, U87MG, U373), 4 kidney cancer cell lines (Caki-1, Caki-2, A498, ACHN), 2 gastric cancer cell lines (MKN28) , MKN45), 5 types of colon cancer cell lines (HT29, LoVo, Caco2, SW480, HCT116), 3 types of lung cancer cell lines (A549, QG56, PC) ), 4 leukemia cell lines (AML5, Namalwa, BD
- the enhancement rate of the fluorescence intensity is represented by the increase rate of the average fluorescence intensity (MFI value) in each cell, and was calculated by the following calculation formula.
- Example 7 Anti-tumor effect on cancer cells of antibody against CAPRIN-1 (ADCC activity and CDC activity) Whether antibodies against CAPRIN-1 can damage cancer cells expressing CAPRIN-1 was first examined by measuring ADCC activity. Evaluation was carried out using a polyclonal antibody against the human CAPRIN-1-derived peptide (SEQ ID NO: 37) prepared in Example 1. A human breast cancer cell line, MDA-MB-157, which has been confirmed to express CAPRIN-1, was collected in 10 6 50 ml centrifuge tubes, added with 100 ⁇ Ci of chromium 51, and incubated at 37 ° C. for 2 hours.
- the plate was washed three times with RPMI 1640 medium containing 10% fetal bovine serum, and 10 3 pieces were added per well of a 96-well V-bottom plate. To this was added 1 ⁇ g of a polyclonal antibody against the human CAPRIN-1-derived peptide, and 2 ⁇ 10 5 lymphocytes separated from the peripheral blood of rabbits were added at 37 ° C. and 5% CO 2 . Cultured for 4 hours. After the culture, the amount of chromium (Cr) 51 in the culture supernatant released from the damaged cancer cells was measured, and the ADCC activity against the cancer cells by a polyclonal antibody against the human CAPRIN-1-derived peptide was calculated.
- Cr chromium
- the cytotoxic activity was determined by mixing 10 3 cancer cell lines incorporating the antibody against CAPRIN-1 used in the present invention, rabbit lymphocytes and chromium 51 and culturing for 4 hours, It is the result of measuring the amount of chromium 51 released into the culture medium after culturing and showing the cytotoxic activity against the cancer cell line calculated by the following calculation formula * .
- Cytotoxic activity (%) chromium 51 release from cancer cells upon addition of antibody against CAPRIN-1 and rabbit lymphocytes ⁇ chromium 51 release from target cells added with 1N hydrochloric acid ⁇ 100.
- Example 3 Furthermore, the cytotoxic activity against cancer cells of mouse monoclonal antibodies # 1, # 2 and # 3 against CAPRIN-1 obtained in Example 3 was evaluated. Each cell culture supernatant producing # 1, # 2 and # 3 was purified using Hitrap Protein A Sepharose FF (manufactured by GE Healthcare), replaced with PBS (-), and a 0.22 ⁇ m filter (manufactured by Millipore) ) Was used as an antibody for activity measurement. 10 6 human breast cancer cell lines MDA-MB-157 were collected in a 50 ml centrifuge tube, added with 100 ⁇ Ci of chromium 51, and incubated at 37 ° C. for 2 hours.
- Hitrap Protein A Sepharose FF manufactured by GE Healthcare
- PBS -
- a 0.22 ⁇ m filter manufactured by Millipore
- the cells were washed 3 times with RPMI 1640 medium containing 10% FBS, and 10 3 cells were added per well of a 96-well V-bottom plate to obtain target cells. 1 ⁇ g of each of the purified antibodies was added thereto, and 5 ⁇ 10 4 mouse spleen cells isolated from the spleen of a 6-week-old BALB / C mouse (manufactured by Japan SLC Co., Ltd.) according to a standard method were added to the mixture at 37 ° C. The cells were cultured for 4 hours under the condition of 5% CO 2 .
- Negative control was prepared by adding PBS instead of antibody or isotype control antibody.
- antibodies # 1, # 2 and # 3 showed cytotoxic activity of 26% or more against MDA-MB-157.
- the activities of the negative control added PBS and the isotype control antibody added were 2.0% and 2.8%, respectively.
- the cytotoxic activity was mixed with 10 3 each cancer cell line incorporating the antibody against CAPRIN-1 used in the present invention, mouse spleen cells and chromium 51, and cultured for 4 hours. It is the result of measuring the amount of chromium 51 released into the culture medium after culturing and showing the cytotoxic activity against the cancer cell line calculated by the following calculation formula * .
- Cytotoxic activity (%) chromium 51 release from cancer cells upon addition of antibody against CAPRIN-1 and mouse spleen cells ⁇ chromium 51 release from target cells added with 1N hydrochloric acid ⁇ 100.
- cytotoxic activity of the obtained mouse monoclonal antibodies # 1 and # 2 against CAPRIN-1 against cancer cells was evaluated.
- Blood collected from a rabbit was placed in an Eppendorf tube, allowed to stand at room temperature for 60 minutes, and then centrifuged at 3000 rpm for 5 minutes to prepare serum for measuring CDC activity.
- 10 5 human breast cancer cells, MDA-MB-231V were collected in a 50 ml centrifuge tube, added with 100 ⁇ Ci of chromium 51, incubated at 37 ° C. for 2 hours, and then washed 3 times with RPMI medium containing 10% FBS. .
- the cytotoxic activity was determined by mixing 10 3 cancer cell lines incorporating the antibody against CAPRIN-1 used in the present invention, serum, and chromium 51, and culturing for 4 hours. It is the result of measuring the amount of chromium 51 released to the medium and showing the cytotoxic activity against the cancer cell line calculated by the following calculation formula * .
- Cytotoxic activity (%) chromium 51 release from cancer cells when antibody against CAPRIN-1 and serum are added ⁇ chromium 51 release from target cells added with 1N hydrochloric acid ⁇ 100.
- the antibody used was obtained by column purification of the culture supernatant of each cell producing # 1 and # 2 as described above.
- Antitumor effects of antibodies # 1 and # 2 were examined using tumor-bearing mice transplanted with a cancer cell line derived from a mouse that expresses CAPRIN-1.
- 30 ⁇ 10 5 4T1 cells (purchased from ATCC) are transplanted subcutaneously into the back of 30 Balb / c mice (manufactured by SLC, Japan), and the tumor grows to a size of about 5 mm in diameter. I let you.
- 20 tumor-bearing mice were intraperitoneally administered with 200 ⁇ g (200 ⁇ l) of the antibodies of # 1 and # 2 per antibody to 10 mice per antibody.
- the same amount of each antibody was administered to the peritoneal cavity of each cancer-bearing mouse 3 times in total for 2 days, and the tumor size was measured every day to observe the antitumor effect.
- the remaining 10 tumor-bearing mice were administered PBS ( ⁇ ) instead of the antibody, and this was used as a control group.
- the size of the tumor was calculated by using a formula of major axis ⁇ minor axis ⁇ minor axis ⁇ 0.5.
- the antibody of the present invention is useful for the treatment and / or prevention of cancer.
- SEQ ID NO: 31 T3 primer SEQ ID NO: 32: T7 primer SEQ ID NO: 33, 34: Primer SEQ ID NO: 35, 36: GAPDH primer SEQ ID NO: 38, 39: Primer
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
本発明で用いられるCAPRIN-1に対する抗体を取得するための感作抗原として使用されるタンパク質又はその断片は、ヒト、イヌ、ウシ、ウマ、マウス、ラット、ニワトリなど、その由来となる動物種に制限されない。しかし細胞融合に使用する親細胞との適合性を考慮して選択することが好ましく、一般的には、哺乳動物由来のタンパク質が好ましく、特にヒト由来のタンパク質が好ましい。例えば、CAPRIN-1がヒトCAPRIN-1の場合、ヒトCAPRIN-1タンパク質やその部分ペプチド、ヒトCAPRIN-1を発現する細胞などを用いることができる。
抗体は通常少なくとも2本の重鎖及び2本の軽鎖を含むヘテロ多量体糖タンパク質である。IgMは別として、2本の同一の軽(L)鎖及び2本の同一の重(H)鎖で構成される約150kDaのヘテロ四量体糖タンパク質である。典型的には、それぞれの軽鎖は1つのジスルフィド共有結合により重鎖に連結されているが、種々の免疫グロブリンアイソタイプの重鎖間のジスルフィド結合の数は変動する。それぞれの重鎖及び軽鎖はまた鎖内ジスルフィド結合も有する。それぞれの重鎖は一方の端に可変ドメイン(VH領域)を有し、それにいくつかの定常領域が続く。それぞれ軽鎖は可変ドメイン(VL領域)を有し、その反対の端に1つの定常領域を有する。軽鎖の定常領域は重鎖の最初の定常領域と整列しており、かつ軽鎖可変ドメインは重鎖の可変ドメインと整列している。抗体の可変ドメインは特定の領域が相補性決定領域(CDR)と呼ばれる特定の可変性を示して抗体に結合特異性を付与する。可変領域の相対的に保存されている部分はフレームワーク領域(FR)と呼ばれている。完全な重鎖及び軽鎖の可変ドメインはそれぞれ3つのCDRにより連結された4つのFRを含む。3つのCDRは重鎖ではそのN末から順にCDRH1,CDRH2,CDRH3、同様に軽鎖ではCDRL1,CDRL2,CDRL3と呼ばれている。抗体の抗原への結合特異性には、CDRH3が最も重要である。また、各鎖のCDRはFR領域によって近接した状態で一緒に保持され、他方の鎖からのCDRと共に抗体の抗原結合部位の形成に寄与する。定常領域は抗体が抗原に結合することに直接寄与しないが、種々のエフェクター機能、例えば、抗体依存性細胞性細胞障害活性(ADCC)への関与、Fcγ受容体への結合を介した食作用、新生児Fc受容体(FcRn)を介した半減期/クリアランス速度、補体カスケードのC1q構成要素を介した補体依存性細胞障害(CDC)を示す。
本発明における抗CAPRIN-1抗体とは、CAPRIN-1タンパク質の全長又はその断片と免疫学的反応性を有する抗体を意味する。
抗体がCAPRIN-1に結合する能力は、実施例で述べられるようなたとえばELISA、ウエスタンブロット法、免疫蛍光及びフローサイトメトリー分析などを用いた結合アッセイを利用して特定することができる。
CAPRIN-1を認識する抗体は、当業者に周知の方法での免疫組織化学により、外科手術の間に患者から得た組織や、自然にまたはトランスフェクション後にCAPRIN-1を発現する細胞系を接種した異種移植組織を担持する動物から得た組織から、パラホルムアルデヒドまたはアセトン固定した凍結切片またはパラホルムアルデヒドで固定したパラフィン包埋した組織切片を使用して、CAPRIN-1との反応性に関して試験することができる。
本発明の癌の治療及び/又は予防のための医薬組成物の標的は、CAPRIN-1遺伝子を発現する癌(細胞)であれば特に限定されない。
本発明は更に、上記抗体(a)、(b)または(c)に関わる以下のポリペプチド及びDNAも提供する。
上で説明した本発明を以下に要約する。
(1)cDNAライブラリーの作製
健常な犬の精巣組織から酸グアニジウム-フェノール-クロロホルム法(Acid guanidium-Phenol-Chloroform法)により全RNAを抽出し、Oligotex-dT30 mRNA purification Kit(宝酒造社製)を用いてキット添付のプロトコールに従ってポリA RNAを精製した。
上記作製したイヌ精巣cDNAファージライブラリーを用いて、イムノスクリーニングを行った。具体的にはΦ90×15mmのNZYアガロースプレートに2210クローンとなるように宿主大腸菌(XL1-Blue MRF’)に感染させ、42℃、3~4時間培養し、溶菌斑(プラーク)を作らせ、IPTG(イソプロピル-β-D-チオガラクトシド)を浸透させたニトロセルロースメンブレン(Hybond C Extra: GE Healthcare Bio-Scinece社製)でプレートを37℃で4時間覆うことによりタンパク質を誘導・発現させ、メンブレンにタンパク質を転写した。その後メンブレンを回収し0.5%脱脂粉乳を含むTBS(10mM Tris-HCl, 150mM NaCl pH7.5)に浸し4℃で一晩振盪することによって非特異反応を抑制した。このフィルターを500倍希釈した患犬血清と室温で2~3時間反応させた。
上記方法により単離した5個の陽性クローンを塩基配列解析に供するため、ファージベクターからプラスミドベクターに転換する操作を行った。具体的には宿主大腸菌(XL1-Blue MRF’)を吸光度OD600が1.0となるよう調製した溶液200μlと、精製したファージ溶液250μlさらにExAssist helper phage(STRATAGENE社製)1μlを混合した後37℃で15分間反応後、LB培地を3ml添加し37℃で2.5~3時間培養を行い、直ちに70℃の水浴にて20分間保温した後、4℃、1000×g、15分間遠心分離を行い上清をファージミド溶液として回収した。次いでファージミド宿主大腸菌(SOLR)を吸光度OD600が1.0となるよう調製した溶液200μlと、精製したファージ溶液10μlを混合した後37℃で15分間反応させ、50μlをアンピシリン(終濃度50μg/ml)含有LB寒天培地に播き37℃一晩培養した。トランスフォームしたSOLRのシングルコロニーを採取し、アンピシリン(終濃度50μg/ml)含有LB培地37℃にて培養後、QIAGEN plasmid Miniprep Kit(キアゲン社製)を使って目的のインサートを持つプラスミドDNAを精製した。
上記方法により得られた遺伝子に対しイヌ及びヒトの正常組織及び各種細胞株における発現をRT-PCR法により調べた。逆転写反応は以下の通り行なった。すなわち、各組織50~100mg及び各細胞株5~10×106個の細胞からTRIZOL試薬(invitrogen社製)を用いて添付のプロトコールに従い全RNAを抽出した。この全RNAを用いてSuperscript First-Strand Synthesis System for RT-PCR(invitrogen社製)により添付のプロトコールに従いcDNAを合成した。PCR反応は、取得した遺伝子特異的なプライマー(配列番号33及び34に記載)を用いて以下の通り行った。すなわち、逆転写反応により調製したサンプル0.25μl、上記プライマーを各2μM、0.2mM各dNTP、0.65UのExTaqポリメラーゼ(宝酒造社製)となるように各試薬と添付バッファーを加え全量を25μlとし、Thermal Cycler(BIO RAD社製)を用いて、94℃-30秒、60℃-30秒、72℃-30秒のサイクルを30回繰り返して行った。なお、上記遺伝子特異的プライマーは、配列番号5の塩基配列(イヌCAPRIN-1遺伝子)中の206番~632番及び配列番号1の塩基配列(ヒトCAPRIN-1遺伝子)中の698番~1124番塩基の領域を増幅するものであった。比較対照のため、GAPDH特異的なプライマー(配列番号35及び36に記載)も同時に用いた。その結果、図1に示すように、健常なイヌ組織では精巣に強い発現が見られ、一方イヌ乳癌及び腺癌組織で発現が見られた。さらに、取得した遺伝子のヒト相同因子の発現を併せて確認したところ、イヌCAPRIN-1遺伝子と同様、正常組織で発現が確認できたのは精巣のみだったが、癌細胞では乳癌、脳腫瘍、白血病、肺癌、食道癌細胞株など、多種類の癌細胞株で発現が検出され、特に多くの乳癌細胞株で発現が確認された。この結果から、CAPRIN-1は精巣以外の正常組織では発現が見られず、一方、多くの癌細胞で発現しており、特に乳癌細胞株に発現していることが確認された。
CAPRIN-1に結合する抗体を得るために、配列番号37で示されるCAPRIN-1由来ペプチドを合成した。このペプチド1mgを抗原として、等容量の不完全フロイントアジュバント(IFA)溶液と混合し、これを2週間毎に4回、ウサギの皮下に投与を行った。その後血液を採取し、ポリクローナル抗体を含む抗血清を得た。さらにこの抗血清をプロテインG担体(GEヘルスケアバイオサイエンス社製)を用いて精製し、CAPRIN-1由来ペプチドに対するポリクローナル抗体を得た。また、抗原を投与していないウサギの血清を上記と同様にしてプロテインG担体を用いて精製したものをコントロール抗体とした。
次にCAPRIN-1遺伝子の発現が多く確認された乳癌細胞株7種(MDA-MB-157,T47D,MRK-nu-1,MDA-MB-231V,BT20,SK-BR-3,MDA-MB-231T)について、その細胞表面上にCAPRIN-1タンパク質が発現しているかどうかを調べた。上記で遺伝子発現が認められた各ヒト乳癌細胞株それぞれ106細胞を1.5mlのミクロ遠心チューブにて遠心分離した。これに上記(5)で調製したCAPRIN-1由来ペプチドに対するポリクローナル抗体2μg(5μl)を添加し、さらに95μlの0.1%牛胎児血清を含むPBSで懸濁後、氷上で1時間静置した。PBSで洗浄した後、5μlのFITC標識ヤギ抗ラビットIgG抗体(サンタクルズ社製)及び95μlの0.1%牛胎児血清(FBS)を含むPBSで懸濁し、氷上で1時間静置した。PBSで洗浄後、ベクトンディッキンソン株式会社のFACSキャリバーにて蛍光強度を測定した。一方、上記と同様の操作を、CAPRIN-1由来ペプチドに対するポリクローナル抗体の代わりに上記(5)で調製したコントロール抗体を用いて行い、コントロールとした。その結果、抗ヒトCAPRIN-1抗体を添加された細胞は、コントロールに比べて、いずれも蛍光強度が30%以上増強した。具体的には、MDA-MB-231Vが187%、SK-BR-3が124%の蛍光強度の増強を示した。このことから、上記ヒト癌細胞株の細胞膜表面上にCAPRIN-1タンパクが発現していることが確認された。なお、上記蛍光強度の増強率は、各細胞における平均蛍光強度(MFI値)の増加率にて表され、以下の計算式により算出した。
(7)-1 マウス及びイヌ正常組織におけるCAPRIN-1の発現
マウス(Balb/c、雌)及びイヌ(ビーグル犬、雌)をエーテル麻酔下及びケタミン/イソフルラン麻酔下で放血させ、開腹後、各臓器(胃、肝臓、眼球、胸腺、筋肉、骨髄、子宮、小腸、食道、心臓、腎臓、唾液腺、大腸、乳腺、脳、肺、皮膚、副腎、卵巣、膵臓、脾臓、膀胱)をそれぞれPBSの入った10cmディッシュに移した。PBS中で各臓器を切り開き、4%paraformaldehyde(PFA)を含む0.1M リン酸緩衝液(pH7.4)で一晩還流固定した。還流液を捨て、PBSで各臓器の組織表面をすすぎ、10%ショ糖を含むPBS溶液を50ml容の遠心チューブに入れ、その中に各組織を入れて4℃で2時間ローターを用いて振とうした。20%ショ糖を含むPBS溶液に入れ替え、4℃で組織が沈むまで静置後、30%ショ糖を含むPBS溶液に入れ替え、4℃で組織が沈むまで静置した。組織を取り出し、必要な部分を手術用メスで切りだした。次に、OCTコンパウンド(Tissue Tek社製)をかけて組織表面になじませた後、クライオモルドに組織を配置した。ドライアイスの上にクライオモルドをおいて急速凍結させた後、クライオスタット(LEICA社製)を用いて10~20μmに薄切し、スライドガラスごとヘアードライアーで30分間風乾し、薄切組織がのったスライドガラス作製した。次にPBS-T(0.05% Tween20を含む生理食塩水)を満たした染色瓶に入れて5分ごとにPBS-Tを入れ替える操作を3回行った。切片周囲の余分な水分をキムワイプでふき取り、DAKOPEN(DAKO社製)で囲んだ後、ブロッキング液として、マウス組織はMOMマウスIgブロッキング試薬(VECTASTAIN社製)を、イヌ組織は10%FBSを含むPBS-T溶液をそれぞれのせ、モイストチャンバー上で室温で1時間静置した。次に、上記(5)で作製した癌細胞表面に反応する、CAPRIN-1由来ペプチド(配列番号37)に対するポリクローナル抗体をブロッキング液で10μg/mlに調製した溶液をのせ、モイストチャンバー内で4℃下で一晩静置した。PBS-Tで10分間3回洗浄を行った後、ブロッキング液で250倍に希釈したMOMビオチン標識抗IgG抗体(VECTASTAIN社製)をのせ、モイストチャンバー内で室温で1時間静置した。PBS-Tで10分間3回洗浄を行った後、アビジンービオチンABC試薬(VECTASTAIN社製)をのせ、モイストチャンバー内で室温で5分間静置した。PBS-Tで10分間3回洗浄を行った後、DAB発色液(DAB 10mg+30%H2O2 10μl/0.05M Tris-HCl(pH7.6)50ml)をのせ、モイストチャンバー内で室温で30分間静置した。蒸留水でリンスし、ヘマトキシリン試薬(DAKO社製)を載せて室温で1分間静置後、蒸留水でリンスした。70%、80%、90%、95%、100%の各エタノール溶液に順番に1分間ずつ入れた後、キシレン中で一晩静置した。スライドガラスを取り出し、Glycergel Mounting Medium(DAKO社製)で封入後、観察を行った。その結果、CAPRIN-1は、唾液腺、腎臓、結腸、胃の各組織において細胞内で僅かに発現が認められたが、細胞表面での発現は認められず、また、その他の臓器由来の組織では全く発現が認められなかった。なお、本結果は、実施例3で取得された配列番号43の重鎖可変領域と配列番号51の軽鎖可変領域を有するCAPRIN-1に対するモノクローナル抗体(モノクローナル抗体#1)または配列番号47の重鎖可変領域と配列番号51の軽鎖可変領域を有するCAPRIN-1に対するモノクローナル抗体(モノクローナル抗体#2)または配列番号63の重鎖可変領域と配列番号67の軽鎖可変領域を有するCAPRIN-1に対するモノクローナル抗体(モノクローナル抗体#3)を用いた場合も同様であった。
病理診断で悪性乳癌と診断されたイヌの凍結された乳癌組織108検体を用いて、上述と同様の方法で凍結切片スライド作製及び上記(5)で作製したCAPRIN-1由来ペプチド(配列番号37)に対するポリクローナル抗体を用いた免疫組織化学染色を行った。その結果、CAPRIN-1は108検体中100検体(92.5%)で発現が確認され、特に異型度の高い癌細胞表面に強く発現していた。なお、本結果は、実施例3で取得されたモノクローナル抗体#1、#2または#3を用いた場合も同様であった。
パラフィン包埋されたヒト乳癌組織アレイ(BIOMAX社製)の乳癌組織188検体を用いて、免疫組織化学染色を行った。ヒト乳癌組織アレイを60℃で3時間処理後、キシレンを満たした染色瓶に入れて5分ごとにキシレンを入れ替える操作を3回行った。次にキシレンの代わりにエタノール及びPBS-Tで同様の操作を行った。0.05% Tween20を含む10mM クエン酸緩衝液(pH6.0)を満たした染色瓶にヒト乳癌組織アレイを入れ、125℃で5分間処理後、室温で40分以上静置した。切片周囲の余分な水分をキムワイプでふき取り、DAKOPENで囲み、Peroxidase Block(DAKO社製)を適量滴下した。室温で5分間静置後、PBS-Tを満たした染色瓶に入れて5分ごとにPBS-Tを入れ替える操作を3回行った。ブロッキング液として、10%FBSを含むPBS-T溶液をのせ、モイストチャンバー内で室温で1時間静置した。次に上記(5)で作製したCAPRIN-1由来ペプチド(配列番号37)に対するポリクローナル抗体を5%FBSを含むPBS-T溶液で10μg/mlに調製した溶液をのせ、モイストチャンバー内で4℃で一晩静置し、PBS-Tで10分間3回洗浄を行った後、Peroxidase Labelled Polymer Conjugated(DAKO社製)適量滴下し、モイストチャンバー内で室温で30分間静置した。PBS-Tで10分間3回洗浄を行った後、DAB発色液(DAKO社製)をのせ、室温で10分程度静置した後、発色液を捨て、PBS-Tで10分間3回洗浄を行った後、蒸留水でリンスし、70%、80%、90%、95%、100%の各エタノール溶液に順番に1分間ずつ入れた後、キシレン中で一晩静置した。スライドガラスを取り出し、Glycergel Mounting Medium(DAKO社製)で封入後、観察を行った。その結果、CAPRIN-1は全乳癌組織188検体の内、138検体(73%)で強い発現が認められた。なお、本結果は、実施例3で取得されたモノクローナル抗体#1、#2または#3を用いた場合も同様であった。
パラフィン包埋されたヒト悪性脳腫瘍組織アレイ(BIOMAX社製)の悪性脳腫瘍組織247検体を用いて、上述(7)-3と同様の方法で上記(5)で作製したCAPRIN-1由来ペプチド(配列番号37)に対するポリクローナル抗体を用いた免疫組織化学染色を行った。その結果、CAPRIN-1は全悪性脳腫瘍組織247検体の内、227検体(92%)で強い発現が認められた。なお、本結果は、実施例3で取得されたモノクローナル抗体#1、#2または#3を用いた場合も同様であった。
パラフィン包埋されたヒト乳癌転移リンパ節組織アレイ(BIOMAX社製)の乳癌転移リンパ節組織150検体を用いて、上述(7)-3と同様の方法で上記(5)で作製したCAPRIN-1由来ペプチド(配列番号37)に対するポリクローナル抗体を用いた免疫組織化学染色を行った。その結果、CAPRIN-1は全乳癌転移リンパ節組織150検体の内、136検体(90%)で強い発現が認められた。すなわち、乳癌から転移した癌組織においてもCAPRIN-1は強く発現することが判った。なお、本結果は、実施例3で取得されたモノクローナル抗体#1、#2または#3を用いた場合も同様であった。
パラフィン包埋されたヒト各種癌組織アレイ(BIOMAX社製)の検体を用いて、上述と同様の方法で上記(5)で作製したCAPRIN-1由来ペプチド(配列番号37)に対するポリクローナル抗体を用いた免疫組織化学染色を行った。その結果、CAPRIN-1は食道癌、結腸癌、直腸癌、肺癌、腎癌、膀胱癌及び子宮頸癌で強い発現が認められた。なお、本結果は、実施例3で取得されたモノクローナル抗体#1、#2または#3を用いた場合も同様であった。
(1)組換えタンパク質の作製
実施例1で取得した配列番号1の遺伝子を基に、以下の方法にてヒト相同遺伝子の組換えタンパク質を作製した。PCRは、実施例1で作製した各種組織・細胞cDNAよりRT-PCR法による発現が確認できたcDNAを1μl、SacI及びXhoI制限酵素切断配列を含む2種類のプライマー(配列番号38及び39に記載)を各0.4μM, 0.2mM dNTP, 1.25UのPrimeSTAR HSポリメラーゼ(宝酒造社製)となるように各試薬と添付バッファーを加え全量を50μlとし、Thermal Cycler(BIO RAD社製)を用いて、98℃-10秒、68℃-2.5分のサイクルを30回繰り返すことにより行った。なお、上記2種類のプライマーは、配列番号2のアミノ酸配列全長をコードする領域を増幅するものであった。PCR後、増幅されたDNAを1%アガロースゲルにて電気泳動し、QIAquick Gel Extraction Kit(QIAGEN社製)を用いて約2.1kbpのDNA断片を精製した。
上記で得られた、配列番号1の遺伝子を発現するそれぞれの組換え大腸菌を30μg/ml カナマイシン含有LB培地にて600nmでの吸光度が0.7付近になるまで37℃で培養後、イソプロピル-β-D-1-チオガラクトピラノシド終濃度が1mMとなるよう添加し、37℃で4時間培養した。その後4800rpmで10分間遠心し集菌した。この菌体ペレットをリン酸緩衝化生理食塩水に懸濁し、さらに4800rpmで10分間遠心し菌体の洗浄を行った。
実施例2で調製した配列番号2に示される、抗原タンパク質(ヒトCAPRIN-1)100μgを等量のMPL+TDMアジュバント(シグマ社製)と混合し、これをマウス1匹当たりの抗原溶液とした。抗原溶液を6週齢のBalb/ccマウス(日本SLC社製)の腹腔内に投与後、1週間毎に7回投与を行い免疫を完了した。最後の免疫から3日後に摘出したそれぞれの脾臓を滅菌した2枚のスライドガラスに挟んで擦り潰し、PBS(-)(日水社製)を用いて洗浄し1500rpmで10分間遠心して上清を除去する操作を3回繰り返して脾臓細胞を得た。得られた脾臓細胞とマウスミエローマ細胞SP2/0(ATCCから購入)とを10:1の比率にて混和し、そこに37℃に加温した10%FBSを含むRPMI1640培地200μlとPEG1500(ベーリンガー社製)800μlを混和して調製したPEG溶液を加えて5分間静置して細胞融合を行った。1700rpmで5分間遠心し、上清を除去後、Gibco社製のHAT溶液を2%当量加えた15%FBSを含むRPMI1640培地(HAT選択培地)150mlで細胞を懸濁し、96穴プレート(ヌンク社製)の1ウェル当たり100μlずつ、プレート15枚に播種した。7日間、37℃、5% CO2の条件で培養することで、脾臓細胞とミエローマ細胞が融合したハイブリドーマを得た。
(1)抗CAPRIN-1マウスモノクローナル抗体の可変領域遺伝子のクローニング
実施例3で選抜した3個のモノクローナル抗体をそれぞれ産生する各ハイブリドーマ株から、mRNAを抽出し、マウスFR1由来配列及びマウスFR4由来の配列に特異的なプライマーを使用したRT-PCR法により、全ての抗CAPRIN-1モノクローナル抗体の重鎖可変(VH)領域及び軽鎖可変(VL)領域の遺伝子を取得した。配列決定のために、それら遺伝子をpCR2.1ベクター(インビトロジェン社製)にクローニングした。
106個の各ハイブリドーマ株から、mRNA micro purification kit(GEヘルスケア社製)を用いてmRNAを調製し、SuperScriptII 1st strand synthesis kit(インビトロジェン社製)を用いて、得られたmRNAを逆転写してcDNAを合成した。これら操作は各キットの添付プロトコールに従って行った。
上記で得られた各PCR産物を用いてアガロースゲルにて電気泳動を行い、VH領域及びVL領域それぞれのDNAバンドを切り出した。DNA断片はQIAquick Gel purification kit(キアゲン社製)を用いてその添付プロトコールに従って行った。精製した各DNAはTAクローニングキット(インビトロジェン社製)を用いてpCR2.1ベクターにクローニングした。連結したベクターをDH5aコンピテントセル(TOYOBO社製)に定法に従い形質転換を行った。各形質転換体それぞれ10クローンを培地(100μg/mlアンピシリン)で37℃一晩培養後、各プラスミドDNAをQiaspin Miniprep kit(キアゲン社製)を用いて精製した。
上記で得られた各プラスミド中のVH領域及びVL領域の遺伝子配列解析は、M13フォワードプライマー(配列番号58)及びM13リバースプライマー(配列番号59)を用いて、蛍光シーケンサー(ABI社製DNAシーケンサー3130XL)により、ABI社製のビッグダイターミネーターVer3.1サイクルシーケンシングキットを用いて、その添付プロトコールに従い行った。その結果、各々の遺伝子配列が決定された(各々10クローンで一致)。
実施例3で取得した、癌細胞の細胞表面に反応するCAPRIN-1に対するモノクローナル抗体#1ならびに#2を用いて、それらが認識するCAPRIN-1エピトープ領域の同定を行った。
次にCAPRIN-1遺伝子の発現が確認された乳癌細胞株7種(MDA-MB-157,T47D,MRK-nu-1,MDA-MB-231V,BT20,SK-BR-3,DA-MB-231T)及びその他の乳癌細胞株3種(MDA-MB-231C,MCF-7,ZR75-1)、グリオーマ細胞株5種(T98G,SNB19,U251,U87MG,U373)、腎臓癌細胞株4種(Caki-1,Caki-2,A498,ACHN)、胃癌細胞株2種(MKN28,MKN45)、大腸癌細胞株5種(HT29,LoVo,Caco2,SW480,HCT116)、肺癌細胞株3種(A549、QG56、PC8)、白血病細胞株4種(AML5,Namalwa、BDCM、RPI1788)、子宮頸癌細胞株1種(SW756)、膀胱癌細胞株1種(T24)、食道癌細胞株1種(KYSE180)及びリンパ腫細胞株1種(Ramos)について、実施例3で得られた#1、#2及び3を含む培養上清を用いて、各細胞の細胞表面上でのCAPRIN-1タンパク質の発現を調べた。各細胞株それぞれ106細胞を1.5ml容のミクロ遠心チューブにて遠心分離した。抗体#1、#2及び#3をそれぞれ含む各細胞培養上清(100μl)を添加し、氷上で1時間静置した。PBSで洗浄した後、0.1%FBSを含むPBSで500倍希釈したFITC標識ヤギ抗マウスIgG(H+L)抗体(SouthernBiotech社製)を添加し、氷上で1時間静置した。PBSで洗浄後、ベクトンディッキンソン株式会社のFACSキャリバーにて蛍光強度を測定した。陰性コントロールには二次抗体のみを反応したものを用いた。その結果、抗体#1、#2及び#3を添加した細胞は、陰性コントロールに比べて、いずれも蛍光強度が20%以上強かった。このことから、上記ヒト癌細胞株の細胞膜表面上にCAPRIN-1タンパク質が発現していることが確認された。なお、上記蛍光強度の増強率は、各細胞における平均蛍光強度(MFI値)の増加率にて表され、以下の計算式により算出した。
CAPRIN-1に対する抗体が、CAPRIN-1を発現する癌細胞を障害することができるかどうかを、先ずADCC活性を測定することによって検討した。実施例1で調製したヒトCAPRIN-1由来ペプチド(配列番号37)に対するポリクローナル抗体を用いて評価を行った。CAPRIN-1の発現が確認されているヒト乳癌細胞株、MDA-MB-157を106個50ml容の遠心チューブに集め、100μCiのクロミウム51を加え37℃で2時間インキュベートした。その後10% 牛胎児血清を含むRPMI1640培地で3回洗浄し、96穴V底プレート1穴あたり103個ずつ添加した。これに、上記ヒトCAPRIN-1由来ペプチドに対するポリクローナル抗体を1μg添加し、さらにウサギの末梢血から分離したリンパ球を2×105個ずつ添加して、37℃、5%CO2の条件下で4時間培養した。培養後、障害を受けた癌細胞から放出される培養上清中のクロミウム(Cr)51の量を測定し、ヒトCAPRIN-1由来ペプチドに対するポリクローナル抗体による癌細胞に対するADCC活性を算出した。その結果、MDA-MB-157に対して17.8%の細胞障害活性が確認された(図2参照)。一方、抗原が免疫されていないウサギの末梢血から調製したコントロール抗体(実施例1(5))を用いて同様の操作を行った場合、及び抗体を添加しなかった場合には、活性はほとんど認められなかった(図2参照)。従って、CAPRIN-1に対する抗体により、CAPRIN-1を発現する癌細胞を障害することができることが明らかになった。
配列番号32: T7プライマー
配列番号33、34: プライマー
配列番号35、36: GAPDHプライマー
配列番号38、39: プライマー
Claims (15)
- 配列番号37で表されるアミノ酸配列、又は該アミノ酸配列と80%以上の配列同一性を有するアミノ酸配列、を有する配列番号2~30のうち偶数の配列番号で表されるCAPRIN-1の部分ポリペプチドと免疫学的反応性を有する抗体又はそのフラグメントを有効成分として含むことを特徴とする、癌の治療及び/又は予防のための医薬組成物。
- 前記癌が乳癌、脳腫瘍、白血病、リンパ腫、肺癌、肥満細胞腫、腎癌、子宮頸癌、膀胱癌、食道癌、胃癌もしくは大腸癌である、請求項1に記載の医薬組成物。
- 前記抗体が、モノクローナル抗体又はポリクローナル抗体である、請求項1又は2に記載の医薬組成物。
- 前記抗体が、ヒト抗体、ヒト化抗体、キメラ抗体、単鎖抗体又は二重特異性抗体である、請求項1~3のいずれか1項に記載の医薬組成物。
- 配列番号37で表されるアミノ酸配列、又は該アミノ酸配列と80%以上の配列同一性を有するアミノ酸配列、を有するポリペプチドと免疫学的反応性を有する抗体。
- CAPRIN-1タンパク質を発現する癌細胞に対し細胞障害活性を有する、請求項5に記載の抗体。
- 配列番号40、41及び42を含む重鎖可変領域と配列番号48、49及び50を含む軽鎖可変領域とを含み、かつ、CAPRIN-1タンパク質と免疫学的反応性を有する抗体。
- 配列番号44、45及び46を含む重鎖可変領域と配列番号48、49及び50を含む軽鎖可変領域とを含み、かつ、CAPRIN-1タンパク質と免疫学的反応性を有する抗体。
- 配列番号60、61及び62を含む重鎖可変領域と配列番号64、65及び66を含む軽鎖可変領域とを含み、かつ、CAPRIN-1タンパク質と免疫学的反応性を有する抗体。
- ヒト抗体、ヒト化抗体、キメラ抗体、単鎖抗体又は二重特異性抗体である、請求項5~9のいずれか1項に記載の抗体。
- 請求項5~10のいずれか1項に記載の抗体又はそのフラグメントを有効成分として含むことを特徴とする、癌の治療及び/又は予防のための医薬組成物。
- 前記癌が乳癌、脳腫瘍、白血病、リンパ腫、肺癌、肥満細胞腫、腎癌、子宮頸癌、膀胱癌、食道癌、胃癌もしくは大腸癌である、請求項11に記載の医薬組成物。
- 請求項1~4のいずれか1項に記載の医薬組成物あるいは請求項11又は12に記載の医薬組成物と、抗腫瘍剤を含む医薬組成物とを含んでなる、癌の治療及び/又は予防のための組み合わせ医薬品。
- 請求項5~10のいずれか1項に記載の抗体又はそのフラグメント、あるいは請求項11又は12に記載の医薬組成物を、被験者に投与することを含む、癌の治療及び/又は予防方法。
- 被験者において請求項13に記載の組み合わせ医薬品の各医薬組成物を併用することを含む、癌の治療及び/又は予防方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK11739881.8T DK2532366T3 (da) | 2010-02-04 | 2011-02-04 | Farmaceutisk sammensætning til behandling og/eller forebyggelse af cancer |
EP11739881.8A EP2532366B1 (en) | 2010-02-04 | 2011-02-04 | Pharmaceutical composition for treating and/or preventing cancer |
MX2012009000A MX342291B (es) | 2010-02-04 | 2011-02-04 | Composicion farmaceutica para el tratamiento y/o prevencion del cancer. |
KR1020127022752A KR101801667B1 (ko) | 2010-02-04 | 2011-02-04 | 암의 치료 및/또는 예방용 의약 조성물 |
CA2788716A CA2788716C (en) | 2010-02-04 | 2011-02-04 | Pharmaceutical composition for treating and/or preventing cancer |
US13/577,212 US8937160B2 (en) | 2010-02-04 | 2011-02-04 | Pharmaceutical composition for treating and/or preventing cancer |
BR112012018951A BR112012018951C8 (pt) | 2010-02-04 | 2011-02-04 | anticorpo monoclonal, composição farmacêutica, combinação farmacêutica, uso de um anticorpo, uso de uma composição farmacêutica e uso de uma combinação farmacêutica |
RU2012137504/10A RU2597971C2 (ru) | 2010-02-04 | 2011-02-04 | Фармацевтическая композиция для лечения и/или профилактики рака |
ES11739881.8T ES2606173T3 (es) | 2010-02-04 | 2011-02-04 | Composición farmacéutica para el tratamiento y/o la prevención del cáncer |
CN201180017395.0A CN102821789B (zh) | 2010-02-04 | 2011-02-04 | 癌的治疗和/或预防用药物组合物 |
AU2011211698A AU2011211698B2 (en) | 2010-02-04 | 2011-02-04 | Pharmaceutical composition for treating and/or preventing cancer |
JP2011510202A JP5742713B2 (ja) | 2010-02-04 | 2011-02-04 | 癌の治療及び/又は予防用医薬組成物 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-023453 | 2010-02-04 | ||
JP2010023453 | 2010-02-04 | ||
JP2010-183161 | 2010-08-18 | ||
JP2010183161 | 2010-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011096533A1 true WO2011096533A1 (ja) | 2011-08-11 |
Family
ID=44355527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052412 WO2011096533A1 (ja) | 2010-02-04 | 2011-02-04 | 癌の治療及び/又は予防用医薬組成物 |
Country Status (16)
Country | Link |
---|---|
US (1) | US8937160B2 (ja) |
EP (1) | EP2532366B1 (ja) |
JP (1) | JP5742713B2 (ja) |
KR (1) | KR101801667B1 (ja) |
CN (1) | CN102821789B (ja) |
AU (1) | AU2011211698B2 (ja) |
BR (1) | BR112012018951C8 (ja) |
CA (1) | CA2788716C (ja) |
DK (1) | DK2532366T3 (ja) |
ES (1) | ES2606173T3 (ja) |
HU (1) | HUE030742T2 (ja) |
MX (1) | MX342291B (ja) |
PL (1) | PL2532366T3 (ja) |
PT (1) | PT2532366T (ja) |
RU (1) | RU2597971C2 (ja) |
WO (1) | WO2011096533A1 (ja) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013125630A1 (ja) | 2012-02-21 | 2013-08-29 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2013125636A1 (ja) | 2012-02-21 | 2013-08-29 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2013125654A1 (ja) | 2012-02-21 | 2013-08-29 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2013125640A1 (ja) | 2012-02-21 | 2013-08-29 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2013147176A1 (ja) | 2012-03-30 | 2013-10-03 | 東レ株式会社 | 胆嚢癌の治療及び/又は予防用医薬組成物 |
WO2013147169A1 (ja) | 2012-03-30 | 2013-10-03 | 東レ株式会社 | 肝臓癌の治療及び/又は予防用医薬組成物 |
US8709418B2 (en) | 2010-02-04 | 2014-04-29 | Toray Industries, Inc. | Pharmaceutical composition for treating CAPRIN-1 expressing cancer |
US8828398B2 (en) | 2010-02-04 | 2014-09-09 | Toray Industries, Inc. | Pharmaceutical composition for treating and/or preventing cancer |
US8911740B2 (en) | 2010-02-04 | 2014-12-16 | Toray Industries, Inc. | Pharmaceutical composition for treating and/or preventing cancer |
US8937160B2 (en) | 2010-02-04 | 2015-01-20 | Toray Industries, Inc. | Pharmaceutical composition for treating and/or preventing cancer |
WO2015020212A1 (ja) | 2013-08-09 | 2015-02-12 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
JP5742714B2 (ja) * | 2010-02-04 | 2015-07-01 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
US9175074B2 (en) | 2011-08-04 | 2015-11-03 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9181334B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9180187B2 (en) | 2010-02-04 | 2015-11-10 | Toray Industries, Inc. | Medicament for treating and/or preventing cancer |
US9180188B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9273128B2 (en) | 2011-08-04 | 2016-03-01 | Toray Industries, Inc | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9409993B2 (en) | 2011-08-04 | 2016-08-09 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of pancreatic cancer |
US9416192B2 (en) | 2008-08-05 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and prevention of cancers |
US9753038B2 (en) | 2012-07-19 | 2017-09-05 | Toray Industries, Inc. | Method for detecting cancer via measurement of caprin-1 expression level |
US9772332B2 (en) | 2012-07-19 | 2017-09-26 | Toray Industries, Inc. | Method for detecting CAPRIN-1 in a biological sample |
US9796775B2 (en) | 2011-08-04 | 2017-10-24 | Toray Industries, Inc. | Method for detecting pancreatic cancer |
WO2018079740A1 (ja) | 2016-10-28 | 2018-05-03 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2019189780A1 (ja) | 2018-03-30 | 2019-10-03 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2021182574A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2021182572A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2021182573A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2021182571A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2021182570A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
US11137401B2 (en) | 2008-08-05 | 2021-10-05 | Toray Industries, Inc. | Method for detecting cancer using CAPRIN-1 as a marker |
WO2022270523A1 (ja) | 2021-06-23 | 2022-12-29 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2022270524A1 (ja) | 2021-06-23 | 2022-12-29 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2023008461A1 (ja) | 2021-07-27 | 2023-02-02 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2023008459A1 (ja) | 2021-07-27 | 2023-02-02 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2023008462A1 (ja) | 2021-07-27 | 2023-02-02 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2023033129A1 (ja) | 2021-09-03 | 2023-03-09 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101980554B1 (ko) | 2011-08-04 | 2019-05-21 | 도레이 카부시키가이샤 | 암의 치료 및/또는 예방용 의약 조성물 |
ES2891755T3 (es) * | 2013-06-06 | 2022-01-31 | Pf Medicament | Anticuerpos anti-C10orf54 y utilizaciones de los mismos |
EP3484518B1 (en) | 2016-07-07 | 2024-08-14 | The Board of Trustees of the Leland Stanford Junior University | Antibody adjuvant conjugates |
CN113993549A (zh) | 2019-03-15 | 2022-01-28 | 博尔特生物治疗药物有限公司 | 靶向her2的免疫缀合物 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
WO1996002576A1 (fr) | 1994-07-13 | 1996-02-01 | Chugai Seiyaku Kabushiki Kaisha | Anticorps humain reconstitue contre l'interleukine-8 humaine |
US5698396A (en) | 1995-06-07 | 1997-12-16 | Ludwig Institute For Cancer Research | Method for identifying auto-immunoreactive substances from a subject |
WO1998046777A1 (fr) | 1997-04-11 | 1998-10-22 | Centre National De La Recherche Scientifique (Cnrs) | Preparation de recepteurs membranaires a partir de baculovirus extracellulaires |
WO1999051743A1 (fr) | 1998-04-03 | 1999-10-14 | Chugai Seiyaku Kabushiki Kaisha | Anticorps humanise contre le facteur tissulaire humain (tf) et procede de production d'anticorps humanises |
WO2002043478A2 (en) | 2000-11-30 | 2002-06-06 | Medarex, Inc. | Transgenic transchromosomal rodents for making human antibodies |
WO2002083070A2 (en) * | 2001-04-10 | 2002-10-24 | Corixa Corporation | Compounds for immunotherapy and diagnosis of colon cancer and methods for their use |
WO2002092812A1 (en) | 2001-05-11 | 2002-11-21 | Kirin Beer Kabushiki Kaisha | ARTIFICIAL HUMAN CHROMOSOME CONTAINING HUMAN ANTIBODY μ LIGHT CHAIN GENE |
JP2002540790A (ja) * | 1999-04-02 | 2002-12-03 | コリクサ コーポレイション | 肺癌の治療および診断のための化合物ならびにその使用のための方法 |
US20050003390A1 (en) * | 2002-05-17 | 2005-01-06 | Axenovich Sergey A. | Targets for controlling cellular growth and for diagnostic methods |
WO2005100998A2 (en) | 2004-04-16 | 2005-10-27 | Europroteome Ag | Membrane markers for use in cancer diagnosis and therapy |
JP2007530068A (ja) | 2004-03-30 | 2007-11-01 | グラクソ グループ リミテッド | 免疫グロブリン |
WO2007150077A2 (en) * | 2006-06-23 | 2007-12-27 | Immunotope, Inc. | Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer |
US20080075722A1 (en) | 2006-02-14 | 2008-03-27 | Depinho Ronald A | Compostions, kits, and methods for identification, assessment, prevention, and therapy of cancer |
JP2010023453A (ja) | 2008-07-24 | 2010-02-04 | Seiko Epson Corp | 流体噴射装置のメンテナンス方法及び流体噴射装置 |
WO2010016525A1 (ja) * | 2008-08-05 | 2010-02-11 | 東レ株式会社 | 免疫誘導剤 |
WO2010016526A1 (ja) * | 2008-08-05 | 2010-02-11 | 東レ株式会社 | 癌の治療及び予防用医薬組成物 |
WO2010016527A1 (ja) * | 2008-08-05 | 2010-02-11 | 東レ株式会社 | 癌の検出方法 |
JP2010183161A (ja) | 2009-02-03 | 2010-08-19 | Toshiba Corp | カメラシステム |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030118599A1 (en) | 1999-04-02 | 2003-06-26 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of lung cancer |
KR20070112860A (ko) | 1998-07-14 | 2007-11-27 | 코릭사 코포레이션 | 전립선 종양 단백질의 분리된 면역원성 부위 및 이를사용하여 전립선암을 진단하는 방법 |
RU2234942C2 (ru) | 1998-07-14 | 2004-08-27 | Корикса Корпорейшн | Выделенный опухолевый полипептид предстательной железы и кодирующий его полинуклеотид |
US6969518B2 (en) | 1998-12-28 | 2005-11-29 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of breast cancer |
AU3316600A (en) | 1999-02-22 | 2000-09-21 | Torben F. Orntoft | Gene expression in bladder tumors |
US6444425B1 (en) | 1999-04-02 | 2002-09-03 | Corixa Corporation | Compounds for therapy and diagnosis of lung cancer and methods for their use |
US6949245B1 (en) | 1999-06-25 | 2005-09-27 | Genentech, Inc. | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies |
EP1224285A4 (en) | 1999-10-29 | 2004-12-08 | Human Genome Sciences Inc | 27 HUMAN SECRETED PROTEINS |
US20020006404A1 (en) | 1999-11-08 | 2002-01-17 | Idec Pharmaceuticals Corporation | Treatment of cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications |
CA2404233A1 (en) | 2000-03-29 | 2001-10-04 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of lung cancer |
US20040029114A1 (en) | 2001-01-24 | 2004-02-12 | Eos Technology, Inc. | Methods of diagnosis of breast cancer, compositions and methods of screening for modulators of breast cancer |
RU2306952C2 (ru) | 2001-01-31 | 2007-09-27 | Байоджен Айдек Инк. | Лечение в-клеточных злокачественных опухолей с использованием комбинации применений, связанных с антителами, уменьшающими количество b-клеток, и с иммуномодулирующими антителами |
WO2002078524A2 (en) | 2001-03-28 | 2002-10-10 | Zycos Inc. | Translational profiling |
WO2002092001A2 (en) | 2001-05-11 | 2002-11-21 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of lung cancer |
US20030190640A1 (en) | 2001-05-31 | 2003-10-09 | Mary Faris | Genes expressed in prostate cancer |
RU2319709C2 (ru) * | 2001-07-17 | 2008-03-20 | Рисерч Дивелопмент Фаундейшн | Терапевтические агенты, содержащие проапоптозные белки |
US20040142325A1 (en) | 2001-09-14 | 2004-07-22 | Liat Mintz | Methods and systems for annotating biomolecular sequences |
US20040258678A1 (en) * | 2002-02-22 | 2004-12-23 | Genentech, Inc. | Compositions and methods for the treatment of immune related diseases |
US20040126379A1 (en) | 2002-08-21 | 2004-07-01 | Boehringer Ingelheim International Gmbh | Compositions and methods for treating cancer using cytotoxic CD44 antibody immunoconjugates and chemotherapeutic agents |
US20060121029A1 (en) | 2002-08-30 | 2006-06-08 | Hiroshi Shiku | Method and composition for regulating the activity of regulatory t cells |
CA2504144A1 (en) * | 2002-11-26 | 2004-06-10 | Genentech, Inc. | Compositions and methods for the diagnosis of immune related diseases using pro7 |
WO2004076682A2 (en) | 2003-02-26 | 2004-09-10 | Surromed, Inc. | Targets for controlling cellular growth and for diagnostic methods |
EP1629119A2 (en) | 2003-04-29 | 2006-03-01 | Wyeth | Methods for diagnosing aml and mds by differential gene expression |
US20060019256A1 (en) | 2003-06-09 | 2006-01-26 | The Regents Of The University Of Michigan | Compositions and methods for treating and diagnosing cancer |
WO2005007830A2 (en) | 2003-07-14 | 2005-01-27 | Mayo Foundation For Medical Education And Research | Methods and compositions for diagnosis, staging and prognosis of prostate cancer |
US20050032113A1 (en) | 2003-07-17 | 2005-02-10 | Mitsubishi Pharma Corporation | Membrane protein library for proteome analysis and method for preparing same |
EP1735348B1 (en) | 2004-03-19 | 2012-06-20 | Imclone LLC | Human anti-epidermal growth factor receptor antibody |
DE102004026135A1 (de) | 2004-05-25 | 2006-01-05 | Immatics Biotechnologies Gmbh | An MHC-Moleküle bindende Tumor-assoziierte Peptide |
WO2006002378A2 (en) | 2004-06-23 | 2006-01-05 | Avalon Pharmaceuticals | Determining cancer-linked genes and therapeutic targets using molecular cytogenetic methods |
BRPI0518104B8 (pt) | 2005-01-21 | 2021-05-25 | Genentech Inc | artigo industrializado e uso de anticorpo her2 |
US7858324B2 (en) | 2005-02-18 | 2010-12-28 | Children's Medical Center Corporation | Cyr61 as a biomarker for diagnosis and prognosis of cancers of epithelial origin |
MX2007011024A (es) | 2005-03-11 | 2009-11-23 | Vermillion Inc | Biomarcadores para cancer de ovario y cancer de endometrio: hepcidin. |
JP2006316040A (ja) | 2005-05-13 | 2006-11-24 | Genentech Inc | Herceptin(登録商標)補助療法 |
US8014957B2 (en) | 2005-12-15 | 2011-09-06 | Fred Hutchinson Cancer Research Center | Genes associated with progression and response in chronic myeloid leukemia and uses thereof |
US20100015724A1 (en) | 2006-08-17 | 2010-01-21 | Peter Hornbeck | Lysine acetylation sites |
US20080107668A1 (en) | 2006-08-30 | 2008-05-08 | Immunotope, Inc. | Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer |
WO2008031041A2 (en) | 2006-09-07 | 2008-03-13 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Melanoma gene signature |
WO2008059252A2 (en) | 2006-11-15 | 2008-05-22 | Oxford Biomedica (Uk) Limited | Methods and composition fro t cell receptors which recognize 5t4 antigen |
PL2532366T3 (pl) | 2010-02-04 | 2017-02-28 | Toray Industries, Inc. | Kompozycja farmaceutyczna do leczenia i/lub zapobiegania nowotworowi |
US9180187B2 (en) | 2010-02-04 | 2015-11-10 | Toray Industries, Inc. | Medicament for treating and/or preventing cancer |
ES2583627T3 (es) | 2010-02-04 | 2016-09-21 | Toray Industries, Inc. | Composición farmacéutica para el tratamiento y/o la prevención del cáncer |
BR112012019098B8 (pt) | 2010-02-04 | 2021-08-17 | Toray Industries | anticorpo, composição farmacêutica, combinação farmacêutica e usos de um anticorpo, de uma composição farmacêutica e de uma combinação farmacêutica |
ES2583777T3 (es) | 2010-02-04 | 2016-09-22 | Toray Industries, Inc. | Composición farmacéutica que comprende anticuerpos anti CAPRIN-1 para el tratamiento y/o la prevención del cáncer |
PT2532743E (pt) | 2010-02-04 | 2015-08-04 | Toray Industries | Composição farmacêutica para o tratamento e/ou a prevenção de cancro |
AU2012290949B2 (en) | 2011-08-04 | 2017-03-02 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of pancreatic cancer |
RU2624040C2 (ru) | 2011-08-04 | 2017-06-30 | Торэй Индастриз, Инк. | Способ обнаружения рака поджелудочной железы |
ES2763122T3 (es) | 2011-08-04 | 2020-05-27 | Toray Industries | Composición farmacéutica, que comprende anticuerpos contra caprin 1 para el tratamiento y/o para la prevención del cáncer |
-
2011
- 2011-02-04 PL PL11739881T patent/PL2532366T3/pl unknown
- 2011-02-04 HU HUE11739881A patent/HUE030742T2/en unknown
- 2011-02-04 EP EP11739881.8A patent/EP2532366B1/en active Active
- 2011-02-04 PT PT117398818T patent/PT2532366T/pt unknown
- 2011-02-04 JP JP2011510202A patent/JP5742713B2/ja active Active
- 2011-02-04 BR BR112012018951A patent/BR112012018951C8/pt active IP Right Grant
- 2011-02-04 RU RU2012137504/10A patent/RU2597971C2/ru active
- 2011-02-04 DK DK11739881.8T patent/DK2532366T3/da active
- 2011-02-04 AU AU2011211698A patent/AU2011211698B2/en active Active
- 2011-02-04 MX MX2012009000A patent/MX342291B/es active IP Right Grant
- 2011-02-04 WO PCT/JP2011/052412 patent/WO2011096533A1/ja active Application Filing
- 2011-02-04 KR KR1020127022752A patent/KR101801667B1/ko active IP Right Grant
- 2011-02-04 CN CN201180017395.0A patent/CN102821789B/zh active Active
- 2011-02-04 US US13/577,212 patent/US8937160B2/en active Active
- 2011-02-04 ES ES11739881.8T patent/ES2606173T3/es active Active
- 2011-02-04 CA CA2788716A patent/CA2788716C/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
WO1996002576A1 (fr) | 1994-07-13 | 1996-02-01 | Chugai Seiyaku Kabushiki Kaisha | Anticorps humain reconstitue contre l'interleukine-8 humaine |
US5698396A (en) | 1995-06-07 | 1997-12-16 | Ludwig Institute For Cancer Research | Method for identifying auto-immunoreactive substances from a subject |
WO1998046777A1 (fr) | 1997-04-11 | 1998-10-22 | Centre National De La Recherche Scientifique (Cnrs) | Preparation de recepteurs membranaires a partir de baculovirus extracellulaires |
WO1999051743A1 (fr) | 1998-04-03 | 1999-10-14 | Chugai Seiyaku Kabushiki Kaisha | Anticorps humanise contre le facteur tissulaire humain (tf) et procede de production d'anticorps humanises |
JP2002540790A (ja) * | 1999-04-02 | 2002-12-03 | コリクサ コーポレイション | 肺癌の治療および診断のための化合物ならびにその使用のための方法 |
WO2002043478A2 (en) | 2000-11-30 | 2002-06-06 | Medarex, Inc. | Transgenic transchromosomal rodents for making human antibodies |
WO2002083070A2 (en) * | 2001-04-10 | 2002-10-24 | Corixa Corporation | Compounds for immunotherapy and diagnosis of colon cancer and methods for their use |
WO2002092812A1 (en) | 2001-05-11 | 2002-11-21 | Kirin Beer Kabushiki Kaisha | ARTIFICIAL HUMAN CHROMOSOME CONTAINING HUMAN ANTIBODY μ LIGHT CHAIN GENE |
US20050003390A1 (en) * | 2002-05-17 | 2005-01-06 | Axenovich Sergey A. | Targets for controlling cellular growth and for diagnostic methods |
JP2007530068A (ja) | 2004-03-30 | 2007-11-01 | グラクソ グループ リミテッド | 免疫グロブリン |
WO2005100998A2 (en) | 2004-04-16 | 2005-10-27 | Europroteome Ag | Membrane markers for use in cancer diagnosis and therapy |
US20080075722A1 (en) | 2006-02-14 | 2008-03-27 | Depinho Ronald A | Compostions, kits, and methods for identification, assessment, prevention, and therapy of cancer |
WO2007150077A2 (en) * | 2006-06-23 | 2007-12-27 | Immunotope, Inc. | Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer |
JP2010023453A (ja) | 2008-07-24 | 2010-02-04 | Seiko Epson Corp | 流体噴射装置のメンテナンス方法及び流体噴射装置 |
WO2010016525A1 (ja) * | 2008-08-05 | 2010-02-11 | 東レ株式会社 | 免疫誘導剤 |
WO2010016526A1 (ja) * | 2008-08-05 | 2010-02-11 | 東レ株式会社 | 癌の治療及び予防用医薬組成物 |
WO2010016527A1 (ja) * | 2008-08-05 | 2010-02-11 | 東レ株式会社 | 癌の検出方法 |
JP2010183161A (ja) | 2009-02-03 | 2010-08-19 | Toshiba Corp | カメラシステム |
Non-Patent Citations (49)
Title |
---|
"Protein Chemistry IV, Chemical Modification and Peptide Synthesis", vol. 1, 1981, TOKYO KAGAKU DOZIN |
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
AUSUBEL ET AL.: "Short Protocols in Molecular Biology", 1995, JOHN WILEY & SONS |
BOON ET AL., LUDWIG INSTITUTE FOR CANCER RESEARCH, 1991 |
BRUGGEN P. ET AL., SCIENCE, vol. 254, 1991, pages 1643 - 1647 |
CANCER RES., vol. 56, 1996, pages 4766 - 4772 |
CANCER RES., vol. 58, 1998, pages 1034 - 1041 |
CARL, A. K. BORREBAECK; JAMES, W. LARRICK: "THERAPEUTIC MONOCLONAL ANTIBODIES", 1990, MACMILLAN PUBLISHERS LTD |
CURRENT TOPICS IN MICROBIOLOGY AND IMMUNOLOGY, vol. 81, 1978, pages 1 - 7 |
DEST. GROTH, S. F. ET AL., J. IMMUNOL. METHODS, vol. 35, 1980, pages 1 - 21 |
EXPERIMENTAL CELL RESEARCH, vol. 315, 2009, pages 542 - 555, XP025875180 * |
G. -B. KIM ET AL., PROTEIN ENGINEERING DESIGN AND SELECTION, vol. 20, no. 9, 2007, pages 425 - 432 |
GALFRE, G. ET AL., NATURE, vol. 277, 1979, pages 131 - 133 |
HASHIMOTO-GOTOH, T. ET AL., GENE, vol. 152, 1995, pages 271 - 275 |
HUM. MOL. GENET, vol. 6, 1997, pages 33 - 39 |
INT. J. CANCER, vol. 29, 1998, pages 652 - 658 |
INT. J. CANCER, vol. 72, 1997, pages 965 - 971 |
INT. J. ONCOL., vol. 14, 1999, pages 703 - 708 |
J. BIOL. CHEM., vol. 270, 1995, pages 20717 - 20723 |
J. IMMUNOL., vol. 123, 1979, pages 1548 - 1550 |
J. IMMUNOL., vol. 172, 2004, pages 2389 - 2400 |
J. W. GODING.: "Monoclonal Antibodies: principles and practice", 1993, ACADEMIC PRESS |
JONES, S. T.; BENDING, M. M., BIO/TECHNOLOGY, vol. 9, 1991, pages 88 - 89 |
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, PUBLIC HEALTH SERVICE, NATIONAL INSTITUTE OF HEALTH, BETHESDA, MD. |
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. U.S.A., vol. 90, 1993, pages 5873 - 5877 |
KOHLER, G.; MILSTEIN, C., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46 |
KOHLER. G.; MILSTEIN, C., EUR. J. IMMUNOL., vol. 6, 1976, pages 511 - 519 |
KRAMER, W. ET AL., NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456 |
KRAMER, W.; FRITZ, HJ., METHODS ENZYMOL., vol. 154, 1987, pages 350 - 367 |
KUNKEL, METHODS ENZYMOL., vol. 85, 1988, pages 2763 - 2766 |
KUNKEL, TA., PROC. NATL. ACAD. SCI. U.S.A., vol. 82, 1985, pages 488 - 492 |
MARGULIES. D. H. ET AL., CELL, vol. 8, 1976, pages 405 - 415 |
MOLECULAR AND CELLULAR BIOLOGY, vol. 27, no. 6, 2007, pages 2324 - 2342, XP008143197 * |
P. J. DELVES.: "ANTIBODY PRODUCTION ESSENTIAL TECHNIQUES", 1997, WILEY |
P. SHEPHERD; C. DEAN.: "Monoclonal Antibodies.", 2000, OXFORD UNIVERSITY PRESS |
PROC. NATL. ACAD. SCI. U.S.A, vol. 92, 1995, pages 11810 - 11813 |
SAMBROOK ET AL.: "Molecular Cloning", 1989 |
SAMBROOK ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SATO K. ET AL., CANCER RESEARCH, vol. 53, 1993, pages 851 - 856 |
SATO, K. ET AL., CANCER RESEARCH, vol. 53, 1993, pages 851 - 856 |
SHULMAN, M. ET AL., NATURE, vol. 276, 1978, pages 269 - 270 |
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 35, 1995, pages 20717 - 20723, XP008143762 * |
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 279, no. 50, 2004, pages 52210 - 52217, XP008143761 * |
THE JOURNAL OF IMMUNOLOGY, vol. 172, 2004, pages 2389 - 2400 * |
THE JOURNAL OF IMMUNOLOGY, vol. 175, 2005, pages 4274 - 4282 * |
TROWBRIDGE, I. S., J. EXP. MED., vol. 148, 1978, pages 313 - 323 |
TSUYOSHI AKIYOSHI: "Gan To Kagaku-Ryoho", vol. 24, 1997, CANCER AND CHEMOTHERAPY PUBLISHERS, INC., pages: 551 - 519 |
ZOLLER, MJ.; SMITH, M., METHODS ENZYMOL., vol. 100, 1983, pages 468 - 500 |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11137401B2 (en) | 2008-08-05 | 2021-10-05 | Toray Industries, Inc. | Method for detecting cancer using CAPRIN-1 as a marker |
US9982059B2 (en) | 2008-08-05 | 2018-05-29 | Toray Industries, Inc. | Pharmaceutical composition for treatment and prevention of cancers |
US9416192B2 (en) | 2008-08-05 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and prevention of cancers |
US8937160B2 (en) | 2010-02-04 | 2015-01-20 | Toray Industries, Inc. | Pharmaceutical composition for treating and/or preventing cancer |
US9180187B2 (en) | 2010-02-04 | 2015-11-10 | Toray Industries, Inc. | Medicament for treating and/or preventing cancer |
US9416191B2 (en) | 2010-02-04 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US8709418B2 (en) | 2010-02-04 | 2014-04-29 | Toray Industries, Inc. | Pharmaceutical composition for treating CAPRIN-1 expressing cancer |
US8828398B2 (en) | 2010-02-04 | 2014-09-09 | Toray Industries, Inc. | Pharmaceutical composition for treating and/or preventing cancer |
US9115200B2 (en) | 2010-02-04 | 2015-08-25 | Toray Industries, Inc. | Pharmaceutical composition for treating cancer using a monoclonal antibody having immunological reactivity with CAPRIN-1 |
US8911740B2 (en) | 2010-02-04 | 2014-12-16 | Toray Industries, Inc. | Pharmaceutical composition for treating and/or preventing cancer |
JP5742714B2 (ja) * | 2010-02-04 | 2015-07-01 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
US9409993B2 (en) | 2011-08-04 | 2016-08-09 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of pancreatic cancer |
US9180188B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9273128B2 (en) | 2011-08-04 | 2016-03-01 | Toray Industries, Inc | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9796775B2 (en) | 2011-08-04 | 2017-10-24 | Toray Industries, Inc. | Method for detecting pancreatic cancer |
US9181334B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9175074B2 (en) | 2011-08-04 | 2015-11-03 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9273130B2 (en) | 2012-02-21 | 2016-03-01 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
CN104114581A (zh) * | 2012-02-21 | 2014-10-22 | 东丽株式会社 | 癌的治疗和/或预防用药物组合物 |
JPWO2013125640A1 (ja) * | 2012-02-21 | 2015-07-30 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
JPWO2013125654A1 (ja) * | 2012-02-21 | 2015-07-30 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
JPWO2013125630A1 (ja) * | 2012-02-21 | 2015-07-30 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2013125636A1 (ja) | 2012-02-21 | 2013-08-29 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
US9260513B2 (en) | 2012-02-21 | 2016-02-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US9266958B2 (en) | 2012-02-21 | 2016-02-23 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
WO2013125630A1 (ja) | 2012-02-21 | 2013-08-29 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
AU2013223143B2 (en) * | 2012-02-21 | 2017-12-21 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
JPWO2013125636A1 (ja) * | 2012-02-21 | 2015-07-30 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2013125654A1 (ja) | 2012-02-21 | 2013-08-29 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2013125640A1 (ja) | 2012-02-21 | 2013-08-29 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
US9416193B2 (en) | 2012-03-30 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of liver cancer |
WO2013147176A1 (ja) | 2012-03-30 | 2013-10-03 | 東レ株式会社 | 胆嚢癌の治療及び/又は予防用医薬組成物 |
US9428581B2 (en) | 2012-03-30 | 2016-08-30 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of gallbladder cancer |
WO2013147169A1 (ja) | 2012-03-30 | 2013-10-03 | 東レ株式会社 | 肝臓癌の治療及び/又は予防用医薬組成物 |
KR20150002617A (ko) * | 2012-03-30 | 2015-01-07 | 도레이 카부시키가이샤 | 간암의 치료 및/또는 예방용 의약 조성물 |
KR102155531B1 (ko) * | 2012-03-30 | 2020-09-15 | 도레이 카부시키가이샤 | 간암의 치료 및/또는 예방용 의약 조성물 |
US9753038B2 (en) | 2012-07-19 | 2017-09-05 | Toray Industries, Inc. | Method for detecting cancer via measurement of caprin-1 expression level |
US9772332B2 (en) | 2012-07-19 | 2017-09-26 | Toray Industries, Inc. | Method for detecting CAPRIN-1 in a biological sample |
KR20160038892A (ko) | 2013-08-09 | 2016-04-07 | 도레이 카부시키가이샤 | 암의 치료 및/또는 예방용 의약 조성물 |
US9862774B2 (en) | 2013-08-09 | 2018-01-09 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
WO2015020212A1 (ja) | 2013-08-09 | 2015-02-12 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2018079740A1 (ja) | 2016-10-28 | 2018-05-03 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2019189780A1 (ja) | 2018-03-30 | 2019-10-03 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
WO2021182571A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2021182573A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2021182572A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2021182570A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2021182574A1 (ja) | 2020-03-12 | 2021-09-16 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2022270523A1 (ja) | 2021-06-23 | 2022-12-29 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2022270524A1 (ja) | 2021-06-23 | 2022-12-29 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2023008461A1 (ja) | 2021-07-27 | 2023-02-02 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2023008459A1 (ja) | 2021-07-27 | 2023-02-02 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2023008462A1 (ja) | 2021-07-27 | 2023-02-02 | 東レ株式会社 | 癌の治療及び/又は予防のための医薬品 |
WO2023033129A1 (ja) | 2021-09-03 | 2023-03-09 | 東レ株式会社 | 癌の治療及び/又は予防用医薬組成物 |
Also Published As
Publication number | Publication date |
---|---|
CA2788716C (en) | 2019-06-18 |
AU2011211698B2 (en) | 2015-07-16 |
JPWO2011096533A1 (ja) | 2013-06-13 |
ES2606173T3 (es) | 2017-03-23 |
DK2532366T3 (da) | 2017-01-02 |
RU2597971C2 (ru) | 2016-09-20 |
JP5742713B2 (ja) | 2015-07-01 |
KR101801667B1 (ko) | 2017-11-27 |
US20130045210A1 (en) | 2013-02-21 |
MX342291B (es) | 2016-09-23 |
EP2532366A4 (en) | 2013-12-04 |
EP2532366A1 (en) | 2012-12-12 |
CA2788716A1 (en) | 2011-08-11 |
US8937160B2 (en) | 2015-01-20 |
EP2532366B1 (en) | 2016-09-07 |
PT2532366T (pt) | 2016-12-20 |
BR112012018951B8 (pt) | 2020-06-09 |
BR112012018951C8 (pt) | 2020-06-23 |
CN102821789B (zh) | 2016-03-02 |
PL2532366T3 (pl) | 2017-02-28 |
BR112012018951A8 (pt) | 2020-03-31 |
KR20130033347A (ko) | 2013-04-03 |
BR112012018951B1 (pt) | 2020-05-12 |
HUE030742T2 (en) | 2017-06-28 |
MX2012009000A (es) | 2012-08-31 |
AU2011211698A1 (en) | 2012-08-23 |
CN102821789A (zh) | 2012-12-12 |
BR112012018951A2 (pt) | 2017-06-27 |
RU2012137504A (ru) | 2014-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5742713B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP5906739B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP5930004B2 (ja) | 癌の治療及び予防用医薬組成物 | |
JP5923985B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP5845899B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP5742714B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP6070191B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP6187256B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP6065591B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP6065590B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP6003650B2 (ja) | 膵臓癌の治療及び/又は予防用医薬組成物 | |
JP6187255B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP6187258B2 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
WO2011096535A1 (ja) | 癌の治療及び/又は予防のための医薬品 | |
WO2013018892A1 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
WO2013018883A1 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
WO2013125630A1 (ja) | 癌の治療及び/又は予防用医薬組成物 | |
JP5573156B2 (ja) | 癌の治療及び予防用医薬組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180017395.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011510202 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739881 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2788716 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011211698 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/009000 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13577212 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011739881 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2268/KOLNP/2012 Country of ref document: IN Ref document number: 2011739881 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011211698 Country of ref document: AU Date of ref document: 20110204 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20127022752 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012137504 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012018951 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012018951 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120730 |