WO2011096428A1 - 露光方法、露光装置、パターン形成方法、およびデバイス製造方法 - Google Patents

露光方法、露光装置、パターン形成方法、およびデバイス製造方法 Download PDF

Info

Publication number
WO2011096428A1
WO2011096428A1 PCT/JP2011/052134 JP2011052134W WO2011096428A1 WO 2011096428 A1 WO2011096428 A1 WO 2011096428A1 JP 2011052134 W JP2011052134 W JP 2011052134W WO 2011096428 A1 WO2011096428 A1 WO 2011096428A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
region
substrate
projection
length
Prior art date
Application number
PCT/JP2011/052134
Other languages
English (en)
French (fr)
Inventor
徹 木内
英夫 水谷
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011552796A priority Critical patent/JP5644779B2/ja
Priority to CN201180004420.1A priority patent/CN102612669B/zh
Publication of WO2011096428A1 publication Critical patent/WO2011096428A1/ja
Priority to HK12112827.0A priority patent/HK1172100A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/213Exposing with the same light pattern different positions of the same surface at the same time
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to scanning exposure for transferring a pattern to a photosensitive substrate.
  • Liquid crystal display panels are frequently used as display elements for personal computers and televisions. Recently, a method of manufacturing a display panel by patterning a transparent thin film electrode on a flexible polymer sheet (photosensitive substrate) by a photolithography technique has been devised.
  • an exposure apparatus used in this photolithography process an exposure apparatus that transfers a mask pattern onto a strip-shaped photosensitive substrate conveyed by roll-to-roll (Roll-to-Roll) (hereinafter referred to as roll-to-roll type exposure) have been proposed (see, for example, Patent Document 1).
  • a roll-to-roll type exposure apparatus it is required to improve the throughput for transferring a pattern onto a strip-shaped photosensitive substrate (that is, a long substrate).
  • aspects of the present invention are an exposure method, an exposure apparatus, and a pattern formation method that can achieve improvement in throughput of scanning exposure when applied to scanning exposure on a long substrate conveyed by, for example, roll-to-roll. And a device manufacturing method.
  • the long substrate is moved along the long direction of the long substrate so as to pass through the first projection region and the second projection region.
  • the predetermined magnification and the center interval At least one of a pattern length along the first direction of the pattern and a substrate length of the long substrate from the first projection region to the second projection region is determined.
  • Setting, The exposure method characterized by including these is provided.
  • an exposure apparatus for projecting an image of a pattern arranged on a first surface onto a long substrate and transferring the pattern onto the long substrate, A stage mechanism for moving the pattern in the first direction along the first surface; An enlarged image of the first partial pattern arranged in the first partial area of the first surface of the pattern is projected to the first projection area at a predetermined magnification, and the first partial area of the pattern is projected from the first partial area to the first.
  • a projection optical system for projecting an enlarged image of the second partial pattern arranged in the second partial region with a predetermined center interval in the direction at a predetermined magnification onto a second projection region different from the first projection region;
  • the long substrate is moved along the long direction of the long substrate so as to pass through the first projection region and the second projection region.
  • An adjustment mechanism for adjusting a substrate length of the long substrate from the first projection region to the second projection region based on the predetermined magnification and the center interval;
  • the step of transferring the pattern to the long substrate using the exposure method according to the first aspect, the step of transferring the pattern to the long substrate; And a step of processing the elongated substrate to which the pattern has been transferred.
  • the step of transferring the pattern to the long substrate using the exposure apparatus according to the second aspect, the step of transferring the pattern to the long substrate; And a step of processing the elongated substrate to which the pattern has been transferred.
  • the pattern forming method in the pattern forming method of forming a plurality of pattern regions on the long substrate along the long direction of the long substrate, Moving the elongate substrate to one side in the elongate direction; Sequentially forming a first pattern region and a second pattern region on the long substrate moved to one side in the long direction,
  • the pattern forming method wherein the first pattern region and the second pattern region are different from each other in at least one of a region length in the longitudinal direction and a region width in a width direction orthogonal to the longitudinal direction.
  • the step of forming the pattern region on the long substrate using the pattern forming method according to the first aspect, the step of forming the pattern region on the long substrate; And a step of processing the elongate substrate on which the pattern region is formed.
  • the scanning exposure by the first projection area and the scanning exposure by the second projection area can be performed in parallel, and as a result, an improvement in throughput of the scanning exposure can be achieved.
  • an improvement in throughput of the scanning exposure can be achieved.
  • the first transfer pattern by the scanning exposure of the first projection area and the second transfer pattern by the scanning exposure of the second projection area are continuously and repeatedly formed, A plurality of first transfer patterns and second transfer patterns can be formed at intervals.
  • the scanning exposure by the first area (first projection area) and the scanning exposure by the second area (second projection area) can be performed in parallel.
  • Such an increase in throughput can be achieved.
  • the substrate length when forming the first pattern region (first transfer pattern region) and the substrate length when forming the second pattern region (second transfer pattern region) are set to different lengths.
  • two transfer pattern regions having different region lengths can be sequentially formed.
  • FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention. It is a figure which shows schematically the structure of the mask in 1st Embodiment. It is a figure explaining the 1st scanning exposure example. It is a figure which shows schematically a mode that several shot area
  • FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to the first embodiment of the present invention.
  • roll-to-projection is performed by projecting (transferring) the pattern of the mask M onto the sheet SH while moving the mask M and the strip-shaped sheet SH relative to the projection optical system PL.
  • the present invention is applied to a roll type exposure apparatus.
  • the Z-axis is in the normal direction of the transfer surface (photosensitive surface; exposed surface) of the sheet SH as a photosensitive long substrate, and the surface of FIG. 1 is parallel to the transfer surface of the sheet SH.
  • the Y axis is set in a parallel direction
  • the X axis is set in a direction perpendicular to the paper surface of FIG. 1 in a plane parallel to the transfer surface of the sheet SH.
  • the exposure apparatus includes an illumination system IL that illuminates a pattern area of a mask M, a mask stage MS that moves while holding the mask M, and projection optics that forms an image of the pattern of the mask M on a sheet SH. Operation of system PL, movement mechanism SC that moves (conveys) sheet SH according to a roll-to-roll system, drive control system DR that drives mask stage MS and movement mechanism SC, and drive control system DR And a main control system CR that controls the entire system.
  • the sheet SH is a flexible (flexible) belt-like polymer sheet coated with a photoresist (photosensitive material).
  • the illumination light IL (exposure light) is supplied from the light source LS to the illumination system IL.
  • exposure light for example, light of i-line (wavelength 365 nm) selected from light emitted from an ultra-high pressure mercury lamp, pulsed light composed of third harmonic of YAG laser (wavelength 355 nm), KrF excimer laser light (wavelength 248 nm) Etc. can be used.
  • the illumination system IL includes a collimator lens (not shown), a fly-eye lens (not shown), a condenser optical system (not shown), a mask blind MB as a variable field stop, and an illumination imaging optical system (not shown) in the order of incidence of light. ) Etc.
  • the light emitted from the light source LS illuminates the illumination area IR on the mask M via the illumination system IL.
  • the illumination region IR has a predetermined outer shape that is elongated along the X direction.
  • the light from the illumination area IR of the mask M forms a first projection image of the pattern in the illumination area IR in the first projection area ER1 via the projection optical system PL, and in the Y direction from the first projection area ER1.
  • a second projection image of the pattern in the illumination region IR is formed in the second projection region ER2 spaced apart.
  • the projection optical system PL forms the first projection area ER1 and the second projection area ER2 on the sheet SH.
  • the projection optical system PL is telecentric on the mask M side and the sheet SH side, and has an enlargement magnification from the mask M side to the sheet SH side.
  • the shapes of the projection regions (imaging regions) ER1 and ER2 are shapes obtained by enlarging the shape of the illumination region IR with the projection magnification MG of the projection optical system PL.
  • the illumination region IR is assumed to be a rectangular region that is elongated along the X direction.
  • the projection areas ER1 and ER2 are rectangular areas extending in the X direction and have the same size and the same shape.
  • the shape of the illumination region IR, and thus the shapes of the projection regions ER1 and ER2 are variably set according to the shape of the variable opening (light transmission portion) of the mask blind MB in the illumination system IL.
  • the mask M is sucked and held on the mask stage MS via a mask holder (not shown).
  • a mask side laser interferometer (not shown) having a known configuration is arranged on the mask stage MS.
  • the mask side laser interferometer measures the position of the mask stage MS in the X direction, the position in the Y direction, and the rotation angle around the Z axis, and supplies the measurement result to the main control system CR.
  • the main control system CR controls the position of the mask stage MS in the X direction, the position and speed in the Y direction as the scanning direction, and the rotation angle around the Z axis through the drive control system DR based on the measured values. To do.
  • the sheet SH is conveyed along a predetermined path so as to pass through the projection areas ER1 and ER2 by the action of the moving mechanism SC having a known configuration including a series of rolls.
  • the moving mechanism SC moves the sheet SH in the ⁇ Y direction directly below the projection optical system PL, and a first projection area ER1 and a second projection area ER2 are formed on the sheet SH.
  • the moving mechanism SC moves the sheet SH immediately below the projection optical system PL in synchronization with the movement of the mask stage MS in the + Y direction at the speed V / MG along the Y direction which is the scanning direction. Move in the Y direction at a speed V.
  • the projection optical system PL includes an intermediate imaging optical system GM, a first imaging optical system G1, and a second imaging optical system G2.
  • the intermediate imaging optical system GM forms a first intermediate image I1 and a second intermediate image I2 of a pattern illuminated by the illumination area IR in a pattern area (not shown in FIG. 1) of the mask M.
  • the first imaging optical system G1 forms a first projection image of a pattern in the first projection region ER1 on the sheet SH based on the light from the first intermediate image I1, and the second imaging optical system G2 Based on the light from the image I2, a second projection image of the pattern is formed in the second projection region ER2 on the sheet SH.
  • the mask M is arranged on the mask stage MS so that the pattern area substantially coincides with the object plane of the projection optical system PL.
  • the sheet SH is conveyed by the moving mechanism SC along a trajectory whose surface (photosensitive surface) substantially coincides with the image plane of the projection optical system PL.
  • the intermediate imaging optical system GM is different from the positive lens group Lp on which light from the pattern area illuminated by the illumination area IR is incident, and the light from the positive lens group Lp is different from each other across the optical axis AXp of the positive lens group Lp.
  • a split reflection unit RF that splits the first light and the second light traveling in the direction and reflects the first light and the second light toward the positive lens group Lp is provided.
  • a phase grating plate, a vibrating mirror, or the like can be used as the split reflection unit RF.
  • the light emitted from the illumination region IR along the optical axis AXp is reflected by the split reflection unit RF through the positive lens unit Lp, and the first light traveling obliquely in the upper left direction on the paper surface of FIG. And the second light traveling to.
  • the first light forms a first intermediate image I1 through the positive lens group Lp and the deflecting member MR1
  • the second light forms a second intermediate image I2 through the positive lens group Lp and the deflecting member MR2.
  • Light from the first intermediate image I1 reaches the first projection region ER1 on the sheet SH via the first imaging optical system G1, and light from the second intermediate image I2 passes through the second imaging optical system G2.
  • the second projection area ER2 on the sheet SH is reached.
  • first projection image and the second projection image are images that are inverted in the Y direction (scanning direction) of the mask pattern in the illumination region IR.
  • the first projection image and the second projection image have the same shape and size, and are formed in the same direction with respect to the X direction and the Y direction.
  • a rectangular pattern area PA in which a pattern for an electronic display device is formed is provided on the mask M.
  • the dimension along the scanning direction (Y direction) of the pattern area PA, that is, the pattern length is AL.
  • the sheet SH which is a photosensitive long substrate, is conveyed at a constant speed along a predetermined path by the action of the moving mechanism SC.
  • rectangular shot areas SR1 and SR2 obtained by enlarging the pattern area PA of the mask M with the projection magnification MG of the projection optical system PL are constant. Sequentially formed on the sheet SH at intervals.
  • a shot region (or a transferred shot region) to which the pattern of the mask M is transferred via the first imaging optical system G1 of the projection optical system PL is denoted by a reference sign SR1, and the second imaging optical system.
  • a shot area (or transferred shot area) to which the pattern of the mask M is transferred via G2 is denoted by reference numeral SR2.
  • the shot areas SR1 and the shot areas SR2 are alternately formed along the longitudinal direction (long direction) of the sheet SH.
  • the size of each shot region SR1, SR2 along the longitudinal direction of the sheet SH is MG ⁇ AL, and the distance between a pair of adjacent shot regions SR1 and SR2 is Gy.
  • the dimension in the scanning direction (Y direction) of the projection areas ER1 and ER2 is linearly increased from 0 to a standard dimension over a certain period from the start of exposure to the shot areas SR1 and SR2.
  • the dimension in the scanning direction of the projection areas ER1, ER2 is linearly decreased from the standard dimension to 0 over a certain period until the exposure to SR2 is completed.
  • the dimension adjustment of the projection areas ER1 and ER2 is performed by changing the dimension in the scanning direction of the illumination area IR by the action of the mask blind MB in the illumination system IL, for example, according to a known technique.
  • the illumination regions IR (or IR1, IR2) and the projection regions ER1, ER2 have a fixed shape (invariable) during the scanning exposure in order to facilitate understanding of the operation.
  • the center along the scanning direction of the illumination area IR moves from one end to the other end along the scanning direction of the pattern area PA, that is, the center along the scanning direction of the projection areas ER1 and ER2 is the shot area. It is assumed that the scanning exposure on the shot areas SR1 and SR2 is completed by moving from one end to the other end along the scanning direction of SR1 and SR2.
  • FIGS. 1 and 2 show a state where the center of the illumination area IR along the scanning direction is at one end along the scanning direction of the pattern area PA (not shown in FIG. 1), that is, a state at the start of scanning exposure.
  • the center of the projection areas ER1 and ER2 along the scanning direction is at one end along the scanning direction of the shot areas SR1 and SR2, that is, at the start of scanning exposure. Shows the state.
  • the substrate length SL of the sheet SH from the first projection region ER1 to the second projection region ER2 is the exposure start of the adjacent shot region SR2 from the exposure start end of the shot region SR1.
  • the relationship shown in the following equation (1) is satisfied.
  • the pattern of the mask M is applied to the shot region SR1 that passes immediately below the first imaging optical system G1 and the shot region SR2 that passes immediately below the second imaging optical system G2.
  • scanning exposure scan exposure
  • the simultaneous scanning exposure to the pair of shot areas SR1 and SR2 until the illumination area IR reaches the end position located at the end on the ⁇ Y direction side from the start position located at the end on the + Y direction side of the pattern area PA,
  • the mask M (and thus the mask stage MS) moves at a required speed in the + Y direction so that the pattern area PA is scanned by the illumination area IR.
  • the projection areas ER1 and ER2 are located at the end on the + Y direction side from the start position where the projection areas ER1 and ER2 are located on the ⁇ Y direction side ends.
  • the sheet SH moves in the ⁇ Y direction along the path so that the shot areas SR1 and SR2 are scanned by the projection areas ER1 and ER2 until reaching.
  • the illumination area IR moves from the ⁇ Y direction end of the pattern area PA to the + Y direction end of the pattern area PA, that is, the illumination area IR returns from the scanning exposure end position to the starting position.
  • the mask M is folded back in the ⁇ Y direction.
  • the mask M When the mask M is folded back in the ⁇ Y direction, for example, a shutter (not shown) for blocking the imaging light beam is inserted in the optical path immediately after the mask M, and the projection image of the mask pattern is projected in the projection areas ER1 and ER2. Avoid formation.
  • the mask pattern projection image may not be formed in the projection areas ER1 and ER2 by closing the variable opening of the mask blind MB in the illumination system IL.
  • the projection areas ER1 and ER2 are at the starting position on the ⁇ Y direction side of the shot areas SR1 and SR2 to be scanned and exposed next. It is formed.
  • the scanning exposure to the next shot region SR1 and the scanning exposure to the next shot region SR2 are performed simultaneously. Then, the reciprocating movement (scanning movement and folding movement) along the Y direction of the mask M is repeated a plurality of times, thereby continuously moving at a constant speed along a predetermined path as shown in FIG.
  • the shot areas SR1 and the shot areas SR2 to which the pattern of the mask M has been transferred are alternately formed at a constant interval Gy.
  • the substrate length SL, the projection magnification MG, and the pattern length AL satisfy the relationship expressed by the following equation (2).
  • the gap Gy between the pair of adjacent shot regions SR1 and SR2 is set to 0 so that the pair of adjacent shot regions SR1 and SR2 are in contact with each other. ing.
  • SL MG ⁇ AL (2)
  • the reciprocating movement (scanning movement and folding movement) along the Y direction of the mask M is repeated a plurality of times, thereby making it constant along a predetermined path as shown in FIG.
  • the shot area SR1 and the shot area SR2 to which the pattern of the mask M is transferred are alternately formed on the sheet SH that continuously moves at a speed of 5 mm, and as a result, a desired length direction (Y direction) is formed.
  • One continuous shot region SR having a length is formed.
  • the substrate length SL, the projection magnification MG, and the pattern length AL satisfy the relationship expressed by the following equation (3).
  • the pair of adjacent shot regions SR1 and SR2 are set so as to partially overlap.
  • the dimension along the scanning direction of the overlapping portion between a pair of adjacent shot regions SR1 and SR2 is represented by MG ⁇ OP.
  • SL MG ⁇ (AL-OP) ⁇ MG ⁇ AL (3)
  • the reciprocating movement (scanning movement and folding movement) along the Y direction of the mask M is repeated a plurality of times to obtain FIG.
  • the shot area SR1 and the shot area SR2 to which the pattern of the mask M is transferred are alternately overlapped with each other on the sheet SH continuously moving at a constant speed along a predetermined path.
  • one unbroken shot region SR having a desired length in the longitudinal direction (Y direction) is formed.
  • the boundary portions between a pair of adjacent shot regions SR1 and SR2 overlap each other and double exposure is performed.
  • scanning exposure is started using a pair of density filters VF as shown in FIG.
  • the amount of light in the illumination area IR can be adjusted at the time and at the end, and as a result, the exposure amount in the double exposure area can be controlled.
  • the density filter VF is fixedly disposed immediately before or after the mask M so as to cover the region of the dimension OP in the scanning direction from the end portion along the scanning direction of the pattern region PA.
  • the density filter VF is configured such that the transmittance decreases monotonously from the inside to the outside of the pattern area PA along the scanning direction.
  • a proxy blind fixedly placed immediately before or after the mask M is used in place of the density filter VF, and the exposure amount control in the double exposure region is performed by the defocusing action of the edge.
  • the pattern area PA of the mask M includes a periodic pattern having periodicity in the scanning direction over the pattern length AL.
  • the method of performing the pattern joint exposure in the scanning direction as in the third scanning exposure example reference can be made to, for example, the disclosure of JP-A-7-283132.
  • the mask M is scanned once in the + Y direction, so that the first mask pattern on the shot region SR1 on the sheet SH that moves continuously at a constant speed along a predetermined path is obtained.
  • the scanning exposure of one projection image and the scanning exposure of the second projection image of the mask pattern onto the shot region SR2 can be performed simultaneously.
  • the shot areas SR1 and the shot areas SR2 can be alternately and continuously formed on the sheet SH. That is, in the first embodiment, it is possible to improve the throughput for scanning exposure on the sheet SH conveyed by roll-to-roll.
  • the shot in the first scanning exposure example using the mask M in which the pattern area PA having the pattern length AL that satisfies the relationship represented by the expression (1) is used, the shot is obtained by the scanning exposure of the first projection area ER1.
  • a plurality of first transfer patterns transferred to the region SR1 and second transfer patterns transferred to the shot region SR2 by scanning exposure of the second projection region ER2 can be formed at intervals.
  • transfer to the shot region SR1 is performed by the second scanning exposure example or the third scanning exposure example using the mask M in which the pattern region PA having the pattern length AL satisfying the relationship represented by the formula (2) or the formula (3) is formed.
  • the first transfer pattern to be transferred and the second transfer pattern to be transferred to the shot region SR2 can be formed repeatedly in succession.
  • FIG. 9 is a drawing schematically showing a configuration of an exposure apparatus according to the second embodiment of the present invention.
  • the second embodiment has a configuration similar to that of the first embodiment.
  • a pair of illumination regions IR1 and IR2 spaced apart in the Y direction which is the scanning direction is formed, and the projection optical system PL Is different from the first embodiment. Therefore, in FIG. 9, the same reference numerals as those in FIG. 1 are given to elements having the same functions as the constituent elements in the first embodiment.
  • the configuration and operation of the second embodiment will be described with a focus on differences from the first embodiment.
  • the light emitted from the light source LS forms on the mask M a pair of illumination regions IR1, IR2 spaced in the Y direction via the illumination system IL.
  • the illumination regions IR1 and IR2 have a predetermined outer shape that is elongated along the X direction.
  • the light from the first illumination area IR1 of the mask M forms a first projection image of the first pattern in the first illumination area IR1 in the first projection area ER1 via the projection optical system PL, and the first projection.
  • a second projection image of the second pattern in the second illumination region IR2 is formed in the second projection region ER2 spaced from the region ER1 in the Y direction.
  • the projection optical system PL is telecentric on the mask M side and the sheet SH side, and has an enlargement magnification from the mask M side to the sheet SH side.
  • the shapes of the projection regions ER1 and ER2 are shapes obtained by enlarging the shapes of the illumination regions IR1 and IR2 with the projection magnification MG of the projection optical system PL.
  • the illumination areas IR1 and IR2 are rectangular areas extending in the X direction and have the same size and the same shape.
  • the projection areas ER1 and ER2 are rectangular areas extending in the X direction and have the same size and the same shape.
  • the projection optical system PL includes a first imaging optical system G1 and a second imaging optical system G2.
  • the first imaging optical system G1 includes a common lens group GC and a first lens group G12.
  • the first imaging optical system G1 includes a first lens group G12 and a first pattern illuminated by the first illumination area IR1 in the pattern area (not shown in FIG. 9) of the mask M. Based on the light, a first projection image is formed in the first projection region ER1 on the sheet SH.
  • the second imaging optical system G2 includes the common lens group GC and the second lens group G22, and the second image on the sheet SH is based on the light from the second pattern illuminated by the second illumination area IR2 in the pattern area. A second projection image is formed in the projection region ER2.
  • the first projection image is an image inverted in the Y direction (scanning direction) of the first pattern in the first illumination region IR1
  • the second projection image is Y of the second pattern in the second illumination region IR2. This is an inverted image.
  • a pattern area PA having a pattern length AL is provided on the mask M, and rectangular illumination areas IR1 and IR2 are formed on the mask M at intervals.
  • the center-to-center distance along the Y direction (scanning direction) of the illumination areas IR1 and IR2, that is, the center distance in the Y direction between the illumination areas IR1 and IR2 is GP.
  • the sheet SH is conveyed at a constant speed, and rectangular shot areas SR1 and SR2 obtained by enlarging the pattern area PA with the projection magnification MG are alternately and sequentially formed on the sheet SH.
  • the state in which the center along the scanning direction of the first illumination region IR1 is at the end on the + Y direction side along the scanning direction of the pattern region PA, that is, at the start of scanning exposure on the first shot region SR1. Indicates the state.
  • a state in which the center of the first projection region ER1 along the scanning direction is at the end on the ⁇ Y direction side of the first shot region SR1, that is, a state at the start of scanning exposure on the first shot region SR1 is shown. Yes.
  • the center of the second projection region ER2 along the scanning direction is at a position that is MG ⁇ GP away from the end of the second shot region SR2 on the ⁇ Y direction side by the side of the ⁇ Y direction.
  • the substrate length SL of the sheet SH from the first projection region ER1 to the second projection region ER2 satisfies the relationship expressed by the following equation (4). SL> MG ⁇ (AL-GP) (4)
  • the illumination area IR1 reaches the end position located at the end on the ⁇ Y direction side from the starting position located at the end on the + Y direction side of the pattern area PA.
  • the mask M moves at a required speed in the + Y direction.
  • the scanning exposure to the shot area SR2 is started after a predetermined time from the start of the scanning exposure to the shot area SR1.
  • the pattern area PA is illuminated until the illumination area IR2 reaches the end position located at the end on the ⁇ Y direction side from the starting position located at the end on the + Y direction side of the pattern area PA.
  • the mask M moves at a required speed in the + Y direction so as to be scanned by the region IR2.
  • the projection areas ER1 and ER2 are located at the end on the + Y direction side from the start position where the projection areas ER1 and ER2 are located on the ⁇ Y direction side ends.
  • the sheet SH moves in the ⁇ Y direction along the path so that the shot areas SR1 and SR2 are scanned by the projection areas ER1 and ER2 until reaching.
  • the mask M is folded back in the ⁇ Y direction so that the illumination area IR1 moves to the end on the + Y direction side of the pattern area PA, that is, the illumination area IR1 returns to the starting position of scanning exposure.
  • the projection image of the second pattern is prevented from being formed in the projection area ER2 for a certain time from the start of the scanning exposure to the shot area SR1, and the scanning exposure to the shot area SR2 is completed.
  • the projection image of the first pattern is prevented from being formed in the projection region ER1 over a certain period of time.
  • a projection image of the pattern is prevented from being formed in the projection areas ER1 and ER2.
  • the reciprocating movement (scanning movement and folding movement) along the Y direction of the mask M is repeated a plurality of times, thereby continuously moving at a constant speed along a predetermined path as shown in FIG.
  • the shot areas SR1 and the shot areas SR2 to which the pattern of the mask M has been transferred are alternately formed at a constant interval Gy.
  • the upper limit value of the substrate length SL is not shown in Expression (4), practically, when the gap Gy between the shot areas SR1 and SR2 becomes larger than the dimension MG ⁇ AL of each shot area SR1, SR2. Since the waste of the sheet SH becomes excessive, it is preferable that MG ⁇ (2 ⁇ AL ⁇ GP)> SL.
  • the substrate length SL, the projection magnification MG, and the pattern length AL satisfy the relationship represented by the following equation (5).
  • the gap Gy between the pair of adjacent shot regions SR1 and SR2 is set to 0, so that the pair of adjacent shot regions SR1 and SR2 are in contact with each other. ing.
  • SL MG x (AL-GP) (5)
  • the reciprocating movement (scanning movement and folding movement) along the Y direction of the mask M is repeated a plurality of times, so that it is constant along a predetermined path as shown in FIG.
  • the shot area SR1 and the shot area SR2 to which the pattern of the mask M is transferred are alternately formed on the sheet SH that continuously moves at a speed of 5 mm, and as a result, a desired length direction (Y direction) is formed.
  • One continuous shot region SR having a length is formed.
  • the substrate length SL, the projection magnification MG, and the pattern length AL satisfy the relationship represented by the following equation (6).
  • the pair of adjacent shot regions SR1 and SR2 are set so as to partially overlap.
  • the dimension along the scanning direction of the overlapping portion between a pair of adjacent shot regions SR1 and SR2 is represented by MG ⁇ OP.
  • the reciprocating movement (scanning movement and folding movement) along the Y direction of the mask M is repeated a plurality of times to obtain FIG.
  • the shot area SR1 and the shot area SR2 to which the pattern of the mask M is transferred are alternately overlapped with each other on the sheet SH continuously moving at a constant speed along a predetermined path.
  • one unbroken shot region SR having a desired length in the longitudinal direction (Y direction) is formed.
  • the mask pattern on the shot region SR1 on the sheet SH continuously moving at a constant speed along a predetermined path is obtained.
  • the scanning exposure of the first projection image and the scanning exposure of the second projection image of the mask pattern onto the shot region SR2 can be performed almost simultaneously.
  • the shot areas SR1 and the shot areas SR2 can be alternately and continuously formed on the sheet SH.
  • a plurality of second transfer patterns transferred to the shot region SR2 can be formed at intervals.
  • the image is transferred to the shot region SR1 by the fifth scanning exposure example or the sixth scanning exposure example using the mask M in which the pattern region PA having the pattern length AL that satisfies the relationship expressed by the formula (5) or the formula (6) is formed
  • the first transfer pattern to be transferred and the second transfer pattern to be transferred to the shot region SR2 can be formed repeatedly in succession.
  • FIG. 13 is a drawing schematically showing a configuration of an exposure apparatus according to the third embodiment of the present invention.
  • the third embodiment has a configuration similar to that of the second embodiment.
  • the mask M and the sheet SH move in the same direction during scanning exposure, and the internal configuration of the projection optical system PL is the first. This is different from the second embodiment. Therefore, in FIG. 13, the same reference numerals as those in FIG. 9 are given to elements having the same functions as the constituent elements in the second embodiment.
  • the configuration and operation of the third embodiment will be described, focusing on the differences from the second embodiment.
  • the projection optical system PL includes an intermediate imaging optical system GM, a first imaging optical system G1, and a second imaging optical system G2.
  • the intermediate imaging optical system GM forms a first intermediate image I1 of the first pattern illuminated by the first illumination region IR1 in the pattern region (not shown in FIG. 13) of the mask M, and by the second illumination region IR2.
  • the illuminated second intermediate image I2 of the second pattern is formed.
  • the first imaging optical system G1 forms a first projection image of a first pattern in the first projection region ER1 on the sheet SH based on the light from the first intermediate image I1, and the second imaging optical system G2
  • the second projection image of the second pattern is formed in the second projection region ER2 on the sheet SH based on the light from the second intermediate image I2.
  • the first projection image is an image upright in the Y direction (scanning direction) of the first pattern in the first illumination region IR1
  • the second projection image is a second pattern in the second illumination region IR2. It is an image upright in the Y direction. Therefore, in the third embodiment, during scanning exposure, the mask M and the sheet SH move in the same direction (the direction in the + Y direction).
  • the scanning exposure operation in the third embodiment is the same as the scanning exposure operation in the second embodiment except that the mask M and the sheet SH move in the same direction at the time of scanning exposure, and redundant description is omitted. To do.
  • the intermediate imaging optical system GM has a magnification of, for example, 1.25 times, and the first imaging optical system G1 and the second imaging optical system G2 have a magnification of, for example, 2 times.
  • the formation of the intermediate magnified images I1 and I2 can ensure the required magnification MG of the projection optical system PL while suppressing the occurrence of aberrations to a small extent.
  • the optical path can be easily separated by a deflecting member (for example, a triangular prism PR) disposed in the vicinity of the formation positions of the intermediate images I1 and I2.
  • FIG. 14 is a drawing schematically showing a configuration of an exposure apparatus according to the fourth embodiment of the present invention.
  • the fourth embodiment has a configuration similar to that of the third embodiment, but the internal configuration of the projection optical system PL is different from that of the third embodiment. Therefore, in FIG. 14, the same reference numerals as those in FIG. 13 are attached to elements having the same functions as the constituent elements in the third embodiment.
  • the configuration of the projection optical system PL in the fourth embodiment will be described by focusing on the differences from the third embodiment.
  • the center of the first projection region ER1 along the scanning direction is located outside the optical axis of the first imaging optical system G1, and the second projection region ER2 The center in the Y direction is located outside the optical axis of the second imaging optical system G2.
  • the center of the first projection region ER1 along the Y direction is located inside the optical axis of the first imaging optical system G1, and the second projection region ER2 The center in the Y direction is located inside the optical axis of the second imaging optical system G2.
  • the substrate length SL of the sheet SH from the first projection region ER1 to the second projection region ER2 is reduced.
  • the dimension MG ⁇ AL of each of the shot areas SR1 and SR2 along the longitudinal direction of the sheet SH, and thus the dimension along the scanning direction of the pattern area PA to be provided on the mask M, that is, the pattern length AL can be reduced.
  • FIG. 15 is a drawing schematically showing a configuration of an exposure apparatus according to the fifth embodiment of the present invention.
  • the fifth embodiment has a configuration similar to that of the fourth embodiment, but differs from the fourth embodiment in that a detour path is provided between the first projection region ER1 and the second projection region ER2. . Therefore, in FIG. 15, the same reference numerals as those in FIG. 14 are given to elements having the same functions as the constituent elements in the fourth embodiment.
  • the configuration and operation of the fifth embodiment will be described by focusing on the differences from the fourth embodiment.
  • the sheet SH moves along a straight path extending along the Y direction between the first projection region ER1 and the second projection region ER2.
  • an adjustment mechanism 50 including a plurality of rollers that rotate about an axis extending in the X direction is provided in the middle of the path between the first projection area ER1 and the second projection area ER2. It has been.
  • the adjustment mechanism 50 that forms a detour path between the first projection region ER1 and the second projection region ER2 includes an interval adjustment unit 50a that adjusts the roller interval along the Y direction.
  • the substrate length SL of the sheet SH from the first projection region ER1 to the second projection region ER2 is based on the distance SLa along the Y direction between the first projection region ER1 and the second projection region ER2. Also, the length becomes longer by the detour route corresponding to the adjustment mechanism 50. In other words, in the fifth embodiment, a configuration is adopted in which the area of the sheet SH that has passed through the first projection area ER1 is moved to the second projection area ER2 via the detour path. As a result, even if the distance SLa is limited to be small due to the configuration of the projection optical system PL, the required substrate length SL can be ensured by the action of the detour path.
  • the length of the sheet SH in the detour path is adjusted by the action of the interval adjustment unit 50a of the adjustment mechanism 50, and as a result, the substrate of the sheet SH from the first projection area ER1 to the second projection area ER2.
  • a configuration for adjusting the long SL is adopted. Therefore, even if the pattern length PA of the pattern area PA is not changed by exchanging the mask M, the relationship shown in the equation (4), the relationship shown in the equation (5), or the equation based on the projection magnification MG and the center interval GP.
  • the substrate length SL of the sheet SH from the first projection region ER1 to the second projection region ER2 can be adjusted so as to satisfy the relationship shown in (6).
  • first transfer patterns transferred to the shot area SR1 and second transfer patterns transferred to the shot area SR2 are spaced apart from each other by the fourth scanning exposure example that satisfies the relationship represented by Expression (4).
  • Two transfer patterns can be formed repeatedly in succession.
  • the region widths RW1 and RW2 along the short direction (direction orthogonal to the longitudinal direction) of the sheet SH are the same, but in the longitudinal direction of the sheet SH.
  • the region lengths RL1 and RL2 along are different from each other.
  • the two transfer pattern regions SP1 and SP2 having different region lengths in this way are the substrate length SL1 (not shown) when forming the first transfer pattern region SP1 and the second transfer pattern region SP2.
  • the substrate length SL2 (reference numeral not shown) is set to different lengths.
  • the substrate length SL1 is set so as to satisfy Expression (5) or Expression (6) and the substrate length SL2 satisfies Expression (4), or the substrate length SL1 is set to Expression (4).
  • the substrate length SL2 is set so as to satisfy Equation (5) or Equation (6).
  • the size of the first illumination region IR1 in the X direction and the size of the second illumination region IR2 in the X direction are set to be different from each other by the action of the mask blind MB.
  • the size of ER1 in the X direction and the size of the second projection region ER2 in the X direction are set to be different from each other, two transfer pattern regions having different region widths may be sequentially formed on the sheet SH. it can.
  • a position near the pattern surface of the mask M a conjugate position optically conjugate with the pattern surface of the mask M (for example, an intermediate image formation position), or A field stop disposed in the vicinity of the conjugate position can also be used.
  • the mask M is moved once in the + Y direction by scanning and moving on the sheet SH that continuously moves along a predetermined path at a constant speed.
  • the scanning exposure of the first projection image of the mask pattern onto the shot region SR1 and the scanning exposure of the second projection image of the mask pattern onto the shot region SR2 can be performed in parallel. Further, by repeating the reciprocating movement along the Y direction of the mask M a plurality of times, the shot areas SR1 and the shot areas SR2 can be alternately and continuously formed on the sheet SH. That is, in the fifth embodiment, it is possible to improve the throughput for scanning exposure on the sheet SH conveyed by roll-to-roll.
  • a plurality of second transfer patterns transferred to the shot region SR2 by scanning exposure of the region ER2 can be formed at intervals.
  • Two transfer patterns can be formed repeatedly in succession.
  • the substrate length SL1 (reference numeral is not shown) when forming the first transfer pattern area SP1 and the substrate length SL2 (reference numeral is not shown) when forming the second transfer pattern area SP2.
  • the substrate length SL1 and SP2 are set to different lengths, so that two transfer pattern regions SP1 and SP2 having different region lengths can be sequentially formed.
  • a path detouring along the YZ plane is formed between the first projection area ER1 and the second projection area ER2 by the action of a plurality of rollers.
  • the present invention is not limited to this, and various forms are possible for the specific configuration of the detour path.
  • a configuration in which the longitudinal direction of the sheet is deflected between the two projection regions by bending the sheet along the roller side surface (cylindrical surface) is also possible.
  • the first projection region and the second projection region are provided, for example, at different positions on the roller side surface, and the optical axes of the projection optical system with respect to each projection region are not parallel to each other.
  • the adjusting mechanism 50 is provided in the middle of the path between the first projection region ER1 and the second projection region ER2, thereby providing the fifth. It is also possible to obtain the same effect as the embodiment.
  • the substrate length SL of the sheet SH from the first projection region ER1 to the second projection region ER2 is adjusted based on the projection magnification MG and the center interval GP by the action of the adjustment mechanism 50. Therefore, two transfer pattern regions having different region lengths can be sequentially formed on the sheet SH.
  • the size of the first projection region ER1 in the X direction and the size of the second projection region ER2 in the X direction are set to different sizes by the action of the field stop.
  • two transfer pattern regions having different region widths can be sequentially formed on the sheet SH.
  • the first field stop and the illumination region IR and the second projection arranged in the optical path between the illumination region IR and the first projection region ER1. It is necessary to provide a second field stop arranged in the optical path between the region ER2.
  • scanning exposure is described based on the mask M provided with a single pattern area PA.
  • the present invention is not limited to this.
  • scanning exposure using a mask M having a central pattern area PAc sandwiched between a pair of end pattern areas PAa and PAb is also possible.
  • the seventh scanning exposure example using the mask M shown in FIG. 21 and the projection optical system PL shown in FIG. 15, for example, will be described below with reference to FIGS.
  • a rectangular second end pattern area PAb elongated in the X direction is provided adjacent to the ⁇ Y direction side of the light shielding band 51b.
  • the mask M is formed symmetrically with respect to a straight line extending in the X direction and a straight line extending in the Y direction through the center thereof.
  • a repetitive pattern such as a display part pattern for a display panel is formed in an area indicated by a broken line 52 in the drawing.
  • a pattern for example, mainly a peripheral circuit pattern
  • a pattern (for example, mainly a display portion pattern) formed in one end pattern area PAa and corresponding to the central portion of the transfer pattern is formed in the central pattern region PAc, and a pattern (for example, mainly a peripheral circuit pattern) corresponding to the end portion of the transfer pattern.
  • the second end pattern area PAb the dimension along the scanning direction (Y direction) of the central pattern area PAc, that is, the pattern length is AL.
  • the shapes of the illumination regions IR1, IR2 and the projection regions ER1, ER2 are constant (invariable) during the scanning exposure, and ⁇ in the illumination regions IR1, IR2
  • scanning exposure is started, and the end on the + Y direction side of the illumination areas IR1, IR2 Scanning exposure is completed when the pattern area PA, PAa, PAb reaches the ⁇ Y direction side end.
  • the seventh scanning exposure example first, scanning exposure of the first end pattern area PAa by the second illumination area IR2 is performed. During the scanning exposure by the illumination region IR2, the first end until the illumination region IR2 reaches the end position located at the end on the ⁇ Y direction side from the start position located at the end on the + Y direction side of the first end pattern region PAa.
  • the mask M (and consequently the mask stage MS) moves at a required speed in the + Y direction so that the pattern area PAa is scanned by the illumination area IR2.
  • the sheet SH moves in the + Y direction along the path so that the required shot area is scanned by the second projection area ER2. At this time, the projection image of the pattern is not formed in the first projection region ER1.
  • FIG. 22 shows a state when the scanning of the first end pattern area PAa by the illumination area IR2 is completed.
  • the pattern SAa corresponding to the first end pattern area PAa is transferred to the sheet SH.
  • the illumination area IR1 moves outward from the end on the + Y direction side of the central pattern area PAc, that is, the illumination area IR1 from the start position of the scanning exposure to the central pattern area PAc.
  • the mask M is folded back in the ⁇ Y direction so as to return to the + Y direction side.
  • scanning exposure of the central pattern area PAc by the illumination area IR1 is started.
  • the central pattern area PAc reaches the end position located at the ⁇ Y direction side end from the start position where the illumination area IR1 is located at the + Y direction side end of the central pattern area PAc.
  • the mask M moves in the + Y direction so as to be scanned by the illumination region IR1.
  • the scanning exposure of the central pattern area PAc by the illumination area IR2 is started after a predetermined time delay from the start of the scanning exposure by the illumination area IR1.
  • the central pattern area PAc reaches the end position located at the end on the ⁇ Y direction side from the start position where the illumination area IR2 is located at the end on the + Y direction side of the center pattern area PAc.
  • the mask M moves in the + Y direction so as to be scanned by the illumination region IR2.
  • FIG. 24 shows a state at the start of scanning of the central pattern area PAc by the illumination area IR1.
  • FIG. 25 shows a state at the time after the scanning of the central pattern area PAc by the illumination area IR1 is started and before the scanning of the central pattern area PAc by the illumination area IR2 is started.
  • the overlapping portion OL1 is formed between the pattern SA1 of the central pattern region PAc obtained by scanning the projection region ER1 and the pattern SAa of the first end pattern region PAa. Transferred onto the sheet SH.
  • the pattern SA1 can be transferred so as to be in contact with the pattern SAa.
  • FIG. 26 shows a state in which the scanning of the central pattern area PAc by the illumination area IR1 and the scanning of the central pattern area PAc by the illumination area IR2 proceed simultaneously.
  • FIG. 27 shows a state immediately before the scanning of the central pattern area PAc by the illumination area IR1 is finished.
  • FIG. 28 shows a state at the time when scanning of the central pattern area PAc by the illumination area IR1 is completed.
  • an overlap portion OL2 is formed between the pattern SA2 of the central pattern area PAc obtained by scanning the projection area ER2 and the pattern SA1 of the central pattern area PAc obtained by scanning the projection area ER1. It is transferred onto the sheet SH so as to form.
  • the pattern SA2 can be transferred so as to be in contact with the pattern SA1.
  • the illumination area IR1 is moved outward from the + Y direction end of the second end pattern area PAb, that is, The mask M is folded back in the ⁇ Y direction so that the illumination area IR1 returns to the + Y direction side from the scanning exposure start position for the second end pattern area PAb.
  • scanning exposure of the second end pattern area PAb by the illumination area IR1 is started.
  • the second end until the illumination area IR1 reaches the end position located at the ⁇ Y direction end from the start position located at the + Y direction end of the second end pattern area PAb.
  • the mask M moves in the + Y direction so that the pattern area PAb is scanned by the illumination area IR1.
  • FIG. 30 shows a state at the start of scanning of the second end pattern area PAb by the illumination area IR1.
  • FIG. 31 shows a state at the time when scanning of the second end pattern area PAb by the illumination area IR1 is completed.
  • the pattern SAb of the second end pattern area PAb obtained by scanning the projection area ER1 overlaps with the pattern SA2 of the central pattern area PAc obtained by scanning the projection area ER2. Transferred onto the sheet SH to form OL3.
  • the pattern SAb can be transferred so as to be in contact with the pattern SA2.
  • a transfer pattern region SP as shown in FIG. 32 is formed on the sheet SH.
  • the transfer pattern area SP includes a transfer pattern SAa corresponding to the first end pattern area PAa and a central pattern in order from the leading side (right side in FIG. 32) along the longitudinal direction (horizontal direction in FIG. 32) of the sheet SH. It has a pair of transfer patterns SA1 and SA2 corresponding to the area PAc, and a transfer pattern SAb corresponding to the second end pattern area PAb.
  • the transfer patterns SA1 and SA2 are the same pattern.
  • the transfer pattern regions for the display of the predetermined size A are spaced one by one. Can be formed apart from each other.
  • an outer rectangle indicated by a thick solid line indicates a unit area (exposure area) of the device
  • an inner rectangle indicated by a broken line indicates a transfer pattern area of the display unit. Therefore, the area between the rectangle indicated by the solid line and the rectangle indicated by the broken line corresponds to the transfer pattern of the peripheral circuit.
  • a transfer pattern region for a display of a predetermined size B as shown by reference numeral 62 can be obtained. Two chamfers can be formed, or a transfer pattern region for an arbitrary size (vertically long) display can be chamfered as indicated by reference numeral 63.
  • the seventh scanning exposure example, as indicated by reference numeral 64 two transfer pattern regions for a display having an arbitrary size (super-long landscape) can be taken.
  • the scanning exposure process for the peripheral circuit pattern may be performed after the scanning exposure process for the display unit pattern.
  • FIGS. 34 and 35 the pattern of the mask M using a plurality of projection optical systems having magnifications arranged in a zigzag pattern along the direction (X direction) orthogonal to the scanning direction (Y direction).
  • Multi-scanning exposure in which an image is enlarged and projected on the sheet SH can also be performed.
  • FIG. 34 shows an example in which, for example, four projection optical systems PL shown in FIG. 15 are arranged in parallel, but the projection areas ER1 and ER2 are shaped into a trapezoid for multi-scan exposure, and as a result, the illumination area IR1. , IR2 are also shaped into trapezoids.
  • the triangular regions at both ends of the trapezoidal projection regions ER1 and ER2 overlap each other when seen in the Y direction between two adjacent projection optical systems, and form an overlapping portion OL4 of the transfer pattern region on the sheet SH.
  • the reference symbol Sw is the dimension in the X direction of the portion that can be exposed excluding the triangular regions outside the projection regions ER1 and ER2 at both ends, and indicates the so-called maximum exposure width.
  • Reference numeral Smc is a distance along the Y direction of the mask side optical axis of two projection optical systems PL adjacent in the X direction, that is, in the Y direction of the center position of two illumination region pairs IR1 and IR2 adjacent in the X direction. The distance along is shown.
  • four pattern areas PA are provided in a staggered pattern at intervals in the X direction. Specifically, the centers of two pattern areas PA adjacent in the X direction are displaced from each other by Smc / (1-1 / MG) along the Y direction.
  • the centers of two pattern areas PA adjacent in the X direction are separated in the Y direction by a distance corresponding to the projection magnification MG.
  • the disclosure of International Publication No. 2007/108420 can be referred to.
  • the aperture diameter in the width direction of the first field stop that defines the size of the magnified image projected onto the first projection area by the first projection optical system, and the second projection optical system onto the second projection area are sequentially formed.
  • the number of electronic display devices to be formed on the long sheet and the display unit size are set in the computer that controls the exposure apparatus.
  • the exposure of a plurality of types of display device patterns having different display unit sizes is specified by the above parameters, the display device patterns exposed on the long sheet are arranged in the long direction in the order of the display unit sizes. The exposure apparatus is controlled.
  • a plurality of default sizes are prepared as initial values as parameters relating to the display unit size set in the computer.
  • the computer determines the required length of the required long sheet based on a plurality of preset sizes, the number of devices for each default size, and the distance in the longitudinal direction between the patterns for each device. Calculate.
  • the interface for setting the parameters related to the display unit size in the computer has an input form that allows selection of two or more preset sizes prepared in advance, and a size for exposure of a display device pattern of any size. Value entry form.
  • the present invention is described based on the projection optical system PL having a specific configuration shown in FIG. 1, FIG. 9, FIG. 13 to FIG.
  • various configurations of the specific configuration of the projection optical system are possible.
  • the shape of the illumination region IR (IR1, IR2) formed on the mask M is defined by the action of the mask blind MB in the illumination system IL, and as a result, the projection formed on the sheet SH.
  • the shapes of the regions ER1 and ER2 are defined.
  • a first variable field stop (not shown) is disposed at or near the formation position of the first intermediate image I1, and the formation position of the second intermediate image I2 or the position thereof.
  • a configuration in which a second variable field stop (not shown) is arranged in the vicinity is also possible.
  • a first variable field stop is disposed at or near the formation position of the first intermediate image I1
  • a second variable field stop is disposed at or near the formation position of the second intermediate image I2. It is also possible to configure.
  • the scanning direction (Y direction) of the mask M and the scanning direction (Y direction) of the sheet SH are the same direction (not necessarily the same direction).
  • the scanning direction of the mask and the scanning direction of the long substrate need not be the same direction, and various forms are possible depending on the configuration of the projection optical system.
  • the present invention is applied to a pattern forming method in which the pattern of the mask M is projected and exposed (transferred) onto the sheet SH.
  • the present invention is not limited to this.
  • the present invention can be similarly applied to pattern formation. Therefore, in the present invention, in the pattern forming method of forming a plurality of pattern regions on the long substrate along the long direction of the long substrate, the long substrate is moved to one side in the long direction.
  • the exposure apparatus is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus.
  • comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus may be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • FIG. 36 is a flowchart showing a manufacturing process of a semiconductor device.
  • a metal film is vapor-deposited on a wafer to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied onto the vapor-deposited metal film (Ste S42).
  • the pattern formed on the mask M is transferred to each shot area on the wafer (step S44: exposure process), and the development of the wafer after the transfer, that is, the pattern is transferred.
  • the transferred photoresist is developed (step S46: development step).
  • the resist pattern generated on the surface of the wafer in step S46 is used as a mask for wafer processing, and processing such as etching is performed on the surface of the wafer (step S48: processing step).
  • the resist pattern is a photoresist layer (transfer pattern layer) in which unevenness having a shape corresponding to the pattern transferred by the exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. It is what you are doing.
  • the surface of the wafer is processed through this resist pattern.
  • the processing performed in step S48 includes, for example, at least one of etching of the wafer surface or film formation of a metal film or the like.
  • step S44 the exposure apparatus of the above-described embodiment performs pattern transfer using a wafer coated with a photoresist as a photosensitive substrate.
  • FIG. 37 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element.
  • a pattern formation process step S50
  • a color filter formation process step S52
  • a cell assembly process step S54
  • a module assembly process step S56
  • predetermined patterns such as a circuit pattern and an electrode pattern are formed on the glass substrate coated with a photoresist as the photosensitive substrate, using the exposure apparatus of the above-described embodiment.
  • This pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the exposure apparatus of the above-described embodiment, and a processing step of processing the photosensitive substrate to which this pattern is transferred. Further, in the processing step for processing the photosensitive substrate, development of the photosensitive substrate to which the pattern has been transferred, that is, development of the photoresist layer on the glass substrate is performed, and a photoresist layer (transfer pattern) corresponding to the pattern is developed. A development step for generating a layer) and a processing step for processing the surface of the glass substrate through the developed photoresist layer. The processing of the surface of the glass substrate in this processing step includes etching the surface of the glass substrate or depositing or applying a predetermined material on the surface of the glass substrate.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B
  • a color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal panel is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52.
  • a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
  • the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device or a liquid crystal device.
  • an exposure apparatus for a display device such as an organic EL display or a plasma display, or an image sensor (CCD or the like)
  • the present invention can also be widely applied to exposure apparatuses for manufacturing various devices such as micromachines, thin film magnetic heads, and DNA chips.
  • the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
  • Adjustment mechanism 50 a Interval adjustment unit LS Light source IL Illumination system IR, IR1, IR2 Illumination area ER1, ER2 Projection area M Mask MS Mask stage PL Projection optical system SH Band-shaped sheet (long substrate) SC moving mechanism DR1, DR2 Drive control system CR Main control system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 長尺基板(SH)にパターンを転写する露光装置は、パターンを移動させるステージ機構(MS)と、第1部分領域(IR1)に配置される第1部分パターンの拡大像を第1投影領域(ER1)に所定倍率で投影し、且つ第1部分領域から所定の中心間隔を置いた第2部分領域(IR2)に配置される第2部分パターンの拡大像を第2投影領域(ER2)に所定倍率で投影する投影光学系(PL)と、第1投影領域及び第2投影領域を経由するように長尺基板を移動させる移動機構(SC)と、所定倍率及び中心間隔に基づいて、第1投影領域から第2投影領域までの長尺基板の基板長を調整する調整機構(50)と、を備えている。

Description

露光方法、露光装置、パターン形成方法、およびデバイス製造方法
 本発明は、感光性を有する基板にパターンを転写する走査露光に関する。
 本願は、2010年2月2日に出願された米国仮出願61/300,574号、及び61/300,599に基づき優先権を主張しその内容をここに援用する。
 パソコン、テレビ等の表示素子として、液晶表示パネルが多用されている。最近では、フレキシブルな高分子シート(感光性基板)上に透明薄膜電極をフォトリソグラフィの手法でパターニングすることにより表示パネルを製造する方法が考案されている。このフォトリソグラフィ工程において用いられる露光装置として、ロール・ツー・ロール(Roll to Roll)で搬送される帯状の感光性基板にマスクのパターンを転写する露光装置(以下、ロール・ツー・ロール型の露光装置という)が提案されている(例えば、特許文献1を参照)。
特開2007-114385号公報
 ロール・ツー・ロール型の露光装置では、帯状の感光性基板(すなわち長尺基板)へのパターンの転写にかかるスループットの向上を図ることが求められている。
 本発明の態様は、例えばロール・ツー・ロールで搬送される長尺基板への走査露光に適用したときに走査露光にかかるスループットの向上を達成することのできる露光方法、露光装置、パターン形成方法、およびデバイス製造方法を提供することを目的とする。
 本発明の第1の態様に従えば、第1面に配置されるパターンの像を長尺基板に投影して該長尺基板に前記パターンを転写する露光方法であって、
 前記パターンを前記第1面に沿って第1方向に移動させることと、
 前記パターンのうち前記第1面の第1部分領域に配置される第1部分パターンの拡大像を第1投影領域に所定倍率で投影することと、
 前記パターンのうち前記第1部分領域から前記第1方向に所定の中心間隔を置いた第2部分領域に配置される第2部分パターンの拡大像を、前記第1投影領域と異なる第2投影領域に前記所定倍率で投影することと、
 前記パターンの前記第1方向への移動に同期して、前記第1投影領域及び前記第2投影領域を経由するように前記長尺基板を該長尺基板の長尺方向に沿って移動させることと、
 前記所定倍率及び前記中心間隔に基づいて、前記パターンの前記第1方向に沿ったパターン長と、前記第1投影領域から前記第2投影領域までの前記長尺基板の基板長との少なくとも一方を設定することと、
を含むことを特徴とする露光方法が提供される。
 本発明の第2の態様に従えば、第1面に配置されるパターンの像を長尺基板に投影して該長尺基板に前記パターンを転写する露光装置であって、
 前記パターンを前記第1面に沿って第1方向に移動させるステージ機構と、
 前記パターンのうち前記第1面の第1部分領域に配置される第1部分パターンの拡大像を第1投影領域に所定倍率で投影し、且つ前記パターンのうち前記第1部分領域から前記第1方向に所定の中心間隔を置いた第2部分領域に配置される第2部分パターンの拡大像を、前記第1投影領域と異なる第2投影領域に前記所定倍率で投影する投影光学系と、
 前記パターンの前記第1方向への移動に同期して、前記第1投影領域及び前記第2投影領域を経由するように前記長尺基板を該長尺基板の長尺方向に沿って移動させる移動機構と、
 前記所定倍率及び前記中心間隔に基づいて、前記第1投影領域から前記第2投影領域までの前記長尺基板の基板長を調整する調整機構と、
を備えていることを特徴とする露光装置が提供される。
 本発明の第3の態様に従えば、第1の態様にかかる露光方法を用いて、前記パターンを前記長尺基板に転写する工程と、
 前記パターンが転写された前記長尺基板を処理する工程と、を含むことを特徴とするデバイス製造方法が提供される。
 本発明の第4の態様に従えば、第2の態様にかかる露光装置を用いて、前記パターンを前記長尺基板に転写する工程と、
 前記パターンが転写された前記長尺基板を処理する工程と、を含むことを特徴とするデバイス製造方法が提供される。
 本発明の第5の態様に従えば、長尺基板上に該長尺基板の長尺方向に沿って複数のパターン領域を形成するパターン形成方法において、
 前記長尺基板を前記長尺方向の一方側に移動させることと、
 前記長尺方向の一方側に移動されている前記長尺基板に第1パターン領域及び第2パターン領域を順次形成することと、を含み、
 前記第1パターン領域と前記第2パターン領域とは、前記長尺方向の領域長と前記長尺方向に直交する幅方向の領域幅との少なくとも一方が相互に異なることを特徴とするパターン形成方法が提供される。
 本発明の第6の態様に従えば、第1の態様にかかるパターン形成方法を用いて、前記パターン領域を前記長尺基板に形成する工程と、
 前記パターン領域が形成された前記長尺基板を処理する工程と、を含むことを特徴とするデバイス製造方法が提供される。
 本発明の一態様によれば、第1投影領域による走査露光と第2投影領域による走査露光とを並列的に行うことができ、ひいては走査露光にかかるスループットの向上を達成することができる。特に、第1部分領域と第2部分領域との中心間隔および投影倍率に基づいて、第1投影領域から第2投影領域までの長尺基板の基板長を調整(設定)することにより、所定の経路に沿って継続的に移動する長尺基板上に、第1投影領域の走査露光による第1転写パターンと第2投影領域の走査露光による第2転写パターンとを連続して繰り返し形成したり、第1転写パターンと第2転写パターンとを間隔を隔てて複数形成したりすることができる。
 また、本発明の一態様によれば、第1領域(第1投影領域)による走査露光と第2領域(第2投影領域)による走査露光とを並列的に行うことができ、ひいては走査露光にかかるスループットの向上を達成することができる。特に、第1パターン領域(第1転写パターン領域)を形成する際の基板長と、第2パターン領域(第2転写パターン領域)を形成する際の基板長とを相互に異なる長さに設定することにより、領域長が互いに異なる2つの転写パターン領域を順次形成することができる。
本発明の第1実施形態にかかる露光装置の構成を概略的に示す図である。 第1実施形態におけるマスクの構成を概略的に示す図である。 第1走査露光例を説明する図である。 複数のショット領域が間隔を隔てて交互に形成される様子を概略的に示す図である。 第2走査露光例を説明する図である。 複数のショット領域が間隔を隔てることなく連続して形成される様子を概略的に示す図である。 第3走査露光例を説明する図である。 第3走査露光例において使用可能な一対の濃度フィルタを概略的に示す図である。 本発明の第2実施形態にかかる露光装置の構成を概略的に示す図である。 第4走査露光例を説明する図である。 第5走査露光例を説明する図である。 第6走査露光例を説明する図である。 本発明の第3実施形態にかかる露光装置の構成を概略的に示す図である。 本発明の第4実施形態にかかる露光装置の構成を概略的に示す図である。 本発明の第5実施形態にかかる露光装置の構成を概略的に示す図である。 第5実施形態において領域長が互いに異なる2つの転写パターン領域が順次形成される様子を示す図である。 第1実施形態の変形例にかかる露光装置の構成を概略的に示す図である。 第2実施形態の変形例にかかる露光装置の構成を概略的に示す図である。 第3実施形態の変形例にかかる露光装置の構成を概略的に示す図である。 第4実施形態の変形例にかかる露光装置の構成を概略的に示す図である。 第7走査露光例において使用されるマスクの構成を概略的に示す図である。 第7走査露光例を説明する第1の図である。 第7走査露光例を説明する第2の図である。 第7走査露光例を説明する第3の図である。 第7走査露光例を説明する第4の図である。 第7走査露光例を説明する第5の図である。 第7走査露光例を説明する第6の図である。 第7走査露光例を説明する第7の図である。 第7走査露光例を説明する第8の図である。 第7走査露光例を説明する第9の図である。 第7走査露光例を説明する第10の図である。 第7走査露光例により形成されるショット領域を概略的に示す図である。 電子表示デバイスの製造に各走査露光例を適用して得られる露光単位のレイアウトを概略的に示す図である。 マルチ走査露光例を説明する図である。 マルチ走査露光例において使用されるマスクの構成を概略的に示す図である。 半導体デバイスの製造工程を示すフローチャートである。 液晶デバイスの製造工程を示すフローチャートである。
 本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の第1実施形態にかかる露光装置の構成を概略的に示す図である。第1実施形態では、図1に示すように、投影光学系PLに対してマスクMおよび帯状のシートSHを相対移動させつつマスクMのパターンをシートSHに投影露光(転写)するロール・ツー・ロール型の露光装置に対して本発明を適用している。図1では、感光性の長尺基板としてのシートSHの転写面(感光面;被露光面)の法線方向にZ軸を、シートSHの転写面に平行な面内において図1の紙面に平行な方向にY軸を、シートSHの転写面に平行な面内において図1の紙面に垂直な方向にX軸を設定している。
 第1実施形態の露光装置は、マスクMのパターン領域を照明する照明系ILと、マスクMを保持して移動するマスクステージMSと、マスクMのパターンの像をシートSH上に形成する投影光学系PLと、シートSHをロール・ツー・ロールの方式にしたがって移動させる(搬送する)移動機構SCと、マスクステージMSおよび移動機構SCを駆動する駆動制御系DRと、駆動制御系DR等の動作を統括的に制御する主制御系CRとを備えている。シートSHは、フォトレジスト(感光材料)が塗布されたフレキシブルな(可撓性をもった)帯状の高分子シートである。
 照明系ILには、光源LSから露光用の照明光(露光光)が供給される。露光光として、例えば、超高圧水銀ランプの射出光から選択されたi線(波長365nm)の光、YAGレーザの3倍高調波(波長355nm)よりなるパルス光、KrFエキシマレーザ光(波長248nm)などを用いることができる。照明系ILは、光の入射順に、コリメータレンズ(不図示)、フライアイレンズ(不図示)、コンデンサー光学系(不図示)、可変視野絞りとしてのマスクブラインドMB、照明結像光学系(不図示)などを備えている。
 光源LSから射出された光は、照明系ILを介して、マスクM上に照明領域IRを照明する。照明領域IRは、X方向に沿って細長く延びる所定の外形形状を有する。マスクMの照明領域IRからの光は、投影光学系PLを介して、第1投影領域ER1に照明領域IR内のパターンの第1投影像を形成し、且つ第1投影領域ER1からY方向に間隔を隔てた第2投影領域ER2に照明領域IR内のパターンの第2投影像を形成する。投影光学系PLは、第1投影領域ER1および第2投影領域ER2をシートSH上に形成する。
 投影光学系PLは、マスクM側およびシートSH側にテレセントリックであり、マスクM側からシートSH側へ拡大倍率を有する。投影領域(結像領域)ER1,ER2の形状は、照明領域IRの形状を投影光学系PLの投影倍率MGで拡大した形状である。以下、説明の理解を容易にするために、照明領域IRはX方向に沿って細長く延びる矩形状の領域であるものとする。また、投影領域ER1,ER2は、X方向に沿って細長く延びる矩形状の領域であって、互いに同じ大きさおよび同じ形状を有するものとする。ただし、照明領域IRの形状、ひいては投影領域ER1,ER2の形状は、照明系IL中のマスクブラインドMBの可変開口部(光透過部)の形状に応じて可変的に設定される。
 マスクMは、マスクホルダ(不図示)を介して、マスクステージMS上に吸着保持されている。マスクステージMS上には、周知の構成を有するマスク側レーザ干渉計(不図示)が配置されている。マスク側レーザ干渉計は、マスクステージMSのX方向の位置、Y方向の位置、およびZ軸廻りの回転角を計測し、計測結果を主制御系CRに供給する。主制御系CRは、その計測値に基づいて、駆動制御系DRを介して、マスクステージMSのX方向の位置、走査方向としてのY方向の位置および速度、並びにZ軸廻りの回転角を制御する。
 シートSHは、一連のロールを備えた周知の構成を有する移動機構SCの作用により、投影領域ER1およびER2を経由するように所定の経路に沿って搬送される。具体的に、移動機構SCは投影光学系PLの直下においてシートSHを-Y方向の向きに移動させ、シートSH上には第1投影領域ER1および第2投影領域ER2が形成される。走査露光時には、マスクステージMSが走査方向であるY方向に沿って+Y方向の向きに速度V/MGで移動するのに同期して、移動機構SCはシートSHを投影光学系PLの直下において-Y方向の向きに速度Vで移動させる。
 投影光学系PLは、中間結像光学系GMと、第1結像光学系G1と、第2結像光学系G2とを備えている。中間結像光学系GMは、マスクMのパターン領域(図1では不図示)において照明領域IRにより照明されたパターンの第1中間像I1および第2中間像I2を形成する。第1結像光学系G1は第1中間像I1からの光に基づいてシートSH上の第1投影領域ER1にパターンの第1投影像を形成し、第2結像光学系G2は第2中間像I2からの光に基づいてシートSH上の第2投影領域ER2にパターンの第2投影像を形成する。
 マスクMは、そのパターン領域が投影光学系PLの物体面にほぼ一致するようにマスクステージMS上に配置される。シートSHは、その表面(感光面)が投影光学系PLの像面にほぼ一致するような軌道に沿って移動機構SCにより搬送される。中間結像光学系GMは、照明領域IRにより照明されたパターン領域からの光が入射する正レンズ群Lpと、正レンズ群Lpからの光を正レンズ群Lpの光軸AXpを挟んで互いに異なる方向に進む第1の光と第2の光とに分割し且つ第1の光および第2の光を正レンズ群Lpに向けて反射する分割反射部RFとを有する。分割反射部RFとして、位相格子板、振動ミラーなどを用いることができる。
 照明領域IRから光軸AXpに沿って射出された光は、正レンズ群Lpを経て分割反射部RFにより反射され、図1の紙面において斜め左上の向きに進む第1の光と斜め右上の向きに進む第2の光とに分割される。第1の光は正レンズ群Lpおよび偏向部材MR1を経て第1中間像I1を形成し、第2の光は正レンズ群Lpおよび偏向部材MR2を経て第2中間像I2を形成する。第1中間像I1からの光は第1結像光学系G1を介してシートSH上の第1投影領域ER1に達し、第2中間像I2からの光は第2結像光学系G2を介してシートSH上の第2投影領域ER2に達する。
 投影領域ER1およびER2には、第1投影像および第2投影像として、投影光学系PLの投影倍率MGでマスクパターンを拡大した形状を有する拡大像が形成される。具体的に、第1投影像および第2投影像は、照明領域IR内のマスクパターンのY方向(走査方向)に倒立した像である。第1投影像と第2投影像とは、互いに同じ形状および大きさを有し、且つX方向およびY方向に関して互いに同じ向きに形成される。
 以下、図2乃至図8を参照して、第1実施形態における走査露光の動作を説明する。図2を参照すると、マスクM上には、例えば電子表示デバイス用のパターンが形成された矩形状のパターン領域PAが設けられている。パターン領域PAの走査方向(Y方向)に沿った寸法、すなわちパターン長はALである。第1実施形態では、感光性の長尺基板であるシートSHが、移動機構SCの作用により所定の経路に沿って一定の速度で搬送される。そして、第1実施形態の第1走査露光例では、図3に示すように、マスクMのパターン領域PAを投影光学系PLの投影倍率MGで拡大した矩形状のショット領域SR1,SR2が一定の間隔を隔てて順次シートSH上に形成される。
 図3では、投影光学系PLの第1結像光学系G1を介してマスクMのパターンが転写されるショット領域(または転写されたショット領域)を参照符号SR1で表し、第2結像光学系G2を介してマスクMのパターンが転写されるショット領域(または転写されたショット領域)を参照符号SR2で表している。ショット領域SR1とショット領域SR2とは、後述するように、シートSHの長手方向(長尺方向)に沿って交互に形成される。シートSHの長手方向に沿った各ショット領域SR1,SR2の寸法はMG×ALであり、互いに隣り合う一対のショット領域SR1とSR2との間隔はGyである。
 走査露光では、ショット領域SR1,SR2への露光開始から一定期間に亘って投影領域ER1,ER2の走査方向(Y方向)の寸法を0から標準的な寸法まで線形的に増大させ、ショット領域SR1,SR2への露光終了までの一定期間に亘って投影領域ER1,ER2の走査方向の寸法を標準的な寸法から0まで線形的に減少させる。投影領域ER1,ER2の寸法調整は、周知技術にしたがって、例えば照明系IL中のマスクブラインドMBの作用により、照明領域IRの走査方向の寸法を変更することにより行われる。
 ただし、以下の第1乃至第6走査露光例の説明では、動作の理解を容易するために、照明領域IR(またはIR1,IR2)、および投影領域ER1,ER2の形状が走査露光に際して一定(不変)であり、照明領域IRの走査方向に沿った中心がパターン領域PAの走査方向に沿った一端から他端まで移動することにより、すなわち投影領域ER1,ER2の走査方向に沿った中心がショット領域SR1,SR2の走査方向に沿った一端から他端まで移動することにより、ショット領域SR1,SR2への走査露光が完了するものとする。
 これに関連して、図1では、照明系ILの光軸と中間結像光学系GMの正レンズ群Lpの光軸AXpとが一致し、光軸AXpが照明領域IRの中心を通っている状態を示している。図1および図2では、照明領域IRの走査方向に沿った中心がパターン領域PA(図1では不図示)の走査方向に沿った一端にある状態、すなわち走査露光の開始時の状態を示している。図3では、図1および図2に対応するように、投影領域ER1,ER2の走査方向に沿った中心がショット領域SR1,SR2の走査方向に沿った一端にある状態、すなわち走査露光の開始時の状態を示している。
 したがって、図3に示す第1走査露光例では、第1投影領域ER1から第2投影領域ER2までのシートSHの基板長SLは、ショット領域SR1の露光開始端から隣り合うショット領域SR2の露光開始端までのシートSHに沿った長さに対応し、次の式(1)に示す関係を満足している。
  SL=MG×AL+Gy>MG×AL   (1)
 第1走査露光例では、投影光学系PLの第1結像光学系G1の直下を通過するショット領域SR1および第2結像光学系G2の直下を通過するショット領域SR2に、マスクMのパターンを同時に走査露光(スキャン露光)する。一対のショット領域SR1およびSR2への同時走査露光に際して、照明領域IRがパターン領域PAの+Y方向側の端部に位置する始動位置から-Y方向側の端部に位置する終了位置に達するまで、パターン領域PAが照明領域IRによって走査されるように、マスクM(ひいてはマスクステージMS)は+Y方向に向かって所要の速度で移動する。
 マスクMの+Y方向へのスキャン移動に同期して、投影領域ER1,ER2がショット領域SR1,SR2の-Y方向側の端部に位置する始動位置から+Y方向側の端部に位置する終了位置に達するまで、ショット領域SR1,SR2が投影領域ER1,ER2によって走査されるように、シートSHが経路に沿って-Y方向へ移動する。次いで、照明領域IRがパターン領域PAの-Y方向側の端部からパターン領域PAの+Y方向側の端部へ移動するように、すなわち照明領域IRが走査露光の終了位置から始動位置へ戻るように、マスクMを-Y方向へ折り返し移動させる。
 マスクMの-Y方向への折り返し移動に際して、例えばマスクMの直後の光路中には結像光束を遮るためのシャッター(不図示)が挿入され、投影領域ER1,ER2にマスクパターンの投影像が形成されないようにする。あるいは、照明系IL中のマスクブラインドMBの可変開口部を閉じることにより、投影領域ER1,ER2にマスクパターンの投影像が形成されないようにしても良い。マスクMが-Y方向への折り返し移動を終了し、照明領域IRがパターン領域PAの+Y方向側の始動位置に戻ってマスクMの+Y方向へのスキャン移動が可能になった時点で、マスクMの直後のシャッターが光路から退避する(あるいはマスクブラインドMBの可変開口部を開ける)ことにより、投影領域ER1,ER2が次に走査露光すべきショット領域SR1,SR2の-Y方向側の始動位置に形成される。
 こうして、マスクMの次のスキャン移動に同期して、次のショット領域SR1への走査露光と次のショット領域SR2への走査露光とが同時に行われる。そして、マスクMのY方向に沿った往復移動(スキャン移動および折り返し移動)を複数回に亘って繰り返すことにより、図4に示すように、所定の経路に沿って一定の速度で継続的に移動するシートSH上に、マスクMのパターンが転写されたショット領域SR1とショット領域SR2とが一定の間隔Gyを隔てて交互に形成される。
 図5に示す第2走査露光例では、基板長SLと投影倍率MGとパターン長ALとが、次の式(2)に示す関係を満足している。換言すれば、第2走査露光例では、互いに隣り合う一対のショット領域SR1とSR2との間隔Gyが0になるように、ひいては隣り合う一対のショット領域SR1とSR2とが互いに接するように設定されている。
  SL=MG×AL   (2)
 したがって、第2走査露光例では、マスクMのY方向に沿った往復移動(スキャン移動および折り返し移動)を複数回に亘って繰り返すことにより、図6に示すように、所定の経路に沿って一定の速度で継続的に移動するシートSH上に、マスクMのパターンが転写されたショット領域SR1とショット領域SR2とが互いに接するように交互に形成され、ひいては長尺方向(Y方向)に所望の長さを有する切れ目のない1つのショット領域SRが形成される。
 図7に示す第3走査露光例では、基板長SLと投影倍率MGとパターン長ALとが、次の式(3)に示す関係を満足している。換言すれば、第3走査露光例では、隣り合う一対のショット領域SR1とSR2とが部分的に重なり合うように設定されている。図7では、隣り合う一対のショット領域SR1とSR2との重複部分の走査方向に沿った寸法を、MG×OPで表している。
  SL=MG×(AL-OP)<MG×AL   (3)
 したがって、第3走査露光例においても第2走査露光例の場合と同様に、マスクMのY方向に沿った往復移動(スキャン移動および折り返し移動)を複数回に亘って繰り返すことにより、図6に示すように、所定の経路に沿って一定の速度で継続的に移動するシートSH上に、マスクMのパターンが転写されたショット領域SR1とショット領域SR2とが互いに部分的に重複するように交互に形成され、ひいては長尺方向(Y方向)に所望の長さを有する切れ目のない1つのショット領域SRが形成される。
 第3走査露光例では、隣り合う一対のショット領域SR1とSR2との境界部同士が重なり合って二重露光されるので、例えば図8に示すような一対の濃度フィルタVFを用いて走査露光の開始時および終了時に照明領域IRの光量を調整し、ひいては二重露光領域における露光量の制御を行うことができる。濃度フィルタVFは、パターン領域PAの走査方向に沿った端部から走査方向に寸法OPの領域を覆うように、マスクMの直前または直後に固定的に配置されている。また、濃度フィルタVFは、走査方向に沿ってパターン領域PAの内側から外側へ向かって透過率が単調に低下するように構成されている。
 寸法OPが十分に小さい場合、濃度フィルタVFに代えて、マスクMの直前または直後に固定的に配置されたプロキシブラインドを用い、そのエッジのデフォーカス作用により二重露光領域における露光量制御を行うこともできる。第3走査露光例では、隣り合う一対のショット領域SR1とSR2とが部分的に重なり合うので、マスクMのパターン領域PAの走査方向に関する両端部の領域には互いに同一形状のパターンが形成されている。あるいは、マスクMのパターン領域PAは、パターン長ALに亘って走査方向に周期性を有する周期パターンを含む。第3走査露光例のように走査方向にパターンの継ぎ露光を行う方法について、例えば特開平7-283132号公報の開示を参照することができる。
 こうして、第1実施形態では、マスクMを+Y方向へ1回スキャン移動させることにより、所定の経路に沿って一定の速度で継続的に移動するシートSH上のショット領域SR1へのマスクパターンの第1投影像の走査露光とショット領域SR2へのマスクパターンの第2投影像の走査露光とを同時に行うことができる。また、マスクMのY方向に沿った往復移動を複数回に亘って繰り返すことにより、シートSH上にショット領域SR1とショット領域SR2とを交互に連続形成することができる。すなわち、第1実施形態では、ロール・ツー・ロールで搬送されるシートSHへの走査露光にかかるスループットを向上させることができる。
 特に、第1実施形態では、式(1)に示す関係を満足するパターン長ALのパターン領域PAが形成されたマスクMを用いる第1走査露光例により、第1投影領域ER1の走査露光によりショット領域SR1に転写される第1転写パターンと、第2投影領域ER2の走査露光によりショット領域SR2に転写される第2転写パターンとを間隔を隔てて複数形成することができる。また、式(2)または式(3)に示す関係を満足するパターン長ALのパターン領域PAが形成されたマスクMを用いる第2走査露光例または第3走査露光例により、ショット領域SR1に転写される第1転写パターンとショット領域SR2に転写される第2転写パターンとを連続して繰り返し形成することができる。
 図9は、本発明の第2実施形態にかかる露光装置の構成を概略的に示す図である。第2実施形態は第1実施形態と類似の構成を有するが、第2実施形態では走査方向であるY方向に間隔を隔てた一対の照明領域IR1およびIR2を形成する点、および投影光学系PLの内部構成が第1実施形態と相違している。したがって、図9では、第1実施形態における構成要素と同様の機能を有する要素に、図1と同じ参照符号を付している。以下、第1実施形態との相違点に着目して、第2実施形態の構成および作用を説明する。
 第2実施形態の露光装置では、光源LSから射出された光が、照明系ILを介して、Y方向に間隔を隔てた一対の照明領域IR1,IR2をマスクM上に形成する。照明領域IR1,IR2は、X方向に沿って細長く延びる所定の外形形状を有する。マスクMの第1照明領域IR1からの光は、投影光学系PLを介して、第1投影領域ER1に第1照明領域IR1内の第1パターンの第1投影像を形成し、且つ第1投影領域ER1からY方向に間隔を隔てた第2投影領域ER2に第2照明領域IR2内の第2パターンの第2投影像を形成する。
 投影光学系PLは、マスクM側およびシートSH側にテレセントリックであり、マスクM側からシートSH側へ拡大倍率を有する。投影領域ER1,ER2の形状は、照明領域IR1,IR2の形状を投影光学系PLの投影倍率MGで拡大した形状である。以下、説明の理解を容易にするために、照明領域IR1,IR2は、X方向に沿って細長く延びる矩形状の領域であって、互いに同じ大きさおよび同じ形状を有するものとする。また、投影領域ER1,ER2は、X方向に沿って細長く延びる矩形状の領域であって、互いに同じ大きさおよび同じ形状を有するものとする。
 投影光学系PLは、第1結像光学系G1と、第2結像光学系G2とを備えている。第1結像光学系G1は、共通レンズ群GCと第1レンズ群G12とからなり、マスクMのパターン領域(図9では不図示)において第1照明領域IR1により照明された第1パターンからの光に基づいてシートSH上の第1投影領域ER1に第1投影像を形成する。第2結像光学系G2は、共通レンズ群GCと第2レンズ群G22とからなり、パターン領域において第2照明領域IR2により照明された第2パターンからの光に基づいてシートSH上の第2投影領域ER2に第2投影像を形成する。
 投影領域ER1およびER2には、第1投影像および第2投影像として、投影光学系PLの投影倍率MGで第1パターンおよび第2パターンを拡大した形状を有する拡大像が形成される。具体的に、第1投影像は第1照明領域IR1内の第1パターンのY方向(走査方向)に倒立した像であり、第2投影像は第2照明領域IR2内の第2パターンのY方向に倒立した像である。
 以下、図10乃至図12を参照して、第2実施形態における走査露光の動作を説明する。図10を参照すると、マスクMにはパターン長ALのパターン領域PAが設けられ、マスクM上には矩形状の照明領域IR1,IR2が間隔を隔てて形成される。照明領域IR1,IR2のY方向(走査方向)に沿った中心間距離、すなわち照明領域IR1とIR2とのY方向の中心間隔はGPである。第2実施形態においても、シートSHは一定の速度で搬送され、シートSH上にはパターン領域PAを投影倍率MGで拡大した矩形状のショット領域SR1,SR2が交互に順次形成される。
 図10では、第1照明領域IR1の走査方向に沿った中心がパターン領域PAの走査方向に沿った+Y方向側の端部にある状態、すなわち第1ショット領域SR1への走査露光の開始時の状態を示している。また、第1投影領域ER1の走査方向に沿った中心が第1ショット領域SR1の-Y方向側の端部にある状態、すなわち第1ショット領域SR1への走査露光の開始時の状態を示している。一方、第2投影領域ER2の走査方向に沿った中心は、第2ショット領域SR2の-Y方向側の端部からMG×GPだけ-Y方向側に離れた位置にある。
 これは、第1ショット領域SR1への走査露光の開始時から第2ショット領域SR2への走査露光の開始時まで、すなわち第2照明領域IR2の走査方向に沿った中心がパターン領域PAの+Y方向側の端部に達するまで、マスクMが距離GPだけスキャン移動する必要があるからである。図10に示す第4走査露光例では、第1投影領域ER1から第2投影領域ER2までのシートSHの基板長SLは、次の式(4)に示す関係を満足している。
  SL>MG×(AL-GP)   (4)
 第4走査露光例では、ショット領域SR1への走査露光に際して、照明領域IR1がパターン領域PAの+Y方向側の端部に位置する始動位置から-Y方向側の端部に位置する終了位置に達するまで、パターン領域PAが照明領域IR1によって走査されるように、マスクM(ひいてはマスクステージMS)は+Y方向に向かって所要の速度で移動する。ショット領域SR1への走査露光の開始時から一定時間だけ遅れて、ショット領域SR2への走査露光を開始する。ショット領域SR2への走査露光に際して、照明領域IR2がパターン領域PAの+Y方向側の端部に位置する始動位置から-Y方向側の端部に位置する終了位置に達するまで、パターン領域PAが照明領域IR2によって走査されるように、マスクMは+Y方向に向かって所要の速度で移動する。
 マスクMの+Y方向へのスキャン移動に同期して、投影領域ER1,ER2がショット領域SR1,SR2の-Y方向側の端部に位置する始動位置から+Y方向側の端部に位置する終了位置に達するまで、ショット領域SR1,SR2が投影領域ER1,ER2によって走査されるように、シートSHが経路に沿って-Y方向へ移動する。次いで、照明領域IR1がパターン領域PAの+Y方向側の端部へ移動するように、すなわち照明領域IR1が走査露光の始動位置へ戻るように、マスクMを-Y方向へ折り返し移動させる。
 第4走査露光例では、ショット領域SR1への走査露光の開始時から一定時間に亘って投影領域ER2に第2パターンの投影像が形成されないようにするとともに、ショット領域SR2への走査露光の終了時までの一定時間に亘って投影領域ER1に第1パターンの投影像が形成されないようにする。また、マスクMの-Y方向への折り返し移動に際して、投影領域ER1,ER2にパターンの投影像が形成されないようにする。こうして、マスクMの次のスキャン移動に同期して、次のショット領域SR1への走査露光と次のショット領域SR2への走査露光とが一定の時間差をもってほぼ同時に行われる。
 そして、マスクMのY方向に沿った往復移動(スキャン移動および折り返し移動)を複数回に亘って繰り返すことにより、図4に示すように、所定の経路に沿って一定の速度で継続的に移動するシートSH上に、マスクMのパターンが転写されたショット領域SR1とショット領域SR2とが一定の間隔Gyを隔てて交互に形成される。なお、式(4)では基板長SLの上限値が示されていないが、実用的には、ショット領域SR1とSR2との間隔Gyが各ショット領域SR1,SR2の寸法MG×ALよりも大きくなると、シートSHの無駄が多くなり過ぎるので、MG×(2×AL-GP)>SLであることが好ましい。
 図11に示す第5走査露光例では、基板長SLと投影倍率MGとパターン長ALとが、次の式(5)に示す関係を満足している。換言すれば、第5走査露光例では、互いに隣り合う一対のショット領域SR1とSR2との間隔Gyが0になるように、ひいては隣り合う一対のショット領域SR1とSR2とが互いに接するように設定されている。
  SL=MG×(AL-GP)   (5)
 したがって、第5走査露光例では、マスクMのY方向に沿った往復移動(スキャン移動および折り返し移動)を複数回に亘って繰り返すことにより、図6に示すように、所定の経路に沿って一定の速度で継続的に移動するシートSH上に、マスクMのパターンが転写されたショット領域SR1とショット領域SR2とが互いに接するように交互に形成され、ひいては長尺方向(Y方向)に所望の長さを有する切れ目のない1つのショット領域SRが形成される。
 図12に示す第6走査露光例では、基板長SLと投影倍率MGとパターン長ALとが、次の式(6)に示す関係を満足している。換言すれば、第6走査露光例では、隣り合う一対のショット領域SR1とSR2とが部分的に重なり合うように設定されている。図12では、隣り合う一対のショット領域SR1とSR2との重複部分の走査方向に沿った寸法を、MG×OPで表している。
  SL<MG×(AL-GP)   (6)
 したがって、第6走査露光例においても第5走査露光例の場合と同様に、マスクMのY方向に沿った往復移動(スキャン移動および折り返し移動)を複数回に亘って繰り返すことにより、図6に示すように、所定の経路に沿って一定の速度で継続的に移動するシートSH上に、マスクMのパターンが転写されたショット領域SR1とショット領域SR2とが互いに部分的に重複するように交互に形成され、ひいては長尺方向(Y方向)に所望の長さを有する切れ目のない1つのショット領域SRが形成される。
 こうして、第2実施形態においても、マスクMを+Y方向へ1回スキャン移動させることにより、所定の経路に沿って一定の速度で継続的に移動するシートSH上のショット領域SR1へのマスクパターンの第1投影像の走査露光とショット領域SR2へのマスクパターンの第2投影像の走査露光とをほぼ同時に行うことができる。また、マスクMのY方向に沿った往復移動を複数回に亘って繰り返すことにより、シートSH上にショット領域SR1とショット領域SR2とを交互に連続形成することができる。
 第2実施形態では、式(4)に示す関係を満足するパターン長ALのパターン領域PAが形成されたマスクMを用いる第4走査露光例により、ショット領域SR1に転写される第1転写パターンとショット領域SR2に転写される第2転写パターンとを間隔を隔てて複数形成することができる。また、式(5)または式(6)に示す関係を満足するパターン長ALのパターン領域PAが形成されたマスクMを用いる第5走査露光例または第6走査露光例により、ショット領域SR1に転写される第1転写パターンとショット領域SR2に転写される第2転写パターンとを連続して繰り返し形成することができる。
 なお、第1実施形態における式(1)~式(3)と第2実施形態における式(4)~式(6)とを比較すると、中心間隔GPが0のとき、式(1)と式(4)とが一致し、式(2)と式(5)とが一致し、式(3)と式(6)とが一致することがわかる。すなわち、第1実施形態では、実際には単一の照明領域IRが形成されるが、一対の照明領域IR1とIR2とが中心間隔GP=0で互いに重なり合って形成されているものと考えることもできる。
 図13は、本発明の第3実施形態にかかる露光装置の構成を概略的に示す図である。第3実施形態は第2実施形態と類似の構成を有するが、第3実施形態では走査露光に際してマスクMとシートSHとが互いに同じ向きに移動する点、および投影光学系PLの内部構成が第2実施形態と相違している。したがって、図13では、第2実施形態における構成要素と同様の機能を有する要素に、図9と同じ参照符号を付している。以下、第2実施形態との相違点に着目して、第3実施形態の構成および作用を説明する。
 第3実施形態の露光装置において、投影光学系PLは、中間結像光学系GMと、第1結像光学系G1と、第2結像光学系G2とを備えている。中間結像光学系GMは、マスクMのパターン領域(図13では不図示)において第1照明領域IR1により照明された第1パターンの第1中間像I1を形成し、且つ第2照明領域IR2により照明された第2パターンの第2中間像I2を形成する。第1結像光学系G1は第1中間像I1からの光に基づいてシートSH上の第1投影領域ER1に第1パターンの第1投影像を形成し、第2結像光学系G2は第2中間像I2からの光に基づいてシートSH上の第2投影領域ER2に第2パターンの第2投影像を形成する。
 投影領域ER1およびER2には、第1投影像および第2投影像として、投影光学系PLの投影倍率MGで第1パターンおよび第2パターンを拡大した形状を有する拡大像が形成される。具体的に、第1投影像は第1照明領域IR1内の第1パターンのY方向(走査方向)に正立した像であり、第2投影像は第2照明領域IR2内の第2パターンのY方向に正立した像である。したがって、第3実施形態では、走査露光に際して、マスクMとシートSHとが互いに同じ向き(+Y方向の向き)に移動する。第3実施形態における走査露光の動作は、走査露光に際してマスクMとシートSHとが互いに同じ向きに移動する点を除いて第2実施形態における走査露光の動作と同様であり、重複する説明を省略する。
 第3実施形態では、中間結像光学系GMが例えば1.25倍の拡大倍率を有し、第1結像光学系G1および第2結像光学系G2が例えば2倍の拡大倍率を有する。この場合、中間拡大像I1,I2の形成により、収差の発生を小さく抑えつつ投影光学系PLの所要の拡大倍率MGを確保することができる。また、第3実施形態では、中間像I1,I2の形成位置の近傍に配置される偏向部材(例えば三角プリズムPR)による光路分離が容易である。
 図14は、本発明の第4実施形態にかかる露光装置の構成を概略的に示す図である。第4実施形態は第3実施形態と類似の構成を有するが、投影光学系PLの内部構成が第3実施形態と相違している。したがって、図14では、第3実施形態における構成要素と同様の機能を有する要素に、図13と同じ参照符号を付している。以下、第3実施形態との相違点に着目して、第4実施形態における投影光学系PLの構成を説明する。
 第3実施形態の投影光学系PLでは、第1投影領域ER1の走査方向(Y方向)に沿った中心が第1結像光学系G1の光軸よりも外側に位置し、第2投影領域ER2のY方向に沿った中心が第2結像光学系G2の光軸よりも外側に位置している。これに対し、第4実施形態の投影光学系PLでは、第1投影領域ER1のY方向に沿った中心が第1結像光学系G1の光軸よりも内側に位置し、第2投影領域ER2のY方向に沿った中心が第2結像光学系G2の光軸よりも内側に位置している。
 こうして、第4実施形態では、図13と図14とを比較して明らかなように、第1投影領域ER1から第2投影領域ER2までのシートSHの基板長SLが小さくなる。その結果、シートSHの長手方向に沿った各ショット領域SR1,SR2の寸法MG×ALを、ひいてはマスクMに設けるべきパターン領域PAの走査方向に沿った寸法すなわちパターン長ALを小さくすることができる。
 図15は、本発明の第5実施形態にかかる露光装置の構成を概略的に示す図である。第5実施形態は、第4実施形態と類似の構成を有するが、第1投影領域ER1と第2投影領域ER2との間に迂回経路を設けている点が第4実施形態と相違している。したがって、図15では、第4実施形態における構成要素と同様の機能を有する要素に、図14と同じ参照符号を付している。以下、第4実施形態との相違点に着目して、第5実施形態の構成および作用を説明する。
 第1乃至第4実施形態では、シートSHが第1投影領域ER1と第2投影領域ER2との間をY方向に沿って延びる直線経路に沿って移動している。これに対し、第5実施形態では、第1投影領域ER1と第2投影領域ER2との間の経路の途中に、X方向に延びる軸線廻りに回転する複数のローラーを備えた調整機構50が設けられている。第1投影領域ER1と第2投影領域ER2との間に迂回経路を形成する調整機構50は、Y方向に沿ったローラー間隔を調整する間隔調整部50aを有する。
 第5実施形態では、第1投影領域ER1から第2投影領域ER2までのシートSHの基板長SLは、第1投影領域ER1と第2投影領域ER2との間のY方向に沿った距離SLaよりも、調整機構50に対応する迂回経路の分だけ長くなる。換言すれば、第5実施形態では、第1投影領域ER1を経由したシートSHの領域を、迂回経路を介して第2投影領域ER2まで移動させる構成を採用している。その結果、投影光学系PLの構成により距離SLaが小さく制限される場合であっても、迂回経路の作用により所要の基板長SLを確保することができる。
 また、第5実施形態では、調整機構50の間隔調整部50aの作用により迂回経路中のシートSHの長さを調整し、ひいては第1投影領域ER1から第2投影領域ER2までのシートSHの基板長SLを調整する構成を採用している。したがって、マスクMの交換によりパターン領域PAのパターン長ALを変化させなくても、投影倍率MGおよび中心間隔GPに基づいて、式(4)に示す関係、式(5)に示す関係、または式(6)に示す関係を満足するように、第1投影領域ER1から第2投影領域ER2までのシートSHの基板長SLを調整することができる。
 その結果、式(4)に示す関係を満足する第4走査露光例により、ショット領域SR1に転写される第1転写パターンとショット領域SR2に転写される第2転写パターンとを間隔を隔てて複数形成することができる。また、式(5)または式(6)に示す関係を満足する第5走査露光例または第6走査露光例により、ショット領域SR1に転写される第1転写パターンとショット領域SR2に転写される第2転写パターンとを連続して繰り返し形成することができる。
 このことは、所定の経路に沿って一定の速度で継続的に移動するシートSHに対して、第4走査露光例による個別転写と第5走査露光例または第6走査露光例による連結転写とを随時切り換えることができること、および第5走査露光例または第6走査露光例による連結転写における繰り返し回数を適時選択することができることを意味している。すなわち、第5実施形態では、図16に示すように、領域長が互いに異なる第1転写パターン領域SP1と第2転写パターン領域SP2とをシートSH上に順次形成することができる。
 図16に示す2つの転写パターン領域SP1とSP2とでは、シートSHの短手方向(長手方向と直交する方向)に沿った領域幅RW1とRW2とが同じであるが、シートSHの長手方向に沿った領域長RL1とRL2とが相互に異なっている。このように領域長が互いに異なる2つの転写パターン領域SP1およびSP2は、第1転写パターン領域SP1を形成する際の基板長SL1(符号は不図示)と、第2転写パターン領域SP2を形成する際の基板長SL2(符号は不図示)とを相互に異なる長さに設定することにより形成される。この場合、具体的には、基板長SL1が式(5)または式(6)を満足し且つ基板長SL2が式(4)を満足するように設定するか、あるいは基板長SL1が式(4)を満足し且つ基板長SL2が式(5)または式(6)を満足するように設定する。
 図示を省略するが、例えばマスクブラインドMBの作用により第1照明領域IR1のX方向の大きさと第2照明領域IR2のX方向の大きさとを相互に異なる大きさに設定し、ひいては第1投影領域ER1のX方向の大きさと第2投影領域ER2のX方向の大きさとを相互に異なる大きさに設定することによって、領域幅が互いに異なる2つの転写パターン領域をシートSH上に順次形成することもできる。この場合、マスクブラインドMBに代えて、あるいはマスクブラインドMBに加えて、マスクMのパターン面の近傍位置、マスクMのパターン面と光学的に共役な共役位置(例えば中間像の形成位置)、またはこの共役位置の近傍などに配置された視野絞りを用いることもできる。
 第5実施形態では、第1乃至第4実施形態と同様に、マスクMを+Y方向へ1回スキャン移動させることにより、所定の経路に沿って一定の速度で継続的に移動するシートSH上のショット領域SR1へのマスクパターンの第1投影像の走査露光とショット領域SR2へのマスクパターンの第2投影像の走査露光とを並列的に行うことができる。
 また、マスクMのY方向に沿った往復移動を複数回に亘って繰り返すことにより、シートSH上にショット領域SR1とショット領域SR2とを交互に連続形成することができる。
 すなわち、第5実施形態では、ロール・ツー・ロールで搬送されるシートSHへの走査露光にかかるスループットを向上させることができる。
 また、第5実施形態では、式(4)に示す関係を満足する第4走査露光例により、第1投影領域ER1の走査露光によりショット領域SR1に転写される第1転写パターンと、第2投影領域ER2の走査露光によりショット領域SR2に転写される第2転写パターンとを間隔を隔てて複数形成することができる。
 また、式(5)または式(6)に示す関係を満足する第5走査露光例または第6走査露光例により、ショット領域SR1に転写される第1転写パターンとショット領域SR2に転写される第2転写パターンとを連続して繰り返し形成することができる。
 特に、第5実施形態では、第1転写パターン領域SP1を形成する際の基板長SL1(符号は不図示)と、第2転写パターン領域SP2を形成する際の基板長SL2(符号は不図示)とを相互に異なる長さに設定することにより、領域長が互いに異なる2つの転写パターン領域SP1およびSP2を順次形成することができる。
 なお、第5実施形態では、第1投影領域ER1と第2投影領域ER2との間に、複数のローラーの作用によりYZ平面に沿って迂回する経路を形成している。しかしながら、これに限定されることなく、迂回経路の具体的な構成については様々な形態が可能である。例えば、ローラー側面(円筒面)に沿ったシートの折り曲げにより、2つの投影領域間でシートの長尺方向を偏向させる構成も可能である。この場合、第1投影領域と第2投影領域とは、例えばローラー側面の異なる位置に対して設けられ、各投影領域に対する投影光学系の光軸は互いに平行にはならなくなる。
 図17乃至図20に示すように、第1乃至第4実施形態の構成において第1投影領域ER1と第2投影領域ER2との間の経路の途中に調整機構50を付設することにより、第5実施形態と同様の効果を得ることも可能である。図17乃至図20に示す変形例では、調整機構50の作用により投影倍率MGおよび中心間隔GPに基づいて第1投影領域ER1から第2投影領域ER2までのシートSHの基板長SLを調整することができるので、領域長が互いに異なる2つの転写パターン領域をシートSH上に順次形成することができる。
 また、図17乃至図20に示す変形例では、視野絞りの作用により第1投影領域ER1のX方向の大きさと第2投影領域ER2のX方向の大きさとを相互に異なる大きさに設定することによって、領域幅が互いに異なる2つの転写パターン領域をシートSH上に順次形成することができる。ただし、図17に示す例では、第1投影領域ER1と第2投影領域ER2とに共通の単一照明領域IRが形成されるので、第1投影領域ER1のX方向の大きさと第2投影領域ER2のX方向の大きさとを相互に異なる大きさに設定するために、照明領域IRと第1投影領域ER1との間の光路中に配置された第1視野絞りおよび照明領域IRと第2投影領域ER2との間の光路中に配置された第2視野絞りを備える必要がある。
 なお、上述の説明では、単一のパターン領域PAが設けられたマスクMに基づいて走査露光例を説明している。しかしながら、これに限定されることなく、例えば図21に示すように中央パターン領域PAcが一対の端パターン領域PAaとPAbとに挟まれた形態のマスクMを用いた走査露光も可能である。以下、図22乃至図32を参照して、図21に示すマスクMと、例えば図15に示す投影光学系PLとを用いる第7走査露光例を説明する。
 図21を参照すると、マスクM上には、例えばY方向に細長い矩形状の中央パターン領域PAcと、中央パターン領域PAcの+Y方向側に隣接してX方向に延びる直線状の遮光帯51aと、遮光帯51aの+Y方向側に隣接してX方向に細長い矩形状の第1端パターン領域PAaと、中央パターン領域PAcの-Y方向側に隣接してX方向に延びる直線状の遮光帯51bと、遮光帯51bの-Y方向側に隣接してX方向に細長い矩形状の第2端パターン領域PAbとが設けられている。マスクMは、その中心を通ってX方向に延びる直線およびY方向に延びる直線に関して対称に形成されている。
 中央パターン領域PAc、および一対の端パターン領域PAa,PAbにおいて図中破線52で示す領域には、表示パネル用の表示部パターンのような繰り返しパターンが形成されている。具体的には、後述するように、シートSH上に形成すべき転写パターンのうち、シートSHの長尺方向(Y方向)に沿った始端部分に対応するパターン(例えば主として周辺回路パターン)が第1端パターン領域PAaに形成され、転写パターンの中央部分に対応するパターン(例えば主として表示部パターン)が中央パターン領域PAcに形成され、転写パターンの終端部分に対応するパターン(例えば主として周辺回路パターン)が第2端パターン領域PAbに形成されている。マスクMにおいて、中央パターン領域PAcの走査方向(Y方向)に沿った寸法、すなわちパターン長はALである。
 第7走査露光例の説明では、動作の理解を容易するために、照明領域IR1,IR2、および投影領域ER1,ER2の形状が走査露光に際して一定(不変)であり、照明領域IR1,IR2の-Y方向側の端部(辺)がパターン領域PA,PAa,PAbの+Y方向側の端部(辺)に達したときに走査露光が開始され、照明領域IR1,IR2の+Y方向側の端部がパターン領域PA,PAa,PAbの-Y方向側の端部に達したときに走査露光が完了するものとする。
 第7走査露光例では、先ず、第2照明領域IR2による第1端パターン領域PAaの走査露光を行う。照明領域IR2による走査露光に際して、照明領域IR2が第1端パターン領域PAaの+Y方向側の端部に位置する始動位置から-Y方向側の端部に位置する終了位置に達するまで、第1端パターン領域PAaが照明領域IR2によって走査されるように、マスクM(ひいてはマスクステージMS)が+Y方向に向かって所要の速度で移動する。マスクMの+Y方向へのスキャン移動に同期して、所要のショット領域が第2投影領域ER2によって走査されるように、シートSHが経路に沿って+Y方向へ移動する。このとき、第1投影領域ER1にパターンの投影像が形成されないようにする。
 図22は、照明領域IR2による第1端パターン領域PAaの走査が終了した時点の様子を示している。こうして、シートSHには、第1端パターン領域PAaに対応するパターンSAaが転写される。次いで、図23に示すように、照明領域IR1が中央パターン領域PAcの+Y方向側の端部よりも外側へ移動するように、すなわち照明領域IR1が中央パターン領域PAcへの走査露光の始動位置よりも+Y方向側へ戻るように、マスクMを-Y方向へ折り返し移動させる。そして、照明領域IR2による第1端パターン領域PAaの走査露光の終了時から照明領域IR1による中央パターン領域PAcの走査露光の開始時まで、投影領域ER1,ER2にパターンの投影像が形成されないようにする。以下、説明の簡素化のために、投影領域ER1,ER2への投影像の形成にかかる制御についての説明を省略する。
 次いで、照明領域IR1による中央パターン領域PAcの走査露光を開始する。照明領域IR1による走査露光に際して、照明領域IR1が中央パターン領域PAcの+Y方向側の端部に位置する始動位置から-Y方向側の端部に位置する終了位置に達するまで、中央パターン領域PAcが照明領域IR1によって走査されるように、マスクMが+Y方向に移動する。照明領域IR1による走査露光の開始時から一定時間だけ遅れて、照明領域IR2による中央パターン領域PAcの走査露光を開始する。照明領域IR2による走査露光に際して、照明領域IR2が中央パターン領域PAcの+Y方向側の端部に位置する始動位置から-Y方向側の端部に位置する終了位置に達するまで、中央パターン領域PAcが照明領域IR2によって走査されるように、マスクMは+Y方向に移動する。
 図24は、照明領域IR1による中央パターン領域PAcの走査を開始する時点の様子を示している。図25は、照明領域IR1による中央パターン領域PAcの走査を開始した後であって照明領域IR2による中央パターン領域PAcの走査を開始する前の時点の様子を示している。第7走査露光例では、図25に示すように、投影領域ER1の走査による中央パターン領域PAcのパターンSA1が、第1端パターン領域PAaのパターンSAaとの間に重複部OL1を形成するようにシートSH上に転写される。図示を省略したが、パターンSAaと接するようにパターンSA1を転写することもできる。
 図26は、照明領域IR1による中央パターン領域PAcの走査と照明領域IR2による中央パターン領域PAcの走査とが同時に進行している様子を示している。図27は、照明領域IR1による中央パターン領域PAcの走査を終了する直前の様子を示している。図28は、照明領域IR1による中央パターン領域PAcの走査を終了した時点の様子を示している。第7走査露光例では、図28に示すように、投影領域ER2の走査による中央パターン領域PAcのパターンSA2が、投影領域ER1の走査による中央パターン領域PAcのパターンSA1との間に重複部OL2を形成するようにシートSH上に転写される。図示を省略したが、パターンSA1と接するようにパターンSA2を転写することもできる。
 やがて、照明領域IR2による中央パターン領域PAcの走査が終了すると、図29に示すように、照明領域IR1が第2端パターン領域PAbの+Y方向側の端部よりも外側へ移動するように、すなわち照明領域IR1が第2端パターン領域PAbへの走査露光の始動位置よりも+Y方向側へ戻るように、マスクMを-Y方向へ折り返し移動させる。次いで、照明領域IR1による第2端パターン領域PAbの走査露光を開始する。照明領域IR1による走査露光に際して、照明領域IR1が第2端パターン領域PAbの+Y方向側の端部に位置する始動位置から-Y方向側の端部に位置する終了位置に達するまで、第2端パターン領域PAbが照明領域IR1によって走査されるように、マスクMが+Y方向に移動する。
 図30は、照明領域IR1による第2端パターン領域PAbの走査を開始する時点の様子を示している。図31は、照明領域IR1による第2端パターン領域PAbの走査を終了した時点の様子を示している。第7走査露光例では、図31に示すように、投影領域ER1の走査による第2端パターン領域PAbのパターンSAbが、投影領域ER2の走査による中央パターン領域PAcのパターンSA2との間に重複部OL3を形成するようにシートSH上に転写される。図示を省略したが、パターンSA2と接するようにパターンSAbを転写することもできる。
 こうして、第7走査露光例では、図32に示すような転写パターン領域SPがシートSH上に形成される。転写パターン領域SPは、シートSHの長尺方向(図32中水平方向)に沿って、先頭側(図32中右側)から順に、第1端パターン領域PAaに対応する転写パターンSAaと、中央パターン領域PAcに対応する一対の転写パターンSA1およびSA2と、第2端パターン領域PAbに対応する転写パターンSAbとを有する。ここで、転写パターンSA1とSA2とは互いに同じパターンである。
 また、照明領域IR1による中央パターン領域PAcの走査と照明領域IR2による中央パターン領域PAcの走査とを並列的に行う動作を繰り返すこと(ひいてはマスクMのY方向に沿った往復移動を複数回に亘って繰り返すこと)により、相互に連結された転写パターンSA1とSA2とからなる連結転写パターン領域(SA1,SA2)をシートSH上に連続して形成することができる。その結果、図示を省略したが、第1端パターン領域PAaに対応する転写パターンSAaと第2端パターン領域PAbに対応する転写パターンSAbとの間に、中央パターン領域PAcに対応する連結転写パターン領域(SA1,SA2)を所望数だけ連続して形成することもできる。
 電子表示デバイスの製造に第1走査露光例または第4走査露光例を適用することにより、図33において参照符号61で示すように、既定サイズAのディスプレーのための転写パターン領域を1面づつ間隔を隔てて形成することができる。なお、図33において、太い実線で示す外側の長方形はデバイスの単位領域(露光領域)を示し、破線で示す内側の長方形は表示部の転写パターン領域を示している。したがって、実線で示す長方形と破線で示す長方形との間の領域は、周辺回路の転写パターンに対応している。
 また、第2走査露光例、第3走査露光例、第5走査露光例または第6走査露光例を適用することにより、参照符号62で示すように既定サイズBのディスプレーのための転写パターン領域を2面取りしたり、参照符号63で示すように任意サイズ(縦長)のディスプレーのための転写パターン領域を2面取りしたりすることができる。さらに、第7走査露光例を適用することにより、参照符号64で示すように、任意サイズ(超横長)のディスプレーのための転写パターン領域を2面取りすることができる。なお、場合によっては、表示部パターンの走査露光工程を終えた後に、周辺回路パターンの走査露光工程を行っても良い。
 図34および図35に示すように、走査方向(Y方向)と直交する方向(X方向)に沿って千鳥状に配列された拡大倍率を有する複数の投影光学系を用いて、マスクMのパターン像をシートSH上に拡大投影するマルチ走査露光を行うこともできる。図34では、例えば図15に示す投影光学系PLを4つ並列的に配置した例を示しているが、マルチ走査露光のために投影領域ER1,ER2が台形状に整形され、ひいては照明領域IR1,IR2も台形状に整形されている。台形状の投影領域ER1,ER2の両端の三角形状領域は、隣り合う2つの投影光学系の間でY方向に見て重なり合っており、シートSH上における転写パターン領域の重複部OL4を形成する。
 図34において、参照符号Swは、両端の投影領域ER1,ER2の外側の三角形状領域を除く露光可能部分のX方向寸法であり、いわゆる最大露光幅を示している。参照符号Smcは、X方向に隣り合う2つの投影光学系PLのマスク側光軸のY方向に沿った距離、すなわちX方向に隣り合う2つの照明領域対IR1,IR2の中心位置のY方向に沿った距離を示している。この場合、図35に示すように、マスクMには、4つのパターン領域PAがX方向に間隔を隔てて千鳥状に設けられる。具体的に、X方向に隣り合う2つのパターン領域PAの中心は、Y方向に沿ってSmc/(1-1/MG)だけ相互に位置ずれしている。
 これは、隣り合う2つの投影光学系のうち、一方の投影光学系を介して形成される転写パターンの開始位置と、他方の投影光学系を介して形成される転写パターンの開始位置とを一致させるためである。X方向に隣り合う2つのパターン領域PAの中心は、投影倍率MGに応じた距離だけY方向に離間している。マルチ走査露光において隣り合う2つのパターン領域を走査方向に沿って千鳥状に配置する構成について、例えば、国際公開第2007/108420号の開示を参照することができる。
 マルチ走査露光では、第1投影光学系により第1投影領域に投影される拡大像の大きさを規定する第1視野絞りの幅方向の絞り径と、第2投影光学系により第2投影領域に投影される拡大像の大きさを規定する第2視野絞りの幅方向の絞り径とを相互に異なる大きさに設定することにより、領域幅が相互に異なる2つの転写パターン領域が順次形成される。
 また、上述の実施形態では、所定幅の長尺シート上に電子表示デバイス用のパターンを長尺方向に複数形成する際に、長尺シート上に形成すべき電子表示デバイスの個数および表示部サイズに関すパラメータを、露光装置を制御するコンピュータに設定する。
 そして、上記パラメータにより、表示部サイズの異なる複数種の表示デバイス用パターンの露光が指定されたときは、長尺シートに露光される表示デバイス用パターンが表示部サイズの順に長尺方向に並ぶように露光装置を制御する。
 また、コンピュータに設定する表示部サイズに関するパラメータとして、複数の既定サイズを初期値として用意する。
 コンピュータは、設定された複数の既定サイズと、各既定サイズ毎のデバイス個数、及び各デバイス用パターン間の長尺方向の間隔とに基づいて、必要とされる長尺シートの必要な長さを算定する。
 また、表示部サイズに関するパラメータをコンピュータに設定するインターフェースには、予め用意された複数の既定サイズから2つ以上を選択可能とする入力フォームと、任意サイズの表示デバイス用パターンの露光のためのサイズ値入力フォームとを含む。
 なお、上述の実施形態では、図1、図9、図13~図15などに示す特定の構成を有する投影光学系PLに基づいて本発明を説明している。しかしながら、投影光学系の具体的な構成については、様々な形態が可能である。
 また、上述の実施形態では、照明系IL中のマスクブラインドMBの作用により、マスクM上に形成される照明領域IR(IR1,IR2)の形状を規定し、ひいてはシートSH上に形成される投影領域ER1,ER2の形状を規定している。しかしながら、前述したように、マスクブラインドMBに代えて、例えば第1中間像I1の形成位置またはその近傍に第1可変視野絞り(不図示)を配置し、第2中間像I2の形成位置またはその近傍に第2可変視野絞り(不図示)を配置する構成も可能である。また、マスクブラインドMBに加えて、例えば第1中間像I1の形成位置またはその近傍に第1可変視野絞りを配置し、第2中間像I2の形成位置またはその近傍に第2可変視野絞りを配置する構成も可能である。
 また、上述の実施形態では、マスクMの走査方向(Y方向)とシートSHの走査方向(Y方向)とが同じ方向(必ずしも同じ向きではない)である。しかしながら、マスクの走査方向と長尺基板の走査方向とは同じ方向である必要はなく、投影光学系の構成に応じて様々な形態が可能である。
 また、上述の実施形態では、マスクMのパターンをシートSHに投影露光(転写)するパターン形成方法に本発明を適用しているが、これに限定されることなく、例えばプロキシミティ露光やインクジェットによるパターン形成に対しても同様に本発明を適用することができる。
 したがって、本発明では、長尺基板上に該長尺基板の長尺方向に沿って複数のパターン領域を形成するパターン形成方法において、前記長尺基板を前記長尺方向の一方側に移動させることと、前記長尺方向の一方側に移動されている前記長尺基板に第1パターン領域及び第2パターン領域を順次形成することと、を含み、前記第1パターン領域と前記第2パターン領域とは、前記長尺方向の領域長と前記長尺方向に直交する幅方向の領域幅との少なくとも一方が相互に異なることが重要である。
 上述の実施形態の露光装置は、各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。
 上述の実施形態にかかる露光装置を用いて、半導体デバイス、液晶デバイスなどを製造することができる。図36は、半導体デバイスの製造工程を示すフローチャートである。図36に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の露光装置を用い、マスクMに形成されたパターンをウェハ上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。
 その後、ステップS46によってウェハの表面に生成されたレジストパターンをウェハ加工用のマスクとし、ウェハの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層(転写パターン層)であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハの表面の加工を行う。ステップS48で行われる加工には、例えばウェハの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。このようにステップS46,S48では、ステップS44によってパターンが転写されたウェハが処理される。なお、ステップS44では、上述の実施形態の露光装置は、フォトレジストが塗布されたウェハを感光性基板としてパターンの転写を行う。
 図37は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図37に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、感光性基板としてフォトレジストが塗布されたガラス基板上に、上述の実施形態の露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、このパターンが転写された感光性基板を処理する処理工程とが含まれている。また、この感光性基板を処理する処理工程には、パターンが転写された感光性基板の現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層(転写パターン層)を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。なお、この加工工程におけるガラス基板の表面の加工には、ガラス基板の表面をエッチングすること、またはガラス基板の表面に所定の材料を蒸着もしくは塗布すること等が含まれる。
 ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
 また、本発明は、半導体デバイスまたは液晶デバイス製造用の露光装置への適用に限定されることなく、例えば、有機ELディスプレイ、プラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
50 調整機構
50a 間隔調整部
LS 光源
IL 照明系
IR,IR1,IR2 照明領域
ER1,ER2 投影領域
M マスク
MS マスクステージ
PL 投影光学系
SH 帯状のシート(長尺基板)
SC 移動機構
DR1,DR2 駆動制御系
CR 主制御系

Claims (28)

  1. 第1面に配置されるパターンの像を長尺基板に投影して該長尺基板に前記パターンを転写する露光方法であって、
     前記パターンを前記第1面に沿って第1方向に移動させることと、
     前記パターンのうち前記第1面の第1部分領域に配置される第1部分パターンの拡大像を第1投影領域に所定倍率で投影することと、
     前記パターンのうち前記第1部分領域から前記第1方向に所定の中心間隔を置いた第2部分領域に配置される第2部分パターンの拡大像を、前記第1投影領域と異なる第2投影領域に前記所定倍率で投影することと、
     前記パターンの前記第1方向への移動に同期して、前記第1投影領域及び前記第2投影領域を経由するように前記長尺基板を該長尺基板の長尺方向に沿って移動させることと、
     前記所定倍率及び前記中心間隔に基づいて、前記パターンの前記第1方向に沿ったパターン長と、前記第1投影領域から前記第2投影領域までの前記長尺基板の基板長との少なくとも一方を設定することと、
    を含むことを特徴とする露光方法。
  2. 前記パターン長と前記基板長との少なくとも一方を設定することは、前記パターン長ALと、前記基板長SLと、前記所定倍率MGと、前記中心間隔GPとの間に、
     0<SL≦MG×(AL-GP)
    の関係を満足させることを特徴とする請求項1に記載の露光方法。
  3. 前記パターンの前記第1方向に関する両端部の領域には、互いに同一形状のパターンが形成されていることを特徴とする請求項2に記載の露光方法。
  4. 前記パターンは、前記第1方向の前記パターン長に亘って該第1方向に周期性を有する周期パターンを含むことを特徴とする請求項2に記載の露光方法。
  5. 前記パターンを前記第1方向に移動させることは、前記パターンと前記第1方向に隣り合う補助パターンを前記第1面に沿って前記第1方向に移動させることを含み、
     前記補助パターンのうち前記第1部分領域または前記第2部分領域に配置される部分補助パターンの拡大像を前記第1投影領域または前記第2投影領域に前記所定倍率で投影することにより前記長尺基板上に形成される補助転写パターンと、前記第1部分パターンの拡大像を前記第1投影領域に投影することにより前記長尺基板上に形成される第1転写パターンと、前記第2部分パターンの拡大像を前記第2投影領域に投影することにより前記長尺基板上に形成される第2転写パターンとが、前記長尺基板上で相互に連結するように露光することを特徴とする請求項2~4のいずれか一項に記載の露光方法。
  6. 相互に連結された前記第1転写パターンと前記第2転写パターンとからなる転写パターン領域を複数回に亘って繰り返し露光することを特徴とする請求項5に記載の露光方法。
  7. 前記パターン長と前記基板長との少なくとも一方を設定することは、前記パターン長ALと、前記基板長SLと、前記所定倍率MGと、前記中心間隔GPとの間に、
     SL>MG×(AL-GP)
    の関係を満足させることを特徴とする請求項1に記載の露光方法。
  8. 前記パターン長と前記基板長との少なくとも一方を設定することは、前記所定倍率及び前記中心間隔に対応する前記パターン長のパターンが形成されたマスクを準備し、該マスクのパターン面を前記第1面に配置することを含むことを特徴とする請求項1~7のいずれか一項に記載の露光方法。
  9. 前記長尺基板を前記長尺方向に沿って移動させることは、前記第1投影領域を経由した前記長尺基板の領域を、迂回経路を介して前記第2投影領域まで移動させることを含み、
     前記パターン長と前記基板長との少なくとも一方を設定することは、前記迂回経路中の前記長尺基板の長さを前記所定倍率及び前記中心間隔に基づいて設定することを含むことを特徴とする請求項1~8のいずれか一項に記載の露光方法。
  10. 前記長尺基板を前記長尺方向に沿って移動させることは、前記長尺基板を前記長尺方向の一方側へ継続的に移動させ、
     前記パターンを前記第1方向に移動させることは、前記パターンを前記第1方向に往復移動させることを特徴とする請求項1~9のいずれか一項に記載の露光方法。
  11. 前記長尺基板を前記長尺方向に沿って移動させることは、前記長尺基板を前記一方側へ第1速度で移動させ、
     前記パターンを前記第1方向に移動させることは、前記第1方向のうち前記長尺方向の前記一方側と光学的に対応する側へ、前記パターンを前記第1速度及び前記所定倍率に基づく第2速度で移動させることを特徴とする請求項10に記載の露光方法。
  12. 第1面に配置されるパターンの像を長尺基板に投影して該長尺基板に前記パターンを転写する露光装置であって、
     前記パターンを前記第1面に沿って第1方向に移動させるステージ機構と、
     前記パターンのうち前記第1面の第1部分領域に配置される第1部分パターンの拡大像を第1投影領域に所定倍率で投影し、且つ前記パターンのうち前記第1部分領域から前記第1方向に所定の中心間隔を置いた第2部分領域に配置される第2部分パターンの拡大像を、前記第1投影領域と異なる第2投影領域に前記所定倍率で投影する投影光学系と、
     前記パターンの前記第1方向への移動に同期して、前記第1投影領域及び前記第2投影領域を経由するように前記長尺基板を該長尺基板の長尺方向に沿って移動させる移動機構と、
     前記所定倍率及び前記中心間隔に基づいて、前記第1投影領域から前記第2投影領域までの前記長尺基板の基板長を調整する調整機構と、
    を備えていることを特徴とする露光装置。
  13. 前記調整機構は、前記第1投影領域と前記第2投影領域との間に設けられた迂回経路を有し、該迂回経路中の前記長尺基板の長さを前記所定倍率及び前記中心間隔に基づいて調整することを特徴とする請求項12に記載の露光装置。
  14. 前記移動機構は、前記長尺基板を前記長尺方向の一方側へ継続的に移動させ、
     前記ステージ機構は、前記パターンを前記第1方向に往復移動させることを特徴とする請求項12または13に記載の露光装置。
  15. 前記移動機構は、前記長尺基板を前記一方側へ第1速度で移動させ、
     前記ステージ機構は、前記第1方向のうち前記長尺方向の前記一方側と光学的に対応する側へ、前記パターンを前記第1速度及び前記所定倍率に基づく第2速度で移動させることを特徴とする請求項14に記載の露光装置。
  16. 請求項1~11のいずれか一項に記載の露光方法を用いて、前記パターンを前記長尺基板に転写する工程と、
     前記パターンが転写された前記長尺基板を処理する工程と、を含むことを特徴とするデバイス製造方法。
  17. 請求項12~15のいずれか一項に記載の露光装置を用いて、前記パターンを前記長尺基板に転写する工程と、
     前記パターンが転写された前記長尺基板を処理する工程と、を含むことを特徴とするデバイス製造方法。
  18. 長尺基板上に該長尺基板の長尺方向に沿って複数のパターン領域を形成するパターン形成方法において、
     前記長尺基板を前記長尺方向の一方側に移動させることと、
     前記長尺方向の一方側に移動されている前記長尺基板に第1パターン領域及び第2パターン領域を順次形成することと、を含み、
     前記第1パターン領域と前記第2パターン領域とは、前記長尺方向の領域長と前記長尺方向に直交する幅方向の領域幅との少なくとも一方が相互に異なることを特徴とするパターン形成方法。
  19. 前記長尺基板を移動させることは、
     第1領域及び第2領域を経由するように前記長尺基板を前記長尺方向の一方側へ移動させることを含み、
     前記第1パターン領域及び前記第2パターン領域を順次形成することは、
     第1面に配置されたパターンを、前記長尺基板の前記一方側への移動に同期して、前記長尺方向に対応する第1方向へ前記第1面に沿って移動させることと、
     前記パターンのうち前記第1面の第1部分領域に配置される第1部分パターンの拡大像を前記第1領域に所定倍率で投影することと、
     前記パターンのうち前記第1部分領域から前記第1方向に所定の中心間隔を置いた第2部分領域に配置される第2部分パターンの拡大像を前記第2領域に前記所定倍率で投影することと、
     前記第1領域から前記第2領域までの前記長尺基板の基板長のうち、前記第1パターン領域を形成する際の第1基板長と、前記第2パターン領域を形成する際の第2基板長とを相互に異なる長さに設定することと、を含むことを特徴とする請求項18に記載のパターン形成方法。
  20. 前記第1基板長と前記第2基板長とを相互に異なる長さに設定することは、前記第1面に配置される前記パターンの前記第1方向に沿ったパターン長ALと、前記第1基板長SL1と、前記第2基板長SL2と、前記所定倍率MGと、前記中心間隔GPとに関して、
     0<SL1≦MG×(AL-GP)
     SL2>MG×(AL-GP)
    の関係を満足させることを特徴とする請求項19に記載のパターン形成方法。
  21. 前記第1基板長と前記第2基板長とを相互に異なる長さに設定することは、前記第1面に配置される前記パターンの前記第1方向に沿ったパターン長ALと、前記第1基板長SL1と、前記第2基板長SL2と、前記所定倍率Mと、前記中心間隔GPとに関して、
     SL1>MG×(AL-GP)
     0<SL2≦MG×(AL-GP)
    の関係を満足させることを特徴とする請求項19に記載のパターン形成方法。
  22. 前記長尺基板を前記長尺方向の一方側へ移動させることは、前記第1領域を経由した前記長尺基板の領域を、迂回経路を介して前記第2領域まで移動させることを含み、
     前記第1基板長と前記第2基板長とを相互に異なる長さに設定することは、前記第1基板長を設定する際の前記迂回経路中の前記長尺基板の長さと、前記第2基板長を設定する際の前記迂回経路中の前記長尺基板の長さとを、前記所定倍率及び前記中心間隔に基づいて、相互に異なる長さに設定することを含むことを特徴とする請求項19~21のいずれか一項に記載のパターン形成方法。
  23. 前記長尺基板を前記長尺方向の一方側へ移動させることは、前記長尺基板を前記一方側へ継続的に移動させ、
     前記パターンを前記第1方向に移動させることは、前記パターンを前記第1方向に往復移動させることを特徴とする請求項19~22のいずれか一項に記載のパターン形成方法。
  24. 前記長尺基板を前記長尺方向の一方側へ移動させることは、前記長尺基板を前記一方側へ第1速度で移動させ、
     前記パターンを前記第1方向に移動させることは、前記第1方向のうち前記長尺方向の前記一方側と光学的に対応する側へ、前記パターンを前記第1速度及び前記所定倍率に基づく第2速度で移動させることを特徴とする請求項23に記載のパターン形成方法。
  25. 前記第1部分パターンの拡大像の前記幅方向に関する第1の大きさと、前記第2部分パターンの拡大像の前記幅方向に関する第2の大きさとを相互に異なる大きさに設定することを含むことを特徴とする請求項19~24のいずれか一項に記載のパターン形成方法。
  26. 前記第1部分パターンの拡大像を投影することは、第1投影光学系によって前記第1部分パターンを前記所定倍率で投影し、
     前記第2部分パターンの拡大像を投影することは、第2投影光学系によって前記第2部分パターンを前記所定倍率で投影し、
     前記第1の大きさと前記第2の大きさとを相互に異なる大きさに設定することは、前記第1投影光学系により投影される拡大像の大きさを規定する第1視野絞りの前記幅方向の絞り径と、前記第2投影光学系により投影される拡大像の大きさを規定する第2視野絞りの前記幅方向の絞り径とを相互に異なる大きさに設定することを特徴とする請求項25に記載のパターン形成方法。
  27. 前記第1パターン領域及び前記第2パターン領域は、電子表示デバイス用パターンが形成された領域であることを特徴とする請求項18~26のいずれか一項に記載のパターン形成方法。
  28. 請求項18~27のいずれか一項に記載のパターン形成方法を用いて、前記パターン領域を前記長尺基板に形成する工程と、
     前記パターン領域が形成された前記長尺基板を処理する工程と、を含むことを特徴とするデバイス製造方法。
PCT/JP2011/052134 2010-02-02 2011-02-02 露光方法、露光装置、パターン形成方法、およびデバイス製造方法 WO2011096428A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011552796A JP5644779B2 (ja) 2010-02-02 2011-02-02 露光方法、露光装置、パターン形成方法、およびデバイス製造方法
CN201180004420.1A CN102612669B (zh) 2010-02-02 2011-02-02 曝光方法、曝光装置、图案形成方法及器件制造方法
HK12112827.0A HK1172100A1 (en) 2010-02-02 2012-12-12 Exposure method, exposure apparatus, pattern forming method, and device manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30059910P 2010-02-02 2010-02-02
US30057410P 2010-02-02 2010-02-02
US61/300,574 2010-02-02
US61/300,599 2010-02-02

Publications (1)

Publication Number Publication Date
WO2011096428A1 true WO2011096428A1 (ja) 2011-08-11

Family

ID=44355424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052134 WO2011096428A1 (ja) 2010-02-02 2011-02-02 露光方法、露光装置、パターン形成方法、およびデバイス製造方法

Country Status (5)

Country Link
JP (1) JP5644779B2 (ja)
KR (1) KR20120116918A (ja)
CN (1) CN102612669B (ja)
HK (1) HK1172100A1 (ja)
WO (1) WO2011096428A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580545B2 (en) 2013-09-25 2020-03-03 Asml Netherlands B.V. Beam delivery apparatus and method
EP4053635A1 (fr) * 2021-03-04 2022-09-07 Altix Préparation d'image pour machine d'insolation de bande et machine d'insolation de bande

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102428750B1 (ko) * 2017-10-19 2022-08-02 사이머 엘엘씨 단일의 리소그래피 노광 패스로 복수의 에어리얼 이미지를 형성하는 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378238A (ja) * 1989-08-22 1991-04-03 Ushio Inc フィルム露光装置
JPH0562878A (ja) * 1991-08-30 1993-03-12 Nikon Corp 投影露光装置
JP2007114385A (ja) * 2005-10-19 2007-05-10 Mejiro Precision:Kk 投影露光装置及びその投影露光方法
WO2007100087A1 (ja) * 2006-03-03 2007-09-07 Nikon Corporation 露光装置及びデバイス製造方法
WO2007141852A1 (ja) * 2006-06-07 2007-12-13 Integrated Solutions Co., Ltd. 露光方法および露光装置
JP2008268950A (ja) * 2007-04-18 2008-11-06 Nikon Corp 投影光学系、露光装置、およびデバイス製造方法
JP2010266495A (ja) * 2009-05-12 2010-11-25 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2010287643A (ja) * 2009-06-10 2010-12-24 Nikon Corp 投影光学装置、露光装置、露光方法およびデバイス製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378238A (ja) * 1989-08-22 1991-04-03 Ushio Inc フィルム露光装置
JPH0562878A (ja) * 1991-08-30 1993-03-12 Nikon Corp 投影露光装置
JP2007114385A (ja) * 2005-10-19 2007-05-10 Mejiro Precision:Kk 投影露光装置及びその投影露光方法
WO2007100087A1 (ja) * 2006-03-03 2007-09-07 Nikon Corporation 露光装置及びデバイス製造方法
WO2007141852A1 (ja) * 2006-06-07 2007-12-13 Integrated Solutions Co., Ltd. 露光方法および露光装置
JP2008268950A (ja) * 2007-04-18 2008-11-06 Nikon Corp 投影光学系、露光装置、およびデバイス製造方法
JP2010266495A (ja) * 2009-05-12 2010-11-25 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2010287643A (ja) * 2009-06-10 2010-12-24 Nikon Corp 投影光学装置、露光装置、露光方法およびデバイス製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580545B2 (en) 2013-09-25 2020-03-03 Asml Netherlands B.V. Beam delivery apparatus and method
EP4053635A1 (fr) * 2021-03-04 2022-09-07 Altix Préparation d'image pour machine d'insolation de bande et machine d'insolation de bande
FR3120454A1 (fr) * 2021-03-04 2022-09-09 Altix Préparation d’image pour machine d’insolation de bande

Also Published As

Publication number Publication date
JPWO2011096428A1 (ja) 2013-06-10
JP5644779B2 (ja) 2014-12-24
CN102612669B (zh) 2015-07-22
HK1172100A1 (en) 2013-04-12
KR20120116918A (ko) 2012-10-23
CN102612669A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4984810B2 (ja) 露光方法、露光装置及びフォトマスク
JP5071385B2 (ja) 可変スリット装置、照明装置、露光装置、露光方法及びデバイス製造方法
JP5534176B2 (ja) 露光装置、露光方法、およびデバイス製造方法
JP2001215718A (ja) 露光装置及び露光方法
JP6755733B2 (ja) マスク、計測方法、露光方法、及び、物品製造方法
US6873400B2 (en) Scanning exposure method and system
WO2007119292A1 (ja) 反射屈折投影光学系、反射屈折光学装置、走査露光装置、マイクロデバイスの製造方法
JP5282895B2 (ja) 露光装置、露光方法、およびデバイス製造方法
JP2007101592A (ja) 走査型露光装置及びマイクロデバイスの製造方法
JP5644779B2 (ja) 露光方法、露光装置、パターン形成方法、およびデバイス製造方法
US6506544B1 (en) Exposure method and exposure apparatus and mask
JP2007279113A (ja) 走査型露光装置及びデバイスの製造方法
JP2008185908A (ja) マスクの製造方法、露光方法、露光装置、および電子デバイスの製造方法
JP5360379B2 (ja) 投影光学系、露光装置、およびデバイス製造方法
JP2011033908A (ja) 露光装置、露光方法及びデバイス製造方法
JP5515323B2 (ja) 投影光学装置、露光装置、およびデバイス製造方法
JP2011075595A (ja) 露光装置、露光方法、およびデバイス製造方法
JP2001215722A (ja) 走査露光方法および走査型露光装置
JP6581417B2 (ja) 露光装置、露光方法及び物品の製造方法
JP5353456B2 (ja) 投影光学装置、露光装置、露光方法およびデバイス製造方法
JP2000298353A (ja) 走査露光方法および走査型露光装置
JP2011118267A (ja) 露光装置、露光方法、およびデバイス製造方法
JP5007538B2 (ja) 露光装置、デバイスの製造方法及び露光方法
WO2020203003A1 (ja) 露光装置、照明光学系、およびデバイス製造方法
JP2008089941A (ja) マスク、露光方法及び表示素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004420.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552796

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127013235

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739776

Country of ref document: EP

Kind code of ref document: A1