WO2007100087A1 - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2007100087A1
WO2007100087A1 PCT/JP2007/054028 JP2007054028W WO2007100087A1 WO 2007100087 A1 WO2007100087 A1 WO 2007100087A1 JP 2007054028 W JP2007054028 W JP 2007054028W WO 2007100087 A1 WO2007100087 A1 WO 2007100087A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
image
field region
exposure apparatus
pattern
Prior art date
Application number
PCT/JP2007/054028
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagasaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP07737676A priority Critical patent/EP1993121A4/en
Priority to JP2008502865A priority patent/JP4973652B2/ja
Publication of WO2007100087A1 publication Critical patent/WO2007100087A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the present invention relates to an exposure apparatus that exposes a substrate and a device manufacturing method.
  • Patent Document 1 discloses a technique related to an exposure apparatus that processes a plurality of substrates in parallel using a plurality of masks!
  • Patent Document 1 Japanese Patent Laid-Open No. 61-161718
  • an exposure apparatus is required to process a substrate with high throughput.
  • it is necessary to prepare multiple masks, which increases costs by preparing multiple masks.
  • the manufacturing cost of the microdevice will increase.
  • An object of the present invention is to provide an exposure apparatus and a device manufacturing method capable of improving throughput while suppressing cost.
  • the present invention adopts the following configuration associated with each drawing shown in the embodiment.
  • the reference numerals with parentheses attached to each element are merely examples of the element and do not limit each element.
  • the exposure apparatus for exposing a substrate has a first visual field area (FA1) and a second visual field area (FA2) different from the first visual field area (FA1).
  • Pattern (PA ) Image on the first image field area (AR1) and the second image field area (AR2), and is patterned by exposure light (EL) through the first field area (FA1).
  • the image of (PA) is formed in the first image field area (AR1)
  • the pattern (PA) image is formed in the second image field area (AR2) by the exposure light (EL) through the second field of view area (FA2).
  • the first substrate (P1) is exposed with the image of the pattern (PA) formed in the first image field area (AR1) and formed in the second image field area (AR2).
  • An exposure apparatus (EX) that exposes the second substrate (P2) with an image of the pattern (PA) to be formed is provided.
  • the first aspect of the present invention it is possible to improve the throughput while suppressing the cost, and to efficiently expose the substrate.
  • a device can be manufactured using an exposure apparatus that can efficiently expose a substrate.
  • the present invention it is possible to improve the throughput while suppressing costs, and to efficiently expose the substrate. Therefore, the device can be manufactured with high productivity.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing a relationship between a mask and a visual field area according to the first embodiment.
  • FIG. 3 A view of the substrate stage with the upward force also seen.
  • FIG. 4 is a schematic block diagram that shows an exposure apparatus according to the second embodiment.
  • FIG. 5 is a cross-sectional view showing a substrate stage according to a second embodiment.
  • FIG. 6A is a diagram showing a relationship between a mask and a visual field area according to a third embodiment.
  • FIG. 6B is a diagram showing a relationship between a mask and a visual field region according to the third embodiment.
  • FIG. 7A is a diagram showing a relationship between a mask and a visual field area according to a fourth embodiment.
  • FIG. 7B is a diagram showing a relationship between a mask and a visual field region according to the fourth embodiment.
  • FIG. 8 is a schematic block diagram that shows an exposure apparatus according to a fifth embodiment.
  • FIG. 9 is a schematic block diagram that shows an exposure apparatus according to a sixth embodiment.
  • FIG. 10 is a flowchart showing an example of a microdevice manufacturing process.
  • IL illumination system
  • M mask
  • ⁇ 1 ⁇ first substrate ⁇ 2 ⁇ second substrate
  • ⁇ 3 ⁇ 3rd substrate ⁇ 4 ⁇ 4th substrate PA ... pattern
  • PL projection optical system
  • S shot area
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system.
  • the predetermined direction in the horizontal plane is the X-axis direction
  • the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction
  • the direction orthogonal to the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the 0 X, 0 Y, and 0 Z directions, respectively.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus EX according to the first embodiment.
  • an exposure apparatus EX includes a mask stage 2 that can move while holding a mask M having a pattern PA, a first substrate stage 4 that can move while holding a first substrate P1, and a first substrate P1.
  • a second substrate stage 5 that can move while holding a different second substrate P2, a measurement system 3 that can measure the position information of each stage, and an illumination system that illuminates the pattern PA of the mask M with exposure light EL IL and the projection optical system PL that projects the image of the pattern PA illuminated by the exposure light EL onto the first substrate P1 and the second substrate P2, respectively, and a control device that controls the overall operation of the exposure apparatus EX 7 And prepare.
  • the first substrate stage 4 and the second substrate stage 5 are on the light exit side of the projection optical system PL, that is, on the image plane side of the projection optical system PL. It is movable on the base member BP.
  • the second substrate stage 5 can move independently of the first substrate stage 4.
  • the substrate herein includes a substrate in which a photosensitive material (photoresist) is coated on a base material such as a semiconductor wafer such as a silicon wafer, and a protective film (topcoat film) separately from the photosensitive film.
  • a photosensitive material photoresist
  • topcoat film topcoat film
  • the mask includes a reticle on which a device pattern to be reduced and projected on a substrate is formed. For example, a predetermined pattern is formed on a transparent plate member such as a glass plate using a light shielding film such as chromium.
  • This transmissive mask is not limited to a binary mask in which a pattern is formed by a light shielding film, and includes, for example, a phase shift mask such as a noise tone type or a spatial frequency modulation type.
  • a force reflection type mask using a transmission type mask as a mask may be used.
  • the projection optical system PL of the present embodiment has a first visual field area FA1 and a second visual field area FA2 that is different from the first visual field area FA1.
  • the first visual field area FA1 and the second visual field area FA2 are separated in the Y-axis direction.
  • the projection optical system PL of the present embodiment places the first image field area AR1 and the second image field area AR2 at predetermined positions on the light emission side of the projection optical system PL, that is, on the image plane side of the projection optical system PL. Set by relationship.
  • the projection optical system PL forms an image of the pattern PA in the first image field area AR1 based on the exposure light EL from the pattern PA of the mask M located in the first visual field area FA1, and the second visual field area. Based on the exposure light EL from the pattern PA of the mask M located in FA2! /, An image of that pattern PA is formed in the second image field area AR2.
  • the exposure apparatus EX of the present embodiment is an image of the pattern PA formed in the first image field area AR1 by the projection optical system PL, and is a show on the first substrate P1 held on the first substrate stage 4.
  • the shot area S on the second substrate P2 held on the second substrate stage 5 is exposed with the image of the no-turn PA formed in the second image field area AR2.
  • the exposure apparatus EX illuminates the pattern PA of the mask M located in the first visual field area FA1 with the exposure light EL emitted from the illumination system IL, and at the same time, mask M located in the second visual field area FA2.
  • the pattern PA is illuminated with the exposure light EL that also emits the illumination system IL force.
  • an image of the pattern PA is formed in the first image field area AR1 formed on the first substrate P1.
  • Projection optical system Based on the exposure light EL from the pattern PA located in the second field area FA2 of the PL, an image of the pattern PA is formed in the second image field area AR2 formed on the second substrate P2.
  • the exposure apparatus EX exposes the first substrate P1 with the image of the pattern PA formed in the first image field area AR1, and exposes the second substrate P2 with the image of the pattern PA formed in the second image field area AR2.
  • the exposure apparatus EX of the present embodiment transfers an image of the pattern PA of the mask M to the first substrate while moving the mask M, the first substrate P1 and the second substrate P2 in synchronization with each other in a predetermined scanning direction.
  • This is a scanning exposure apparatus (so-called scanning stepper) that projects onto P1 and onto the second substrate P2.
  • the scanning direction (synchronous movement direction) of the first substrate P1 and the second substrate P2 is the Y-axis direction.
  • the mask M also moves in the Y-axis direction in synchronization with the movement of the first substrate P1 and the second substrate P2 in the Y-axis direction. That is, in this embodiment, the scanning direction (synchronous movement direction) of the mask M is also the Y-axis direction.
  • the exposure apparatus EX executes the exposure of the first substrate P1 and at least a part of the exposure of the second substrate P2 in parallel.
  • the exposure apparatus EX moves the shot area S of the first substrate P1 with respect to the first image field area AR1 in the Y-axis direction, and the first substrate with an image of the pattern PA formed in the first image field area AR1.
  • the exposure apparatus EX moves the shot area S of the second substrate P2 with respect to the second image field area AR2 in the Y-axis direction, and uses the pattern PA image formed in the second image field area AR2 as the second image.
  • the mask M also moves in the Y-axis direction, and masks the first visual field area FA1 and the second visual field area FA2 of the projection optical system PL.
  • M pattern PA moves in the Y-axis direction.
  • the illumination system IL will be described.
  • the illumination system IL of the present embodiment divides the exposure light EL from one light source device 1 into two exposure lights EL, and each of the divided exposure lights EL is the first field area FA1 of the projection optical system PL. And the second visual field area FA2. As described above, the first visual field area FA1 and the second visual field area FA2 are separated in the Y-axis direction. Illumination system IL irradiates exposure light EL to first visual field area FA1 and second visual field area FA2 which are separated from each other.
  • the control device 7 applies the mask M held on the mask stage 2 to the first field area FA1 and the second field area FA2 of the projection optical system PL.
  • the first field of view in the pattern formation area where the pattern PA of the mask M is formed Each of the two predetermined areas arranged in the area FAl and the second field area FA2 is the exposure light irradiated to each of the first field area FA1 and the second field area FA2 of the projection optical system PL by the illumination system IL. Illuminated by EL.
  • Mask M is held on mask stage 2.
  • the illumination system IL illuminates two predetermined areas on the mask M arranged in the first visual field area FA1 and the second visual field area FA2 with the exposure light EL having a uniform illuminance distribution.
  • the mask stage 2 holds at least the X axis, the Y axis, the Z axis, 0 X, 0 Y, and the mask M by driving the mask stage driving device 2D including an actuator such as a linear motor. And it can move in the direction of 6 degrees of freedom in the 0Z direction.
  • the mask stage 2 holds the mask M so that the pattern forming surface on which the pattern PA of the mask M is formed and the XY plane are substantially parallel.
  • the position information of the mask stage 2 (H! /, Mask M) is measured by the laser interferometer 32 of the measurement system 3.
  • the laser interferometer 32 measures the position information of the mask stage 2 using the reflecting surface 32K of the moving mirror provided on the mask stage 2.
  • the control device 7 drives the mask stage driving device 2 D and controls the position of the mask M held by the mask stage 2.
  • FIG. 2 is a plan view showing the mask M held on the mask stage 2.
  • the mask stage 2 holds the mask M so that the pattern forming surface on which the pattern PA of the mask M is formed and the XY plane are substantially parallel.
  • the first visual field area FA1 and the second visual field area FA2 are separated in the Y-axis direction.
  • the illumination system IL irradiates the exposure light EL to the first visual field area FA1 and the second visual field area FA2 of the projection optical system PL.
  • the control device 7 arranges the pattern formation areas in which the pattern PA of the mask M held by the mask stage 2 is formed in the first visual field area FA1 and the second visual field area FA2.
  • each of the first visual field area FA1 and the second visual field area FA2 irradiated with the exposure light EL having the illumination system IL force is provided by the first opening 15A and the second opening 15B of the blind device 15.
  • the rectangular shape (slit shape) with the X-axis direction as the longitudinal direction is set. That is, the first opening 15A and the second opening 15B have a rectangular shape having a long axis along the X-axis direction.
  • the mask stage 2 can move the mask M having the pattern PA in the Y-axis direction with respect to the first visual field area FA1 and the second visual field area FA2.
  • the control device 7 exposes the first substrate P1 and the second substrate P2, the pattern forming region in which at least the pattern PA is formed in the mask M covers each of the first visual field region FA1 and the second visual field region FA2.
  • the projection optical system PL forms an image of the pattern PA in the first image field area AR1 at a predetermined magnification (projection magnification) based on the exposure light EL from the pattern PA located in the first field area FA1. Based on the exposure light EL from the pattern PA located in the second field area FA2, the image of the pattern PA is formed (projected) in the second image field area AR2 at a predetermined magnification (projection magnification).
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is 1Z4, 1/5, 1Z8 or the like.
  • the projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system. Further, the plurality of optical elements of the projection optical system PL are held by a lens barrel (not shown).
  • the projection optical system PL of the present embodiment includes a first reflecting surface 51 disposed in a first optical path BR1 that is an optical path of the exposure light EL from the first visual field area FA1, An optical member 50 having a second reflecting surface 52 disposed in a second optical path BR2 that is an optical path of the exposure light EL from the second visual field area FA2 is provided.
  • Exposure light EL traveling in the first optical path BR1 from the first visual field area FA1 is guided to the first image field area AR1 via the first reflecting surface 51, and traveling in the second optical path BR2
  • the exposure light EL travels in the second reflecting surface After 52, it is led to the second image area AR2.
  • the projection optical system PL includes a first optical element group 21 that guides the exposure light EL having a pattern PA force to the first reflecting surface 51 and the second reflecting surface 52, and the first reflecting surface 51.
  • the exposure light EL from the pattern PA located in the first visual field area FA1 is guided to the first optical element group 21, is incident on the first reflecting surface 51, is reflected by the first reflecting surface 51, and then is The light is guided to the optical element group 22 and irradiated to the first image field area AR1.
  • an image of the pattern PA positioned in the first visual field area FA1 is formed.
  • the exposure light EL from the pattern PA located in the second visual field area FA2 is guided to the first optical element group 21 and enters the second reflecting surface 52, After being reflected by the second reflecting surface 52, it is guided to the third optical element group 23 and irradiated onto the second image field area AR2.
  • an image of the pattern PA located in the second visual field area FA2 is formed.
  • the first optical element group 21 forms an image of the pattern PA once.
  • the second optical element group 22 includes a first partial group 22A on which the exposure light EL from the first reflecting surface 51 is incident, a second partial group 22B including an optical element facing the first substrate P1, and a first partial group A reflecting member having a reflecting surface 22C for reflecting the exposure light EL through 22A toward the second partial group 22B.
  • the first partial group 22A and the second partial group 22B each form an image of the pattern PA once. Therefore, the number of times of image formation by the optical system arranged between the first visual field area FA1 and the first image field area AR1 is three.
  • the third optical element group 23 includes a third partial group 23A where the exposure light EL from the second reflecting surface 52 is incident, a fourth partial group 23B including an optical element facing the second substrate P2, and a third part. And a reflecting member having a reflecting surface 23C for reflecting the exposure light EL through the group 23A toward the fourth partial group 23B.
  • the third partial group 23A and the fourth partial group 23B each form a non-turn PA image once. Therefore, the number of times of image formation by the optical system arranged between the second visual field area FA2 and the second image field area AR2 is three.
  • the optical member 50 includes a prism.
  • the first reflecting surface 51 and the second reflecting surface 52 are disposed at a position optically conjugate with or near the first visual field area FA1 and the second visual field area FA2.
  • the first reflecting surface 51 and the second reflecting surface 52 are inclined surfaces that are inclined with respect to the XY plane.
  • a line segment (vertex) 53 formed by the intersection of the first reflecting surface 51 and the second reflecting surface 52 is parallel to the X axis.
  • the optical member 50 is formed with a convex portion that protrudes closer to the first optical element group 21 by the first reflecting surface 51 and the second reflecting surface 52.
  • the cross-sectional shape parallel to the YZ plane of the convex portion of the optical member 50 is formed in a V shape by the first reflecting surface 51 and the second reflecting surface 52.
  • the optical axis AX1 of the first optical element group 21 is substantially parallel to the Z axis.
  • the optical axis AX2 of the first partial group 22A of the second optical element group 22 and the optical axis AX4 of the third partial group 23A of the third optical element group 23 are substantially parallel to the Y axis and are coaxial with each other. . Therefore, the optical axis AX1, the optical axis AX2, and the optical axis AX4 intersect at one point.
  • the optical axis AX5 of the subgroup 23B is almost parallel to the Z axis.
  • the optical member 50 is arranged such that the intersection of the optical axis AX1, the optical axis A X2, and the optical axis AX4 and the line segment (vertex) 53 coincide with each other.
  • the first substrate stage 4 will be described.
  • the first substrate stage 4 is supported by the air bearing 4A in a non-contact manner with respect to the upper surface (guide surface) of the base member BP.
  • the first substrate stage 4 is irradiated with the exposure light EL, and an image of the pattern PA is formed.
  • the first substrate P1 can be held and moved within a predetermined area including the image field area AR1.
  • the upper surface of the base member BP is substantially parallel to the XY plane, and the first substrate stage 4 is movable on the base member BP along the XY plane.
  • the first substrate stage 4 includes a substrate holder 4H that holds the first substrate P1.
  • the substrate holder 4H holds the first substrate P1 so that the surface of the first substrate P1 and the XY plane are substantially parallel.
  • the exposure apparatus EX includes a first substrate stage driving device 4D that includes an actuator such as a linear motor for driving the first substrate stage 4.
  • the first substrate stage 4 is driven by the first substrate stage driving device 4D, while holding the first substrate P1 on the substrate holder 4H, on the base member BP, the X axis, Y axis, Z axis, 0 X, It can move in the direction of 6 degrees of freedom in the ⁇ Y and ⁇ Z directions.
  • the control device 7 controls the first substrate stage driving device 4D to control the X axis, Y axis, Z axis, 0 X of the surface of the first substrate P 1 held by the substrate holder 4H of the first substrate stage 4 It is possible to control the position in the direction of 6 degrees of freedom in the 0, 0, and 0Z directions.
  • the second substrate stage 5 has substantially the same configuration as the first substrate stage 4, and is supported in a non-contact manner on the upper surface (guide surface) of the base member BP by the air bearing 5A.
  • the second substrate P2 can be held and moved in a predetermined area including the second image field area AR2 where the EL is irradiated and an image of the pattern PA is formed.
  • the second substrate stage 5 includes a substrate holder 5H that holds the second substrate P2.
  • the substrate holder 5H holds the second substrate P2 so that the surface of the second substrate P2 and the XY plane are substantially parallel.
  • the exposure apparatus EX includes a second substrate stage driving device 5D that includes an actuator such as a linear motor for driving the second substrate stage 5.
  • the second substrate stage 5 holds the second substrate P2 on the substrate holder 5H by driving the second substrate stage driving device 5D.
  • the base member BP can move in six degrees of freedom in the X axis, Y axis, Z axis, 0 X, ⁇ Y, and ⁇ Z directions.
  • the control device 7 controls the second substrate stage driving device 5D, thereby controlling the X axis, Y axis, Z axis, 0 X, and the like of the surface of the second substrate P2 held by the substrate holder 5H of the second substrate stage 5. It is possible to control the position in the direction of 6 degrees of freedom in the 0 Y and 0 Z directions.
  • the position information of the first substrate stage 4 (first substrate P1) is measured by the laser interferometer 34 of the measurement system 3.
  • the laser interferometer 34 measures positional information of the first substrate stage 4 in the X axis, Y axis, and ⁇ Z directions using the reflecting surface 34K provided on the first substrate stage 4.
  • the surface position information of the surface of the first substrate P1 held on the first substrate stage 4 is detected by a focus' leveling detection system (not shown). Is done.
  • the control device 7 drives the first substrate stage driving device 4D on the basis of the measurement result of the laser interferometer 34 and the detection result of the force leveling detection system, and the first substrate stage 4 holds the first substrate stage 4. 1Controls the position of board P1.
  • the position information of the second substrate stage 5 (second substrate P2) is measured by the laser interferometer 35 of the measurement system 3.
  • the laser interferometer 35 measures positional information of the second substrate stage 5 in the X axis, Y axis, and ⁇ Z directions using the reflecting surface 35K provided on the second substrate stage 5.
  • the surface position information of the surface of the second substrate P2 held on the second substrate stage 5 (position information regarding the Z axis, ⁇ X, and ⁇ Y directions) is detected by a focus leveling detection system (not shown). Is done.
  • the control device 7 drives the second substrate stage driving device 5 D based on the measurement result of the laser interferometer 35 and the detection result of the focus / leveling detection system, and the second substrate stage 5 holds the first substrate stage 5. 2Position control of substrate P2.
  • the focus / leveling detection system measures the position information in the Z-axis direction of the substrate at each of the plurality of measurement points.
  • the position information is detected.
  • at least a part of the plurality of measurement points is set in the first and second exposure areas AR1 and AR2, but all the measurement points are in the first and second exposure areas AR1 and AR2. It may be set outside.
  • the exposure apparatus EX has the Z of the first substrate stage 4 and the second substrate stage 5 as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-323404 and Japanese Patent Application Publication No. 2001-513267. Equipped with a laser interferometer (Z interferometer) that can measure axial position information!
  • FIG. 3 is a plan view of the first substrate stage 4 holding the first substrate P1 as seen from the upward force.
  • a plurality of shot areas S (S1 to S21) that are exposure target areas are set in a matrix, and each of the shot areas S1 to S21 is set.
  • a plurality of alignment marks AM are provided to correspond to this.
  • the number and positions of force alignment marks AM that are formed on both sides of the shot area S in the Y-axis direction are not limited to this.
  • the first image field area AR1 on the first substrate P1 is set in a rectangular shape (slit shape) having the X-axis direction as a longitudinal direction.
  • the first image area AR1 irradiated with the first exposure light EL is a projection area of the projection optical system PL.
  • the first substrate stage 4 can move the shot region S on the first substrate P1 in the Y-axis direction with respect to the first image field region AR1.
  • the first substrate P1 is set so that the shot area S (S1 to S21) on the first substrate P1 passes through the first image field area AR1 by the first exposure light EL.
  • Control stage 4 and move the first substrate P1 in the Y-axis direction.
  • control device 7 exposes each of the shot areas S1 to S21 of the first substrate P1, as shown by an arrow yl in FIG. 3, for example, the first image field area AR1 and the first substrate P1
  • the first image field area AR1 is irradiated with the exposure light EL while moving the first substrate P1 and the exposure light EL on the first substrate P1.
  • the control device 7 controls the operation of the first substrate stage 4 so that the first image field area AR1 moves along the arrow yl with respect to the first substrate P1.
  • the controller 7 sequentially exposes a plurality of shot areas S1 to S21 on the first substrate P1 by repeating the scan operation in the Y direction and the scan operation in the + Y direction of the first substrate P1. To do.
  • the second substrate P2 has almost the same configuration.
  • the second image field area (projection area) A R2 on the second substrate P2 is set in a rectangular shape (slit shape) with the X-axis direction as the longitudinal direction.
  • the control device 7 controls the second substrate P2 so that the shot area S (S1 to S21) on the second substrate P2 passes through the second image field area AR2 by the second exposure light EL.
  • the substrate stage 5 is controlled to move the first substrate P1 in the Y-axis direction.
  • the control device 7 scans the second substrate P2 in the Y direction.
  • a plurality of shot areas S1 to S21 on the second substrate 2 are sequentially exposed by repeating the scanning operation and the scanning operation in the + Y direction.
  • the control device 7 loads the mask M onto the mask stage 2 and loads the first substrate P1 and the second substrate P2 onto the first substrate stage 4 and the second substrate stage 5, respectively.
  • the control device 7 obtains position information of each shot area S on the first substrate P1 and the second substrate P2 based on the result of detecting the alignment mark AM, the first image field area AR1, and the second image.
  • Start exposure such as the operation to acquire the position information of the image plane formed in the field area AR2, and the operation to acquire the surface position information (including unevenness information) of the surface of the first substrate P1 and the second substrate P2.
  • the previous predetermined process is appropriately executed.
  • the exposure apparatus EX performs the exposure of the first substrate P1 and the exposure of the second substrate P2 in parallel.
  • the control device 7 starts and ends the projection of the image of the pattern PA formed in the first image field area AR1 on the shot area S of the first substrate P1, and the first (2) Mask stage 2 (mask M) during exposure so that the timing at which the projection of the pattern PA image starts and ends in an optimal state with respect to the shot area S of the substrate P2 on the second image field area AR2
  • the moving conditions including the position, speed, acceleration, etc. of the first substrate stage 4 (first substrate P1) and the second substrate stage 5 (second substrate P2) are set.
  • the control device 7 After executing the above-described predetermined processing, the control device 7 starts exposure of the first substrate P1 and the second substrate P2. The control device 7 starts the operation of irradiating the exposure light EL to each of the first visual field area FA1 and the second visual field area FA2 using the illumination system IL. The control device 7 uses the measurement system 3 to monitor the positional information of the mask stage 2, the first substrate stage 4, and the second substrate stage 5, and in the Y-axis direction of the first substrate P1 with respect to the first image field area AR1.
  • the movement of the second substrate P2 relative to the second image field area AR2 in the Y-axis direction is synchronized with the movement of the mask M in the Y-axis direction relative to the first visual field area FA1 and the second visual field area FA2. In this manner, the shot region S on the first substrate P1 and the second substrate P2 is exposed.
  • the mask M moves in the + Y direction during the exposure of the first substrate P1 and the second substrate P2.
  • the first substrate PI and the second substrate P2 are moved in the ⁇ Y direction, and the mask ⁇ is moved in the ⁇ direction, the first substrate P1 and the second substrate ⁇ 2 are moved in the + ⁇ direction.
  • the pattern located in the first field area FA1 is based on the exposure light EL from the pattern ⁇ located in the first field area FA1.
  • a spear image is formed.
  • the shot area S on the first substrate P1 is exposed with the image of the no-turn PA formed in the first image field area AR1.
  • the second image field area AR2 on the second substrate P2 includes the pattern PA located in the second field area FA2 based on the exposure light EL having the pattern PA power located in the second field area FA2.
  • An image is formed.
  • the shot area S on the second substrate P2 is exposed with an image of the pattern PA formed in the second image field area AR2.
  • the control device 7 determines the image plane of the pattern PA formed in the first image field area AR1 and the surface (exposure plane) of the first substrate P1. In the second image field area AR2 and the surface of the second substrate P2 (exposure surface) is in the desired positional relationship. Controls the positions of the substrate stage 4 and the second substrate stage 5 in the Z-axis, ⁇ X, and ⁇ Y directions. Thus, the first substrate P1 and the second substrate P2 are exposed while adjusting the positional relationship between the image surface of the pattern PA and the surfaces (exposure surfaces) of the first substrate P1 and the second substrate P2.
  • the first substrate P 1 and the second substrate P 2 can be exposed simultaneously using one mask M. Therefore, throughput can be improved while suppressing costs, and a plurality of substrates can be exposed efficiently.
  • the shot area S on the first substrate P1 and the second substrate P2 can be exposed simultaneously by a single scanning operation.
  • the substrate stage 4 ′ has a main stage 40, a first substage 41, and a second substage.
  • the main stage 40 can move in substantially the same scanning direction while holding the first substrate P1 and the second substrate P2 on the light emission side (image plane side) of the projection optical system PL.
  • the first sub-stage 41 can move the first substrate P1 with respect to the main stage 40.
  • the second substage 42 can move the second substrate P2 with respect to the main stage 40. It is.
  • the same reference numerals are given to the same or equivalent components as those in the above-described embodiment, and the description thereof is simplified or omitted.
  • FIG. 4 is a schematic block diagram showing the exposure apparatus EX according to the present embodiment
  • FIG. 5 is a cross-sectional view showing the substrate stage 4 according to the present embodiment.
  • the substrate stage 4 is moved with the main stage 40, the first substage 41 movable on the main stage 40 while holding the first substrate P1, and the second substrate P2 held on the main stage 40.
  • a possible second sub-stage 42 is provided.
  • the main stage 40 holds the first substrate P1 via the first substage 41 and holds the second substrate P2 via the second substage 42.
  • the main stage 40 holds the first substrate P1 and the second substrate P2 via the first substage 41 and the second substage 42, and intersects the same scanning direction (Y-axis direction) and scanning direction. It can move in the direction (X-axis direction). Further, the main stage 40 can also move in the ⁇ Z direction.
  • the main stage 40 is supported in a non-contact manner on the upper surface (guide surface) of the base member BP by the air bearing 4A.
  • the upper surface of the base member BP is substantially parallel to the XY plane.
  • the main stage 40 is movable on the base member BP along the XY plane.
  • the exposure apparatus EX includes a main stage driving apparatus 40D including an actuator such as a linear motor for moving the main stage 40 in the X axis, Y axis, and ⁇ Z directions.
  • the first substage 41 and the second substage 42 on the main stage 40 also move in the Y-axis direction together with the main stage 40.
  • the first substrate P1 and the second substrate P2 held by the first substage 41 and the second substage 42 also move together with the main stage 40 in the Y-axis direction. Move to.
  • the first substage 41 and the second substage 42 on the main stage 40 also move in the X-axis direction together with the main stage 40. Therefore, when the main stage 40 moves in the X-axis direction, the first substrate P1 and the second substrate P2 held by the first substage 41 and the second substage 42 also move in the X-axis direction together with the main stage 40. Move in the direction.
  • the first substage 41 is mounted on the table 41A and the table 41A, and the first substrate P And a holder 41B for holding 1.
  • the table 41A is provided so as to be movable in the Z-axis, ⁇ X, and ⁇ Y directions with respect to the main stage 40.
  • the holder 41B is provided so as to be movable in the X-axis, Y-axis, and ⁇ Z directions with respect to the table 41A.
  • the substrate stage 4 ′ includes a first drive system 41DH including a plurality of actuators such as a voice coil motor provided between the table 41A of the first substage 41 and the holder 41B, a table 41A, and a main 41A.
  • a second drive system 41DV including a plurality of actuators 4V, such as a voice coil motor, provided between the stage 40 and the like is provided.
  • the first drive system 41DH can slightly move the holder 41B relative to the table 41A in the X-axis, Y-axis, and ⁇ Z directions.
  • the second drive system 41DV allows the table 41 to move relative to the main stage 40.
  • A can be moved slightly in the Z-axis, ⁇ X, and ⁇ Y directions.
  • the control device 7 controls the second drive system 41DV to adjust the positions of the table 41A in the Z-axis, ⁇ X, and ⁇ Y directions, so that the first holding by the holder 41B on the table 41A is performed.
  • the position of the substrate P1 with respect to the Z-axis, ⁇ X, and ⁇ Y directions can be adjusted.
  • the control device 7 can move the holder 41B in the X axis, Y axis, and ⁇ Z directions with respect to the table 41A by driving the first drive system 41DH.
  • the control device 7 controls the first drive system 41DH and adjusts the positions of the holder 41B in the X axis, Y axis, and ⁇ Z directions, so that the X axis of the first substrate P1 held by the holder 41B is adjusted.
  • Y axis, and position in ⁇ Z direction can be adjusted.
  • control device 7 is held by the holder 41B of the first substage 41 by driving the first substage drive device 41D including the first drive system 41DH and the second drive system 41DV. It is possible to adjust the position of the first substrate P1 with respect to the six degrees of freedom of the X axis, Y axis, Z axis, 0 X, 0 Y, and 0 Z directions.
  • the second substage 42 includes a table 42A and a holder 42B mounted on the table 42A and holding the second substrate P2.
  • the table 42A is provided so as to be movable in the Z-axis, ⁇ X, and ⁇ Y directions with respect to the main stage 40.
  • the holder 42B is provided so as to be movable in the X axis, Y axis, and ⁇ Z directions with respect to the table 42A.
  • a first drive system 42DH is provided between the table 42A and the holder 42B of the second substage 42, and a second drive system 42DV is provided between the table 42A and the main stage 40. Yes.
  • the first drive train 42DH holds the table 42A.
  • the control device 7 drives the second substage drive device 42D including the first drive system 42DH and the second drive system 42DV, whereby the X of the second substrate P2 held by the holder 42B of the second substage 42 is obtained.
  • the position of the axis, Y axis, Z axis, 0 X, ⁇ Y, and 0 Z directions can be adjusted.
  • the measurement system 3 'of the present embodiment can measure the position information of the main stage 40, the first substage 41, and the second substage 42, respectively.
  • the measurement system 3 ′ includes a reflecting surface 130 provided on the main stage 40, a reflecting surface 131 of the reflecting member provided on the first substage 41, a reflecting surface 132 provided on the second substage 42, and a reflecting surface.
  • Laser interferometers 134 that project measurement light onto 130, 131, and 132 and receive the reflected light to obtain positional information of the main stage 40, first substage 41, and second substage 42. Including.
  • the laser interferometer 134 is disposed on the + Y side of the main stage 40, and can irradiate the reflecting surface 130 with a plurality of measurement lights having the measurement axis in the Y-axis direction.
  • the laser interferometer 134 can acquire position information regarding the Y-axis direction and the ⁇ Z direction of the main stage 40 based on the reflected light of the measurement light irradiated on the reflecting surface 130.
  • the laser interferometer 134 can irradiate the reflecting surface 131 with a plurality of measurement lights having the Y-axis direction as the measurement axis through the opening, and also can measure the measurement light having the Y-axis direction as the measurement axis. Can be irradiated.
  • the laser interferometer 134 is based on the reflected light of the measurement light applied to the reflecting surfaces 131 and 132, and the first substage 41 (holder 41B) and the second substage 42 (holder 42B) in the Y-axis direction and ⁇ Z direction. Position information can be acquired.
  • the measurement system 3 uses the X-axis direction as the measurement axis on the reflecting surfaces provided at predetermined positions of the main stage 40, the first substage 41, and the second substage 42, respectively.
  • a laser interferometer capable of irradiating multiple measuring beams is obtained, and position information about the X-axis direction of the main stage 40, first substage 41 (holder 41B), and second substage 42 (holder 42B) is acquired. Is possible.
  • the measurement system 3 'includes a plurality of reflection planes provided at predetermined positions of the main stage 40, the first substage 41, and the second substage 42, with the Z-axis direction as a measurement axis.
  • a laser interferometer that can irradiate measurement light may be provided, so that the Z axis of the main stage 40, the first substage 41 (holder 41B), and the second substage 42 (holder 42B), ⁇ X , And position information about the ⁇ Y direction can be acquired.
  • the control device 7 appropriately drives the main stage 40, the first substage 41, and the second substage 42 based on the measurement result of the measurement system 3 ′, and the first substage 41 and the second substage.
  • the positions of the first substrate P1 and the second substrate P2 held by the holder 41B and the holder 42B of 42 are controlled. Further, the control device 7 moves the at least one of the first substage 41 and the second substage 42 with respect to the main stage 40 to thereby determine the relative positional relationship between the first substrate P1 and the second substrate P2. Can be adjusted.
  • the control device 7 drives the first substage 41 and the second substage 42 to adjust the positions and postures of the first substrate P1 and the second substrate P2. Meanwhile, the first substrate P1 and the second substrate P2 can be exposed.
  • the first substrate P1 and the second substrate P2 can be exposed almost simultaneously, and a plurality of substrates can be formed. Efficient exposure is possible.
  • the illumination system IL divides the exposure light EL emitted from the light source device 1 into two exposure lights EL, and each of the divided exposure lights EL and the first visual field area FA1 and the first exposure light EL. Irradiates to 2 fields of view FA2.
  • a characteristic part of this embodiment is that the exposure light EL is irradiated to both the first visual field area FA1 and the second visual field area FA2 without dividing the exposure light EL.
  • FIG. 6A is a plan view showing the mask M held on the mask stage 2 according to the present embodiment
  • FIG. 6B shows the state in which the optical member 50 is irradiated with the exposure light EL that has passed through the mask M.
  • the illumination system IL does not divide the exposure light EL, and the exposure light EL is divided into the first visual field area FA1 and the second visual field area FA2 of the projection optical system PL. Irradiate.
  • the first visual field area FA1 and the second visual field area FA2 of the projection optical system PL are set to be aligned in the Y-axis direction, and the Y-side edge of the first visual field area FA1 and the second visual field area FA2 It touches (or approaches) the + Y side edge.
  • the exposure light EL irradiated to the first visual field area FA1 and the second visual field area FA2 has a line segment (vertex) 53 of the optical member 50 as a boundary.
  • the exposure light EL is irradiated onto the reflection surface 51 and the exposure light EL is irradiated onto the second reflection surface 52.
  • the exposure light EL irradiated to the first reflection surface 51 is guided to the first image field area AR1, and the exposure light EL irradiated to the second reflection surface 52 is guided to the second image field area AR2.
  • the exposure light EL is irradiated to both the first visual field area FA1 and the second visual field area FA2 without dividing the exposure light EL by the illumination system IL, and the optical member of the projection optical system PL You may make it divide by 50.
  • the exposure light EL is not divided by the illumination system IL, and even when the first visual field area FA1 and the second visual field area FA2 that are in contact with each other (or approached) are formed, the vertex 53 is a boundary.
  • the exposure light EL from the first visual field area FA1 can be guided to the first image field area AR1
  • the exposure light EL from the second visual field area FA2 can be guided to the second image field area AR2.
  • the vertex 53 of the optical member 50 is a V-shaped force.
  • the cross-sectional shape of the optical member 50 parallel to the YZ plane may be trapezoidal.
  • the projection optical system PL differs from the first image field area AR1 in the pattern PA image based on the exposure light EL from the pattern PA located in the first field area FA1. This is in the point formed in the third image field area AR3.
  • FIG. 8 is a schematic view showing an exposure apparatus EX according to the fifth embodiment.
  • a branched optical element beam splitter
  • the exposure light EL traveling in the first optical path BR1 from the first visual field area FA1 passes through the first reflecting surface 51 and is branched by the branching optical element 61, and is guided to the first image field area AR1 and the third image field area AR3. It is burned.
  • the exposure light EL from the first visual field area FA1 is branched by the branching optical element 61, so that the pattern PA located in the first visual field area FA1 is based on the exposure light EL by the force PA.
  • the branch optical element that branches the exposure light EL from the second visual field region FA2 to a predetermined position of the second optical path BR2 along which the exposure light EL from the second visual field region FA2 travels.
  • An element (beam splitter) 62 is placed.
  • the exposure light EL traveling in the second optical path BR 2 from the second visual field area FA2 passes through the second reflecting surface 52 and is branched by the branching optical element 62, and the second image field area AR2 and the second image field area AR2 Are guided to a different fourth field area AR4.
  • the exposure light EL from the second visual field area FA2 is branched by the branch optical element 62, so that the pattern PA is based on the exposure light EL from the pattern PA located in the second visual field area FA2.
  • the exposure apparatus EX of the present embodiment can expose a third substrate P3 different from the first substrate P1 and the second substrate P2 with an image of the pattern PA formed in the third image field area AR3. .
  • the exposure apparatus EX can expose a fourth substrate P4 different from the first, second, and third substrates Pl, P2, and P3 with an image of the pattern PA formed in the fourth image field area AR4. it can.
  • the exposure apparatus EX is an image of the pattern PA formed in each of the first image field area AR1 and the third image field area AR3 by the projection optical system PL, and the first shot area Sa on the first substrate P1 and its The second shot area Sb different from the first shot area Sa can be exposed simultaneously. That is, the exposure apparatus EX is an image of the pattern PA formed in each of the first image field area AR1 and the third image field area AR3 by the projection optical system PL, and each of the shot areas that do not overlap each other on one substrate. Can be exposed simultaneously.
  • the exposure apparatus EX forms a shot area Sc on the second substrate P2 in the second image field area AR2 in parallel with the operation of simultaneously exposing a plurality (two) of shot areas on the first substrate P1.
  • the pattern PA image can also be exposed.
  • the exposure apparatus EX performs the first exposure in parallel with the operation of simultaneously exposing a plurality of shot areas on the first substrate P1 with the image of the pattern PA formed in the first image field area AR1 and the third image field area AR3.
  • the shot areas Sc and Sd on the substrate P2 can be exposed simultaneously with the image of the pattern PA formed in the second image field area AR2 and the fourth image field area AR4.
  • one branch optical element 61 is arranged on the first optical path BR1, and the exposure light EL from the first field area FA1 is branched into two.
  • the exposure light EL may be branched by providing a branching optical element on at least one optical path of the split exposure light EL.
  • the exposure light EL may be branched by providing a plurality of branch optical elements on the second optical path BR2. In this way, the number of image field regions can be varied (increased) with respect to the visual field region by branching the exposure light EL using a plurality of branch optical elements.
  • the projection optical system PL includes, for example, a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, a reflective optical element, and a refractive optical system.
  • a refractive system that does not include a reflective optical element
  • a reflective system that does not include a refractive optical element
  • a reflective optical element that does not include a refractive optical element
  • a refractive optical system a catadioptric system that includes both elements!
  • a liquid immersion method as disclosed in, for example, International Publication No. 99Z49504 pamphlet may be applied. That is, a liquid immersion area is formed on the first substrate P1 and the second substrate P2 so as to cover the first image field area AR1 and the second image field area AR2, and the exposure light EL is transmitted through the liquid. Irradiation may be performed on the first substrate P1 and the second substrate P2.
  • the liquid may be water (pure water), other than water, for example, a fluorinated fluid such as perfluorinated polyether (PFPE) or fluorinated oil, or a liquid.
  • PFPE perfluorinated polyether
  • Dar oil may be used.
  • the liquid a liquid having a higher refractive index with respect to exposure light than water, for example, a liquid with a refractive index of about 1.6 to 1.8 may be used.
  • the terminal optical element FL may be formed of a material having a refractive index higher than that of quartz or fluorite (for example, 1.6 or more).
  • the liquid LQ having a refractive index higher than that of pure water (for example, 1.5 or more) for example, isopropanol having a refractive index of about 1.50 and glycerol (glycerin) having a refractive index of about 1.61 are used.
  • liquids with C—H bonds or O—H bonds, hexane, heptane, decane, etc. organic solvents
  • the liquid LQ may be a mixture of any two or more of these liquids, or a mixture of at least one of these liquids in pure water (mixed).
  • the liquid LQ is, H + in the pure water, Cs +, K +, Cl_ , SO 2_, PO 2_ etc.
  • the base or acid of 4 may be added (mixed), or fine water such as A1 oxides may be added to (mixed with) pure water.
  • Liquids include a projection optical system with a small light absorption coefficient and low temperature dependence, and a photosensitive material (or topcoat film or antireflection film) applied to the surface of Z or the substrate. It is preferable that it is stable. It is also possible to use a supercritical fluid as the liquid. Further, the substrate can be provided with a top coat film for protecting the photosensitive material or the base material from the liquid.
  • the terminal optical element is, for example, quartz (silica) or a single crystal material of a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride.
  • a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride.
  • it may be formed of a material having a refractive index higher than that of quartz or fluorite (for example, 1.6 or more).
  • the material having a refractive index of 1.6 or more include sapphire, diacid germanium, etc. disclosed in International Publication No. 2005Z059617 pamphlet, or salt salt disclosed in International Publication No. 20 05Z059618 It is possible to use potassium (refractive index is about 1.75).
  • the immersion method for example, as disclosed in International Publication No. 2004Z019128 (corresponding US Patent Publication No. 2005Z0248856)
  • the object of the terminal optical element is used.
  • the optical path on the surface side may be filled with liquid.
  • a thin film having lyophilicity and Z or a dissolution preventing function may be formed on a part (including at least a contact surface with the liquid) or the entire surface of the terminal optical element.
  • the interferometer system is used as the measurement system 3 to measure the position information of the mask stage and the substrate stage.
  • the present invention is not limited to this, and is provided on the upper surface of the substrate stage, for example.
  • An encoder system that detects the scale (diffraction grating) may be used.
  • the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated using the measurement result of the interferometer system.
  • the position of the substrate stage may be controlled by switching between the interferometer system and the encoder system or using both.
  • the substrate of each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask or reticle used in an exposure apparatus.
  • the original plate (synthetic quartz, silicon wafer) or film member is applied.
  • the substrate may have other shapes such as a rectangle that is not limited to a circular shape.
  • the exposure apparatus EX of each of the above embodiments is disclosed in, for example, Japanese Patent Laid-Open No. 11 135400 (corresponding international publication 1999/23692) and Japanese Patent Laid-Open No. 2000-164504 (corresponding US Pat. No. 6,897,963).
  • the measurement stage is movable independently of the substrate stage that holds the substrate, and includes a measurement member (for example, a reference member on which a reference mark is formed and Z or various photoelectric sensors). With, you can.
  • an electronic mask that generates a variable pattern also called a variable shaping mask, an active mask, or a pattern generator
  • an electronic mask for example, i3MD (Deformable iicro-mirror Device or Digital Micro-mirror Device), which is a kind of non-light emitting image display element (also called Spatial Light Modulator (SLM)), can be used.
  • the DMD has a plurality of reflective elements (micromirrors) that are driven based on predetermined electronic data, and the plurality of reflective elements are arranged in a two-dimensional matrix on the surface of the DMD and driven in element units. To reflect and deflect the exposure light.
  • Each reflective element is The angle of the shooting surface is adjusted.
  • the operation of the DMD can be controlled by a controller.
  • the control device drives the DMD reflection element based on electronic data (pattern information) corresponding to the pattern to be formed on the substrate, and patterns the exposure light emitted from the illumination system with the reflection element.
  • Using the DMD eliminates the need to replace the mask and align the mask on the mask stage when the pattern is changed compared to exposure using a mask (reticle) with a pattern formed. Become.
  • the mask stage may not be provided, and the substrate may be simply moved in the X-axis and Y-axis directions by the substrate stage.
  • An exposure apparatus using DMD is disclosed in, for example, Japanese Patent Laid-Open Nos. 8-313842, 2004-304135, and US Pat. No. 6,778,257.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, It can be widely applied to exposure devices for manufacturing imaging devices (CCD), micromachines, MEMS, DNA chips, or reticles or masks.
  • CCD imaging devices
  • MEMS micromachines
  • DNA chips DNA chips
  • the exposure apparatus EX of the above embodiment is manufactured by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • Various subsystem forces The assembly process to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process to the exposure apparatus. After the assembly process of the various subsystems to the exposure system is completed, comprehensive adjustments are made to ensure that the exposure system as a whole has various accuracy levels. Is secured. It is desirable to manufacture the exposure apparatus in a clean room where temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device has a step 201 for designing the function and performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate of the device.
  • Step 203 for manufacturing a substrate step of exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, step of developing the exposed substrate, heating (curing) of the developed substrate, etching step, etc. It is manufactured through a step 204 including a processing process, a device assembly step (including processing processes such as a dicing process, a bonding process, and a knocking process) 205, an inspection step 206, and the like.

Abstract

 露光装置(EX)は、第1視野領域(FA1)と第1視野領域(FA1)とは異なる第2視野領域(FA2)とを有し、パターン(PA)の像を第1像野領域(AR1)及び第2像野領域(AR2)に投影する投影光学系(PL)を備える。第1視野領域(FA1)を介した露光光(EL)によってパターン(PA)の像が第1像野領域(AR1)に形成され、第2視野領域(FA2)を介した露光光(EL)によってパターン(PA)の像が第2像野領域(AR2)に形成される。第1像野領域(AR1)に形成されるパターン(PA)の像で第1基板(P1)が露光され、第2像野領域(AR2)に形成されるパターン(PA)の像で第2基板(P2)が露光される。

Description

明 細 書
露光装置及びデバイス製造方法
技術分野
[0001] 本発明は、基板を露光する露光装置、及びデバイス製造方法に関する。
本願は、 2006年 3月 3日に出願された特願 2006— 057786号に基づき優先権を 主張し、その内容をここに援用する。
背景技術
[0002] 半導体デバイスや液晶表示デバイス等のマイクロデバイスの製造工程の一つであ るフォトリソグラフイエ程では、マスクのパターンの像で感光性の基板を露光する露光 装置が用いられる。下記特許文献 1には、複数のマスクを用いて複数の基板のそれ ぞれを並行して処理する露光装置に関する技術が開示されて!、る。
特許文献 1:特開昭 61— 161718号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、露光装置には、高いスループットで基板を処理することが求められる。複 数のマスクを用いて複数の基板のそれぞれを並行して処理することでスループットの 向上を目指す場合、複数のマスクを用意する必要があるため、複数のマスクを用意 することによるコストの上昇、ひ 、てはマイクロデバイスの製造コストの上昇を招く可能 '性がある。
[0004] 本発明は、コストを抑えつつスループットを向上できる露光装置、及びデバイス製造 方法を提供することを目的とする。
課題を解決するための手段
[0005] 本発明は実施の形態に示す各図に対応付けした以下の構成を採用している。但し 、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するもの ではない。
[0006] 本発明の第 1の態様に従えば、基板を露光する露光装置において、第 1視野領域( FA1)と第 1視野領域 (FA1)とは異なる第 2視野領域 (FA2)とを有し、パターン (PA )の像を第 1像野領域 (AR1)及び第 2像野領域 (AR2)に投影する投影光学系 (PL) であり、第 1視野領域 (FA1)を介した露光光 (EL)によってパターン (PA)の像が第 1 像野領域 (AR1)に形成され、第 2視野領域 (FA2)を介した露光光 (EL)によってパ ターン (PA)の像が第 2像野領域 (AR2)に形成される投影光学系を備え、第 1像野 領域 (AR1)に形成されるパターン (PA)の像で第 1基板 (P1)を露光し、第 2像野領 域 (AR2)に形成されるパターン (PA)の像で第 2基板 (P2)を露光する露光装置 (E X)が提供される。
[0007] 本発明の第 1の態様によれば、コストを抑えつつスループットを向上でき、基板を効 率良く露光することができる。
[0008] 本発明の第 2の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。
[0009] 本発明の第 2の態様によれば、基板を効率良く露光できる露光装置を用いてデバ イスを製造することができる。
発明の効果
[0010] 本発明によれば、コストを抑えつつスループットを向上でき、基板を効率良く露光す ることができる。したがって、デバイスを生産性良く製造することができる。
図面の簡単な説明
[0011] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。
[図 2]第 1実施形態に係るマスクと視野領域との関係を示す図である。
[図 3]基板ステージを上方力も見た図である。
圆 4]第 2実施形態に係る露光装置を示す概略構成図である。
[図 5]第 2実施形態に係る基板ステージを示す断面図である。
[図 6A]第 3実施形態に係るマスクと視野領域との関係を示す図である。
[図 6B]第 3実施形態に係るマスクと視野領域との関係を示す図である。
[図 7A]第 4実施形態に係るマスクと視野領域との関係を示す図である。
[図 7B]第 4実施形態に係るマスクと視野領域との関係を示す図である。
[図 8]第 5実施形態に係る露光装置を示す概略構成図である。
[図 9]第 6実施形態に係る露光装置を示す概略構成図である。 [図 10]マイクロデバイスの製造工程の一例を示すフローチャート図である。
符号の説明
[0012] 1…光源装置、 2…マスクステージ、 3…計測システム、 4…第 1基板ステージ、 5· ·· 第 2基板ステージ、 7…制御装置、 21· ··第 1光学素子群、 22· ··第 2光学素子群、 23 …第 3光学素子群、 40…メインステージ、 41…第 1サブステージ、 42…第 2サブステ ージ、 50…光学部材、 51· ··第 1反射面、 52…第 2反射面、 AR1…第 1像野領域、 A R2 第 2像野領域、 AR3 第 3像野領域、 AR4…第 4像野領域、 BR1…第 1光路、 BR2…第 2光路、 EL…露光光、 EX…露光装置、 FA1…第 1視野領域、 FA2…第 2 視野領域、 IL…照明系、 M…マスク、 Ρ1· ··第 1基板、 Ρ2· ··第 2基板、 Ρ3· ··第 3基板 、 Ρ4· ··第 4基板、 PA…パターン、 PL…投影光学系、 S…ショット領域
発明を実施するための最良の形態
[0013] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY Z直交座標系を参照しつつ各部材の位置関係について説明する。水平面内におけ る所定方向を X軸方向、水平面内において X軸方向と直交する方向を Y軸方向、 X 軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Z軸方向と する。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 0 X、 0 Y、及 び 0 Z方向とする。
[0014] <第 1実施形態 >
第 1実施形態について説明する。図 1は、第 1実施形態に係る露光装置 EXを示す 概略構成図である。図 1において、露光装置 EXは、パターン PAを有するマスク Mを 保持して移動可能なマスクステージ 2と、第 1基板 P1を保持して移動可能な第 1基板 ステージ 4と、第 1基板 P1とは異なる第 2基板 P2を保持して移動可能な第 2基板ステ ージ 5と、各ステージの位置情報を計測可能な計測システム 3と、マスク Mのパターン PAを露光光 ELで照明する照明系 ILと、露光光 ELで照明されたパターン PAの像を 第 1基板 P1上及び第 2基板 P2上のそれぞれに投影する投影光学系 PLと、露光装 置 EX全体の動作を制御する制御装置 7とを備えて ヽる。第 1基板ステージ 4及び第 2 基板ステージ 5は、投影光学系 PLの光射出側、すなわち投影光学系 PLの像面側で 、ベース部材 BP上で移動可能である。第 2基板ステージ 5は、第 1基板ステージ 4と は独立して移動可能である。
[0015] なお、ここでいう基板は、例えばシリコンウェハのような半導体ウェハ等の基材上に 感光材 (フォトレジスト)を塗布したものを含み、感光膜とは別に保護膜 (トップコート膜 )などの各種の膜を塗布したものも含む。マスクは基板上に縮小投影されるデバイス パターンが形成されたレチクルを含み、例えばガラス板等の透明板部材上にクロム等 の遮光膜を用いて所定のパターンが形成されたものである。この透過型マスクは、遮 光膜でパターンが形成されるバイナリーマスクに限られず、例えばノヽーフトーン型、あ るいは空間周波数変調型などの位相シフトマスクも含む。また、本実施形態において は、マスクとして透過型のマスクを用いる力 反射型のマスクを用いてもよい。
[0016] 本実施形態の投影光学系 PLは、第 1視野領域 FA1と、第 1視野領域 FA1とは異 なる第 2視野領域 FA2とを有している。本実施形態においては、第 1視野領域 FA1と 第 2視野領域 FA2とは Y軸方向に離れている。また、本実施形態の投影光学系 PL は、その投影光学系 PLの光射出側、すなわち投影光学系 PLの像面側に、第 1像野 領域 AR1と第 2像野領域 AR2とを所定位置関係で設定する。投影光学系 PLは、第 1視野領域 FA1内に位置するマスク Mのパターン P Aからの露光光 ELに基づいて、 そのパターン PAの像を第 1像野領域 AR1に形成するとともに、第 2視野領域 FA2内 に位置するマスク Mのパターン P Aからの露光光 ELに基づ!/、て、そのパターン P Aの 像を第 2像野領域 AR2に形成する。
[0017] 本実施形態の露光装置 EXは、投影光学系 PLによって第 1像野領域 AR1に形成 されるパターン PAの像で、第 1基板ステージ 4に保持されている第 1基板 P1上のショ ット領域 Sを露光し、第 2像野領域 AR2に形成されるノターン PAの像で、第 2基板ス テージ 5に保持されている第 2基板 P2上のショット領域 Sを露光する。具体的には、 露光装置 EXは、第 1視野領域 FA1内に位置するマスク Mのパターン PAを照明系 I Lから射出した露光光 ELで照明するとともに、第 2視野領域 FA2内に位置するマスク Mのパターン PAを照明系 IL力も射出した露光光 ELで照明する。投影光学系 PLの 第 1視野領域 FA1内に位置するパターン PAからの露光光 ELに基づいて、第 1基板 P1上に形成された第 1像野領域 AR1にパターン PAの像が形成される。投影光学系 PLの第 2視野領域 FA2内に位置するパターン PAからの露光光 ELに基づいて、第 2基板 P2上に形成された第 2像野領域 AR2にパターン PAの像が形成される。露光 装置 EXは、第 1像野領域 AR1に形成されるパターン PAの像で第 1基板 P1を露光し 、第 2像野領域 AR2に形成されるパターン PAの像で第 2基板 P2を露光する。
[0018] また、本実施形態の露光装置 EXは、マスク Mと第 1基板 P1及び第 2基板 P2とを所 定の走査方向に同期移動しつつ、マスク Mのパターン P Aの像を第 1基板 P1上及び 第 2基板 P2上のそれぞれに投影する走査型露光装置 (所謂スキャニングステツパ) である。本実施形態においては、第 1基板 P1及び第 2基板 P2の走査方向(同期移 動方向)を Y軸方向とする。また、本実施形態においては、第 1基板 P1及び第 2基板 P2の Y軸方向への移動と同期して、マスク Mも Y軸方向に移動する。すなわち、本実 施形態においては、マスク Mの走査方向(同期移動方向)も Y軸方向である。
[0019] 本実施形態においては、露光装置 EXは、第 1基板 P1の露光と、第 2基板 P2の露 光の少なくとも一部とを並行して実行する。露光装置 EXは、第 1像野領域 AR1に対 して第 1基板 P1のショット領域 Sを Y軸方向に移動しつつ、第 1像野領域 AR1に形成 されるパターン PAの像で第 1基板 P1上のショット領域 Sを露光する。また、露光装置 EXは、第 2像野領域 AR2に対して第 2基板 P2のショット領域 Sを Y軸方向に移動し つつ、第 2像野領域 AR2に形成されるパターン PAの像で第 2基板 P2上のショット領 域 Sを露光する。第 1基板 P1及び第 2基板 P2のそれぞれのショット領域 Sの露光中 において、マスク Mも Y軸方向に移動し、投影光学系 PLの第 1視野領域 FA1及び第 2視野領域 FA2に対してマスク Mのパターン PAが Y軸方向に移動する。
[0020] 照明系 ILについて説明する。本実施形態の照明系 ILは、 1つの光源装置 1からの 露光光 ELを 2つの露光光 ELに分割し、それら分割した露光光 ELのそれぞれを、投 影光学系 PLの第 1視野領域 FA1と第 2視野領域 FA2とに照射する。上述のように、 第 1視野領域 FA1と第 2視野領域 FA2とは Y軸方向に離れている。照明系 ILは、互 いに離れた第 1視野領域 FA1と第 2視野領域 FA2とに露光光 ELを照射する。
[0021] 制御装置 7は、第 1基板 P1及び第 2基板 P2を露光するとき、マスクステージ 2に保 持されたマスク Mを、投影光学系 PLの第 1視野領域 FA1及び第 2視野領域 FA2〖こ 配置する。マスク Mのパターン PAが形成されたパターン形成領域のうち、第 1視野 領域 FAl及び第 2視野領域 FA2に配置された 2つの所定領域のそれぞれは、照明 系 ILによって投影光学系 PLの第 1視野領域 FA1及び第 2視野領域 FA2のそれぞ れに照射される露光光 ELによって照明される。マスク Mは、マスクステージ 2に保持 される。照明系 ILは、第 1視野領域 FA1及び第 2視野領域 FA2に配置されたマスク M上の 2つの所定領域を均一な照度分布の露光光 ELで照明する。
[0022] 次に、マスクステージ 2について説明する。図 1において、マスクステージ 2は、例え ばリニアモータ等のァクチユエータを含むマスクステージ駆動装置 2Dの駆動により、 マスク Mを保持して、少なくとも X軸、 Y軸、 Z軸、 0 X、 0 Y、及び 0 Z方向の 6自由度 の方向に移動可能である。マスクステージ 2は、マスク Mのパターン PAが形成された パターン形成面と XY平面とがほぼ平行となるように、マスク Mを保持する。マスクステ ージ 2 (ひ!/、てはマスク M)の位置情報は、計測システム 3のレーザ干渉計 32によつ て計測される。レーザ干渉計 32は、マスクステージ 2上に設けられた移動鏡の反射 面 32Kを用いてマスクステージ 2の位置情報を計測する。制御装置 7は、レーザ干渉 計 32の計測結果に基づ 、てマスクステージ駆動装置 2Dを駆動し、マスクステージ 2 に保持されて ヽるマスク Mの位置制御を行う。
[0023] 図 2は、マスクステージ 2に保持されたマスク Mを示す平面図である。図 2に示すよう に、マスクステージ 2は、マスク Mのパターン PAが形成されたパターン形成面と XY 平面とがほぼ平行となるように、マスク Mを保持する。図 2に示すように、第 1視野領 域 FA1と第 2視野領域 FA2とは Y軸方向に離れている。上述のように、照明系 ILは、 露光光 ELを、投影光学系 PLの第 1視野領域 FA1と第 2視野領域 FA2とに照射する 。制御装置 7は、マスクステージ 2で保持したマスク Mのパターン PAが形成されたパ ターン形成領域を第 1視野領域 FA1及び第 2視野領域 FA2に配置する。これにより 、そのパターン形成領域の 2つの所定領域のそれぞれに、照明系 ILからの露光光 E Lを照射することができる。また、本実施形態においては、照明系 IL力もの露光光 EL が照射される第 1視野領域 FA1及び第 2視野領域 FA2のそれぞれは、ブラインド装 置 15の第 1開口 15A及び第 2開口 15Bによって、 X軸方向を長手方向とする矩形状 (スリット状)に設定される。すなわち、第 1開口 15A及び第 2開口 15Bは、 X軸方向に 沿った長軸を有する矩形状を有する。 [0024] マスクステージ 2は、パターン PAを有するマスク Mを第 1視野領域 FA1及び第 2視 野領域 FA2に対して Y軸方向に移動可能である。制御装置 7は、第 1基板 P1及び第 2基板 P2を露光するとき、マスク Mのうち、少なくともパターン PAが形成されたパター ン形成領域が第 1視野領域 FA1及び第 2視野領域 FA2のそれぞれを通過するよう に、マスクステージ 2を制御してマスク Mを Y軸方向に移動する。
[0025] 次に、図 1を参照しながら投影光学系 PLについて説明する。投影光学系 PLは、第 1視野領域 FA1内に位置するパターン PAからの露光光 ELに基づ!/、てパターン PA の像を所定の倍率 (投影倍率)で第 1像野領域 AR1に形成 (投影)し、第 2視野領域 FA2内に位置するパターン P Aからの露光光 ELに基づいてパターン P Aの像を所定 の倍率 (投影倍率)で第 2像野領域 AR2に形成 (投影)する。本実施形態の投影光 学系 PLは、その投影倍率が例えば 1Z4、 1/5, 1Z8等の縮小系である。なお、投 影光学系 PLとしては、縮小系、等倍系及び拡大系のいずれであってもよい。また、 投影光学系 PLの複数の光学素子は不図示の鏡筒で保持されている。
[0026] 図 1に示すように、本実施形態の投影光学系 PLは、第 1視野領域 FA1からの露光 光 ELの光路である第 1光路 BR1中に配置された第 1反射面 51と、第 2視野領域 FA 2からの露光光 ELの光路である第 2光路 BR2中に配置された第 2反射面 52とを有す る光学部材 50を備えている。第 1視野領域 FA1からの第 1光路 BR1を進行する露光 光 ELは第 1反射面 51を経て第 1像野領域 AR1へ導かれ、第 2光路 BR2を進行する 露光光 ELは第 2反射面 52を経て第 2像野領域 AR2へ導かれる。
[0027] 具体的には、投影光学系 PLは、パターン PA力もの露光光 ELを第 1反射面 51及 び第 2反射面 52へ導く第 1光学素子群 21と、第 1反射面 51で反射した露光光 ELを 第 1像野領域 AR1へ導く第 2光学素子群 22と、第 2反射面 52で反射した露光光 EL を第 2像野領域 AR2へ導く第 3光学素子群 23とを有している。第 1視野領域 FA1内 に位置するパターン PAからの露光光 ELは、第 1光学素子群 21に導かれて第 1反射 面 51に入射し、その第 1反射面 51で反射した後、第 2光学素子群 22に導かれて第 1 像野領域 AR1に照射される。その第 1像野領域 AR1に、第 1視野領域 FA1内に位 置するパターン PAの像が形成される。同様に、第 2視野領域 FA2内に位置するバタ ーン PAからの露光光 ELは、第 1光学素子群 21に導かれて第 2反射面 52に入射し、 その第 2反射面 52で反射した後、第 3光学素子群 23に導かれて第 2像野領域 AR2 に照射される。その第 2像野領域 AR2に、第 2視野領域 FA2内に位置するパターン PAの像が形成される。
[0028] 本実施形態においては、第 1光学素子群 21は、パターン PAの像を 1回結像させる 。第 2光学素子群 22は、第 1反射面 51からの露光光 ELが入射する第 1部分群 22A と、第 1基板 P1と対向する光学素子を含む第 2部分群 22Bと、第 1部分群 22Aを介し た露光光 ELを第 2部分群 22Bに向けて反射する反射面 22Cを有する反射部材とを 含む。第 1部分群 22Aと第 2部分群 22Bとは、パターン PAの像をそれぞれ 1回ずつ 結像させる。したがって、第 1視野領域 FA1と第 1像野領域 AR1との間に配置された 光学系による結像回数は 3回である。第 3光学素子群 23は、第 2反射面 52からの露 光光 ELが入射する第 3部分群 23Aと、第 2基板 P2と対向する光学素子を含む第 4 部分群 23Bと、第 3部分群 23Aを介した露光光 ELを第 4部分群 23Bに向けて反射 する反射面 23Cを有する反射部材とを含む。第 3部分群 23Aと第 4部分群 23Bとは、 ノターン PAの像をそれぞれ 1回ずつ結像させる。したがって、第 2視野領域 FA2と 第 2像野領域 AR2との間に配置された光学系による結像回数は 3回である。
[0029] 本実施形態においては、光学部材 50はプリズムを含む。第 1反射面 51及び第 2反 射面 52は、第 1視野領域 FA1及び第 2視野領域 FA2と光学的に共役な位置又はそ の近傍に配置されている。本実施形態においては、第 1反射面 51と第 2反射面 52と は XY平面に対して傾斜する斜面である。第 1反射面 51と第 2反射面 52とが交わつ て形成される線分 (頂点) 53は X軸と平行である。光学部材 50には、第 1反射面 51と 第 2反射面 52とによって、第 1光学素子群 21に近づくように突出する凸部が形成さ れる。光学部材 50の凸部の YZ平面と平行な断面形状は、第 1反射面 51と第 2反射 面 52とによって V字状に形成されて 、る。
[0030] 図 1に示すように、本実施形態においては、第 1光学素子群 21の光軸 AX1は Z軸 とほぼ平行である。第 2光学素子群 22の第 1部分群 22Aの光軸 AX2と第 3光学素子 群 23の第 3部分群 23Aの光軸 AX4とは Y軸とほぼ平行であって互いに共軸となって いる。したがって、光軸 AX1と光軸 AX2と光軸 AX4とは 1つの点で交わっている。ま た、第 2光学素子群 22の第 2部分群 22Bの光軸 AX3と第 3光学素子群 23の第 4部 分群 23Bの光軸 AX5とは Z軸とほぼ平行である。光学部材 50は、光軸 AX1と光軸 A X2と光軸 AX4との交点と、線分 (頂点) 53とが一致するように配置されて 、る。
[0031] 次に、第 1基板ステージ 4について説明する。第 1基板ステージ 4は、エアべアリン グ 4Aにより、ベース部材 BPの上面 (ガイド面)に対して非接触支持されており、露光 光 ELが照射され、パターン PAの像が形成される第 1像野領域 AR1を含む所定領域 内で第 1基板 P1を保持して移動可能である。ベース部材 BPの上面は XY平面とほぼ 平行であり、第 1基板ステージ 4は、ベース部材 BP上を XY平面に沿って移動可能で ある。また、第 1基板ステージ 4は、第 1基板 P1を保持する基板ホルダ 4Hを備えてい る。基板ホルダ 4Hは、第 1基板 P1の表面と XY平面とがほぼ平行となるように、第 1 基板 P1を保持する。
[0032] 露光装置 EXは、第 1基板ステージ 4を駆動するための、リニアモータ等のァクチュ エータを含む第 1基板ステージ駆動装置 4Dを備えている。第 1基板ステージ 4は、第 1基板ステージ駆動装置 4Dの駆動により、基板ホルダ 4Hに第 1基板 P1を保持した 状態で、ベース部材 BP上で、 X軸、 Y軸、 Z軸、 0 X、 θ Y,及び θ Z方向の 6自由度 の方向に移動可能である。制御装置 7は、第 1基板ステージ駆動装置 4Dを制御する ことにより、第 1基板ステージ 4の基板ホルダ 4Hに保持された第 1基板 P 1の表面の X 軸、 Y軸、 Z軸、 0 X、 0 Y、及び 0 Z方向の 6自由度の方向に関する位置を制御可 能である。
[0033] 次に、第 2基板ステージ 5について説明する。第 2基板ステージ 5は、第 1基板ステ ージ 4とほぼ同等の構成を有し、エアベアリング 5Aにより、ベース部材 BPの上面 (ガ イド面)に対して非接触支持されており、露光光 ELが照射され、パターン PAの像が 形成される第 2像野領域 AR2を含む所定領域内で第 2基板 P2を保持して移動可能 である。また、第 2基板ステージ 5は、第 2基板 P2を保持する基板ホルダ 5Hを備えて いる。基板ホルダ 5Hは、第 2基板 P2の表面と XY平面とがほぼ平行となるように、第 2基板 P2を保持する。
[0034] 露光装置 EXは、第 2基板ステージ 5を駆動するための、リニアモータ等のァクチュ エータを含む第 2基板ステージ駆動装置 5Dを備えている。第 2基板ステージ 5は、第 2基板ステージ駆動装置 5Dの駆動により、基板ホルダ 5Hに第 2基板 P2を保持した 状態で、ベース部材 BP上で、 X軸、 Y軸、 Z軸、 0 X、 θ Y,及び θ Z方向の 6自由度 の方向に移動可能である。制御装置 7は、第 2基板ステージ駆動装置 5Dを制御する ことにより、第 2基板ステージ 5の基板ホルダ 5Hに保持された第 2基板 P2の表面の X 軸、 Y軸、 Z軸、 0 X、 0 Y、及び 0 Z方向の 6自由度の方向に関する位置を制御可 能である。
[0035] 第 1基板ステージ 4 (第 1基板 P1)の位置情報は、計測システム 3のレーザ干渉計 3 4によって計測される。レーザ干渉計 34は、第 1基板ステージ 4に設けられた反射面 34Kを用いて第 1基板ステージ 4の X軸、 Y軸、及び θ Z方向に関する位置情報を計 測する。また、第 1基板ステージ 4に保持されている第 1基板 P1の表面の面位置情報 (Z軸、 Θ X、及び Θ Y方向に関する位置情報)は、不図示のフォーカス'レベリング検 出系によって検出される。制御装置 7は、レーザ干渉計 34の計測結果及びフォー力 ス 'レべリング検出系の検出結果に基づいて第 1基板ステージ駆動装置 4Dを駆動し 、第 1基板ステージ 4に保持されている第 1基板 P1の位置制御を行う。
[0036] 同様に、第 2基板ステージ 5 (第 2基板 P2)の位置情報は、計測システム 3のレーザ 干渉計 35によって計測される。レーザ干渉計 35は、第 2基板ステージ 5に設けられ た反射面 35Kを用いて第 2基板ステージ 5の X軸、 Y軸、及び θ Z方向に関する位置 情報を計測する。また、第 2基板ステージ 5に保持されている第 2基板 P2の表面の面 位置情報 (Z軸、 Θ X、及び Θ Y方向に関する位置情報)は、不図示のフォーカス'レ ベリング検出系によって検出される。制御装置 7は、レーザ干渉計 35の計測結果及 びフォーカス'レべリング検出系の検出結果に基づいて第 2基板ステージ駆動装置 5 Dを駆動し、第 2基板ステージ 5に保持されている第 2基板 P2の位置制御を行う。
[0037] フォーカス'レべリング検出系は、例えば米国特許第 6,608,681号などに開示され るように、その複数の計測点でそれぞれ基板の Z軸方向の位置情報を計測すること で、基板の面位置情報を検出するものである。本実施形態では、この複数の計測点 はその少なくとも一部が第 1、第 2露光領域 AR1、 AR2内に設定されるが、全ての計 測点が第 1、第 2露光領域 AR1、 AR2の外側に設定されてもよい。
[0038] なお、露光装置 EXが、例えば特開 2000— 323404号公報、特表 2001— 51326 7号公報等に開示されているような、第 1基板ステージ 4及び第 2基板ステージ 5の Z 軸方向の位置情報を計測可能なレーザ干渉計 (Z干渉計)を備えて!/、てもよ!/、。
[0039] 図 3は、第 1基板 P1を保持した第 1基板ステージ 4を上方力も見た平面図である。
図 3に示すように、第 1基板 P1上には、露光対象領域である複数のショット領域 S (S 1〜S21)がマトリクス状に設定されているとともに、各ショット領域 S1〜S21のそれぞ れに対応するように複数のァライメントマーク AMが設けられて 、る。本実施形態では 、ショット領域 Sの Y軸方向の両側にそれぞれァライメントマーク AMが形成されて ヽ る力 ァライメントマーク AMの個数や位置はこれに限定されるものではない。
[0040] また、図 3に示すように、第 1基板 P1上での第 1像野領域 AR1は、 X軸方向を長手 方向とする矩形状 (スリット状)に設定されている。第 1露光光 ELが照射される第 1像 野領域 AR1は、投影光学系 PLの投影領域である。
[0041] 第 1基板ステージ 4は、第 1基板 P1上のショット領域 Sを第 1像野領域 AR1に対して Y軸方向に移動可能である。制御装置 7は、第 1基板 P1を露光するとき、第 1基板 P1 上のショット領域 S (S1〜S21)が第 1露光光 ELによる第 1像野領域 AR1を通過する ように、第 1基板ステージ 4を制御して第 1基板 P1を Y軸方向に移動する。
[0042] また、制御装置 7は、第 1基板 P1のショット領域 S1〜S21のそれぞれを露光すると き、図 3中、例えば矢印 ylで示すように、第 1像野領域 AR1と第 1基板 P1とを相対的 に移動しつつ、第 1像野領域 AR1に露光光 ELを照射することによって、第 1基板 P1 上に露光光 ELを照射する。制御装置 7は、第 1像野領域 AR1が第 1基板 P1に対し て矢印 ylに沿って移動するように、第 1基板ステージ 4の動作を制御する。制御装置 7は、第 1基板 P1の Y方向へのスキャン動作と +Y方向へのスキャン動作とを繰り 返すことによって、第 1基板 P 1上の複数のショット領域 S 1〜S 21を順次露光する。
[0043] 以上、図 3を参照して、第 1基板ステージ 4及びその第 1基板ステージ 4上の第 1基 板 P1について説明したが、第 2基板ステージ 5及びその第 2基板ステージ 5上の第 2 基板 P2もほぼ同等の構成を有する。第 2基板 P2上での第 2像野領域 (投影領域) A R2は、 X軸方向を長手方向とする矩形状 (スリット状)に設定されている。制御装置 7 は、第 2基板 P2を露光するとき、第 2基板 P2上のショット領域 S (S1〜S21)が第 2露 光光 ELによる第 2像野領域 AR2を通過するように、第 2基板ステージ 5を制御して第 1基板 P1を Y軸方向に移動する。制御装置 7は、第 2基板 P2の Y方向へのスキヤ ン動作と +Y方向へのスキャン動作とを繰り返すことによって、第 2基板 Ρ2上の複数 のショット領域 S1〜S21を順次露光する。
[0044] 次に、上述の構成を有する露光装置 EXを用いて第 1基板 P1及び第 2基板 P2を露 光する方法につ!、て説明する。
[0045] 制御装置 7は、マスク Mをマスクステージ 2にロードするとともに、第 1基板 P1及び第 2基板 P2のそれぞれを第 1基板ステージ 4及び第 2基板ステージ 5のそれぞれにロー ドする。制御装置 7は、例えばァライメントマーク AMを検出した結果に基づいて第 1 基板 P1及び第 2基板 P2上の各ショット領域 Sの位置情報を取得する動作、第 1像野 領域 AR1及び第 2像野領域 AR2に形成される像面の位置情報を取得する動作、及 び第 1基板 P1及び第 2基板 P2の表面の面位置情報(凹凸情報を含む)を取得する 動作等、露光を開始する前の所定処理を適宜実行する。
[0046] また、本実施形態においては、露光装置 EXは、第 1基板 P1の露光と第 2基板 P2 の露光とを並行して行う。制御装置 7は、露光を開始する前の所定処理として、第 1 基板 P1のショット領域 Sに対する第 1像野領域 AR1に形成されるパターン PAの像の 投影が開始及び終了されるタイミング、及び第 2基板 P2のショット領域 Sに対する第 2 像野領域 AR2に形成されるパターン PAの像の投影が開始及び終了されるタイミン グが最適状態となるように、露光中におけるマスクステージ 2 (マスク M)、第 1基板ス テージ 4 (第 1基板 P1)、及び第 2基板ステージ 5 (第 2基板 P2)の位置、速度、及び 加速度等を含む移動条件を設定する。
[0047] 上述の所定処理を実行した後、制御装置 7は、第 1基板 P1及び第 2基板 P2の露光 を開始する。制御装置 7は、照明系 ILを用いて、第 1視野領域 FA1と第 2視野領域 F A2とのそれぞれに露光光 ELを照射する動作を開始する。制御装置 7は、計測シス テム 3で、マスクステージ 2、第 1基板ステージ 4、及び第 2基板ステージ 5の位置情報 をモニタしつつ、第 1像野領域 AR1に対する第 1基板 P1の Y軸方向への移動と、第 2像野領域 AR2に対する第 2基板 P2の Y軸方向への移動と、第 1視野領域 FA1及 び第 2視野領域 FA2に対するマスク Mの Y軸方向への移動とを同期して行いつつ、 第 1基板 P1及び第 2基板 P2上のショット領域 Sを露光する。なお、本実施形態にお いては、第 1基板 P1及び第 2基板 P2の露光中に、例えばマスク Mが +Y方向に移動 される場合、第 1基板 PI及び第 2基板 P2は—Y方向に移動され、マスク Μがー Υ方 向に移動される場合、第 1基板 P1及び第 2基板 Ρ2は +Υ方向に移動される。
[0048] 第 1基板 P1上の第 1像野領域 AR1には、第 1視野領域 FA1内に位置するパター ン ΡΑからの露光光 ELに基づいて、第 1視野領域 FA1内に位置するパターン Ρ Αの 像が形成される。第 1基板 P1上のショット領域 Sは、第 1像野領域 AR1に形成される ノターン PAの像で露光される。また、第 2基板 P2上の第 2像野領域 AR2には、第 2 視野領域 FA2内に位置するパターン PA力もの露光光 ELに基づいて、第 2視野領 域 FA2内に位置するパターン PAの像が形成される。第 2基板 P2上のショット領域 S は、第 2像野領域 AR2に形成されるパターン PAの像で露光される。
[0049] 第 1基板 P1及び第 2基板 P2の露光中には、制御装置 7は、第 1像野領域 AR1に 形成されるパターン PAの像面と第 1基板 P1の表面 (露光面)とが所望の位置関係と なるように、且つ第 2像野領域 AR2に形成されるパターン PAの像面と第 2基板 P2の 表面 (露光面)とが所望の位置関係となるように、第 1基板ステージ 4及び第 2基板ス テージ 5の Z軸、 Θ X、及び θ Y方向の位置を制御する。これにより、パターン P Aの像 面と第 1基板 P1及び第 2基板 P2の表面 (露光面)との位置関係を調整しつつ、第 1 基板 P1及び第 2基板 P2が露光される。
[0050] 以上説明したように、本実施形態においては、 1つのマスク Mを用いて、第 1基板 P 1と第 2基板 P2とを同時に露光することができる。したがって、コストを抑えつつスルー プットを向上することができ、複数の基板を効率良く露光することができる。本実施形 態においては、一回のスキャン動作で、第 1基板 P1及び第 2基板 P2上のショット領 域 Sを同時に露光することができる。
[0051] <第 2実施形態 >
次に、第 2実施形態について、図 4及び図 5を参照して説明する。本実施形態の特 徴的な部分は、基板ステージ 4'が、メインステージ 40と、第 1サブステージ 41と、第 2 サブステージとを有している点にある。メインステージ 40は、投影光学系 PLの光射出 側 (像面側)で、第 1基板 P1及び第 2基板 P2を保持してほぼ同一の走査方向へ移動 可能である。第 1サブステージ 41は、メインステージ 40に対して第 1基板 P1を移動可 能である。第 2サブステージ 42は、メインステージ 40に対して第 2基板 P2を移動可能 である。以下の説明において、上述の実施形態と同一又は同等の構成部分につい ては同一の符号を付し、その説明を簡略若しくは省略する。
[0052] 図 4は、本実施形態に係る露光装置 EXを示す概略構成図、図 5は、本実施形態に 係る基板ステージ 4,を示す断面図である。基板ステージ 4,は、メインステージ 40と、 メインステージ 40上で第 1基板 P1を保持した状態で移動可能な第 1サブステージ 41 と、メインステージ 40上で第 2基板 P2を保持した状態で移動可能な第 2サブステージ 42とを備えて ヽる。
[0053] メインステージ 40は、第 1サブステージ 41を介して第 1基板 P1を保持し、第 2サブス テージ 42を介して第 2基板 P2を保持する。メインステージ 40は、第 1サブステージ 4 1及び第 2サブステージ 42を介して第 1基板 P1及び第 2基板 P2を保持して同一の走 查方向(Y軸方向)、及び走査方向と交差する方向(X軸方向)に移動可能である。ま た、メインステージ 40は、 θ Z方向にも移動可能である。
[0054] メインステージ 40は、エアベアリング 4Aにより、ベース部材 BPの上面(ガイド面)に 対して非接触支持されている。ベース部材 BPの上面は XY平面とほぼ平行である。メ インステージ 40は、ベース部材 BP上を XY平面に沿って移動可能である。また、露 光装置 EXは、メインステージ 40を X軸、 Y軸、及び θ Z方向に移動するための、例え ばリニアモータ等のァクチユエータを含むメインステージ駆動装置 40Dを有している 。例えば、メインステージ 40が Y軸方向に移動することにより、メインステージ 40上の 第 1サブステージ 41及び第 2サブステージ 42も、メインステージ 40と一緒に Y軸方向 に移動する。したがって、メインステージ 40が Y軸方向に移動することにより、第 1サ ブステージ 41及び第 2サブステージ 42に保持された第 1基板 P1及び第 2基板 P2も 、メインステージ 40と一緒に Y軸方向に移動する。同様に、メインステージ 40が X軸 方向に移動することにより、メインステージ 40上の第 1サブステージ 41及び第 2サブ ステージ 42も、メインステージ 40と一緒に X軸方向に移動する。したがって、メインス テージ 40が X軸方向に移動することにより、第 1サブステージ 41及び第 2サブステー ジ 42に保持された第 1基板 P1及び第 2基板 P2も、メインステージ 40と一緒に X軸方 向に移動する。
[0055] 第 1サブステージ 41は、テーブル 41Aと、テーブル 41 A上に搭載され、第 1基板 P 1を保持するホルダ 41Bとを有している。テーブル 41Aは、メインステージ 40に対して 、 Z軸、 Θ X、及び θ Y方向に移動可能に設けられている。ホルダ 41Bは、テーブル 4 1Aに対して、 X軸、 Y軸、及び θ Z方向に移動可能に設けられている。基板ステージ 4'は、第 1サブステージ 41のテーブル 41Aとホルダ 41Bとの間に設けられた、例え ばボイスコイルモータ等の複数のァクチユエータを含む第 1駆動系 41DHと、テープ ル 41 Aとメインステージ 40との間に設けられた、例えばボイスコイルモータ等の複数 のァクチユエータ 4Vを含む第 2駆動系 41DVとを備えている。第 1駆動系 41DHによ り、テーブル 41Aに対してホルダ 41Bを X軸、 Y軸、及び θ Z方向に微小に移動可能 であり、第 2駆動系 41DVにより、メインステージ 40に対してテーブル 41 Aを Z軸、 Θ X、及び θ Y方向に微小に移動可能である。制御装置 7は、第 2駆動系 41DVを制御 して、テーブル 41 Aの Z軸、 Θ X、及び θ Y方向に関する位置を調整することにより、 テーブル 41A上のホルダ 41Bに保持されている第 1基板 P1の Z軸、 Θ X、及び θ Y 方向に関する位置を調整可能である。また、制御装置 7は、第 1駆動系 41DHを駆動 することによって、テーブル 41Aに対して、ホルダ 41Bを、 X軸、 Y軸、及び θ Z方向 に移動可能である。制御装置 7は、第 1駆動系 41DHを制御して、ホルダ 41Bの X軸 、 Y軸、及び θ Z方向に関する位置を調整することにより、ホルダ 41Bに保持されてい る第 1基板 P1の X軸、 Y軸、及び Θ Z方向に関する位置を調整可能である。このよう に、制御装置 7は、第 1駆動系 41DH及び第 2駆動系 41DVを含む第 1サブステージ 駆動装置 41 Dを駆動することにより、第 1サブステージ 41のホルダ 41 Bに保持されて いる第 1基板 P1の X軸、 Y軸、 Z軸、 0 X、 0 Y、及び 0 Z方向の 6自由度の方向に関 する位置を調整可能である。
第 1サブステージ 41と同様、第 2サブステージ 42は、テーブル 42Aと、テーブル 42 A上に搭載され、第 2基板 P2を保持するホルダ 42Bとを有している。テーブル 42Aは 、メインステージ 40に対して、 Z軸、 Θ X、及び θ Y方向に移動可能に設けられている 。ホルダ 42Bは、テーブル 42Aに対して、 X軸、 Y軸、及び θ Z方向に移動可能に設 けられている。また、第 2サブステージ 42のテーブル 42Aとホルダ 42Bとの間には、 第 1駆動系 42DHが設けられ、テーブル 42Aとメインステージ 40との間には、第 2駆 動系 42DVが設けられている。第 1駆動系 42DHにより、テーブル 42Aに対してホル ダ 42Bを X軸、 Y軸、及び θ Z方向に微小に移動可能であり、第 2駆動系 42DVによ り、メインステージ 40に対してテーブル 42Aを Z軸、 Θ X、及び θ Y方向に微小に移 動可能である。制御装置 7は、第 1駆動系 42DH及び第 2駆動系 42DVを含む第 2サ ブステージ駆動装置 42Dを駆動することにより、第 2サブステージ 42のホルダ 42Bに 保持されている第 2基板 P2の X軸、 Y軸、 Z軸、 0 X、 θ Y,及び 0 Z方向の 6自由度 の方向に関する位置を調整可能である。
[0057] 本実施形態の計測システム 3'は、メインステージ 40、第 1サブステージ 41、及び第 2サブステージ 42の位置情報をそれぞれ計測可能である。計測システム 3'は、メイン ステージ 40に設けられた反射面 130、第 1サブステージ 41に設けられた反射部材の 反射面 131、及び第 2サブステージ 42に設けられた反射面 132と、反射面 130、 13 1、 132に計測光を投射するとともに、その反射光を受光してメインステージ 40、第 1 サブステージ 41、及び第 2サブステージ 42のそれぞれの位置情報を取得するレー ザ干渉計 134とを含む。
[0058] 図 5においては、レーザ干渉計 134は、メインステージ 40の +Y側に配置されてお り、 Y軸方向を計測軸とする複数の計測光を反射面 130に照射可能である。レーザ 干渉計 134は、反射面 130に照射した計測光の反射光に基づいて、メインステージ 40の Y軸方向及び θ Z方向に関する位置情報を取得可能である。
[0059] メインステージ 40の所定位置には開口が形成される。レーザ干渉計 134は、その 開口を介して、 Y軸方向を計測軸とする複数の計測光を反射面 131に照射可能であ るとともに、 Y軸方向を計測軸とする計測光を反射面 132に照射可能である。レーザ 干渉計 134は、反射面 131、 132に照射した計測光の反射光に基づいて、第 1サブ ステージ 41 (ホルダ 41B)及び第 2サブステージ 42 (ホルダ 42B)の Y軸方向及び Θ Z方向に関する位置情報を取得可能である。
[0060] 不図示ではあるが、計測システム 3'は、メインステージ 40、第 1サブステージ 41、 及び第 2サブステージ 42のそれぞれの所定位置に設けられた反射面に X軸方向を 計測軸とする複数の計測光を照射可能なレーザ干渉計を備えており、メインステージ 40、第 1サブステージ 41 (ホルダ 41B)、及び第 2サブステージ 42 (ホルダ 42B)の X 軸方向に関する位置情報を取得可能である。 [0061] また、計測システム 3'は、メインステージ 40、第 1サブステージ 41、及び第 2サブス テージ 42のそれぞれの所定位置に設けられた反射面に Z軸方向を計測軸とする複 数の計測光を照射可能なレーザ干渉計を備えていてもよぐこれにより、メインステー ジ 40、第 1サブステージ 41 (ホルダ 41B)、及び第 2サブステージ 42 (ホルダ 42B)の Z軸、 Θ X、及び Θ Y方向に関する位置情報を取得可能である。
[0062] 制御装置 7は、計測システム 3'の計測結果に基づいて、メインステージ 40、第 1サ ブステージ 41、及び第 2サブステージ 42を適宜駆動し、第 1サブステージ 41及び第 2サブステージ 42のホルダ 41B及びホルダ 42Bに保持されている第 1基板 P1及び 第 2基板 P2の位置制御を行う。また、制御装置 7は、メインステージ 40に対して第 1 サブステージ 41及び第 2サブステージ 42の少なくとも一方を移動することによって、 第 1基板 P1と第 2基板 P2との相対的な位置関係を調整することができる。
[0063] 第 1基板 P1及び第 2基板 P2を露光するときには、マスクステージ 2を用いて、マスク Mを走査方向(Y軸方向)に移動しつつ、メインステージ 40を用いて、第 1基板 P1と 第 2基板 P2とを走査方向 (Y軸方向)に移動しながら、第 1基板 P1及び第 2基板 P2 のそれぞれに露光光 ELが照射される。制御装置 7は、メインステージ 40による Y軸 方向の移動中に、第 1サブステージ 41及び第 2サブステージ 42を駆動して、第 1基 板 P1及び第 2基板 P2の位置及び姿勢を調整しつつ、第 1基板 P1及び第 2基板 P2 を露光することができる。
[0064] このように、図 4及び図 5を示した基板ステージ 4,を用いることによつても、第 1基板 P1と第 2基板 P2とをほぼ同時に露光することができ、複数の基板を効率良く露光す ることがでさる。
[0065] <第 3実施形態 >
次に、第 3実施形態について、図 6A及び 6Bを参照して説明する。上述の実施形 態においては、照明系 ILは、光源装置 1から射出された露光光 ELを 2つの露光光 E Lに分割し、それら分割した露光光 ELのそれぞれを、第 1視野領域 FA1と第 2視野 領域 FA2とに照射している。本実施形態の特徴的な部分は、露光光 ELを分割せず に、第 1視野領域 FA1と第 2視野領域 FA2との両方に露光光 ELを照射する点にあ る。 [0066] 図 6Aは、本実施形態に係るマスクステージ 2に保持されたマスク Mを示す平面図、 図 6Bは、マスク Mを通過した露光光 ELが光学部材 50に照射されて 、る状態を示す 模式図である。
[0067] 図 6Aに示すように、本実施形態においては、照明系 ILは、露光光 ELを分割せず 、投影光学系 PLの第 1視野領域 FA1と第 2視野領域 FA2とに露光光 ELを照射する 。本実施形態においては、投影光学系 PLの第 1視野領域 FA1と第 2視野領域 FA2 とは Y軸方向に並ぶように設定され、第 1視野領域 FA1の Y側のエッジと第 2視野 領域 FA2の +Y側のエッジとは接触 (又は接近)して 、る。
[0068] 第 1視野領域 FA1と第 2視野領域 FA2とに照射された露光光 ELは、図 6Bの模式 図に示すように、光学部材 50の線分 (頂点) 53を境界として、第 1反射面 51に照射さ れる露光光 ELと、第 2反射面 52に照射される露光光 ELとに分割される。第 1反射面 51に照射された露光光 ELは、第 1像野領域 AR1へ導かれ、第 2反射面 52に照射さ れた露光光 ELは、第 2像野領域 AR2へ導かれる。
[0069] このように、照明系 ILで露光光 ELを分割せずに、第 1視野領域 FA1と第 2視野領 域 FA2との両方に露光光 ELを照射し、投影光学系 PLの光学部材 50で分割するよ うにしてもよい。本実施形態においては、照明系 ILで露光光 ELを分割せず、互いに 接触 (又は接近)している第 1視野領域 FA1と第 2視野領域 FA2とを形成した場合で も、頂点 53を境界として、第 1視野領域 FA1からの露光光 ELを第 1像野領域 AR1に 導き、第 2視野領域 FA2からの露光光 ELを第 2像野領域 AR2に導くことができる。
[0070] <第 4実施形態 >
次に、第 4実施形態について、図 7A及び 7Bを参照して説明する。上述の実施形 態においては、光学部材 50の頂点 53は V字状である力 図 7Bに示すように、光学 部材 50の YZ平面に平行な断面形状を台形状にしてもよい。これにより、図 7Aに示 すように、照明系 ILで露光光 ELを分割せずに、第 1視野領域 FA1と第 2視野領域 F A2とに入射させた場合でも、第 1視野領域 FA1からの露光光 ELを第 1像野領域 AR 1に導き、第 2視野領域 FA2からの露光光 ELを第 2像野領域 AR2に導くことができ る。
[0071] <第 5実施形態 > 次に、第 5実施形態について、図 8を参照して説明する。本実施形態の特徴的な部 分は、投影光学系 PLは、第 1視野領域 FA1内に位置するパターン PAからの露光光 ELに基づいてパターン PAの像を第 1像野領域 AR1とは異なる第 3像野領域 AR3 に形成する点にある。
[0072] 図 8は、第 5実施形態に係る露光装置 EXを示す模式図である。図 8に示すように、 第 1視野領域 FA1からの露光光 ELが進行する第 1光路 BR1の所定位置には、第 1 視野領域 FA1からの露光光 ELを分岐する分岐光学素素子 (ビームスプリッタ) 61が 配置されている。第 1視野領域 FA1から第 1光路 BR1を進行する露光光 ELは、第 1 反射面 51を経て、分岐光学素子 61で分岐され、第 1像野領域 AR1と第 3像野領域 AR3とに導かれる。投影光学系 PLにおいて、第 1視野領域 FA1からの露光光 ELを 分岐光学素子 61で分岐することによって、第 1視野領域 FA1内に位置するパターン PA力ゝらの露光光 ELに基づいてパターン PAの像を第 1像野領域 AR1と第 3像野領 域 AR3とに形成することができる。
[0073] また、本実施形態においては、第 2視野領域 FA2からの露光光 ELが進行する第 2 光路 BR2の所定位置にも、第 2視野領域 FA2からの露光光 ELを分岐する分岐光学 素素子 (ビームスプリッタ) 62が配置されて ヽる。第 2視野領域 FA2から第 2光路 BR 2を進行する露光光 ELは、第 2反射面 52を経て、分岐光学素子 62で分岐され、第 2 像野領域 AR2と、第 2像野領域 AR2とは異なる第 4像野領域 AR4とに導かれる。投 影光学系 PLにおいて、第 2視野領域 FA2からの露光光 ELを分岐光学素子 62で分 岐することによって、第 2視野領域 FA2内に位置するパターン P Aからの露光光 EL に基づいてパターン PAの像を第 2像野領域 AR2と第 4像野領域 AR4とに形成する ことができる。
[0074] 本実施形態の露光装置 EXは、第 3像野領域 AR3に形成されるパターン PAの像で 、第 1基板 P1及び第 2基板 P2とは異なる第 3基板 P3を露光することができる。同様 に、露光装置 EXは、第 4像野領域 AR4に形成されるパターン PAの像で、第 1、第 2 、第 3基板 Pl、 P2、 P3とは異なる第 4基板 P4を露光することができる。
[0075] <第 6実施形態 >
次に、第 6実施形態について、図 9を参照して説明する。図 9の模式図に示すように 、露光装置 EXは、投影光学系 PLにより第 1像野領域 AR1及び第 3像野領域 AR3 のそれぞれに形成したパターン PAの像で、第 1基板 P1上の第 1のショット領域 Saと、 その第 1のショット領域 Saとは別の第 2のショット領域 Sbとを同時に露光することがで きる。すなわち、露光装置 EXは、投影光学系 PLにより第 1像野領域 AR1及び第 3像 野領域 AR3のそれぞれに形成したパターン P Aの像で、 1つの基板上における互 ヽ に重複しないショット領域のそれぞれを同時に露光することができる。また、露光装置 EXは、第 1基板 P1上の複数 (2つ)のショット領域を同時に露光する動作と並行して 、第 2基板 P2上のショット領域 Scを第 2像野領域 AR2に形成されたパターン PAの像 で露光することもできる。また、露光装置 EXは、第 1基板 P1上の複数のショット領域 を第 1像野領域 AR1及び第 3像野領域 AR3に形成されたパターン PAの像で同時に 露光する動作と並行して、第 2基板 P2上のショット領域 Sc、 Sdを第 2像野領域 AR2 及び第 4像野領域 AR4に形成されたパターン PAの像で同時に露光することもできる
[0076] なお、上述の第 6、第 7実施形態においては、第 1光路 BR1上に 1つの分岐光学素 子 61を配置し、第 1視野領域 FA1からの露光光 ELを 2つに分岐している力 その分 岐した露光光 ELの少なくとも一方の光路上に更に分岐光学素子を設けて露光光 EL を分岐してもよい。同様に、第 2光路 BR2上に複数の分岐光学素子を設けて露光光 ELを分岐してもよい。このように、複数の分岐光学素子を用いて露光光 ELを分岐す ることにより、視野領域に対して像野領域の数を異ならせる(多くする)ことができる。
[0077] なお、上述の第 1〜第 7の各実施形態において、投影光学系 PLとしては、例えば 反射光学素子を含まない屈折系、屈折光学素子を含まない反射系、反射光学素子 及び屈折光学素子の両方を含む反射屈折系の!、ずれであってもよ 、。
[0078] なお、上述の各実施形態において、例えば国際公開第 99Z49504号パンフレット 等に開示されているような液浸法を適用してもよい。すなわち、第 1像野領域 AR1及 び第 2像野領域 AR2を覆うように、液体の液浸領域を第 1基板 P1及び第 2基板 P2上 に形成し、その液体を介して露光光 ELを第 1基板 P1及び第 2基板 P2上に照射する ようにしてもよい。なお、液体としては、水(純水)を用いてもよいし、水以外のもの、例 えば過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系流体、あるいはセ ダー油などを用いてもよい。また、液体としては、水よりも露光光に対する屈折率が高 い液体、例えば屈折率が 1. 6〜1. 8程度のものを使用してもよい。更に、石英や蛍 石よりも屈折率が高 ヽ (例えば 1. 6以上)材料で終端光学素子 FLを形成してもよ ヽ。 ここで、純水よりも屈折率が高い (例えば 1. 5以上)の液体 LQとしては、例えば、屈 折率が約 1. 50のイソプロパノール、屈折率が約 1. 61のグリセロール(グリセリン)と いった C—H結合あるいは O—H結合を持つ所定液体、へキサン、ヘプタン、デカン 等の所定液体 (有機溶剤)、あるいは屈折率が約 1. 60のデカリン (Decalin: Decahydr ◦naphthalene)などが挙げられる。また、液体 LQは、これら液体のうち任意の 2種類以 上の液体を混合したものでもよいし、純水にこれら液体の少なくとも 1つを添カ卩(混合) したものでもよい。さらに、液体 LQは、純水に H+、 Cs+、 K+、 Cl_、 SO 2_、 PO 2_
4 4 の塩基又は酸を添加(混合)したものでもよ ヽし、純水に A1酸ィ匕物等の微粒子を添カロ (混合)したものでもよい。なお、液体としては、光の吸収係数が小さぐ温度依存性 が少なぐ投影光学系、及び Z又は基板の表面に塗布されている感光材 (又はトップ コート膜あるいは反射防止膜など)に対して安定なものであることが好ましい。液体と して、超臨界流体を用いることも可能である。また、基板には、液体から感光材ゃ基 材を保護するトップコート膜などを設けることができる。また、終端光学素子を、例え ば石英(シリカ)、あるいは、フッ化カルシウム(蛍石)、フッ化バリウム、フッ化ストロン チウム、フッ化リチウム、及びフッ化ナトリウム等のフッ化化合物の単結晶材料で形成 してもよいし、石英や蛍石よりも屈折率が高い(例えば 1. 6以上)材料で形成してもよ い。屈折率が 1. 6以上の材料としては、例えば、国際公開第 2005Z059617号パ ンフレットに開示されるサファイア、二酸ィ匕ゲルマニウム等、あるいは、国際公開第 20 05Z059618号パンフレットに開示される塩ィ匕カリウム(屈折率は約 1. 75)等を用い ることがでさる。
液浸法を用いる場合、例えば、国際公開第 2004Z019128号パンフレット(対応 米国特許公開第 2005Z0248856号)に開示されているように、終端光学素子の像 面側の光路に加えて、終端光学素子の物体面側の光路も液体で満たすようにしても よい。さらに、終端光学素子の表面の一部 (少なくとも液体との接触面を含む)又は全 部に、親液性及び Z又は溶解防止機能を有する薄膜を形成してもよい。なお、石英 は液体との親和性が高ぐかつ溶解防止膜も不要であるが、蛍石は少なくとも溶解防 止膜を形成することが好まし 、。
[0080] 上記各実施形態では、計測システム 3として干渉計システムを用いて、マスクステー ジ及び基板ステージの位置情報を計測するものとしたが、これに限らず、例えば基板 ステージの上面に設けられるスケール(回折格子)を検出するエンコーダシステムを 用いてもよい。この場合、干渉計システムとエンコーダシステムの両方を備えるハイブ リツドシステムとし、干渉計システムの計測結果を用いてエンコーダシステムの計測結 果の較正(キャリブレーション)を行うことが好ましい。また、干渉計システムとェンコ一 ダシステムとを切り替えて用いる、あるいはその両方を用いて、基板ステージの位置 制御を行うようにしてもよい。
[0081] なお、上記各実施形態の基板としては、半導体デバイス製造用の半導体ウェハの みならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックウェハ 、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコンゥ ェハ)、またはフィルム部材等が適用される。また、基板はその形状が円形に限られる ものでなぐ矩形など他の形状でもよい。
[0082] また、上記各実施形態の露光装置 EXは、例えば特開平 11 135400号公報 (対 応国際公開 1999/23692)、及び特開 2000— 164504号公報 (対応米国特許第 6,897,963号)などに開示されているように、基板を保持する基板ステージとは独立 に移動可能であるとともに、計測部材 (例えば、基準マークが形成された基準部材及 び Z又は各種の光電センサ)を搭載した計測ステージを備えて 、てもよ 、。
[0083] 上記各実施形態では、パターンを形成するためにマスクを用いた力 これに代えて 、可変のパターンを生成する電子マスク(可変成形マスク、アクティブマスク、あるいは パターンジェネレータとも呼ばれる)を用いることができる。電子マスクとして、例えば 非発光型画像表示素子(空間光変調器: Spatial Light Modulator (SLM)とも呼ばれ る)の一種である i3MD (Deformable iicro— mirror Device又は Digital Micro— mirror D evice)を用い得る。 DMDは、所定の電子データに基づいて駆動する複数の反射素 子 (微小ミラー)を有し、複数の反射素子は、 DMDの表面に 2次元マトリックス状に配 列され、かつ素子単位で駆動されて露光光を反射、偏向する。各反射素子はその反 射面の角度が調整される。 DMDの動作は、制御装置により制御され得る。制御装置 は、基板上に形成すべきパターンに応じた電子データ (パターン情報)に基づいて D MDの反射素子を駆動し、照明系により照射される露光光を反射素子でパターンィ匕 する。 DMDを使用することにより、パターンが形成されたマスク(レチクル)を用いて 露光する場合に比べて、パターンが変更されたときに、マスクの交換作業及びマスク ステージにおけるマスクの位置合わせ操作が不要になる。なお、電子マスクを用いる 露光装置では、マスクステージを設けず、基板ステージによって基板を X軸及び Y軸 方向に移動するだけでもよい。なお、 DMDを用いた露光装置は、例えば特開平 8— 313842号公報、特開 2004— 304135号公報、米国特許第 6,778,257号公報に 開示されている。
[0084] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、撮像素子 (CCD)、マイクロマシン、 MEMS, DNAチ ップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用 できる。
[0085] なお、法令で許容される限りにお 、て、上記各実施形態及び変形例で引用した露 光装置などに関する全ての公開公報及び米国特許などの開示を援用して本文の記 載の一部とする。
[0086] 以上のように、上記実施形態の露光装置 EXは、各構成要素を含む各種サブシス テムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てること で製造される。これら各種精度を確保するために、この組み立ての前後には、各種光 学系につ 、ては光学的精度を達成するための調整、各種機械系につ 、ては機械的 精度を達成するための調整、各種電気系については電気的精度を達成するための 調整が行われる。各種サブシステム力 露光装置への組み立て工程は、各種サブシ ステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含ま れる。この各種サブシステム力 露光装置への組み立て工程の前に、各サブシステ ム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置へ の組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度 が確保される。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーン ルームで行うことが望まし 、。
半導体デバイス等のマイクロデバイスは、図 10に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する工程、露光した基 板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程などの基板処 理プロセスを含むステップ 204、デバイス組み立てステップ(ダイシング工程、ボンデ イング工程、ノ ッケージ工程などの加工プロセスを含む) 205、検査ステップ 206等を 経て製造される。

Claims

請求の範囲
[1] 基板を露光する露光装置において、
第 1視野領域と該第 1視野領域とは異なる第 2視野領域とを有し、パターンの像を 第 1像野領域及び第 2像野領域に投影する投影光学系であり、前記第 1視野領域を 介した露光光によって前記パターンの像が前記第 1像野領域に形成され、前記第 2 視野領域を介した露光光によって前記パターンの像が前記第 2像野領域に形成され る前記投影光学系を備え、
前記第 1像野領域に形成される前記パターンの像で第 1基板を露光し、前記第 2像 野領域に形成される前記パターンの像で第 2基板を露光する露光装置。
[2] 前記第 1視野領域及び前記第 2視野領域を前記露光光で照明する照明系をさらに 備えた請求項 1記載の露光装置。
[3] 前記照明系は、そこからの前記露光光が前記第 1視野領域と前記第 2視野領域と のそれぞれを照明する 1つの光源を有する請求項 2記載の露光装置。
[4] 前記投影光学系は、前記第 1視野領域からの前記露光光の光路である第 1光路中 に配置された第 1反射面と、前記第 2視野領域からの前記露光光の光路である第 2 光路中に配置された第 2反射面とを有し、
前記第 1光路を進行する前記露光光は前記第 1反射面を経て前記第 1像野領域へ 導かれ、前記第 2光路を進行する前記露光光は前記第 2反射面を経て前記第 2像野 領域へ導かれる請求項 1〜3のいずれか一項記載の露光装置。
[5] 前記第 1反射面及び前記第 2反射面は、前記第 1視野領域及び前記第 2視野領域 と光学的に共役な位置又はその近傍に配置されている請求項 4記載の露光装置。
[6] 前記投影光学系は、前記パターンからの前記露光光を前記第 1反射面及び前記 第 2反射面へ導く第 1光学素子群と、
前記第 1反射面で反射した前記露光光を前記第 1像野領域へ導く第 2光学素子群 と、
前記第 2反射面で反射した前記露光光を前記第 2像野領域へ導く第 3光学素子群 とを有する請求項 4又は 5記載の露光装置。
[7] 前記第 1像野領域に対して前記第 1基板の所定領域を所定の走査方向に移動し つつ、前記第 1基板上の所定領域を露光し、
前記第 2像野領域に対して前記第 2基板の所定領域を所定の走査方向に移動し つつ、前記第 2基板上の所定領域を露光する請求項 1〜6のいずれか一項記載の露 光装置。
[8] 前記第 1基板を所定の走査方向に移動させ、前記第 2基板を所定の走査方向に移 動させる基板移動システムをさらに備えた請求項 7記載の露光装置。
[9] 前記基板移動システムは、前記投影光学系の光射出側で、前記第 1基板を保持し て移動させる第 1基板ステージと、前記第 2基板を保持して前記第 1基板ステージと は独立して移動させる第 2基板ステージとを含む請求項 8記載の露光装置。
[10] 前記基板移動システムは、前記投影光学系の光射出側で、前記第 1基板及び前記 第 2基板を保持してほぼ同一の走査方向へ移動可能なメインステージと、
前記メインステージに対して前記第 1基板を移動させる第 1移動装置と、 前記メインステージに対して前記第 2基板を移動させる第 2移動装置とを含む請求 項 8記載の露光装置。
[11] 前記第 1基板及び前記第 2基板のそれぞれの位置情報を計測する計測システムを さらに備えた請求項 1〜 10のいずれか一項記載の露光装置。
[12] 前記第 1視野領域と前記第 2視野領域とは所定方向に離れている請求項 1〜11の
V、ずれか一項記載の露光装置。
[13] 前記第 1視野領域及び前記第 2視野領域に対して前記パターンを前記所定方向 に移動しつつ、前記第 1基板及び前記第 2基板を露光する請求項 1〜12のいずれ か一項記載の露光装置。
[14] 前記第 1基板の露光と前記第 2基板の露光の少なくとも一部とを並行して実行する 請求項 1〜13のいずれか一項記載の露光装置。
[15] 前記投影光学系は、前記第 1視野領域内に位置する前記パターンからの前記露光 光に基づいて前記パターンの像を第 3像野領域に形成する請求項 1〜14のいずれ か一項記載の露光装置。
[16] 前記第 3像野領域に形成される前記パターンの像で第 3基板を露光する請求項 15 記載の露光装置。
[17] 前記投影光学系は、前記第 2視野領域内に位置する前記パターンからの前記露光 光に基づいて前記パターンの像を第 4像野領域に形成する請求項 15記載の露光装 置。
[18] 請求項 1〜請求項 17のいずれか一項記載の露光装置を用いるデバイス製造方法
PCT/JP2007/054028 2006-03-03 2007-03-02 露光装置及びデバイス製造方法 WO2007100087A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07737676A EP1993121A4 (en) 2006-03-03 2007-03-02 EXPOSURE DEVICE AND COMPONENT MANUFACTURING METHOD
JP2008502865A JP4973652B2 (ja) 2006-03-03 2007-03-02 露光装置及びデバイス製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006057786 2006-03-03
JP2006-057786 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007100087A1 true WO2007100087A1 (ja) 2007-09-07

Family

ID=38459182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054028 WO2007100087A1 (ja) 2006-03-03 2007-03-02 露光装置及びデバイス製造方法

Country Status (6)

Country Link
US (1) US7916270B2 (ja)
EP (1) EP1993121A4 (ja)
JP (1) JP4973652B2 (ja)
KR (1) KR20080107363A (ja)
TW (1) TW200736849A (ja)
WO (1) WO2007100087A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287643A (ja) * 2009-06-10 2010-12-24 Nikon Corp 投影光学装置、露光装置、露光方法およびデバイス製造方法
WO2011096428A1 (ja) * 2010-02-02 2011-08-11 株式会社ニコン 露光方法、露光装置、パターン形成方法、およびデバイス製造方法
JP2011187930A (ja) * 2010-03-04 2011-09-22 Asml Netherlands Bv リソグラフィ装置および方法
US8027088B2 (en) 2006-12-28 2011-09-27 Carl Zeiss Smt Gmbh Catadioptric projection objective with tilted deflecting mirrors, projection exposure apparatus, projection exposure method, and mirror
JP2013003158A (ja) * 2011-06-10 2013-01-07 Nsk Technology Co Ltd 露光装置及び露光方法
JP2013003157A (ja) * 2011-06-10 2013-01-07 Nsk Technology Co Ltd 露光ユニット及びそれを用いた露光方法
KR20170051297A (ko) * 2015-10-29 2017-05-11 가부시키가이샤 오크세이사쿠쇼 노광 장치용 노광 헤드 및 노광 장치용 투영 광학계

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486589B1 (ko) * 2006-04-17 2015-01-26 가부시키가이샤 니콘 조명 광학 장치, 노광 장치, 및 디바이스 제조 방법
US8665418B2 (en) * 2007-04-18 2014-03-04 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
JP2011503529A (ja) * 2007-10-19 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 精確な測定を有する移動装置
DE102007051669A1 (de) 2007-10-26 2009-04-30 Carl Zeiss Smt Ag Abbildende Optik, Projektionsbelichtungsanlage für die Mikrolithographie mit einer derartigen abbildenden Optik sowie Verfahren zur Herstellung eines mikrostrukturierten Bauteils mit einer derartigen Projektionsbelichtungsanlage
US8305559B2 (en) * 2008-06-10 2012-11-06 Nikon Corporation Exposure apparatus that utilizes multiple masks
US8736813B2 (en) * 2008-08-26 2014-05-27 Nikon Corporation Exposure apparatus with an illumination system generating multiple illumination beams
US20100053588A1 (en) * 2008-08-29 2010-03-04 Nikon Corporation Substrate Stage movement patterns for high throughput While Imaging a Reticle to a pair of Imaging Locations
US8705170B2 (en) * 2008-08-29 2014-04-22 Nikon Corporation High NA catadioptric imaging optics for imaging A reticle to a pair of imaging locations
US20100091257A1 (en) * 2008-10-10 2010-04-15 Nikon Corporation Optical Imaging System and Method for Imaging Up to Four Reticles to a Single Imaging Location
US20100123883A1 (en) * 2008-11-17 2010-05-20 Nikon Corporation Projection optical system, exposure apparatus, and device manufacturing method
CN114325889A (zh) * 2021-12-30 2022-04-12 拓荆科技股份有限公司 光学照明装置及光学改性设备

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161718A (ja) 1985-01-11 1986-07-22 Canon Inc 露光装置
JPH06120108A (ja) * 1992-10-06 1994-04-28 Hitachi Ltd 投影露光方法および装置
JPH07161603A (ja) * 1993-12-02 1995-06-23 Hitachi Ltd 露光装置
JPH08313842A (ja) 1995-05-15 1996-11-29 Nikon Corp 照明光学系および該光学系を備えた露光装置
WO1999023692A1 (fr) 1997-10-31 1999-05-14 Nikon Corporation Aligneur et procede d'exposition
WO1999027569A1 (fr) * 1997-11-22 1999-06-03 Nikon Corporation Aligneur, procede d'exposition et procede de fabrication de composants
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
JP2000323404A (ja) 1999-03-08 2000-11-24 Asm Lithography Bv リソグラフィック投影装置のオフアキシレベリング
JP2001513267A (ja) 1997-12-22 2001-08-28 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 時間を節約する高さ測定を用いた、基板にマスク・パターンを繰り返し投影する方法および装置
JP2001291654A (ja) * 2000-04-07 2001-10-19 Canon Inc 投影露光装置および方法
US6608681B2 (en) 1992-12-25 2003-08-19 Nikon Corporation Exposure method and apparatus
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
JP2004519850A (ja) * 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
WO2005059618A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
JP2005268781A (ja) * 2004-03-16 2005-09-29 Carl Zeiss Smt Ag 多重露光方法、マイクロリソグラフィー投影露光装置および投影系
JP2006057786A (ja) 2004-08-23 2006-03-02 Iwatani Industrial Gases Corp 液化ガスタンクの内槽支持装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653903A (en) * 1984-01-24 1987-03-31 Canon Kabushiki Kaisha Exposure apparatus
CN1244021C (zh) * 1996-11-28 2006-03-01 株式会社尼康 光刻装置和曝光方法
JP2000021748A (ja) * 1998-06-30 2000-01-21 Canon Inc 露光方法および露光装置
JP2000021742A (ja) 1998-06-30 2000-01-21 Canon Inc 露光方法および露光装置
US6238852B1 (en) * 1999-01-04 2001-05-29 Anvik Corporation Maskless lithography system and method with doubled throughput
JP2001297976A (ja) 2000-04-17 2001-10-26 Canon Inc 露光方法及び露光装置
EP1255162A1 (en) * 2001-05-04 2002-11-06 ASML Netherlands B.V. Lithographic apparatus
EP1372036A1 (en) * 2002-06-12 2003-12-17 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7924406B2 (en) * 2005-07-13 2011-04-12 Asml Netherlands B.V. Stage apparatus, lithographic apparatus and device manufacturing method having switch device for two illumination channels
JP4929762B2 (ja) * 2006-03-03 2012-05-09 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161718A (ja) 1985-01-11 1986-07-22 Canon Inc 露光装置
JPH06120108A (ja) * 1992-10-06 1994-04-28 Hitachi Ltd 投影露光方法および装置
US6608681B2 (en) 1992-12-25 2003-08-19 Nikon Corporation Exposure method and apparatus
JPH07161603A (ja) * 1993-12-02 1995-06-23 Hitachi Ltd 露光装置
JPH08313842A (ja) 1995-05-15 1996-11-29 Nikon Corp 照明光学系および該光学系を備えた露光装置
WO1999023692A1 (fr) 1997-10-31 1999-05-14 Nikon Corporation Aligneur et procede d'exposition
WO1999027569A1 (fr) * 1997-11-22 1999-06-03 Nikon Corporation Aligneur, procede d'exposition et procede de fabrication de composants
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
JP2001513267A (ja) 1997-12-22 2001-08-28 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 時間を節約する高さ測定を用いた、基板にマスク・パターンを繰り返し投影する方法および装置
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
JP2000323404A (ja) 1999-03-08 2000-11-24 Asm Lithography Bv リソグラフィック投影装置のオフアキシレベリング
JP2001291654A (ja) * 2000-04-07 2001-10-19 Canon Inc 投影露光装置および方法
JP2004519850A (ja) * 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20050248856A1 (en) 2002-08-23 2005-11-10 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
WO2005059618A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
JP2005268781A (ja) * 2004-03-16 2005-09-29 Carl Zeiss Smt Ag 多重露光方法、マイクロリソグラフィー投影露光装置および投影系
JP2006057786A (ja) 2004-08-23 2006-03-02 Iwatani Industrial Gases Corp 液化ガスタンクの内槽支持装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1993121A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027088B2 (en) 2006-12-28 2011-09-27 Carl Zeiss Smt Gmbh Catadioptric projection objective with tilted deflecting mirrors, projection exposure apparatus, projection exposure method, and mirror
US8411356B2 (en) 2006-12-28 2013-04-02 Carl Zeiss Smt Gmbh Catadioptric projection objective with tilted deflecting mirrors, projection exposure apparatus, projection exposure method, and mirror
JP2010287643A (ja) * 2009-06-10 2010-12-24 Nikon Corp 投影光学装置、露光装置、露光方法およびデバイス製造方法
WO2011096428A1 (ja) * 2010-02-02 2011-08-11 株式会社ニコン 露光方法、露光装置、パターン形成方法、およびデバイス製造方法
JP5644779B2 (ja) * 2010-02-02 2014-12-24 株式会社ニコン 露光方法、露光装置、パターン形成方法、およびデバイス製造方法
JP2011187930A (ja) * 2010-03-04 2011-09-22 Asml Netherlands Bv リソグラフィ装置および方法
US8610878B2 (en) 2010-03-04 2013-12-17 Asml Netherlands B.V. Lithographic apparatus and method
JP2013003158A (ja) * 2011-06-10 2013-01-07 Nsk Technology Co Ltd 露光装置及び露光方法
JP2013003157A (ja) * 2011-06-10 2013-01-07 Nsk Technology Co Ltd 露光ユニット及びそれを用いた露光方法
KR20170051297A (ko) * 2015-10-29 2017-05-11 가부시키가이샤 오크세이사쿠쇼 노광 장치용 노광 헤드 및 노광 장치용 투영 광학계
KR102439363B1 (ko) 2015-10-29 2022-09-02 가부시키가이샤 오크세이사쿠쇼 노광 장치용 노광 헤드 및 노광 장치용 투영 광학계

Also Published As

Publication number Publication date
US20070242244A1 (en) 2007-10-18
TW200736849A (en) 2007-10-01
JPWO2007100087A1 (ja) 2009-07-23
JP4973652B2 (ja) 2012-07-11
US7916270B2 (en) 2011-03-29
EP1993121A4 (en) 2011-12-07
KR20080107363A (ko) 2008-12-10
EP1993121A1 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4973652B2 (ja) 露光装置及びデバイス製造方法
JP4929762B2 (ja) 露光装置、露光方法、及びデバイス製造方法
US8982322B2 (en) Exposure apparatus and device manufacturing method
JP2007251153A (ja) 露光装置、露光方法及びデバイス製造方法
JP5120377B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
EP2003684A1 (en) Exposure apparatus, exposure method and device manufacturing method
KR20080102192A (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법
KR20080113068A (ko) 노광 장치 및 디바이스 제조 방법
JP2008072119A (ja) 液浸露光装置及び液浸露光方法、並びにデバイス製造方法
JP5692076B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2010062210A (ja) 露光装置、露光方法、及びデバイス製造方法
JP2013083655A (ja) 露光装置、及びデバイス製造方法
JP2007281169A (ja) 投影光学系、露光装置及び露光方法、並びにデバイス製造方法
JP2008103425A (ja) 露光装置及び露光方法、並びにデバイス製造方法
EP1986224A1 (en) Exposure apparatus, exposing method, and device manufacturing method
JP2010118383A (ja) 照明装置、露光装置、及びデバイス製造方法
JP2012242811A (ja) マスク、露光装置、露光方法、及びデバイス製造方法
JP5612810B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2010016111A (ja) 露光装置、及びデバイス製造方法
JP2010067867A (ja) 露光方法及び装置、並びにデバイス製造方法
JP5470984B2 (ja) 照明装置、露光装置、及びデバイス製造方法
JP4957281B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2008124379A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2008205460A (ja) 決定方法、評価方法、露光方法、評価装置、液浸露光装置、及びデバイス製造方法
JP2012093585A (ja) アライメント方法、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502865

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087019415

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737676

Country of ref document: EP