WO2011093263A1 - ドライエッチング剤及びそれを用いたドライエッチング方法 - Google Patents

ドライエッチング剤及びそれを用いたドライエッチング方法 Download PDF

Info

Publication number
WO2011093263A1
WO2011093263A1 PCT/JP2011/051304 JP2011051304W WO2011093263A1 WO 2011093263 A1 WO2011093263 A1 WO 2011093263A1 JP 2011051304 W JP2011051304 W JP 2011051304W WO 2011093263 A1 WO2011093263 A1 WO 2011093263A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry etching
gas
group
etching
etching agent
Prior art date
Application number
PCT/JP2011/051304
Other languages
English (en)
French (fr)
Inventor
日比野 泰雄
智典 梅崎
亜紀応 菊池
勇 毛利
覚 岡本
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011011049A external-priority patent/JP5862012B2/ja
Priority claimed from JP2011011050A external-priority patent/JP2011176292A/ja
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US13/576,093 priority Critical patent/US9093388B2/en
Priority to CN201180008023.1A priority patent/CN102741987B/zh
Priority to EP11736976.9A priority patent/EP2511948A4/en
Priority to KR1020127022186A priority patent/KR101422155B1/ko
Publication of WO2011093263A1 publication Critical patent/WO2011093263A1/ja
Priority to US14/271,647 priority patent/US9230821B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/22Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Definitions

  • the present invention relates to the use of fluorinated propines, and more particularly to a dry etching agent and a semiconductor dry etching method using the same.
  • the dry etching method is a method in which a plasma is generated in a vacuum space to form a fine pattern on a material surface in units of molecules.
  • Patent Document 1 discloses a method in which a reactive gas containing a perfluoroketone having 4 to 7 carbon atoms is used as a cleaning gas or an etching gas.
  • these decomposition products of perfluoroketone are not necessarily preferable as an etching gas because they contain not only a small amount of PFC having a high GWP but also a substance having a relatively high boiling point.
  • Patent Document 2 discloses a method using hydrofluoroether (HFE) having 2 to 6 carbon atoms as a dry etching gas.
  • HFE hydrofluoroether
  • Patent Document 4 discloses a plasma etching method characterized by using hexafluoro-2-butyne, hexafluoro-1,3-butadiene, hexafluoropropene, or the like as an etching gas.
  • Patent Document 5 (a) an unsaturated fluorocarbon selected from the group consisting of hexafluorobutadiene, octafluoropentadiene, pentafluoropropene or trifluoropropyne, and (b) a hydro selected from the group consisting of monofluoromethane or difluoromethane.
  • a method of etching an oxide layer on a non-oxide layer made of a nitride layer using a mixed gas containing fluoromethane and (c) an inert carrier gas is disclosed.
  • Patent Document 6 discloses that a chain perfluoroalkyne having 5 or 6 carbon atoms is used as a plasma reaction gas.
  • PFCs and HFCs are regulated substances because of their high GWP, and perfluoroketones, hydrofluoroethers, and hydrofluorovinyl ethers that are substitutes for them include not only decomposed substances but also high GWP PFCs. Therefore, the development of a dry etching agent that has a small influence on the global environment and has the required performance has been demanded.
  • a dry etching agent that has a small influence on the global environment and has the required performance has been demanded.
  • SiO 2 is isotropically etched by F radicals generated from CF 4 gas, but in dry etching requiring fine processing, it is more anisotropic than isotropic.
  • Etching agents having directivity for reactive etching are preferred, and etching agents that have a low environmental impact and are highly economical are desired.
  • the present invention relates to a dry etching agent that has a wide process window by optimizing the molecular structure and gas composition of the gas, and can obtain a good processing shape without using a special apparatus, and a dry etching agent using the dry etching agent.
  • An object of the present invention is to provide a dry etching method using this.
  • CF 3 C ⁇ CX (where X represents H, F, Cl, Br, I, CH 3 , CFH 2 , or CF 2 H) which is a fluorinated propyne, O 2 , O 3 , CO, CO 2 , COCl 2 , COF 2 or other oxygen-containing gas, mixed gas to which either halogen gas or halogen compound gas is added, or these gases and inert gas such as N 2 , He, Ar It has been found that a good processed shape can be obtained by using a mixed gas to which is added as a dry etching agent.
  • the present invention has the following features.
  • [Invention 1] (A) a fluorinated propyne represented by the chemical formula CF 3 C ⁇ CX (where X represents H, F, Cl, Br, I, CH 3 , CFH 2 or CF 2 H), and (B) O 2 , O 3 , CO, CO 2 , COCl 2 , and COF 2 , (C) F 2 , NF 3 , Cl 2 , Br 2 , I 2 , and YF n ( In the formula, Y represents Cl, Br or I.
  • n represents an integer, and 1 ⁇ n ⁇ 5.
  • N 2 He, Ar, comprises at least one gas selected from the group consisting of Ne, and Kr, dry etching agent according to the present invention 1 to 3 which is an inert gas carrier.
  • invention 6 At least selected from the group consisting of silicon dioxide, silicon nitride, and silicon carbide, using the dry etching agent according to any one of inventions 1 to 5 as a plasma to generate a plasma gas and using the generated plasma gas; Selectively etching one kind of silicon-based material.
  • the dry etchant comprises (A) CF 3 C ⁇ CH, (E) at least one oxidizing gas selected from the group consisting of O 2 , CO, and COF 2 , and Ar. (A) CF 3 Volume ratios of C ⁇ CH, (E) oxidizing gas, and Ar are 5 to 95%: 1 to 50%: 4 to 94% (however, the sum of the volumetric flow ratios of the respective gases is 100)
  • the dry etching method according to the sixth aspect of the invention.
  • the dry etchant comprises (A) CF 3 C ⁇ CH, (E) at least one oxidizing gas selected from the group consisting of O 2 , CO, and COF 2 , H 2 , and Ar,
  • the volume flow ratios of (A) CF 3 C ⁇ CH, (E) oxidizing gas, H 2 , and Ar are 5 to 95%, 1 to 50%, 1 to 50%, and 3 to 93%, respectively.
  • the total volume flow ratio of the gas is 100.
  • the dry etching agent is at least one (A) 1-halogeno-3,3,3-trifluoro selected from the group consisting of (A) CF 3 C ⁇ CF, CF 3 C ⁇ CCl, and CF 3 C ⁇ CBr. and Ropuropin, and at least one additive gas selected from the group consisting of (F) O 2, CO, H 2, and COF 2, consists of a Ar, (a) 1-halogeno-3,3,3-trifluoride
  • the volume flow ratios of lopropyne, (F) additive gas, and Ar are 5 to 95%: 3 to 50%: 2 to 92% (however, the total of the volume flow ratios of the respective gases is 100).
  • the dry etching agent of the present invention contains fluorinated propyne represented by the chemical formula CF 3 C ⁇ CX as an active ingredient, and is used as an additive gas mixed with one or more other organic compounds or inorganic compounds. It is characterized by.
  • the fluorinated propyne CF 3 C ⁇ CX used as an active ingredient of the dry etching agent in the present invention is not particularly limited as long as the ratio of fluorine atoms to the number of carbon atoms (F / C ratio) is 1.34 or less.
  • X is fluorinated propyne such as H, F, Cl, Br, I, CH 3 , CFH 2 , CF 2 H, CClH 2 , CBrH 2 , CCl 2 H, CBr 2 H, CClFH, CBrFH, etc. Is mentioned.
  • Fluorinated propyne CF 3 C ⁇ CX which is used as an active ingredient in dry etchants, has an unsaturated triple bond in the molecule and is therefore degradable in the atmosphere, contributing to global warming at present. It is much lower than PFCs and HFCs such as CF 4 and CF 3 H used as agents. Even fluorine-containing propynes containing Cl and Br are expected to have a negligible ozone depletion coefficient because their atmospheric lifetime is extremely short. Fluorinated propyne CF 3 C ⁇ CX has a triple bond in the molecule connected to a trifluoromethyl group (CF 3 group) by a single bond, and CF 3 + ions with high etching efficiency are frequently generated. On the other hand, the triple bond portion is characterized by being polymerized and deposited.
  • the F / C ratio is preferably adjusted to be as close to 1 as possible.
  • anisotropic etching should be performed while efficiently removing the fluorocarbon film deposited on the sidewall. Can do.
  • ashing can be performed using an oxidizing gas such as O 2 .
  • the fluorinated propyne CF 3 C ⁇ CX is 3,3,3-trifluoropropyne (CF 3 C ⁇ CH), where X is H, or when X is F, Cl, or Br.
  • 1-halogeno-3,3,3-trifluoropropyne (CF 3 C ⁇ CF, CF 3 C ⁇ CCl, CF 3 C ⁇ CBr) is preferred, and the F / C ratio in the molecule is as small as 1, 3,3 3-Trifluoropropyne is particularly preferred.
  • the fluorinated propyne CF 3 C ⁇ CX used in the present invention can be produced and obtained by a conventionally known method such as JP-A-2008-285471.
  • the dry etching agent of the present invention can be used under various dry etching conditions, and it is preferable to add various additives depending on the physical properties, productivity, fine accuracy, etc. of the target film.
  • the content of fluorinated propyne CF 3 C ⁇ CX in the dry etching agent is preferably 5 to 95% by volume, and the content of fluorinated propyne CF 3 C ⁇ CX is about 20 to 90% by volume.
  • the additive gas content is particularly preferably about 10 to 80% by volume.
  • an oxidizing gas such as O 2 or F 2 or a reducing gas such as H 2 or CO (in this specification, the gas is referred to as “oxidizing gas”, “oxygen-containing gas”, “halogen-containing gas”).
  • Gas “and” reducing gas ”) may be used.
  • an oxidizing gas as an additive gas.
  • oxygen-containing gas such as O 2 , O 3 , CO 2 , CO, COCl 2 , COF 2 , F 2 , NF 3 , Cl 2 , Br 2 , I 2 , YFn (where Y is Cl, Br or I is represented, n represents an integer, and 1 ⁇ n ⁇ 5.)
  • O 2 , CO, COF 2 , F 2 , NF 3 and Cl 2 are particularly preferred.
  • the said gas can also be added 1 type or in mixture of 2 or more types.
  • the addition amount of the oxidizing gas depends on the shape of the apparatus such as output, performance, and target film characteristics, but is usually 1/20 to 30 times the flow rate. Preferably, it is 1/10 to 10 times the flow rate of fluorinated propyne CF 3 C ⁇ CX. If more than this is added, the excellent anisotropic etching performance of fluorinated propyne CF 3 C ⁇ CX may be impaired.
  • the metal etching rate when oxygen is added, the metal etching rate can be selectively accelerated. That is, the selectivity of the etching rate of the metal with respect to the oxide can be significantly improved, and the metal can be selectively etched.
  • reducing gases described above in particular, when H 2 and C 2 H 2 are added, the etching rate of SiO 2 does not change, whereas the etching rate of Si decreases and the selectivity increases. Thus, it becomes possible to selectively etch SiO 2 with respect to the underlying silicon.
  • fluorinated propynes such as trifluoropropyne alone have a sufficient effect
  • CF 4 , CHF 3 , CH 2 F 2 , CH 3 F, C 2 F 6 , C can be used to further enhance anisotropic etching.
  • Gases such as 2 F 4 H 2 , C 2 F 5 H, C 3 F 4 H 2 , C 3 F 5 H, and C 3 ClF 3 H can be added.
  • the amount of these gases added is preferably 10 times or less with respect to fluorinated propyne CF 3 C ⁇ CX. If it is 10 times or more, the excellent etching performance of fluorinated propyne CF 3 C ⁇ CX may be impaired.
  • the etching agent of the present invention can be added with an inert gas such as N 2 , He, Ar, Ne, and Kr simultaneously with the oxidizing gas, if desired.
  • inert gases can also be used as a diluent, but especially Ar can obtain a higher etching rate due to a synergistic effect with fluorinated propyne CF 3 C ⁇ CX.
  • the addition amount of the inert gas depends on the shape and performance of the apparatus, such as output and displacement, and target film characteristics, but is preferably 1/10 to 30 times the flow rate of fluorinated propyne CF 3 C ⁇ CX.
  • the preferred composition of the dry etching agent of the present invention is exemplified below.
  • the total volume% of each gas is 100%.
  • the volume percentage is 5 to 95%: 5 to 95%. More preferably, it is more preferably 20 to 80%: 20 to 80%.
  • CF 3 C ⁇ CH oxygen-containing gas or halogen-containing gas (O 2 , CO, COF 2 , F 2 , Cl 2, etc.):
  • oxygen-containing gas or halogen-containing gas O 2 , CO, COF 2 , F 2 , Cl 2, etc.
  • the volume percentage is 5 to 95%: It is preferably 1 to 50%: 4 to 94%, and more preferably 5 to 80%: 10 to 40%: 10 to 85%.
  • CF 3 C ⁇ CH oxygen-containing gas or halogen-containing gas (O 2 , CO, COF 2 , F 2 , Cl 2, etc.):
  • halogen-containing gas O 2 , CO, COF 2 , F 2 , Cl 2, etc.
  • the volume percentage is 5 to 95%. : 1 to 50%: 4 to 94% is preferable, and 10 to 80%: 10 to 40%: 10 to 80% is particularly preferable.
  • CF 3 C ⁇ CH Oxygen-containing gas or halogen-containing gas (O 2 , CO, COF 2 , F 2 , Cl 2, etc.): Reducing gas (H 2, etc.): Inert gas (Ar, etc.)
  • the volume% is preferably 5 to 95%: 1 to 50%: 1 to 50%: 3 to 93%, and more preferably 5 to 80%: 5 to 40%: 5 to 40%: 10 to 85%. It is particularly preferable that
  • CF 3 C ⁇ CX (CF 3 C ⁇ CF, CF 3 C ⁇ CCl, CF 3 C ⁇ CBr): oxidizing gas or reducing gas (O 2 , CO, COF 2 , F 2 , Cl 2 , H 2, etc.) ),
  • the volume% is preferably 5 to 95%: 5 to 95%, more preferably 20 to 80%: 20 to 80%.
  • CF 3 C ⁇ CX (CF 3 C ⁇ CF, CF 3 C ⁇ CCl, CF 3 C ⁇ CBr): oxidizing gas or reducing gas (O 2 , CO, COF 2 , F 2 , Cl 2 , H 2 ) etc .:
  • the volume flow rate ratio is preferably 5 to 95%: 3 to 50%: 2 to 92%: and more preferably 10 to 80%: 10 to 40%: 10 to 80% is particularly preferable.
  • the dry etching agent of the present invention can be applied to various types of workpieces, and B, P, W, Si, Ti, layered on a substrate such as a silicon wafer, a metal plate, a glass, a single crystal, and a polycrystal, V, Nb, Ta, Se, Te, Mo, Re, Os, Ru, Ir, Sb, Ge, Au, Ag, As, Cr and their compounds, specifically oxides, nitrides, carbides, fluorides It can be applied to various workpieces such as etching of oxyfluoride, silicide, and alloys thereof. In particular, it can be effectively applied to semiconductor materials.
  • silicon-based materials such as silicon, silicon dioxide, silicon nitride, silicon carbide, silicon oxyfluoride or silicon carbide oxide, tungsten, rhenium, their silicides, titanium
  • titanium nitride, ruthenium or ruthenium silicide, ruthenium nitride, tantalum, tantalum oxide, oxytantalum fluoride, hafnium, hafnium oxide, oxyhafnium silicide, and hafnium zirconium oxide can be given.
  • the etching method using the dry etching agent of the present invention is not particularly limited to the etching method and reaction conditions such as reactive ion etching (RIE), electron cyclotron resonance (ECR) plasma etching, and microwave etching. it can.
  • RIE reactive ion etching
  • ECR electron cyclotron resonance
  • the etching method of the present invention is performed by generating plasma of a target propene in an etching processing apparatus and etching a predetermined portion of a target workpiece in the apparatus.
  • a silicon-based oxide film or silicon nitride film is formed on a silicon wafer, a resist having a specific opening is applied on top, and the silicon-based oxide or silicon nitride film is removed. In this way, the resist opening is etched.
  • the pressure is preferably 0.133 to 133 Pa in order to perform anisotropic etching.
  • the pressure is lower than 0.133 Pa, the etching rate is slow.
  • the pressure exceeds 133 Pa, the resist selectivity may be impaired.
  • Fluorinated propyne CF 3 C ⁇ CX and oxygen-containing gas, reducing gas or halogen-containing gas (O 2 , CO, H 2 , COF 2 , F 2 , Cl 2, etc.), inert gas during etching (Ar, etc.) The respective volume flow rate ratios can be etched at the same ratio as the volume% described above.
  • the gas flow rate used depends on the reactor capacity of the etching apparatus and the wafer size, but a flow rate between 10 SCCM and 10000 SCCM is preferable.
  • the etching temperature is preferably 300 ° C. or lower, and is preferably 240 ° C. or lower for performing anisotropic etching. If the temperature exceeds 300 ° C., the tendency of the etching to proceed isotropic is increased, and the required processing accuracy cannot be obtained, and the resist is remarkably etched, which is not preferable.
  • the reaction time for performing the etching treatment is not particularly limited, but is generally about 5 to 30 minutes. However, since it depends on the progress after the etching treatment, it is preferable for those skilled in the art to adjust appropriately while observing the state of etching.
  • the selectivity of the etching rate between silicon and silicon oxide film during contact hole processing can be improved. can do.
  • Examples 1 to 15 With the experimental apparatus shown in FIG. 1, a dry etching agent composed of 3,3,3-trifluoropropyne CF 3 C ⁇ CH, an additive gas, and optionally an inert gas was applied to contact hole processing.
  • the experimental apparatus includes a chamber 1, a ground 2, a high frequency power source 3 (13.56 MHz, 2.2 W / cm 2 ), a first gas inlet 4, and a second gas inlet 5.
  • 3,3-trifluoropropyne CF 3 C ⁇ CH, additive gas and inert gas were respectively introduced into the sapphire tube 7, and the gas introduced using the high-frequency power source 3 was excited in the sapphire tube 7.
  • the active species were supplied to the sample 11 placed on the sample holder 10 in the chamber 1 and etched.
  • the gas pressure in the chamber 1 during etching was set to 1.33 Pa, and the substrate temperature was set to 200 ° C. Further, as the sample 11, an SiO 2 or silicon nitride interlayer insulating film is formed on a single crystal silicon wafer, and a resist mask provided with an opening as an etching mask for the SiO 2 or silicon nitride is used. It was. After the etching, the processing shape around the resist opening, the SiO 2 or silicon nitride etching rate to the resist ratio were measured. The results are shown in Table 1.
  • Comparative Examples 1 to 4 In Comparative Example 1, Comparative Example 2 and Comparative Example 3, CF 4 , C 4 F 6 (CF 2 ⁇ CF—CF ⁇ CF 2 ), 3,3,3-trifluoropropyne CF 3 C ⁇ CH were each independently dried. In Comparative Example 4, contact was made in the same manner as in Examples 1 to 15 except that 3,3,3-trifluoropropyne CF 3 C ⁇ CH and Ar were mixed and used as a dry etchant. Hole processing was carried out. Table 1 shows the measurement results of the processed shape around the resist opening and the SiO 2 or silicon nitride etching rate to resist ratio in Comparative Examples 1 to 4.
  • a dry etching agent obtained by adding an oxidizing additive gas to 3,3,3-trifluoropropyne CF 3 C ⁇ CH of Examples 1 to 4, 6, and 11 to 15 was used.
  • the etching rate, the resist selectivity to the aspect ratio, or the aspect ratio was large, and a good contact hole processed shape was obtained.
  • a dry etching agent obtained by adding additive gases of CF 4 , C 2 F 6 , and C 4 F 8 to 3,3,3-trifluoropropyne CF 3 C ⁇ CH of Examples 7, 9, and 10 dry etching of the present invention
  • Example 14 and Example 15 using silicon nitride as an interlayer insulating film a good contact hole processed shape was obtained.
  • Comparative Examples 5 to 6 In Comparative Example 5, CF 4 alone was used as a dry etching agent. In Comparative Example 6, contact hole processing was performed in the same manner as in Examples 16 to 29 except that CF 4 and O 2 were mixed and used as a dry etching agent. Carried out. Table 2 shows the measurement results of the processing shape around the resist opening in Comparative Examples 5 to 6, and the SiO 2 or silicon nitride etching rate to resist ratio.
  • Example 28 in which H 2 was added to the dry etching agent, a good resist-to-resist selection ratio was obtained.
  • fluorinated propyne CF 3 C ⁇ CX which is an active ingredient of the dry etching agent of the present invention, has one unsaturated triple bond in the molecule, and is therefore decomposable in the atmosphere. Since the contribution to global warming is much lower than PFCs and HFCs such as CF 4 and CF 3 H, when it is used as a dry etching agent, it has an effect that the burden on the environment is light.
  • the process window can be dramatically expanded by mixing it with an oxygen-containing gas, a halogen-containing gas, or an inert gas as the third gas as the second gas, without the need for special substrate excitation operations, etc. It can also handle processing that requires a high aspect ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 本発明のドライエッチング剤は、化学式CF3C≡CX(但し、XはH、F、Cl、Br、I、CH3、CFH2又はCF2Hを表す。)で表されるフッ素化プロピンと、(B)O2、O3、CO、CO2、COCl2、及びCOF2からなる群より選ばれる少なくとも1種のガス、(C)F2、NF3、Cl2、Br2、I2、及びYFn(式中、YはCl、Br又はIを表す。nは整数を表し、1≦n≦5である。)からなる群より選ばれる少なくとも1種のガス、及び(D)CF4、CHF3、C26、C25H、C242、C38、C342、C3ClF3H、及びC48からなる群より選ばれる少なくとも1種のガスのいずれか、を含むことを特徴とし、環境への負荷が軽いという効果を奏するとともに、プロセスウインドウが広く、特殊な基板の励起操作等なしに高アスペクト比が要求される加工にも対応できる。

Description

ドライエッチング剤及びそれを用いたドライエッチング方法
 本発明は、フッ素化プロピン類の用途に関し、より詳しくはドライエッチング剤およびそれを用いた半導体のドライエッチング方法に関する。
 今日、半導体製造においては、極めて微細な処理技術が求められており、湿式法に代わりドライエッチング法が主流になっている。ドライエッチング法は、真空空間において、プラズマを発生させて、物質表面上に微細なパターンを分子単位で形成させる方法である。
 二酸化ケイ素(SiO2)等の半導体材料のエッチングにおいては、下地材として用いられるシリコン、ポリシリコン、チッ化ケイ素等に対するSiO2のエッチング速度を大きくするため、エッチング剤として、CF4、CHF3、C26、C38、C48等のパーフルオロカーボン(PFC)類やハイドロフルオロカーボン(HFC)類が用いられてきた。しかしながら、これらのPFC類やHFC類は、いずれも大気寿命の長い物質であり、高い地球温暖化係数(GWP)を有していることから京都議定書(COP3)において排出規制物質となっている。半導体産業においては、経済性が高い為、微細化が可能な低GWPの代替物質が求められてきた。
 特許文献1には4~7個の炭素原子を有するパーフルオロケトンを含有する反応性ガスをクリーニングガスやエッチングガスとして用いる方法が開示されている。しかしながら、これらのパーフルオロケトンの分解物質には少なからず高GWPのPFCが含まれることや、沸点が比較的高い物質が含まれることから、必ずしもエッチングガスとして好ましくなかった。
 特許文献2には2~6個の炭素原子を有するハイドロフルオロエーテル(HFE)をドライエッチングガスとして用いる方法が開示されている。
 このような背景の下、更なる低GWPを有し、かつ工業的にも製造が容易な化合物の開発が求められてきており、分子内に二重結合、三重結合を有する不飽和フルオロカーボンを用いた、エッチング用途としての適用が検討されてきた。これに関連する従来技術として、特許文献3にはCa2a+1OCF=CF2を含むエーテル類の他、CF3CF=CFH、CF3CH=CF2等のフッ素化オレフィン類をSi膜、SiO2膜、Si34膜、又は高融点金属シリサイト膜をエッチングする方法が開示されている。
 また、特許文献4に、ヘキサフルオロ-2-ブチン、ヘキサフルオロ-1,3-ブタジエンおよびヘキサフルオロプロペン等をエッチングガスとして用いることを特徴とするプラズマエッチング方法が開示されている。
 特許文献5には、(a)ヘキサフルオロブタジエン、オクタフルオロペンタジエン、ペンタフルオロプロペン又はトリフルオロプロピンからなる群から選ばれる不飽和フルオロカーボン、(b)モノフルオロメタン又はジフルオロメタンからなる群から選ばれるヒドロフルオロメタン及び(c)不活性なキャリアーガスを含む混合ガスを用いて、窒化物層からなる非酸化物層上の酸化物層をエッチングする方法が開示されている。
 特許文献6には、炭素数5又は6の鎖状パーフルオロアルキンをプラズマ反応ガスとして用いることが開示されている。
特表2004-536448号公報 特開平10-140151号公報 特開平10-223614号公報 特開平9-192002号公報 特表2002-530863号公報 特開2003-282538号公報
 PFC類やHFC類はGWPが高いため規制対象物質であり、それらの代替物質であるパーフルオロケトン類、ハイドロフルオロエーテル類やハイドロフルオロビニルエーテル類は、分解物質に少なからず高GWPのPFCが含まれることや製造が難しく経済的でないことから、地球環境に対する影響が小さく、かつ必要とされる性能を有するドライエッチング剤の開発が求められている。また、プラズマエッチングの場合、例えばCF4のガスから生成されたFラジカルにより、SiO2は等方性にエッチングされるが、微細加工が要求されるドライエッチングにおいては、等方性よりも異方性エッチングに指向性をもつエッチング剤が好ましく、さらに地球環境負荷が小さく、かつ経済性の高いエッチング剤が望まれている。
 また、これまでのエッチングガスを用いる技術では特許文献5に記載のような複雑な工程や装置、限られた温度条件や基板、ガスへの振動付加等の操作が必要であり、プロセスウインドウが狭いという問題があった。
 本発明は、ガスの分子構造及びガス組成を最適化することにより、プロセスウインドウが広く、特殊な装置を使用することなく良好な加工形状が得られるドライエッチング剤、及びそれを用いたドライエッチング剤を用いたドライエッチング方法を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、ドライエッチングにおいて異方性エッチングに好適で、かつ地球環境への影響がより小さい代替物質を見出した。具体的には、フッ素化プロピン類であるCF3C≡CX(但し、XはH、F、Cl、Br、I、CH3、CFH2、又はCF2Hを表す。)にO2、O3、CO、CO2、COCl2、COF2等の含酸素ガス、ハロゲンガス又はハロゲン化合物ガスのいずれかを添加した混合ガス、もしくは、これらのガスとN2、He、Ar等の不活性ガスを添加した混合ガスをドライエッチング剤として用いることで良好な加工形状が得られることを見出した。
 即ち、本発明は、以下の特徴を有する。
 [発明1]
 (A)化学式CF3C≡CX(但し、XはH、F、Cl、Br、I、CH3、CFH2又はCF2Hを表す。)で表されるフッ素化プロピンと、(B)O2、O3、CO、CO2、COCl2、及びCOF2からなる群より選ばれる少なくとも1種のガス、(C)F2、NF3、Cl2、Br2、I2、及びYFn(式中、YはCl、Br又はIを表す。nは整数を表し、1≦n≦5である。)からなる群より選ばれる少なくとも1種のガス、及び(D)CF4、CHF3、C26、C25H、C242、C38、C342、C3ClF3H、及びC48からなる群より選ばれる少なくとも1種のガスのうちのいずれか、を含むドライエッチング剤。
 [発明2]
 フッ素化プロピンが3,3,3-トリフルオロプロピン(CF3C≡CH)、1-フルオロ-3,3,3-トリフルオロプロピン(CF3C≡CF)、1-クロロ-3,3,3-トリフルオロプロピン(CF3C≡CCl)、又は1-ブロモ-3,3,3-トリフルオロプロピン(CF3C≡CBr)である、発明1に記載のドライエッチング剤。
 [発明3]
 フッ素化プロピンが3,3,3-トリフルオロプロピンである、発明2に記載のドライエッチング剤。
 [発明4]
 さらに、不活性ガスキャリアーであるN2、He、Ar、Ne、及びKrからなる群より選ばれる少なくとも1種のガスを含む、発明1乃至3に記載のドライエッチング剤。
 [発明5]
 フッ素化プロピンの含有率が5~95体積%である、発明1乃至発明4に記載のドライエッチング剤。
 [発明6]
 発明1乃至発明5の何れかに記載のドライエッチング剤をプラズマ化してプラズマガスを発生させることと、発生したプラズマガスを用いて、二酸化珪素、窒化珪素、及び炭化珪素からなる群より選ばれる少なくとも1種のシリコン系材料を選択的にエッチングすること、とを含むドライエッチング方法。
 [発明7]
 ドライエッチング剤は、(A)CF3C≡CHと、(E)O2、CO、及びCOF2からなる群より選ばれる少なくとも1種の酸化性ガスと、Arとからなり、(A)CF3C≡CH、(E)酸化性ガス、及びArの体積流量比がそれぞれ5~95%:1~50%:4~94%(但し、各々のガスの体積流量比の合計は100である。)である、発明6に記載のドライエッチング方法。
 [発明8]
 ドライエッチング剤は、(A)CF3C≡CHと、(E)O2、CO、及びCOF2からなる群より選ばれる少なくとも1種の酸化性ガスと、H2と、Arとからなり、(A)CF3C≡CH、(E)酸化性ガス、H2、及びArの体積流量比がそれぞれ5~95%:1~50%:1~50%:3~93%(但し、各々のガスの体積流量比の合計は100である。)である、発明6に記載のドライエッチング方法。
 [発明9]
 ドライエッチング剤は、(A)CF3C≡CF、CF3C≡CCl、及びCF3C≡CBrからなる群より選ばれる少なくとも1種の(A)1-ハロゲノ-3,3,3-トリフルオロプロピンと、(F)O2、CO、H2、及びCOF2からなる群より選ばれる少なくとも1種の添加ガスと、Arとからなり、(A)1-ハロゲノ-3,3,3-トリフルオロプロピン、(F)添加ガス、及びArの体積流量比がそれぞれ5~95%:3~50%:2~92%(但し、各々のガスの体積流量比の合計は100である。)である、発明6に記載のドライエッチング方法。
実施例で用いたリモートプラズマ装置の概略図の一例である。
 まず、本発明のドライエッチング剤について説明する。
 本発明のドライエッチング剤は、化学式CF3C≡CXで表されるフッ素化プロピンを有効成分として含み、添加ガスとして他の1種又は2種以上の有機化合物又は無機化合物と混合して用いることを特徴とする。
 本発明においてドライエッチング剤の有効成分として使用するフッ素化プロピンCF3C≡CXは、フッ素原子と炭素原子数の比(F/C比)が1.34以下のものであれば特に限定されないが、具体的には、XがH、F、Cl、Br、I、CH3、CFH2、CF2H、CClH2、CBrH2、CCl2H、CBr2H、CClFH、CBrFH等のフッ素化プロピンが挙げられる。
 ドライエッチング剤の有効成分として使用するフッ素化プロピンCF3C≡CXは、分子内に不飽和の三重結合を有するため、大気中での分解性があり、地球温暖化への寄与も現在ドライエッチング剤として使用されているCF4やCF3H等のPFC類やHFC類より格段に低い。ClやBrを含む含フッ素プロピンであっても、それらの大気寿命が極めて短いため、オゾン破壊係数は無視できるほど低いと予想される。また、フッ素化プロピンCF3C≡CXは、分子中の三重結合が単結合によりトリフルオロメチル基(CF3基)とつながっており、エッチング効率の高いCF3 +イオンが高頻度で発生し、一方、三重結合部分はポリマー化して堆積するという特徴を持つ。
 エッチング剤中の炭素原子が高分子化して被エッチング材の側壁の非選択的なエッチングを防御するためには、F/C比はできるだけ1に近づくように調整することが好ましい。
 さらに、Cl、BrやIを含む3,3,3-トリフルオロプロピン類では、灰化処理効果が期待できるため、側壁に堆積したフルオロカーボン膜を効率的に除去しながら異方性エッチングを行うことができる。また、エッチング終了後に、O2等の酸化性ガスを用いて灰化処理をすることもできる。
 従って、フッ素化プロピンCF3C≡CXとしては、XがHの場合である3,3,3-トリフルオロプロピン(CF3C≡CH)や、XがF、Cl、又はBrの場合である1-ハロゲノ-3,3,3-トリフルオロプロピン(CF3C≡CF、CF3C≡CCl、CF3C≡CBr)が好ましく、分子中のF/C比が1と小さい3,3,3-トリフルオロプロピンが特に好ましい。
 尚、本発明において用いるフッ素化プロピンCF3C≡CXは、例えば、特開2008-285471等の従来公知の方法で製造入手することができる。
 本発明のドライエッチング剤は、各種ドライエッチング条件下で使用可能であり、対象膜の物性、生産性、微細精度等によって、種々の添加剤を加えることが好ましい。
 本発明において、ドライエッチング剤中のフッ素化プロピンCF3C≡CXの含有量は5~95体積%であることが好ましく、フッ素化プロピンCF3C≡CXの含有量を20~90体積%程度、添加ガスの含有量を10~80体積%程度にすることが特に好ましい。
 添加ガスとしては、O2、F2等の酸化性ガス、又はH2、CO等の還元性ガス(本明細書では、当該ガスを「酸化性ガス」、「含酸素ガス」、「含ハロゲンガス」、「還元性ガス」と言うことがある。)が使用できる。
 生産性を上げるためにエッチング速度を上げる場合は、酸化性ガスを添加ガスとして使用することが好ましい。具体的には、O2、O3、CO2、CO、COCl2、COF2、等の含酸素ガス、F2、NF3、Cl2、Br2、I2、YFn(式中、YはCl、Br又はIを表し、nは整数を表し、1≦n≦5である。)等のハロゲンガスが例示される。さらに、O2、CO、COF2、F2、NF3、Cl2が特に好ましい。当該ガスは、1種類、もしくは2種類以上を混合して添加することもできる。
 酸化性ガスの添加量は出力等の装置の形状、性能や対象膜特性に依存するが、通常、流量の1/20から30倍である。好ましくは、フッ素化プロピンCF3C≡CXの流量の1/10から10倍である。もし、これ以上添加した場合は、フッ素化プロピンCF3C≡CXの優れた異方性エッチング性能が損なわれることがある。
 特に、酸素を添加すると選択的に金属のエッチングレートを加速することが可能となる。すなわち、酸化物に対する金属のエッチング速度の選択比を著しく向上でき、金属の選択エッチングが可能となる。
 等方的なエッチングを促進するFラジカル量の低減を所望するときは、CH4、C22,C24,C26、C34、C36、C38、HI、HBr、HCl、CO、NO、NH3、H2に例示される還元性ガスの添加が有効である。
 還元性ガスの添加量は、フッ素化プロピンCF3C≡CX:還元性ガス(モル比)=10:1~1:5、好ましくは5:1~1:1である。添加量が多すぎる場合には、エッチングに働くFラジカルが著しく減量し、生産性が低下することがある。前述の還元性ガスのうち、特に、H2、C22を添加するとSiO2のエッチング速度は変化しないのに対してSiのエッチング速度は低下し、選択性が高くなることから、その結果、下地のシリコンに対してSiO2を選択的エッチングすることが可能となる。
 トリフルオロプロピン等のフッ素化プロピンだけでも十分な効果はあるが、異方性エッチングを更に高めることができるよう、CF4、CHF3、CH22、CH3F、C26、C242、C25H、C342、C35H、C3ClF3H等のガスを加えることができる。
 これらのガスの添加量はフッ素化プロピンCF3C≡CXに対し10倍以下が好ましい。10倍以上ではフッ素化プロピンCF3C≡CXの優れたエッチング性能が損なわれることがある。
 本発明のエッチング剤は、所望により、酸化性ガスと同時に、N2、He、Ar、Ne、Kr等の不活性ガスの添加も可能である。これら不活性ガスは希釈剤としても使用可能であるが、特にArはフッ素化プロピンCF3C≡CXとの相乗効果によって、より高いエッチングレートが得られる。
 不活性ガスの添加量は出力、排気量等の装置の形状、性能や対象膜特性に依存するが、フッ素化プロピンCF3C≡CXの流量の1/10から30倍が好ましい。
 本発明のドライエッチング剤の好ましい組成を以下に例示する。尚、各例において、各ガスの体積%の合計は100%である。
 例えば、CF3C≡CH:含酸素ガスもしくは含ハロゲンガス(O2、CO、COF2、F2、Cl2等)の場合には、体積%は5~95%:5~95%とすることが好ましく、さらに、20~80%:20~80%とすることが特に好ましい。
 CF3C≡CH:含酸素ガス又は含ハロゲンガス(O2、CO、COF2、F2、Cl2等):不活性ガス(Ar等)の場合には、体積%は5~95%:1~50%:4~94%とすることが好ましく、さらに、5~80%:10~40%:10~85%とすることが特に好ましい。
 CF3C≡CH:含酸素ガスもしくは含ハロゲンガス(O2、CO、COF2、F2、Cl2等):還元性ガス(H2等)の場合には、体積%は5~95%:1~50%:4~94%とすることが好ましく、さらに、10~80%:10~40%:10~80%とすることが特に好ましい。
 CF3C≡CH:含酸素ガスもしくは含ハロゲンガス(O2、CO、COF2、F2、Cl2等):還元性ガス(H2等):不活性ガス(Ar等)の場合には、体積%は5~95%:1~50%:1~50%:3~93%とすることが好ましく、さらに、5~80%:5~40%:5~40%:10~85%とすることが特に好ましい。
 CF3C≡CX(CF3C≡CF、CF3C≡CCl、CF3C≡CBr):酸化性ガス又は還元性ガス(O2、CO、COF2、F2、Cl2、H2等)の場合には、体積%は5~95%:5~95%とすることが好ましく、さらに、20~80%:20~80%とすることが特に好ましい。
 また、CF3C≡CX(CF3C≡CF、CF3C≡CCl、CF3C≡CBr):酸化性ガス又は還元性ガス(O2、CO、COF2、F2、Cl2、H2等):不活性ガス(Ar等)の場合には、体積流量比率は5~95%:3~50%:2~92%:とすることが好ましく、さらに、10~80%:10~40%:10~80%とすることが特に好ましい。
 次に、本発明のドライエッチング剤を用いたエッチング方法について説明する。
 本発明のドライエッチング剤は、各種の被加工物に適用可能であり、シリコンウエハ、金属板、硝子、単結晶、多結晶等の基板上に重層した、B、P、W、Si、Ti、V、Nb、Ta、Se、Te、Mo、Re、Os、Ru、Ir、Sb、Ge、Au、Ag、As、Cr及びその化合物、具体的には、酸化物、窒化物、炭化物、フッ化物、オキシフッ化物、シリサイド及びこれらの合金のエッチング等各種の被加工物に適用可能である。特に、半導体材料に対して有効に適用でき、半導体材料として、特にシリコン、二酸化珪素、窒化珪素、炭化珪素、酸化フッ化シリコン又は炭化酸化珪素のシリコン系材料、タングステン、レニウム、それらのシリサイド、チタンあるいは窒化チタン、ルテニウムあるいはルテニウムシリサイド、ルテニウムナイトライド、タンタル、タンタルオキサイド、オキシタンタルフルオリド、ハフニウム、ハフニウムオキサイド、オキシハフニウムシリサイド、ハフニウムジルコニムオキサイドを挙げることができる。
 また、本発明のドライエッチング剤を用いたエッチング方法は、反応性イオンエッチング(RIE)、電子サイクロトロン共鳴(ECR)プラズマエッチング、マイクロ波エッチング等のエッチング手法や反応条件は特に限定せず用いることができる。
 本発明のエッチング方法は、エッチング処理装置内で対象とするプロペン類のプラズマを発生させ、装置内にある対象の被加工物の所定部位に対してエッチングすることにより行う。例えば半導体の製造において、シリコンウェハ上にシリコン系酸化物膜又は窒化珪素膜等を成膜し、特定の開口部を設けたレジストを上部に塗布し、シリコン系酸化物又は窒化珪素膜を除去するようにレジスト開口部をエッチングする。
 エッチングを行う際、圧力は異方性エッチングを行うために、ガス圧力は0.133~133Paの圧力で行うことが好ましい。0.133Paより低い圧力ではエッチング速度が遅くなり、一方、133Paを超える圧力ではレジスト選択比が損なわれることがある。
 エッチングを行う際のフッ素化プロピンCF3C≡CX、及び、含酸素ガス、還元性ガス又は含ハロゲンガス(O2、CO、H2、COF2、F2、Cl2等)、不活性ガス(Ar等)、それぞれの体積流量比率は、前述した体積%と同じ比率でもってエッチングを行うことができる。
 使用するガス流量は、エッチング装置の反応器容量、ウエハサイズにもよるが、10SCCM~10000SCCMの間の流量が好ましい。
 また、エッチングする温度は300℃以下が好ましく、特に異方性エッチングを行うためには240℃以下とすることが望ましい。300℃を超える高温では等方的にエッチングが進行する傾向が強まり、必要とする加工精度が得られないこと、また、レジストが著しくエッチングされるために好ましくない。
 エッチング処理を行う反応時間は、特に限定はされないが、概ね5分~30分程度である。しかしながらエッチング処理後の経過に依存する為、当業者がエッチングの状況を観察しながら適宜調整するのが良い。
 水素又は水素含有化合物ガスと混合して使用することや圧力、流量、温度等を適性化することにより、例えばコンタクトホールの加工時のシリコンとシリコン酸化膜とのエッチング速度の選択性を向上させたりすることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1~15]
 図1に示す実験装置により、3,3,3-トリフルオロプロピンCF3C≡CHと、添加ガスと、所望により不活性ガスとからなるドライエッチング剤をコンタクトホール加工に適用した。
 図1に示すように、実験装置は、チャンバー1と、アース2と、高周波電源3(13.56MHz、2.2W/cm2)と、第1ガス導入口4と、第2ガス導入口5と、第3ガス導入口6と、サファイア管7と、圧力計8と、排気ガスライン9とを備え、第1ガス導入口4、第2ガス導入口5及び第3ガス導入口6から3,3,3-トリフルオロプロピンCF3C≡CH、添加ガス及び不活性ガスをそれぞれサファイア管7に導入し、サファイア管7内で、高周波電源3を用いて導入されたガスを励起させ生成した活性種を、チャンバー1内の試料ホルダ10に設置した試料11に供給して、エッチングを行った。エッチング時のチャンバー1のガス圧は1.33Pa、基板温度は200℃に設定した。また、試料11としては、単結晶シリコンウエハ上にSiO2又は窒化珪素層間絶縁膜が形成し、さらに該SiO2又は窒化珪素のエッチングマスクとして開口部を設けたレジスト・マスクを形成したものを用いた。エッチング後、レジスト開口部周辺の加工形状、SiO2又は窒化珪素エッチング速度の対レジスト比の測定を実施した。その結果を表1に示す。
 [比較例1~4]
 比較例1、比較例2及び比較例3ではCF4、C46(CF2=CF-CF=CF2),3,3,3-トリフルオロプロピンCF3C≡CHをそれぞれ単独でドライエッチング剤として使用し、比較例4では3,3,3-トリフルオロプロピンCF3C≡CHとArを混合してドライエッチング剤として使用したこと以外は実施例1~15と同様にして、コンタクトホール加工を実施した。比較例1~4におけるレジスト開口部周辺の加工形状、SiO2又は窒化珪素エッチング速度の対レジスト比の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1~4では、対レジスト選択比、アスペクト比がともに小さく、一部肩落ちと側壁のえぐれが見られた。
 一方、実施例1~4、6、11~15の3,3,3-トリフルオロプロピンCF3C≡CHに酸化性の添加ガスを加えたドライエッチング剤(本発明のドライエッチング剤)を用いた場合、酸化性ガスを使用しない比較例1や比較例4に比べて、エッチング速度、対レジスト選択比又はアスペクト比が大きく、良好なコンタクトホール加工形状が得られた。
 実施例7、9、10の3,3,3-トリフルオロプロピンCF3C≡CHにCF4、C26、C48の添加ガスを加えたドライエッチング剤(本発明のドライエッチング剤)を用いた場合でも、実用上十分に使用可能なエッチング速度、対レジスト選択比、アスペクト比であり、良好なコンタクトホール加工形状が得られた。
 実施例5、8の3,3,3-トリフルオロプロピンCF3C≡CHに第2ガスとしてCOを、第3ガスとしてArを添加したドライエッチング剤を用いた場合も、エッチング速度、対レジスト選択比、アスペクト比がともに大きく、良好なコンタクトホール加工形状が得られた。
 特に、ドライエッチング剤にH2を加えた実施例2、実施例3及び実施例15では、良好な対レジスト選択比が得られた。
 さらに、層間絶縁膜として窒化珪素を用いた実施例14や実施例15でも、良好なコンタクトホール加工形状が得られた。
 [実施例16~29]
 ドライエッチング剤の有効成分として3,3,3-トリフルオロプロピンCF3C≡CHの代わりにフッ素化プロピンCF3C≡CX(X=F、Cl、Br、I、CH3、CFH2、CF2H)を用いたこと以外は実施例1~15と同様にして、コンタクトホール加工を実施した。エッチング後、レジスト開口部周辺の加工形状、SiO2又は窒化珪素エッチング速度の対レジスト比の測定を実施した。その結果を表2に示す。
 [比較例5~6]
 比較例5ではCF4単独でドライエッチング剤として使用し、比較例6ではCF4とO2を混合してドライエッチング剤を使用したこと以外は実施例16~29と同様にして、コンタクトホール加工を実施した。比較例5~6におけるレジスト開口部周辺の加工形状、SiO2又は窒化珪素エッチング速度の対レジスト比の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例5~6では、対レジスト選択比、アスペクト比がともに小さく、一部肩落ちと側壁のえぐれが見られた。
 一方、実施例19~23、25、28、29のフッ素化プロピンCF3C≡CXに酸化性の添加ガスを加えたドライエッチング剤(本発明のドライエッチング剤)を用いた場合、エッチング速度、対レジスト選択比、アスペクト比がともに大きく、良好なコンタクトホール加工形状が得られた。
 実施例24のフッ素化プロピンCF3C≡CXに第2ガスとしてCOを、第3ガスとしてArを添加したドライエッチング剤(本発明のドライエッチング剤)を用いた場合も、エッチング速度、対レジスト選択比、アスペクト比がともに大きく、良好なコンタクトホール加工形状が得られた。
 特に、ドライエッチング剤にH2を加えた実施例28では、良好な対レジスト選択比が得られた。
 また、ドライエッチング剤にCF4、CH3Fの添加ガスを加えた実施例26、27でも、実用上十分に使用可能なエッチング速度、対レジスト選択比、アスペクト比であり、良好なコンタクトホール加工形状が得られた。
 上述の通り、本発明のドライエッチング剤の有効成分であるフッ素化プロピンCF3C≡CXは、分子内に1個の不飽和の三重結合を有するため、大気中での分解性があり、地球温暖化への寄与もCF4やCF3H等のPFC類やHFC類より格段に低いことから、ドライエッチング剤とした場合、環境への負荷が軽いという効果を奏す。さらに、第二のガスとして、含酸素ガス、含ハロゲンガス、あるいは第三のガスとして不活性ガスと混合することにより飛躍的にプロセスウインドウを広げることができ、特殊な基板の励起操作等なしに高アスペクト比が要求される加工にも対応できる。
 以上、本発明の実施形態について説明したが、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良可能であることはいうまでもない。

Claims (9)

  1. (A)化学式CF3C≡CX(但し、XはH、F、Cl、Br、I、CH3、CFH2又はCF2Hを表す。)で表されるフッ素化プロピンと、(B)O2、O3、CO、CO2、COCl2、及びCOF2からなる群より選ばれる少なくとも1種のガス、(C)F2、NF3、Cl2、Br2、I2、及びYFn(式中、YはCl、Br又はIを表す。nは整数を表し、1≦n≦5である。)からなる群より選ばれる少なくとも1種のガス、及び(D)CF4、CHF3、C26、C25H、C242、C38、C342、C3ClF3H、及びC48からなる群より選ばれる少なくとも1種のガスのうちのいずれか、を含むドライエッチング剤。
  2. フッ素化プロピンが3,3,3-トリフルオロプロピン(CF3C≡CH)、1-フルオロ-3,3,3-トリフルオロプロピン(CF3C≡CF)、1-クロロ-3,3,3-トリフルオロプロピン(CF3C≡CCl)、又は1-ブロモ-3,3,3-トリフルオロプロピン(CF3C≡CBr)である、請求項1に記載のドライエッチング剤。
  3. フッ素化プロピンが3,3,3-トリフルオロプロピンである、請求項2に記載のドライエッチング剤。
  4. さらに、不活性ガスキャリアーであるN2、He、Ar、Ne、及びKrからなる群より選ばれる少なくとも1種のガスを含む、請求項1乃至請求項3のいずれか1項に記載のドライエッチング剤。
  5. フッ素化プロピンの含有率が5~95体積%である、請求項1乃至請求項4のいずれか1項に記載のドライエッチング剤。
  6. 請求項1乃至請求項5のいずれか1項に記載のドライエッチング剤をプラズマ化してプラズマガスを発生させることと、発生したプラズマガスを用いて、二酸化珪素、窒化珪素、及び炭化珪素からなる群より選ばれる少なくとも1種のシリコン系材料を選択的にエッチングすること、を含むドライエッチング方法。
  7. ドライエッチング剤は、(A)CF3C≡CHと、(E)O2、CO、及びCOF2からなる群より選ばれる少なくとも1種の酸化性ガスと、Arとからなり、(A)CF3C≡CH、(E)酸化性ガス、及びArの体積流量比がそれぞれ5~95%:1~50%:4~94%(但し、各々のガスの体積流量比の合計は100である。)である、請求項6に記載のドライエッチング方法。
  8. ドライエッチング剤は、(A)CF3C≡CHと、(E)O2、CO、及びCOF2からなる群より選ばれる少なくとも1種の酸化性ガスと、H2と、Arとからなり、(A)CF3C≡CH、(E)酸化性ガス、H2、及びArの体積流量比がそれぞれ5~95%:1~50%:1~50%:3~93%(但し、各々のガスの体積流量比の合計は100である。)である、請求項6に記載のドライエッチング方法。
  9. ドライエッチング剤は、(A)CF3C≡CF、CF3C≡CCl、及びCF3C≡CBrからなる群より選ばれる少なくとも1種の(A)1-ハロゲノ-3,3,3-トリフルオロプロピンと、(F)O2、CO、H2、及びCOF2からなる群より選ばれる少なくとも1種の添加ガスと、Arとからなり、(A)1-ハロゲノ-3,3,3-トリフルオロプロピン、(F)添加ガス、及びArの体積流量比がそれぞれ5~95%:3~50%:2~92%(但し、各々のガスの体積流量比の合計は100である。)である、請求項6に記載のドライエッチング方法。
PCT/JP2011/051304 2010-02-01 2011-01-25 ドライエッチング剤及びそれを用いたドライエッチング方法 WO2011093263A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/576,093 US9093388B2 (en) 2010-02-01 2011-01-25 Dry etching agent and dry etching method using the same
CN201180008023.1A CN102741987B (zh) 2010-02-01 2011-01-25 干蚀刻剂以及使用其的干蚀刻方法
EP11736976.9A EP2511948A4 (en) 2010-02-01 2011-01-25 DRY ETCHING AGENT AND DRY ETCHING METHOD USING THE SAME
KR1020127022186A KR101422155B1 (ko) 2010-02-01 2011-01-25 드라이 에칭제 및 그것을 사용한 드라이 에칭 방법
US14/271,647 US9230821B2 (en) 2010-02-01 2014-05-07 Dry etching agent and dry etching method using the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-020294 2010-02-01
JP2010020294 2010-02-01
JP2010-020295 2010-02-01
JP2010020295 2010-02-01
JP2011-011049 2011-01-21
JP2011011049A JP5862012B2 (ja) 2010-02-01 2011-01-21 ドライエッチング剤及びドライエッチング方法
JP2011-011050 2011-01-21
JP2011011050A JP2011176292A (ja) 2010-02-01 2011-01-21 ドライエッチング剤

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/576,093 A-371-Of-International US9093388B2 (en) 2010-02-01 2011-01-25 Dry etching agent and dry etching method using the same
US14/271,647 Division US9230821B2 (en) 2010-02-01 2014-05-07 Dry etching agent and dry etching method using the same

Publications (1)

Publication Number Publication Date
WO2011093263A1 true WO2011093263A1 (ja) 2011-08-04

Family

ID=46759364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051304 WO2011093263A1 (ja) 2010-02-01 2011-01-25 ドライエッチング剤及びそれを用いたドライエッチング方法

Country Status (6)

Country Link
US (2) US9093388B2 (ja)
EP (1) EP2511948A4 (ja)
KR (1) KR101422155B1 (ja)
CN (1) CN102741987B (ja)
TW (1) TWI491710B (ja)
WO (1) WO2011093263A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026197A1 (ja) * 2015-08-12 2017-02-16 セントラル硝子株式会社 ドライエッチング方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283615B2 (en) 2012-07-02 2019-05-07 Novellus Systems, Inc. Ultrahigh selective polysilicon etch with high throughput
JP6277004B2 (ja) * 2014-01-31 2018-02-07 株式会社日立ハイテクノロジーズ ドライエッチング方法
TWI658509B (zh) * 2014-06-18 2019-05-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude 用於tsv/mems/功率元件蝕刻的化學物質
US9558928B2 (en) * 2014-08-29 2017-01-31 Lam Research Corporation Contact clean in high-aspect ratio structures
KR102333443B1 (ko) * 2014-10-24 2021-12-02 삼성전자주식회사 반도체 소자의 제조 방법
JP6788176B2 (ja) * 2015-04-06 2020-11-25 セントラル硝子株式会社 ドライエッチングガスおよびドライエッチング方法
CN108780749B (zh) * 2016-03-16 2022-10-14 日本瑞翁株式会社 等离子体蚀刻方法
JPWO2017164089A1 (ja) * 2016-03-25 2019-02-14 日本ゼオン株式会社 プラズマエッチング方法
KR20190038945A (ko) 2016-08-29 2019-04-09 도쿄엘렉트론가부시키가이샤 실리콘 질화물의 준원자 층 에칭 방법
KR102537742B1 (ko) 2017-02-23 2023-05-26 도쿄엘렉트론가부시키가이샤 자가 정렬 블록 구조물들의 제조를 위한 실리콘 질화물 맨드렐의 이방성 추출 방법
WO2018156975A1 (en) 2017-02-23 2018-08-30 Tokyo Electron Limited Method of quasi-atomic layer etching of silicon nitride
JP6928548B2 (ja) * 2017-12-27 2021-09-01 東京エレクトロン株式会社 エッチング方法
KR102327416B1 (ko) * 2019-08-20 2021-11-16 아주대학교산학협력단 플라즈마 식각 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359229A (ja) * 2001-06-01 2002-12-13 Mitsubishi Electric Corp 半導体装置の製造方法および半導体装置の製造装置
JP2009206394A (ja) * 2008-02-29 2009-09-10 Nippon Zeon Co Ltd 炭素系ハードマスクの形成方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878427A (ja) 1981-11-05 1983-05-12 Toshiba Corp ドライエツチング方法
US4784720A (en) * 1985-05-03 1988-11-15 Texas Instruments Incorporated Trench etch process for a single-wafer RIE dry etch reactor
JPH09191002A (ja) 1996-01-10 1997-07-22 Sony Corp プラズマエッチング方法
JP2972786B2 (ja) 1996-11-05 1999-11-08 工業技術院長 ドライエッチング用ガス
JPH10223614A (ja) 1997-02-12 1998-08-21 Daikin Ind Ltd エッチングガスおよびクリーニングガス
SG72905A1 (en) * 1997-12-18 2000-05-23 Central Glass Co Ltd Gas for removing deposit and removal method using same
US6602434B1 (en) 1998-03-27 2003-08-05 Applied Materials, Inc. Process for etching oxide using hexafluorobutadiene or related fluorocarbons and manifesting a wide process window
US6387287B1 (en) 1998-03-27 2002-05-14 Applied Materials, Inc. Process for etching oxide using a hexafluorobutadiene and manifesting a wide process window
US6174451B1 (en) * 1998-03-27 2001-01-16 Applied Materials, Inc. Oxide etch process using hexafluorobutadiene and related unsaturated hydrofluorocarbons
US6540930B2 (en) 2001-04-24 2003-04-01 3M Innovative Properties Company Use of perfluoroketones as vapor reactor cleaning, etching, and doping gases
JP3960095B2 (ja) 2002-03-22 2007-08-15 日本ゼオン株式会社 プラズマ反応用ガス及びその製造方法
JP2003163205A (ja) 2001-11-28 2003-06-06 Sony Corp 酸化膜エッチング方法
US7547635B2 (en) 2002-06-14 2009-06-16 Lam Research Corporation Process for etching dielectric films with improved resist and/or etch profile characteristics
JP4164643B2 (ja) 2002-07-17 2008-10-15 日本ゼオン株式会社 ドライエッチング方法及びパーフルオロ−2−ペンチンの製造方法
JP4500023B2 (ja) 2003-08-26 2010-07-14 株式会社アルバック 層間絶縁膜のドライエッチング方法
EP1760769A4 (en) 2004-05-31 2009-05-13 Nat Inst Of Advanced Ind Scien DRYING GASES AND METHOD OF DRYING
JP4836112B2 (ja) 2004-12-24 2011-12-14 国立大学法人京都大学 半導体処理装置のクリーニング方法およびシリコン基板のエッチング方法
WO2006126520A1 (ja) 2005-05-24 2006-11-30 Matsushita Electric Industrial Co., Ltd. ドライエッチング方法、微細構造形成方法、モールド及びその製造方法
JP5380882B2 (ja) 2007-04-17 2014-01-08 セントラル硝子株式会社 3,3,3−トリフルオロプロピンの製造方法
JP5131436B2 (ja) 2007-05-31 2013-01-30 日本ゼオン株式会社 エッチング方法
JP4978512B2 (ja) 2008-02-29 2012-07-18 日本ゼオン株式会社 プラズマエッチング方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359229A (ja) * 2001-06-01 2002-12-13 Mitsubishi Electric Corp 半導体装置の製造方法および半導体装置の製造装置
JP2009206394A (ja) * 2008-02-29 2009-09-10 Nippon Zeon Co Ltd 炭素系ハードマスクの形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511948A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026197A1 (ja) * 2015-08-12 2017-02-16 セントラル硝子株式会社 ドライエッチング方法
JP2017050529A (ja) * 2015-08-12 2017-03-09 セントラル硝子株式会社 ドライエッチング方法
US10741406B2 (en) 2015-08-12 2020-08-11 Central Glass Company, Limited Dry etching method

Also Published As

Publication number Publication date
US20120298911A1 (en) 2012-11-29
US9230821B2 (en) 2016-01-05
EP2511948A4 (en) 2014-07-02
CN102741987A (zh) 2012-10-17
TWI491710B (zh) 2015-07-11
KR20120107530A (ko) 2012-10-02
US9093388B2 (en) 2015-07-28
CN102741987B (zh) 2016-03-02
TW201137088A (en) 2011-11-01
US20140242803A1 (en) 2014-08-28
KR101422155B1 (ko) 2014-07-22
EP2511948A1 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
WO2011093263A1 (ja) ドライエッチング剤及びそれを用いたドライエッチング方法
WO2013015033A1 (ja) ドライエッチング剤
KR101435490B1 (ko) 드라이 에칭제 및 드라이 에칭 방법
CN114512399A (zh) 干式蚀刻方法
TWI631618B (zh) Dry etching method, dry etchant, and method of manufacturing semiconductor device
JP5958600B2 (ja) ドライエッチング方法
TWI664317B (zh) 乾式蝕刻劑、乾式蝕刻方法及半導體裝置之製造方法
JP2011176292A (ja) ドライエッチング剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008023.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736976

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011736976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011736976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13576093

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127022186

Country of ref document: KR

Kind code of ref document: A