WO2011093215A1 - ころの製造方法 - Google Patents

ころの製造方法 Download PDF

Info

Publication number
WO2011093215A1
WO2011093215A1 PCT/JP2011/051055 JP2011051055W WO2011093215A1 WO 2011093215 A1 WO2011093215 A1 WO 2011093215A1 JP 2011051055 W JP2011051055 W JP 2011051055W WO 2011093215 A1 WO2011093215 A1 WO 2011093215A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
axis
roller
center
grindstone
Prior art date
Application number
PCT/JP2011/051055
Other languages
English (en)
French (fr)
Inventor
晃平 東
杉立 教志
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201180007260.6A priority Critical patent/CN102753304B/zh
Priority to EP11736928.0A priority patent/EP2529884B1/en
Priority to US13/521,775 priority patent/US9174316B2/en
Publication of WO2011093215A1 publication Critical patent/WO2011093215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • B23P13/02Making metal objects by operations essentially involving machining but not covered by a single other subclass in which only the machining operations are important
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/003Making specific metal objects by operations not covered by a single other subclass or a group in this subclass bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/02Machine tools for performing different machining operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/16Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49544Roller making

Definitions

  • This invention relates to a method of manufacturing a roller, and more particularly to grinding of a roller end face.
  • roller end face affects the frictional heat due to contact with the collar and the edge load near the roller chamfer. For this reason, the dimensional accuracy is ensured for the principal part of the roller end surface which affects these by grinding. For example, in order to relieve frictional heat, a spherical portion continuous with chamfering is ground on the roller end surface. Conventionally, a cup-shaped grindstone having a cylindrical grindstone portion has been employed in the grinding process (Patent Document 1).
  • FIGS. 6 (a) and 6 (b) there is a method called a 2-roll 1-shoe system as shown in FIGS. 6 (a) and 6 (b).
  • the work 61 having the outer diameter surface shape of the roller is held by the two roll-type drive wheels 62, the shoe 63, and the backing plate 64, and the work 61 is rotated around the central axis in a lateral posture.
  • the grindstone 65 is cut into the end surface of the workpiece 61.
  • the workpieces 61 and 71 are received by the receiving surfaces of the yatois 66 and 72 as shown in FIGS.
  • the grindstones 65 and 73 can be pressed against the workpieces 61 and 71 while being inserted concentrically with the workpieces 61 and 71. Since the toys 66 and 72 support the outer diameter surfaces of the workpieces 61 and 71 by the receiving surfaces 66a and 72a, the apparent outer diameter of the workpieces 61 and 71 is increased and the direction perpendicular to the central axis of the workpieces 61 and 71 is obtained. Increase positioning accuracy.
  • the outer diameter surfaces of the workpieces 61 and 71 are finished in a rolling surface shape of any one of a tapered roller, a convex roller, and a cylindrical roller. Since the outer diameter surfaces of the workpieces 61 and 71 serve as reference surfaces for positioning for grinding, they are finished with sufficient accuracy for this purpose.
  • the end surface of the workpiece 81 on the non-machined side is magnetically fixed by the spherical attracting surface 82a of the electromagnet rotating disk 82, and the rotation center of the electromagnet rotating disk 82 is obtained.
  • the grindstone 83 rotating around the rotation center parallel to the workpiece is positioned at one place, and the workstone 81 is revolved by the electromagnet rotating disk 82 and the grindstone 83 is pressed against the work 81 with a predetermined cutting control.
  • JP 2005-297181 A (particularly paragraphs 0002 to 0004, 0016 to 0018, 0023, FIGS. 3 and 4)
  • the shape of the work 71 that can be stably fixed to the yatoy 72 is limited to the work for the asymmetric convex roller whose maximum outer diameter portion is close to the machining allowance side as shown in FIG. 7B. That is, the conventional example shown in FIG. 7B is not a method that can be applied to various workpieces for convex rollers.
  • the work 81 is fixed to the electromagnet rotating plate 82 by simply adsorbing the end surface on the non-working side, the posture of the work 81 is not uniform. The machining accuracy is not stable. Further, since the work 81 is magnetized, a demagnetization step is required after the grinding process. Further, in the conventional example shown in FIGS. 8A and 8B, the accuracy of the ground surface depends on the spherical surface accuracy of the spherical attracting surface 82a of the electromagnet rotating plate 82. The productivity is extremely low because it takes time to adjust the quality such as replacement of the electromagnet and re-polishing of the electromagnet rotating plate 82.
  • tapered rollers or convex rollers are subjected to quenching treatment using steel typified by bearing steel as a material. 6 to 8, it is difficult to obtain a holding force that can cut a workpiece formed of hardened steel.
  • an object of the present invention is to improve the efficiency of grinding the roller end face applied to the work for the tapered roller or the convex roller and to expand the target range of the work that can be performed with sufficient accuracy.
  • the present invention provides a roller manufacturing method including a step of positioning a work having an outer diameter surface shape of a tapered roller or a convex roller, and grinding a roller end face on the work.
  • a workpiece is fixed with a claw of a mechanical chuck provided on a spindle head of a 5-axis control machining center, and a cutting tool that is attached to the spindle of the 5-axis control machining center is used to perform cutting that brings the workpiece closer to the target shape of the grinding process.
  • the grinding process is performed on the finished surface of the cutting process with a grindstone mounted on the spindle.
  • the 5-axis control machining center is capable of cutting a complicated three-dimensional shape, so that the workpiece can be cut close to the target shape for grinding.
  • a mechanical chuck for a 5-axis control machining center that performs various types of cutting can sufficiently fix the workpiece even when cutting a hardened steel workpiece. If a part of the conventional grinding process is replaced with the cutting process in the previous process, the target shape can be completed with sufficient accuracy in the subsequent grinding process, and the efficiency of the grinding process can be improved as compared with the conventional process.
  • the outer diameter surface of the work for the tapered roller or the convex roller can be grasped in an arbitrary range in the central axis direction and can be fixed to the headstock regardless of the position of the cone angle or the maximum outer diameter portion. Therefore, it is possible to widen the target range of the workpiece that can be ground with sufficient accuracy as compared with the conventional case where the workpiece target is limited at the position of the cone angle or the maximum outer diameter portion.
  • the target shape of the grinding process is a spherical surface
  • the target shape of the grinding process is a spherical surface
  • the finished surface is formed into a spherical surface along the target shape by the cutting process
  • the grinding stone is a cylindrical shape.
  • the 5-axis control machining center rotates the spherical center of the target shape, the Z-axis that is the center of rotation for rotating the grindstone of the spindle, and the workpiece of the headstock
  • a first rotation axis that is a rotation center for causing the rotation to occur, and a plane orthogonal to the second rotation axis that is the rotation center that tilts one of the main spindle and the main shaft with respect to the XZ plane or the YZ plane.
  • a spherical vertex of the target shape is located on an extension of a straight line connecting the spherical center of the target shape and the second rotation axis, and between the second rotation axis and the spherical vertex.
  • the distance H becomes a distance H, it rotates with an inclination angle ⁇ with respect to the Z axis.
  • the Z axis and the second rotation axis have an offset amount e in the X axis direction perpendicular to the Z axis.
  • the workpiece gripped by the claw can be prevented from being lifted by the retraction of the claw.
  • the workpiece is fitted to the receiving surface of the inner periphery of the yatoi fixed to the headstock, and the non-working side end of the workpiece protruding from the receiving surface is gripped by the claw, the workpiece is removed from the receiving surface. It is possible to prevent the outer surface of the surface from being lifted by pulling in the mechanical chuck. As a result, when the workpiece is rotated by the headstock, it is possible to more reliably prevent the workpiece from being lifted by the cone angle or curvature of the outer diameter surface of the workpiece.
  • the receiving surface of the yatoy is formed on the machine by the 5-axis control machining center. Since the center axis of the receiving surface of the Yatoi is determined based on the five axes, there is no worry of lowering the centering accuracy.
  • the claw is gripped so as to include the range of the machining allowance side from the maximum outer diameter portion of the outer diameter surface of the workpiece for the convex roller, only the maximum outer diameter portion of the workpiece for the convex roller can be inserted.
  • the outer diameter surface of the workpiece can be positioned even closer to the machining allowance from the maximum outer diameter part of the workpiece. Easy to stabilize.
  • a center hole into which a fixed center provided on the headstock is fitted is formed on an end surface of the workpiece on the non-machined side, and the workpiece is fixed by the claw and the fixed center.
  • the workpiece can be stabilized without being caught by the nail.
  • the clamping surface of the claw is formed on the machine by the 5-axis control machining center so as to coincide with the outer diameter surface of the workpiece. Since the chuck center of the mechanical chuck is determined based on the five axes, the centering operation is unnecessary, so that the centering accuracy is superior to the case of using a general-purpose claw that requires the centering operation.
  • the other cutting part of the workpiece fixed to the headstock can be processed by the 5-axis control machining center.
  • the 5-axis control machining center by using the automatic tool change function, it is possible to machine with various tools without removing the workpiece from the headstock, so it is possible to produce types of rollers with other cutting parts. Can be improved.
  • the finished surface may be formed by the cutting process of rotating the headstock and turning the workpiece with the cutting tool.
  • this invention is suitable for performing the cutting process and the grinding process on the workpiece formed of hardened steel.
  • a work for a tapered roller or a convex roller is fixed to a spindle head of a 5-axis control machining center with a mechanical chuck, and the end surface of the roller is ground on the work by the 5-axis control machining center.
  • the target of the workpiece that can be machined with sufficient precision and with sufficient efficiency in grinding the roller end face applied to the workpiece because the grinding process is performed close to the target shape and the grinding surface is subjected to the grinding.
  • the range can be expanded.
  • FIG. 1 is schematic which shows the cutting process of 1st Embodiment of this invention
  • (b) is the schematic which shows the grinding process of 1st Embodiment
  • (A) is a plan view of a mechanical chuck and a yatoy provided in the headstock of FIG. 2, and (b) is a sectional view taken along line bb of (a).
  • (A) is a plan view of a mechanical chuck used in the second embodiment
  • (b) is a cross-sectional view taken along the line bb of (a).
  • FIG. 1 is a schematic diagram showing a conventional grinding process of a two-roll one-shoe type, and (b) is a partially enlarged sectional view taken along line bb of (a).
  • (A) is a cross-sectional view taken along line bb of FIG. 6 (a), showing a state where a work for a tapered roller is inserted into a yatoy and a grindstone is pressed in a 2-roll 1-shoe type, and (b) is a 2-roll Sectional view taken along line bb in FIG.
  • 1st Embodiment is an example of the manufacturing method of a roller including the process of positioning the workpiece
  • the 5-axis control machining center includes a head stock 11 for fixing a workpiece (not shown), a spindle 12 for attaching a tool (not shown), and an automatic tool changer (not shown).
  • a Z axis that is a rotation center for rotating the tool
  • an X axis and a Y axis that form an orthogonal three-axis coordinate system together with the Z axis
  • a first rotation axis that is a rotation center for rotating the spindle base 11 around the chuck center
  • a second rotation axis (corresponding to the A axis in the figure) that is the center of rotation for tilting the headstock 11 or the spindle 12 with respect to the XZ plane or the YZ plane.
  • a machining center capable of simultaneous contour control of five axes.
  • Contour control is a numerically controlled motion of two or more axes that operates according to a command that defines the next required position and the feed speed to reach that position. (These feed speeds change in relation to each other. A sharp contour is generated).
  • a vertical 5-axis control machining center having a first rotating shaft and a second rotating shaft is used as the head stock 11.
  • the Z axis is oriented in the vertical direction with respect to the horizontal
  • the first rotation axis is the C axis that is the center of the rotational movement with respect to the YZ plane (hereinafter, the first rotation axis is simply referred to as the C axis).
  • the second rotation axis is the A axis that is the center of the rotational movement with respect to the XY plane (hereinafter, the second rotation axis is simply referred to as the A axis).
  • the headstock 11 includes a mechanical chuck 13. As shown in FIGS. 3A and 3B, the mechanical chuck 13 holds and fixes the outer diameter surface 1 a of the work 1 with the claws 14, 14, 14. The chuck center and the C axis of the head stock 11 are concentric.
  • the workpiece 1 has an outer diameter surface 1a having a tapered roller rolling surface shape.
  • claw 14 has the clamp surface 14a which grips the part of the roller rolling surface shape of the outer diameter surface 1a.
  • the roller rolling surface shape portion is finished with an accuracy that can be used as a positioning reference surface for fixing the workpiece 1 with the mechanical chuck 13.
  • the central axis of the outer diameter surface 1a of the workpiece 1 and the chuck center are concentric.
  • the central axis of the outer diameter surface 1a of the workpiece 1 is the central axis of the workpiece 1 and is the roller central axis. *
  • a retractable chuck is used as the mechanical chuck 13.
  • the retractable mechanical chuck 13 has a mechanism for simultaneously moving the claws 14, 14, 14 toward the chuck center in a direction perpendicular to the chuck center as the chuck 14 is simultaneously displaced toward the stopper 13 a in the chuck center direction.
  • claw 14,14,14 can be fixed after further drawing-in force is given.
  • the work 1 is fixed to the head stock 11 by fixing the positions of the claws 14, 14, 14. Therefore, the lifting of the work 1 gripped by the claws 14, 14, 14 is prevented by the pulling force.
  • a mechanism that displaces the claws 14, 14, 14 toward the center of the chuck along the conical surface of the chuck body 13 b of the mechanical chuck 13 by pulling in the draw bar can be employed.
  • the head stock 11 shown in FIG. 2 includes a yato 15 that increases the apparent outer diameter of the workpiece 1 as shown in FIGS. 3 (a) and 3 (b).
  • the yatoy 15 is fixed to the head stock 11 in FIG. 2 by being attached to the chuck body 13 b of the mechanical chuck 13.
  • the receiving surface 15 a formed on the inner periphery of the yatoy 15 presses the tool in the direction orthogonal to the center axis of the work 1 and in the Z-axis direction against the work 1. Receive in the direction.
  • the central axis of the workpiece 1 and the central axis of the receiving surface 15a are determined concentrically.
  • the processing side end of the workpiece 1 is defined as an end on the roller large end face side.
  • the workpiece 1 is fitted into the receiving surface 15a of the yatoe 15 attached to the chuck body 13b, and the non-working side end portion of the workpiece 1 protruding from the receiving surface 15a is mechanically disposed.
  • the chuck 13 When gripped by the chuck 13, it is positioned in the direction orthogonal to the chuck center at both ends of the work 1 by the claws 14, 14, 14 and the receiving surface 15a.
  • the outer diameter surface 1a of the workpiece 1 is prevented from being lifted from the receiving surface 15a by the pulling force.
  • a gap is formed between the non-working side end portion of the workpiece 1 fixed as described above and the stopper 13a of the mechanical chuck 13.
  • the roller rolling surface shape portion of the outer diameter surface 1a of the workpiece 1 can be positioned in the chuck center direction by the receiving surface 15a of the yatoy 15, and it is not necessary to support the workpiece 1 by the stopper 13a, and the workpiece 1 is held by the stopper 13a. When it is supported, it is troublesome to obtain accuracy so that it can be supported simultaneously with the receiving surface 15a. Therefore, the support of the workpiece 1 by the stopper 13a is omitted due to the gap.
  • the clamping surface 14a of the claw 14 is formed on the machine by a 5-axis control machining center. Specifically, boring is performed with a tool mounted on the spindle 12 in a state where the mechanical chuck 13 assembled using a claw workpiece having a machining allowance for forming a clamp surface is fixed to the spindle base 11. Boring can be performed with the dummy held by the nail work.
  • the clamp surface 14 a of the claw 14 is formed on a surface that matches the roller rolling surface shape of the outer diameter surface 1 a of the workpiece 1.
  • the chuck center of the mechanical chuck 13 is determined based on the five axes. For this reason, it is possible to fix the work 1 with high accuracy without the need for centering work and vibration.
  • the attachment error of the claw 14 does not decrease the centering accuracy as in the case where the claw 14 having a clamp surface formed by another machine tool is employed.
  • the receiving surface 15a of the Yatoy 15 is formed on-machine by a 5-axis control machining center. Specifically, a yato work having a machining allowance for forming the receiving surface 15a is fixed to the headstock 11 and boring is performed with a tool attached to the main spindle 12. Since the central axis of the receiving surface 15a is determined on the basis of the five axes, there is no fear of lowering the centering accuracy. After the on-machine molding of the clamping surface 14a of the claw 14, the yatoy 15 can be attached to the chuck body 13b to perform on-machine molding of the receiving surface 15a.
  • the receiving surface 15a is formed on the machine after the clamping surface 14a is formed on the machine, it is not necessary to remove the yatoy 15 until all the processing applied to the workpiece 1 is completed by the 5-axis control machining center. Therefore, the attachment error of the yatoy 15 does not deteriorate the centering accuracy as when the yatoy 15 having the receiving surface 15a formed by another machine tool is adopted.
  • Each of the mechanical chuck 13 and the yatoy 15 is of a strength that can ensure the accuracy of cutting and grinding applied to the hardened steel.
  • claw 14 or the yatoy 15 is not specifically limited as long as the required positioning accuracy of the workpiece
  • Work 1 is made of hardened steel.
  • hardened steel steel whose surface has been hardened by appropriate degree and means, such as high and medium carbon alloy steel (brown steel), case hardened steel (carburized steel), induction hardened steel, etc. is adopted. be able to. Since the mechanical chuck 13 and the yatoy 15 are non-magnetic work holding devices, the steel work 1 is not magnetized.
  • the target shape of the grinding process is a spherical surface.
  • the entire roller end surface is a spherical surface.
  • FIG. 1A First, information necessary for machining into a target shape is input to a 5-axis control machining center. Thereafter, as shown in FIG. 1A, the workpiece 1 is subjected to a cutting process approaching the target shape of the grinding process by the cutting tool 16 attached to the main shaft 12. Thereafter, as shown in FIG. 1 (b), the grindstone 17 attached to the main shaft 12 is used to grind the finished surface 1b of the cutting work.
  • 1A and 1B include the center O of the spherical surface S, the Z-axis that is the rotation center of the grindstone 17 by the main shaft 12, and the C-axis that is the rotation center of the work 1 by the head stock 11. A plane perpendicular to the axis is shown.
  • the height h of the upper surface of the workpiece 1 is measured by the in-machine measuring device 18 of the 5-axis control machining center.
  • the 5-axis control machining center updates the Z coordinate so that the machining allowance set by the input is obtained, and the tilt angle ⁇ of the workpiece 1 necessary for the spherical surface S expressed by the following expressions 1 and 2 and the offset amount e ( 1) is calculated from the measured coordinate values.
  • the spherical surface S is a target shape for grinding. 4 shows the same plane as FIG. 1 (a) and FIG. 1 (b).
  • the height h of the upper surface of the work 1 is the height in the Z-axis direction from the A-axis of the work 1.
  • the processing side end of the workpiece 1 is formed in a similar shape of the spherical surface S. For this reason, the height h is measured on the workpiece central axis (concentric with the C axis) on the upper surface of the workpiece 1.
  • the 5-axis control machining center After updating the Z coordinate, the 5-axis control machining center performs 2-axis contour control of the X-axis and the Z-axis based on the calculated coordinates, and moves the headstock 11 around the C-axis as shown in FIG.
  • the processed side end of the workpiece 1 is turned with a cutting tool 16 for hardened steel so as to form a spherical finished surface 1b along the spherical surface S.
  • the finished surface 1b is a surface that leaves a grinding allowance necessary for ensuring accuracy from the spherical surface S.
  • the finished surface 1b is finished to a predetermined size, shape, and surface roughness. Since the machining allowance is sufficiently small with respect to the size of the workpiece 1, the illustration thereof is omitted. Note that the cutting is not limited to a mode in which only finish cutting is performed, and rough cutting and medium cutting can be appropriately performed.
  • the 5-axis control machining center attaches a grindstone 17 to the spindle 12 as shown in FIG. 1 (b) by an automatic tool changer.
  • the 5-axis control machining center grinds the finished surface 1b with a grindstone 17 mounted on the spindle 12.
  • a cup-shaped grindstone having a cylindrical grindstone portion is used as the grindstone 17.
  • the five-axis contour control realizes conditions equivalent to conventional spherical grinding with a cup-shaped grindstone.
  • the 5-axis control machining center performs grinding by performing 5-axis contour control so as to satisfy the following conditions (i) to (iV) on the illustrated plane.
  • the workpiece 1 is located where the vertex T of the spherical surface S is located on the extension of the straight line connecting the center O of the spherical surface S and the A axis, and the linear distance between the A axis and the vertex T is the distance H. It rotates with an inclination angle ⁇ relative to the axis.
  • the vertex T is on the central axis of the workpiece 1.
  • the Z axis and the A axis have an offset amount e in the X axis direction orthogonal to the Z axis.
  • the offset amount e is a difference in X-axis coordinates existing between the Z-axis and the A-axis when considered on the plane of the drawing.
  • a spherical S-shaped roller large end face is completed on the work 1 by cutting in the Z-axis direction by Z-axis feed.
  • the cutting control such as the cutting speed and the pressure for pressing the grindstone 17 against the finished surface 1b may be appropriately set according to the machining end shape of the workpiece, the target shape, the characteristics of the grindstone, and the like.
  • the grinding process is not limited to a mode in which only a single grindstone is used, and accuracy can be improved by appropriately using a plurality of grindstones using an automatic tool change function.
  • the workpiece 1 made of hardened steel is subjected to cutting, a part of the machining allowance is used as the machining allowance, and the remaining grinding allowance is used. Since the large end surface of the spherical surface S is completed with sufficient accuracy at one processing side end, the efficiency of grinding can be improved as compared with the conventional case where the entire machining allowance is used as the grinding allowance.
  • work 1 for tapered rollers is made into this cone with the nail
  • FIG. Regardless of the angle, the workpiece 1 can be gripped in the range of the central axis direction and fixed to the headstock 11. Therefore, it is possible to expand the target range of the workpiece 1 in which grinding can be performed with sufficient accuracy as compared with the conventional example in which the workpiece to be processed is limited by the cone angle.
  • the work 1 fixed to the headstock as shown in FIGS. 3A and 3B such as a hole penetrating on the central axis of the roller and a relief of the roller end face.
  • Other cutting parts can be processed by a 5-axis control machining center. That is, a drilling or milling tool is mounted on the spindle 12 by an automatic tool changer of a 5-axis control machining center, and the above holes, clearances, etc. are removed by drilling or counterboring without removing the workpiece 1 from the spindle stock 11.
  • the roller end surface completed on the processing-side end of the workpiece 1 has a spherical shape.
  • various changes can be made. For example, it is possible to adopt a form having roller escape such as the above-mentioned grinding thinning, a conical surface continuous to the chamfering of the roller, a crowning continuous to the chamfering of the roller, and the like.
  • shaft may be substituted by the axis
  • the yatoy 15 can be omitted, and the workpiece can be fixed only with the mechanical chuck.
  • a second embodiment of the present invention will be described with reference to FIGS.
  • the same names will be used for the components that are considered to be the same, and description thereof will be omitted.
  • the workpiece 21 for the convex roller is fixed only by the mechanical chuck 22.
  • a roller rolling surface shape of an asymmetric convex roller is formed on the outer diameter surface 21 a of the work 21.
  • the maximum outer diameter portion of the workpiece 21 can be grasped by the claws 23, 23, 23.
  • work 21 is easy to be stabilized and a yatoi can be abbreviate
  • the mechanical chuck 22 is configured to be gripped by the clamp surface 23a so as to include a range on the cutting margin side from the maximum outer diameter portion d of the outer diameter surface 21a of the workpiece 21.
  • the outer diameter surface 21a is formed even closer to the cutting allowance than the maximum outer diameter portion d of the workpiece 21. Since it can position, it is easy to stabilize the workpiece
  • the workpiece 21 is exemplified for the asymmetric convex roller, even if it is a workpiece for the symmetrical convex roller, as long as it does not hinder the processing, an appropriate place on the cutting margin side of the outer diameter surface 21a is claw 23, 23, 23. You can grab with. Therefore, according to 2nd Embodiment, the object range of the workpiece
  • a center hole 21b into which the fixed center 24 provided on the head stock 11 is fitted is formed on the end surface of the workpiece 21 on the non-working side. Since the work 21 is fixed by the claws 23, 23, 23 and the fixing center 24, the work 21 can be stabilized without gripping the non-processed side of the outer diameter surface 21 a of the work 21 by the claws 23, 23, 23.

Abstract

 円錐ころ又は凸面ころ用のワークに施すころ端面の研削加工の能率をよくし、かつ十分な精度に実施できるワークの対象範囲を広げる。ワーク(1)を5軸制御マシニングセンタの主軸台(11)に備わる引き込み式のメカニカルチャック(13)の爪(14)で固定し、ヤトイ(15)でワーク(1)の見掛け上の外径を大きくし、爪(14)のクランプ面(14a)、ヤトイ(15)の受け面(15a)を機上成形し、主軸(12)に切削工具(16)を自動工具交換機で装着し、ワーク(1)をC軸回りに回転させてワーク(1)の加工側端部を研削加工の目標形状である球面(S)に近付ける旋削を切削工具(16)で行い、主軸(12)に砥石(17)を自動工具交換機で装着し、ワーク(1)に対する砥石(17)の位置・姿勢を研削加工に応じた所定の傾き角α及びオフセット量e等の関係に5軸制御でセットし、Z軸送りにより砥石(17)を切込むことにより球面(S)に研削するようにした。

Description

ころの製造方法
 この発明は、ころの製造方法に関し、特に、ころ端面の研削に関する。
 ころ端面の形状は、つばとの接触による摩擦熱やころ面取り付近のエッジロードに影響する。このため、これらに影響するころ端面の要部は、研削加工を施すことにより寸法精度が確保されている。例えば、摩擦熱を緩和するため、ころ端面には、面取りに連続する球面部分が研削加工される。従来、前記の研削加工には、円筒状の砥石部を有するカップ形砥石が採用されている(特許文献1)。
 カップ形砥石による研削加工の従来例として、図6(a),(b)に示すように、2ロール1シュー方式と呼ばれる方法がある。この方法では、ころの外径面形状が形成されたワーク61を、2つのロール型駆動輪62とシュー63、およびバッキングプレート64で保持しながら横姿勢でワーク61をこの中心軸回りに回転させ、そのワーク61の端面に対して砥石65を切込む。砥石65をワーク61の中心軸に対し傾けた方向から押し当てることにより、砥石65の自生作用を利用して球面に成形することができる。
 上述のようにワークをこの中心軸回りに回転させてカップ形砥石を押し付ける研削加工においては、図7(a),(b)に示すように、ワーク61,71をヤトイ66,72の受け面66a,72aに横向きに挿入し、ヤトイ66,72をワーク61,71と同心一体回転させながら砥石65,73を押し当てることもできる。ヤトイ66,72は、受け面66a,72aでワーク61,71の外径面を支持するため、ワーク61,71の見掛け上の外径を大きくし、ワーク61,71の中心軸と直交する方向の位置決め精度を高める。ワーク61,71の外径面は、円錐ころ、凸面ころ、円筒ころのいずれかの転動面形状に仕上げられている。ワーク61,71の外径面は、研削加工の位置決めの基準面になるため、この目的に十分な精度に仕上げられている。
 別の従来例として、図8(a),(b)に示すように、ワーク81の非加工側の端面を電磁石回転盤82の球面吸着面82aにより磁力固定し、電磁石回転盤82の回転中心と平行な回転中心回りに回転する砥石83を一箇所に位置決めし、電磁石回転円盤82でワーク81を公転させながらワーク81に対して砥石83を所定の切込み制御で押し付けて成形する方法もある。
特開2005-297181号公報(特に段落0002~0004,0016~0018,0023、図3,4)
 図6(a),(b)の従来例では、円錐ころ用のワーク61の外径角度が大きい場合、ワーク61が抜け出す方向に力が作用するため、安定した加工精度を得られない。図7(a)の例でも、ワーク61の外径角度が大きい場合には、ヤトイ66の受け面66aに対する楔効果が発生し難く、安定した加工精度が得られない。また、図7(b)に示す従来例では、凸面ころ用のワーク71をヤトイ72の受け面72aに横向きに挿入するため、ヤトイ72で保持可能な範囲は、ワーク71の最大外径部までしかない。安定してヤトイ72に固定できるワーク71の形状は、図7(b)のように最大外径部が削り代側に近い位置にある非対称凸面ころ用のワークに限られる。すなわち、図7(b)に示す従来例は、様々の凸面ころ用のワークに適用できる方法ではない。
 また、図8(a),(b)に示す従来例の場合、ワーク81が非加工側の端面を磁力吸着するだけで電磁石回転盤82に固定されているため、ワーク81の姿勢が不均一となる可能性があり、加工精度の安定性に欠ける。また、ワーク81が磁気を帯びるため、研削加工後に脱磁工程が必要になる。さらに、図8(a),(b)に示す従来例では、研削仕上げ面の精度は、電磁石回転盤82の球面吸着面82aの球面精度に依存することから、段取り替え時の電磁石回転盤82の交換や、電磁石回転盤82の再研磨などの品質調整に手間取ることから生産性が極めて低い。
 研削加工の生産能率の改善には、切削加工への置き換えが考えられる。一般に、円錐ころ又は凸面ころは、軸受鋼に代表される鋼を材料として焼入れ処理を施されたものである。図6~8のワーク保持方法では、焼入れ鋼で形成されたワークを切削できる程の保持力を得ることは難しい。
 そこで、この発明は、円錐ころ又は凸面ころ用のワークに施すころ端面の研削加工の能率をよくし、かつ十分な精度に実施できるワークの対象範囲を広げることを課題とする。
 上記の課題を解決するため、この発明は、円錐ころ又は凸面ころの外径面形状が形成されたワークを位置決めし、該ワークにころ端面を研削加工する工程を含むころの製造方法において、前記ワークを、5軸制御マシニングセンタの主軸台に備わるメカニカルチャックの爪で固定し、前記5軸制御マシニングセンタの主軸に装着された切削工具により該ワークに対して前記研削加工の目標形状に近付ける切削加工を施し、前記主軸に装着された砥石により前記切削加工の仕上げ面に前記研削加工を施すようにした。
 5軸制御マシニングセンタは、複雑な3次元形状の切削加工が可能なため、ワークに研削加工の目標形状に近付ける切削加工を施すことができる。また、様々な種類の切削加工を行う5軸制御マシニングセンタ用のメカニカルチャックでは、例え、焼入れ鋼製のワークに切削加工を施す場合でも十分なワークの固定が可能である。従来の研削加工の一部を前工程で切削加工に置換すれば、後工程の研削加工で目標形状を十分な精度に完成させ、従来よりも研削加工の能率をよくすることができる。メカニカルチャックの爪によれば、円錐ころ又は凸面ころ用のワークの外径面を、この円錐角や最大外径部の位置によらず任意の中心軸方向範囲で掴み、主軸台に固定できる。したがって、円錐角や最大外径部の位置でワークの加工対象が制限された従来よりも、研削加工を十分な精度に実施できるワークの対象範囲を広げることもできる。
 例えば、前記研削加工の目標形状が球面である場合、前記研削加工の目標形状は球面であり、前記切削加工により前記仕上げ面を前記目標形状に沿う球面に形成し、前記砥石として、円筒状の砥石部を有するカップ形砥石を用い、前記5軸制御マシニングセンタは、前記目標形状の球面中心、前記主軸の前記砥石を回転させるための回転中心であるZ軸、及び前記主軸台の前記ワークを回転させるための回転中心である第1の回転軸を含み、XZ面又はYZ面に対して前記主軸台及び前記主軸の一方を傾ける回転中心である第2の回転軸と直交する平面上で考えて下記条件(i)~(iV)を満たすように輪郭制御を行って前記研削加工を施せば、従来と同じくカップ形砥石の押し付けで研削加工を行うことができ、その研削加工代を切削加工で少なくして高能率化を図ることができる。
 (i)前記ワークは、前記目標形状の球面中心と前記第2の回転軸とを結ぶ直線の延長上に該目標形状の球面頂点が位置し、かつ該第2の回転軸と該球面頂点間の直線距離が距離Hになるところで前記Z軸に対して傾斜角αをもって回転する。
 (ii)前記Z軸と前記第2の回転軸とは、該Z軸と直交するX軸方向にオフセット量eをもつ。
 (iii)前記球面の半径R、前記砥石の外径D及び傾斜角αは、下記式1の関係を満たし、オフセット量e、直線距離H及び傾斜角αは、下記式2の関係を満たす。
式1:R={(D/2)+e}/sinα
式2:e=(D/2)-Hsinα
 (iV)前記第1の回転軸回りに回転する前記ワークに対して、前記Z軸回りに回転する前記砥石を、前記(i)~(iii)を満たす配置とし、Z軸送りでZ軸方向に切込むことにより前記目標形状を完成させる。
 前記メカニカルチャックに引き込み式チャックを用いると、爪が掴んだワークの浮き上がりを爪の引き込みによって防止することができる。
 前記主軸台に対して固定されたヤトイ内周の受け面に前記ワークが嵌る状態とし、該受け面から突き出る該ワークの非加工側端部を前記爪で掴むようにすれば、受け面からワークの外径面が浮き上がることをメカニカルチャックの引き込みで防止することができる。ひいては、主軸台によるワーク回転時、ワークの外径面の円錐角や曲率による浮き上がりをより確実に防止できる。
 前記ヤトイの受け面を、前記5軸制御マシニングセンタにより機上成形することが好ましい。ヤトイの受け面の中心軸が5軸に基いて定まるため、芯出し精度を低下させる心配がない。
 前記凸面ころ用の前記ワークの外径面のうち最大外径部から削り代側の範囲を含むように前記爪で掴むようにすれば、凸面ころ用のワークの最大外径部までしか挿入できない従来の2ロール1シュー方式やヤトイ式の研削加工と比して、ワークの最大外径部から削り代により近いところでもワークの外径面を位置決めできるので、切削加工及び研削加工時にワークをより安定させ易い。
 前記ワークの非加工側の端面に、前記主軸台に備わる固定センタが嵌るセンタ穴を形成し、前記爪と前記固定センタとで前記ワークを固定すれば、ワークの外径面の非加工側を爪で掴まずともワークを安定させることができる。
 前記爪のクランプ面を、前記5軸制御マシニングセンタにより前記ワークの外径面に一致するように機上成形することが好ましい。メカニカルチャックのチャック中心が5軸に基いて定まるため、芯出し作業が不要なので、芯出し作業を要する汎用爪を用いる場合よりも芯出し精度に優れる。
 前記主軸台に固定されたワークの他の削り部を前記5軸制御マシニングセンタで加工することもできる。5軸制御マシニングセンタによれば、自動工具交換機能を利用することにより、ワークを主軸台から外すことなく、多様な工具で加工することができるので、他の削り部をもった種類のころの生産性を向上させることができる。
 前記5軸制御マシニングセンタでは種々の切削加工が可能だが、前記切削加工としては、ワークの旋削が簡単でよい。具体的には、前記主軸台を回転させて前記切削工具で前記ワークを旋削する前記切削加工により前記仕上げ面を形成すればよい。
 前記メカニカルチャックやヤトイとして、焼入れ鋼の切削加工を十分な精度で行うことができるクランプ力をもつものを予め用意することができる。したがって、この発明は、焼入れ鋼で形成された前記ワークに前記切削加工と前記研削加工とを施すのに好適である。
 上述のように、この発明は、5軸制御マシニングセンタの主軸台にメカニカルチャックで円錐ころ又は凸面ころ用のワークを固定し、該5軸制御マシニングセンタにより該ワークに対してころ端面に施す研削加工の目標形状に近付ける切削加工を施し、その切削加工の仕上げ面に該研削加工を施すようにしたので、ワークに施すころ端面の研削加工の能率をよくし、かつ十分な精度に実施できるワークの対象範囲を広げることができる。
(a)は、この発明の第1実施形態の切削加工を示す概略図、(b)は、第1実施形態の研削加工を示す概略図 第1実施形態に用いる5軸制御マシニングセンタの5軸を示す概略図 (a)は、図2の主軸台に備わるメカニカルチャック及びヤトイの平面図、(b)は、前記(a)のb-b線の断面図 図2の5軸制御マシニングセンタの機内計測装置を用いた加工前の測定の様子を示す概略図 (a)は、第2実施形態に用いるメカニカルチャックの平面図、(b)は、前記(a)のb-b線の断面図 (a)は、2ロール1シュー式の従来例の研削加工を示す概略図、(b)は、前記(a)のb-b線の部分拡大断面図 (a)は、2ロール1シュー式において円錐ころ用のワークをヤトイに挿入して砥石を押し付けた様子を図6(a)のb-b線で示す断面図、(b)は、2ロール1シュー式において凸面ころ用のワークをヤトイに挿入して砥石を押し付けた様子を図6(a)のb-b線で示す断面図 (a)は、電磁石回転盤を用いた従来例の研削加工を示す概略図、(b)前記(a)のb-b線の部分拡大断面図
1,21 ワーク
1a,21a 外径面
1b 仕上げ面
11 主軸台
12 主軸
13,22 メカニカルチャック
14,23 爪
14a,23a クランプ面
15 ヤトイ
15a 受け面
16 切削工具
17 砥石
18 機内計測装置
21b センタ穴
24 固定センタ
 以下、この発明の第1実施形態を添付図面に基いて説明する。第1実施形態は、円錐ころの外径面形状が形成されたワークを位置決めし、該ワークにころ端面を研削加工する工程を含むころの製造方法の一例である。
 図2に例示するように、5軸制御マシニングセンタとは、図示省略のワークを固定する主軸台11と、図示省略の工具を取り付ける主軸12と、図示省略の自動工具交換機とを備え、主軸12が工具を回転させる回転中心であるZ軸、Z軸と共に直交3軸座標系を成すX軸及びY軸、主軸台11がワークをチャック中心回りに回転させる回転中心である第1の回転軸(図中のC軸に相当)、並びに主軸台11又は主軸12をXZ面又はYZ面に対して傾ける回転中心である第2の回転軸(図中のA軸に相当)とをもち(これらを5軸と称する)、同時5軸の輪郭制御が可能なマシニングセンタをいう。輪郭制御とは、次の必要な位置とその位置に至るための送り速度を規定する命令に従って動作する2軸以上の数値制御運動をいう(これらの送り速度は互いに関連して変化するので、必要な輪郭が生成される)。
 図示例では、主軸台11に第1の回転軸と第2の回転軸とをもった立形の5軸制御マシニングセンタを用いている。この種のマシニングセンタでは、Z軸が、水平に対する垂直方向を向き、第1の回転軸が、YZ面に対する回転運動の中心となるC軸であり(以下、第1の回転軸を単にC軸と呼ぶ)、第2の回転軸が、XY面に対する回転運動の中心となるA軸である(以下、第2の回転軸を単にA軸と呼ぶ)。
 主軸台11は、メカニカルチャック13を備える。図3(a),(b)に示すように、メカニカルチャック13は、爪14,14,14でワーク1の外径面1aを掴んで固定する。チャック中心と、主軸台11のC軸とは、同心にする。
 ワーク1は、外径面1aは、円錐ころのころ転動面形状が形成されている。爪14は、外径面1aのころ転動面形状の部分を掴むクランプ面14aを有する。ころ転動面形状の部分は、ワーク1をメカニカルチャック13で固定する位置決めの基準面として利用可能な精度に仕上げられている。ワーク1の外径面1aの中心軸とチャック中心とは、同心にする。ワーク1の外径面1aの中心軸は、ワーク1の中心軸であり、ころ中心軸となる。 
 メカニカルチャック13として引き込み式チャックを用いている。引き込み式のメカニカルチャック13は、爪14,14,14を、チャック中心方向にストッパ13a側へ同時に変位させる引き込みに伴って、チャック中心と直交する方向にチャック中心側へ同時に変位させる機構によりワーク1を掴み、爪14,14,14がワーク1の外径面1aのころ転動面形状の部分に当接後、さらに引き込み力が与えられてから、爪14,14,14の位置を固定できる。この爪14,14,14の位置固定により、ワーク1が主軸台11に対して固定される。したがって、爪14,14,14に掴まれたワーク1の浮き上がりは、前記引き込み力によって防止される。引き込み式チャックとしては、例えば、ドローバの引き込みにより爪14,14,14をメカニカルチャック13のチャックボディー13bの円錐面に沿ってチャック中心側へ変位させる機構のものを採用することができる。
 また、図2に示す主軸台11は、図3(a),(b)に示すようにワーク1の見掛け上の外径を大きくするヤトイ15を備える。ヤトイ15は、メカニカルチャック13のチャックボディー13bに取り付けることにより、図2の主軸台11に対して固定される。図3(b)に示すように、ヤトイ15の内周に形成された受け面15aは、ワーク1をワーク1の中心軸と直交する方向、及びワーク1に対してZ軸方向に工具を押し付ける方向に受ける。ワーク1の中心軸と受け面15aの中心軸とは、同心に定めている。ワーク1の加工側端部は、ころ大端面側の端部に定めている。
 図3(a),(b)に示すように、チャックボディー13bに取り付けられたヤトイ15の受け面15aにワーク1が嵌る状態とし、受け面15aから突き出るワーク1の非加工側端部をメカニカルチャック13で掴むと、爪14,14,14及び受け面15aにより、ワーク1の両端部でチャック中心と直交する方向に位置決めされる。また、上記引き込み力により、受け面15aからワーク1の外径面1aが浮き上がることも防止される。
 上述のように固定されたワーク1の非加工側端部と、メカニカルチャック13のストッパ13aとの間に隙間が形成される。ワーク1の外径面1aのころ転動面形状の部分をヤトイ15の受け面15aでチャック中心方向に位置決めでき、ストッパ13aでワーク1を支持する必要がないこと、及びストッパ13aでワーク1を支持すると、受け面15aと同時に支持できるように精度出しをするのが面倒なことから、前記の隙間により、ストッパ13aによるワーク1の支持を省略している。
 爪14のクランプ面14aを5軸制御マシニングセンタにより機上成形している。具体的には、クランプ面成形用の削り代を有する爪ワークを用いて組み立てたメカニカルチャック13を主軸台11に固定した状態で、主軸12に装着された工具によりボーリング加工する。ボーリング加工は、爪ワークにダミーを掴ませた状態で行うことができる。爪14のクランプ面14aは、ワーク1の外径面1aのころ転動面形状に一致した面に形成する。このように機上成形によれば、メカニカルチャック13のチャック中心が5軸に基いて定まる。このため、芯出し作業が不要で振れのない高精度なワーク1の固定が可能である。機上成形後は、5軸制御マシニングセンタでワーク1に施す全ての加工を終えるまで、爪14,14,14やメカニカルチャック13の固定を外す必要はない。したがって、別の工作機械でクランプ面を成形した爪14を採用した場合のように爪14の取り付け誤差が芯出し精度を低下させることがない。
 また、ヤトイ15の受け面15aを5軸制御マシニングセンタにより機上成形している。具体的には、受け面15a成形用の加工代を有するヤトイワークを主軸台11に固定した状態で、主軸12に装着された工具によりボーリング加工する。受け面15aの中心軸が5軸に基いて定まるため、芯出し精度を低下させる心配がない。爪14のクランプ面14aの機上成形後、ヤトイ15をチャックボディー13bに取り付けて受け面15aの機上成形を行うことができる。クランプ面14aの機上成形後、受け面15aの機上成形を行えば、5軸制御マシニングセンタでワーク1に施す全ての加工を終えるまで、ヤトイ15を外す必要はない。したがって、別の工作機械で受け面15aを成形したヤトイ15を採用したときのようにヤトイ15の取り付け誤差が芯出し精度を低下させることがない。
 メカニカルチャック13及びヤトイ15のそれぞれは、焼入れ鋼に施す切削加工及び研削加工の精度を確保できる強度のものとする。爪14やヤトイ15の材料は、必要なワーク1の位置決め精度が得られる限り、特に限定されない。
 ワーク1は、焼入れ鋼により形成されている。焼入れ鋼としては、高・中炭素合金鋼(ずぶ焼き鋼)、はだ焼鋼(浸炭鋼)、高周波焼入鋼等といった適宜の程度及び手段で焼入れを施し表面を硬化させた鋼を採用することができる。メカニカルチャック13及びヤトイ15は、それぞれ非磁力式のワーク保持装置なので、鋼製のワーク1が磁化されることはない。
 ワーク1を、ヤトイ15及びメカニカルチャック13により主軸台11に固定した後、ヤトイ15から突き出るワーク1の加工側端部には、最終的に研削加工を施すことにより目標形状を完成させる。その研削加工の目標形状は、球面とする。図示例では、ころ端面の全体を球面としている。特許文献1のように、予めワーク1のころ端面中央部となる位置に研削ぬすみを形成しておくこともできる。
 先ず、5軸制御マシニングセンタに、目標形状に加工するのに必要な情報を入力する。その後、図1(a)に示すように、主軸12に装着された切削工具16により、ワーク1に対して前記研削加工の目標形状に近付ける切削加工を施す。その後、図1(b)に示すように、主軸12に装着された砥石17により、切削加工の仕上げ面1bに対して研削加工を施す。なお、図1(a),(b)は、球面Sの中心O、主軸12による砥石17の回転中心であるZ軸、及び主軸台11によるワーク1の回転中心であるC軸を含み、A軸に直交する平面上を示す。
 具体的には、図4に示すように、5軸制御マシニングセンタの機内計測装置18によりワーク1の上面の高さhを測定する。5軸制御マシニングセンタは、入力により設定された削り代となるようにZ座標を更新し、下記の式1、式2で表現される球面Sに必要なワーク1の傾け角α、オフセット量e(図1参照)を測定した座標値から算出する。球面Sは、研削加工の目標形状である。なお、図4は、図1(a),(b)と同じ平面上を示す。
 ワーク1の上面の高さhは、ワーク1のA軸からのZ軸方向の高さである。ワーク1の加工側端部は、球面Sの相似形に成形されている。このため、高さhは、ワーク1の上面のワーク中心軸(C軸と同心)上で測定している。
 Z座標の更新後、5軸制御マシニングセンタは、算出された座標に基いてX軸とZ軸の2軸輪郭制御を行い、図1(a)に示すように、主軸台11をC軸回りに回転させて焼入れ鋼用の切削工具16でワーク1の加工側端部を旋削することにより、球面Sに沿う球面の仕上げ面1bを形成する。仕上げ面1bは、球面Sから精度の確保に必要な研削代を残した面とする。切削加工では、仕上げ面1bを所定の寸法・形状・表面粗さに仕上げ削りを行う。削り代は、ワーク1の大きさに対して十分に小さいため、その図示を省略している。なお、切削加工は、仕上げ削りのみを実施する態様に限定されず、荒削り、中削りを適宜に実施することもできる。
 切削加工後、5軸制御マシニングセンタは、自動工具交換機により、図1(b)に示すように、主軸12に砥石17を装着する。5軸制御マシニングセンタは、主軸12に装着された砥石17により仕上げ面1bに対して研削加工を施す。砥石17として、円筒状の砥石部を有するカップ形砥石を用いている。5軸の輪郭制御により、従来のカップ形砥石による球面研削加工に相当する条件を実現する。具体的には、5軸制御マシニングセンタは、図示の平面上で考えて下記条件(i)~(iV)を満たすように5軸の輪郭制御を行って研削加工を施す。
 (i)ワーク1は、球面Sの中心Oと、A軸とを結ぶ直線の延長上に球面Sの頂点Tが位置し、かつA軸と頂点T間の直線距離が距離HになるところでZ軸に対して傾斜角αをもって回転する。頂点Tは、ワーク1の中心軸上にある。
 (ii)Z軸とA軸とは、Z軸と直交するX軸方向にオフセット量eをもつ。オフセット量eは、図の平面上で考えて、Z軸とA軸との間に存在するX軸座標の差である。
 (iii)球面Sの半径R、砥石17の外径D及び傾斜角αは、下記式1の関係を満たし、オフセット量e、直線距離H及び傾斜角αは、下記式2の関係を満たす。
式1:R={(D/2)+e}/sinα
式2:e=(D/2)-Hsinα
 (iV)主軸台11のC軸回りの回転で同軸回りに回転するワーク1に対して、主軸12のZ軸回りの回転で同軸回りに回転する砥石17を、上記(i)~(iii)を満たす配置とし、Z軸送りでZ軸方向に切込むことにより、ワーク1に球面S状のころ大端面を完成させる。切込み速度、砥石17を仕上げ面1bに押し付ける圧力等の切込み制御は、ワークの加工端部形状、目標形状、砥石の特性等に応じて適宜に設定すればよい。研削加工は、単一の砥石だけで実施する態様に限定されず、自動工具交換機能を利用して複数の砥石を適宜に用いることにより精度の向上を図ることもできる。
 第1実施形態によれば、図1(a),(b)に示すように、焼入れ鋼製のワーク1に切削加工を施し、削り代の一部を切削代とし、残部の研削代でワーク1の加工側端部に球面Sのころ大端面を十分な精度に完成させるので、削り代全部を研削代とする従来よりも研削加工の能率をよくすることができる。
 また、第1実施形態によれば、図3(a),(b)に示すように、メカニカルチャック13の爪14,14,14により、円錐ころ用のワーク1の外径面を、この円錐角によらず任意のワーク1の中心軸方向範囲で掴み、主軸台11に固定できる。したがって、円錐角で加工対象となるワークが制限される従来例よりも、研削加工を十分な精度に実施できるワーク1の対象範囲を広げることもできる。
 また、第1実施形態によれば、ころの中心軸上を貫通する孔や、ころ端面の逃げのように、図3(a),(b)に示すように主軸台に固定されたワーク1の他の削り部を5軸制御マシニングセンタで加工することができる。すなわち、5軸制御マシニングセンタの自動工具交換機で主軸12にドリル加工やフライス加工用の工具を装着し、主軸台11からワーク1を外すことなく、穴あけや座ぐり加工等によって上記孔、逃げ等を形成することが可能となり、この種のころの生産性を向上させることができる。例えば、仕上げ面1bを旋削する切削加工後、上記研削加工の前に、ワーク1の加工側端部に研削ぬすみを切削する工程を追加することができる。
 5軸制御マシニングセンタで上記のように主軸台11からワーク1を外すことなく種々の加工により十分な精度に仕上げることができるため、ワーク1の加工側端部に完成させるころ端面の形態は、球面に限られず、様々に変更することができる。例えば、上記研削ぬすみのようなころの逃げ、ころの面取りに連続する円錐面、ころの面取りに連続するクラウニング等をもった形態にすることができる。
 標準的な寸法のころ用のワーク1の端部を加工するだけならば、C軸及びA軸をもつ立形の主軸台11の大きさや輪郭制御の自由度に不足はない。したがって、Z軸が水平を向いた横形の5軸制御マシニングセンタや、主軸に第2の回転軸をもった首振り機能付きの5軸マシニングセンタを使用する必要はない。なお、これら横形等の5軸制御マシニングセンタを使用する場合、各軸を第1実施形態の対応する軸に置換して輪郭制御を同様に行えばよい。
 また、ヤトイ15を省略し、メカニカルチャックのみでワークを固定することもできる。一例として、この発明の第2実施形態を図5(a),(b)に基いて説明する。以下、第1実施形態との相違点を述べ、同一に考えられる構成要素に同じ名称を用い、その説明を省略する。
 図示のように、凸面ころ用のワーク21をメカニカルチャック22のみで固定する。ワーク21の外径面21aには、非対称凸面ころのころ転動面形状が形成されている。ワーク21の最大外径部を爪23,23,23で掴むことができる。このため、最大外径部を掴むことができない円錐ころ用のワークを加工する場合と比して、ワーク21を安定させ易く、これを利用してヤトイを省略することができる。
 メカニカルチャック22は、ワーク21の外径面21aのうち、最大外径部dから削り代側の範囲を含むようにクランプ面23aで掴むようになっている。ワーク21の最大外径部dまでしか挿入できない従来の2ロール1シュー方式やヤトイ式の研削加工と比して、ワーク21の最大外径部dから削り代により近いところでも外径面21aを位置決めできるので、切削加工及び研削加工時にワーク21をより安定させ易い。ワーク21は、非対称凸面ころ用を例示したが、対称凸面ころ用のワークであっても、加工の支障にならない限り、外径面21aの削り代側の適宜のところを爪23,23,23で掴むことができる。したがって、第2実施形態によれば、十分な精度に実施できる凸面ころ用のワークの対象範囲を広げることができる。
 ワーク21の非加工側の端面に、主軸台11に備わる固定センタ24が嵌るセンタ穴21bを形成している。爪23,23,23と固定センタ24とでワーク21を固定するため、ワーク21の外径面21aの非加工側を爪23,23,23で掴まずともワーク21を安定させることができる。
 この発明の技術的範囲は、上述の実施形態に限定されず、特許請求の範囲の記載に基く技術的思想の範囲内での全ての変更を含むものである。

Claims (11)

  1.  円錐ころ又は凸面ころの外径面形状が形成されたワークを位置決めし、該ワークにころ端面を研削加工する工程を含むころの製造方法において、
     前記ワークを、5軸制御マシニングセンタの主軸台に備わるメカニカルチャックの爪で固定し、前記5軸制御マシニングセンタの主軸に装着された切削工具により該ワークに対して前記研削加工の目標形状に近付ける切削加工を施し、前記主軸に装着された砥石により前記切削加工の仕上げ面に前記研削加工を施すことを特徴とするころの製造方法。
  2.  前記研削加工の目標形状は球面であり、前記切削加工により前記仕上げ面を前記目標形状に沿う球面に形成し、前記砥石として、円筒状の砥石部を有するカップ形砥石を用い、前記5軸制御マシニングセンタは、前記目標形状の球面中心、前記主軸の前記砥石を回転させるための回転中心であるZ軸、及び前記主軸台の前記ワークを回転させるための回転中心である第1の回転軸を含み、XZ面又はYZ面に対して前記主軸台及び前記主軸の一方を傾ける回転中心である第2の回転軸と直交する平面上で考えて下記条件(i)~(iV)を満たすように輪郭制御を行って前記研削加工を施す請求項1に記載のころの製造方法。
     (i)前記ワークは、前記目標形状の球面中心と前記第2の回転軸とを結ぶ直線の延長上に該目標形状の球面頂点が位置し、かつ該第2の回転軸と該球面頂点間の直線距離が距離Hになるところで前記Z軸に対して傾斜角αをもって回転する。
     (ii)前記Z軸と前記第2の回転軸とは、該Z軸と直交するX軸方向にオフセット量eをもつ。
     (iii)前記球面の半径R、前記砥石の外径D及び傾斜角αは、下記式1の関係を満たし、オフセット量e、直線距離H及び傾斜角αは、下記式2の関係を満たす。
    式1:R={(D/2)+e}/sinα
    式2:e=(D/2)-Hsinα
     (iV)前記第1の回転軸回りに回転する前記ワークに対して、前記Z軸回りに回転する前記砥石を、前記(i)~(iii)を満たす配置とし、Z軸送りでZ軸方向に切込むことにより前記目標形状を完成させる。
  3.  前記メカニカルチャックに引き込み式チャックを用いる請求項1又は2に記載のころの製造方法。
  4.  前記主軸台に対して固定されたヤトイ内周の受け面に前記ワークが嵌る状態とし、該受け面から突き出る該ワークの非加工側端部を前記爪で掴む請求項3に記載のころの製造方法。
  5.  前記ヤトイの受け面を、前記5軸制御マシニングセンタにより機上成形する請求項4に記載のころの製造方法。
  6.  前記凸面ころ用の前記ワークの外径面のうち最大外径部から削り代側の範囲を含むように前記爪で掴む請求項1から5のいずれか1項に記載のころの製造方法。
  7.  前記ワークの非加工側の端面に、前記主軸台に備わる固定センタが嵌るセンタ穴を形成し、前記爪と前記固定センタとで前記ワークを固定する請求項6に記載のころの製造方法。
  8.  前記爪のクランプ面を、前記5軸制御マシニングセンタにより前記ワークの外径面に一致するように機上成形する請求項1から7のいずれか1項に記載のころの製造方法。
  9.  前記主軸台に固定されたワークの他の削り部を前記5軸制御マシニングセンタで加工する請求項1から8のいずれか1項に記載のころの製造方法。
  10.  前記主軸台を回転させて前記切削工具で前記ワークを旋削する前記切削加工により前記仕上げ面を形成する請求項1から9のいずれか1項に記載のころの製造方法。
  11.  焼入れ鋼で形成された前記ワークに前記切削加工と前記研削加工とを施す請求項1から10のいずれか1項に記載のころの製造方法。
PCT/JP2011/051055 2010-01-26 2011-01-21 ころの製造方法 WO2011093215A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180007260.6A CN102753304B (zh) 2010-01-26 2011-01-21 滚子的制造方法
EP11736928.0A EP2529884B1 (en) 2010-01-26 2011-01-21 Method for manufacturing roller
US13/521,775 US9174316B2 (en) 2010-01-26 2011-01-21 Method of manufacturing roller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-014334 2010-01-26
JP2010014334A JP5522569B2 (ja) 2010-01-26 2010-01-26 ころの製造方法

Publications (1)

Publication Number Publication Date
WO2011093215A1 true WO2011093215A1 (ja) 2011-08-04

Family

ID=44319203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051055 WO2011093215A1 (ja) 2010-01-26 2011-01-21 ころの製造方法

Country Status (5)

Country Link
US (1) US9174316B2 (ja)
EP (1) EP2529884B1 (ja)
JP (1) JP5522569B2 (ja)
CN (1) CN102753304B (ja)
WO (1) WO2011093215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117226442A (zh) * 2023-11-01 2023-12-15 东莞市彼联机械科技有限公司 一种用于工件矫形的数控设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136199B2 (ja) * 2012-11-06 2017-05-31 株式会社ジェイテクト ころ状ワークの球面状端面研削装置
JP6255862B2 (ja) 2013-10-02 2018-01-10 日本精工株式会社 円すいころの製造方法、円すいころ軸受の製造方法及び回転機械の製造方法
DE102015207106A1 (de) * 2015-04-20 2016-10-20 Schaeffler Technologies AG & Co. KG Verfahren zum Herstellen von Wälzkörpern für Wälzlager
FR3037519B1 (fr) * 2015-06-17 2017-07-28 Ntn-Snr Roulements Procede de rectification d'une surface d'un corps roulant pour un palier a roulement
JP7021455B2 (ja) * 2017-03-01 2022-02-17 株式会社ジェイテクト 加工装置
CN107553222A (zh) * 2017-08-18 2018-01-09 江苏力星通用钢球股份有限公司 一种圆锥滚子球基面加工工艺
DE102017121861A1 (de) * 2017-09-21 2019-03-21 Schaeffler Technologies AG & Co. KG Fertigungsvorrichtung zur Fertigung eines gekrümmten Verlaufs an mindestens einer Stirnfläche einer Rolle und Verfahren zur Fertigung eines gekrümmten Verlaufs an der mindestens einen Stirnfläche mit der Fertigungsvorrichtung
CN108356611A (zh) * 2017-12-29 2018-08-03 天津市天森智能设备有限公司 一种五轴成型刀具磨床
DE102018103371B4 (de) 2018-02-15 2019-11-07 Schaeffler Technologies AG & Co. KG Regelwalze für eine Durchlaufschleifanlage zum Antrieb einer zu schleifenden Rolle, Durchlaufschleifanlage mit der Regelwalze und der Rolle und Verfahren zum Schleifen der Rolle mit der Durchlaufschleifanlage
CN110385628A (zh) * 2019-06-15 2019-10-29 浙江诚本轴承滚子有限公司 轴承滚动体磨削装置
CN111408917B (zh) * 2020-05-07 2022-05-20 合肥江丰电子材料有限公司 一种lcd平面靶材机加工工艺
DE102020211036B4 (de) * 2020-09-02 2022-04-14 Aktiebolaget Skf Anordnung mit einem Schleifwerkzeug und einer Rolle für ein Rollenlager sowie Verfahren zum Herstellen einer Rolle für ein Rollenlager
CN112192343A (zh) * 2020-10-12 2021-01-08 中国航发哈尔滨轴承有限公司 一种向心推力轴承套圈端面大圆弧精加工方法
DE102021119083A1 (de) * 2021-07-23 2023-01-26 Schaeffler Technologies AG & Co. KG Fertigungssystem und Verfahren zur schleifenden Bearbeitung einer ersten Stirnseite einer Kegelrolle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229208A (ja) * 1987-03-13 1988-09-26 Akashi Tekkosho:Kk 旋盤などのチヤツクにおける引込式クランプ装置
JPS63251158A (ja) * 1987-04-08 1988-10-18 Toyota Motor Corp 自由曲面の機械加工方法および装置
JP2004060860A (ja) * 2002-07-31 2004-02-26 Ntn Corp ころ軸受、ころ軸受用ころ及びその製造方法
JP2005297181A (ja) 2004-03-16 2005-10-27 Nsk Ltd ワーク端面の加工装置、加工方法、ころおよびころ軸受
WO2010001706A1 (ja) * 2008-07-01 2010-01-07 Ntn株式会社 軸受用ころ、軸受、および軸受用ころ加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB641023A (en) * 1947-01-03 1950-08-02 Karl Albert Engvall Improvements in the production of rollers for roller bearings
JP2005106234A (ja) * 2003-10-01 2005-04-21 Ntn Corp 円錐ころ軸受と円錐ころ加工方法
DE102006028164B4 (de) * 2006-06-16 2009-04-02 Satisloh Ag Schleif- und Poliermaschine zum Schleifen und/oder Polieren von Werkstücken in optischer Qualität

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229208A (ja) * 1987-03-13 1988-09-26 Akashi Tekkosho:Kk 旋盤などのチヤツクにおける引込式クランプ装置
JPS63251158A (ja) * 1987-04-08 1988-10-18 Toyota Motor Corp 自由曲面の機械加工方法および装置
JP2004060860A (ja) * 2002-07-31 2004-02-26 Ntn Corp ころ軸受、ころ軸受用ころ及びその製造方法
JP2005297181A (ja) 2004-03-16 2005-10-27 Nsk Ltd ワーク端面の加工装置、加工方法、ころおよびころ軸受
WO2010001706A1 (ja) * 2008-07-01 2010-01-07 Ntn株式会社 軸受用ころ、軸受、および軸受用ころ加工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117226442A (zh) * 2023-11-01 2023-12-15 东莞市彼联机械科技有限公司 一种用于工件矫形的数控设备

Also Published As

Publication number Publication date
JP5522569B2 (ja) 2014-06-18
US20120285018A1 (en) 2012-11-15
CN102753304B (zh) 2015-02-04
CN102753304A (zh) 2012-10-24
EP2529884A1 (en) 2012-12-05
US9174316B2 (en) 2015-11-03
EP2529884A4 (en) 2017-05-17
EP2529884B1 (en) 2018-03-28
JP2011152597A (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5522569B2 (ja) ころの製造方法
CN101460281B (zh) 用于棒形工件的磨削方法、实施该方法所需的磨床以及双磨床组成的磨削加工单元
US20080102736A1 (en) Method For Machining Rotary Parts
JP2010115741A (ja) 高硬度材料の切削加工方法および切削加工機械
CN106363364A (zh) 薄壁轴承套零件的加工方法
KR20130000101U (ko) 경질 취성판의 둘레가장자리 가공장치
KR101368761B1 (ko) 플랜지 요크의 가공방법
JP4732862B2 (ja) 工作機械及び工作機械におけるワーク加工方法
CN107486681B (zh) 一种细长轴类零件加工工艺
CN106975896A (zh) 6mw风电转子房的生产方法
JP4712586B2 (ja) Nc工作機械
CN104400634A (zh) 一种薄壁轴承端面的磨削装置及方法
TW202132129A (zh) 車輛用輪圈之製造方法及車輛用輪圈
CN110328568B (zh) 大长径比弱刚性磨杆磨削圆环端面的加工方法
JP2000135659A (ja) リング状被加工物の回転加工装置
CN102528076A (zh) 特大型铜保持架成型加工的优化工艺
CN108714826A (zh) 一种高精度数控外圆磨床及其加工工件的方法
CN114559304B (zh) 大型陶瓷圆弧加工方法
CN112705917B (zh) 联冲下模的加工方法
KR100988612B1 (ko) 선반용 가공공구 및 이를 이용한 가공방법
JP2002337012A (ja) リング状被加工物の加工装置
JPH0318086Y2 (ja)
KR101538795B1 (ko) 절삭팁의 회전을 이용한 공작물의 가공방법
RU2311991C2 (ru) Способ высокоточной свободнообкатной обработки сферической поверхности
JP4125581B2 (ja) 調芯機構および軸受加工装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007260.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13521775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011736928

Country of ref document: EP