WO2011090361A2 - 경화성 조성물 - Google Patents

경화성 조성물 Download PDF

Info

Publication number
WO2011090361A2
WO2011090361A2 PCT/KR2011/000520 KR2011000520W WO2011090361A2 WO 2011090361 A2 WO2011090361 A2 WO 2011090361A2 KR 2011000520 W KR2011000520 W KR 2011000520W WO 2011090361 A2 WO2011090361 A2 WO 2011090361A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
siloxane compound
curable composition
silicon atom
bonded
Prior art date
Application number
PCT/KR2011/000520
Other languages
English (en)
French (fr)
Other versions
WO2011090361A3 (ko
Inventor
고민진
문명선
정재호
최범규
강대호
김민균
Original Assignee
(주)Lg화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)Lg화학 filed Critical (주)Lg화학
Priority to CN201180007132.1A priority Critical patent/CN102725356B/zh
Priority to EP11734910.0A priority patent/EP2530122B1/en
Priority to JP2012549949A priority patent/JP5748773B2/ja
Publication of WO2011090361A2 publication Critical patent/WO2011090361A2/ko
Publication of WO2011090361A3 publication Critical patent/WO2011090361A3/ko
Priority to US13/554,489 priority patent/US8735525B2/en
Priority to US14/142,067 priority patent/US9410018B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a curable composition.
  • LEDs As light emitting diodes (LEDs), especially blue or ultraviolet LEDs having an emission wavelength of about 250 nm to 550 nm, high-brightness products using GaN-based compound semiconductors such as GaN, GaAlN, InGaN and InAlGaN have been obtained.
  • the technique of combining red and green LEDs with blue LEDs has made it possible to form high quality full color images.
  • a technique for producing a white LED by combining a blue LED or an ultraviolet LED with a phosphor is known. Such LEDs are expanding in demand for backlights or general lighting of liquid crystal displays (LCDs).
  • LCDs liquid crystal displays
  • Patent Documents 1 to 3 propose techniques for improving the above problems.
  • the sealing material disclosed by the said document does not have enough light resistance.
  • Silicone materials are known as materials having excellent light resistance to the low wavelength region.
  • the silicone resin has a disadvantage in that heat resistance is poor and stickiness appears on the surface after curing.
  • properties such as high refractive index, crack resistance, surface hardness, adhesion, and thermal shock resistance need to be secured.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-274571
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-196151
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-226551
  • An object of the present invention is to provide a curable composition.
  • the present invention (A) a linear organo siloxane compound represented by the average composition formula of the following formula (1), the molar ratio of the alkenyl group bonded to the silicon atom to all the silicon atoms of 0.02 to 0.2; (B) a crosslinked organosiloxane compound represented by an average composition formula of the following Chemical Formula 2, wherein the molar ratio of the alkenyl group bonded to the silicon atom to the total silicon atoms is 0.15 to 0.35; And (C) a hydrogen siloxane compound represented by the following formula (3) wherein the molar ratio of the hydrogen atoms bonded to the silicon atoms to the total silicon atoms is 0.2 to 0.8,
  • the siloxane compound (B) is contained in a weight ratio of 50 parts by weight to 700 parts by weight with respect to 100 parts by weight of the siloxane compound (A), and is bound to silicon atoms contained in the siloxane compounds (A) and (B). It relates to the curable composition whose molar ratio of the hydrogen atom couple
  • R 1 to R 12 each independently represent an alkoxy, hydroxy group, epoxy group or monovalent hydrocarbon group
  • at least one of R 1 to R 6 is an alkenyl group
  • at least one of R 7 to R 12 Is an alkenyl group
  • R each independently represents a hydrogen, an epoxy group or a monovalent hydrocarbon group
  • a is 0 to 0.5
  • b is 0.5 to 0.98
  • c is 0 to 0.2
  • d is 0 to 0.1
  • f is 0 to 0.3
  • g 0.3 to 0.85
  • h 0 to 0.2
  • n is 1 to 10
  • a + b + c + d is 1, e + f + g + h is one.
  • the composition of the present invention comprises: an alkenyl group bonded to a silicon atom contained in (A) a siloxane compound and (B) a siloxane compound; And (C) a composition cured by reaction of a hydrogen atom bonded to silicon contained in the siloxane compound.
  • a curable composition that exhibits excellent workability and workability and is cured to exhibit excellent crack resistance, hardness characteristics, heat shock resistance and adhesion.
  • cured material are excellent in reliability and long-term reliability in high temperature and / or high humidity conditions.
  • the composition of the present invention can provide a cured product that does not cause turbidity and surface stickiness under harsh conditions.
  • the composition of the present invention includes a linear organo siloxane compound (A) represented by the average composition formula of the formula (1).
  • the organosiloxane compound is represented by a predetermined average compositional formula means that each of the components when the compound includes a single siloxane compound component represented by a predetermined average compositional formula as well as a mixture of two or more components.
  • the average of the composition also includes the case where it is represented by a predetermined average composition formula.
  • R 1 to R 6 are substituents directly bonded to silicon atoms, and each independently represent an alkoxy, hydroxy group, epoxy group or monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group or an arylalkyl group.
  • the alkoxy group, monovalent hydrocarbon group, etc. may be substituted by the appropriate substituent as needed above.
  • the alkoxy group may be a linear, branched or cyclic alkoxy group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, preferably a methoxy group, an ethoxy group, a propoxy group, or the like. Can be.
  • the alkyl group or halogenated alkyl group may be a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, preferably a methyl group, an ethyl group, a propyl group, It may be a chloromethyl group, 3-chloropropyl group or 3,3,3-trifluoropropyl group, more preferably a methyl group.
  • the alkenyl group may be an alkenyl group having 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms, and preferably a vinyl group, allyl group, butenyl group, pentenyl group, or hexenyl group. Groups, and more preferably vinyl groups.
  • the aryl group may be an aryl group having 6 to 18 carbon atoms, preferably 6 to 12 carbon atoms, preferably a phenyl group, a tolyl group, a xylyl group and a naphthyl group, and more preferably a phenyl group.
  • the arylalkyl group is an arylalkyl group having 6 to 19 carbon atoms, preferably 6 to 13 carbon atoms, and preferably a benzyl group or a phenethyl group.
  • R 1 to R 6 is an alkenyl group, and specifically, the alkenyl group is an alkenyl group bonded to the silicon atom with respect to all silicon atoms (Si) contained in the siloxane compound (A) ( It is present in an amount such that the molar ratio (Ak / Si) of Ak) is from 0.02 to 0.2, preferably from 0.02 to 0.15.
  • the molar ratio (Ak / Si) of Ak) is from 0.02 to 0.2, preferably from 0.02 to 0.15.
  • R 1 to R 6 may be an aryl group, preferably a phenyl group.
  • the aryl group, preferably the phenyl group, the molar ratio (Ar / Si) of the aryl group (Ar) to the total silicon atoms (Si) contained in the siloxane compound (A) is 0.3 to 1.3, preferably May be present in an amount of 0.4 to 1.3, and more preferably in an amount of 0.6 to 1.3.
  • the molar ratio (Ar / Si) is adjusted to 0.3 or more to maximize refractive index and hardness characteristics of the cured product. It can also adjust to 1.3 or less, and can also maintain the viscosity of a composition suitably.
  • a, b, c and d represent the molar ratio of each siloxane unit, the sum thereof is 1, a is 0 to 0.5, b is 0.5 to 0.98, and c is 0 To 0.2 and d is 0 to 0.1.
  • (a + b) / (a + b + c + d) can be adjusted in the range of more than 0.9, preferably more than 0.95.
  • the upper limit of (a + b) / (a + b + c + d) may be 1, for example.
  • the linear siloxane compound (A) may have a viscosity at 25 ° C. of 1,000 mPa ⁇ s to 100,000 mPa ⁇ s, preferably 1,000 mPa ⁇ s to 50,000 mPa ⁇ s. Within this range, workability before workability, workability and hardness properties after curing can be excellently maintained.
  • the linear siloxane compound (A) in the present invention may have a weight average molecular weight (M w ) of 1,000 to 50,000, preferably 1,000 to 30,000.
  • M w weight average molecular weight
  • the weight average molecular weight of the siloxane compound can be adjusted to 1,000 or more to provide a composition having the viscosity maintained appropriately and cured to have excellent strength and crack resistance.
  • by adjusting the weight average molecular weight to 50,000 or less it is possible to maintain the viscosity of the composition as appropriate, to maintain excellent workability and workability.
  • the term "weight average molecular weight” refers to a conversion value for standard polystyrene measured by GPC (Gel Permeation Chromatograph).
  • GPC Gel Permeation Chromatograph
  • siloxane compound in the present invention a siloxane compound represented by the following formula may be used, but is not limited thereto.
  • Vi represents a vinyl group
  • Me represents a methyl group
  • Ph represents a phenyl group.
  • the (A) linear siloxane compound as described above may be prepared by a general method known in the art.
  • the (A) linear siloxane compound can be produced by hydrolyzing and condensing one or more kinds of organosilanes having a hydrolyzable group such as a halogen atom or an alkoxy group.
  • the hydrolysis and condensation reactions can be carried out, for example, in the presence of a general acidic catalyst or a base catalyst.
  • organosilane to be used in the hydrolysis and condensation there may be mentioned a compound represented by R n SiX (4-n) .
  • X may be a hydrolyzable group, a halogen atom such as chlorine, or an alkoxy group, and n may be an integer of 0 to 3.
  • R is a substituent bonded to the silicon atom, and may be appropriately selected in consideration of the substituent of the desired siloxane compound.
  • the linear siloxane compound may also be prepared by ring-opening reaction of a cyclic siloxane under a basic catalyst. In this field, various methods for preparing siloxane compounds are known, including the above-described manner, and the average technician can appropriately employ such a manner to produce the desired siloxane compound.
  • composition of the present invention (B) comprises a crosslinking organosiloxane compound represented by the average composition formula of the formula (2).
  • crosslinked siloxane compound means a siloxane compound necessarily containing a siloxane unit represented by (RSiO 1.5 ) or (SiO 2 ), wherein R is an alkoxy, hydroxy group, epoxy group or monovalent hydrocarbon group.
  • the (B) crosslinked organosiloxane compound is represented by the average composition formula of the formula (2).
  • R 7 to R 12 are substituents directly bonded to silicon atoms, and each independently represent an alkoxy, hydroxy, epoxy, or monovalent hydrocarbon group.
  • the specific kind of each substituent is the same as that of the said Formula (1).
  • R 7 to R 12 is an alkenyl group, specifically, the alkenyl group is an alkenyl group bonded to the silicon atom with respect to all silicon atoms (Si) contained in the siloxane compound (B).
  • the molar ratio (Ak / Si) of (Ak) is present in an amount such that 0.15 to 0.35, preferably 0.15 to 0.3.
  • the reactivity with the component (C) can be properly maintained, and the phenomenon that the unreacted component is oozed out onto the surface of the cured product can be prevented.
  • the molar ratio (Ak / Si) to 0.35 or less, it is possible to maintain excellent hardness properties, crack resistance and thermal shock resistance of the cured product.
  • At least one of R 7 to R 12 may be an aryl group, preferably a phenyl group.
  • the aryl group, preferably the phenyl group, the molar ratio (Ar / Si) of the aryl group (Ar) to the total silicon atoms (Si) contained in the organosiloxane compound (B) is 0.35 to 1.2, Preferably in an amount from 0.5 to 1.1.
  • e, f, g and h represent the molar ratio of each siloxane unit, the total is 1, e is 0 to 0.5, f is 0 to 0.3, g is 0.35 To 0.85 and h is 0 to 0.2.
  • g + (4/3) h) / (e + 2f) is adjusted to 2 to 5, preferably 2 to 4, g / (g + h) may be adjusted in the range of greater than 0.85, preferably greater than 0.9.
  • the upper limit of g / (g + h) may be 1, for example.
  • the crosslinked organosiloxane compound (B) may have a viscosity at 25 ° C. of 5,000 mPa ⁇ s or more, preferably 10,000 mPa ⁇ s or more, and accordingly, such as workability before curing, hardness characteristics after curing, and the like. It can be maintained properly.
  • the (B) crosslinking organosiloxane may have a molecular weight of, for example, 1,000 to 5,000, preferably 1,000 to 4,000.
  • the molecular weight of the (B) siloxane compound By controlling the molecular weight of the (B) siloxane compound to 1,000 or more, the moldability before curing and the strength after curing can be effectively maintained, and the molecular weight can be adjusted to 5,000 or less to appropriately maintain characteristics such as viscosity.
  • siloxane compound in the present invention a siloxane compound represented by the following formula may be used, but is not limited thereto.
  • Vi represents a vinyl group
  • Me represents a methyl group
  • Ph represents a phenyl group.
  • the method for producing the (B) crosslinking organosiloxane compound is not particularly limited, and for example, the same method as in the case of the (A) siloxane compound may be applied.
  • the (B) crosslinking organosiloxane compound may be included in an amount of 50 parts by weight to 700 parts by weight, preferably 50 parts by weight to 500 parts by weight, based on 100 parts by weight of the (A) linear siloxane compound.
  • the unit weight part means a weight ratio.
  • the composition of the present invention (C) comprises a hydrogen siloxane compound represented by the formula (3).
  • the (C) siloxane compound is a compound containing a hydrogen atom directly bonded to a silicon atom, the hydrogen atom can react with an alkenyl group bonded to a silicon atom contained in the siloxane compounds of (A) and (B). have.
  • R represents hydrogen, an epoxy group or a monovalent hydrocarbon group, and specific types of the monovalent hydrocarbon group are as described above.
  • the (C) siloxane compound is blocked by hydrogen atoms bonded to both ends of the molecular atoms of the molecular chain, and if necessary, at least one of R present in the side chain of the molecule may also be a hydrogen atom.
  • the molar ratio (H / Si) of the silicon atom-bonded hydrogen atoms (H) to the total silicon atoms (Si) included in the (C) siloxane compound is 0.2 to 0.8, preferably 0.3 to 0.75 days.
  • the molar ratio may be adjusted to 0.2 or more to maintain excellent curability of the composition, and to 0.8 or less to maintain crack resistance, thermal shock resistance, and the like.
  • R in Formula 3 may be an aryl group, preferably a phenyl group.
  • the aryl group, preferably the phenyl group, the molar ratio (Ar / Si) of the aryl group (Ar) to the total silicon atoms (Si) contained in the organosiloxane compound (C) is 0.3 to 1, Preferably in an amount from 0.4 to 0.8.
  • n may be 1 to 10, preferably 1 to 5, thereby maintaining excellent strength and crack resistance of the cured product.
  • the (C) siloxane compound may have a viscosity at 25 ° C. of 300 mPa ⁇ s or less, preferably 300 mPa ⁇ s or less.
  • the (C) siloxane compound in the present invention may have a molecular weight of less than 1,000, preferably less than 800. If the molecular weight of the said (C) siloxane compound is 1,000 or more, there exists a possibility that the intensity
  • the lower limit of the molecular weight of the (C) siloxane compound is not particularly limited, and may be 250, for example.
  • siloxane compound in the present invention a siloxane compound represented by the following formula may be used, but is not limited thereto.
  • Vi represents a vinyl group
  • Me represents a methyl group
  • Ph represents a phenyl group.
  • the method for producing the (C) siloxane compound in the present invention is not particularly limited, and for example, the same method as the above (A) and (B) siloxane compounds may be applied.
  • the content of the (C) siloxane compound is selected so as to satisfy a specific molar ratio with respect to the entire alkenyl group bonded to the silicon atoms contained in the siloxane compounds of (A) and (B) described above.
  • the hydrogen atom (H) bonded to the silicon atom contained in the (C) siloxane compound to the entire alkenyl group (Ak) bonded to the silicon atom included in the (A) and (B) siloxane compounds The molar ratio (H / Ak) is 0.8 to 1.2, preferably 0.85 to 1.15, more preferably 0.9 to 1.1.
  • the content of the (C) siloxane compound may be in the range of 50 parts by weight to 500 parts by weight, preferably 50 parts by weight to 400 parts by weight, based on 100 parts by weight of the (A) linear siloxane compound.
  • composition of the present invention is an aryl group in which all of the siloxane compounds of the above-mentioned (A), (B) and (C) are bonded to a silicon atom, preferably a phenyl group bonded to a silicon atom, from the viewpoint of the refractive index and hardness characteristics of the cured product. It is preferable to include.
  • the siloxane compounds of (A), (B) and (C) all contain an aryl group
  • the total silicon atoms (Si) contained in the siloxane compounds of (A), (B) and (C) It is preferable that the molar ratio (Ar / Si) of the whole aryl group (Ar) couple
  • the molar ratio to more than 0.3, the hardness and refractive index characteristics of the cured product can be maintained excellent, and less than 1.2, there is a fear that it is difficult to effectively control the viscosity characteristics and the like of the composition.
  • siloxane compounds of (A), (B) and (C) all contain an aryl group as mentioned above in this invention, it is preferable that the composition of this invention satisfy
  • X (A) is an aryl group bonded to all silicon atoms contained in the (A) organosiloxane compound for all the silicon atoms (Si) included in the (A) organosiloxane compound ( Represents a molar ratio (Ar / Si) of Ar), and X (B) represents all silicon atoms contained in the (B) organosiloxane compound with respect to all silicon atoms (Si) contained in the (B) organosiloxane compound.
  • X (C) is included in the (C) hydrogen siloxane compound for all the silicon atoms (Si) included in the (C) hydrogen siloxane compound
  • the molar ratio (Ar / Si) of the aryl group (Ar) bonded to all silicon atoms is shown.
  • the compatibility of the components constituting the composition before curing is maintained excellent, workability or workability is excellent, and after curing, excellent refractive index
  • the composition which can exhibit a characteristic, a light transmittance characteristic, a hardness characteristic, etc. can be provided.
  • the composition of the present invention may further comprise a hydrosilylation catalyst.
  • the hydrosilylation catalyst may include an alkenyl group contained in the siloxane compound of (A) or (B) described above; And a hydrogen atom bonded to the silicon atom included in the siloxane compound of (C).
  • the kind of hydrosilylation catalyst that can be used is not particularly limited, and all common components known in the art may be used. Examples of such a catalyst include platinum, palladium or rhodium-based catalysts. In the present invention, in view of catalyst efficiency, a platinum-based catalyst can be used.
  • catalysts examples include chloroplatinic acid, platinum tetrachloride, olefin complexes of platinum, alkenyl siloxane complexes of platinum, carbonyl complexes of platinum, and the like. May be, but is not limited thereto.
  • the content of the hydrosilylation catalyst in the present invention is not particularly limited as long as it is included in a so-called catalyst amount, that is, an amount capable of acting as a catalyst. Typically, it can be used in an amount of 0.1 ppm to 500 ppm, preferably 0.2 ppm to 100 ppm, based on the atomic weight of platinum, palladium or rhodium.
  • the composition of the present invention may further include an tackifier in view of further improving the adhesion to various substrates.
  • the tackifier is a component capable of improving self adhesion to the composition or cured product, and in particular, may improve self adhesion to metals and organic resins.
  • adhesion imparting agent examples include alkenyl groups such as vinyl groups, (meth) acryloyloxy groups, hydrosilyl groups (SiH groups), epoxy groups, alkoxy groups, alkoxysilyl groups, carbonyl groups and phenyl groups.
  • one kind or a mixture of two or more kinds of the above-mentioned adhesion imparting agents can be used.
  • the content may be 0.1 part by weight to 20 parts by weight based on 100 parts by weight of the (A) siloxane compound, but the content may have a desired adhesive improvement effect. It may be changed accordingly.
  • composition of the present invention is, in addition to the components described above, if necessary, 2-methyl-3-butyn-2-ol, 2-phenyl-3-1-butyn-2ol, 3-methyl-3-pentene-1 Reaction of phosphorus, 3,5-dimethyl-3-hexene-1-yne, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane or ethynylcyclohexane Inhibitors; Inorganic fillers such as silica, alumina, zirconia or titania; Carbon functional silanes having an epoxy group and / or an alkoxysilyl group, partial hydrolysis condensates or siloxane compounds thereof; Thixotropy-imparting agents, such as fumed silica which can be used together with polyether etc .; Conductivity imparting agents such as metal powders such as silver, copper or aluminum, and various carbon materials; Additives, such as a color tone adjuster,
  • the present invention also relates to a semiconductor device having a semiconductor element encapsulated with an encapsulant including the curable composition described above in a cured state.
  • Examples of the type of semiconductor device that can be encapsulated with the composition of the present invention include diodes, transistors, thyristors, solid state image pickup devices, semiconductor devices used in integrated ICs, hybrid ICs, and the like. Additionally, as the semiconductor device, a diode, a transistor, a thyristor, a photocoupler, a CCD, an integrated IC, a hybrid IC, an LSI, a VLSI, a light emitting diode (LED), and the like can be exemplified.
  • the semiconductor device may be a light emitting diode including a light emitting device encapsulated with an encapsulant including the composition of the present invention in a cured state.
  • the kind of light emitting element which can be used by this invention is not specifically limited.
  • a light emitting element formed by laminating semiconductor materials on a substrate can be used.
  • examples of the semiconductor material include, but are not limited to, GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN, or SiC.
  • sapphire, spinel, SiC, Si, ZnO or GaN single crystal may be used as an example of the substrate.
  • a buffer layer may also be formed between the substrate and the semiconductor material as necessary.
  • GaN or AlN may be used as the buffer layer.
  • the method of laminating the semiconductor material on the substrate is not particularly limited, and for example, the MOCVD method, the HDVPE method, or the liquid phase growth method can be used.
  • the structure of the light emitting device in the present invention may be, for example, a monojunction having a MIS junction, a PN junction, a PIN junction, a heterojunction, a double heterojunction, and the like.
  • the light emitting device may be formed in a single or multiple quantum well structure.
  • the light emission wavelength of the light emitting device may be, for example, 250 nm to 550 nm, preferably 300 nm to 500 nm, more preferably 330 nm to 470 nm.
  • the emission wavelength represents the main emission peak wavelength.
  • the light emitting diode of the present invention can be produced by encapsulating a light emitting device, in particular a light emitting device having a light emission wavelength of 250 nm to 550 nm with a thermosetting composition according to the present invention.
  • the encapsulation of the light emitting device may be performed using only the composition according to the present invention, and in some cases, may be performed in combination with another encapsulant.
  • the circumference may be sealed by another sealing material, and after encapsulating with another sealing material first, then the circumference may be sealed with the composition of this invention. It may be.
  • Other encapsulating materials that can be used at this time include epoxy resins, silicone resins, acrylic resins, urea resins, imide resins or glass.
  • thermosetting composition As a method of encapsulating a light emitting element with the composition of the present invention, for example, a thermosetting composition is pre-injected into a mold form die, and a method of curing by dipping a lead frame having a light emitting element fixed therein and inserting the light emitting element therein; A method of injecting and curing a thermosetting composition in one form can be used. At this time, examples of the method of injecting the thermosetting composition include injection with a dispenser, transfer molding, injection molding, and the like.
  • thermosetting composition is added dropwise onto a light emitting element, applied by means of stencil printing, screen printing or a mask to be cured, and a thermosetting composition is injected into a cup having a light emitting element disposed at the bottom by a dispenser or the like.
  • a curing method and the like can be used.
  • the thermosetting composition of the present invention can also be used as a die bond material for fixing a light emitting element to a lead terminal or a package, as a passivation film, a package substrate, or the like on the light emitting element.
  • the method of curing the composition of the present invention in the above is not particularly limited, for example, it may be carried out by heating for 10 minutes to 5 hours at a temperature of 60 °C to 200 °C, if necessary at an appropriate temperature and time It is also possible to proceed a step-by-step curing process through two or more steps of.
  • the shape of the sealing portion is not particularly limited, and can be formed, for example, in the form of a shell lens, a plate or a thin film.
  • the present invention it is also possible to further improve the performance of the light emitting diode according to a conventionally known method.
  • a method for improving the performance for example, a method of providing a light reflection layer or a light collecting layer on the bottom of the light emitting device, a method of forming a complementary color coloring part at the bottom, and providing a layer on the light emitting device that absorbs light having a wavelength shorter than the main emission peak
  • the light emitting diode of the present invention is, for example, a backlight of a liquid crystal display (LCD), lighting, light sources such as various sensors, printers, copiers, vehicle instrument light sources, signal lights, indicator lights, display devices, planar light emitting bodies It can be effectively applied to a light source, a display, a decoration or various lights.
  • LCD liquid crystal display
  • the curable composition of this invention shows the outstanding workability and workability.
  • the composition of the present invention exhibits excellent crack resistance, thermal shock resistance and adhesion, and is excellent in reliability and long-term reliability under high temperature and / or high humidity conditions.
  • the composition of the present invention can provide a cured product in which cloudiness is not caused and adhesion on the surface is appropriately adjusted so that stickiness on the surface can be prevented.
  • Vi represents a vinyl group
  • Ph represents a phenyl group
  • Me represents a methyl group
  • Ep represents an epoxy group.
  • cured material in an Example and a comparative example was evaluated in the following manner. First, the prepared composition is injected between two glass plates spaced about 1 mm apart, held at 150 ° C. for 1 hour to cure, and a specimen having a thickness of 1 mm is prepared. Thereafter, using a UV-VIS spectrometer at room temperature, the light transmittance in the thickness direction of the specimen with respect to the 450 nm wavelength is measured and evaluated according to the following criteria.
  • light transmittance is 98.5% or more
  • the curable composition is injected into a mold and held at 150 ° C. for 1 hour to cure. Subsequently, the surface of the prepared cured product was contacted by hand to evaluate the surface stickiness property according to the following criteria.
  • Device properties were evaluated using a 5630 LED package made of polyphthalamide (PPA). Specifically, the curable resin composition is dispensed into a polyphthalamide cup, held at 60 ° C. for 30 minutes, and then cured by maintaining at 150 ° C. for 1 hour to prepare a surface mounted LED. Then, long-term reliability in heat shock and high temperature and high humidity conditions is evaluated on the following conditions.
  • PPA polyphthalamide
  • the above-described cycle is repeated 10 cycles, with the produced surface-mount LED held at ⁇ 40 ° C. for 30 minutes and then at 100 ° C. for 30 minutes. Thereafter, the surface-mount LEDs are cooled at room temperature, and then the peeling state of the LEDs is evaluated to evaluate the thermal shock resistance (total surface mount LEDs are manufactured per Example and Comparative Example, and the peeling states of the 10 LEDs are evaluated. Investigated).
  • the fabricated surface-mount LED was operated for 100 hours while applying a current of 60 mA to the LED while maintaining the temperature at a temperature of 85 ° C. and a relative humidity of 85%. Subsequently, the luminance of the LED after operation is measured to calculate the reduction ratio relative to the initial luminance, and the reliability is evaluated according to the following criteria.
  • Linear organo siloxane compounds (Formula 1, molar ratios of alkenyl groups (Vi) bonded to silicon atoms relative to the total silicon atoms, respectively), prepared in a known manner and represented by the following formulas: 0.08 ), Crosslinked organosiloxane compound (Formula 2, Ak / Si: 0.154), hydrogen siloxane compound (Formula 3, molar ratio of hydrogen atoms bonded to silicon atoms relative to all silicon atoms (hereinafter referred to as "H / Si"): 0.667) and a tackifier (Formula 4) were synthesized.
  • a catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) was added to the mixture in an amount of 10 ppm of Pt (0), and uniformly mixed and defoamed.
  • a curable composition was prepared.
  • Example 2 As in Example 1, except that 100 g of the linear organo siloxane compound of Formula 1, 100 g of the cross-linked siloxane compound of Formula 2, 31.2 g of the hydrogen siloxane compound of Formula 3, and 4.7 g of the tackifier of Formula 4 were mixed.
  • the curable composition was prepared (the amount H / Ak is 1.0).
  • Example 2 As in Example 1, except that 100 g of linear organo siloxane compound of Formula 1, 300 g of cross-linked siloxane compound of Formula 2, 73.3 g of hydrogen siloxane compound of Formula 3, and 9.7 g of an adhesive imparting agent of Formula 4 were mixed.
  • the curable composition was prepared (the amount H / Ak is 1.0).
  • Example 2 As in Example 1, except that 100 g of linear organo siloxane compound of Formula 1, 700 g of cross-linked siloxane compound of Formula 2, 157.2 g of hydrogen siloxane compound of Formula 3, and 19.6 g of an adhesive imparting agent of Formula 4 were mixed.
  • the curable composition was prepared (the amount H / Ak is 1.0).
  • the linear organo siloxane compound 100 g of a compound represented by the following Chemical Formula 5 (Ak / Si: 0.02), 50 g of a cross-linked siloxane compound of Chemical Formula 2, 13.5 g of a hydrogen siloxane compound of Chemical Formula 3, and an adhesive imparting agent of Chemical Formula 4 Except that 3.4 g was mixed, the curable composition was manufactured like Example 1 (the amount which H / Ak becomes 1.0).
  • Example 2 Same as Example 1 except for mixing 100g of the linear organosiloxane compound of Formula 5, 100g of the cross-linked siloxane compound of Formula 2, 23.9g of the hydrogen siloxane compound of Formula 3 and 4.6g of the adhesion imparting agent of Formula 4 A curable composition was prepared (amount such that H / Ak is 1.0).
  • Example 1 except that 100g of the linear organo siloxane compound of Formula 5, 300 g of the cross-linked siloxane compound of Formula 2, 64.1 g of the hydrogen siloxane compound of Formula 3 and 9.5 g of the adhesion imparting agent of formula (4) In the same manner, a curable composition was prepared (amount such that H / Ak is 1.0).
  • Example 1 except that 100g of the linear organo siloxane compound of Formula 5, 700 g of the cross-linked siloxane compound of Formula 2, 145.2 g of the hydrogen siloxane compound of Formula 3 and 19.2 g of the adhesion imparting agent of Formula 4 In the same manner, a curable composition was prepared (amount such that H / Ak is 1.0).
  • linear organosiloxane compound 100 g of the compound represented by the following formula (Ak / Si: 0.2), 50 g of the cross-linked siloxane compound of the formula (2), 37.2 g of the hydrogen siloxane compound of the formula (3) and the tackifier of formula (4) 3.9 Except for mixing g, a curable composition was prepared in the same manner as in Example 1 (the amount of H / Ak is 1.0).
  • Example 1 except that 100 g of the linear organo siloxane compound of Formula 6, 100 g of the cross-linked siloxane compound of Formula 2, 47.8 g of the hydrogen siloxane compound of Formula 3, and 5.1 g of the adhesion imparting agent of Formula 4 were mixed.
  • a curable composition was prepared in the same manner as (H / Ak is 1.0).
  • Example 1 except that 100 g of the linear organosiloxane compound of Formula 6, 300 g of the cross-linked siloxane compound of Formula 2, 89.7 g of the hydrogen siloxane compound of Formula 3, and 10.0 g of the adhesion imparting agent of Formula 4 were mixed.
  • a curable composition was prepared in the same manner as (H / Ak is 1.0).
  • Example 1 except that 100 g of the linear organosiloxane compound of Formula 6, 700 g of the cross-linked siloxane compound of Formula 2, 173.6 g of the hydrogen siloxane compound of Formula 3, and 19.8 g of the adhesion imparting agent of Formula 4 were mixed.
  • a curable composition was prepared in the same manner as (H / Ak is 1.0).
  • linear organosiloxane compound 100 g of the compound represented by the following formula (Ak / Si: 0.013), 300 g of the cross-linked siloxane compound of the formula (2), 65.0 g of the hydrogen siloxane compound of the formula (3), and an adhesive imparting agent of the formula (4)
  • a curable composition was prepared in the same manner as in Example 1 except that 9.5 g was mixed (amount of H / Ak of 1.0).
  • linear organosiloxane compound 100 g of the compound represented by the following formula (Ak / Si: 0.29), 300 g of the cross-linked siloxane compound of the formula (2), 102.5 g of the hydrogen siloxane compound of the formula (3), and an adhesive imparting agent of the formula (4) 10.2 Except for mixing g, a curable composition was prepared in the same manner as in Example 1 (the amount of H / Ak is 1.0).
  • Example 1 except that 100 g of the linear organo siloxane compound of Formula 1, 45 g of the cross-linked siloxane compound of Formula 2, 19.8 g of the hydrogen siloxane compound of Formula 3, and 3.4 g of the tackifier of Formula 4 were mixed. In the same manner, a curable composition was prepared (amount such that H / Ak is 1.0).
  • Example 1 except that 100 g of linear organo siloxane compound of Formula 1, 750 g of cross-linked siloxane compound of Formula 2, 167.8 g of hydrogen siloxane compound of Formula 3, and 21.0 g of a tackifier of Formula 4 were mixed. In the same manner, a curable composition was prepared (amount such that H / Ak is 1.0).
  • Example 1 except that 100 g of linear organo siloxane compound of Formula 1, 300 g of cross-linked siloxane compound of Formula 2, 40.0 g of hydrogen siloxane compound of Formula 3, and 9.0 g of a tackifier of Formula 4 were mixed. In the same manner, a curable composition was prepared (amount such that H / Ak is 0.6).
  • the curable composition of the embodiment of the present invention exhibited excellent light transmittance after curing, and did not cause stickiness on the surface. Moreover, the composition of the Example showed the outstanding result also in the long-term reliability test under thermal shock resistance and high temperature / high humidity conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Silicon Polymers (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 경화성 조성물에 관한 것이다. 본 발명은, 우수한 가공성 및 작업성을 나타내면서, 경화되어 뛰어난 광추출 효율, 균열 내성, 경도, 내열 충격성 및 접착성을 보이고, 고온 및/또는 고습 조건에서의 신뢰성 및 장기 신뢰성이 우수하며, 백탁 및 표면에서의 끈적임 등이 방지되는 경화물을 제공할 수 있다.

Description

경화성 조성물
본 발명은 경화성 조성물에 관한 것이다.
LED(Light Emitting Diode), 특히 발광 파장이 약 250 nm 내지 550 nm인 청색 또는 자외선 LED로서, GaN, GaAlN, InGaN 및 InAlGaN과 같은 GaN 계열의 화합물 반도체를 이용한 고휘도 제품이 얻어지고 있다. 또한, 적색 및 녹색 LED를 청색 LED와 조합시키는 기법으로 고화질의 풀 컬러 화상의 형성도 가능해지고 있다. 예를 들면, 청색 LED 또는 자외선 LED를 형광체와 조합하여, 백색 LED를 제조하는 기술이 알려져 있다. 이와 같은 LED는 LCD(Liquid Crystal Display)의 백라이트 또는 일반 조명용 등으로 수요가 확대되고 있다.
LED 봉지재로서, 접착성이 높고 역학적인 내구성이 우수한 에폭시 수지가 폭넓게 이용되고 있다. 그러나, 에폭시 수지는 청색 내지 자외선 영역의 광에 대한 투과율이 낮고, 또한 내광성이 떨어지는 문제점이 있다. 이에 따라, 예를 들면, 특허문헌 1 내지 3 등에서는, 상기와 같은 문제점의 개량하기 위한 기술을 제안하고 있다. 그러나, 상기 문헌에서 개시하는 봉지재는, 내광성이 충분하지 못하다.
저파장 영역에 대해 내광성이 우수한 재료로서, 실리콘 수지가 알려져 있다. 그러나, 실리콘 수지는 내열성이 떨어지고, 경화 후에 표면에서 끈적임이 나타나는 단점이 있다. 또한, 실리콘 수지가 LED의 봉지재로 효과적으로 적용되기 위해서는, 고굴절 특성, 균열 내성, 표면 경도, 접착력 및 내열 충격성 등의 특성이 확보될 필요가 있다.
(선행기술문헌)
(특허문헌)
특허문헌 1: 일본특허공개 평11-274571호
특허문헌 2: 일본특허공개 제2001-196151호
특허문헌 3: 일본특허공개 제2002-226551호
본 발명은 경화성 조성물을 제공하는 것을 목적으로 한다.
본 발명은, (A) 하기 화학식 1의 평균 조성식으로 표시되고, 규소 원자에 결합한 알케닐기의 전체 규소 원자에 대한 몰비가 0.02 내지 0.2인 선형 오르가노 실록산 화합물; (B) 하기 화학식 2의 평균 조성식으로 표시되며, 규소 원자에 결합한 알케닐기의 전체 규소 원자에 대한 몰비가 0.15 내지 0.35인 가교형 오르가노 실록산 화합물; 및 (C) 하기 화학식 3으로 표시되고, 규소 원자에 결합한 수소 원자의 전체 규소 원자에 대한 몰비가 0.2 내지 0.8인 수소 실록산 화합물을 포함하고,
상기 실록산 화합물 (B)는, 상기 실록산 화합물 (A) 100 중량부에 대하여 50 중량부 내지 700 중량부의 중량 비율로 포함되고, 상기 실록산 화합물 (A) 및 (B)에 포함되는 규소 원자에 결합한 알케닐기에 대한 상기 실록산 화합물 (C)에 포함되는 규소 원자에 결합한 수소 원자의 몰비가 0.8 내지 1.2인 경화성 조성물에 관한 것이다.
[화학식 1]
(R1R2R3SiO1/2)a(R4R5SiO2/2)b(R6SiO3/2)c(SiO4/2)d
[화학식 2]
(R7R8R9SiO1/2)e(R10R11SiO)f(R12SiO3/2)g(SiO4/2)h
[화학식 3]
Figure PCTKR2011000520-appb-I000001
상기 화학식 1 내지 3에서, R1 내지 R12는 각각 독립적으로, 알콕시, 히드록시기, 에폭시기 또는 1가의 탄화수소기를 나타내고, R1 내지 R6 중 하나 이상은 알케닐기이며, R7 내지 R12 중 하나 이상은 알케닐기이고, R은, 각각 독립적으로 수소, 에폭시기 또는 1가 탄화수소기를 나타내며, a는 0 내지 0.5이고, b는 0.5 내지 0.98이며, c는 0 내지 0.2이고, d는 0 내지 0.1이며, e는 0 내지 0.5이고, f는 0 내지 0.3이며, g는 0.3 내지 0.85이고, h는 0 내지 0.2이며, n은 1 내지 10이고, a+b+c+d는 1이며, e+f+g+h는 1이다.
이하, 본 발명의 경화성 조성물을 상세히 설명한다.
본 발명의 조성물은, (A) 실록산 화합물 및 (B) 실록산 화합물에 포함되는 규소 원자에 결합된 알케닐기; 및 (C) 실록산 화합물에 포함되는 규소에 결합된 수소 원자의 반응에 의해 경화하는 조성물이다. 본 발명에서는, 우수한 가공성과 작업성을 나타내고, 경화되어 뛰어난 균열 내성, 경도 특성, 내열 충격성 및 접착성을 나타내는 경화성 조성물을 제공할 수 있다. 또한, 본 발명의 조성물 및 그 경화물은, 고온 및/또는 고습 조건에서의 신뢰성 및 장기 신뢰성이 우수하다. 또한, 본 발명의 조성물은, 가혹 조건에서의 백탁 및 표면의 끈적임 등을 유발하지 않는 경화물을 제공할 수 있다.
본 발명의 조성물은 상기 화학식 1의 평균 조성식으로 표시되는 (A) 선형 오르가노 실록산 화합물을 포함한다. 본 명세서에서 오르가노 실록산 화합물이 소정의 평균 조성식으로 표시된다는 것은, 상기 화합물이 소정의 평균 조성식으로 표시되는 단일의 실록산 화합물 성분을 포함하는 경우는 물론 2개 이상의 성분의 혼합물인 경우에 상기 각 성분의 조성의 평균이, 소정의 평균 조성식으로 표시되는 경우도 포함한다.
상기 화학식 1의 평균 조성식에서 R1 내지 R6는, 규소 원자에 직접 결합되어 있는 치환기이고, 각각 독립적으로 알콕시, 히드록시기, 에폭시기 또는 1가 탄화수소기를 나타낸다. 상기에서 1가 탄화수소기의 예로는, 알킬기, 할로겐화 알킬기, 알케닐기, 아릴기 또는 아릴알킬기를 들 수 있다. 상기에서 알콕시기 또는 1가 탄화수소기 등은 필요에 따라서 적절한 치환기에 의해 치환되어 있을 수도 있다.
상기에서 알콕시기는 탄소수 1 내지 12, 바람직하게는 1 내지 8, 보다 바람직하게는 1 내지 4의 직쇄상, 분지상 또는 고리상 알콕시기일 수 있고, 바람직하게는 메톡시기, 에톡시기 또는 프로폭시기 등일 수 있다.
상기에서 알킬기 또는 할로겐화 알킬기는 탄소수 1 내지 12, 바람직하게는 1 내지 8, 보다 바람직하게는 1 내지 4의 직쇄상, 분지상 또는 고리상 알킬기일 수 있고, 바람직하게는 메틸기, 에틸기, 프로필기, 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기일 수 있으며, 보다 바람직하게는 메틸기일 수 있다.
또한, 상기에서 알케닐기는 탄소수 2 내지 12, 바람직하게는 2 내지 8, 보다 바람직하게는 2 내지 4의 알케닐기일 수 있고, 바람직하게는 비닐기, 알릴기, 부테닐기, 펜테닐기 또는 헥세닐기일 수 있고, 보다 바람직하게는 비닐기일 수 있다.
또한, 상기에서 아릴기는 탄소수 6 내지 18, 바람직하게는 탄소수 6 내지 12의 아릴기일 수 있으며, 바람직하게는 페닐기, 톨릴기, 크실릴기 및 나프틸기일 수 있고, 더욱 바람직하게는 페닐기일 수 있다.
또한, 상기에서 아릴알킬기는, 탄소수 6 내지 19, 바람직하게는 탄소수 6 내지 13의 아릴알킬기이고, 바람직하게는, 벤질기 또는 페네틸기일 수 있다.
상기 화학식 1에서 R1 내지 R6 중 적어도 하나는 알케닐기이고, 구체적으로는 상기 알케닐기는, 실록산 화합물 (A)에 포함되어 있는 전체 규소 원자(Si)에 대한 상기 규소 원자에 결합한 알케닐기(Ak)의 몰비(Ak/Si)가 0.02 내지 0.2, 바람직하게는 0.02 내지 0.15가 되도록 하는 양으로 존재한다. 상기 몰비(Ak/Si)를 0.02 이상으로 조절하여, 성분 (C)와의 반응성을 적절하게 유지하고, 미반응 성분이 경화물의 표면으로 배어나오는 현상을 방지할 수 있다. 또한, 상기 몰비(Ak/Si)를 0.2 이하로 조절하여, 경화물의 균열 내성을 우수하게 유지할 수 있다.
또한, 상기 화학식 1에서 R1 내지 R6 중 적어도 하나는 아릴기, 바람직하게는 페닐기일 수 있다. 이에 따라 경화물의 굴절률 및 경도 특성 등을 효과적으로 제어할 수 있다. 구체적으로, 상기 아릴기, 바람직하게는 페닐기는, 실록산 화합물 (A)에 포함되는 전체 규소 원자(Si)에 대한, 상기 아릴기(Ar)의 몰비(Ar/Si)가 0.3 내지 1.3, 바람직하게는 0.4 내지 1.3가 되는 양으로 존재할 수 있고 더욱 바람직하게는 0.6내지 1.3이 되는 양이 바람직하다.. 상기 몰비(Ar/Si)를 0.3 이상으로 조절하여, 경화물의 굴절률 및 경도 특성을 극대화할 수 있고, 또한 1.3 이하로 조절하여, 조성물의 점도 등도 적절하게 유지할 수 있다.
본 발명에서 상기 화학식 1의 평균 조성식에서 a, b, c 및 d는 각 실록산 단위의 몰 비율을 나타내고, 그 총합은 1이며, a는 0 내지 0.5이고, b는 0.5 내지 0.98이며, c는 0 내지 0.2이고, d는 0 내지 0.1이다. 본 발명에서는 경화물의 균열 내성을 극대화하기 위하여, 상기에서 (a+b)/(a+b+c+d)를 0.9 초과, 바람직하게는 0.95 초과의 범위로 조절할 수 있다. 또한, (a+b)/(a+b+c+d)의 상한은 예를 들면, 1일 수 있다.
본 발명에서 상기 (A) 선형 실록산 화합물은, 25℃에서 점도가 1,000 mPaㆍs 내지 100,000 mPaㆍs, 바람직하게는 1,000 mPaㆍs 내지 50,000 mPaㆍs일 수 있다. 이 범위에서 조성물의 경화 전의 가공성 내지는 작업성과 경화 후의 경도 특성 등을 우수하게 유지할 수 있다.
또한, 본 발명에서 상기 (A) 선형 실록산 화합물은, 예를 들면, 1,000 내지 50,000, 바람직하게는 1,000 내지 30,000의 중량평균분자량(Mw: Weight Average Molecular Weight)을 가질 수 있다. (A) 실록산 화합물의 중량평균분자량을 1,000 이상으로 조절하여, 점도가 적절하게 유지되고, 경화되어 우수한 강도 및 균열 내성을 가지는 조성물을 제공할 수 있다. 또한, 중량평균분자량을 50,000 이하로 조절하여, 조성물의 점도를 적절하게 유지하여, 작업성 및 가공성을 우수하게 유지할 수 있다. 본 명세서에서 용어 「중량평균분자량」은 GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미한다. 또한, 특별히 달리 규정하지 않는 한, 이하에서 용어 분자량은 중량평균분자량을 의미한다.
본 발명에서 상기와 같은 (A) 실록산 화합물로는, 하기 화학식으로 표시되는 실록산 화합물을 사용할 수 있으나, 이에 제한되는 것은 아니다.
(ViMe2SiO1/2)2(MePhSiO2/2)30;
(ViMe2SiO1/2)2(Ph2SiO2/2)10(Me2SiO2/2)10;
(ViMe2SiO1/2)2(MePhSiO2/2)20(Ph2SiO2/2)10(Me2SiO2/2)20;
(ViMe2SiO1/2)2(MePhSiO2/2)50(Me2SiO2/2)10;
(ViMe2SiO1/2)2(Me2SiO2/2)50(Ph2SiO2/2)30(PhSiO3/2)5;
(ViMe2SiO1/2)2(ViMeSiO2/2)2(Me2SiO2/2)30(Ph2SiO2/2)30.
상기에서 Vi는 비닐기를 나타내고, Me는 메틸기를 나타내며, Ph는 페닐기를 나타낸다.
본 발명에서 상기와 같은 (A) 선형 실록산 화합물은, 이 분야에서 공지되어 있는 일반적인 방식으로 제조할 수 있다. 예를 들면, 상기 (A) 선형 실록산 화합물은, 할로겐 원자 또는 알콕시기 등과 같은 가수분해성기를 가지는 오르가노 실란의 일종 또는 이종 이상을 가수분해 및 축합시켜 제조할 수 있다. 상기 가수분해 및 축합 반응은, 예를 들면, 일반적인 산성 촉매 또는 염기 촉매의 존재 하에 수행될 수 있다. 또한, 상기 가수분해 및 축합에 이용되는 오르가노실란의 예로는, RnSiX(4-n)로 표시되는 화합물을 들 수 있다. 상기에서 X는 가수분해성기로서, 염소 등의 할로겐 원자 또는 알콕시기일 수 있으며, n은 0 내지 3의 정수일 수 있다. 또한, 상기에서 R은 규소원자에 결합된 치환기로서, 목적하는 실록산 화합물의 치환기를 고려하여 적절하게 선택될 수 있다. 또한, 선형 실록산 화합물은 고리형 실록산(cyclic siloxane)을 염기성 촉매 하에서 개환 반응시켜서 제조할 수도 있다. 이 분야에서는, 상기의 방식을 포함하여, 실록산 화합물을 제조할 수 있는 다양한 방법이 알려져 있으며, 평균적인 기술자는 이러한 방식을 적절하게 채용하여 목적하는 실록산 화합물을 제조할 수 있다.
본 발명의 조성물은 (B) 상기 화학식 2의 평균 조성식으로 표시되는 가교형 오르가노실록산 화합물을 포함한다. 용어 「가교형 실록산 화합물」은, (RSiO1.5) 또는 (SiO2)로 표시되는 실록산 단위를 반드시 포함하는 실록산 화합물을 의미하고, 상기에서 R은, 알콕시, 히드록시기, 에폭시기 또는 1가 탄화수소기이다.
상기 (B) 가교형 오르가노 실록산 화합물은 상기 화학식 2의 평균 조성식으로 표시된다. 상기에서 R7 내지 R12는 규소 원자에 직접 결합한 치환기로서, 각각 독립적으로 알콕시, 히드록시, 에폭시 또는 1가 탄화수소기를 나타낸다. 상기 각 치환기의 구체적인 종류는, 상기 화학식 1의 경우와 동일하다.
상기 화학식 2에서 R7 내지 R12 중 적어도 하나는 알케닐기이고, 구체적으로는 상기 알케닐기는, 상기 실록산 화합물 (B)에 포함되어 있는 전체 규소 원자(Si)에 대한 상기 규소 원자에 결합한 알케닐기(Ak)의 몰비(Ak/Si)가 0.15 내지 0.35, 바람직하게는 0.15 내지 0.3이 되도록 하는 양으로 존재한다. 상기 몰비(Ak/Si)를 0.15 이상으로 조절하여, 성분 (C)와의 반응성을 적절하게 유지하고, 미반응 성분이 경화물의 표면으로 배어나오는 현상을 방지할 수 있다. 또한, 상기 몰비(Ak/Si)를 0.35 이하로 조절하여, 경화물의 경도 특성, 균열 내성 및 내열충격성 등을 우수하게 유지할 수 있다.
또한, 상기 화학식 2에서 R7 내지 R12 중 적어도 하나는 아릴기, 바람직하게는 페닐기일 수 있다. 이에 따라 경화물의 굴절률 및 경도 특성 등을 효과적으로 제어할 수 있다. 구체적으로, 상기 아릴기, 바람직하게는 페닐기는, 오르기노 실록산 화합물 (B)에 포함되는 전체 규소 원자(Si)에 대한, 상기 아릴기(Ar)의 몰비(Ar/Si)가 0.35 내지 1.2, 바람직하게는 0.5 내지 1.1이 되는 양으로 존재할 수 있다. 상기 몰비(Ar/Si)를 0.35 이상으로 조절하여, 경화물의 굴절률 및 경도 특성을 극대화할 수 있고, 또한 1.2 이하로 조절하여, 조성물의 점도 및 내열 충격성 등도 적절하게 유지할 수 있다.
본 발명에서 상기 화학식 2의 평균 조성식에서 e, f, g 및 h는 각 실록산 단위의 몰 비율을 나타내고, 그 총합은 1이며, e는 0 내지 0.5이고, f는 0 내지 0.3이며, g는 0.35 내지 0.85이고, h는 0 내지 0.2이다. 본 발명에서는 경화물의 강도, 균열 내성 및 내열충격성을 극대화하기 위하여, 상기에서 (g+(4/3)h)/(e+2f)를 2 내지 5, 바람직하게는 2 내지 4로 조절하고, g/(g+h)를 0.85 초과, 바람직하게는 0.9 초과의 범위로 조절할 수 있다. 또한, g/(g+h)의 상한은 예를 들면, 1일 수 있다.
본 발명에서 상기 (B) 가교형 오르가노 실록산 화합물은, 25℃에서의 점도가 5,000 mPaㆍs 이상, 바람직하게는 10,000 mPaㆍs 이상일 수 있고, 이에 따라 경화 전의 가공성과 경화 후의 경도 특성 등의 적절하게 유지할 수 있다.
또한, 상기 (B) 가교형 오르가노 실록산은, 예를 들면, 1,000 내지 5,000, 바람직하게는 1,000 내지 4,000의 분자량을 가질 수 있다. (B) 실록산 화합물의 분자량을 1,000 이상으로 조절하여, 경화 전의 성형성이나, 경화 후의 강도를 효과적으로 유지될 수 있고, 분자량을 5,000 이하로 조절하여, 점도 등의 특성을 적절하게 유지할 수 있다.
본 발명에서 상기와 같은 (B) 실록산 화합물로는, 하기 화학식으로 표시되는 실록산 화합물을 사용할 수 있으나, 이에 제한되는 것은 아니다.
(ViMe2SiO1/2)3(PhSiO3/2)10;
(ViMe2SiO1/2)2(MePhSiO2/2)2(PhSiO3/2)15;
(ViMe2SiO1/2)2(Ph2SiO2/2)(PhSiO3/2)8;
(ViMe2SiO1/2)3(PhSiO3/2)9(SiO4/2);
(ViMe2SiO1/2)3(MePhSiO2/2)(PhSiO3/2)9(SiO4/2);
(ViMe2SiO1/2)2(Me2SiO2/2)(MePhSiO2/2)2(Ph2SiO2/2)(PhSiO3/2)19(SiO4/2).
상기에서 Vi는 비닐기를 나타내고, Me는 메틸기를 나타내며, Ph는 페닐기를 나타낸다.
본 발명에서 상기 (B) 가교형 오르가노 실록산 화합물을 제조하는 방법은 특별히 제한되지 않고, 예를 들면, 상기 (A) 실록산 화합물의 경우와 동일한 방식을 적용할 수 있다.
본 발명에서, 상기 (B) 가교형 오르가노 실록산 화합물은, (A) 선형 실록산 화합물 100 중량부에 대하여, 50 중량부 내지 700 중량부, 바람직하게는 50 중량부 내지 500 중량부로 포함될 수 있다. 본 명세서에서 단위 중량부는 중량 비율을 의미한다. 상기 (B) 실록산 화합물의 중량 비율을 50 중량부 이상으로 조절하여, 경화물의 강도를 우수하게 유지하고, 또한 700 중량부 이하로 조절하여, 균열 내성 및 내열충격성을 우수하게 유지할 수 있다.
본 발명의 조성물은 (C) 상기 화학식 3으로 표시되는 수소 실록산 화합물을 포함한다. 상기 (C) 실록산 화합물은, 규소 원자와 직접 결합하고 있는 수소 원자를 포함하는 화합물로서, 상기 수소 원자는 (A) 및 (B)의 실록산 화합물에 포함되는 규소 원자에 결합한 알케닐기와 반응할 수 있다.
상기 화학식 3의 실록산 화합물에서 R은, 수소, 에폭시기 또는 1가 탄화수소기를 나타내며, 상기에서 1가 탄화수소기의 구체적인 종류는 전술한 바와 같다.
상기 (C) 실록산 화합물은 분자쇄의 양 말단이 규소 원자에 결합된 수소 원자에 의해 봉쇄되어 있고, 필요에 따라서는 분자의 측쇄에 존재하는 R 중 하나 이상도 수소 원자일 수 있다. 구체적으로, 본 발명에서는 상기 (C) 실록산 화합물에 포함되는 전체 규소 원자(Si)에 대한 규소 원자 결합 수소 원자(H)의 몰비(H/Si)가 0.2 내지 0.8, 바람직하게는 0.3 내지 0.75일 수 있다. 상기 몰비를 0.2 이상으로 조절하여, 조성물의 경화성을 우수하게 유지하고, 또한, 0.8 이하로 조절하여, 균열 내성 및 내열충격성 등을 우수하게 유지할 수 있다.
또한, 상기 화학식 3의 R 중 적어도 하나는 아릴기, 바람직하게는 페닐기일 수 있다. 이에 따라 경화물의 굴절률 및 경도 특성 등을 효과적으로 제어할 수 있다. 구체적으로, 상기 아릴기, 바람직하게는 페닐기는, 오르기노 실록산 화합물 (C)에 포함되는 전체 규소 원자(Si)에 대한, 상기 아릴기(Ar)의 몰비(Ar/Si)가 0.3 내지 1, 바람직하게는 0.4 내지 0.8이 되는 양으로 존재할 수 있다. 상기 몰비(Ar/Si)를 0.3 이상으로 조절하여, 경화물의 굴절률 및 경도 특성을 극대화할 수 있고, 또한 1 이하로 조절하여, 조성물의 점도 및 내크랙 특성을 적절하게 유지할 수 있다.
상기 화학식 3에서, n은 1 내지 10, 바람직하게는 1 내지 5일 수 있고, 이에 따라 경화물의 강도 및 내크랙 특성을 우수하게 유지할 수 있다.
본 발명에서 상기 (C) 실록산 화합물은, 25℃에서의 점도가 300 mPaㆍs 이하, 바람직하게는 300 mPaㆍs 이하일 수 있다. (C) 실록산 화합물의 점도를 상기와 같이 제어함으로 해서, 조성물의 가공성 및 경화물의 경도 특성 등의 우수하게 유지할 수 있다.
또한, 본 발명에서 상기 (C) 실록산 화합물은, 예를 들면, 1,000 미만, 바람직하게는 800 미만의 분자량을 가질 수 있다. 상기 (C) 실록산 화합물의 분자량이 1,000 이상이면, 경화물의 강도가 떨어질 우려가 있다. 상기 (C) 실록산 화합물의 분자량의 하한은 특별히 제한되지 않으며, 예를 들면, 250일 수 있다.
본 발명에서 상기와 같은 (C) 실록산 화합물로는, 하기 화학식으로 표시되는 실록산 화합물을 사용할 수 있으나, 이에 제한되는 것은 아니다.
(HMe2SiO1/2)2(MePhSiO2/2)2;
(HMe2SiO1/2)2(Ph2SiO2/2)1.5;
(HMe2SiO1/2)2(MePhSiO2/2)1.5(Ph2SiO2/2)1.5;
(HMe2SiO1/2)2(Me2SiO2/2)2.5(Ph2SiO2/2)2.5;
(HMe2SiO1/2)2(Me2SiO2/2)1.5(Ph2SiO2/2)2.5;
(HMe2SiO1/2)2(HMeSiO1/2)(Ph2SiO2/2)2;
상기에서 Vi는 비닐기를 나타내고, Me는 메틸기를 나타내며, Ph는 페닐기를 나타낸다.
본 발명에서 상기 (C) 실록산 화합물을 제조하는 방법은 특별히 제한되지 않고, 예를 들면, 상기 (A) 및 (B) 실록산 화합물과 동일한 방식을 적용할 수 있다.
본 발명에서, 상기 (C) 실록산 화합물의 함량은, 전술한 (A) 및 (B)의 실록산 화합물에 포함되어 있는 규소 원자에 결합한 알케닐기 전체에 대하여 특정한 몰비를 만족하도록 선택된다. 구체적으로, 본 발명에서 상기 (A) 및 (B) 실록산 화합물에 포함되는 규소 원자에 결합한 알케닐기(Ak) 전체에 대한 상기 (C) 실록산 화합물에 포함되는 규소 원자에 결합한 수소 원자(H)의 몰비(H/Ak)가 0.8 내지 1.2, 바람직하게는 0.85 내지 1.15, 더욱 바람직하게는 0.9 내지 1.1이다. 상기 몰비(H/Ak)의 제어를 통하여, 경화 전에 우수한 가공성과 작업성을 나타내고, 경화되어 뛰어난 균열 내성, 경도 특성, 내열 충격성 및 접착성을 나타내며, 가혹 조건에서의 백탁이나, 표면의 끈적임 등을 유발하지 않는 조성물을 제공할 수 있다.
상기 (C) 실록산 화합물의 함량은, 중량 비율로는, (A) 선형 실록산 화합물 100 중량부에 대하여, 50 중량부 내지 500 중량부, 바람직하게는 50 중량부 내지 400 중량부의 범위일 수 있다.
본 발명의 조성물은, 경화물의 굴절률 및 경도 특성 등의 관점에서, 상기 (A), (B) 및 (C)의 실록산 화합물이 모두 규소 원자에 결합한 아릴기, 바람직하게는, 규소 원자에 결합한 페닐기를 포함하는 것이 바람직하다. 이와 같이, (A), (B) 및 (C)의 실록산 화합물이 모두 아릴기를 포함할 경우, 상기 (A), (B) 및 (C)의 실록산 화합물에 포함되는 전체 규소 원자(Si)에 대한, (A), (B) 및 (C)의 실록산 화합물에 포함되는 규소 원자에 결합한 아릴기(Ar) 전체의 몰비(Ar/Si)가, 0.3을 초과하고, 또한 1.2 미만인 것이 바람직하고, 보다 바람직하게는, 0.4 내지 1.2이다. 상기 몰비를 0.3을 초과하도록 하여, 경화물의 경도 및 굴절률 특성을 우수하게 유지할 수 있고, 또한 1.2 미만으로 하여, 조성물의 점도 특성 등을 효과적으로 제어하기 어려워질 우려가 있다.
또한, 본 발명에서 상기와 같이 (A), (B) 및 (C)의 실록산 화합물이 모두 아릴기를 포함할 경우, 본 발명의 조성물은 하기 일반식 1 및 2의 조건을 만족하는 것이 바람직하다.
[일반식 1]
|X(A) ― X(B)| < 0.4
[일반식 2]
|X(B) ― X(C)| < 0.4
상기 일반식 1 및 2에서 X(A)는 상기 (A) 오르가노 실록산 화합물에 포함되는 모든 규소 원자(Si)에 대한 상기 (A) 오르가노 실록산 화합물에 포함되는 모든 규소 원자에 결합한 아릴기(Ar)의 몰비(Ar/Si)를 나타내고, X(B)는 상기 (B) 오르가노 실록산 화합물에 포함되는 모든 규소 원자(Si)에 대한 상기 (B) 오르가노 실록산 화합물에 포함되는 모든 규소 원자에 결합한 아릴기(Ar)의 몰비(Ar/Si)를 나타내며, X(C)는 상기 (C) 수소 실록산 화합물에 포함되는 모든 규소 원자(Si)에 대한 상기 (C) 수소 실록산 화합물에 포함되는 모든 규소 원자에 결합된 아릴기(Ar)의 몰비(Ar/Si)를 나타낸다.
상기 일반식 1 및 2에서, |X(A) ― X(B)| 및 |X(B) ― X(C)|는, X(A) 및 X(B)의 차의 절대값 및 X(B) 및 X(C)의 차의 절대값을 의미하고, 상기 각각은 보다 바람직하게는 0.35 미만일 수 있으며, 또한 상기 각각의 하한은 특별히 제한되지 않는다.
본 발명에서는 상기 일반식 1 및 2의 조건을 만족하도록 아릴기의 비율을 제어함으로써, 경화 전의 조성물을 구성하는 성분의 상용성이 우수하게 유지되고, 가공성 내지는 작업성도 우수하며, 경화 후에, 우수한 굴절률 특성이나 광투과율 특성, 및 경도 특성 등을 나타낼 수 있는 조성물을 제공할 수 있다.
본 발명의 조성물은, 히드로실릴화 촉매를 추가로 포함할 수 있다. 상기 히드로실릴화 촉매는, 전술한 (A) 또는 (B)의 실록산 화합물에 포함된 알케닐기; 및 (C)의 실록산 화합물에 포함되는 규소 원자에 결합된 수소 원자의 반응을 촉진하기 위해 사용될 수 있다. 사용할 수 있는 히드로실릴화 촉매의 종류는 특별히 제한되지 않으며, 이 분야에서 공지되어 있는 일반적인 성분을 모두 사용할 수 있다. 이와 같은 촉매의 예로는, 백금, 팔라듐 또는 로듐계 촉매 등을 들 수 있다. 본 발명에서는, 촉매 효율 등을 고려하여, 백금계 촉매를 사용할 수 있고, 이러한 촉매의 예로는 염화 백금산, 사염화 백금, 백금의 올레핀 착체, 백금의 알케닐 실록산 착체 또는 백금의 카보닐 착체 등을 들 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 히드로실릴화 촉매의 함량은, 소위 촉매량, 즉 촉매로서 작용할 수 있는 양으로 포함되는 한 특별히 제한되지 않는다. 통상적으로, 백금, 팔라듐 또는 로듐의 원자량을 기준으로 0.1 ppm 내지 500 ppm, 바람직하게는 0.2 ppm 내지 100 ppm의 양으로 사용할 수 있다.
본 발명의 조성물은 또한, 각종 기재에 대한 접착성의 추가적인 향상의 관점에서, 접착성 부여제를 추가로 포함할 수 있다. 상기 접착성 부여제는 조성물 또는 경화물에 자기 접착성을 개선할 수 있는 성분으로서, 특히 금속 및 유기 수지에 대한 자기 접착성을 개선할 수 있다.
본 발명에서 사용할 수 있는 접착성 부여제의 예로는, 비닐기 등의 알케닐기, (메타)아크릴로일옥시기, 히드로실릴기(SiH기), 에폭시기, 알콕시기, 알콕시실릴기, 카르보닐기 및 페닐기로 이루어진 군으로부터 선택되는 1종 이상, 바람직하게는 2종 이상의 관능기를 가지는 실란; 또는 2 내지 30, 바람직하게는 4 내지 20개의 규소 원자를 가지는 환상 또는 직쇄상 실록산 등의 유기 규소 화합물을 들 수 있으나, 이에 제한되는 것은 아니다. 본 발명에서는 상기와 같은 접착성 부여제의 일종 또는 이종 이상의 혼합을 사용할 수 있다.
상기와 같은 접착성 부여제가 본 발명의 조성물에 포함될 경우, 그 함량은 (A) 실록산 화합물 100 중량부에 대하여, 0.1 중량부 내지 20 중량부일 수 있으나, 상기 함량은 목적하는 접착성 개선 효과 등을 고려하여 적절히 변경될 수 있다.
본 발명의 조성물은 전술한 성분에 추가로, 필요에 따라서, 2-메틸-3-부틴-2-올, 2-페닐-3-1-부틴-2올, 3-메틸-3-펜텐-1-인, 3,5-디메틸-3-헥센-1-인, 1,3,5,7-테트라메틸-1,3,5,7-테트라헥세닐시클로테트라실록산 또는 에티닐시클로헥산 등의 반응 억제제; 실리카, 알루미나, 지르코니아 또는 티타니아 등의 무기 충전제; 에폭시기 및/또는 알콕시실릴기를 가지는 탄소 관능성 실란, 그의 부분 가수분해 축합물 또는 실록산 화합물; 폴리에테르 등과 병용될 수 있는 연무상 실리카 등의 요변성 부여제; 은, 구리 또는 알루미늄 등의 금속 분말이나, 각종 카본 소재 등과 같은 도전성 부여제; 안료 또는 염료 등의 색조 조정제 등의 첨가제를 일종 또는 이종 이상을 추가로 포함할 수 있다.
본 발명은 또한, 전술한 경화성 조성물을 경화된 상태로 포함하는 봉지재에 의해 봉지된 반도체 소자를 가지는 반도체 장치에 관한 것이다.
본 발명의 조성물로 봉지될 수 있는 반도체 소자의 종류로는, 다이오드, 트랜지스터, 사이리스터, 고체상 화상 픽업 소자, 일체식 IC 및 혼성 IC에 사용된 반도체 소자 등이 예시될 수 있다. 추가로 반도체 장치로는, 다이오드, 트랜지스터, 사이리스터, 포토커플러, CCD, 일체식 IC, 혼성 IC, LSI, VLSI 및 발광 다이오드(LED; Light Emitting Diode) 등이 예시될 수 있다.
본 발명의 하나의 예시에서 상기 반도체 장치는, 본 발명의 조성물을 경화된 상태로 포함하는 봉지재로 봉지된 발광 소자를 포함하는 발광 다이오드일 수 있다. 본 발명에서 사용할 수 있는 발광소자의 종류는 특별히 한정되지 않는다. 예를 들면, 기판 상에 반도체 재료를 적층하여 형성한 발광소자를 사용할 수 있다. 이 경우, 반도체 재료로서는, 예를 들면, GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN 또는 SiC 등을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 기판의 예로는, 사파이어, 스핀넬, SiC, Si, ZnO 또는 GaN 단결정 등이 사용될 수 있다.
본 발명에서는 또한, 필요에 따라서, 기판과 반도체 재료의 사이에 버퍼층을 형성할 수도 있다. 이 때, 버퍼층으로서는, GaN 또는 AlN 등이 사용될 수 있다. 기판상으로의 반도체 재료의 적층 방법은, 특별히 제한되지 않으며, 예를 들면, MOCVD법, HDVPE법 또는 액상성장법 등을 사용할 수 있다. 또한, 본 발명에서 발광소자의 구조는, 예를 들면, MIS 접합, PN 접합, PIN 접합을 가지는 모노접합, 헤테로접합, 이중 헤테로 접합 등일 수 있다. 또한, 단일 또는 다중양자우물구조로 상기 발광소자를 형성할 수 있다.
본 발명의 일 태양에서, 상기 발광소자의 발광파장은, 예를 들면, 250 nm 내지 550 nm, 바람직하게는 300 nm 내지 500 nm, 보다 바람직하게는 330 nm 내지 470 nm일 수 있다. 상기에서 발광파장은, 주발광 피크 파장을 나타낸다. 발광소자의 발광파장을 상기 범위로 설정함으로써, 보다 긴 수명으로, 에너지 효율이 높고, 색재현성이 높은 백색 발광다이오드를 얻을 수 있다.
본 발명의 발광다이오드는, 발광소자, 특히 발광파장이 250 nm 내지 550 nm의 발광소자를 본 발명에 따른 열경화성 조성물로 봉지하는 것으로 제조할 수 있다. 이 경우 발광소자의 봉지는 본 발명에 따른 조성물만으로 수행될 수 있고, 경우에 따라서는 다른 봉지재와 병용하여 수행될 수 있다. 2종의 봉지재를 병용하는 경우, 본 발명의 조성물을 사용한 봉지 후에, 그 주위를 다른 봉지재로 봉지할 수도 있고, 다른 봉지재로 먼저 봉지한 후, 그 주위를 본 발명의 조성물로 봉지할 수도 있다. 이 때 사용될 수 있는 다른 봉지재로는, 에폭시 수지, 실리콘 수지, 아크릴 수지, 우레아 수지, 이미드 수지 또는 유리 등을 들 수 있다.
본 발명의 조성물로 발광소자를 봉지하는 방법으로는, 예를 들면, 몰드형 거푸집에 열경화성 조성물을 미리 주입하고, 거기에 발광소자가 고정된 리드프레임 등을 침지한 후 경화시키는 방법, 발광소자를 삽입한 거푸집 중에 열경화성 조성물을 주입하고 경화하는 방법 등을 사용할 수 있다. 이 때 열경화성 조성물을 주입하는 방법의 예로서는, 디스펜서에 의한 주입, 트랜스퍼 성형, 사출성형 등을 들 수 있다. 또한, 그 외의 봉지 방법으로서는, 열경화성 조성물을 발광소자 상에 적하, 공판인쇄, 스크린 인쇄 또는 마스크를 매개로 도포하여 경화시키는 방법, 저부에 발광소자를 배치한 컵 등에 열경화성 조성물을 디스펜서 등에 의해 주입하고, 경화시키는 방법 등이 사용될 수 있다. 또한, 본 발명의 열경화성 조성물을, 발광소자를 리드 단자나 패키지에 고정하는 다이본드재, 발광소자 상에 부동화(passivation)막, 패키지 기판 등으로서 이용할 수도 있다.
상기에서 본 발명의 조성물을 경화시키는 방법은 특별히 제한되지 않고, 예를 들면, 60℃ 내지 200℃의 온도에서 10분 내지 5시간 동안 가열하여 수행할 수도 있고, 필요에 따라서는 적정 온도 및 시간에서의 2단계 이상의 과정을 거쳐 단계적인 경화 공정을 진행할 수도 있다.
봉지 부분의 형상은 특별히 한정되지 않으며, 예를 들면, 포탄형의 렌즈 형상, 판상 또는 박막상 등으로 구성할 수 있다.
본 발명에서는 또한, 종래의 공지에 방법에 따라 발광다이오드의 추가적인 성능 향상을 도모할 수 있다. 성능 향상의 방법으로서는, 예를 들면, 발광소자 배면에 광의 반사층 또는 집광층을 설치하는 방법, 보색 착색부를 저부에 형성하는 방법, 주발광 피크보다 단파장의 광을 흡수하는 층을 발광소자 상에 설치하는 방법, 발광소자를 봉지한 후 추가로 경질 재료로 몰딩하는 방법, 발광다이오드를 관통홀에 삽입하여 고정하는 방법, 발광소자를 플립칩 접속 등에 의해서 리드 부재 등과 접속하여 기판 방향으로부터 광을 취출하는 방법 등을 들 수 있다.
본 발명의 발광다이오드는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다.
본 발명의 경화성 조성물은, 우수한 가공성 및 작업성을 나타낸다. 또한, 본 발명의 조성물은, 우수한 균열 내성, 내열 충격성 및 접착성을 나타내고, 또한, 고온 및/또는 고습 조건 하에서의 신뢰성 및 장기 신뢰성이 우수하다. 추가로, 본 발명의 조성물은, 백탁이 유발되지 않고, 표면에서의 접착성이 적절하게 조절되어 표면에서의 끈적임이 방지될 수 있는 경화물을 제공할 수 있다.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
이하, 본 실시예에서 Vi는 비닐기를 나타내고, Ph는 페닐기를 나타내며, Me는 메틸기를 나타내고, Ep는 에폭시기를 나타낸다.
1. 광투과도 측정
실시예 및 비교예에서의 경화물의 광투과도는 하기의 방식으로 평가하였다. 우선, 제조된 조성물을 약 1 mm 간격으로 떨어져 있는 두 장의 유리판 사이에 주입하고, 150℃에서 1 시간 동안 유지하여 경화시키고, 두께가 1 mm인 시편을 제조한다. 그 후, 상온에서 UV-VIS 스펙트로미터(spectrometer)를 사용하여 450 nm 파장에 대한 상기 시편의 두께 방향의 광투과율을 측정하여 하기 기준에 따라 평가한다
<광 투과도 평가 기준>
○: 광투과도가 98.5% 이상인 경우
×: 광 투과도가 98.5% 이하인 경우
2. 표면 끈적임 평가
경화성 조성물을 몰드에 주입하고, 150℃에서 1 시간 동안 유지하여 경화시킨다. 이어서, 제조된 경화물의 표면을 손으로 접촉하여, 하기 기준에 따라서 표면 끈적임 특성을 평가한다.
<표면 끈적임 평가 기준>
○: 표면 끈적임이 느껴지지 않는 경우
△: 표면 끈적임이 약간 느껴지는 경우
×: 표면 끈적임이 심하게 느껴지는 경우
3. 소자 특성 평가
폴리프탈아미드(PPA)로 제조된 5630 LED 패키지를 사용하여 소자 특성을 평가한다. 구체적으로, 폴리프탈아미드 컵 내에 경화성 수지 조성물을 디스펜싱하고, 60℃에서 30분 동안 유지한 후, 다시 150℃에서 1 시간 동안 유지하여 경화시키고, 표면 실장형 LED를 제조한다. 그 후, 하기 조건으로 열 충격 및 고온 및 고습 조건에서의 장기 신뢰성을 평가한다.
<열 충격 평가 조건>
제조된 표면 실장형 LED를 -40℃에서 30분 동안 유지하고, 이어서 100℃에서 30분 동안 유지하는 것을 1 사이클로 하여, 상기를 10 사이클 반복한다. 그 후, 표면 실장형 LED를 실온에서 냉각시킨 후에 LED의 박리 상태를 평가하여 내열 충격성을 평가한다(실시예 및 비교예 당 총 10개의 표면 실장형 LED를 제조하고, 상기 10개의 LED의 박리 상태를 조사함).
<고온/고습 조건에서의 장기 신뢰성>
제조된 표면 실장형 LED를 85℃의 온도 및 85%의 상대 습도의 조건하에 유지한 상태로 LED에 60 mA의 전류를 인가하면서 100 시간 동안 동작시킨다. 이어서, 동작 후의 LED의 휘도를 측정하여 초기 휘도 대비 감소율을 계산하고, 하기의 기준에 따라 신뢰성을 평가한다.
<평가 기준>
○: 초기 휘도 대비 휘도가 10% 이하로 감소한 경우
×: 초기 휘도 대비 휘도가 10% 이상으로 감소한 경우
실시 예 1.
공지의 방식으로 제조된 것으로 각각 하기 화학식으로 표시되는 선형 오르가노 실록산 화합물(화학식 1, 전체 규소 원자에 대한 규소 원자에 결합된 알케닐기(Vi)의 몰비(이하, 「Ak/Si」): 0.08), 가교형 오르가노 실록산 화합물(화학식 2, Ak/Si: 0.154), 수소 실록산 화합물(화학식 3, 전체 규소 원자에 대한 규소 원자에 결합된 수소 원자의 몰비(이하, 「H/Si」): 0.667) 및 접착성 부여제(하기 화학식 4)를 합성하였다. 이어서, 선형 오르가노 실록산 화합물(화학식 1) 100 g, 가교형 오르가노 실록산 화합물(화학식 2) 50 g, 수소 실록산 화합물(화학식 3) 20.7 g 및 접착성 부여제(화학식 4) 3.5 g을 혼합하였다(선형 및 가교형 실록산 화합물에 포함되는 규소 원자에 결합한 알케닐기(Vi)에 대한 수소 실록산 화합물에 포함된 규소 원자에 결합한 수소 원자의 몰비(이하, 「H/Ak」)가 1.0이 되는 양). 이어서 상기 혼합물에 Pt(0)의 함량이 10 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하고, 균일하게 혼합 및 탈포하여 경화성 조성물을 제조하였다.
[화학식 1]
[ViMe2SiO1/2]2[Me2SiO2/2]9[Ph2SiO2/2]10[PhMeSiO2/2]4
[화학식 2]
[ViMeSiO2/2][PhMeSiO2/2][PhSiO3/2]10[ViMe2SiO1/2]
[화학식 3]
[HMe2SiO1/2]2[Ph2SiO2/2]
[화학식 4]
[ViMe2SiO1/2]2[EpSiO3/2]2[PhMeSiO2/2]10
실시 예 2.
화학식 1의 선형 오르가노 실록산 화합물 100g, 화학식 2의 가교형 실록산 화합물 100g, 화학식 3의 수소 실록산 화합물 31.2g 및 화학식 4의 접착성 부여제 4.7 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
실시 예 3.
화학식 1의 선형 오르가노 실록산 화합물 100g, 화학식 2의 가교형 실록산 화합물 300g, 화학식 3의 수소 실록산 화합물 73.3g 및 화학식 4의 접착성 부여제 9.7 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
실시 예 4.
화학식 1의 선형 오르가노 실록산 화합물 100g, 화학식 2의 가교형 실록산 화합물 700g, 화학식 3의 수소 실록산 화합물 157.2g 및 화학식 4의 접착성 부여제 19.6 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
실시 예 5.
선형 오르가노 실록산 화합물로서, 하기 화학식 5로 표시되는 화합물(Ak/Si: 0.02) 100 g, 화학식 2의 가교형 실록산 화합물 50 g, 화학식 3의 수소 실록산 화합물 13.5 g 및 화학식 4의 접착성 부여제 3.4 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
[화학식 5]
[ViMe2SiO1/2]2[Me2SiO2/2]40[Ph2SiO2/2]30[PhMeSiO2/2]28
실시 예 6.
상기 화학식 5의 선형 오르가노 실록산 화합물 100g, 화학식 2의 가교형 실록산 화합물 100g, 화학식 3의 수소 실록산 화합물 23.9g 및 화학식 4의 접착성 부여제 4.6 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
실시 예 7.
상기 화학식 5의 선형 오르가노 실록산 화합물 100g, 화학식 2의 가교형 실록산 화합물 300 g, 화학식 3의 수소 실록산 화합물 64.1 g 및 화학식 4의 접착성 부여제 9.5 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
실시 예 8.
상기 화학식 5의 선형 오르가노 실록산 화합물 100g, 화학식 2의 가교형 실록산 화합물 700 g, 화학식 3의 수소 실록산 화합물 145.2 g 및 화학식 4의 접착성 부여제 19.2 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
실시 예 9.
선형 오르가노 실록산 화합물로서, 하기 화학식 6으로 표시되는 화합물(Ak/Si: 0.2) 100 g, 화학식 2의 가교형 실록산 화합물 50g, 화학식 3의 수소 실록산 화합물 37.2 g 및 화학식 4의 접착성 부여제 3.9 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
[화학식 6]
[ViMe2SiO1/2]2[ViMeSiO2/2]3[PhMeSiO2/2]20
실시 예 10.
상기 화학식 6의 선형 오르가노 실록산 화합물 100 g, 화학식 2의 가교형 실록산 화합물 100 g, 화학식 3의 수소 실록산 화합물 47.8 g 및 화학식 4의 접착성 부여제 5.1 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
실시 예 11.
상기 화학식 6의 선형 오르가노 실록산 화합물 100 g, 화학식 2의 가교형 실록산 화합물 300 g, 화학식 3의 수소 실록산 화합물 89.7 g 및 화학식 4의 접착성 부여제 10.0 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
실시 예 12.
상기 화학식 6의 선형 오르가노 실록산 화합물 100 g, 화학식 2의 가교형 실록산 화합물 700 g, 화학식 3의 수소 실록산 화합물 173.6 g 및 화학식 4의 접착성 부여제 19.8 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
비교 예 1.
선형 오르가노 실록산 화합물로서, 하기 화학식 7로 표시되는 화합물(Ak/Si: 0.013) 100 g, 화학식 2의 가교형 실록산 화합물 300 g, 화학식 3의 수소 실록산 화합물 65.0 g 및 화학식 4의 접착성 부여제 9.5 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
[화학식 7]
[ViMe2SiO1/2]2[Me2SiO2/2]50[Ph2SiO2/2]50[PhMeSiO2/2]50
비교 예 2.
선형 오르가노 실록산 화합물로서, 하기 화학식 8로 표시되는 화합물(Ak/Si: 0.29) 100 g, 화학식 2의 가교형 실록산 화합물 300g, 화학식 3의 수소 실록산 화합물 102.5 g 및 화학식 4의 접착성 부여제 10.2 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
[화학식 8]
[ViMe2SiO1/2]2[ViMeSiO2/2]6[PhMeSiO2/2]20
비교 예 3.
화학식 1의 선형 오르가노 실록산 화합물 100 g, 화학식 2의 가교형 실록산 화합물 45 g, 화학식 3의 수소 실록산 화합물 19.8g 및 화학식 4의 접착성 부여제 3.4 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
비교 예 4.
화학식 1의 선형 오르가노 실록산 화합물 100 g, 화학식 2의 가교형 실록산 화합물 750 g, 화학식 3의 수소 실록산 화합물 167.8 g 및 화학식 4의 접착성 부여제 21.0 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.0이 되는 양).
비교 예 5.
화학식 1의 선형 오르가노 실록산 화합물 100 g, 화학식 2의 가교형 실록산 화합물 300 g, 화학식 3의 수소 실록산 화합물 40.0 g 및 화학식 4의 접착성 부여제 9.0 g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 0.6이 되는 양).
비교 예 6.
화학식 1의 선형 오르가노 실록산 화합물 100g, 화학식 2의 가교형 실록산 화합물 300 g, 화학식 3의 가교형 실록산 화합물 11.5g 및 화학식 4의 수소 실록산 화합물 150.0g을 혼합한 것을 제외하고는 실시 예 1과 동일하게 경화성 조성물을 제조하였다(H/Ak가 1.4가 되는 양).
상기 제조된 경화성 조성물에 대한 평과 결과를 하기 표 1에 정리하여 기재하였다.
표 1
광투과도 표면 끈적임 특성 내열충격성 고온/고습 신뢰성
실시예 1 0/10
2 1/10
3 0/10
4 1/10
5 1/10
6 1/10
7 0/10
8 1/10
9 2/10
10 0/10
11 0/10
12 0/10
비교예 1 7/10 ×
2 7/10 ×
3 × 10/10 ×
4 10/10 ×
5 9/10 ×
6 9/10 ×
상기 표 1로부터 확인되는 바와 같이, 본 발명의 실시예의 경화성 조성물은, 경화 후에 우수한 광투과율을 나타내면서, 표면에서의 끈적임도 유발되지 않았다. 또한, 실시예의 조성물은, 내열 충격성 및 고온/고습 조건 하의 장기 신뢰성 시험에서도 우수한 결과를 나타내었다.
반면 다른 조건은 모두 본 발명의 범주에 포함되지만, 선형 오르가노 실록산 화합물의 Ak/Si가 낮거나 높은 비교예 1 및 2의 경우, 내열 충격성 및 신뢰성 등이 크게 떨어졌다. 또한, (A) 선형 오르가노 실록산 화합물에 대한 (B) 가교형 오르가노 실록산 화합물의 중량 비율이 낮거나 높은 비교예 3 및 4의 경우도 내열 충격성 및 신뢰성 등이 크게 떨어졌고, 특히 비교예 3은, 표면에서 끈적임도 유발되었다. 또한, H/Ak가 낮거나 높은 비교예 5 및 6의 경우도 내열 충격성 및 신뢰성 등이 크게 떨어지는 것을 확인하였다.

Claims (19)

  1. (A) 하기 화학식 1의 평균 조성식으로 표시되고, 규소 원자에 결합한 알케닐기의 전체 규소 원자에 대한 몰비가 0.02 내지 0.2인 선형 오르가노 실록산 화합물; (B) 하기 화학식 2의 평균 조성식으로 표시되며, 규소 원자에 결합한 알케닐기의 전체 규소 원자에 대한 몰비가 0.15 내지 0.35인 가교형 오르가노 실록산 화합물; 및 (C) 하기 화학식 3으로 표시되고, 규소 원자에 결합한 수소 원자의 전체 규소 원자에 대한 몰비가 0.2 내지 0.8인 수소 실록산 화합물을 포함하고,
    상기 실록산 화합물 (B)는, 상기 실록산 화합물 (A) 100 중량부에 대하여 50 중량부 내지 700 중량부의 중량 비율로 포함되고,
    상기 실록산 화합물 (A) 및 (B)에 포함되는 규소 원자에 결합한 알케닐기에 대한 상기 실록산 화합물 (C)에 포함되는 규소 원자에 결합한 수소 원자의 몰비가 0.8 내지 1.2인 경화성 조성물:
    [화학식 1]
    (R1R2R3SiO1/2)a(R4R5SiO2/2)b(R6SiO3/2)c(SiO4/2)d
    [화학식 2]
    (R7R8R9SiO1/2)e(R10R11SiO)f(R12SiO3/2)g(SiO4/2)h
    [화학식 3]
    Figure PCTKR2011000520-appb-I000002
    상기 화학식 1 내지 3에서, R1 내지 R12는 각각 독립적으로, 알콕시, 히드록시기, 에폭시기 또는 1가의 탄화수소기를 나타내고, R1 내지 R6 중 하나 이상은 알케닐기이며, R7 내지 R12 중 하나 이상은 알케닐기이고, R은, 각각 독립적으로 수소, 에폭시기 또는 1가 탄화수소기를 나타내며, a는 0 내지 0.5이고, b는 0.5 내지 0.98이며, c는 0 내지 0.2이고, d는 0 내지 0.1이며, e는 0 내지 0.5이고, f는 0 내지 0.3이며, g는 0.3 내지 0.85이고, h는 0 내지 0.2이며, n은 1 내지 10이고, a+b+c+d는 1이며, e+f+g+h는 1이다.
  2. 제 1 항에 있어서, (A) 오르가노 실록산 화합물은, 상기 (A) 실록산 화합물에 포함되는 전체 규소 원자에 대한 규소 원자에 결합된 알케닐기의 몰비가 0.02 내지 0.15인 경화성 조성물.
  3. 제 1 항에 있어서, (A) 오르가노 실록산 화합물은, 규소 원자에 결합된 아릴기를 하나 이상 포함하는 경화성 조성물.
  4. 제 3 항에 있어서, (A) 오르가노 실록산 화합물은, 상기 (A) 실록산 화합물에 포함되는 전체 규소 원자에 대한 규소 원자에 결합된 아릴기의 몰비가 0.3 내지 1.3인 경화성 조성물.
  5. 제 1 항에 있어서, (A) 오르가노 실록산 화합물은, 중량평균분자량이 1,000 내지 50,000인 경화성 조성물.
  6. 제 1 항에 있어서, (B) 오르가노 실록산 화합물은, 상기 (B) 실록산 화합물에 포함되는 전체 규소 원자에 대한 규소 원자에 결합된 알케닐기의 몰비가 0.15 내지 0.3인 경화성 조성물.
  7. 제 1 항에 있어서, (B) 오르가노 실록산 화합물은, 규소 원자에 결합된 아릴기를 하나 이상 포함하는 경화성 조성물.
  8. 제 7 항에 있어서, (B) 오르가노 실록산 화합물은, 상기 (B) 실록산 화합물에 포함되는 전체 규소 원자에 대한 규소 원자에 결합된 아릴기의 몰비가 0.35 내지 1.2인 경화성 조성물.
  9. 제 1 항에 있어서, (B) 오르가노 실록산 화합물은, 중량평균분자량이 1,000 내지 5,000인 경화성 조성물.
  10. 제 1 항에 있어서, (C) 수소 실록산 화합물은, 상기 (C) 수소 실록산 화합물에 포함되는 전체 규소 원자에 대한 규소 원자에 결합된 수소 원자의 몰비가 0.3 내지 0.75인 경화성 조성물.
  11. 제 1 항에 있어서, (C) 수소 실록산 화합물은, 규소 원자에 결합된 아릴기를 하나 이상 포함하는 경화성 조성물.
  12. 제 12 항에 있어서, (C) 수소 실록산 화합물은, 상기 (C) 실록산 화합물에 포함되는 전체 규소 원자에 대한 규소 원자에 결합된 아릴기의 몰비가 0.3 내지 1인 경화성 조성물.
  13. 제 1 항에 있어서, (C) 수소 실록산 화합물은, 중량평균분자량이 1,000 미만인 경화성 조성물.
  14. 제 1 항에 있어서, 실록산 화합물 (A) 및 (B)에 포함되는 규소 원자에 결합한 알케닐기에 대한 실록산 화합물 (C)에 포함되는 규소 원자에 결합한 수소 원자의 몰비가 0.85 내지 1.15인 경화성 조성물.
  15. 제 1 항에 있어서, (A), (B) 및 (C)의 실록산 화합물은, 모두 규소 원자에 결합된 아릴기를 하나 이상 포함하는 경화성 조성물.
  16. 제 15 항에 있어서, 하기 일반식 1 및 2의 조건을 만족하는 경화성 조성물:
    [일반식 1]
    |X(A) ― X(B)| < 0.4
    [일반식 2]
    |X(B) ― X(C)| < 0.4
    상기 일반식 2 및 3에서 X(A)는 상기 (A) 오르가노실록산에 포함되는 전체 규소 원자에 대한 상기 (A) 오르가노실록산에 포함되는 규소 원자에 결합된 아릴기의 몰비를 나타내고, X(B)는 상기 (B) 오르가노실록산에 포함되는 전체 규소 원자에 대한 상기 (B) 폴리실록산에 포함되는 규소 원자에 결합된 아릴기의 몰비를 나타내며, X(C)는 상기 (C) 수소 실록산에 포함되는 전체 규소 원자에 대한 상기 (C) 수소 실록산에 포함되는 규소 원자에 결합된 아릴기의 몰비를 나타낸다.
  17. 제 1 항에 따른 조성물을 경화된 상태로 포함하는 봉지재에 의해 봉지된 반도체 소자를 포함하는 반도체 장치.
  18. 제 1 항에 따른 조성물을 경화된 상태로 포함하는 봉지재에 의해 봉지된 발광 소자를 포함하는 발광 다이오드.
  19. 제 19 항에 따른 발광 다이오드를 백라이트 유니트에 포함하는 액정표시장치.
PCT/KR2011/000520 2010-01-25 2011-01-25 경화성 조성물 WO2011090361A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180007132.1A CN102725356B (zh) 2010-01-25 2011-01-25 可固化组合物
EP11734910.0A EP2530122B1 (en) 2010-01-25 2011-01-25 Curable composition
JP2012549949A JP5748773B2 (ja) 2010-01-25 2011-01-25 硬化性組成物
US13/554,489 US8735525B2 (en) 2010-01-25 2012-07-20 Curable composition
US14/142,067 US9410018B2 (en) 2010-01-25 2013-12-27 Curable composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100006699 2010-01-25
KR10-2010-0006699 2010-01-25
KR10-2011-0007454 2011-01-25
KR1020110007454A KR101152867B1 (ko) 2010-01-25 2011-01-25 경화성 조성물

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/554,489 Continuation US8735525B2 (en) 2010-01-25 2012-07-20 Curable composition

Publications (2)

Publication Number Publication Date
WO2011090361A2 true WO2011090361A2 (ko) 2011-07-28
WO2011090361A3 WO2011090361A3 (ko) 2011-12-15

Family

ID=44926082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000520 WO2011090361A2 (ko) 2010-01-25 2011-01-25 경화성 조성물

Country Status (7)

Country Link
US (1) US8735525B2 (ko)
EP (1) EP2530122B1 (ko)
JP (1) JP5748773B2 (ko)
KR (1) KR101152867B1 (ko)
CN (3) CN103834175B (ko)
DE (1) DE202011110487U1 (ko)
WO (1) WO2011090361A2 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012104363A1 (de) * 2012-05-21 2013-11-21 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
CN103571209A (zh) * 2012-08-01 2014-02-12 信越化学工业株式会社 加成固化型硅酮组合物、及半导体装置
CN103987788A (zh) * 2011-11-25 2014-08-13 Lg化学株式会社 可固化组合物
JP2014534327A (ja) * 2011-11-25 2014-12-18 エルジー・ケム・リミテッド 硬化性組成物
JP2015503005A (ja) * 2011-11-25 2015-01-29 エルジー・ケム・リミテッド 硬化性組成物
JP2015507025A (ja) * 2011-11-25 2015-03-05 エルジー・ケム・リミテッド 硬化性組成物
US20160322546A1 (en) * 2014-01-28 2016-11-03 Lg Chem, Ltd. Cured product
CN103173020B (zh) * 2011-12-22 2017-03-01 信越化学工业株式会社 高可靠性可固化硅酮树脂组合物及使用该组合物的光半导体器件
US9598542B2 (en) 2011-11-25 2017-03-21 Lg Chem, Ltd. Curable composition
JP2017075333A (ja) * 2012-07-27 2017-04-20 エルジー・ケム・リミテッド 硬化性組成物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274350B1 (ko) * 2010-03-31 2013-06-13 세키스이가가쿠 고교가부시키가이샤 광 반도체 장치용 밀봉제 및 광 반도체 장치
JP5524017B2 (ja) * 2010-10-08 2014-06-18 信越化学工業株式会社 付加硬化型シリコーン組成物、及び該組成物の硬化物により半導体素子が被覆された半導体装置
CN104066770B (zh) 2011-11-25 2016-10-19 Lg化学株式会社 有机聚硅氧烷
CN104066771B (zh) * 2011-11-25 2016-12-28 Lg化学株式会社 制备有机聚硅氧烷的方法
WO2013077699A1 (ko) * 2011-11-25 2013-05-30 주식회사 엘지화학 경화성 조성물
KR101334349B1 (ko) * 2011-12-15 2013-11-29 한국과학기술연구원 가열 경화성 실록산 봉지재 조성물
CN104487517B (zh) * 2012-07-27 2017-06-13 Lg化学株式会社 可固化组合物
US9657143B2 (en) 2012-12-26 2017-05-23 Cheil Industries, Inc. Curable polysiloxane composition for optical device and encapsulant and optical device
TWI535792B (zh) * 2013-10-24 2016-06-01 瓦克化學公司 Led封裝材料
WO2015093329A1 (ja) * 2013-12-19 2015-06-25 東レ・ダウコーニング株式会社 シリコーン接着性フィルム、および半導体装置
CN105368064B (zh) * 2014-08-27 2018-01-23 广州慧谷化学有限公司 有机聚硅氧烷组合物及其制备方法及半导体器件
KR20200070810A (ko) * 2018-12-10 2020-06-18 삼성전자주식회사 조성물, 이의 경화물을 포함하는 필름, 상기 필름을 포함하는 적층체 및 디스플레이 소자
CN113999396B (zh) * 2021-10-29 2022-11-01 山东东岳有机硅材料股份有限公司 环氧修饰的聚硅氧烷光敏聚合物的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274571A (ja) 1998-01-26 1999-10-08 Nichia Chem Ind Ltd 半導体発光装置
JP2001196151A (ja) 2000-01-12 2001-07-19 Takazono Sangyo Kk 発熱体装置及び発熱体温度制御方法
JP2002226551A (ja) 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd 発光ダイオード

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974122A (en) * 1974-10-19 1976-08-10 Shin-Etsu Chemical Co., Ltd. Heat-curable silicone resin compositions
US3996195A (en) * 1974-11-15 1976-12-07 Shinetsu Chemical Company Curable organosilicon compositions
CA1230192A (en) * 1984-03-23 1987-12-08 Loretta A. Kroupa Liquid curable polyorganosiloxane compositions
CA2088865A1 (en) * 1992-03-06 1993-09-07 Larry D. Boardman Organosilicone compositions
JP2004186168A (ja) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP4908736B2 (ja) * 2003-10-01 2012-04-04 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
EP1987084B1 (en) * 2006-02-24 2014-11-05 Dow Corning Corporation Light emitting device encapsulated with silicones and curable silicone compositions for preparing the silicones
JP5202822B2 (ja) * 2006-06-23 2013-06-05 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
MY150228A (en) * 2006-10-19 2013-12-31 Momentive Performance Mat Jp Curable polyorganosiloxane composition
TWI434890B (zh) * 2007-04-06 2014-04-21 Shinetsu Chemical Co 加成可硬化聚矽氧樹脂組成物及使用彼之聚矽氧鏡片
JP5972512B2 (ja) * 2008-06-18 2016-08-17 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物及び半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274571A (ja) 1998-01-26 1999-10-08 Nichia Chem Ind Ltd 半導体発光装置
JP2001196151A (ja) 2000-01-12 2001-07-19 Takazono Sangyo Kk 発熱体装置及び発熱体温度制御方法
JP2002226551A (ja) 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd 発光ダイオード

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530122A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507025A (ja) * 2011-11-25 2015-03-05 エルジー・ケム・リミテッド 硬化性組成物
US9598542B2 (en) 2011-11-25 2017-03-21 Lg Chem, Ltd. Curable composition
CN103987788A (zh) * 2011-11-25 2014-08-13 Lg化学株式会社 可固化组合物
JP2014533767A (ja) * 2011-11-25 2014-12-15 エルジー・ケム・リミテッド 硬化性組成物
JP2014534327A (ja) * 2011-11-25 2014-12-18 エルジー・ケム・リミテッド 硬化性組成物
JP2015503005A (ja) * 2011-11-25 2015-01-29 エルジー・ケム・リミテッド 硬化性組成物
CN103987788B (zh) * 2011-11-25 2017-06-09 Lg化学株式会社 可固化组合物
CN103173020B (zh) * 2011-12-22 2017-03-01 信越化学工业株式会社 高可靠性可固化硅酮树脂组合物及使用该组合物的光半导体器件
DE102012104363A1 (de) * 2012-05-21 2013-11-21 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
US9496467B2 (en) 2012-05-21 2016-11-15 Osram Opto Semiconductor Gmbh Optoelectronic component and method for producing it
JP2017075333A (ja) * 2012-07-27 2017-04-20 エルジー・ケム・リミテッド 硬化性組成物
CN103571209A (zh) * 2012-08-01 2014-02-12 信越化学工业株式会社 加成固化型硅酮组合物、及半导体装置
US20160322546A1 (en) * 2014-01-28 2016-11-03 Lg Chem, Ltd. Cured product
US9805999B2 (en) * 2014-01-28 2017-10-31 Lg Chem, Ltd. Cured product

Also Published As

Publication number Publication date
CN102725356A (zh) 2012-10-10
EP2530122A2 (en) 2012-12-05
CN103834175B (zh) 2017-04-12
KR101152867B1 (ko) 2012-06-12
WO2011090361A3 (ko) 2011-12-15
CN102725356B (zh) 2014-12-31
DE202011110487U1 (de) 2014-04-17
JP2013518142A (ja) 2013-05-20
CN104479359A (zh) 2015-04-01
US8735525B2 (en) 2014-05-27
CN103834175A (zh) 2014-06-04
CN104479359B (zh) 2018-04-03
EP2530122A4 (en) 2013-09-18
EP2530122B1 (en) 2015-11-11
KR20110087243A (ko) 2011-08-02
US20130009200A1 (en) 2013-01-10
JP5748773B2 (ja) 2015-07-15

Similar Documents

Publication Publication Date Title
WO2011090361A2 (ko) 경화성 조성물
WO2011090364A2 (ko) 경화성 조성물
WO2011090362A2 (ko) 실리콘 수지
WO2013015591A2 (ko) 경화성 조성물
WO2013077702A1 (ko) 경화성 조성물
WO2012093907A2 (ko) 경화성 조성물
WO2014084639A1 (ko) 발광 다이오드
WO2014017885A1 (ko) 경화성 조성물
WO2013077699A1 (ko) 경화성 조성물
WO2014017888A1 (ko) 경화성 조성물
WO2012093910A2 (ko) 경화성 조성물
WO2011081325A2 (ko) 봉지재용 투광성 수지 및 이를 포함하는 전자 소자
WO2013077706A1 (ko) 경화성 조성물
WO2013077703A1 (ko) 경화성 조성물
WO2012093909A2 (ko) 경화성 조성물
WO2014163442A1 (ko) 경화성 조성물
WO2013077708A1 (ko) 경화성 조성물
KR101204116B1 (ko) 경화성 조성물
WO2012173460A2 (ko) 경화성 조성물
WO2013077705A1 (ko) 오가노폴리실록산
WO2013077707A1 (ko) 경화성 조성물
WO2014017889A1 (ko) 경화성 조성물
WO2012093908A2 (ko) 경화성 조성물
WO2014017886A1 (ko) 경화성 조성물
WO2014104609A1 (ko) 실록산 모노머, 봉지재 조성물, 봉지재 및 전자 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007132.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011734910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012549949

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE