WO2011090022A1 - シアン酸エステル化合物およびその硬化物 - Google Patents

シアン酸エステル化合物およびその硬化物 Download PDF

Info

Publication number
WO2011090022A1
WO2011090022A1 PCT/JP2011/050734 JP2011050734W WO2011090022A1 WO 2011090022 A1 WO2011090022 A1 WO 2011090022A1 JP 2011050734 W JP2011050734 W JP 2011050734W WO 2011090022 A1 WO2011090022 A1 WO 2011090022A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
hydrogen atom
cyanate ester
alkyl group
Prior art date
Application number
PCT/JP2011/050734
Other languages
English (en)
French (fr)
Inventor
健人 池野
亮 津布久
誠之 片桐
辻本 智雄
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2011550908A priority Critical patent/JPWO2011090022A1/ja
Priority to CN2011800067824A priority patent/CN103025713A/zh
Priority to EP11734628.8A priority patent/EP2527324A4/en
Priority to US13/522,528 priority patent/US8779162B2/en
Publication of WO2011090022A1 publication Critical patent/WO2011090022A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/46Iso-indoles; Hydrogenated iso-indoles with an oxygen atom in position 1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings

Definitions

  • the present invention relates to a novel cyanate ester compound, and more particularly to a novel cyanate ester compound having excellent heat resistance, a thermosetting resin composition containing the same, and a cured product thereof.
  • thermosetting resins such as phenol resins, melamine resins, bismaleimide resins, unsaturated polyester resins, cyanate ester resins, and epoxy resins are used as matrix resins depending on the intended use.
  • the heat resistance of the fiber reinforced composite material depends on the heat resistance of these matrix resins.
  • an epoxy resin obtained by glycidylating 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane or a triglycidylaminophenol skeleton is used (for example, Japanese Patent No. 3557330).
  • diaminodiphenyl sulfone, polyether sulfone, or polyether imide is blended with an epoxy resin containing an epoxy resin as a main component (for example, JP-A-62-297316).
  • thermosetting resin A method for producing a fiber reinforced composite material using a cyanate ester resin as a matrix has also been proposed (for example, JP 2003-12819 A and JP 2006-70115 A).
  • the present inventors have now found that a novel cyanate ester compound having a specific structure can impart excellent heat resistance to the cured product.
  • the present invention is based on this finding.
  • an object of the present invention is to provide a novel cyanate ester compound from which a cured product having excellent heat resistance can be obtained.
  • Another object of the present invention is to provide a curable resin composition comprising a novel cyanester compound and a cured product obtained by curing the resin composition.
  • R1 represents an aromatic substituent having 6 to 10 carbon atoms or an alkyl group having 1 to 20 carbon atoms
  • Each Rx1 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a halogen
  • Ry1 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a halogen
  • m represents an integer of 0 to 4
  • n represents an integer of 0 to 4.
  • the cyanate ester compound by another aspect of this invention is represented by following General formula (2).
  • R2 represents an aromatic substituent having 6 to 10 carbon atoms or an alkyl group having 1 to 20 carbon atoms
  • Each Rx2 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a halogen
  • Each Ry2 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a halogen
  • m represents an integer of 0 to 4
  • n represents an integer of 0 to 4.
  • a curable resin composition comprising the cyanate ester compound and a cured product obtained by curing the curable resin composition.
  • the cured product having a high glass transition temperature can be obtained by polymerizing the cyanate ester compound according to the present invention or copolymerizing with another resin. Therefore, it is extremely useful as a high-functional polymer material and becomes a material excellent in thermal, electrical and mechanical properties.
  • thermosetting resin composition comprising the cyanate ester compound according to the present invention includes an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for a printed wiring board, an electrical laminate, and a prepreg. It can be used for a wide range of applications such as matrix resin, build-up laminate material, fiber reinforced plastic resin, liquid crystal display panel sealing resin, liquid crystal color filter resin, paint, various coating agents, adhesives, etc. .
  • a cured product obtained by curing a thermosetting resin composition has a high glass transition temperature and excellent heat resistance, and therefore can be suitably used for a matrix of a fiber-reinforced composite material.
  • the cyanate ester according to the present invention is represented by the following general formula (1).
  • R1 represents an aromatic substituent having 6 to 10 carbon atoms or an alkyl group having 1 to 20 carbon atoms, and among them, an aromatic substituent or carbon having 6 to 10 carbon atoms
  • An alkyl group having a number of 1 to 10 is preferable. Specific examples include a phenyl group, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.
  • each Rx1 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a halogen.
  • a hydrogen atom or one having 1 to 10 carbon atoms is represented.
  • An alkyl group is preferable, and a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is particularly preferable.
  • Specific examples include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.
  • M represents an integer of 0 to 4.
  • Ry1 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a halogen, and among these, a hydrogen atom or a carbon atom having 1 to 10 carbon atoms.
  • An alkyl group is preferable, and a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is particularly preferable.
  • Specific examples include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.
  • N represents an integer of 0 to 4.
  • a cyanate ester according to another embodiment of the present invention is represented by the following general formula (2).
  • R2 represents an aromatic substituent having 6 to 10 carbon atoms or an alkyl group having 1 to 20 carbon atoms.
  • an aromatic substituent having 6 to 10 carbon atoms Alternatively, an alkyl group having 1 to 10 carbon atoms is preferable. Specific examples include a phenyl group, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.
  • each Rx2 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a halogen, and among these, a hydrogen atom or 1 to 10 carbon atoms In particular, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable. Specific examples include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group. M represents an integer of 0 to 4.
  • each Ry2 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group or a halogen, and among these, a hydrogen atom or a carbon atom having 1 to 10 carbon atoms.
  • An alkyl group is preferable, and a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is particularly preferable.
  • Specific examples include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.
  • n represents an integer of 0 to 4.
  • the method for producing the compound represented by the general formula (1) is not particularly limited, and for example, it can be produced from a phenol represented by the following general formula (3) by a method known as cyanate synthesis. (Wherein R1, Rx1 and Ry1 have the same meaning as defined in the above formula (1).)
  • the phenol represented by the general formula (3) can be obtained by a dehydration reaction between a phenolphthalein derivative represented by the following general formula (4) and an amine derivative or an aniline derivative by a known method (for example, JP, 2005-290378, A). Moreover, you may synthesize
  • Rx1 and Ry1 have the same meaning as defined in the above formula (1).
  • Examples of the amine derivative used for the synthesis of the phenol represented by the general formula (3) include methylamine, ethylamine, propylamine, isopropylamine, butylamine, sec-butylamine, tert-butylamine, amylamine, hexylamine, heptylamine. Octylamine, nonylamine, decylamine, cyclohexylamine and the like.
  • aniline derivative used for the synthesis of the phenol represented by the general formula (3) examples include aniline, o-methylaniline, m-methylaniline, p-methylaniline, o-methoxyaniline, m-methoxyaniline, p -Methoxyaniline, o-ethylaniline, m-ethylaniline, p-ethylaniline, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 3,4-dimethylaniline, 3,5 -Dimethylaniline, o-chloromethylaniline, m-chloromethylaniline, p-chloromethylaniline, o-trifluoromethylaniline, m-trifluoromethylaniline, p-trifluoromethylaniline, o-chloroaniline, m- Chloroaniline, p-chloroaniline, o-fluoroaniline, -Fluoro
  • the method for producing the compound represented by the general formula (2) is not particularly limited, and for example, it may be produced from a phenol represented by the following general formula (5) by a method known as cyanate synthesis. (Wherein R2, Rx2 and Ry2 have the same meaning as defined in the above formula (2).)
  • the production method of the phenol represented by the general formula (5) is not particularly limited, and a known method can be used.
  • indoline-2,3-dione represented by the following general formula (6) You may synthesize
  • the phenols reacted with the indoline-2,3-dione represented by the general formula (6) include phenol, o-cresol, m-cresol, p- Cresol, o-fluorophenol, m-fluorophenol, p-fluorophenol, o-chlorophenol, m-chlorophenol, p-chlorophenol, o-bromophenol, m-bromophenol, p-bromophenol, p-tert -Butylphenol, p-nonylphenol, 2,4-xylenol, 2,5-xylenol, 3,4-xylenol, 3,5-xylenol, resorcinol and the like, but are not limited thereto.
  • the first production method is a method of synthesizing a compound represented by the general formula (6) by N-alkylating or N-arylating an isatin represented by the following general formula (7).
  • Rx2 has the same meaning as defined in the above formula (2).
  • the second production method is a method of synthesizing the compound represented by the general formula (6) from anilines.
  • anilines are amidated with oxalyl chloride and then cyclized using heat or Lewis acid (US Pat. No. 5,198,461, International Publication WO2007 / 070362) : (In the formula, R2 and Rx2 have the same meaning as defined in the above formula (2).)
  • US Pat. No. 3,553,244 discloses a method of reacting both in a solvent in the presence of a base so that the cyanide halide is always present in excess in excess of the base.
  • Japanese Laid-Open Patent Publication No. 7-53497 discloses a method of synthesis using a tertiary amine as a base and using it in excess of cyan chloride.
  • JP-T-2000-501138 discloses a method of reacting trialkylamine and cyanogen halide by a continuous plug flow method.
  • Patent No. 2991054 was obtained by adding and reacting a phenolic compound with a tertiary amine and a cyanogen halide in the presence of water and a solvent capable of liquid separation, followed by washing with water and separation.
  • a method for precipitation purification from a solution using a secondary or tertiary alcohol or a poor hydrocarbon solvent is disclosed.
  • Japanese Patent Application Laid-Open No. 2007-277102 synthesizes cyanate esters by reacting naphthols, cyanogen halides and tertiary amines in a two-phase solvent of water and an organic solvent under acidic conditions. A method is disclosed.
  • phenol can be cyanated by reacting the phenol compound represented by the above general formula (3) or (5) with cyanogen chloride in a solvent in the presence of a basic compound. Further, a salt of the phenol compound represented by the general formula (3) or (5) and a basic compound is formed in a solution containing water, and then a two-phase interface reaction with cyanogen chloride is performed. Thus, a cyanate ester can also be synthesized.
  • a phenol compound represented by the general formula (3) or (5) is dissolved in an organic solvent, a basic compound such as a tertiary amine is added, and then excess cyanogen halide is added. And react.
  • cyan halide is always present in excess, it is said that imidocarbonate produced by reaction of phenolate anion with cyanate ester can be suppressed.
  • the reaction temperature must be kept at 10 ° C. or lower, preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower.
  • the order of dropping the compounds can be arbitrarily selected.
  • a basic compound such as a tertiary amine and a cyanogen halide or a solution thereof may be dropped alternately or simultaneously.
  • a mixed solution of a basic compound such as a phenol compound and a tertiary amine and a cyanogen halide or a solution thereof can be simultaneously supplied.
  • the reaction temperature since a large amount of heat is generated by the exothermic reaction, the reaction temperature must be kept at 10 ° C. or lower, preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower for the purpose of suppressing side reactions. is there.
  • the above reaction may be carried out in a batch, semi-batch, or continuous flow manner, and is not particularly limited.
  • a basic compound such as a tertiary amine and cyanogen halide are added in an amount of 0.1 to 8 times mol, preferably 1 to 5 times mol to the phenolic hydroxyl group of the phenol compound, and both are reacted.
  • the required amount of basic compounds such as tertiary amines and cyanogen halide increases compared to the case where no substituent is present.
  • the cyanide halide cyan chloride, cyanogen bromide and the like can be used.
  • the basic compound to be used may be either an organic base or an inorganic base, but when an organic solvent is used, an organic base having high solubility in the solvent is preferable.
  • organic bases tertiary amines with few side reactions are preferable.
  • the tertiary amine may be any of alkylamine, arylamine, and cycloalkylamine, specifically, trimethylamine, triethylamine, methyldiethylamine, tripropylamine, tributylamine, methyldibutylamine, dinonylmethylamine, Examples include dimethylstearylamine, dimethylcyclohexylamine, diisopropylethylamine, diethylaniline, pyridine, and quinoline.
  • Solvents used in the reaction include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, aromatic solvents such as benzene, toluene, and xylene, diethyl ether, dimethyl cellosolve, diglyme, tetrahydrofuran, methyltetrahydrofuran, dioxane, and tetraethylene glycol.
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • aromatic solvents such as benzene, toluene, and xylene
  • diethyl ether diethyl ether
  • dimethyl cellosolve diglyme
  • tetrahydrofuran methyltetrahydrofuran
  • dioxane dioxane
  • Ether solvents such as dimethyl ether, halogenated hydrocarbon solvents such as methylene chloride, chloroform, carbon tetrachloride, chlorobenzene, alcohol solvents such as methanol, ethanol, 2-propanol, methyl cellosolve, propylene glycol monomethyl ether, N, N -Aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidone and dimethyl sulfoxide; Examples include, but are not limited to, nitrile solvents such as tonitrile and benzonitrile, nitro solvents such as nitromethane and nitrobenzene, ester solvents such as ethyl acetate and ethyl benzoate, and hydrocarbon solvents such as cyclohexane. is not. Moreover, these solvents can be used alone or in combination of two or more depending on the reaction substrate.
  • the reaction can be cooled by immersing the flask in a direct ice bath, salt-ice bath, dry ice-acetone bath, dry ice-methanol bath, or an appropriately controlled temperature acetone or methanol bath.
  • a jacketed device by using a jacketed device and circulating an antifreeze solution such as methanol, ethanol, methanol-water, ethanol-water, ethylene glycol-water, and nybrine with appropriately temperature controlled in the jacket, the reaction system May be cooled.
  • an antifreeze solution such as methanol, ethanol, methanol-water, ethanol-water, ethylene glycol-water, and nybrine
  • a method of mixing a sufficiently cooled solution in consideration of heat of reaction may be employed.
  • the hydrogen chloride salt of a basic compound such as a tertiary amine is usually filtered or removed by washing with water.
  • a solvent miscible with water the obtained reaction solution is dropped into water and then extracted with an organic solvent immiscible with water, or the precipitated crystals are collected by filtration.
  • the object can be obtained.
  • the method of using acidic aqueous solutions, such as dilute hydrochloric acid is also taken.
  • a drying operation can be performed using a general method such as addition of sodium sulfate or magnesium sulfate.
  • the reaction solution is concentrated, precipitated, or crystallized.
  • a method of reducing the pressure while maintaining at 150 ° C. or lower is employed.
  • a solvent having low solubility can be used.
  • an ether solvent, a hydrocarbon solvent such as hexane, or an alcohol solvent is dropped into the reaction solution or dropped backward. The method can be adopted.
  • a method of washing the concentrate of the reaction solution and precipitated crystals with an ether solvent, a hydrocarbon solvent such as hexane, or an alcohol solvent can be employed.
  • the crystals obtained by concentrating the reaction solution can be re-dissolved and then recrystallized.
  • the reaction solution may be simply concentrated or cooled for crystallization.
  • the curable resin composition according to the present invention comprises the above-described cyanate ester compound.
  • the curable resin composition may contain a cyanate ester compound other than the cyanate ester compound of the present invention, an epoxy resin, an oxetane resin, and / or a compound having a polymerizable unsaturated group.
  • Examples of the cyanate ester compound other than the cyanate ester compound according to the present invention include bisphenol A dicyanate, bisphenol F dicyanate, bisphenol M dicyanate, bisphenol E dicyanate, phenol novolac cyanate, cresol novolac cyanate, dicyclohexane. Examples thereof include, but are not limited to, pentadiene novolac type cyanate, tetramethylbisphenol F dicyanate, and biphenol dicyanate. These cyanate ester compounds can be used alone or in combination.
  • Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, xylene novolac type epoxy resin, triglycidyl isocyanurate, and alicyclic type.
  • An epoxy resin, a dicyclopentadiene novolak type epoxy resin, a biphenyl novolak type epoxy resin, a phenol aralkyl novolak type epoxy resin, a naphthol aralkyl novolak type epoxy resin, and the like are exemplified, but not limited thereto.
  • these epoxy resins can be used 1 type or in mixture of 2 or more types.
  • oxetane resin examples include alkyl oxetanes such as oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3 '-Di (trifluoromethyl) perfluoxetane, 2-chloromethyloxetane, 3,3-bis (chloromethyl) oxetane, OXT-101 (trademark manufactured by Toagosei Co., Ltd.), OXT-121 (manufactured by Toagosei Co., Ltd.) Trademark) and the like, but is not limited thereto. These oxetane resins can be used alone or in combination.
  • a known curing catalyst can be used.
  • the curing catalyst include metal salts such as zinc octylate, zinc naphthenate, cobalt naphthenate, copper naphthenate, and acetylacetone iron, and compounds having an active hydroxyl group such as phenol, alcohol, and amine.
  • an epoxy resin curing agent and / or an oxetane resin curing agent can be used.
  • the epoxy resin curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, Imidazole derivatives such as 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole, amines such as dicyandiamide, benzyldimethylamine and 4-methyl-N, N-dimethylbenzylamine
  • the compound and phosphine group include, but are not limited to, phosphonium phosphorus compounds.
  • a well-known cationic polymerization initiator can be used as a oxetane resin hardening
  • Commercially available products may also be used.
  • Sanade SI60L, Sanade SI-80L, Sanade SI100L (Sanshin Chemical Co., Ltd.), CI-2064 (Nihon Soda Co., Ltd.), Irgacure 261 ( Ciba Japan Co., Ltd.), Adekaoptomer SP-170, Adekaoptomer SP-150 (manufactured by ADEKA Co., Ltd.) and the like can be suitably used.
  • the cationic polymerization initiator can also be used as an epoxy resin curing agent. These curing agents may be used alone or in combination of two or more.
  • Examples of the compound having a polymerizable unsaturated group which may be contained in the curable resin composition include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl, methyl (meth) acrylate, 2-hydroxy Ethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, di Mono- or polyhydric alcohol (meth) acrylates such as pentaerythritol hexa (meth) acrylate, bisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate Epoxy (meth) acrylates such as over preparative, benzocyclobutene resins, including
  • the curable resin composition contains a compound having a polymerizable unsaturated group
  • a known polymerization initiator can be used as necessary.
  • the polymerization initiator include peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropyl peroxycarbonate, di-2-ethylhexyl peroxycarbonate, or azobisiso Examples thereof include but are not limited to azo compounds such as butyronitrile.
  • the cured product according to the present invention is obtained by curing the above-described curable resin composition with heat or light.
  • thermosetting if the curing temperature is too low, curing does not proceed, and if it is too high, the cured product is deteriorated.
  • the cured product obtained by curing the resin composition containing the cyanate ester compound according to the present invention includes electrical insulating materials, sealing materials, adhesives, laminated materials, resists, build-up laminated board materials, civil engineering / architecture, It is preferably used as a fixing material, a structural member, a reinforcing agent, a molding material, etc. in the fields of electronics, automobiles, railways, ships, airplanes, sporting goods, arts and crafts.
  • a wide range of applications such as aircraft structural members, satellite structural members and railway vehicle structural members that require weather resistance, flame resistance and high mechanical strength, fiber reinforced composite materials for sports, that is, golf club shafts, fishing rods, etc. Can be used for
  • Synthesis Example 1 Synthesis of 2-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine To a solution of phenolphthalein (31.86 g, 100 mmol) in aniline (65 mL, 717 mmol), concentrated hydrochloric acid (36%, 20.5 mL) , 232 mmol) was added dropwise. Water was distilled off while heating in an oil bath so that the internal temperature was 155 to 165 ° C. Heating and stirring were continued until the raw material phenolphthalein disappeared by analysis by liquid chromatography (about 16 hours). Thereafter, the reaction solution was poured into a mixed solution of concentrated hydrochloric acid (36%, 51.4 mL) and water (600 mL).
  • the obtained crystals were added to 150 mL of methanol (Mitsubishi Gas Chemical Co., Ltd., 99.9%), stirred for 1 hour under reflux with heating, and allowed to cool to room temperature.
  • the precipitated crystals were filtered, washed with methanol and dried to obtain a product (36.32 g, 92.3 mmol, 92% yield).
  • the structure of the obtained compound was identified by NMR spectrum using a nuclear magnetic resonance apparatus (JNM-EX270FT-NMR manufactured by JEOL Ltd.).
  • Synthesis Example 2 Synthesis of 2- (4-methylphenyl) -3,3-bis (4-hydroxyphenyl) phthalimidine (abbreviated as BisP-PI-NpTol) p-Toluidine (31.8 g, 717 mmol) was heated to 80 ° C. The mixture was dissolved by heating, and concentrated hydrochloric acid (36%, 20.5 mL, 232 mmol) was added dropwise. Thereafter, phenolphthalein (31.8 g, 100 mmol) was added, and water was distilled off while heating in an oil bath so that the internal temperature became 155 to 165 ° C.
  • Activated carbon was removed by filtration, and 5.43 g of activated carbon was newly added and stirred for 1 hour. Then, after removing activated carbon by filtration, concentrated hydrochloric acid (36%) was slowly added dropwise to the filtrate until the filtrate became acidic. After stirring overnight, the mixture was filtered, and the crystals were washed with water until the pH of the washing solution was no longer acidic (4 times). The product was obtained by drying the crystals under vacuum using an oil rotary vacuum pump. For liquid chromatography, Hitachi L-7000 series, D-200 chromatographic integrator was used (TSKgel ODS-120T column manufactured by Tosoh Corporation). As a developing solvent, an acetonitrile-water mixed solvent system was used (flow rate: 1 ml / min).
  • Synthesis Example 3 Synthesis of 2-phenyl-3,3-bis (4-hydroxy-3-methylphenyl) phthalimidine (abbreviated as BisOCR-PI-NPh) o-cresolphthalein (25.31 g, 73.1 mmol) Concentrated hydrochloric acid (36%, 15.0 mL, 170 mmol) was added dropwise to the aniline (47.5 mL, 524 mmol) solution. Water was distilled off while heating in an oil bath so that the internal temperature was 155 to 165 ° C. Heating and stirring were continued until the raw material phenolphthalein disappeared by analysis by liquid chromatography (about 20 hours).
  • the reaction solution was poured into a mixed solution of concentrated hydrochloric acid (36%, 20 mL) and water (600 mL). After stirring for 4 days, the crystals were obtained by filtration and washing with water. The obtained crystals were dissolved in an aqueous solution (200 mL) of sodium hydroxide (8.00 g, 200 mmol), 5 g of activated carbon was added, and the mixture was stirred for 30 minutes. The activated carbon was removed by filtration, and 5 g of activated carbon was newly added and stirred for 30 minutes. After removing activated carbon by filtration, concentrated hydrochloric acid (36%) was slowly added dropwise to the filtrate until the filtrate became acidic.
  • Synthesis Example 4 Synthesis of N-methylisatin A solution of isatin (14.70 g, 100 mmol, manufactured by SIGMA-ALDRICH, purity 98%) in dimethylformamide (hereinafter DMF) (500 ml) was brought to 0 ° C. using an ice bath. After cooling, sodium hydride (4.73 g, 118 mmol, manufactured by Tokyo Chemical Industry Co., Ltd., 60% in oil) was added in small portions over 10 minutes using a spatula. After stirring for 15 minutes, methyl iodide (7.5 mL, 120 mmol) was added in small portions using a Komagome pipette over 10 minutes. After stirring at 0 ° C.
  • DMF dimethylformamide
  • Synthesis Example 5 Synthesis of 1-methyl-3,3-bis (4-hydroxyphenyl) indoline-2-one (abbreviated as BisP-IST-NMe) Crude product of N-methylisatin obtained in Synthesis Example 4 ( 13.6 g, 84.5 mmol) is dissolved in phenol (32.78 g, 348 mmol), and this solution is added to a mixed solution of phenol (15.14 g, 161 mmol) and concentrated hydrochloric acid (36%, 15.0 mL, 170 mmol). It was added in small portions at 2.5 ° C over 2.5 hours. Thereafter, the mixture was stirred at 35 ° C. for 3 hours and then stirred overnight at room temperature.
  • BisP-IST-NMe 1-methyl-3,3-bis (4-hydroxyphenyl) indoline-2-one
  • a 75% aqueous phosphoric acid solution (0.081 ml) and a 16% aqueous potassium hydroxide solution (8.8 ml) were added and heated at 100 ° C. for 1 hour, and then 124 ml of toluene was added and allowed to cool.
  • the produced crystals were filtered and washed well with toluene.
  • the obtained product was stirred and washed with hot water, filtered, washed with hot water, and air-dried to obtain the product (18.65 g, 56.3 mmol, 67%, HPLC evaluation: 98 area%).
  • the evaluation by liquid chromatography was performed in the same manner as described above. The synthesis scheme is as shown below.
  • the structure of the obtained compound was identified by NMR spectrum as described above.
  • the NMR spectrum was as shown in FIG. 1 H-NMR: (270 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 2.19 (s, 6H), 6.82-6.93 (m, 2H), 7.00-7.15 (m, 5H), 7.17-7.35 (m, 5H) ), 7.50-7.63 (m, 2H), 7.9-8.07 (m, 1H)
  • Example 1 30 parts by weight of the cyanate ester (BisP-PI-NPh-DC) obtained in Production Example 1 and 70 parts by weight of bisphenol A dicyanate (trademark skylex manufactured by Mitsubishi Gas Chemical Co., Ltd., the same shall apply hereinafter) are mixed and made of fluoro rubber The mixture was heated and melted in an aluminum cup containing an O-ring (S-100, manufactured by Mori Seika Co., Ltd.) and deaerated with a vacuum pump. Then, it suppressed from the top with the aluminum cup, and it hardened by heating at 205 degreeC, 3 hours, 270 degreeC, 4 hours. After cooling, the aluminum cup was opened to obtain a cured product of a cyanate ester compound.
  • Example 2 Example 1 except that the cyanate ester (BisP-PI-NpTol-DC) obtained in Production Example 2 was used instead of the cyanate ester (BisP-PI-NPh-DC) used in Example 1. In the same manner as above, a cured product was obtained.
  • Example 3 Example 1 except that the cyanate ester (BisOCR-PI-NPh-DC) obtained in Example 3 was used instead of the cyanate ester (BisP-PI-NPh-DC) used in Example 1. In the same manner as above, a cured product was obtained.
  • Example 4 Example 1 except that the cyanate ester (BisP-IST-NMe-DC) obtained in Example 4 was used instead of the cyanate ester (BisP-PI-NPh-DC) used in Example 1. In the same manner as above, a cured product was obtained.
  • Example 5 A cured product in the same manner as in Example 2 except that the amount of cyanate ester (BisP-PI-NpTol-DC) was changed to 40 parts by weight and the amount of bisphenol A dicyanate was changed to 60 parts by weight.
  • the amount of cyanate ester (BisP-PI-NpTol-DC) was changed to 40 parts by weight and the amount of bisphenol A dicyanate was changed to 60 parts by weight.
  • Example 6 100 parts by weight of the cyanate ester (BisP-PI-NPh-DC) obtained in Production Example 1 was heated from room temperature at 10 ° C./min and kept at 250 ° C. for 2 hours to obtain a cured product.
  • Example 7 100 parts by weight of the cyanate ester (BisP-PI-NpTol-DC) obtained in Production Example 2 was heated from room temperature at 10 ° C./min and kept at 250 ° C. for 2 hours to obtain a cured product.
  • Example 8 100 parts by weight of the cyanate ester (BisP-IST-NMe-DC) obtained in Production Example 4 was heated from room temperature at 10 ° C./min and kept at 250 ° C. for 2 hours to obtain a cured product.
  • Example 1 instead of using a mixture of 30 parts by weight of cyanate ester and 70 parts by weight of bisphenol A dicyanate, Example was used except that 100 parts by weight of bisphenol A dicyanate (trademark skylex manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used. In the same manner as in Example 1, a cured product was obtained.
  • bisphenol A dicyanate trademark skylex manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Measurement method 1 Dynamic viscoelasticity using a viscoelasticity measuring device (AR2000ex manufactured by TA Instruments Japan Co., Ltd.) while raising the temperature at a rate of 3 ° C./min at a strain of 0.1% and a frequency of 15 Hz. The maximum value of the obtained loss tangent was taken as the glass transition temperature.
  • Measurement method 2 In accordance with JIS-K7121, using a differential scanning calorimeter (Seiko Instruments, SSC-5200), the temperature was raised to 400 ° C. at a rate of temperature increase of 10 ° C./min under a nitrogen stream and then cooled. Then, the temperature was raised again to 400 ° C. at a temperature rising rate of 10 ° C./min, and differential scanning calorimetry was performed. The midpoint glass transition temperature at that time was defined as the glass transition temperature.
  • the glass transition temperature was measured by Measurement Method 1
  • the glass transition temperature was measured by Measurement Method 2.
  • the measurement results were as shown in Table 1 below.
  • a numerical value shows a compounding quantity (weight part) in a table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

[課題]優れた耐熱性を有する硬化物が得られる新規なシアン酸エステル化合物を提供する。[解決手段]下記一般式(1)または(2)で示されるシアン酸エステル化合物とする。(式中、R1およびR2は、炭素数6~10の芳香族置換基、または炭素数1~20のアルキル基を表し、Rx1およびRx2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、Ry1およびRy2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、mは0~4の整数を表し、nは0~4の整数を表す。)

Description

シアン酸エステル化合物およびその硬化物
 本発明は、新規なシアン酸エステル化合物に関し、より詳細には、優れた耐熱性を有する新規なシアン酸エステル化合物、およびそれを含んでなる熱硬化性樹脂組成物、ならびに、その硬化物に関する。
発明の背景
 近年、繊維強化複合材料の用途拡大に伴い、繊維強化複合材料には、種々の物性が要求されてきている。それら要求特性の一つとして耐熱性の向上が挙げられる。繊維強化複合材料には、マトリックス樹脂として、フェノール樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、シアン酸エステル樹脂、エポキシ樹脂などの熱硬化性樹脂が、使用用途に応じて使用されており、繊維強化複合材料の耐熱性は、これらマトリックス樹脂の耐熱性に依存する。
 マトリックス樹脂の耐熱性を改善するために、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンをグリシジル化したエポキシ樹脂や(例えば、特許第3573530号公報)、トリグリシジルアミノフェノール骨格を有するエポキシ樹脂を主成分とするエポキシ樹脂に、ジアミノジフェニルスルホンやポリエーテルスルホン、ポリエーテルイミドを配合した組成物が提案されている(例えば、特開昭62-297316号公報)。
 シアン酸エステル樹脂は、硬化によってトリアジン環を生じ、高い弾性率や耐熱性を有することが知られている。そのため、上記熱硬化性樹脂としてシアン酸エステル樹脂を好適に使用することができる。シアン酸エステル樹脂をマトリックスに用いた繊維強化複合材料の製造方法も提案されている(例えば、特開2003-12819号公報および特開2006-70115号公報)。
 しかしながら、近年、これらの応用分野における要求性能の高度化により、マトリックス樹脂のさらなる物性向上が希求されている。
特許第3573530号公報 特開昭62-297316号公報 特開2003-12819号公報 特開2006-70115号公報
 本発明者らは、今般、特定の構造を有する新規なシアン酸エステル化合物が、その硬化物に優れた耐熱性を付与できることを見出した。本発明はかかる知見によるものである。
 したがって、本発明の目的は、優れた耐熱性を有する硬化物が得られる新規なシアン酸エステル化合物を提供することである。また、本発明の別の目的は、新規なシアンエステル化合物を含んでなる硬化性樹脂組成物および樹脂組成物を硬化させてなる硬化物を提供することである。
 そして、本発明によるシアン酸エステル化合物は、下記一般式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000003
(式中、
 R1は、炭素数6~10の芳香族置換基、または炭素数1~20のアルキル基を表し、
 Rx1は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、
 Ry1は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、
 mは0~4の整数を表し、nは0~4の整数を表す。)
 また、本発明の別の態様によるシアン酸エステル化合物は、下記一般式(2)で表されるものである。
Figure JPOXMLDOC01-appb-C000004
(式中、
 R2は、炭素数6~10の芳香族置換基、または炭素数1~20のアルキル基を表し、
 Rx2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、
 Ry2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、
 mは0~4の整数を表し、nは0~4の整数を表す。)
 本発明によれば、上記シアン酸エステル化合物を含んでなる硬化性樹脂組成物、および上記硬化性樹脂組成物を硬化させてなる硬化物も提供される。
 本発明によるシアン酸エステル化合物は、それ自体を重合、または他の樹脂と共重合することにより、高いガラス転移温度を有する硬化物が得られる。そのため、高機能性高分子材料として極めて有用であり、熱的、電気的および機械物性に優れた材料となる。
 また、本発明によるシアン酸エステル化合物を含んでなる熱硬化性樹脂組成物は、電気用絶縁材料、レジスト用樹脂、半導体封止用樹脂、プリント配線板用接着剤、電気用積層板、およびプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、液晶のカラーフィルター用樹脂、塗料、各種コーティング剤、接着剤等の広範な用途に用いることができる。とりわけ、熱硬化性樹脂組成物を硬化させた硬化物は、ガラス転移温度が高く耐熱性に優れるため、繊維強化複合材料のマトリックスに好適に使用することができる。
合成例1で得られた2-フェニル-3,3-ビス(4-ヒドロキシフェニル)フタルイミジンのH1-NMRチャート 合成例2で得られた2-(4-メチルフェニル)-3,3-ビス(4-ヒドロキシフェニル)フタルイミジンのH1-NMRチャート 合成例3で得られた2-フェニル-3,3-ビス(4-ヒドロキシ-3-メチルフェニル)フタルイミジンのH1-NMRチャート 合成例5で得られた1-メチル-3,3-ビス(4-ヒドロキシフェニル)インドリン-2-オンのH1-NMRチャート 製造例1で得られた2-フェニル-3,3-ビス(4-シアナトフェニル)フタルイミジンのH1-NMRチャート 製造例2で得られた2-(4-メチルフェニル)-3,3-ビス(4-シアナトシフェニル)フタルイミジンのH1-NMRチャート 製造例3で得られた2-フェニル-3,3-ビス(4-シアナト-3-メチルフェニル)フタルイミジンのH1-NMRチャート 製造例4で得られた1-メチル-3,3-ビス(4-シアナトフェニル)インドリン-2-オンのH1-NMRチャート
発明の具体的説明
<第1の態様によるシアン酸エステル>
 本発明によるシアン酸エステルは、下記一般式(1)で表わされるものである。
Figure JPOXMLDOC01-appb-C000005
 上記式(1)において、R1は、炭素数6~10の芳香族置換基または炭素数1~20のアルキル基を表すが、これらのなかでも、炭素数6~10の芳香族置換基または炭素数1~10のアルキル基であることが好ましい。具体的には、フェニル基、メチル基、エチル基、n-プロピル基、i-プロピル基が挙げられる。
 上記式(1)において、Rx1は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表すが、これらのなかでも、水素原子または炭素数1~10のアルキル基であることが好ましく、特に、水素原子または炭素数1~3のアルキル基であることが好ましい。具体的には、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基が挙げられる。また、mは0~4の整数を表す。
 上記式(1)において、Ry1は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表すが、これらのなかでも、水素原子または炭素数1~10のアルキル基であることが好ましく、特に、水素原子または炭素数1~3のアルキル基であることが好ましい。具体的には、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基が挙げられる。また、nは0~4の整数を表す。
<第2の態様によるシアン酸エステル>
 本発明による別の態様によるシアン酸エステルは、下記一般式(2)で表わされるものである。
Figure JPOXMLDOC01-appb-C000006
 上記式(2)において、R2は、炭素数6~10の芳香族置換基、または炭素数1~20のアルキル基を表すが、これらのなかでも、炭素数6~10の芳香族置換基、または炭素数1~10のアルキル基であることが好ましい。具体的には、フェニル基、メチル基、エチル基、n-プロピル基、i-プロピル基が挙げられる。
 上記式(2)において、Rx2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表すが、これらのなかでも、水素原子、または炭素数1~10のアルキル基であることが好ましく、特に、水素原子または炭素数1~3のアルキル基であることが好ましい。具体的には、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基が挙げられる。また、mは0~4の整数を表す。
 上記式(2)において、Ry2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基またはハロゲンを表すが、これらのなかでも、水素原子、または炭素数1~10のアルキル基であることが好ましく、特に、水素原子、または炭素数1~3のアルキル基であることが好ましい。具体的には、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基が挙げられる。nは0~4の整数を表す。
<シアン酸エステル化合物の製造方法>
 上記一般式(1)で表される化合物の製法は、特に限定されず、例えば、下記一般式(3)で表されるフェノールから、シアネート合成として知られる方法により製造することができる。
Figure JPOXMLDOC01-appb-C000007
(式中、R1、Rx1およびRy1は、上記式(1)において定義されたものと同義である。)
 上記一般式(3)で表されるフェノールは、公知の定法により、下記一般式(4)で表されるフェノールフタレイン誘導体と、アミン誘導体またはアニリン誘導体との脱水反応により得ることができる(例えば、特開2005-290378号公報)。また他の公知の方法により合成してもよい。
Figure JPOXMLDOC01-appb-C000008
 (式中、Rx1およびRy1は、上記式(1)において定義されたものと同義である。)
 上記一般式(3)で表されるフェノールの合成に用いられる上記アミン誘導体としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、sec-ブチルアミン、tert-ブチルアミン、アミルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、シクロヘキシルアミン等が挙げられる。
 上記一般式(3)で表されるフェノールの合成に用いられる上記アニリン誘導体としては、アニリン、o-メチルアニリン、m-メチルアニリン、p-メチルアニリン、o-メトキシアニリン、m-メトキシアニリン、p-メトキシアニリン、o-エチルアニリン、m-エチルアニリン、p-エチルアニリン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、o-クロロメチルアニリン、m-クロロメチルアニリン、p-クロロメチルアニリン、o-トリフルオロメチルアニリン、m-トリフルオロメチルアニリン、p-トリフルオロメチルアニリン、o-クロロアニリン、m-クロロアニリン、p-クロロアニリン、o-フルオロアニリン、m-フルオロアニリン、p-フルオロアニリン、o-ブロモアニリン、m-ブロモアニリン、p-ブロモアニリン、o-カルボメトキシアニリン、m-カルボメトキシアニリン、p-カルボメトキシアニリン、o-アセトキシアニリン、m-アセトキシアニリン、p-アセトキシアニリン、1-ナフチルアミン、2-ナフチルアミン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、4-アミノ-2-フルオロフェノール、4-アミノ-2-クロロフェノール、4-アミノ-3-クロロフェノール、1-アミノ-2-ナフトール、2-アミノ-1-ナフトール、3-アミノ-2-ナフトール、4-アミノ-1-ナフトール、5-アミノ-1-ナフトール、5-アミノ-2-ナフトール、6-アミノ-1-ナフトール、8-アミノ-2-ナフトール、2-アミノ-m-クレゾール、2-アミノ-p-クレゾール、3-アミノ-o-クレゾール、3-アミノ-p-クレゾール、4-アミノ-m-クレゾール、4-アミノ-o-クレゾール、5-アミノ-o-クレゾール、6-アミノ-m-クレゾール、4-アミノ-3,5-キシレノール、3-ヒドロキシ-4-メトキシアニリン等が挙げられる。
 上記一般式(2)で示される化合物の製法は、特に限定されず、例えば、下記一般式(5)に示されるフェノールから、シアネート合成として知られる方法により製造してもよい。
Figure JPOXMLDOC01-appb-C000009
(式中、R2、Rx2およびRy2は、上記式(2)において定義されたものと同義である。)
 上記一般式(5)で表されるフェノールの製法は、特に限定されず、公知の方法を利用することができ、例えば、下記一般式(6)で表されるインドリン-2,3-ジオンとフェノール類から合成してもよい(例えば、特開2002-179649号公報)。
Figure JPOXMLDOC01-appb-C000010
(式中、R2およびRx2は、上記式(2)において定義されたものと同義である。)
 上記一般式(5)のフェノール類の製法において、上記一般式(6)で表されるインドリン-2,3-ジオンと反応させるフェノール類としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-フルオロフェノール、m-フルオロフェノール、p-フルオロフェノール、o-クロロフェノール、m-クロロフェノール、p-クロロフェノール、o-ブロモフェノール、m-ブロモフェノール、p-ブロモフェノール、p-tert-ブチルフェノール、p-ノニルフェノール、2,4-キシレノール、2,5-キシレノール、3,4-キシレノール、3,5-キシレノール、レゾルシノール等が挙げられるが、これらに限定されるものではない。
 上記一般式(6)で表される化合物の製法は、様々な方法が提案されており、これらの公知の方法を利用することができる。以下、上記一般式(6)で表される化合物の製法の代表的な3例を示すが、それらに限定されるものではない。
 第1の製法は、下記一般式(7)で表されるイサチン類を、N-アルキル化またはN-アリール化して、上記一般式(6)で表される化合物を合成する方法である。
Figure JPOXMLDOC01-appb-C000011
(式中、Rx2は、上記式(2)において定義されたものと同義である。)
 上記の合成方法は、例えば、特開平6-41072号公報、特開平9-40644号公報(N-アルキル化)、および特開平2-193966号公報(N-アリール化)に、参考実施例として合成方法が記載されているが、これらに限定されるものではない。
 第2の製法は、アニリン類から上記一般式(6)で表される化合物を合成する方法である。例えば、下記の合成スキームに示されるように、アニリン類を、塩化オキサリルでアミド化した後、熱やLewis酸を用いて環化させる方法(米国特許第5198461号、国際公開WO2007/070362号公報): 
Figure JPOXMLDOC01-appb-C000012
(式中、R2およびRx2は、上記式(2)において定義されたものと同義である。)
 または、下記の合成スキームに示されるように、アニリン類にハロゲノオキサレート誘導体を作用させてN-アシル化し、得られたN、N-ジ置換オキサメート誘導体を5塩化リンで環化させる方法(特開平6-41072号公報、Ann. Chim. (Rome)57,492(1967))などが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
(式中、R2およびRx2は、上記式(2)において定義されたものと同義である。)
 フェノールをシアネート化する方法としては、IAN HAMERTON,“Chemistry and Technology of Cyanate Ester Resins”,BLACKIE ACADEMIC & PROFESSIONALに、一般的なシアネート化合物の合成法が記載されている。
 上記した方法以外にも、例えば、米国特許第3553244号には、溶媒中、塩基の存在下で、ハロゲン化シアンが常に塩基より過剰に存在するようにして、両者を反応させる方法が開示されている。また、特開平7-53497号公報には、塩基として3級アミンを用い、これを塩化シアンよりも過剰に用いながら合成する方法が開示されている。また、特表2000-501138号公報には、連続プラグフロー方式で、トリアルキルアミンとハロゲン化シアンとを反応させる方法が開示されている。また、特表2001-504835号公報には、フェノールとハロゲン化シアンとを、tert-アミンの存在下、非水溶液中で反応させる方法や、その際に副生するtert-アンモニウムハライドをカチオンおよびアニオン交換対で処理することが開示されている。また、特許2991054号には、フェノール化合物を、水と分液可能な溶媒の存在下で、3級アミンとハロゲン化シアンとを同時に添加して反応させた後、水洗分液し、得られた溶液から、2級または3級アルコール類や炭化水素の貧溶媒を用いて沈殿精製する方法が開示されている。また、特開2007-277102号公報には、ナフトール類、ハロゲン化シアン、および3級アミンを、水と有機溶媒の二相系溶媒中で、酸性条件下で反応させてシアン酸エステルを合成する方法が開示されている。
 また、上記一般式(3)または(5)で表されるフェノール化合物と塩化シアンとを、溶媒中で、塩基性化合物の存在下で反応させることにより、フェノールをシアネート化することができる。また、上記一般式(3)または(5)で表されるフェノール化合物と塩基性化合物とによる塩を、水を含有する溶液中で形成し、続いて、塩化シアンと2相系界面反応を行うことにより、シアン酸エステルを合成することもできる。
 通常、シアン酸エステルの合成手順として、有機溶媒中、一般式(3)または(5)で示されるフェノール化合物を溶解させ、3級アミンなどの塩基性化合物を添加した後、過剰のハロゲン化シアンと反応させていく。この方式では、常にハロゲン化シアンが過剰に存在するため、フェノラートアニオンがシアン酸エステルと反応して生成するイミドカーボネートを抑制できるとされている。ただし、過剰のハロゲン化シアンと3級アミンが反応して、ジアルキルシアナミドを生成するため、反応温度を10℃以下、好ましくは0℃以下、さらに好ましくは-10℃以下に保つ必要がある。
 シアン酸エステルの合成手順として、上記した方法以外にも、化合物を滴下する順序などは任意に選択することができる。例えば、フェノール化合物を溶媒に溶解させた後、3級アミンなどの塩基性化合物と、ハロゲン化シアンまたはその溶液とを、交互に滴下しても良いし、同時に滴下しても良い。また、フェノール化合物および3級アミンなどの塩基性化合物の混合溶液と、ハロゲン化シアンまたはその溶液とを、同時に供給することもできる。いずれの場合も、発熱反応により多くの熱が発生するため、副反応を抑制するなどの目的から、反応温度を10℃以下、好ましくは0℃以下、さらに好ましくは-10℃以下に保つ必要がある。
 上記の反応は、回分式もしくは半回分式、または連続流通形式で行ってよく、特に制限されるものではない。
 フェノール化合物のフェノール性水酸基に対して、3級アミンなどの塩基性化合物およびハロゲン化シアンを、0.1~8倍モル、好ましくは1倍~5倍モル加え、両者を反応させる。特に、フェノール化合物が、ヒドロキシル基のオルト位に立体障害のある置換基を有する場合は、置換基が存在しない場合に比べて、3級アミンなどの塩基性化合物およびハロゲン化シアンの必要量が増加する。ハロゲン化シアンとしては、塩化シアン、臭化シアンなどを用いることができる。用いる塩基性化合物としては、有機塩基、無機塩基のいずれであってもよいが、有機溶媒を用いる場合は、溶媒に対する溶解度の高い有機塩基が好ましい。有機塩基の中でも、副反応の少ない3級アミンが好ましい。3級アミンとしては、アルキルアミン、アリールアミン、シクロアルキルアミンのいずれであってもよく、具体的にはトリメチルアミン、トリエチルアミン、メチルジエチルアミン、トリプロピルアミン、トリブチルアミン、メチルジブチルアミン、ジノニルメチルアミン、ジメチルステアリルアミン、ジメチルシクロヘキシルアミン、ジイソプロピルエチルアミン、ジエチルアニリン、ピリジン、キノリンなどが挙げられる。
 反応に用いる溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、ベンゼン、トルエン、キシレンなどの芳香族系溶剤、ジエチルエーテル、ジメチルセロソルブ、ジグライム、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、テトラエチレングリコールジメチルエーテルなどのエーテル系溶剤、塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼンなどのハロゲン化炭化水素系溶剤、メタノール、エタノール、2-プロパノール、メチルセロソルブ、プロピレングリコールモノメチルエーテルなどのアルコール系溶剤、N,N-ジメチルホルムアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリドン、ジメチルスルホキシドなどの非プロトン性極性溶剤、アセトニトリル、ベンゾニトリルなどのニトリル系溶剤、ニトロメタン、ニトロベンゼンなどのニトロ系溶剤、酢酸エチル、安息香酸エチルなどのエステル系溶剤、シクロヘキサンなどの炭化水素系溶剤などが挙げられるが、これらに限定されるものではない。また、反応基質に応じて、これら溶媒を1種または2種以上組み合わせて用いることができる。
 反応の冷却方法としては、直接氷浴、塩-氷浴、ドライアイス-アセトン浴、ドライアイス-メタノール浴、または、適切に温度制御されたアセトンやメタノール浴に、フラスコを浸して冷却してもよいし、ジャケット付きの装置を用い、ジャケット内に、適切に温度制御されたメタノール、エタノール、メタノール-水、エタノール-水、エチレングリコール-水、ナイブライン等の不凍液などを循環させることにより、反応系を冷却してもよい。また、これに加えて、反応熱を考慮して予め十分に冷却した溶液を混合する方法を採用してもよい。
 反応後の後処理としては、通常、副生した3級アミンなどの塩基性化合物の塩化水素塩を、ろ過するか、または水洗により除去する。一方、水と混和する溶媒を用いた時は、得られた反応液を水に滴下した後に、水と混和しない有機溶剤で抽出操作を実施するか、または、析出した結晶を濾取することにより、目的物を得ることができる。また、洗浄工程の際に、過剰のアミン類を除去するため、希塩酸などの酸性水溶液を用いる方法も採られる。充分に洗浄された反応液から水分を除去するために、硫酸ナトリウムや硫酸マグネシウムの添加などの一般的な方法を用いて、乾燥操作を実施することができる。
 上記した操作を実施した後、反応溶液の濃縮、沈殿化、または晶析操作を実施する。濃縮の際には、シアン酸エステル化合物が不安定な構造であるため、150℃以下に保持しながら、減圧する方法が採られる。沈殿化または晶析の際には、溶解度の低い溶媒を用いることができ、例えば、エーテル系の溶剤やヘキサン等の炭化水素系溶剤、またはアルコール系溶剤を反応溶液に滴下したり、逆滴下する方法を採用できる。
 得られた粗生成物を洗浄するために、反応液の濃縮物や沈殿した結晶を、エーテル系の溶剤やヘキサン等の炭化水素系溶剤、またはアルコール系の溶剤で洗浄する方法を採ることができる。また、反応溶液を濃縮して得られた結晶を再度溶解させた後、再結晶させることもできる。また、晶析する場合は、反応液を単純に濃縮または冷却して晶析を行なってもよい。このようにして得られた生成物から、減圧乾燥などの方法で揮発分を除去することにより、高純度のシアン酸エステル化合物を得ることができる。
<硬化性樹脂組成物>
 次に、本発明による硬化性樹脂組成物について説明する。本発明による硬化性樹脂組成物は、上記したシアン酸エステル化合物を含んでなるものである。硬化性樹脂組成物には、本発明のシアン酸エステル化合物以外のシアン酸エステル化合物、エポキシ樹脂、オキセタン樹脂、および/または重合可能な不飽和基を有する化合物等が含まれていてもよい。
 本発明によるシアン酸エステル化合物以外のシアン酸エステル化合物としては、例えば、ビスフェノールAジシアネート、ビスフェノールFジシアネート、ビスフェノールMジシアネート、ビスフェノールPジシアネート、ビスフェノールEジシアネート、フェノールノボラック型シアネート、クレゾールノボラック型シアネート、ジシクロペンタジエンノボラック型シアネート、テトラメチルビスフェノールFジシアネート、ビフェノールジシアネート等が挙げられるが、これらに限定されるものではない。また、これらのシアン酸エステル化合物は1種または2種以上混合して用いることができる。
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂等が挙げられるが、これらに限定されるものではない。また、これらのエポキシ樹脂は1種または2種以上混合して用いることができる。
 オキセタン樹脂としては、例えば、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3’ -ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、OXT-101(東亞合成株式会社製商標)、OXT-121(東亞合成株式会社製商標)等が挙げられるが、これらに限定されるものではない。また、これらのオキセタン樹脂は1種または2種以上混合して用いることができる。
 シアン酸エステル化合物からなる硬化性樹脂組成物を硬化させるには、公知の硬化触媒を用いることができる。硬化触媒として、例えば、オクチル酸亜鉛、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、アセチルアセトン鉄等の金属塩、フェノール、アルコール、アミン等の活性水酸基を有する化合物等が挙げられる。
 また、硬化性樹脂組成物が、エポキシ樹脂および/またはオキセタン樹脂を含有する場合には、エポキシ樹脂硬化剤および/またはオキセタン樹脂硬化剤を使用することができる。エポキシ樹脂硬化剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体、ジシアンジアミド、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、ホスフィン系はホスホニウム系のリン化合物を挙げることができるが、これらに限定されるものではない。また、オキセタン樹脂硬化剤としては、公知のカチオン重合開始剤が使用できる。また、市販されているものを使用してもよく、例えば、サンエードSI60L、サンエードSI-80L、サンエードSI100L(三新化学工業株式会社製)、CI-2064(日本曹達株式会社製)、イルガキュア261(チバ・ジャパン株式会社製)、アデカオプトマーSP-170、アデカオプトマーSP-150(株式会社ADEKA製)等を好適に使用することができる。カチオン重合開始剤はエポキシ樹脂硬化剤としても使用できる。これらの硬化剤は1種または2種以上組み合わせて使用してもよい。
 硬化性樹脂組成物に含有させてもよい重合可能な不飽和基を有する化合物としては、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物、メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価または多価アルコールの(メタ)アクリレート類、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類、ベンゾシクロブテン樹脂、(ビス)マレイミド樹脂等が挙げられるが、これらに限定されるものではない。また、これらの不飽和基を有する化合物は、1種または2種以上を混合して用いることができる。
 硬化性樹脂組成物が重合可能な不飽和基を有する化合物を含有する場合には、必要に応じて公知の重合開始剤を用いることができる。重合開始剤としては、例えば、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート等の過酸化物、またはアゾビスイソブチロニトリル等のアゾ化合物等が挙げられるが、これらに限定されるものではない。
<硬化物>
 本発明による硬化物は、上記した硬化性樹脂組成物を、熱や光などによって硬化させることにより得られる。熱硬化の場合、硬化温度は、低すぎると硬化が進まず、高すぎると硬化物の劣化が起こることから、150℃から300℃の範囲内が好ましい。
 本発明によるシアン酸エステル化合物を含む樹脂組成物を硬化させた硬化物は、電気絶縁材料、封止材料、接着剤、積層材料、レジスト、ビルドアップ積層板材料のほか、土木・建築、電気・電子、自動車、鉄道、船舶、航空機、スポーツ用品、美術・工芸などの分野における固定材、構造部材、補強剤、型どり材などに好ましく使用される。これらの中でも、耐候性、耐燃性および高度の機械強度が要求される航空機構造部材、衛星構造部材および鉄道車両構造部材、スポーツ用の繊維強化複合材料、すなわちゴルフクラブ用シャフト、釣り竿などの幅広い用途に使用することができる。
 以下、本発明を、実施例により、更に詳細に説明するが、本発明がこれら実施例により限定されるものではない。
合成例1:2-フェニル-3,3-ビス(4-ヒドロキシフェニル)フタルイミジンの合成
 フェノールフタレイン(31.86g,100mmol)のアニリン(65mL,717mmol)溶液に濃塩酸(36%,20.5mL,232mmol)を滴下した。内温が155~165℃になるように油浴で加熱しながら、水を留去した。液体クロマトグラフィーによる分析で原料のフェノールフタレインが消失するまで加熱攪拌を続けた(約16時間)。その後、濃塩酸(36%,51.4mL)と水(600mL)との混合溶液に反応溶液を注いだ。30分間攪拌した後、ろ過し水洗することにより結晶を得た。この結晶を水酸化ナトリウム(16.04g,401mmol)の水溶液(800mL)に溶解し、活性炭(5.22g)を加えて1時間攪拌した。活性炭をろ過にて取り除いた後、新たに活性炭5.60gを加えて1時間攪拌した。ろ過にて活性炭をとり除いた後、ろ液が酸性になるまで、ろ液に濃塩酸(36%)をゆっくり滴下した。1晩攪拌した後、ろ過し、洗浄液のpHが酸性でなくなるまで水で結晶を洗い(4回)、油回転式真空ポンプを用い真空下で結晶を乾燥した。得られた結晶を、メタノール(三菱ガス化学株式会社製,99.9%)150mLに加えて、加熱還流下で1時間攪拌し、室温まで放冷した。析出した結晶をろ過した後、メタノールで洗浄、乾燥することにより、生成物を得た(36.32g,92.3mmol,92%収率)。
 得られた化合物の構造を、核磁気共鳴装置(日本電子社製JNM-EX270FT-NMR)を用いて、NMRスペクトルにより同定した。NMRスペクトルは、図1に示される通りであった。
H-NMR:(270MHz、DMSO-d6、内部標準TMS)
δ(ppm)6.66(d,4H,J=8.6Hz)、6.92-7.01(m,6H)、7.14-7.28(m,4H)、7.47-7.65(m,2H)、7.83(d,1H,J=6.9Hz)、9.56(s,2H)
合成例2:2-(4-メチルフェニル)-3,3-ビス(4-ヒドロキシフェニル)フタルイミジン(BisP-PI-NpTolと略記)の合成
 p-トルイジン(31.8g,717mmol)を80℃に加温して溶解し、濃塩酸(36%,20.5mL,232mmol)を滴下した。その後フェノールフタレイン(31.8g,100mmol)を加え内温が155~165℃になるように油浴で加熱しながら、水を留去した。液体クロマトグラフィーによる分析で原料のフェノールフタレインがほぼ消失するまで加熱攪拌を続けた(約18時間,HPLC評価:フェノールフタレイン4area%, p-トルイジン20area%,生成物76area%)。濃塩酸(36%,51.4mL)と水(600mL)の混合溶液に反応溶液を注いだ。3日間室温で攪拌後、ろ過し、水洗することにより結晶を得た。得られた結晶を水酸化ナトリウム(10.06g,252mmol)の水溶液(1L)に溶解し、活性炭5.01gを加えて1時間攪拌した。活性炭をろ過にて取り除き、新たに活性炭5.43gを加えて1時間攪拌した。その後、ろ過にて活性炭をとり除いた後、ろ液が酸性になるまで、ろ液に濃塩酸(36%)をゆっくり滴下した。1晩攪拌した後、ろ過し、洗浄液のpHが酸性でなくなるまで水で結晶を洗った(4回)。油回転式真空ポンプを用い真空下結晶を乾燥し、生成物を得た。なお、液体クロマトグラフィーは、日立社製L-7000シリーズ、D-200クロマトインテグレーターを使用した(東ソー社製TSKgel ODS-120Tカラム)。展開溶媒はアセトニトリル-水混合溶媒系を使用した(流速1ml/min)。
 得られた化合物の構造を、上記と同様に、NMRスペクトルにより同定した。NMRスペクトルは、図2に示される通りであった。
H-NMR:(270MHz、DMSO-d6、内部標準TMS)
δ(ppm)2.20(s,3H)、6.45(d,1H,J=7.9Hz)、6.64(d,4H,J=8.6Hz)、6.73-6.83(m,2H)、6.90-7.05(m,5H)、7.23(d,1H,J=7.6Hz)、7.43-7.63(m,2H)、7.79(d,1H,J=7.3Hz)、9.55(s,2H)
合成例3:2-フェニル-3,3-ビス(4-ヒドロキシ-3-メチルフェニル)フタルイミジン(BisOCR-PI-NPhと略記)の合成
 o-クレゾールフタレイン(25.31g,73.1mmol)のアニリン(47.5mL,524mmol)溶液に濃塩酸(36%,15.0mL,170mmol)を滴下した。内温が155~165℃になるように油浴で加熱しながら、水を留去した。液体クロマトグラフィーによる分析で原料のフェノールフタレインが消失するまで加熱攪拌を続けた(約20時間)。濃塩酸(36%,20mL)と水(600mL)との混合溶液に反応溶液を注いだ。4日間攪拌後、ろ過し水洗することにより結晶を得た。得られた結晶を水酸化ナトリウム(8.00g,200mmol)の水溶液(200mL)に溶解し、活性炭5gを加えて30分間攪拌した。活性炭をろ過にて取り除き、新たに活性炭5gを加えて30分間攪拌した。ろ過にて活性炭をとり除いた後、ろ液が酸性になるまで、ろ液に濃塩酸(36%)をゆっくり滴下した。3時間攪拌した後、ろ過し、洗浄液のpHが酸性でなくなるまで水で結晶を洗った(4回)。その後、風乾し、生成物を得た(29.12g,69.1mmol,95%収率, HPLC評価:98area%以上)。なお、液体クロマトグラフィーによる評価は、上記と同様に行った。
 得られた化合物の構造を、上記と同様に、NMRスペクトルにより同定した。NMRスペクトルは、図3に示される通りであった。
H-NMR:(270MHz、DMSO-d6、内部標準TMS)
δ(ppm)2.17(s,6H)、6.95(d,2H,J=6.6Hz)、7.15-7.29(m,7H)、7.37-7.48(m,3H)、7.55-7.72(m,2H)、7.90(d,1H,J=7.3Hz)
合成例4:N-メチルイサチンの合成
 イサチン(14.70g,100mmol,SIGMA-ALDRICH株式会社製,純度98%)のジメチルホルムアミド(以下、DMF)(500ml)溶液を、氷浴を用いて0℃に冷却し、水素化ナトリウム(4.73g,118mmol,東京化成工業株式会社製,60% in oil)を、スパーテルを用いて10分間で少量ずつ加えた。15分攪拌した後、ヨウ化メチル(7.5mL,120mmol)を10分間かけて駒込ピペットを用いて少量ずつ加えた。0℃で1時間攪拌した後、塩酸酸性の水溶液1Lに注いだ。酢酸エチルで抽出後、酢酸エチル相を水で2回洗浄した。濃縮後N-メチルイサチンの粗生成物13.6gを得た(HPLC評価:79area%)。なお、液体クロマトグラフィーによる評価は、上記と同様に行った。
合成例5:1-メチル-3,3-ビス(4-ヒドロキシフェニル)インドリン-2-オン(BisP-IST-NMeと略記)の合成
 合成例4で得られたN-メチルイサチンの粗生成物(13.6g,84.5mmol)をフェノール(32.78g,348mmol)に溶かし、この溶液をフェノール(15.14g,161mmol)と濃塩酸(36%,15.0mL,170mmol)の混合溶液に、35℃で2.5時間かけて少しずつ加えた。その後35℃で3時間攪拌したのち室温で一晩攪拌した。75%リン酸水溶液(0.081ml)と16%水酸化カリウム水溶液(8.8ml)を加えて100℃で1時間加熱後、トルエン124mlを加えて放冷した。生成した結晶をろ過し、トルエンでよく洗浄した。得られた生成物を熱水で攪拌洗浄したのちろ過し、熱水で洗い、風乾し生成物を得た(18.65g,56.3mmol,67%,HPLC評価:98area%)。なお、液体クロマトグラフィーによる評価は、上記と同様に行った。合成スキームは、以下に示される通りである。
Figure JPOXMLDOC01-appb-C000014
 得られた化合物の構造を、上記と同様に、NMRスペクトルにより同定した。NMRスペクトルは、図4に示される通りであった。
H-NMR:(270MHz、DMSO-d6、内部標準TMS)
δ(ppm)3.19(s,3H)、6.69(d,4H,J=8.6Hz)、6.90-7.10(m,6H)、7.19-7.33(m,2H)、9.44(s,2H)
シアン酸エステルの製造例1
<2-フェニル-3,3-ビス(4-シアナトフェニル)フタルイミジン(BisP-PI-NPh-DCと略記)の合成>
 合成例1で得られた2-フェニル-3,3-ビス(4-ヒドロキシフェニル)フタルイミジン(30mmol)をジクロロメタン(90mL)に懸濁させ、氷浴中で冷却しながらトリエチルアミン(90mmol)を加え、発熱終了後室温に昇温した。一方、36%塩酸(90mmol)、水(50mL)、40%塩化シアンのジクロロメタン溶液(90mmol,三菱ガス化学株式会社製)、およびジクロロメタン(8mL)をジャケット付きのフラスコに入れ、ジャケット内に-10℃のメタノールを循環させて冷却し、攪拌下、温度を0℃以下に制御しながら上で調製した溶液を滴下した。1時間攪拌後さらにトリエチルアミン(30mmol)のジクロロメタン(9mL)溶液を滴下した。反応終了を液体クロマトグラフィーで確認し、室温に昇温後、有機相を分離した。塩化シアンを減圧留去したのち、水(100mL)で5回洗浄した。有機相を濃縮し生成物を得た。なお、液体クロマトグラフィーによる確認は、上記と同様に行った。
 得られた化合物の構造を、上記と同様に、NMRスペクトルにより同定した。NMRスペクトルは、図5に示される通りであった。
H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)6.82-6.94 (m,2H)、7.07-7.36(m,12H)、7.48-7.66(m,2H)、8.03(d,1H,J=6.6Hz)
シアン酸エステルの製造例2
<2-(4-メチルフェニル)-3,3-ビス(4-シアナトフェニル)フタルイミジン(BisP-PI-NpTol-DCと略記)の合成>
 合成例2で得られた2-(4-メチルフェニル)-3,3-ビス(4-ヒドロキシフェニル)フタルイミジン(30mmol)をジクロロメタン(90mL)に懸濁させ、氷浴中で冷却しながらトリエチルアミン(90mmol)を加え、発熱終了後室温に昇温した。一方、36%塩酸(90mmol)、水(50mL)、40%塩化シアンのジクロロメタン溶液(90mmol)、およびジクロロメタン(8mL)をジャケット付きのフラスコに入れ、ジャケット内に-10℃のメタノールを循環させて冷却し、攪拌下、温度を0℃以下に制御しながら上記の溶液を滴下した。1時間攪拌後さらにトリエチルアミン(30mmol)のジクロロメタン(9mL)溶液を滴下した。反応終了を液体クロマトグラフィーで確認し、室温に昇温後、有機相を分離した。塩化シアンを減圧留去したのち、水(100mL)で5回洗浄した。有機相を濃縮し生成物を得た。なお、液体クロマトグラフィーによる確認は、上記と同様に行った。
 得られた化合物の構造を、上記と同様に、NMRスペクトルにより同定した。NMRスペクトルは、図6に示される通りであった。
H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)2.29(s,3H)、6.71(d,2H,J=8.2Hz)、7.01(d,2H,J=4.2Hz)、7.06-7.14(m,1H)、7.17-7.33(m,8H)、7.48-7.69(m,2H)、7.97-8.08(m,1H)
シアン酸エステルの製造例3
<2-フェニル-3,3-ビス(4-シアナト-3-メチルフェニル)フタルイミジン(BisOCR-PI-NPh-DCと略記)の合成>
 合成例3で得られた2-フェニル-3,3-ビス(4-ヒドロキシ-3-メチルフェニル)フタルイミジン(30mmol)をジクロロメタン(90mL)に懸濁させ、氷浴中で冷却しながらトリエチルアミン(90mmol)を加え、発熱終了後室温に昇温した。一方、36%塩酸(90mmol)、水(50mL)、40%塩化シアンのジクロロメタン溶液(90mmol)、およびジクロロメタン(8mL)をジャケット付きのフラスコに入れ、ジャケット内に-10℃のメタノールを循環させて冷却し、攪拌下、温度を0℃以下に制御しながら上で調製した溶液を滴下した。1時間攪拌後さらにトリエチルアミン(30mmol)のジクロロメタン(9mL)溶液を滴下した。反応終了を液体クロマトグラフィーで確認し、室温に昇温後、有機相を分離した。塩化シアンを減圧留去したのち、水(100mL)で5回洗浄した。有機相を濃縮し生成物を得た。なお、液体クロマトグラフィーによる確認は、上記と同様に行った。
 得られた化合物の構造を、上記と同様に、NMRスペクトルにより同定した。NMRスペクトルは、図7に示される通りであった。
H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)2.19(s,6H)、6.82-6.93(m,2H)、7.00-7.15(m,5H)、7.17-7.35(m,5H)、7.50-7.63(m,2H)、7.99-8.07(m,1H)
シアン酸エステルの製造例4
<1-メチル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン(BisP-IST-NMe-DCと略記)の合成>
 合成例5で得られた1-メチル-3,3-ビス(4-ヒドロキシフェニル)インドリン-2-オン(30mmol)をDMF(50mL)に懸濁させ、氷浴中で冷却しながらトリエチルアミン(90mmol)を加えた。一方、40%塩化シアンのジクロロメタン溶液(135mmol)とDMF(15ml)の溶液をジャケット付きのフラスコに入れ、ジャケット内に-10℃のメタノールを循環させて冷却し、攪拌下、温度を0℃以下に制御しながら上で調製した溶液を滴下した。1時間攪拌後さらにトリエチルアミン(30mmol)のDMF(10mL)溶液を滴下した。反応終了を液体クロマトグラフィーで確認し、室温に昇温した。塩化シアンを減圧留去したのち、塩化メチレン(300ml)を加えて水(150mL)で5回洗浄した。有機相を濃縮し生成物を得た。なお、液体クロマトグラフィーによる確認は、上記と同様に行った。
 得られた化合物の構造を、上記と同様に、NMRスペクトルにより同定した。NMRスペクトルは、図7に示される通りであった。
H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)3.32(s,3H)、6.99(d,1H,J=7.6Hz)、7.11-7.43(m,11H)
実施例1
 製造例1において得られたシアン酸エステル(BisP-PI-NPh-DC)30重量部とビスフェノールAジシアネート(三菱ガス化学株式会社製 商標skylex、以下同じ)70重量部とを混合し、フッ素ゴム製Oリング(S-100:株式会社森清化工製)を入れたアルミカップ中にて加熱溶融させて真空ポンプで脱気した。その後、アルミカップで上から抑え、205℃,3時間、270℃,4時間加熱して硬化させた。冷却後、アルミカップを開けて、シアン酸エステル化合物の硬化物を得た。
実施例2
 実施例1で用いたシアン酸エステル(BisP-PI-NPh-DC)に代えて、製造例2で得られたシアン酸エステル(BisP-PI-NpTol-DC)を用いた以外は、実施例1と同様にして硬化物を得た。
実施例3
 実施例1で用いたシアン酸エステル(BisP-PI-NPh-DC)に代えて、実施例3で得られたシアン酸エステル(BisOCR-PI-NPh-DC)を用いた以外は、実施例1と同様にして硬化物を得た。
実施例4
 実施例1で用いたシアン酸エステル(BisP-PI-NPh-DC)に代えて、実施例4で得られたシアン酸エステル(BisP-IST-NMe-DC)を用いた以外は、実施例1と同様にして硬化物を得た。
実施例5
 実施例2において、シアン酸エステル(BisP-PI-NpTol-DC)の配合量を40重量部とし、ビスフェノールAジシアネートの配合量を60重量部に代えた以外は実施例2と同様にして硬化物を得た。
実施例6
 製造例1において得られたシアン酸エステル(BisP-PI-NPh-DC)100重量部を室温から10℃/minで昇温し、250℃にて2時間保持し硬化物を得た。
実施例7
 製造例2で得られたシアン酸エステル(BisP-PI-NpTol-DC)100重量部を室温から10℃/minで昇温し、250℃にて2時間保持し硬化物を得た。
実施例8
 製造例4で得られたシアン酸エステル(BisP-IST-NMe-DC)100重量部を室温から10℃/minで昇温し、250℃にて2時間保持し硬化物を得た。
比較例1
 実施例1において、シアン酸エステル30重量部とビスフェノールAジシアネート70重量部との混合物を用いる代わりに、ビスフェノールAジシアネート(三菱ガス化学株式会社製 商標skylex)100重量部を用いた以外は、実施例1と同様にして硬化物を得た。
<ガラス転移温度の測定>
 上記のようにして得られた硬化物から、約50mm×約5mm×約2mmの小片を切り出しまたは採取し、後記するガラス転移温度測定用の試料とした。この試料を用いて、下記の2種の方法により、ガラス転移温度を測定した。なお、ガラス転移温度が高いほど、硬化物の耐熱性が優れるといえる。
 測定方法1:粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン社製 AR2000ex)を使用し、歪み0.1%、周波数15Hzで3℃/分の割合で昇温しながら動的粘弾性の測定を行い、得られた損失正接の極大値をガラス転移温度とした。
 測定方法2:JIS-K7121に準拠し、示差走査熱量計(セイコーインスツル社製、SSC-5200)を用い、窒素気流下、昇温速度10℃/分で400℃まで昇温した後冷却し、昇温速度10℃/分で400℃まで再昇温し示差走査熱量測定を実施した。その際の中間点ガラス転移温度をガラス転移温度とした。
 実施例1~5および比較例1の硬化物については、測定方法1によりガラス転移温度を測定し、実施例6~8については、測定方法2によりガラス転移温度を測定した。測定結果は、下記の表1に示される通りであった。なお、表中、数値は、配合量(重量部)を示す。
Figure JPOXMLDOC01-appb-T000015

Claims (12)

  1.  下記一般式(1)で示されるシアン酸エステル化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     R1は、炭素数6~10の芳香族置換基、または炭素数1~20のアルキル基を表し、
     Rx1は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、
     Ry1は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、
     mは0~4の整数を表し、nは0~4の整数を表す。)
  2.  下記一般式(2)で示されるシアン酸エステル化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     R2は、炭素数6~10の芳香族置換基、または炭素数1~20のアルキル基を表し、
     Rx2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、
     Ry2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、アルコキシ基、またはハロゲンを表し、
     mは0~4の整数を表し、nは0~4の整数を表す。)
  3.  前記一般式(1)において、R1が、炭素数6~10の芳香族置換基、または炭素数1~10のアルキル基を表し、Rx1が、それぞれ独立して、水素原子、炭素数1~10のアルキル基、またはハロゲンを表わし、Ry1が、それぞれ独立して、水素原子、炭素数1~10のアルキル基、またはハロゲンを表す、請求項1記載のシアン酸エステル化合物。
  4.  前記一般式(1)において、R1が、炭素数6~10の芳香族置換基、またはメチル基、エチル基、n-プロピル基、もしくはi-プロピル基を表し、Rx1が、それぞれ独立して、水素原子、炭素数1~5のアルキル基、またはハロゲンを表し、Ry1が、それぞれ独立して、水素、炭素数1~5のアルキル基、またはハロゲンを表す、請求項1記載のシアン酸エステル化合物。
  5.  前記一般式(1)において、R1が、炭素数6の芳香族置換基またはメチル基もしくはエチル基を表し、Rx1が、それぞれ独立して、水素原子、または炭素数1~3のアルキル基を表し、Ry1が、それぞれ独立して、水素原子、または炭素数1~3のアルキル基を表す、請求項1記載のシアン酸エステル化合物。
  6.  前記一般式(1)において、R1が、フェニル基またはメチル基を表し、Rx1が、水素原子を表わし、Ry1が、それぞれ独立して、水素原子またはメチル基を表す、請求項1記載のシアン酸エステル化合物。
  7.  前記一般式(2)において、R2が、炭素数6~10の芳香族置換基、または炭素数1~10のアルキル基を表し、Rx2が、それぞれ独立して、水素原子、炭素数1~10のアルキル基、またはハロゲンを表し、Ry2が、それぞれ独立して、水素原子、炭素数1~10のアルキル基、またはハロゲンを表す、請求項2記載のシアン酸エステル化合物。
  8.  前記一般式(2)において、R2が、炭素数6~10の芳香族置換基、またはメチル基、エチル基、n-プロピル基もしくはi-プロピル基を表し、Rx2が、それぞれ独立して、水素原子、炭素数1~5のアルキル基またはハロゲンを表し、Ry2が、それぞれ独立して、水素、炭素数1~5のアルキル基またはハロゲンを表す、請求項2記載のシアン酸エステル化合物。
  9.  前記一般式(2)において、R2が、炭素数6の芳香族置換基、またはメチル基もしくはエチル基を表し、Rx2が、それぞれ独立して、水素原子または炭素数1~3のアルキル基を表わし、Ry2が、それぞれ独立して、水素原子または炭素数1~3のアルキル基を表す、請求項2記載のシアン酸エステル化合物。
  10.  前記一般式(2)において、R2が、フェニル基またはメチル基を表し、Rx2が、水素原子を表し、Ry2が、それぞれ独立して、水素原子またはメチル基を表す、請求項2記載のシアン酸エステル化合物。
  11.  請求項1~10のいずれか一項に記載のシアン酸エステル化合物を含んでなる、硬化性樹脂組成物。
  12.  請求項11記載の硬化性樹脂組成物を硬化させてなる硬化物。
PCT/JP2011/050734 2010-01-20 2011-01-18 シアン酸エステル化合物およびその硬化物 WO2011090022A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011550908A JPWO2011090022A1 (ja) 2010-01-20 2011-01-18 シアン酸エステル化合物およびその硬化物
CN2011800067824A CN103025713A (zh) 2010-01-20 2011-01-18 氰酸酯化合物及其固化物
EP11734628.8A EP2527324A4 (en) 2010-01-20 2011-01-18 CYANATE STARTER COMPOUND AND HARDENING PRODUCT THEREOF
US13/522,528 US8779162B2 (en) 2010-01-20 2011-01-18 Cyanate ester compounds and cured products thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-010317 2010-01-20
JP2010010317 2010-01-20

Publications (1)

Publication Number Publication Date
WO2011090022A1 true WO2011090022A1 (ja) 2011-07-28

Family

ID=44306824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050734 WO2011090022A1 (ja) 2010-01-20 2011-01-18 シアン酸エステル化合物およびその硬化物

Country Status (6)

Country Link
US (1) US8779162B2 (ja)
EP (1) EP2527324A4 (ja)
JP (1) JPWO2011090022A1 (ja)
CN (1) CN103025713A (ja)
TW (1) TW201134807A (ja)
WO (1) WO2011090022A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218140A (ja) * 2015-05-15 2016-12-22 Jsr株式会社 感光性樹脂組成物およびその用途

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014437A2 (en) 2012-07-16 2014-01-23 Empire Technology Development Llc Self-renewing hydrophilic organic coatings
US9493670B2 (en) 2013-04-18 2016-11-15 Empire Technology Development Llc Coatings that provide hydrophilic surface
WO2015060418A1 (ja) * 2013-10-25 2015-04-30 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
KR20170036733A (ko) * 2014-07-22 2017-04-03 사빅 글로벌 테크놀러지스 비.브이. 고열 단량체 및 그를 이용하는 방법
WO2016123458A1 (en) 2015-01-29 2016-08-04 Drexel University Thermoset polymers having a triazine network obtained by reaction of cyanate esters with dicyanamide room temperature ionic liquids
JP6915586B2 (ja) * 2018-04-26 2021-08-04 信越化学工業株式会社 熱硬化性樹脂組成物
US10487077B1 (en) 2018-06-14 2019-11-26 Sabic Global Technologies B.V. Bis(benzoxazinyl)phthalimidine and associated curable composition and composite

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553244A (en) 1963-02-16 1971-01-05 Bayer Ag Esters of cyanic acid
US4016173A (en) * 1974-02-19 1977-04-05 Ciba-Geigy Corporation Oxindole diamines
JPS62297316A (ja) 1986-06-18 1987-12-24 Toray Ind Inc 繊維強化プリプレグ用樹脂組成物およびその製造法
JPH02193966A (ja) 1988-11-15 1990-07-31 Abbott Lab N―アリール化イサチンの製造方法
US5198461A (en) 1989-12-11 1993-03-30 Neurosearch A/S Isatine derivatives, their preparation and use
JPH0641072A (ja) 1992-07-23 1994-02-15 Yamanouchi Pharmaceut Co Ltd 新規なイサチン誘導体又はその塩
JPH0753497A (ja) 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd シアネート化合物の製造方法
JPH0940644A (ja) 1995-07-26 1997-02-10 Mita Ind Co Ltd イサチン誘導体およびそれを用いた電子写真感光体
JP2991054B2 (ja) 1994-09-20 1999-12-20 住友化学工業株式会社 シアネート化合物の製造方法
JP2000501138A (ja) 1995-11-27 2000-02-02 アライドシグナル・インコーポレーテッド 独特の組成を有するシアネートエステル樹脂の改良された製造方法
JP2001504835A (ja) 1996-11-29 2001-04-10 ロンザ アーゲー アリールシアネートの製造方法
JP2002179649A (ja) 2000-12-11 2002-06-26 Honshu Chem Ind Co Ltd イサチンビス(o−クレゾール)の製造方法
JP2003012819A (ja) 2001-06-28 2003-01-15 Toray Ind Inc 繊維強化複合材料の製造方法および繊維強化複合材料
JP3573530B2 (ja) 1995-06-22 2004-10-06 日本化薬株式会社 エポキシ樹脂混合物、エポキシ樹脂組成物およびその硬化物
JP2005290378A (ja) 2004-03-31 2005-10-20 General Electric Co <Ge> 2−ヒドロカルビル−3,3−ビス(4−ヒドロキシアリール)フタルイミジンモノマーから誘導されたポリマーを含む難燃性樹脂ブレンド
JP2006070115A (ja) 2004-08-31 2006-03-16 Nippon Oil Corp 繊維強化複合材料用樹脂組成物、該組成物を用いた繊維強化複合材料の製造方法及び繊維強化複合材料
WO2007070362A1 (en) 2005-12-09 2007-06-21 Helicon Therapeutics, Inc. Indolone compounds useful to treat cognitive impairment
JP2007277102A (ja) 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc 高純度シアン酸エステルの製造方法
WO2008037364A1 (de) * 2006-09-28 2008-04-03 Bayer Materialscience Ag Polycarbonate und copolycarbonate mit verbesserter metallhaftung
WO2008157328A1 (en) * 2007-06-15 2008-12-24 Sabic Innovative Plastics Ip B.V. Polycarbonate-poly(alkylene oxide) copolymer compositions and articles formed therefrom
JP2009132886A (ja) * 2007-10-29 2009-06-18 Mitsubishi Gas Chem Co Inc 樹脂組成物並びにこれを用いたプリプレグ及び積層板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277230B2 (en) 2004-03-31 2007-10-02 General Electric Company Methods for producing and purifying 2-hydrocarbyl-3,3-bis(4-hydroxyaryl)phthalimidine monomers and polycarbonates derived therefrom
US7642315B2 (en) 2007-06-15 2010-01-05 Sabic Innovative Plastics Ip B.V. Polycarbonate-poly(alkylene oxide) copolymer compositions and articles formed therefrom
KR101688828B1 (ko) 2009-02-25 2017-01-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 프리프레그 및 적층판

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553244A (en) 1963-02-16 1971-01-05 Bayer Ag Esters of cyanic acid
US4016173A (en) * 1974-02-19 1977-04-05 Ciba-Geigy Corporation Oxindole diamines
JPS62297316A (ja) 1986-06-18 1987-12-24 Toray Ind Inc 繊維強化プリプレグ用樹脂組成物およびその製造法
JPH02193966A (ja) 1988-11-15 1990-07-31 Abbott Lab N―アリール化イサチンの製造方法
US5198461A (en) 1989-12-11 1993-03-30 Neurosearch A/S Isatine derivatives, their preparation and use
JPH0641072A (ja) 1992-07-23 1994-02-15 Yamanouchi Pharmaceut Co Ltd 新規なイサチン誘導体又はその塩
JPH0753497A (ja) 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd シアネート化合物の製造方法
JP2991054B2 (ja) 1994-09-20 1999-12-20 住友化学工業株式会社 シアネート化合物の製造方法
JP3573530B2 (ja) 1995-06-22 2004-10-06 日本化薬株式会社 エポキシ樹脂混合物、エポキシ樹脂組成物およびその硬化物
JPH0940644A (ja) 1995-07-26 1997-02-10 Mita Ind Co Ltd イサチン誘導体およびそれを用いた電子写真感光体
JP2000501138A (ja) 1995-11-27 2000-02-02 アライドシグナル・インコーポレーテッド 独特の組成を有するシアネートエステル樹脂の改良された製造方法
JP2001504835A (ja) 1996-11-29 2001-04-10 ロンザ アーゲー アリールシアネートの製造方法
JP2002179649A (ja) 2000-12-11 2002-06-26 Honshu Chem Ind Co Ltd イサチンビス(o−クレゾール)の製造方法
JP2003012819A (ja) 2001-06-28 2003-01-15 Toray Ind Inc 繊維強化複合材料の製造方法および繊維強化複合材料
JP2005290378A (ja) 2004-03-31 2005-10-20 General Electric Co <Ge> 2−ヒドロカルビル−3,3−ビス(4−ヒドロキシアリール)フタルイミジンモノマーから誘導されたポリマーを含む難燃性樹脂ブレンド
JP2006070115A (ja) 2004-08-31 2006-03-16 Nippon Oil Corp 繊維強化複合材料用樹脂組成物、該組成物を用いた繊維強化複合材料の製造方法及び繊維強化複合材料
WO2007070362A1 (en) 2005-12-09 2007-06-21 Helicon Therapeutics, Inc. Indolone compounds useful to treat cognitive impairment
JP2007277102A (ja) 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc 高純度シアン酸エステルの製造方法
WO2008037364A1 (de) * 2006-09-28 2008-04-03 Bayer Materialscience Ag Polycarbonate und copolycarbonate mit verbesserter metallhaftung
WO2008157328A1 (en) * 2007-06-15 2008-12-24 Sabic Innovative Plastics Ip B.V. Polycarbonate-poly(alkylene oxide) copolymer compositions and articles formed therefrom
JP2009132886A (ja) * 2007-10-29 2009-06-18 Mitsubishi Gas Chem Co Inc 樹脂組成物並びにこれを用いたプリプレグ及び積層板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANN. CHIM. (ROME, vol. 57, 1967, pages 492
See also references of EP2527324A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218140A (ja) * 2015-05-15 2016-12-22 Jsr株式会社 感光性樹脂組成物およびその用途

Also Published As

Publication number Publication date
TW201134807A (en) 2011-10-16
US20130023640A1 (en) 2013-01-24
JPWO2011090022A1 (ja) 2013-05-23
EP2527324A1 (en) 2012-11-28
US8779162B2 (en) 2014-07-15
CN103025713A (zh) 2013-04-03
EP2527324A4 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2011090022A1 (ja) シアン酸エステル化合物およびその硬化物
JP2010180147A (ja) シアン酸エステル化合物、およびその硬化物
JP4407823B2 (ja) 新規なシアネートエステル化合物、難燃性樹脂組成物、およびその硬化物
JP6559369B2 (ja) ビスフェノールmジフタロニトリルエーテル樹脂、ビスフェノールpジフタロニトリルエーテル樹脂、その製造方法、樹脂ブレンド、及び2成分システム
US9217061B2 (en) Phosphorus-containing compounds and their preparation process and use
JP5104312B2 (ja) シアン酸エステル重合体
JP6602016B2 (ja) シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
US20180118666A1 (en) Phthalonitrile compound
JP5376137B2 (ja) 硬化性樹脂組成物
US20180009788A1 (en) Bisphenols containing pendant clickable maleimide group and polymers therefrom
WO2016158066A1 (ja) シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
KR20160079006A (ko) 시안산에스테르 화합물, 그 화합물을 포함하는 경화성 수지 조성물 및 그 경화물
JP2930695B2 (ja) 芳香族ジアミン化合物、ビスマレイミド化合物並びにこれらを用いた硬化性樹脂組成物及び樹脂並びにこれらの製造方法
JP6725787B2 (ja) 芳香族ジアミンおよびこれを用いた液晶性エポキシ樹脂熱硬化物
JP2011102259A (ja) 芳香族ジアミン化合物及びその製造方法並びに合成樹脂
WO2006085493A1 (ja) 芳香族ジアミン及びその製造方法
JP6544713B2 (ja) シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
JP6190256B2 (ja) 新規なビス(ヒドロキシフェニル)ベンゾオキサゾール化合物
JP4815884B2 (ja) ビアダマンタンテトラフェノール誘導体
JP2010173981A (ja) イミド化合物およびその製造方法
CN113234006B (zh) 一种含金刚烷侧基三芳胺的双马来酰亚胺合成方法
JP7184135B2 (ja) 重合性s-トリアジン誘導体及びこれを用いた硬化性組成物、並びにこれらを用いた硬化物及び成形材料
JP2010285348A (ja) ベンゾオキサジン化合物
CN105254534A (zh) 含侧链取代芳酯型液晶基元的双邻苯二甲腈单体及其制备和应用
JPH0551579B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006782.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550908

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011734628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13522528

Country of ref document: US