WO2011089913A1 - 走査型電子顕微鏡 - Google Patents
走査型電子顕微鏡 Download PDFInfo
- Publication number
- WO2011089913A1 WO2011089913A1 PCT/JP2011/000301 JP2011000301W WO2011089913A1 WO 2011089913 A1 WO2011089913 A1 WO 2011089913A1 JP 2011000301 W JP2011000301 W JP 2011000301W WO 2011089913 A1 WO2011089913 A1 WO 2011089913A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- electron microscope
- scanning electron
- electron beam
- shape
- Prior art date
Links
- 238000010894 electron beam technology Methods 0.000 claims abstract description 133
- 238000003860 storage Methods 0.000 claims description 35
- 238000012937 correction Methods 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 238000001000 micrograph Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 47
- 238000001878 scanning electron micrograph Methods 0.000 description 24
- 238000005259 measurement Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- ISQINHMJILFLAQ-UHFFFAOYSA-N argon hydrofluoride Chemical compound F.[Ar] ISQINHMJILFLAQ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70625—Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/22—Optical, image processing or photographic arrangements associated with the tube
- H01J37/222—Image processing arrangements associated with the tube
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/153—Correcting image defects, e.g. stigmators
- H01J2237/1536—Image distortions due to scanning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/22—Treatment of data
- H01J2237/226—Image reconstruction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24571—Measurements of non-electric or non-magnetic variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2809—Scanning microscopes characterised by the imaging problems involved
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2813—Scanning microscopes characterised by the application
- H01J2237/2817—Pattern inspection
Definitions
- the present invention relates to a scanning electron microscope.
- a charged particle beam apparatus such as a scanning electron microscope (hereinafter referred to as SEM) is used to measure the pattern size of a semiconductor device and evaluate its performance.
- SEM scanning electron microscope
- an SEM that measures the line width of a semiconductor line pattern and the hole diameter of a hole pattern is called a CD-SEM (Critical Dimension SEM).
- an electron beam emitted from an electron gun placed above a wafer is narrowed down with a converging lens, and an evaluation sample is scanned two-dimensionally with a deflector. Then, secondary electrons generated from the sample surface by electron beam irradiation are captured by a secondary electron detector, and the obtained signal is recorded as an image (hereinafter referred to as an SEM image). Since the amount of secondary electrons generated varies depending on the unevenness of the sample, it is possible to grasp the shape change of the sample surface by evaluating the secondary electron signal. Further, the edge position is specified by utilizing the fact that the secondary electron signal rapidly increases at the edge portion of the pattern, and the dimension is measured (hereinafter referred to as length measurement).
- an argon fluoride (ArF) excimer laser photoresist (hereinafter referred to as an ArF resist), which is used as a photosensitive material for photolithography, is vulnerable to an electron beam, and its volume is reduced by electron beam irradiation (Hereinafter referred to as shrink).
- the second is surface charging of the sample caused by irradiating with negatively charged electrons.
- the surface charging of the sample by electron beam irradiation can be expressed by a secondary electron generation efficiency ⁇ defined by (secondary electron amount / incident electron amount), and exhibits characteristics as shown in FIG.
- the irradiation energy is divided into three ranges (101, 102, 103) with the irradiation energy at which the number of incident electrons and secondary electrons coincide, that is, the irradiation energy at which the secondary electron generation efficiency ⁇ is 1.
- the number of secondary electrons is smaller than the number of incident electrons, and the sample is negatively charged.
- the number of secondary electrons is larger than the number of incident electrons at 102, the sample is positively charged.
- secondary electrons having a small energy of several eV are drawn back to the sample surface, and incident electrons are also deflected. As a result, it is considered that the brightness of the SEM image becomes dark or a dimensional error due to the deflection of incident electrons occurs, affecting the measurement.
- Patent Documents 1 and 2 disclose the method of FIG. 2 in order to estimate the dimension before the dimension is changed due to shrinkage.
- the electron beam Is estimated that is, the dimension before shrinking (203).
- this method no mention is made of the influence of charging, and there is a premise that the shrink amount is the same in all locations in the target resist pattern.
- Patent Document 3 describes a technique for performing highly reliable dimension measurement by extracting contour information corresponding to an actual pattern edge end of a sample.
- the semiconductor circuit to be measured has a complicated two-dimensional pattern including not only a simple linear shape but also a bent portion (301) as shown in FIG.
- a two-dimensional pattern it was found that the taper angle of the pattern was different between the region A (302) and the region B (303), and the shape change was not uniform.
- a process is taken into account that the amount of change in size and shape varies depending on the taper angle. Therefore, it is considered that the error of the restored shape contour line becomes large.
- OPC Optical Proximity Correction
- the cross-sectional shape of a pattern is estimated by applying the projection waveform at each point of the pattern edge of the CD-SEM to a library that associates the cross-sectional shape of the sample with the electron beam signal waveform, and the estimated cross-sectional shape Since the edge end (for example, the bottom end) of the desired definition in (1) is used as the edge point and the series is used as the pattern outline, the outline corresponding to the actual pattern edge of the sample is output.
- the OPC correction is performed using the shape contour line after the shape change by the electron beam irradiation, it is considered that a design error is caused by the amount of the shape change. Therefore, shape contour information before irradiating an electron beam is required also in OPC correction.
- An object of the present invention is to restore the shape outline before electron beam irradiation of a two-dimensional pattern with high accuracy.
- the present invention relates to an electron source, a focusing lens that focuses an electron beam emitted from the electron source, a deflection coil that scans the electron beam on the sample, and a secondary generated from the sample by irradiation of the electron beam.
- a scanning electron microscope comprising: a detector that detects electrons; and a calculation unit that calculates a contour of a pattern on the sample surface based on an output of the detector, wherein the calculation unit includes the electron beam irradiation
- the scanning electron microscope is characterized in that the contour of the pattern changed by the step is corrected according to the pattern shape.
- the scanning electron microscope further includes display means for displaying the contour of the pattern after correction.
- the pattern shape is a cross-sectional shape of a pattern formed on the sample.
- the pattern shape is a taper angle of a pattern cross section formed on the sample.
- the pattern is a resist pattern formed on the sample.
- the pattern shape is an angle of the pattern edge with respect to the scanning direction of the electron beam
- a correspondence table storage unit that stores and stores a correspondence table of the angle of the pattern edge with respect to the scanning direction of the electron beam and the dimensional change amount of the pattern It is a scanning electron microscope characterized by having.
- the scanning electron microscope is characterized in that an individual shape change amount is calculated at a specific portion of the two-dimensional pattern, and an outline of the pattern before electron beam irradiation is calculated.
- the scanning electron microscope is characterized in that the specific portion of the two-dimensional pattern is a bent portion of the pattern, a tip portion, or a portion having a different adjacent pattern interval.
- the restoration parameter amount of the specific portion of the two-dimensional pattern is a dimensional change amount, the taper angle of the pattern section, the dimensional change amount of the pattern, the angle of the pattern edge with respect to the scanning direction of the electron beam, and the pattern
- a restoration calculation unit that calculates the shape change amount due to the electron beam irradiation, and based on the shape change amount calculated by the restoration calculation unit An outline of the pattern before the electron beam irradiation is calculated.
- a scanning electron microscope comprising: a stress calculation unit that calculates a stress that the specific portions of the pattern affect; and a position before electron beam irradiation is calculated using the stress calculation unit is there.
- a scanning electron microscope comprising: a detector for detection; and a calculation means for calculating a contour of a pattern on the sample surface based on an output of the detector, wherein a shape parameter of the pattern of the sample to be observed in advance
- a shape storage unit for storing and storing; a correspondence table storage unit for storing correspondence between the shape parameter and a dimensional change amount due to a change in size due to the electron beam irradiation; and an electron from the shape storage unit and the correspondence table storage unit
- a restoration calculation unit that calculates a shape change amount due to the irradiation of the beam, and the calculation means calculates the contour of the pattern based on the shape change amount calculated by the restoration calculation unit. It is a scanning electron microscope and correcting a contour of the front of the pattern.
- the amount of change in shape caused by electron beam irradiation at each part of the pattern greatly depends on the cross-sectional shape of the resist pattern, and the smaller the taper angle, the larger the amount of change in shape caused by electron beam irradiation.
- a detailed pattern cross section Link with a database of patterns obtained from information such as the shape and the edge direction of the pattern with respect to the scanning direction of the electron beam, create and store a taper angle map of the pattern cross section to acquire SEM images, and further change the taper angle and dimensional change due to shrinkage Create and store the correspondence table of the amount and the pattern edge angle with respect to the scanning direction of the electron beam and the dimensional change amount of the pattern, and by combining these databases, the shape change caused by the electron beam irradiation in each part of the pattern A method and device for calculating the amount and restoring the shape contour before electron beam irradiation based on the amount of change That.
- the present invention proposes a method and apparatus for correcting a positional deviation caused by stresses that affect each part of a pattern and restoring a shape outline.
- the shape outline before the electron beam irradiation of the two-dimensional pattern can be restored with high accuracy.
- FIG. 4 is a diagram showing a configuration of a scanning electron microscope which is an embodiment of the present invention.
- a voltage is applied between the cathode 401 serving as the electron source and the first anode 402 by a high voltage control power supply 404 controlled by a control arithmetic device 403 (control processor), and a predetermined emission current is drawn from the cathode 401.
- An acceleration voltage is applied between the cathode 401 and the second anode 405 by a high-voltage control power source 406 controlled by the control arithmetic unit 403, so that the incident electron beam 407 emitted from the cathode 401 is accelerated to a subsequent stage. Proceed to the lens system.
- the incident electron beam 407 is converged by the focusing lens 409 controlled by the focusing lens control power source 408, and an unnecessary area of the incident electron beam 407 is removed by the diaphragm plate 410. Thereafter, the light is converged as a minute spot on the sample 413 by the objective lens 412 controlled by the objective lens control power source 411, and the sample is scanned two-dimensionally by the deflection coil 414.
- the scanning signal of the deflection coil 414 is controlled by the deflection coil control power source 415 according to the observation magnification.
- the sample 413 is fixed on a sample stage 416 that can move two-dimensionally. The movement of the sample stage 416 is controlled by a stage control unit 417.
- Secondary electrons 418 generated from the sample 413 by irradiation of the incident electron beam 407 are detected by the secondary electron detector 419, and the drawing apparatus 420 converts the detected secondary electron signal into a visible signal and puts it on another plane. By controlling to arrange them appropriately, an image corresponding to the surface shape of the sample is displayed on the sample image display device 421 as a sample image.
- the input device 422 serves as an interface between the operator and the control arithmetic device 403. The operator controls each unit described above via the input device 422, and also designates a measuring point and gives a dimension measurement command.
- the control arithmetic device 403 is provided with a storage device (not shown) so that the obtained length measurement value, a length measurement sequence described later, and the like can be stored.
- the signal detected by the secondary electron detector 419 is amplified by the signal amplifier 423 and then stored in the image memory in the drawing apparatus 420.
- the apparatus of this embodiment includes a secondary electron detector 419.
- the present invention is not limited to this, and there are two reflected electron detectors that detect reflected electrons and two detectors that detect light, electromagnetic waves, and X-rays. It is also possible to provide a secondary electron detector instead of or together with the secondary electron detector.
- An address signal corresponding to the memory position of the image memory is generated in the control arithmetic unit 403 or in a separately installed computer, converted into an analog signal, and then supplied to the deflection coil 414.
- the X direction address signal is a digital signal that repeats 0 to 512
- the Y direction address signal is obtained when the X direction address signal reaches 0 to 512. It is a digital signal of 0 to 512 that is incremented by 1. This is converted into an analog signal. Since the address of the image memory corresponds to the address of the deflection signal for scanning the electron beam, a two-dimensional image of the deflection region of the electron beam by the scanning coil is recorded in the image memory. Note that signals in the image memory can be sequentially read out in time series by a read address generation circuit synchronized with a read clock.
- the signal read corresponding to the address is converted into an analog signal and becomes a luminance modulation signal of the sample image display device 421.
- the image memory has a function of storing (synthesized) images (image data) in an overlapping manner for improving the S / N ratio.
- one completed image is formed by storing images obtained by eight two-dimensional scans in an overlapping manner. That is, a final image is formed by combining images formed in one or more XY scanning units.
- the number of images (frame integration number) for forming one completed image can be arbitrarily set, and an appropriate value is set in consideration of conditions such as secondary electron generation efficiency ⁇ .
- an image desired to be finally acquired can be formed by further overlapping a plurality of images formed by integrating a plurality of sheets.
- the blanking of the incident electron beam may be executed at the time when the desired number of images is stored or after that, and the information input to the image memory may be interrupted.
- a predetermined number of images e.g., 8 images
- information for example, a line profile
- Extracting That is, in order to perform a plurality of length measurements, 8 images ⁇ number of length measurements are acquired.
- length measurement is performed based on image formation
- the present invention is not limited to this. For example, an electron beam is scanned one-dimensionally and emitted from the scanning portion.
- the apparatus has a function of forming a line profile based on the detected secondary electrons or reflected electrons.
- the line profile is formed based on the amount of detected electrons when the incident electron beam is scanned one-dimensionally or two-dimensionally or the luminance information of the sample image.
- the obtained line profile is, for example, on a semiconductor wafer.
- Used for length measurement of the formed pattern two vertical or horizontal cursor lines are displayed on the sample image display device 421 together with the sample image, and the two cursors are placed at two edges of the pattern via the input device 422.
- the control calculation device 403 Based on the information of the image magnification of the image and the distance between the two cursors, calculates a length measurement value as a pattern dimension value.
- the control processor unit is described as being integrated with or equivalent to the scanning electron microscope.
- control processor unit is of course not limited thereto, and is a control processor provided separately from the scanning electron microscope body. Processing described below may be performed. In that case, a detection signal detected by the secondary electron detector 419 is transmitted to the control processor, a transmission medium for transmitting a signal from the control processor to a lens or a deflector of the scanning electron microscope, and the like via the transmission medium An input / output terminal for inputting / outputting a signal transmitted through the network is required.
- a program for performing the processing described below may be registered in a storage medium, and the program may be executed by a control processor that has an image memory and supplies necessary signals to the scanning electron microscope.
- the apparatus of the present embodiment stores, for example, conditions (measurement locations, optical conditions of a scanning electron microscope, etc.) for observing a plurality of points on a semiconductor wafer in advance as a recipe, and measures according to the contents of the recipe. And the ability to perform observations.
- a program for performing the processing described below may be registered in a storage medium, and the program may be executed by a control processor that has an image memory and supplies necessary signals to the scanning electron microscope. That is, the embodiment of the present invention described below is also established as an invention of a program that can be employed in a charged particle beam apparatus such as a scanning electron microscope equipped with an image processor.
- a calculation unit that restores the shape contour before electron beam irradiation from the SEM image after electron beam irradiation is added to the function of the CD-SEM control calculation device 403 described in FIG. Via the input device 422, the restored shape contour line is superimposed on the acquired SEM image and displayed on the sample image display device 421.
- a pattern information database such as an exposure condition (601) of an exposure apparatus, a process condition (602) of a process apparatus, and a process evaluation result (603) of an OCD apparatus is linked to a pattern acquired by a CD-SEM.
- the taper angle map (605) of the cross-sectional shape and the angle map (606) of the pattern edge with respect to the scanning direction of the electron beam are stored in the shape storage unit (607) as a database (S501).
- a correspondence table (608) of the taper angle and the dimensional change amount due to shrink, and a correspondence table (609) of the angle of the pattern edge and the dimensional change amount with respect to the scanning direction of the electron beam (609) are separately created, and a correspondence table storage unit as a database (610) (S502).
- a specific method of creating each correspondence table and a shape contour restoration procedure when each correspondence table is used will be described later.
- the shape outline restoration calculation unit (611) calculates the amount of shape change caused by electron beam irradiation in each part of the pattern (S503). .
- an SEM image (612) is acquired by CD-SEM, and a shape contour line (613) after electron beam irradiation is extracted from the acquired SEM image (612) (S504).
- the shape contour line (614) before the electron beam irradiation is restored from the shape change amount resulting from the electron beam irradiation calculated by the shape contour line restoration calculation unit (611) and the shape contour line (613) after the electron beam irradiation (S505).
- a technique for extracting the contour line from the pattern edge is used. Specifically, a pattern edge is extracted from the acquired SEM image, and pattern matching is performed between the edge portion and the contour line of the design data. Next, the SEM edge is contoured. At the time of contouring, the brightness distribution of the white band of the SEM edge is recognized as a waveform, and the contour line is extracted by connecting locations with high brightness (or locations extracted by setting a predetermined threshold). To do.
- a pattern information database such as an exposure condition (801) of an exposure apparatus, a process condition (802) of a process apparatus, and a process evaluation result (803) of an OCD apparatus is connected to a pattern acquired by a CD-SEM.
- the taper angle map (805) of the cross-sectional shape and the pattern edge angle map (806) with respect to the scanning direction of the electron beam are stored as a database in the shape storage unit (807) (S701).
- a correspondence table (808) of the taper angle and the dimensional change amount due to shrink and a correspondence table (809) of the pattern edge angle and the dimensional change amount with respect to the scanning direction of the electron beam are separately created, and a correspondence table storage unit as a database (810) (S702).
- a correspondence table (808) of taper angle and dimensional change amount due to shrinkage the cross-sectional shape before electron beam irradiation and the cross-sectional shape after shrinking by electron beam irradiation are applied to resist patterns with various taper angles. It is necessary to measure and specify the amount of dimensional change that changes at the nanometer level.
- a cross-sectional SEM or STEM may be used to specify the dimensional change for each cross-sectional shape.
- the relationship between the taper angle and the dimensional change due to shrinkage was 708.
- the amount of dimensional change when the taper angle is 60 ° is about 6 nm, while the amount of dimensional change when the taper angle is 80 ° is about 3 nm. Further, it is saturated after 90 °.
- the electron beam is deflected by the angle of the pattern edge with respect to the scanning direction of the electron beam and its charging.
- the amount needs to be specified.
- the relationship between the angle of the pattern edge and the dimensional change amount with respect to the scanning direction of the electron beam was 809.
- the angle of the pattern edge with respect to the scanning direction of the electron beam is 1 °, the electron beam is not significantly affected by charging, and the dimensional error is zero.
- the electron beam is deflected in the direction indicated by the block arrow (810) under the influence of left and right charging, and the dimensional error becomes +1 nm.
- the shape outline restoration calculation unit (812) calculates the amount of shape change caused by electron beam irradiation in each part of the pattern (S703). .
- an SEM image (813) is acquired by CD-SEM, and a shape contour line (814) after electron beam irradiation is extracted from the acquired SEM image (813) (S704).
- the shape contour line (815) before the electron beam irradiation is restored from the shape change amount resulting from the electron beam irradiation calculated by the shape contour restoration calculation unit (812) and the shape contour line (814) after the electron beam irradiation (S705).
- the one-dimensional pattern and the two-dimensional pattern have different shapes when they are irradiated with an electron beam.
- the one-dimensional pattern (901) as shown in FIG. 9- (A) not only the amount of change in shape (902) at each part of the pattern, but also the force (hereinafter referred to as stress) at which each part of the pattern pulls each other is comparable. Therefore, when estimating the shape contour line (903) before electron beam irradiation, it is not necessary to correct the pattern position, and the calculated shape change amount may be added.
- the two-dimensional pattern (904) as shown in FIG. 9- (B) the region A (905) and the region B (906) have different shape change amounts. Stress (907) as shown in FIG. Therefore, in order to restore the shape contour line (908) of the two-dimensional pattern (904) before the electron beam irradiation with high accuracy, in addition to calculating the shape change amount at each pattern part, It is necessary to perform position correction considering the stress (907).
- FIG. 11- (A) the two-dimensional pattern is divided into blocks of the same size (S1001).
- the position correction method for block A (1101) will be described specifically.
- a peripheral block other than the block A (1101) is assumed to be a block B (1102).
- FIG. 11- (B) the two-dimensional pattern is divided into four quadrants centered on the block A (1101) (S1002).
- the first quadrant (1103) is in the direction of the arrow (1104), the second quadrant (1105) is in the direction of the arrow (1106), the third quadrant (1107) is in the direction of the arrow (1108), and the fourth quadrant (1109) is in the direction of the arrow (1110).
- stress is applied.
- the number of blocks B (1102) included in each quadrant is calculated (S1003).
- the stress of each quadrant is weighted by the calculated number of blocks B (1102) (S1004), and position correction is performed based on the weight (S1005).
- S1005 the weight
- the number of blocks B (1102) included in each quadrant is zero in the second quadrant (1105), the first quadrant (1103), and the third The quadrant (1107) is 2, the fourth quadrant (1109) is 11, the fourth quadrant (1109) is the largest, and the stress applied in the direction of the arrow (1110) is the largest. Further, since stress acts on the arrows (1104) and (1108) in opposite directions, it can be considered that the forces cancel each other.
- the shape outline (1111) of the two-dimensional pattern before electron beam irradiation as shown in the figure is restored as shown in FIG. 11- (D), and is restored by the conventional method shown in FIG. 11- (E). It can be seen that the shape contour line (1112) greatly differs.
- the two-dimensional pattern to be observed often includes a bent portion (1201), a tip portion (1202) of a line pattern, and a portion (1203) having a different pattern density as shown in FIG. Since the bent portion (1201) restores the shape contour before electron beam irradiation using the method shown in the above-described embodiment, the restoration method is omitted here.
- a method of restoring the shape contour line before the electron beam irradiation of the tip portion (1202) of the line pattern will be described with reference to FIG.
- the taper angle ⁇ (1302) of the region A (1301) including the tip portion (1202) of the line pattern is smaller than the taper angle ⁇ (1304) of the region B (1303). Accordingly, the amount of dimensional change due to electron beam irradiation is larger in region A than in region B. Based on the result, the shape outline (1305) before the electron beam irradiation has a shape as indicated by a broken line. Further, a specific processing procedure of the shape contour restoring method before the electron beam irradiation of the portion (1203) having a different pattern density will be described with reference to FIGS.
- a pattern information database (1504) such as an exposure condition (1501) of an exposure apparatus, a process condition (1502) of a process apparatus, and a process evaluation result (1503) of an OCD apparatus is linked to a pattern acquired by a CD-SEM.
- the layout map (1505) is stored in the shape storage unit (1506) as a database (S1401).
- a correspondence table (1507) of the interval between adjacent patterns and the dimensional change amount due to shrinkage is separately created and stored in the correspondence table storage unit (1508) as a database (S1402).
- the cross-sectional shape before electron beam irradiation and the cross-sectional shape after shrinking by electron beam irradiation are measured for a resist pattern having a different interval between adjacent patterns. It is necessary to specify the amount of dimensional change that changes.
- a cross section SEM or STEM may be used to specify the dimensional change.
- the shape outline restoration calculation unit (1509) calculates the amount of shape change caused by electron beam irradiation for each interval between adjacent patterns (S1403). ).
- an SEM image (1510) is acquired by a CD-SEM, and a shape contour line (1511) after electron beam irradiation is extracted from the acquired SEM image (1510) (S1404).
- the shape contour line (1512) before the electron beam irradiation is restored from the shape change amount resulting from the electron beam irradiation calculated by the shape contour restoration calculation unit (1509) and the shape contour line (1511) after the electron beam irradiation (S1405).
- S1406 superimposed on the acquired SEM image (1510)
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
Description
第一には、フォトリソグラフィの感光材料として使用されるフッ化アルゴン(ArF)エキシマレーザ用のフォトレジスト(以下、ArFレジストと呼ぶ)が電子線に対し脆弱で、電子線照射により体積が減少(以下、シュリンクと呼ぶ)してしまうことである。
第二には、負電荷を有する電子を照射することに起因する試料の表面帯電である。電子線照射による試料の表面帯電は、(2次電子量/入射電子量)で定義される2次電子発生効率δで表すことができ、図1のような特性を示す。入射電子と2次電子の個数が一致する照射エネルギ、つまり、2次電子発生効率δが1となる照射エネルギを境界として、照射エネルギは3つの範囲(101、102、103)に区分される。101と103では2次電子の個数が入射電子の個数より少なく、試料が負に帯電する。それに対し、102では2次電子の個数が入射電子の個数より多いので、試料が正に帯電する。試料が正に数V帯電すると、エネルギが数eVと小さい2次電子は試料表面に引き戻されたり、また入射電子も偏向されたりする。その結果、SEM像の明るさが暗くなったり、入射電子の偏向による寸法誤差が生じたりしてしまい、計測に影響を及ぼすと考えられる。
図4は本発明の一実施例である走査型電子顕微鏡の構成を示す図である。電子源である陰極401と第1陽極402の間には、制御演算装置403(制御プロセッサ)で制御される高電圧制御電源404により電圧が印加され、所定のエミッション電流が陰極401から引き出される。陰極401と第2陽極405の間には、制御演算装置403で制御される高電圧制御電源406により加速電圧が印加されるため、陰極401から放出された入射電子線407は加速されて後段のレンズ系に進行する。入射電子線407は、集束レンズ制御電源408で制御された集束レンズ409で収束され、絞り板410で入射電子線407の不要な領域が除去される。その後、対物レンズ制御電源411で制御された対物レンズ412により試料413に微小スポットとして収束され、偏向コイル414で試料上を2次元的に走査される。偏向コイル414の走査信号は、観察倍率に応じて偏向コイル制御電源415により制御される。また、試料413は2次元的に移動可能な試料ステージ416上に固定されている。試料ステージ416はステージ制御部417により移動が制御される。入射電子線407の照射によって試料413から発生した2次電子418は2次電子検出器419により検出され、描画装置420は検出された2次電子信号を可視信号に変換して別の平面上に適宜配列するように制御を行うことで、試料像表示装置421に試料の表面形状に対応した画像を試料像として表示する。入力装置422はオペレータと制御演算装置403のインターフェースを行うもので、オペレータはこの入力装置422を介して上述の各ユニットの制御を行う他に、測長点の指定や寸法計測の指令を行う。なお、制御演算装置403には図示しない記憶装置が設けられており、得られた測長値や、後述する測長シーケンス等を記憶できるようになっている。
本発明は、図4で説明したCD-SEMの制御演算装置403の機能に、電子線照射後のSEM像から電子線照射前の形状輪郭線を復元する演算部を付加しており、オペレータは入力装置422を介して、取得したSEM像に復元した形状輪郭線を重ね合わせて試料像表示装置421に表示する。具体的な処理手順について、図5及び図6を用いて説明する。まず、露光装置の露光条件(601)・プロセス装置のプロセス条件(602)・OCD装置のプロセス評価の結果(603)といったパターン情報のデータベース(604)と連結し、CD-SEMで取得するパターンの断面形状のテーパ角マップ(605)、及び電子線の走査方向に対するパターンエッジの角度マップ(606)をデータベースとして形状記憶部(607)に格納する(S501)。次に、テーパ角とシュリンクによる寸法変化量の対応表(608)、及び電子線の走査方向に対するパターンエッジの角度と寸法変化量の対応表(609)を別途作成し、データベースとして対応表記憶部(610)に格納する(S502)。各対応表の具体的な作成方法、及び各対応表を用いた場合の形状輪郭線復元手順については後述する。形状記憶部(607)と対応表記憶部(610)の各データベースを用いて、形状輪郭線復元演算部(611)でパターンの各部所における電子線照射起因の形状変化量を算出する(S503)。次に、CD-SEMでSEM像(612)を取得し、取得したSEM像(612)から電子線照射後の形状輪郭線(613)を抽出する(S504)。形状輪郭線復元演算部(611)で算出した電子線照射起因の形状変化量と電子線照射後の形状輪郭線(613)から、電子線照射前の形状輪郭線(614)を復元し(S505)、取得したSEM像(612)に重ね合わせて表示する(S506)。
1次元パターンと2次元パターンでは電子線を照射したときの形状変化の様子が異なる。図9-(A)のような1次元パターン(901)では、パターン各部所における形状変化量(902)だけでなく、パターン各部所がお互いに引っ張り合う力(以下、応力と呼ぶ)も同程度と考えられるので、電子線照射前の形状輪郭線(903)を推定する際、パターン位置の補正を行う必要がなく、単純に算出した形状変化量を加算すれば良い。一方、図9-(B)のような2次元パターン(904)では、領域A(905)と領域B(906)では形状変化量が異なり、さらに、領域Bがシュリンクすることで領域Aに矢印で示すような応力(907)がかかる。従って、2次元パターン(904)の電子線照射前の形状輪郭線(908)を高精度に復元するためには、パターン各部所における形状変化量を算出することに加えて、パターン各部所同士の応力(907)を考慮した位置補正を行う必要がある。
(2次元パターンの特定部分における形状輪郭線の復元方法)
観察する2次元パターンでは、図12に示すような、曲がり部分(1201)・ラインパターンの先端部分(1202)・パターン密度の異なる部分(1203)を含むことが多い。曲がり部分(1201)は、前述の実施例で示したような方法を用いて電子線照射前の形状輪郭線を復元するため、ここではその復元方法について割愛する。ラインパターンの先端部分(1202)の電子線照射前の形状輪郭線復元方法について、図13を用いて説明する。
Claims (20)
- 電子源と、
該電子源から放出された電子線を集束する集束レンズと、
前記電子線を試料上で走査する偏向コイルと、
前記電子線の照射によって前記試料から発生した2次電子を検出する検出器と、
前記検出器の出力に基づいて前記試料表面のパターンの輪郭を演算する演算手段と、
を備えた走査型電子顕微鏡であって、
前記演算手段は、前記電子線照射によって変化した前記パターンの輪郭を前記パターン形状に応じて補正することを特徴とする走査型電子顕微鏡。 - 請求項1に記載の走査型電子顕微鏡において、
補正後の前記パターンの輪郭を表示する表示手段を有することを特徴とする走査型電子顕微鏡。 - 請求項1に記載の走査型電子顕微鏡において、
前記パターン形状は、前記試料に形成されたパターンの断面形状であることを特徴とする走査型電子顕微鏡。 - 請求項1に記載の走査型電子顕微鏡において、
前記パターン形状は、前記試料に形成されたパターン断面のテーパ角であることを特徴とする走査型電子顕微鏡。 - 請求項1に記載の走査型電子顕微鏡において、
前記パターンは、前記試料に形成されたレジストパターンであることを特徴とする走査型電子顕微鏡。 - 請求項1に記載の走査型電子顕微鏡において、
前記パターン形状が電子線の走査方向に対するパターンエッジの角度であり、前記電子線の走査方向に対する前記パターンエッジの角度と前記パターンの寸法変化量の対応表を記憶し格納する対応表記憶部を有することを特徴とする走査型電子顕微鏡。 - 請求項1に記載の走査型電子顕微鏡において、
2次元パターンの特定部分においてそれぞれ個別の形状変化量を算出し電子線照射前の前記パターンの輪郭を算出することを特徴とする走査型電子顕微鏡。 - 請求項1に記載の走査型電子顕微鏡において、
前記2次元パターンの特定部分が前記パターンの曲がり部分、先端部分、隣接パターン間隔の異なる部分であることを特徴とする走査型電子顕微鏡。 - 請求項7に記載の走査型電子顕微鏡において、
前記2次元パターンの特定部分の復元パラメータ量を寸法変化量とする場合、前記パターン断面のテーパ角と前記パターンの寸法変化量および前記電子線の走査方向に対するパターンエッジの角度と前記パターンの寸法変化量の対応表を記憶し格納する対応表記憶部を用いて、前記電子線照射による形状変化量を算出する復元演算部を有し、前記復元演算部で算出した形状変化量を元に前記電子線照射前の前記パターンの輪郭を算出することを特徴とする走査型電子顕微鏡。 - 請求項7に記載の走査型電子顕微鏡において、
前記パターンの前記特定部分どうしが影響を与える応力を算出する応力演算部を有し、該応力演算部を用いて電子線照射前の位置を演算することを特徴とする走査型電子顕微鏡。 - 電子源と、
該電子源から放出された電子線を集束する集束レンズと、
前記電子線を試料上で走査する偏向コイルと、
前記電子線の照射によって前記試料から発生した2次電子を検出する検出器と、
前記検出器の出力に基づいて前記試料表面のパターンの輪郭を演算する演算手段と、
を備えた走査型電子顕微鏡であって、
あらかじめ観察する前記試料のパターンの形状パラメータを記憶し格納する形状記憶部と、
前記形状パラメータと前記電子線照射によって寸法が変化することによる寸法変化量の対応を記憶する対応表記憶部と、
前記形状記憶部と前記対応表記憶部から電子線照射による形状変化量を算出する復元演算部とを有し、
前記演算手段は前記パターンの輪郭を、該復元演算部で算出した形状変化量に基づいて前記電子線照射前の前記パターンの輪郭を補正することを特徴とする走査型電子顕微鏡。 - 請求項11に記載の走査型電子顕微鏡において、
補正後の前記パターンの輪郭を表示する表示手段を有することを特徴とする走査型電子顕微鏡。 - 請求項11に記載の走査型電子顕微鏡において、
前記パターン形状は、前記試料に形成されたパターンの断面形状であることを特徴とする走査型電子顕微鏡。 - 請求項11に記載の走査型電子顕微鏡において、
前記パターン形状は、前記試料に形成されたパターン断面のテーパ角であることを特徴とする走査型電子顕微鏡。 - 請求項11に記載の走査型電子顕微鏡において、
前記パターンは、前記試料に形成されたレジストパターンであることを特徴とする走査型電子顕微鏡。 - 請求項11に記載の走査型電子顕微鏡において、
前記パターン形状が電子線の走査方向に対するパターンエッジの角度であり、前記電子線の走査方向に対する前記パターンエッジの角度と前記パターンの寸法変化量の対応表を記憶し格納する対応表記憶部を有することを特徴とする走査型電子顕微鏡。 - 請求項11に記載の走査型電子顕微鏡において、
2次元パターンの特定部分においてそれぞれ個別の形状変化量を算出し電子線照射前の前記パターンの輪郭を算出することを特徴とする走査型電子顕微鏡。 - 請求項11に記載の走査型電子顕微鏡において、
前記2次元パターンの特定部分が前記パターンの曲がり部分、先端部分、隣接パターン間隔の異なる部分であることを特徴とする走査型電子顕微鏡。 - 請求項17に記載の走査型電子顕微鏡において、
前記2次元パターンの特定部分の復元パラメータ量を寸法変化量とする場合、前記パターン断面のテーパ角と前記パターンの寸法変化量および前記電子線の走査方向に対するパターンエッジの角度と前記パターンの寸法変化量の対応表を記憶し格納する対応表記憶部を用いて、前記電子線照射による形状変化量を算出する復元演算部を有し、前記復元演算部で算出した形状変化量を元に前記電子線照射前の前記パターンの輪郭を算出することを特徴とする走査型電子顕微鏡。 - 請求項17に記載の走査型電子顕微鏡において、
前記パターンの前記特定部分どうしが影響を与える応力を算出する応力演算部を有し、該応力演算部を用いて電子線照射前の位置を演算することを特徴とする走査型電子顕微鏡。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/522,984 US9110384B2 (en) | 2010-01-25 | 2011-01-21 | Scanning electron microscope |
JP2011550864A JP5624999B2 (ja) | 2010-01-25 | 2011-01-21 | 走査型電子顕微鏡 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-012747 | 2010-01-25 | ||
JP2010012747 | 2010-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011089913A1 true WO2011089913A1 (ja) | 2011-07-28 |
Family
ID=44306716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000301 WO2011089913A1 (ja) | 2010-01-25 | 2011-01-21 | 走査型電子顕微鏡 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9110384B2 (ja) |
JP (1) | JP5624999B2 (ja) |
WO (1) | WO2011089913A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9305744B2 (en) | 2011-10-06 | 2016-04-05 | Hitachi High-Technologies Corporation | Measuring method, data processing apparatus and electron microscope using same |
US10976536B2 (en) * | 2012-02-13 | 2021-04-13 | Hitachi High-Tech Corporation | Image-forming device, and dimension measurement device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5686627B2 (ja) * | 2011-02-24 | 2015-03-18 | 株式会社日立ハイテクノロジーズ | パターン寸法測定方法、及び荷電粒子線装置 |
JP5813413B2 (ja) * | 2011-08-22 | 2015-11-17 | 株式会社日立ハイテクノロジーズ | シュリンク前形状推定方法およびcd−sem装置 |
KR101456794B1 (ko) * | 2013-08-08 | 2014-11-03 | (주)오로스 테크놀로지 | 빔 스폿 조절이 가능한 주사전자현미경 및 이를 이용한 측정방법 |
US9316492B2 (en) | 2014-08-08 | 2016-04-19 | International Business Machines Corporation | Reducing the impact of charged particle beams in critical dimension analysis |
KR102336664B1 (ko) * | 2017-07-13 | 2021-12-07 | 삼성전자 주식회사 | Opc 방법, 및 그 opc 방법을 이용한 마스크 제조방법 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211472A (ja) * | 1987-02-27 | 1988-09-02 | Toshiba Corp | 画像の復元処理方法 |
JPH0496572A (ja) * | 1990-08-14 | 1992-03-27 | Toshiba Corp | 画像の復元処理方法 |
JP2004264102A (ja) * | 2003-02-28 | 2004-09-24 | Matsushita Electric Ind Co Ltd | Semシュリンク量測定方法および測長sem装置 |
JP2005327578A (ja) * | 2004-05-14 | 2005-11-24 | Hitachi High-Technologies Corp | 荷電粒子線の調整方法、及び荷電粒子線装置 |
JP2007003535A (ja) * | 2001-08-29 | 2007-01-11 | Hitachi Ltd | 試料寸法測定方法及び走査型電子顕微鏡 |
JP2007299768A (ja) * | 2007-07-23 | 2007-11-15 | Hitachi High-Technologies Corp | 試料像形成方法及び荷電粒子線装置 |
JP2008177064A (ja) * | 2007-01-19 | 2008-07-31 | Hitachi High-Technologies Corp | 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法 |
JP2009198338A (ja) * | 2008-02-22 | 2009-09-03 | Hitachi High-Technologies Corp | 電子顕微鏡システム及びそれを用いたパターン寸法計測方法 |
JP2009222454A (ja) * | 2008-03-14 | 2009-10-01 | Hitachi High-Technologies Corp | パターン測定方法及びパターン測定装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL156419A0 (en) | 2001-08-29 | 2004-01-04 | Hitachi Ltd | Sample dimension measuring method and scanning electron microscope |
US7285777B2 (en) * | 2001-08-29 | 2007-10-23 | Hitachi High-Technologies Corporation | Sample dimension measuring method and scanning electron microscope |
JP2005338102A (ja) | 2002-05-20 | 2005-12-08 | Hitachi High-Technologies Corp | 試料寸法測長方法及び走査電子顕微鏡 |
JP5063071B2 (ja) * | 2006-02-14 | 2012-10-31 | 株式会社ニューフレアテクノロジー | パタン作成方法及び荷電粒子ビーム描画装置 |
JP2007219830A (ja) * | 2006-02-16 | 2007-08-30 | Fanuc Ltd | 数値制御装置 |
WO2007094439A1 (ja) * | 2006-02-17 | 2007-08-23 | Hitachi High-Technologies Corporation | 試料寸法検査・測定方法、及び試料寸法検査・測定装置 |
JP4943304B2 (ja) * | 2006-12-05 | 2012-05-30 | 株式会社 Ngr | パターン検査装置および方法 |
JP5192791B2 (ja) | 2007-11-30 | 2013-05-08 | 株式会社日立ハイテクノロジーズ | パターン寸法計測方法及び走査電子顕微鏡 |
JP2009187967A (ja) * | 2008-02-01 | 2009-08-20 | Panasonic Corp | フォーカス測定方法および半導体装置の製造方法 |
JP5502569B2 (ja) | 2010-04-06 | 2014-05-28 | 株式会社日立ハイテクノロジーズ | 走査電子顕微鏡 |
-
2011
- 2011-01-21 JP JP2011550864A patent/JP5624999B2/ja active Active
- 2011-01-21 WO PCT/JP2011/000301 patent/WO2011089913A1/ja active Application Filing
- 2011-01-21 US US13/522,984 patent/US9110384B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211472A (ja) * | 1987-02-27 | 1988-09-02 | Toshiba Corp | 画像の復元処理方法 |
JPH0496572A (ja) * | 1990-08-14 | 1992-03-27 | Toshiba Corp | 画像の復元処理方法 |
JP2007003535A (ja) * | 2001-08-29 | 2007-01-11 | Hitachi Ltd | 試料寸法測定方法及び走査型電子顕微鏡 |
JP2004264102A (ja) * | 2003-02-28 | 2004-09-24 | Matsushita Electric Ind Co Ltd | Semシュリンク量測定方法および測長sem装置 |
JP2005327578A (ja) * | 2004-05-14 | 2005-11-24 | Hitachi High-Technologies Corp | 荷電粒子線の調整方法、及び荷電粒子線装置 |
JP2008177064A (ja) * | 2007-01-19 | 2008-07-31 | Hitachi High-Technologies Corp | 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法 |
JP2007299768A (ja) * | 2007-07-23 | 2007-11-15 | Hitachi High-Technologies Corp | 試料像形成方法及び荷電粒子線装置 |
JP2009198338A (ja) * | 2008-02-22 | 2009-09-03 | Hitachi High-Technologies Corp | 電子顕微鏡システム及びそれを用いたパターン寸法計測方法 |
JP2009222454A (ja) * | 2008-03-14 | 2009-10-01 | Hitachi High-Technologies Corp | パターン測定方法及びパターン測定装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9305744B2 (en) | 2011-10-06 | 2016-04-05 | Hitachi High-Technologies Corporation | Measuring method, data processing apparatus and electron microscope using same |
US10976536B2 (en) * | 2012-02-13 | 2021-04-13 | Hitachi High-Tech Corporation | Image-forming device, and dimension measurement device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011089913A1 (ja) | 2013-05-23 |
JP5624999B2 (ja) | 2014-11-12 |
US9110384B2 (en) | 2015-08-18 |
US20120298865A1 (en) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5624999B2 (ja) | 走査型電子顕微鏡 | |
JP5408852B2 (ja) | パターン測定装置 | |
JP5941704B2 (ja) | パターン寸法測定装置、及びコンピュータプログラム | |
US8295584B2 (en) | Pattern measurement methods and pattern measurement equipment | |
JP5241168B2 (ja) | 電子顕微鏡 | |
JP5966087B2 (ja) | パターン形状評価装置及び方法 | |
TWI758743B (zh) | 圖像生成方法,非暫態性電腦可讀媒體,及系統 | |
JP6454533B2 (ja) | 荷電粒子線装置 | |
JP4194526B2 (ja) | 荷電粒子線の調整方法、及び荷電粒子線装置 | |
JP5591617B2 (ja) | 荷電粒子線装置および該装置の制御方法 | |
KR20110090956A (ko) | 화상 형성 방법, 및 화상 형성 장치 | |
JP5859795B2 (ja) | 計測方法、データ処理装置及びそれを用いた電子顕微鏡 | |
JP5460479B2 (ja) | パターン寸法測定装置及び輪郭線形成装置 | |
KR20170028459A (ko) | 화상 처리 장치, 자기 조직화 리소그래피 기술에 의한 패턴 생성 방법 및 컴퓨터 프로그램 | |
JP2005338102A (ja) | 試料寸法測長方法及び走査電子顕微鏡 | |
JP5277008B2 (ja) | パターン測定条件設定方法、及びパターン測定条件設定装置 | |
JP6163063B2 (ja) | 走査透過電子顕微鏡及びその収差測定方法 | |
JP2011179819A (ja) | パターン測定方法及びコンピュータプログラム | |
JP6207893B2 (ja) | 試料観察装置用のテンプレート作成装置 | |
KR20210096226A (ko) | 스캐닝 하전 입자 현미경 교정 방법 | |
KR102678481B1 (ko) | 하전 입자 빔 장치 | |
WO2022186326A1 (ja) | 学習器の学習方法、及び画像生成システム | |
JP4231891B2 (ja) | 荷電粒子線の調整方法、及び荷電粒子線装置 | |
JP2010147066A (ja) | 座標計測装置及び荷電粒子ビーム描画装置 | |
JP2017032733A (ja) | 半導体デバイスの評価条件設定方法、及び評価条件設定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11734520 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011550864 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13522984 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11734520 Country of ref document: EP Kind code of ref document: A1 |