WO2011089762A1 - 表示パネルおよびその検査方法 - Google Patents

表示パネルおよびその検査方法 Download PDF

Info

Publication number
WO2011089762A1
WO2011089762A1 PCT/JP2010/067649 JP2010067649W WO2011089762A1 WO 2011089762 A1 WO2011089762 A1 WO 2011089762A1 JP 2010067649 W JP2010067649 W JP 2010067649W WO 2011089762 A1 WO2011089762 A1 WO 2011089762A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
switches
switch
source bus
demultiplexer
Prior art date
Application number
PCT/JP2010/067649
Other languages
English (en)
French (fr)
Inventor
高橋 功
成 古田
村上 祐一郎
佐々木 寧
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011550789A priority Critical patent/JP5349620B2/ja
Priority to EP10843926.6A priority patent/EP2528051A4/en
Priority to CN201080059865.5A priority patent/CN102687188B/zh
Priority to US13/513,017 priority patent/US20120249499A1/en
Publication of WO2011089762A1 publication Critical patent/WO2011089762A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only

Definitions

  • the present invention relates to a display panel, and more particularly, to a display panel including a demultiplexer for distributing a video signal to a plurality of video signal lines and an inspection method thereof.
  • a liquid crystal module is manufactured by mounting a driver IC (driving integrated circuit) on a liquid crystal panel in a module manufacturing process after an array manufacturing process, a panel manufacturing process, and the like.
  • a driver IC driving integrated circuit
  • panel inspection an inspection for checking whether or not the liquid crystal panel is defective is performed.
  • an inspection circuit may be formed in advance on a substrate constituting the liquid crystal panel.
  • FIG. 31 is a block diagram showing a configuration of a main part of a liquid crystal module in which a driver IC is mounted on a liquid crystal panel provided with such an inspection circuit.
  • the liquid crystal module includes a pixel circuit unit 90 serving as an area for displaying an image by providing a source bus line SL and a gate bus line (not shown), a source driver 94 that is a driver IC for driving the source bus line SL, A first distribution circuit 91 that outputs a video signal sent from the source driver 94 while switching to a plurality of source bus lines SL, and a second distribution circuit that outputs a test video signal sent from the outside while switching to a plurality of source bus lines SL.
  • Distribution circuit 92 and a switching circuit 93 that switches the output source of the video signal to the source bus line SL between the first distribution circuit 91 and the second distribution circuit 92.
  • the second distribution circuit 92 functions as an inspection circuit.
  • the source driver 94 is not yet mounted on the glass substrate.
  • FIG. 32 is a circuit diagram showing the configuration of the first distribution circuit 91, the second distribution circuit 92, and the switching circuit 93.
  • FIG. 32 shows only six source bus lines SL1 to SL6 among the plurality of source bus lines.
  • the first distribution circuit 91 is provided with a 1-input 3-output demultiplexer for each of three source bus lines for red, green, and blue. Since one input has three outputs, each demultiplexer includes three switches (for example, thin film transistors).
  • the second distribution circuit 92 is also provided with a 1-input 3-output demultiplexer for each of three source bus lines for red, green, and blue, and each demultiplexer includes three demultiplexers. Switches (for example, thin film transistors) are included.
  • the first distribution circuit 91 is configured such that different video signals are respectively supplied to a plurality of demultiplexers. However, since the source driver 94 is not mounted at the time when the panel inspection is performed, a video signal is not externally applied to the first distribution circuit 91.
  • the second distribution circuit 92 is configured such that a common (one) test video signal T_VIDEO is provided as an input signal to a plurality of demultiplexers.
  • the switch constituting the demultiplexer in the first distribution circuit 91 is referred to as “sampling switch”, and the switch constituting the demultiplexer in the second distribution circuit 92 is referred to as “inspection switch”. It is called a switch.
  • the switching circuit 93 includes a first switch group 931 composed of three switches, a second switch group 932 composed of three switches, and an inverter 933.
  • the on / off states of the switches included in the first switch group 931 are controlled by a control signal T_SMP given from the outside, and the on / off states of the switches included in the second switch group 932 are logical inversion signals of the control signal T_SMP. Controlled by.
  • T_SMP logical inversion signals of the control signal
  • control signal T_SMP is also referred to as a “switching control signal”.
  • control signals ASW1 to ASW3 are given to the circuit shown in FIG.
  • the control signal ASW1 is supplied to the second distribution circuit 92 as the control signal T_ASW1
  • the control signal ASW2 is supplied to the second distribution circuit 92 as the control signal T_ASW2.
  • the control signal ASW3 is supplied to the second distribution circuit 92 as the control signal T_ASW3.
  • the control signal ASW1 is given to the first distribution circuit 91 as the control signal U_ASW1
  • the control signal ASW2 is given to the first distribution circuit 91 as the control signal U_ASW2.
  • the control signal ASW3 is supplied to the first distribution circuit 91 as the control signal U_ASW3.
  • the control signals ASW1 to 3 are also referred to as “distribution control signals”
  • the control signals U_ASW1 to 3 are also referred to as “normal distribution control signals”
  • the control signals T_ASW1 to 3 are “ Also referred to as “distribution control signal for inspection”.
  • the switches included in the first switch group 931 are turned on and the switches included in the second switch group 932 are turned off based on the switching control signal T_SMP.
  • the inspection switch in the second distribution circuit 92 is turned on or off according to the respective logic levels of the distribution control signals ASW1 to ASW3. In this manner, the liquid crystal panel is inspected by changing the potential of the test video signal T_VIDEO while changing the on / off state of the inspection switch in the second distribution circuit 92.
  • the switches included in the first switch group 931 are turned off, and the switches included in the second switch group 932 are turned on.
  • the sampling switch in the first distribution circuit 91 is turned on or off according to the respective logic levels of the distribution control signals ASW1 to ASW3.
  • a video signal is supplied from the source driver 94 to the first distribution circuit 91 while changing the on / off state of the sampling switch in the first distribution circuit 91, whereby a desired image display is performed on the liquid crystal panel. Done.
  • FIG. 33 shows the correspondence with the source bus line in which is performed.
  • Japanese Unexamined Patent Application Publication No. 2007-206440 has a configuration in which a demultiplexer for distributing a data signal is provided on one end side of a data line, and an inspection circuit including a shift register is provided on the other end side of the data line.
  • An invention relating to a substrate for an electro-optical device is disclosed.
  • the circuit area is relatively large because the shift circuit is included in the inspection circuit. For this reason, it is difficult to narrow the frame of the panel. Further, since the inspection control circuit operates on the basis of the voltage on the readout line, a device for measuring the voltage on the readout line is required.
  • the switches included in the second switch group 932 are maintained in the OFF state throughout the period during which the panel inspection is performed. For this reason, the sampling switch in the first distribution circuit 91 is maintained in the off state during the panel inspection. Therefore, a defective sampling switch cannot be detected during panel inspection.
  • an object of the present invention is to realize a display panel that can detect a failure of a sampling switch that normally operates during panel inspection without increasing the circuit scale.
  • the first aspect of the present invention is: A display panel, a display unit in which a plurality of video signal lines constituting a set of video signal line groups are arranged every n (n is a natural number of 2 or more); Each of the n video signal lines included in the video signal line group is provided with one set of video signal line groups on one end side of the plurality of video signal lines and sent from the outside.
  • a first demultiplexer comprising n first switches for switching whether to apply to A second video signal that is provided for each set of video signal line groups on the other end side of the plurality of video signal lines and is sent from the outside is connected to n video signal lines included in the video signal line group.
  • a second demultiplexer composed of n second switches for switching whether or not to apply to each;
  • An operation control unit that switches whether to enable application of the second video signal to the plurality of video signal lines,
  • the states of the n first switches included in the first demultiplexer are controlled by n different control signals,
  • the states of the n second switches included in the second demultiplexer are controlled by the n control signals different from each other,
  • an arbitrary control signal among the n control signals is a target control signal
  • the video signal line connected to the first switch turned on by the target control signal and the video signal line It is different from the video signal line connected to the second switch which is turned on by the target control signal.
  • the operation control unit includes n control switches provided corresponding to each of the n second switches included in the second demultiplexer, Each control switch controls whether or not to apply the control signal to the second switch based on a switching control signal given from the outside.
  • the operation control unit includes a plurality of control switches provided corresponding to each of the plurality of video signal lines between the output unit of the second demultiplexer and the display unit. Whether each control switch enables application of the second video signal from the output unit of the second demultiplexer to the plurality of video signal lines based on a switching control signal given from the outside. It is characterized by switching.
  • the operation control unit includes a plurality of control switches provided corresponding to each of the plurality of video signal lines in the vicinity of the input unit of the second demultiplexer, Each control switch switches whether to apply the second video signal to the input unit of the second demultiplexer based on a switching control signal given from the outside.
  • the second video signal is commonly supplied to input portions of all second demultiplexers provided on the other end side of the plurality of video signal lines.
  • the n first switches included in the first demultiplexer and the n second switches included in the second demultiplexer are thin film transistors.
  • a seventh aspect of the present invention is a display module including the display panel according to the first aspect of the present invention, A video signal line driving circuit for supplying the first video signal to the first demultiplexer is mounted on the display panel.
  • a display unit in which a plurality of video signal lines constituting a set of video signal line groups are arranged every n (n is a natural number of 2 or more); Whether one of the video signal line groups is provided on one end side of the video signal lines and the first video signal sent from the outside is applied to each of the n video signal lines included in the video signal line group
  • a first demultiplexer composed of n first switches for switching between “no” and “no”, and provided on the other end side of the plurality of video signal lines for each set of video signal line groups and sent from the outside.
  • a second demultiplexer comprising n second switches for switching whether to apply a second video signal to each of the n video signal lines included in the video signal line group; Whether or not the second video signal can be applied to the video signal line.
  • An operation control unit for changing Ri there is provided an inspection method of a display panel and a control signal input for receiving the n control signals sent from the outside, An inspection preparation step in which the operation control unit enables application of the second video signal to the plurality of video signal lines; When the signal level of the second video signal is a predetermined first level, the n first signals included in the first demultiplexer provided corresponding to each video signal line group.
  • One of the switches and one of the n second switches included in the second demultiplexer provided corresponding to each video signal line group are maintained in an ON state for a predetermined period.
  • One of the n first switches and one of the n second switches included in the second demultiplexer provided corresponding to each video signal line group are on for a predetermined period.
  • the first level applying step is performed such that the second video signal of the first level is applied to the video signal line corresponding to the display color to be inspected
  • the second level applying step is performed such that the second video signal of the second level is applied to a video signal line corresponding to a display color other than the inspection target.
  • a display unit in which a plurality of video signal lines constituting one set of video signal line groups are arranged every n (n is a natural number of 2 or more); Whether one of the video signal line groups is provided on one end side of the video signal lines and the first video signal sent from the outside is applied to each of the n video signal lines included in the video signal line group
  • a first demultiplexer composed of n first switches for switching between “no” and “no”, and provided on the other end side of the plurality of video signal lines for each set of video signal line groups and sent from the outside.
  • a second demultiplexer comprising n second switches for switching whether to apply a second video signal to each of the n video signal lines included in the video signal line group; Whether or not the second video signal can be applied to the video signal line.
  • An operation control unit for changing Ri there is provided an inspection method of a display panel and a control signal input for receiving the n control signals sent from the outside, An inspection preparation step in which the operation control unit enables application of the second video signal to the plurality of video signal lines; When the signal level of the second video signal is a predetermined first level, the n first signals included in the first demultiplexer provided corresponding to each video signal line group.
  • M of the switches (m is a natural number less than n) and m of the n second switches included in the second demultiplexer provided corresponding to each video signal line group.
  • an arbitrary control signal among the n control signals is a target control signal
  • the video signal line connected to the first switch turned on by the target control signal and the video signal line It is different from the video signal line connected to the second switch which is turned on by the target control signal.
  • the first demultiplexer including the first switch is provided on one end side of the video signal line
  • the second demultiplexer including the second switch is provided on the other end side of the video signal line.
  • the first control signal is turned on by the target control signal.
  • the video signal line connected to one switch is different from the video signal line connected to the second switch which is turned on by the target control signal.
  • the first switch having an open failure in the first demultiplexer.
  • the first switch having an open failure in the first demultiplexer.
  • the first switch with the opening failure but also the first switch controlled by the target control signal is turned on.
  • the voltage of the second video signal that should be originally applied to only one of the n video signal lines constituting the set of video signal line groups is applied to the plurality of video signal lines.
  • the electric charge accumulated in one video signal line is distributed to a plurality of video signal lines. Accordingly, it is possible to detect an open failure of the first switch during panel inspection in which the first video signal is not given from the outside.
  • a display panel having a configuration in which the operation control unit for switching whether or not the second video signal can be applied to the video signal line is realized by a relatively small number of switches.
  • the same effect as that of the first aspect of the present invention is achieved without increasing the frame area in the direction perpendicular to the direction in which the video signal line extends (the direction in which the scanning signal line extends). Is realized.
  • the same effect as that of the first aspect of the present invention is achieved without increasing the frame area in the direction perpendicular to the direction in which the video signal line extends (the direction in which the scanning signal line extends). Is realized.
  • the same effect as that of the first aspect of the present invention can be obtained in the display panel in which the thin film transistor is adopted as the switch constituting the demultiplexer.
  • a display module including a display panel that can obtain the same effect as that of the first aspect of the present invention is realized.
  • the first demultiplexer including the first switch is provided on one end side of the video signal line
  • the second demultiplexer including the second switch is provided on the other end side of the video signal line.
  • a voltage other than the first level is applied to the video signal line corresponding to the display color to be inspected, and the display color other than the inspection target is displayed.
  • a voltage other than the second level may be applied to the video signal line corresponding to.
  • the first demultiplexer including the first switch is provided on one end side of the video signal line
  • the second demultiplexer including the second switch is provided on the other end side of the video signal line.
  • FIG. 3 is a circuit diagram illustrating configurations of a first distribution circuit and a second distribution circuit included in the liquid crystal panel according to the first embodiment of the present invention. It is a block diagram which shows the structure of the principal part of the liquid crystal panel which concerns on the said 1st Embodiment.
  • FIG. 3 is a block diagram showing a state where a source driver is mounted on a liquid crystal panel in the first embodiment.
  • FIG. 3 is a circuit diagram showing a detailed configuration of a first distribution circuit in the first embodiment.
  • FIG. 3 is a circuit diagram showing a detailed configuration of a second distribution circuit in the first embodiment.
  • FIG. 3 is a circuit diagram illustrating configurations of a first distribution circuit and a second distribution circuit included in the liquid crystal panel according to the first embodiment of the present invention. It is a block diagram which shows the structure of the principal part of the liquid crystal panel which concerns on the said 1st Embodiment.
  • FIG. 3 is a block diagram showing a state where a source driver is mounted on a
  • FIG. 5 is a signal waveform diagram showing waveforms at the time of inspection and normal time of a distribution control signal, a switching control signal, a normal distribution control signal, and an inspection distribution control signal in the first embodiment.
  • FIG. 6 is a diagram illustrating a correspondence relationship between a distribution control signal that is set to a high level, a source bus line that is normally written, and a source bus line that is written during a check in the first embodiment.
  • it is a signal waveform diagram for demonstrating the panel test
  • it is a signal waveform diagram which shows the change of the electric potential of a source bus line when the test
  • FIG. 6 is a diagram for explaining an operation when there is an open defect in the sampling switch in the first embodiment.
  • it is a signal waveform diagram which shows the change of the electric potential of a source bus line when the test
  • it is a signal waveform diagram which shows the change of the electric potential of a source bus line when the test
  • it is a signal waveform diagram for demonstrating the panel test
  • FIG. 6 is a signal waveform diagram showing a change in potential of a source bus line when an R / B write check is performed in the first embodiment.
  • FIG. 6 is a signal waveform diagram showing a change in potential of a source bus line when an R / G write test is performed in the first embodiment.
  • FIG. 6 is a signal waveform diagram showing a change in potential of a source bus line when a G / B write test is performed in the first embodiment.
  • It is a circuit diagram which shows the structure in the modification of the said 1st Embodiment.
  • It is a circuit diagram which shows the structure in another modification of the said 1st Embodiment.
  • FIG. 10 is a diagram illustrating a correspondence relationship between a distribution control signal that is set to a high level, a source bus line that is normally written, and a source bus line that is written during a check in the second embodiment.
  • it is a signal waveform diagram for demonstrating the panel test
  • it is a signal waveform diagram which shows the change of the electric potential of a source bus line when the test
  • it is a signal waveform diagram which shows the change of the electric potential of a source bus line when the test
  • the said 2nd Embodiment it is a signal waveform diagram which shows the change of the electric potential of a source bus line when the test
  • it is a signal waveform diagram for demonstrating the panel test
  • it is a signal waveform diagram which shows the change of the electric potential of a source bus line when R / B writing test
  • it is a signal waveform diagram which shows the change of the electric potential of a source bus line when R / G writing test
  • the said 2nd Embodiment it is a signal waveform diagram which shows the change of the electric potential of a source bus line when G / B write test
  • FIG. 2 is a block diagram showing a configuration of a main part of the liquid crystal panel according to the first embodiment of the present invention.
  • the liquid crystal panel includes a pixel circuit unit 10 serving as a region for displaying an image, a first distribution circuit 20 having a function of outputting a signal sent from the outside while switching to a plurality of signal lines, and And a second distribution circuit 30.
  • the pixel circuit unit 10, the first distribution circuit 20, and the second distribution circuit 30 are one glass substrate (generally called an “array substrate”) of two glass substrates constituting the liquid crystal panel. ) Is formed on.
  • the pixel circuit unit 10 includes a plurality of source bus lines (video signal lines) SL, a plurality of gate bus lines (scanning signal lines), and intersections of the source bus lines SL and the gate bus lines. And a plurality of pixel forming portions provided.
  • FIG. 2 shows only the source bus line SL among the components of the pixel circuit unit 10.
  • Each pixel forming portion includes a thin film transistor (TFT) which is a switching element having a gate terminal connected to a gate bus line passing through a corresponding intersection and a source terminal connected to a source bus line SL passing through the intersection.
  • TFT thin film transistor
  • the liquid crystal layer is sandwiched between the common electrode.
  • a driver IC driving integrated circuit
  • a liquid crystal module is manufactured by mounting a driver IC on the liquid crystal panel.
  • the source driver 40 for driving the source bus line SL is mounted on the glass substrate in the form of an IC chip as shown in FIG. That is, in this embodiment, a COG (Chip On Glass) method is adopted as a mounting method of the IC chip.
  • the present invention can also be applied to a liquid crystal panel that employs a mounting method other than the COG method such as a COF (Chip On Film) method in which an IC chip is mounted on an FPC (Flexible Printed Circuit).
  • a mounting method other than the COG method such as a COF (Chip On Film) method in which an IC chip is mounted on an FPC (Flexible Printed Circuit).
  • the gate driver for driving the gate bus line include those formed monolithically on the glass substrate in advance and those mounted on the glass substrate in the form of an IC chip in the same manner as the source driver. Since it is not directly related to the above, its description and illustration are omitted.
  • the source driver 40 drives the source bus line SL based on a data signal and a timing signal sent from a control circuit outside the liquid crystal panel (for example, a PCB attached to the liquid crystal panel). However, when the panel inspection described later is performed, the liquid crystal module is not completed, that is, the source driver 40 is not yet mounted on the glass substrate. It is never driven.
  • FIG. 1 is a circuit diagram showing the configuration of the first distribution circuit 20 and the second distribution circuit 30.
  • FIG. 1 shows only six source bus lines SL1 to SL6 among the plurality of source bus lines.
  • the first distribution circuit 20 includes a plurality of demultiplexers that output one input signal while switching to a plurality of signal lines. Specifically, as shown in FIG. 4, a 1-input 3-output demultiplexer is provided for each of the three source bus lines for red, green, and blue. Since one input has three outputs, each demultiplexer includes three switches (for example, thin film transistors). These switches are hereinafter referred to as “sampling switches”.
  • different input signals are given to the plurality of demultiplexers DMU1, DMU2,..., DMUn in the first distribution circuit 20, respectively.
  • the video signal V1 is given to the demultiplexer DMU1 provided corresponding to the source bus lines SL1 to SL3
  • the video signal V2 is supplied to the demultiplexer DMU2 provided corresponding to the source bus lines SL4 to SL6.
  • the video signal Vn is supplied to the demultiplexer DMUn provided corresponding to the source bus lines SL (3n-2) to SL (3n).
  • the on / off states of the sampling switches TRU1, TRU2,..., TRUn provided corresponding to the red source bus lines SL1, SL4,..., SL (3n-2) are controlled by the control signal U_ASW1.
  • the on / off states of the sampling switches TGU1, TGU2,..., TGUn provided corresponding to the green source bus lines SL2, SL5,..., SL (3n-1) are controlled.
  • the on / off states of the sampling switches TBU1, TBU2,..., TBUn controlled by the signal U_ASW2 and provided corresponding to the blue source bus lines SL3, SL6,. Controlled by signal U_ASW3.
  • the video signals V1 to Vn are sent from the source driver 40 described above. Therefore, in the panel inspection performed in a state where the source driver 40 is not yet mounted on the glass substrate, the video signals V1 to Vn are not given to the demultiplexers DMU1 to DMUn.
  • reference numerals 56 and 57 are assigned to input terminals for receiving the video signals V1 and V2 sent from the source driver 40, respectively.
  • the second distribution circuit 30 includes a distribution unit 31 including a plurality of demultiplexers and an operation control unit 32 that controls transmission of signals to the distribution unit 31.
  • the distribution unit 31 is provided with a 1-input 3-output demultiplexer for each of three source bus lines for red, green, and blue, as in the first distribution circuit 20. ing.
  • Each demultiplexer includes three switches (eg, thin film transistors). These switches are hereinafter referred to as “inspection switches”.
  • a plurality of demultiplexers DMT1, DMT2,..., DMTn receive a common (one) test video signal T_VIDEO as an input signal.
  • the test video signal T_VIDEO is given from the outside to an input terminal denoted by reference numeral 55 in FIG.
  • the on / off states of the inspection switches TRT1, TRT2,..., TRTn provided corresponding to the red source bus lines SL1, SL4,.
  • the state is controlled by the control signal T_ASW3.
  • the operation control unit 32 includes three switches SW1 to SW3 for controlling transmission of signals to the distribution unit 31, as shown in FIG.
  • the on / off states of the three switches SW1 to SW3 are controlled by a control signal (switching control signal) T_SMP given to the input terminal indicated by reference numeral 54 from the outside.
  • the switches SW1 to SW3 are turned on if the control signal T_SMP is high level, and the switches SW1 to SW3 are turned off if the control signal T_SMP is low level.
  • control signals ASW1 to ASW3 are applied.
  • the control signal ASW1 is given to the first distribution circuit 20 as the control signal U_ASW1, and is given to the distribution unit 31 in the second distribution circuit 30 as the control signal T_ASW3 when the switch SW1 is in the ON state.
  • the control signal ASW2 is supplied to the first distribution circuit 20 as the control signal U_ASW2, and is also supplied to the distribution unit 31 in the second distribution circuit 30 as the control signal T_ASW1 when the switch SW2 is in the ON state.
  • the control signal ASW3 is given to the first distribution circuit 20 as the control signal U_ASW3, and is given to the distribution unit 31 in the second distribution circuit 30 as the control signal T_ASW1 when the switch SW3 is in the ON state.
  • FIG. 6 is a signal waveform diagram showing waveforms at the time of inspection and normal time of the distribution control signal, the switching control signal, the normal distribution control signal, and the inspection distribution control signal.
  • the control signal T_SMP is maintained at a high level at the time of inspection, and is maintained at a low level at the normal time. Therefore, the switches SW1 to SW3 in the operation control unit 32 are maintained in the on state at the time of inspection, and are maintained in the off state at the normal time.
  • control signals U_ASW1 and T_ASW3 are at the high level during the period in which the control signal ASW1 is at the high level, and the control signals U_ASW2 and T_ASW1 are at the period in which the control signal ASW2 is at the high level.
  • the control signals U_ASW3 and T_ASW2 are at the high level during the period when the control signal ASW3 is at the high level.
  • the control signal U_ASW1 is at the high level during the period when the control signal ASW1 is at the high level
  • only the control signal U_ASW2 is at the high level during the period when the control signal ASW2 is at the high level.
  • the control signal U_ASW3 is at the high level.
  • the source bus line to which writing is performed at the time of inspection is as shown in FIG.
  • the distribution control signal to be set to the high level and the source bus line to which writing is normally performed
  • the source bus line to which writing is performed at the time of inspection is as shown in FIG.
  • FIG. 32 In the conventional configuration, paying attention to the case where a certain distribution control signal becomes high level, as shown in FIG. 32, writing is performed on the same source bus line at the normal time and at the time of inspection.
  • writing is performed on different source bus lines at the normal time and at the time of inspection.
  • one set of video signal line groups is constituted by three source bus lines for red, green, and blue.
  • the first demultiplexer is realized by the demultiplexer in the first distribution circuit 20
  • the second demultiplexer is realized by the demultiplexer in the second distribution circuit 30, and the sampling switch
  • the first switch is realized and the second switch is realized by the inspection switch.
  • the distribution control signal is set to a high level for each predetermined period in the order of ASW2, ASW3, and ASW1.
  • the periods indicated by reference numerals T1, T2, and T3 in FIG. 8 are hereinafter referred to as a first period, a second period, and a third period, respectively.
  • the switching control signal T_SMP is maintained at a high level throughout the period during which the panel inspection is performed.
  • this inspection includes a red display inspection, a green display inspection, and a blue display inspection. As shown in FIG.
  • the test video signal T_VIDEO is set to the high level only during the first period T1 when the red display is inspected, and the test video signal is performed only during the second period T2 when the green display is inspected.
  • T_VIDEO is set to the high level
  • the test video signal T_VIDEO is set to the high level only during the third period T3 when the blue display is inspected. For example, if the voltage of the common electrode is 0V, the voltage of the test video signal T_VIDEO is 5V when the level is high and 0V when the level is low.
  • FIG. 9 is a signal waveform diagram showing changes in potentials of source bus lines SL1 to SL3 when red display inspection is performed.
  • the test video signal T_VIDEO is set to the high level only in the first period T1.
  • the sampling switch If there is no open failure in the sampling switch, it operates as follows. In the first period T1, since the control signals T_ASW1, U_ASW2 are at a high level, the inspection switch TRT1 and the sampling switch TGU1 are turned on. Accordingly, the high-level test video signal T_VIDEO is applied to the source bus line SL1 via the test switch TRT1. In the second period T2, since the control signals T_ASW2 and U_ASW3 are at a high level, the inspection switch TGT1 and the sampling switch TBU1 are turned on. Thereby, the low-level test video signal T_VIDEO is applied to the source bus line SL2 via the test switch TGT1.
  • the inspection switch TBT1 and the sampling switch TRU1 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL3 via the test switch TBT1.
  • a high level voltage is applied to the source bus line SL1
  • a low level voltage is applied to the source bus lines SL2 and SL3.
  • red display is performed in a line area including only normal sampling switches.
  • the sampling switch has an open failure, it operates as follows.
  • the sampling switch TRU1 is defective in opening.
  • the inspection switch TRT1 and the sampling switch TGU1 are turned on. Accordingly, the high-level test video signal T_VIDEO is applied to the source bus line SL1 via the test switch TRT1.
  • the sampling switch TRU1 is also turned on in the first period T1. As a result, as shown by an arrow 19 in FIG.
  • a high-level test video signal T_VIDEO is supplied from the source bus line SL1 to the source bus line SL2 via the sampling switches TRU1 and TGU1.
  • the inspection switch TGT1 and the sampling switch TBU1 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL2 via the test switch TGT1.
  • the sampling switch TRU1 is also in the on state, charge is distributed between the source bus line SL1 and the source bus line SL3 via the sampling switches TRU1 and TBU1.
  • the potential of the source bus line SL1 decreases and the potential of the source bus line SL3 increases.
  • the inspection switch TBT1 and the sampling switch TRU1 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL3 via the test switch TBT1.
  • an intermediate level voltage is applied to the source bus line SL1
  • a low level voltage is applied to the source bus lines SL2 and SL3.
  • red display is not performed and gray display is performed in the area of the line where the open defective sampling switch exists.
  • FIG. 11 is a signal waveform diagram showing changes in the potentials of the source bus lines SL1 to SL3 when the green display inspection is performed.
  • the test video signal T_VIDEO is set to the high level only in the second period T2.
  • the sampling switch If there is no open failure in the sampling switch, it operates as follows. In the first period T1, since the control signals T_ASW1, U_ASW2 are at a high level, the inspection switch TRT1 and the sampling switch TGU1 are turned on. Accordingly, the low-level test video signal T_VIDEO is applied to the source bus line SL1 via the test switch TRT1. In the second period T2, since the control signals T_ASW2 and U_ASW3 are at a high level, the inspection switch TGT1 and the sampling switch TBU1 are turned on. Thereby, the high-level test video signal T_VIDEO is applied to the source bus line SL2 via the test switch TGT1.
  • the inspection switch TBT1 and the sampling switch TRU1 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL3 via the test switch TBT1.
  • a low level voltage is applied to the source bus lines SL1 and SL3, and a high level voltage is applied to the source bus line SL2.
  • green display is performed in the area of the line including only normal sampling switches.
  • the sampling switch TRU1 If the sampling switch has an open failure, it operates as follows. Here, it is assumed that the sampling switch TRU1 is defective in opening. In the first period T1, since the control signals T_ASW1, U_ASW2 are at a high level, the inspection switch TRT1 and the sampling switch TGU1 are turned on. Accordingly, the low-level test video signal T_VIDEO is applied to the source bus line SL1 via the test switch TRT1. Further, since it is assumed that the sampling switch TRU1 is in an open failure, the sampling switch TRU1 is also turned on in the first period T1. As a result, the low-level test video signal T_VIDEO is supplied from the source bus line SL1 to the source bus line SL2 via the sampling switches TRU1 and TGU1.
  • the inspection switch TGT1 and the sampling switch TBU1 are turned on.
  • the high-level test video signal T_VIDEO is applied to the source bus line SL2 via the test switch TGT1.
  • the sampling switch TRU1 is also in the on state, charge is distributed between the source bus line SL1 and the source bus line SL3 via the sampling switches TRU1 and TBU1. As a result, the potential of the source bus line SL1 increases and the potential of the source bus line SL3 decreases.
  • the inspection switch TBT1 and the sampling switch TRU1 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL3 via the test switch TBT1.
  • an intermediate level voltage is applied to the source bus line SL1
  • a high level voltage is applied to the source bus line SL2
  • the source bus line SL3 is applied to the source bus line SL3.
  • a low level voltage is applied.
  • the green display is not performed in the area of the line where the sampling switch with poor opening exists.
  • FIG. 12 is a signal waveform diagram showing changes in the potentials of the source bus lines SL1 to SL3 when the blue display inspection is performed.
  • the test video signal T_VIDEO is set to the high level only in the third period T3.
  • the sampling switch If there is no open failure in the sampling switch, it operates as follows. In the first period T1, since the control signals T_ASW1, U_ASW2 are at a high level, the inspection switch TRT1 and the sampling switch TGU1 are turned on. Accordingly, the low-level test video signal T_VIDEO is applied to the source bus line SL1 via the test switch TRT1. In the second period T2, since the control signals T_ASW2 and U_ASW3 are at a high level, the inspection switch TGT1 and the sampling switch TBU1 are turned on. Thereby, the low-level test video signal T_VIDEO is applied to the source bus line SL2 via the test switch TGT1.
  • the inspection switch TBT1 and the sampling switch TRU1 are turned on.
  • the high-level test video signal T_VIDEO is applied to the source bus line SL3 via the test switch TBT1.
  • a low level voltage is applied to the source bus lines SL1 and SL2, and a high level voltage is applied to the source bus line SL3.
  • blue display is performed in a line area including only normal sampling switches.
  • the sampling switch TRU1 If the sampling switch has an open failure, it operates as follows. Here, it is assumed that the sampling switch TRU1 is defective in opening. In the first period T1, since the control signals T_ASW1, U_ASW2 are at a high level, the inspection switch TRT1 and the sampling switch TGU1 are turned on. Accordingly, the low-level test video signal T_VIDEO is applied to the source bus line SL1 via the test switch TRT1. Further, since it is assumed that the sampling switch TRU1 is in an open failure, the sampling switch TRU1 is also turned on in the first period T1. As a result, the low-level test video signal T_VIDEO is supplied from the source bus line SL1 to the source bus line SL2 via the sampling switches TRU1 and TGU1.
  • the inspection switch TGT1 and the sampling switch TBU1 are turned on.
  • the high-level test video signal T_VIDEO is applied to the source bus line SL2 via the test switch TGT1.
  • the sampling switch TRU1 is also in the on state, charge is distributed between the source bus line SL1 and the source bus line SL3 via the sampling switches TRU1 and TBU1. As a result, the potential of the source bus line SL1 increases and the potential of the source bus line SL3 decreases.
  • the inspection switch TBT1 and the sampling switch TRU1 are turned on.
  • the high-level test video signal T_VIDEO is applied to the source bus line SL3 via the test switch TBT1.
  • an intermediate level voltage is applied to the source bus line SL1
  • a low level voltage is applied to the source bus line SL2
  • the source bus line SL3 is applied to the source bus line SL3.
  • a high level voltage is applied.
  • blue display is not performed in the area of the line where the sampling switch with poor opening exists.
  • red display, green display, and blue display are all normally performed in a line area including only normal sampling switches.
  • all or part of red display, green display, and blue display is not normally performed. Thereby, it is possible to detect an open failure of the sampling switch.
  • any two of the distribution control signals ASW1 to ASW3 are set to a high level for a predetermined period (first period T1).
  • FIG. 13 shows a signal waveform diagram when ASW1 and ASW2 of the distribution control signals are set to the high level in the first period T1.
  • the switching control signal T_SMP is maintained at a high level throughout the period during which the panel inspection is performed.
  • the two normal distribution control signals and the two inspection distribution control signals corresponding to the distribution control signal set to the high level are set to the high level.
  • the test video signal T_VIDEO is set to the high level in the first period T1.
  • R / B writing inspection writing inspection to the source bus lines for red and blue
  • G / B write check writing inspection to the green and blue source bus lines
  • FIG. 14 is a signal waveform diagram showing changes in the potentials of source bus lines SL1 to SL3 when the R / B write test is performed. At this time, during the first period T1, among the distribution control signals, ASW1 and ASW2 are set to the high level.
  • the sampling switch If the sampling switch has no interruption, it operates as follows. In the first period T1, since the T_ASW1 and T_ASW3 for the inspection distribution control signal are at a high level, the inspection switches TRT1 and TBT1 are turned on. Thereby, the high-level test video signal T_VIDEO is applied to the source bus lines SL1 and SL3 via the test switches TRT1 and TBT1. Further, in the first period T1, since the U_ASW1 and U_ASW2 for the normal distribution control signal are at a high level, the sampling switches TRU1 and TGU1 are turned on.
  • the high-level test video signal T_VIDEO is also applied to the source bus line SL2 from the source bus line SL1 via the sampling switches TRU1 and TGU1.
  • a high-level voltage is applied to the source bus lines SL1 to SL3.
  • white display is performed in a line area including only normal sampling switches.
  • the sampling switch has an interruption failure, it operates as follows. In this case, it is assumed that the sampling switch TRU1 has a cutoff failure. In the first period T1, the inspection switches TRT1 and TBT1 are turned on and the high-level test video signal T_VIDEO is applied to the source bus lines SL1 and SL3, as in the case where the sampling switch has no blocking failure. In the first period T1, U_ASW1 and U_ASW2 are at a high level for the normal distribution control signal. However, since it is assumed that the sampling switch TRU1 is defective in blocking, only the sampling switch TGU1 is in the ON state. Become.
  • the test video signal T_VIDEO is not applied to the source bus line SL2.
  • a high level voltage is applied to the source bus lines SL1 and SL3, and an intermediate level voltage is applied to the source bus line SL2.
  • white display is not performed in the area of the line where the sampling switch with poor interruption exists.
  • FIG. 15 is a signal waveform diagram showing changes in the potentials of source bus lines SL1 to SL3 when the R / G write test is performed. At this time, during the first period T1, among the distribution control signals, ASW2 and ASW3 are set to the high level.
  • the sampling switch If the sampling switch has no interruption, it operates as follows. In the first period T1, since the T_ASW1 and T_ASW2 are at a high level for the inspection distribution control signal, the inspection switches TRT1 and TGT1 are turned on. Thereby, the high-level test video signal T_VIDEO is applied to the source bus lines SL1 and SL2 via the test switches TRT1 and TGT1. Further, in the first period T1, since the U_ASW2 and U_ASW3 are at a high level for the normal distribution control signal, the sampling switches TGU1 and TBU1 are turned on.
  • the high-level test video signal T_VIDEO is also applied to the source bus line SL3 from the source bus line SL2 via the sampling switches TGU1 and TBU1.
  • a high-level voltage is applied to the source bus lines SL1 to SL3.
  • white display is performed in a line area including only normal sampling switches.
  • the sampling switch has an interruption failure, it operates as follows. In this case, it is assumed that the sampling switch TRU1 has a cutoff failure.
  • the inspection switches TRT1 and TGT1 are turned on and the high-level test video signal T_VIDEO is applied to the source bus lines SL1 and SL2, as in the case where the sampling switch has no blocking failure.
  • the sampling switches TGU1 and TBU1 are switched from the source bus line SL2 as in the case where the sampling switch has no blocking failure.
  • the high-level test video signal T_VIDEO is also applied to the source bus line SL3.
  • a high-level voltage is applied to the source bus lines SL1 to SL3.
  • a white display is performed even though there is a sampling switch having a poor cutoff.
  • FIG. 16 is a signal waveform diagram showing changes in the potentials of source bus lines SL1 to SL3 when the G / B write test is performed. At this time, during the first period T1, among the distribution control signals, ASW1 and ASW3 are set to the high level.
  • the sampling switch If the sampling switch has no interruption, it operates as follows. In the first period T1, the inspection switches TGT1 and TBT1 are turned on because T_ASW2 and T_ASW3 are at a high level for the inspection distribution control signal. As a result, the high-level test video signal T_VIDEO is applied to the source bus lines SL2 and SL3 via the test switches TGT1 and TBT1. Further, in the first period T1, since the U_ASW1 and U_ASW3 are at a high level for the normal distribution control signal, the sampling switches TRU1 and TBU1 are turned on.
  • the high-level test video signal T_VIDEO is also applied to the source bus line SL1 from the source bus line SL3 via the sampling switches TBU1 and TRU1.
  • a high-level voltage is applied to the source bus lines SL1 to SL3.
  • white display is performed in a line area including only normal sampling switches.
  • the sampling switch has an interruption failure, it operates as follows. In this case, it is assumed that the sampling switch TRU1 has a cutoff failure. In the first period T1, the inspection switches TGT1 and TBT1 are turned on and the high-level test video signal T_VIDEO is applied to the source bus lines SL2 and SL3, as in the case where there is no shutoff failure in the sampling switch. In the first period T1, U_ASW1 and U_ASW3 are at a high level for the normal distribution control signal. However, since it is assumed that the sampling switch TRU1 is defective in blocking, only the sampling switch TBU1 is in the ON state. Become.
  • the test video signal T_VIDEO is not applied to the source bus line SL1.
  • a high level voltage is applied to the source bus lines SL2 and SL3, and an intermediate level voltage is applied to the source bus line SL1.
  • white display is not performed in the area of the line where the sampling switch with poor interruption exists.
  • the sampling switch and the inspection switch are turned on based on a certain distribution control signal when the test video signal T_VIDEO is at the high level, if there is no sampling switch having an open defect, 1 A high level voltage is applied to only one source bus line among the three source bus lines constituting the set of video signal line groups.
  • a high level voltage is applied to two or more source bus lines of the three source bus lines constituting a set of video signal line groups.
  • the charge accumulated in one source bus line is distributed to two or more source bus lines.
  • the sampling switch and the inspection switch are turned on based on the two distribution control signals when the test video signal T_VIDEO is at the high level, one set is obtained if there is no shut-off failure sampling switch.
  • a high level voltage is applied to all of the three source bus lines constituting the video signal line group.
  • a high-level voltage is applied only to two source bus lines of the three source bus lines that constitute a set of video signal line groups. Can occur. Specifically, if there is a sampling switch with poor shutoff, sampling is performed based on all combinations of two distribution control signals among the three distribution control signals when the test video signal T_VIDEO is at a high level. When the switch and the inspection switch are turned on, a high level voltage is necessarily applied to only two source bus lines of the three source bus lines that constitute a set of video signal line groups. As a result, it is possible to detect a sampling switch failure when performing panel inspection.
  • the circuit scale does not increase as compared with the conventional example. . For this reason, a narrow frame of the panel can be achieved. Furthermore, since the sampling switch is arranged on one end side of the source bus line and the inspection switch is arranged on the other end side of the source bus line, the sampling switch side (source driver side) with reference to the display unit (pixel circuit unit) ) Can be easily narrowed.
  • the transmission of the inspection distribution control signal given to the distribution unit 31 in the second distribution circuit 30 is controlled by the three switches SW1 to SW3, so that the test distribution control signal is supplied to the source bus line.
  • the output of the video signal T_VIDEO is controlled, the present invention is not limited to this.
  • a switch for example, a thin film transistor for controlling the output of the test video signal T_VIDEO to each source bus line is provided between the distribution unit 31 and the pixel circuit unit 10. May be.
  • a switch for example, a thin film transistor
  • the test video signal T_VIDEO is connected between the signal line for transmitting the test video signal T_VIDEO and the sampling switch in the distribution unit 31. You may make it the structure provided with the switch (for example, thin-film transistor) which controls transmission.
  • the operation control unit is realized by a plurality of switches in the region indicated by reference numeral 33, and in the configuration shown in FIG. 18, the operation is performed by a plurality of switches in the region indicated by reference numeral 34.
  • a control unit is realized.
  • the panel inspection can be performed without increasing the frame area in the direction perpendicular to the direction in which the source bus line extends (direction in which the gate bus line extends) as compared with the first embodiment.
  • a liquid crystal panel that can detect a failure of a sampling switch that operates normally is realized.
  • FIG. 19 is a circuit diagram showing a detailed configuration of the first distribution circuit 20 and the second distribution circuit 30 in the second embodiment of the present invention.
  • FIG. 1 shows only six source bus lines SL1 to SL6 among the plurality of source bus lines. Since the entire configuration of the liquid crystal panel is the same as that of the first embodiment, description thereof is omitted (see FIGS. 2 and 3).
  • the first distribution circuit 20 is provided with a 1-input 6-output demultiplexer for every 6 source bus lines.
  • the distribution unit 35 in the second distribution circuit 30 is also provided with a 1-input 6-output demultiplexer for every 6 source bus lines.
  • the first distribution circuit 20 is provided with six sampling switches TRU1, TGU1, TBU1, TRU2, TGU2, and TBU2.
  • the distribution unit 35 in the second distribution circuit 30 is provided with six inspection switches TRT1, TGT1, TBT1, TRT2, TGT2, and TBT2.
  • the operation control unit 36 is provided with six switches SW1 to SW6. The on / off states of the six switches SW1 to SW6 are controlled by a control signal T_SMP sent from the outside, as in the first embodiment.
  • the on / off states of the sampling switches TRU1, TGU1, TBU1, TRU2, TGU2, and TBU2 are controlled by control signals U_ASW1, U_ASW2, U_ASW3, U_ASW4, U_ASW5 and U_ASW6, respectively.
  • the on / off states of the inspection switches TRT1, TGT1, TBT1, TRT2, TGT2, and TBT2 are controlled by control signals T_ASW1, T_ASW2, T_ASW3, T_ASW4, T_ASW5, and T_ASW6, respectively.
  • distribution control signals ASW1 to ASW6 are given from the outside.
  • Distribution control signals ASW1, ASW2, ASW3, ASW4, ASW5, and ASW6 are applied to first distribution circuit 20 as normal distribution control signals U_ASW1, U_ASW2, U_ASW3, U_ASW4, U_ASW5, and U_ASW6, respectively.
  • the distribution control signals ASW1, ASW2, ASW3, ASW4, ASW5, and ASW6 are respectively the inspection distribution control signals T_ASW6, T_ASW1, T_ASW2, T_ASW3, and T_ASW4 when the switches SW1 to SW6 in the operation control unit 36 are on.
  • And T_ASW5 are provided to the distribution unit 35 in the second distribution circuit 30.
  • the on / off states of the six switches SW1 to SW6 described above are switched between the inspection time and the normal time. Specifically, at the time of inspection, the control signal T_SMP is maintained at a high level and the switches SW1 to SW6 are turned on, and at a normal time, the control signal T_SMP is maintained at a low level and the switches SW1 to SW6 are turned off. Thus, at the time of inspection, the control signals U_ASW1 and T_ASW6 are at a high level during a period in which the control signal ASW1 is at a high level, and the control signals U_ASW2 and T_ASW1 are at a period in which the control signal ASW2 is at a high level.
  • the control signals U_ASW3 and T_ASW2 are at a high level during a period when the control signal ASW3 is at a high level, and the control signals U_ASW4 and T_ASW3 are at a high level during a period when the control signal ASW4 is at a high level.
  • the control signals U_ASW5 and T_ASW4 are at high level during the period when the control signal ASW5 is at high level, and the control signals U_ASW6 and T_ASW5 are at high level during the period when the control signal ASW6 is at high level.
  • the distribution control signal to be set to the high level and the source bus line to which writing is normally performed And the source bus line to which writing is performed at the time of inspection is as shown in FIG.
  • the source bus line to which writing is performed at the time of inspection is as shown in FIG.
  • the present embodiment when attention is paid to a case where a certain distribution control signal is at a high level, writing is performed on different source bus lines in the normal time and the inspection time.
  • the distribution control signal is set to a high level for a predetermined period in the order of ASW2, ASW3, ASW4, ASW5, ASW6, and ASW1.
  • the periods indicated by reference numerals T1, T2, T3, T4, T5, and T6 in FIG. 21 are the first period, the second period, the third period, the fourth period, the fifth period, and the It is called 6 periods.
  • the switching control signal T_SMP is maintained at a high level throughout the period during which the panel inspection is performed.
  • the test video signal T_VIDEO is set to the high level during the first period T1 and the fourth period T4 during the red display inspection, and during the green display inspection.
  • the test video signal T_VIDEO is set to the high level during the second period T2 and the fifth period T5, and the test video signal T_VIDEO is set to the high level during the third period T3 and the sixth period T6 during the blue display inspection. Is done.
  • FIG. 22 is a signal waveform diagram showing changes in the potentials of the source bus lines SL1 to SL6 when the red display inspection is performed.
  • the test video signal T_VIDEO becomes a high level in the first period T1 and the fourth period T4.
  • the sampling switch If there is no open failure in the sampling switch, it operates as follows. In the first period T1, since the control signals T_ASW1, U_ASW2 are at a high level, the inspection switch TRT1 and the sampling switch TGU1 are turned on. Accordingly, the high-level test video signal T_VIDEO is applied to the source bus line SL1 via the test switch TRT1. In the second period T2, since the control signals T_ASW2 and U_ASW3 are at a high level, the inspection switch TGT1 and the sampling switch TBU1 are turned on. Thereby, the low-level test video signal T_VIDEO is applied to the source bus line SL2 via the test switch TGT1.
  • the inspection switch TBT1 and the sampling switch TRU2 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL3 via the test switch TBT1.
  • the inspection switch TRT2 and the sampling switch TGU2 are turned on. Accordingly, the high-level test video signal T_VIDEO is applied to the source bus line SL4 via the test switch TRT2.
  • the inspection switch TGT2 and the sampling switch TBU2 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL5 via the test switch TGT2.
  • the inspection switch TBT2 and the sampling switch TRU1 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL6 via the test switch TBT2.
  • a high level voltage is applied to the source bus lines SL1 and SL4, and a low level voltage is applied to the source bus lines SL2, SL3, SL5, and SL6. Is applied. As a result, red display is performed in a line area including only normal sampling switches.
  • the sampling switch has an open failure, it operates as follows.
  • the sampling switch TRU1 is defective in opening.
  • the inspection switch TRT1 and the sampling switch TGU1 are turned on. Accordingly, the high-level test video signal T_VIDEO is applied to the source bus line SL1 via the test switch TRT1. Further, since it is assumed that the sampling switch TRU1 is in an open failure, the sampling switch TRU1 is also turned on in the first period T1.
  • a high-level test video signal T_VIDEO is supplied from the source bus line SL1 to the source bus line SL2 via the sampling switches TRU1 and TGU1.
  • the inspection switch TGT1 and the sampling switch TBU1 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL2 via the test switch TGT1.
  • the sampling switch TRU1 is also in the on state, charge is distributed between the source bus line SL1 and the source bus line SL3 via the sampling switches TRU1 and TBU1.
  • the potential of the source bus line SL1 decreases and the potential of the source bus line SL3 increases.
  • the inspection switch TBT1 and the sampling switch TRU2 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL3 via the test switch TBT1.
  • the sampling switch TRU1 is also in the on state, charge is distributed between the source bus line SL1 and the source bus line SL4 via the sampling switches TRU1 and TRU2.
  • the potential of the source bus line SL1 decreases and the potential of the source bus line SL4 increases.
  • the inspection switch TRT2 and the sampling switch TGU2 are turned on. Accordingly, the high-level test video signal T_VIDEO is applied to the source bus line SL4 via the test switch TRT2. Further, since the sampling switch TRU1 is also in the on state, charge is distributed between the source bus line SL1 and the source bus line SL5 via the sampling switches TRU1 and TGU2. As a result, the potential of the source bus line SL1 slightly decreases, and the potential of the source bus line SL5 slightly increases.
  • the inspection switch TGT2 and the sampling switch TBU2 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL5 via the test switch TGT2.
  • the sampling switch TRU1 is also in the on state, charge is distributed between the source bus line SL1 and the source bus line SL6 via the sampling switches TRU1 and TBU2. As a result, the potential of the source bus line SL1 slightly decreases, and the potential of the source bus line SL6 slightly increases.
  • the inspection switch TBT2 and the sampling switch TRU1 are turned on.
  • the low-level test video signal T_VIDEO is applied to the source bus line SL6 via the test switch TBT2.
  • an intermediate level voltage is applied to the source bus line SL1
  • a low level voltage is applied to the source bus lines SL2, SL3, SL5, and SL6.
  • a high level voltage is applied to the source bus line SL4.
  • red display is not performed in the area of the line where the sampling switch with poor opening exists.
  • FIG. 23 is a signal waveform diagram showing changes in the potentials of the source bus lines SL1 to SL6 when the green display inspection is performed
  • FIG. 24 is the source bus line SL1 when the blue display inspection is performed
  • FIG. 6 is a signal waveform diagram showing changes in potential of .about.SL6.
  • the green display is not performed as a result of the green display inspection
  • the blue display is not performed as a result of the blue display inspection.
  • FIG. 25 shows a signal waveform diagram when ASW1, ASW2, ASW4, and ASW5 among the distribution control signals are set to the high level in the first period T1.
  • the switching control signal T_SMP is maintained at a high level throughout the period during which the panel inspection is performed.
  • the four normal distribution control signals and the four inspection distribution control signals corresponding to the distribution control signal set to the high level are at the high level.
  • the test video signal T_VIDEO is set to the high level in the first period T1.
  • FIG. 26 is a signal waveform diagram showing a change in potential of source bus lines SL1 to SL6 when the R / B write test is performed.
  • ASW1, ASW2, ASW4, and ASW5 are set to the high level.
  • the sampling switch If the sampling switch has no interruption, it operates as follows. In the first period T1, since the T_ASW1, T_ASW3, T_ASW4, and T_ASW6 are at a high level for the inspection distribution control signal, the inspection switches TRT1, TBT1, TRT2, and TBT2 are turned on. As a result, a high-level test video signal T_VIDEO is applied to the source bus lines SL1, SL3, SL4, and SL6 via the test switches TRT1, TBT1, TRT2, and TBT2.
  • the sampling switches TRU1, TGU1, TRU2, and TGU2 are turned on.
  • the high-level test video signal T_VIDEO applied to the source bus lines SL1 and SL4 is also applied to the source bus lines SL2 and SL5 via the sampling switch that is in the on state.
  • a high-level voltage is applied to the source bus lines SL1 to SL6.
  • white display is performed in a line area including only normal sampling switches.
  • the sampling switch has an interruption failure, it operates as follows. In this case, it is assumed that the sampling switch TRU1 has a cutoff failure. In the first period T1, the inspection switches TRT1, TBT1, TRT2, and TBT2 are turned on and the high-level test video signal T_VIDEO is supplied to the source bus lines SL1, SL3, as in the case where the sampling switch has no blocking failure. Applied to SL4 and SL6. In the first period T1, U_ASW1, U_ASW2, U_ASW4, and U_ASW5 are set to a high level for the normal distribution control signal, but it is assumed that the sampling switch TRU1 is in a cutoff failure, so the sampling switch TGU1, TRU2 and TGU2 are turned on.
  • the high-level test video signal T_VIDEO is also applied to the source bus line SL5 from the source bus line SL4 via the sampling switches TRU2 and TGU2. Further, a high-level test video signal T_VIDEO is also applied from the source bus line SL4 to the source bus line SL2 via the sampling switches TRU2 and TGU1. As described above, when the first period T1 ends, a high-level voltage is applied to the source bus lines SL1 to SL6. As a result, for this inspection, a white display is performed even though there is a sampling switch with poor shutoff.
  • FIG. 27 is a signal waveform diagram showing a change in potential of source bus lines SL1 to SL6 when the R / G write test is performed.
  • ASW2, ASW3, ASW5, and ASW6 are set to the high level.
  • the sampling switch does not have an interruption failure, the same operation as the R / B writing inspection described above is performed, and white display is performed.
  • the sampling switch has an interruption failure, it operates as follows. In this case, it is assumed that the sampling switch TRU1 has a cutoff failure. In the first period T1, since the T_ASW1, T_ASW2, T_ASW4, and T_ASW5 are at a high level for the inspection distribution control signal, the inspection switches TRT1, TGT1, TRT2, and TGT2 are turned on. Accordingly, the high-level test video signal T_VIDEO is applied to the source bus lines SL1, SL2, SL4, and SL5 via the test switches TRT1, TGT1, TRT2, and TGT2.
  • the sampling switches TGU1, TBU1, TGU2, and TBU2 are turned on.
  • the high-level test video signal T_VIDEO applied to the source bus lines SL2 and SL5 is also applied to the source bus lines SL3 and SL6 via the sampling switch that is turned on.
  • a high-level voltage is applied to the source bus lines SL1 to SL6.
  • a white display is performed even though there is a sampling switch having a poor cutoff.
  • FIG. 28 is a signal waveform diagram showing a change in potential of source bus lines SL1 to SL6 when the G / B write test is performed.
  • ASW1, ASW3, ASW4, and ASW6 are set to the high level.
  • the sampling switch does not have an interruption failure, the same operation as the R / B writing inspection described above is performed, and white display is performed.
  • the sampling switch has an interruption failure, it operates as follows. In this case, it is assumed that the sampling switch TRU1 has a cutoff failure. In the first period T1, the inspection switches TGT1, TBT1, TGT2, and TBT2 are turned on because T_ASW2, T_ASW3, T_ASW5, and T_ASW6 are at a high level for the inspection distribution control signal. As a result, the high-level test video signal T_VIDEO is applied to the source bus lines SL2, SL3, SL5, and SL6 via the test switches TGT1, TBT1, TGT2, and TBT2.
  • the sampling switch TBU1 is assumed to be defective in shutoff.
  • TRU2 and TBU2 are turned on.
  • the high-level test video signal T_VIDEO applied to the source bus lines SL3 and SL6 is also applied to the source bus line SL4 via the sampling switch that is turned on.
  • the sampling switch TRU1 is in the off state, the test video signal T_VIDEO is not applied to the source bus line SL1.
  • a liquid crystal panel having a configuration in which a demultiplexer having 1 input and 6 outputs is provided in the first distribution circuit 20 and the second distribution circuit 30 can be used for panel inspection without increasing the circuit scale.
  • the configuration of the liquid crystal panel according to the third embodiment of the present invention is the same as the configuration in the first embodiment (see FIGS. 1 to 5).
  • the second distribution circuit 30 is used as a circuit for circuit inspection (typically before mounting the driver IC), but in this embodiment, the source bus line is used. Is used as a precharge circuit. Therefore, the second distribution circuit 30 can be used as a panel inspection circuit or a precharge circuit.
  • the “test video signal” in the first embodiment is referred to as a “precharge video signal”
  • the “inspection switch” in the first embodiment is referred to as a “precharge switch”.
  • a so-called line inversion driving method is employed in which the positive / negative polarity of the voltage applied to the liquid crystal layer is inverted for each gate bus line. Accordingly, video signals having different polarities are applied to each source bus line every horizontal scanning period. In FIG. 29, a certain horizontal scanning period is started at time t10, and the next horizontal scanning period is started at time t20.
  • the precharge video signal T_VIDEO is fixed at an intermediate gradation potential. In FIG. 29, the video signal VIDEO applied to the source bus line is shown as one waveform, but in reality, video signals having different potentials are applied to each source bus line depending on the image to be displayed. .
  • the control signals ASW1 to ASW3 are set to the high level.
  • the switches SW1 to SW3 are in the on state. Therefore, at time t10, the control signals U_ASW1 to U_ASW3 and T_ASW1 to T_ASW3 become high level. As a result, all sampling switches and all precharge switches are turned on.
  • the first distribution circuit 20 and the source driver 40 are electrically disconnected, and the potential of the video signal VIDEO is indefinite.
  • the precharge potential (the potential of the precharge video signal T_VIDEO) is written to all the source bus lines at time t10.
  • the control signals ASW1 to ASW3 are set to low level. As a result, all sampling switches and all precharge switches are turned off.
  • the control signal T_SMP is set to a low level. As a result, the switches SW1 to SW3 are turned off.
  • the first distribution circuit 20 and the source driver 40 are electrically connected, and the video signal VIDEO corresponding to the image to be displayed is supplied from the source driver 40 to the first distribution circuit 20.
  • the control signal ASW1 is set to the high level. As a result, the control signal U_ASW1 becomes high level. At this time, since the control signal T_SMP is set to the low level, the switch SW1 is in the off state. Therefore, the control signal T_ASW3 is maintained at a low level. As described above, the sampling switches TRU1, TRU2, ..., TRUn are turned on. As a result, the video signal VIDEO corresponding to the image to be displayed on the red source bus lines SL1, SL4,..., SL (3n-2) is applied. At time t14, the control signal ASW1 is set to low level. Thereby, the control signal U_ASW1 becomes a low level, and the sampling switches TRU1, TRU2,..., TRUn are turned off.
  • the period from the time point t15 to the time point t16 depends on the image to be displayed on the green source bus lines SL2, SL5,..., SL (3n-1).
  • the video signal VIDEO corresponding to the image to be displayed on the blue source bus lines SL3, SL6,..., SL (3n) is applied during the period from time t17 to time t18.
  • control signal T_SMP is set to the high level.
  • the switches SW1 to SW3 are turned on.
  • the first distribution circuit 20 and the source driver 40 are electrically disconnected, and the potential of the video signal VIDEO becomes indefinite.
  • the red, green, and blue colors are used in this order.
  • the video signal VIDEO corresponding to the image to be displayed is applied to the source bus line.
  • the polarity of the video signal VIDEO applied to the source bus line is opposite between the period from time t13 to time t18 and the period from time t23 to time t28.
  • the first distribution circuit 20 including the demultiplexer for outputting the video signal VIDEO to the plurality of source bus lines is provided on one end side of the source bus line, and the other end of the source bus line is provided.
  • a second distribution circuit 30 including a demultiplexer for outputting a predetermined input signal to a plurality of source bus lines is provided on the side.
  • the precharge video signal T_VIDEO fixed to the potential of the intermediate gradation is supplied to the second distribution circuit 30 as the predetermined input signal. Then, in the first predetermined period of each horizontal scanning period, all the switches constituting the demultiplexer in the second distribution circuit 30 are turned on.
  • the precharge potential is written to all the source bus lines. Thereafter, all the switches constituting the demultiplexer in the second distribution circuit 30 are turned off, and the video signal VIDEO corresponding to the image to be displayed is applied to each source bus line from the first distribution circuit 20 side.
  • the source bus line is precharged in each horizontal scanning period, the time to reach the target applied voltage is shortened in each pixel forming portion, and the display quality is improved.
  • the circuit configuration (the configuration of the first distribution circuit 20 and the second distribution circuit 30) is the same as that of the first embodiment. Therefore, by providing a circuit with a relatively simple configuration, it is possible to detect the failure of the sampling switch that normally operates during panel inspection, and it is possible to precharge the source bus line. As a result, the display quality can be improved.
  • the video signal VIDEO corresponding to the image to be displayed in the order of red, green, and blue is supplied to the source bus line.
  • the present invention is not limited to this.
  • the precharge potential and the video signal potential can be written to the source bus lines in the order of blue, green, and red.
  • a method for driving the source bus line in the present modification will be described with reference to FIG. In this modification as well, the precharge video signal T_VIDEO is fixed at a potential of intermediate gradation.
  • the control signal ASW1 is set to the high level.
  • the switch SW1 since the control signal T_SMP is at a high level, the switch SW1 is in an ON state. Therefore, at time t10, the control signals U_ASW1 and T_ASW3 become high level. Thereby, sampling switches TRU1, TRU2,..., TRUn and precharge switches TBT1, TBT2,..., TBTn are turned on.
  • the potential of the video signal VIDEO is written to the red source bus lines SL1, SL4,..., SL (3n-2), and the blue source bus lines SL3, SL6 are written. ,..., SL (3n) is written with a precharge potential.
  • the potential of the video signal VIDEO at the time point t10 is a temporary potential, and the original writing to the red source bus lines SL1, SL4,..., SL (3n-2) is performed at a time point as described later. Performed at t17.
  • the control signal ASW1 is set to low level.
  • the control signals U_ASW1 and T_ASW3 become low level, and the sampling switches TRU1, TRU2,..., TRUn and the precharge switches TBT1, TBT2,.
  • the control signal ASW3 is set to the high level. For this reason, the control signals U_ASW3 and T_ASW2 become high level. Thereby, the sampling switches TBU1, TBU2,..., TBUn and the precharge switches TGT1, TGT2,..., TGTn are turned on. As described above, at time t12, the potential of the video signal VIDEO is written to the blue source bus lines SL3, SL6,..., SL (3n), and the green source bus lines SL2, SL5,. ... A precharge potential is written to SL (3n-1). At time t13, the control signal ASW3 is set to low level. As a result, the control signals U_ASW3 and T_ASW2 become low level, and the sampling switches TBU1, TBU2,..., TUn and the precharge switches TGT1, TGT2,.
  • the potential of the video signal VIDEO is written to the green source bus lines SL2, SL5,..., SL (3n-1), and the red source bus is processed in the same manner as at time t12.
  • a precharge potential is written to the lines SL1, SL4,..., SL (3n-2).
  • the control signal ASW2 becomes low level at time t15, at time t16, the control signal T_SMP is changed to low level. As a result, the switches SW1 to SW3 are turned off, and all the precharge switches are turned off. At time t17, the control signal ASW1 is set to high level. As a result, the control signal U_ASW1 becomes high level. At this time, since the switch SW1 is in an off state, the control signal T_ASW3 is maintained at a low level. As described above, the sampling switches TRU1, TRU2, ..., TRUn are turned on. As a result, the potential of the video signal VIDEO is written to the red source bus lines SL1, SL4,..., SL (3n-2).
  • the control signal ASW1 is set to low level. Thereby, the control signal U_ASW1 becomes a low level, and the sampling switches TRU1, TRU2,..., TRUn are turned off.
  • the control signal T_SMP is set to high level. As a result, the switches SW1 to SW3 are turned on.
  • the liquid crystal panel has been described as an example, but the present invention is not limited to this.
  • the present invention can also be applied to a display panel other than a liquid crystal panel such as an organic EL (Electro Luminescence) panel.
  • DESCRIPTION OF SYMBOLS 10 ... Pixel circuit part 20 ... 1st distribution circuit 30 ... 2nd distribution circuit 31, 35 ... Distribution part 32, 33, 34, 36 ... Operation control part 40 ...
  • Source driver (video signal line drive circuit) DMU1 to DMUn, DMT1 to DMTn ... Demultiplexer SL1 to SL (3n) ... Source bus line TRT1 to TRTn, TGT1 to TGTn, TBT1 to TBTn, ... Inspection switch TRU1 to TRUn, TGU1 to TGUn, TBU1 to TBUn, ... Switches ASW1 to ASW6 ... Distribution control signal U_ASW1 to U_ASW6 ... Normal distribution control signal T_ASW1 to T_ASW6 ... Inspection distribution control signal T_SMP ... Switching control signal T_VIDEO ... Test video signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 回路規模を増大させることなく、パネル検査の際に通常時に動作するサンプリングスイッチの不良をも検出することができる表示パネルを実現することを目的とする。 ソースバスラインの一端側には、映像信号をサンプリングするサンプリングスイッチを含む1入力3出力のデマルチプレクサが設けられ、ソースバスラインの他端側には、サンプリングスイッチに対応して設けられた検査用スイッチを含みテスト用映像信号(T_VIDEO)を入力信号とする1入力3出力のデマルチプレクサが設けられる。サンプリングスイッチおよび検査用スイッチの状態を制御する3個の制御信号(ASW1~ASW3)のうちの任意の制御信号を着目制御信号としたとき、着目制御信号によってオン状態にされるサンプリングスイッチに接続されたソースバスラインと着目制御信号によってオン状態にされる検査用スイッチに接続されたソースバスラインとは異なっている。

Description

表示パネルおよびその検査方法
 本発明は、表示パネルに関し、詳しくは、複数の映像信号線に映像信号を分配するためのデマルチプレクサを備えた表示パネルおよびその検査方法に関する。
 従来より、液晶モジュールは、アレイ製造工程やパネル製造工程などを経た後、モジュール製造工程で液晶パネルにドライバIC(駆動用集積回路)が実装されることによって作製される。一般的に、ドライバICの実装が行われる前には、液晶パネルの欠陥の有無を調べる検査(以下、「パネル検査」という。)が行われる。このため、液晶パネルを構成する基板上に予め検査用回路が形成されることがある。図31は、そのような検査用回路を備えた液晶パネルにドライバICが実装された液晶モジュールの要部の構成を示すブロック図である。この液晶モジュールは、ソースバスラインSLやゲートバスライン(不図示)が配設され画像を表示する領域となる画素回路部90と、ソースバスラインSLを駆動するドライバICであるソースドライバ94と、ソースドライバ94から送られる映像信号を複数のソースバスラインSLに切り替えつつ出力する第1の分配回路91と、外部から送られるテスト用映像信号を複数のソースバスラインSLに切り替えつつ出力する第2の分配回路92と、ソースバスラインSLへの映像信号の出力元を第1の分配回路91と第2の分配回路92との間で切り替える切替回路93とによって構成されている。これらの構成要素は、液晶パネルを構成する2枚のガラス基板のうちの一方のガラス基板(一般に「アレイ基板」と呼ばれている)上に形成されている。このような構成において、第2の分配回路92が検査用回路として機能している。なお、パネル検査が行われる時点においては、ソースドライバ94は未だガラス基板上には実装されていない。
 図32は、第1の分配回路91,第2の分配回路92,および切替回路93の構成を示す回路図である。なお、図32には、複数本のソースバスラインのうちの6本のソースバスラインSL1~SL6のみを示している。第1の分配回路91には、赤色用,緑色用,および青色用の3本のソースバスライン毎に1入力3出力のデマルチプレクサが設けられている。1入力3出力であるので、各デマルチプレクサには3個のスイッチ(例えば薄膜トランジスタ)が含まれている。同様に、第2の分配回路92にも、赤色用,緑色用,および青色用の3本のソースバスライン毎に1入力3出力のデマルチプレクサが設けられており、各デマルチプレクサには3個のスイッチ(例えば薄膜トランジスタ)が含まれている。第1の分配回路91は、複数個のデマルチプレクサにそれぞれ異なる映像信号が与えられるように構成されている。但し、パネル検査が行われる時点においては、ソースドライバ94が実装されていないので、第1の分配回路91に外部から映像信号が与えられることはない。一方、第2の分配回路92は、複数個のデマルチプレクサに共通の(1つの)テスト用映像信号T_VIDEOが入力信号として与えられるように構成されている。なお、以下においては、第1の分配回路91内のデマルチプレクサを構成するスイッチのことを「サンプリングスイッチ」といい、第2の分配回路92内のデマルチプレクサを構成するスイッチのことを「検査用スイッチ」という。
 切替回路93には、3つのスイッチからなる第1のスイッチ群931,3つのスイッチからなる第2のスイッチ群932,およびインバータ933が含まれている。第1のスイッチ群931に含まれるスイッチのオン/オフ状態は外部から与えられる制御信号T_SMPによって制御され、第2のスイッチ群932に含まれるスイッチのオン/オフ状態は制御信号T_SMPの論理反転信号によって制御される。このような構成において、パネル検査が行われる時(以下、「検査時」という。)と液晶モジュールの状態となって通常の動作が行われる時(以下、「通常時」という。)とで、制御信号T_SMPの論理レベルが切り替えられる。これにより、検査時と通常時とで、第1のスイッチ群931に含まれるスイッチのオン/オフ状態および第2のスイッチ群932に含まれるスイッチのオン/オフ状態が切り替えられる。なお、以下においては、制御信号T_SMPのことを「切替制御信号」ともいう。
 また、図32に示す回路には外部から制御信号ASW1~3が与えられる。第1のスイッチ群931に含まれるスイッチがオン状態の時には、制御信号ASW1は制御信号T_ASW1として第2の分配回路92に与えられ、制御信号ASW2は制御信号T_ASW2として第2の分配回路92に与えられ、制御信号ASW3は制御信号T_ASW3として第2の分配回路92に与えられる。第2のスイッチ群932に含まれるスイッチがオン状態の時には、制御信号ASW1は制御信号U_ASW1として第1の分配回路91に与えられ、制御信号ASW2は制御信号U_ASW2として第1の分配回路91に与えられ、制御信号ASW3は制御信号U_ASW3として第1の分配回路91に与えられる。なお、以下においては、制御信号ASW1~3のことを「分配制御信号」ともいい、制御信号U_ASW1~3のことを「通常時用分配制御信号」ともいい、制御信号T_ASW1~3のことを「検査時用分配制御信号」ともいう。
 以上のような構成において、検査時には、切替制御信号T_SMPに基づき、第1のスイッチ群931に含まれるスイッチはオン状態にされ、第2のスイッチ群932に含まれるスイッチはオフ状態にされる。その結果、分配制御信号ASW1~ASW3のそれぞれの論理レベルに応じて、第2の分配回路92内の検査用スイッチがオン状態またはオフ状態となる。このようにして第2の分配回路92内の検査用スイッチのオン/オフ状態を変化させつつテスト用映像信号T_VIDEOの電位を変化させることによって、液晶パネルの検査が行われる。
 これに対して、通常時には、切替制制御信号T_SMPに基づき、第1のスイッチ群931に含まれるスイッチはオフ状態にされ、第2のスイッチ群932に含まれるスイッチはオン状態にされる。その結果、分配制御信号ASW1~ASW3のそれぞれの論理レベルに応じて、第1の分配回路91内のサンプリングスイッチがオン状態またはオフ状態となる。このようにして第1の分配回路91内のサンプリングスイッチのオン/オフ状態を変化させつつソースドライバ94から第1の分配回路91に映像信号を与えることによって、液晶パネル上で所望の画像表示が行われる。
 なお、パネル検査が行われる際には映像信号が第1の分配回路91に与えられないことを考慮すると、ハイレベルにされる分配制御信号と通常時に書き込みが行われるソースバスラインと検査時に書き込みが行われるソースバスラインとの対応関係は、図33に示すとおりとなっている。
 また、本件発明に関連して、以下の先行技術文献が知られている。日本の特開2007-206440号公報には、データ線の一端側にデータ信号を分配するためのデマルチプレクサが設けられ、データ線の他端側にシフトレジスタを含む検査回路が設けられた構成の電気光学装置用基板についての発明が開示されている。
日本の特開2007-206440号公報
 ところが、日本の特開2007-206440号公報に開示された構成によると、検査回路内にシフトレジスタが含まれているため、回路面積が比較的大きくなっている。このため、パネルの狭額縁化が困難である。また、検査制御回路が読出線の電圧に基づいて動作するようになっているので、読出線の電圧を測定する装置が必要となる。
 また、図32に示した構成によれば、パネル検査が行われている期間を通じて、第2のスイッチ群932に含まれるスイッチはオフ状態で維持される。このため、第1の分配回路91内のサンプリングスイッチは、パネル検査が行われている期間にはオフ状態で維持される。従って、パネル検査の際には、サンプリングスイッチの不良を検出することができない。
 そこで本発明は、回路規模を増大させることなく、パネル検査の際に通常時に動作するサンプリングスイッチの不良をも検出することができる表示パネルを実現することを目的とする。
 本発明の第1の局面は、
 表示パネルであって、
 n本毎(nは2以上の自然数)に1組の映像信号線群を構成する複数本の映像信号線が配設された表示部と、
 前記複数本の映像信号線の一端側に前記1組の映像信号線群毎に設けられ、外部から送られる第1の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第1スイッチからなる第1のデマルチプレクサと、
 前記複数本の映像信号線の他端側に前記1組の映像信号線群毎に設けられ、外部から送られる第2の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第2スイッチからなる第2のデマルチプレクサと、
 前記複数本の映像信号線への前記第2の映像信号の印加を可能とするか否かを切り替える動作制御部と
を備え、
 前記第1のデマルチプレクサに含まれる前記n個の第1スイッチの状態は、互いに異なるn個の制御信号によって制御され、
 前記第2のデマルチプレクサに含まれる前記n個の第2スイッチの状態は、互いに異なる前記n個の制御信号によって制御され、
 前記n個の制御信号のうちの任意の制御信号を着目制御信号としたとき、各映像信号線群について、前記着目制御信号によってオン状態にされる第1スイッチに接続された映像信号線と前記着目制御信号によってオン状態にされる第2スイッチに接続された映像信号線とは異なることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記動作制御部は、前記第2のデマルチプレクサに含まれる前記n個の第2スイッチのそれぞれに対応して設けられるn個の制御スイッチからなり、
 各制御スイッチは、外部から与えられる切替制御信号に基づいて、前記第2スイッチに前記制御信号を与えるか否かを制御することを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記動作制御部は、前記第2のデマルチプレクサの出力部と前記表示部との間に前記複数本の映像信号線のそれぞれに対応して設けられる複数個の制御スイッチからなり、
 各制御スイッチは、外部から与えられる切替制御信号に基づいて、前記第2のデマルチプレクサの出力部から前記複数本の映像信号線への前記第2の映像信号の印加を可能とするか否かを切り替えることを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 前記動作制御部は、前記第2のデマルチプレクサの入力部近傍に前記複数本の映像信号線のそれぞれに対応して設けられる複数個の制御スイッチからなり、
 各制御スイッチは、外部から与えられる切替制御信号に基づいて、前記第2の映像信号を前記第2のデマルチプレクサの入力部に与えるか否かを切り替えることを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記第2の映像信号は、前記複数本の映像信号線の他端側に設けられている全ての第2のデマルチプレクサの入力部に共通的に与えられていることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記第1のデマルチプレクサに含まれる前記n個の第1スイッチおよび前記第2のデマルチプレクサに含まれる前記n個の第2スイッチは、薄膜トランジスタであることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面に係る表示パネルを備えた表示モジュールであって、
 前記第1のデマルチプレクサに前記第1の映像信号を与える映像信号線駆動回路が前記表示パネルに実装されていることを特徴とする。
 本発明の第8の局面は、n本毎(nは2以上の自然数)に1組の映像信号線群を構成する複数本の映像信号線が配設された表示部と、前記複数本の映像信号線の一端側に前記1組の映像信号線群毎に設けられ、外部から送られる第1の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第1スイッチからなる第1のデマルチプレクサと、前記複数本の映像信号線の他端側に前記1組の映像信号線群毎に設けられ、外部から送られる第2の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第2スイッチからなる第2のデマルチプレクサと、前記複数本の映像信号線への前記第2の映像信号の印加を可能とするか否かを切り替える動作制御部と、外部から送られるn個の制御信号を受け取るための制御信号入力部とを備えた表示パネルの検査方法であって、
 前記動作制御部が前記複数本の映像信号線への前記第2の映像信号の印加を可能とする検査準備ステップと、
 前記第2の映像信号の信号レベルが所定の第1レベルになっているときに、各映像信号線群に対応して設けられている前記第1のデマルチプレクサに含まれる前記n個の第1スイッチのうちの1つおよび各映像信号線群に対応して設けられている前記第2のデマルチプレクサに含まれる前記n個の第2スイッチのうちの1つが所定期間オン状態で維持されるように前記n個の制御信号のうちの1つの信号レベルを変化させる第1レベル印加ステップと、
 前記第2の映像信号の信号レベルが前記第1レベルとは異なる第2レベルになっているときに、各映像信号線群に対応して設けられている前記第1のデマルチプレクサに含まれる前記n個の第1スイッチのうちの1つおよび各映像信号線群に対応して設けられている前記第2のデマルチプレクサに含まれる前記n個の第2スイッチのうちの1つが所定期間オン状態で維持されるように前記n個の制御信号のうちの1つの信号レベルを変化させる第2レベル印加ステップと
を含み、
 前記n個の制御信号のうちの任意の制御信号を着目制御信号としたとき、各映像信号線群について、前記着目制御信号によってオン状態にされる第1スイッチに接続された映像信号線と前記着目制御信号によってオン状態にされる第2スイッチに接続された映像信号線とは異なり、
 検査対象の表示色に対応する映像信号線には前記第1レベルの前記第2の映像信号が印加されるよう前記第1レベル印加ステップが行われ、
 検査対象以外の表示色に対応する映像信号線には前記第2レベルの前記第2の映像信号が印加されるよう前記第2レベル印加ステップが行われることを特徴とする。
 本発明の第9の局面は、n本毎(nは2以上の自然数)に1組の映像信号線群を構成する複数本の映像信号線が配設された表示部と、前記複数本の映像信号線の一端側に前記1組の映像信号線群毎に設けられ、外部から送られる第1の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第1スイッチからなる第1のデマルチプレクサと、前記複数本の映像信号線の他端側に前記1組の映像信号線群毎に設けられ、外部から送られる第2の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第2スイッチからなる第2のデマルチプレクサと、前記複数本の映像信号線への前記第2の映像信号の印加を可能とするか否かを切り替える動作制御部と、外部から送られるn個の制御信号を受け取るための制御信号入力部とを備えた表示パネルの検査方法であって、
 前記動作制御部が前記複数本の映像信号線への前記第2の映像信号の印加を可能とする検査準備ステップと、
 前記第2の映像信号の信号レベルが所定の第1レベルになっているときに、各映像信号線群に対応して設けられている前記第1のデマルチプレクサに含まれる前記n個の第1スイッチのうちのm個(mはn未満の自然数)および各映像信号線群に対応して設けられている前記第2のデマルチプレクサに含まれる前記n個の第2スイッチのうちのm個が所定期間オン状態で維持されるように前記n個の制御信号のうちのm個の信号レベルを変化させるmライン書き込みステップと
を含み、
 前記n個の制御信号のうちの任意の制御信号を着目制御信号としたとき、各映像信号線群について、前記着目制御信号によってオン状態にされる第1スイッチに接続された映像信号線と前記着目制御信号によってオン状態にされる第2スイッチに接続された映像信号線とは異なることを特徴とする。
 本発明の第1の局面によれば、映像信号線の一端側に第1スイッチからなる第1のデマルチプレクサを備え、映像信号線の他端側に第2スイッチからなる第2のデマルチプレクサを備えた構成の表示パネルにおいて、それらデマルチプレクサを構成するスイッチの状態を制御するn個の制御信号のうちの任意の制御信号を着目制御信号としたとき、着目制御信号によってオン状態にされる第1スイッチに接続されている映像信号線と着目制御信号によってオン状態にされる第2スイッチに接続されている映像信号線とは異なっている。このため、n個の制御信号のうちの1つ(上記着目制御信号とする)に基づいて各デマルチプレクサを構成するスイッチをオン状態にすると、第1のデマルチプレクサ内に開放不良の第1スイッチが存在すれば、当該開放不良の第1スイッチだけではなく着目制御信号によって制御される第1スイッチもがオン状態となる。これにより、1組の映像信号線群を構成するn本の映像信号線のうちの1本にのみ本来印加されるべき第2の映像信号の電圧が複数本の映像信号線に印加されることや1本の映像信号線に蓄積されている電荷が複数本の映像信号線に分配されることが生じる。従って、第1の映像信号が外部から与えられないようなパネル検査の際に、第1スイッチの開放不良を検出することができる。また、上記n個の制御信号のうちの複数個の制御信号に基づいて各デマルチプレクサを構成するスイッチをオン状態にすると、第1のデマルチプレクサ内に遮断不良の第1スイッチが存在するときと存在しないときとで異なる表示が行われる。これにより、パネル検査の際に、第1スイッチの遮断不良を検出することができる。また、本発明の構成によれば、画像の表示状態に基づいて不良の有無の判断が行われるので、例えば電圧値を測定するための装置等が不要である。以上より、回路規模を増大させることなく、パネル検査の際に通常時に動作する第1スイッチ(サンプリングスイッチ)の不良をも検出することができる表示パネルが実現される。
 本発明の第2の局面によれば、映像信号線への第2の映像信号の印加を可能とするか否かを切り替える動作制御部が比較的少ない数のスイッチで実現される構成の表示パネルにおいて、本発明の第1の局面と同様の効果が得られる。
 本発明の第3の局面によれば、映像信号線の延びる方向とは垂直方向(走査信号線の延びる方向)についての額縁面積を大きくすることなく、本発明の第1の局面と同様の効果を奏する表示パネルが実現される。
 本発明の第4の局面によれば、映像信号線の延びる方向とは垂直方向(走査信号線の延びる方向)についての額縁面積を大きくすることなく、本発明の第1の局面と同様の効果を奏する表示パネルが実現される。
 本発明の第5の局面によれば、表示パネル内の全ての第2のデマルチプレクサの入力部には共通の信号が与えられるので、回路規模の増大が抑制される。
 本発明の第6の局面によれば、デマルチプレクサを構成するスイッチに薄膜トランジスタが採用されている表示パネルにおいて、本発明の第1の局面と同様の効果が得られる。
 本発明の第7の局面によれば、本発明の第1の局面と同様の効果が得られる表示パネルを備えた表示モジュールが実現される。
 本発明の第8の局面によれば、映像信号線の一端側に第1スイッチからなる第1のデマルチプレクサを備え、映像信号線の他端側に第2スイッチからなる第2のデマルチプレクサを備えた構成の表示パネルについての検査が行われたとき、第1のデマルチプレクサ内に開放不良の第1スイッチが存在しなければ、検査対象の表示色に対応する映像信号線には所定の第1レベルの電圧が印加され、検査対象以外の表示色に対応する映像信号線には所定の第2レベルの電圧が印加される。一方、第1のデマルチプレクサ内に開放不良の第1スイッチが存在すれば、検査対象の表示色に対応する映像信号線に第1レベル以外の電圧が印加されることや検査対象以外の表示色に対応する映像信号線に第2レベル以外の電圧が印加されることが生じる。これにより、パネル検査の際に、通常時に動作する第1スイッチ(サンプリングスイッチ)についての開放不良をも検出することが可能となる。
 本発明の第9の局面によれば、映像信号線の一端側に第1スイッチからなる第1のデマルチプレクサを備え、映像信号線の他端側に第2スイッチからなる第2のデマルチプレクサを備えた構成の表示パネルについての検査が行われたとき、複数本の映像信号線への第2の映像信号の書き込み終了後における当該複数本の映像信号線の電位は、第1のデマルチプレクサ内に遮断不良の第1スイッチが存在する場合と存在しない場合とでは異なる。これにより、パネル検査の際に、通常時に動作する第1スイッチ(サンプリングスイッチ)についての遮断不良をも検出することが可能となる。
本発明の第1の実施形態に係る液晶パネルに含まれる第1の分配回路および第2の分配回路の構成を示す回路図である。 上記第1の実施形態に係る液晶パネルの要部の構成を示すブロック図である。 上記第1の実施形態において、液晶パネルにソースドライバが実装された状態を示すブロック図である。 上記第1の実施形態において、第1の分配回路の詳細な構成を示す回路図である。 上記第1の実施形態において、第2の分配回路の詳細な構成を示す回路図である。 上記第1の実施形態において、分配制御信号,切替制御信号,通常時用分配制御信号,および検査時用分配制御信号についての検査時および通常時における波形を示す信号波形図である。 上記第1の実施形態において、ハイレベルにされる分配制御信号と通常時に書き込みが行われるソースバスラインと検査時に書き込みが行われるソースバスラインとの対応関係を示す図である。 上記第1の実施形態において、開放不良を検出するためのパネル検査について説明するための信号波形図である。 上記第1の実施形態において、赤色表示の検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第1の実施形態において、サンプリングスイッチに開放不良がある場合の動作について説明するための図である。 上記第1の実施形態において、緑色表示の検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第1の実施形態において、青色表示の検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第1の実施形態において、遮断不良を検出するためのパネル検査について説明するための信号波形図である。 上記第1の実施形態において、R/B書込検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第1の実施形態において、R/G書込検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第1の実施形態において、G/B書込検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第1の実施形態の変形例における構成を示す回路図である。 上記第1の実施形態の別の変形例における構成を示す回路図である。 本発明の第2の実施形態に係る液晶パネルに含まれる第1の分配回路および第2の分配回路の構成を示す回路図である。 上記第2の実施形態において、ハイレベルにされる分配制御信号と通常時に書き込みが行われるソースバスラインと検査時に書き込みが行われるソースバスラインとの対応関係を示す図である。 上記第2の実施形態において、開放不良を検出するためのパネル検査について説明するための信号波形図である。 上記第2の実施形態において、赤色表示の検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第2の実施形態において、緑色表示の検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第2の実施形態において、青色表示の検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第2の実施形態において、遮断不良を検出するためのパネル検査について説明するための信号波形図である。 上記第2の実施形態において、R/B書込検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第2の実施形態において、R/G書込検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 上記第2の実施形態において、G/B書込検査が行われるときのソースバスラインの電位の変化を示す信号波形図である。 本発明の第3の実施形態における液晶パネルの駆動方法を説明するための信号波形図である。 上記第3の実施形態の変形例における液晶パネルの駆動方法を説明するための信号波形図である。 検査用回路を備えた従来の液晶パネルの要部の構成を示すブロック図である。 従来例において、第1の分配回路,第2の分配回路,および切替回路の構成を示す回路図である。 従来例において、ハイレベルにされる分配制御信号と通常時に書き込みが行われるソースバスラインと検査時に書き込みが行われるソースバスラインとの対応関係を示す図である。
 以下、添付図面を参照しつつ、本発明の実施形態について説明する。
<1.第1の実施形態>
<1.1 全体構成>
 図2は、本発明の第1の実施形態に係る液晶パネルの要部の構成を示すブロック図である。この液晶パネルは、図2に示すように、画像を表示する領域となる画素回路部10と、外部から送られる信号を複数の信号線に切り替えつつ出力する機能を有する第1の分配回路20および第2の分配回路30とによって構成されている。これら画素回路部10,第1の分配回路20,および第2の分配回路30は、液晶パネルを構成する2枚のガラス基板のうちの一方のガラス基板(一般に「アレイ基板」と呼ばれている)上に形成されている。
 画素回路部10には、複数本のソースバスライン(映像信号線)SLと、複数本のゲートバスライン(走査信号線)と、ソースバスラインSLとゲートバスラインとの交差点にそれぞれ対応して設けられた複数個の画素形成部とが含まれている。なお、図2には、画素回路部10の構成要素のうちソースバスラインSLのみを示している。各画素形成部は、対応する交差点を通過するゲートバスラインにゲート端子が接続されると共に当該交差点を通過するソースバスラインSLにソース端子が接続されたスイッチング素子である薄膜トランジスタ(TFT)と、その薄膜トランジスタのドレイン端子に接続された画素電極と、上記複数個の画素形成部に共通的に設けられた対向電極である共通電極と、上記複数個の画素形成部に共通的に設けられ画素電極と共通電極との間に挟持された液晶層とによって構成されている。第1の分配回路20および第2の分配回路30についての詳しい説明は後述する。
 ところで、液晶パネルの欠陥の有無を調べる検査(パネル検査)が終了すると、当該液晶パネルを駆動するためのドライバIC(駆動用集積回路)の実装が行われる。液晶パネルにドライバICが実装されることによって液晶モジュールが作製される。本実施形態においては、パネル検査の終了後、ソースバスラインSLを駆動するためのソースドライバ40が図3に示すようにガラス基板上にICチップの形態で実装される。すなわち、本実施形態においては、ICチップの実装方式にはCOG(Chip On Glass)方式が採用されている。なお、FPC(Flexible Printed Circuit:フレキシブルプリント基板)上にICチップが搭載されるCOF(Chip On Film)方式などCOG方式以外の実装方式を採用する液晶パネルにおいても本発明を適用することができる。ゲートバスラインを駆動するためのゲートドライバについては、予めガラス基板上にモノリシックに形成されるものやソースドライバと同様にICチップの形態でガラス基板上に実装されるもの等があるが、本発明には直接に関係しないのでその説明および図示を省略する。
 ソースドライバ40は、液晶パネル外(例えば、液晶パネルに取り付けられたPCB)の制御回路から送られるデータ信号やタイミング信号に基づいて、ソースバスラインSLを駆動する。但し、後述するパネル検査が行われる時点においては、液晶モジュールとしては完成していない状態すなわちソースドライバ40が未だガラス基板上に実装されていない状態であるので、ソースバスラインSLがソースドライバ40によって駆動されることはない。
<1.2 分配回路の構成および動作>
 図1は、第1の分配回路20および第2の分配回路30の構成を示す回路図である。なお、図1には、複数本のソースバスラインのうちの6本のソースバスラインSL1~SL6のみを示している。第1の分配回路20には、1つの入力信号を複数の信号線に切り替えつつ出力する複数個のデマルチプレクサが含まれている。詳しくは、図4に示すように、赤色用,緑色用,および青色用の3本のソースバスライン毎に1入力3出力のデマルチプレクサが設けられている。1入力3出力であるので、各デマルチプレクサには3個のスイッチ(例えば薄膜トランジスタ)が含まれている。これらのスイッチのことを以下「サンプリングスイッチ」という。
 図4に示すように、第1の分配回路20内の複数個のデマルチプレクサDMU1、DMU2、・・・、DMUnには、それぞれ異なる入力信号が与えられる。例えば、ソースバスラインSL1~SL3に対応して設けられているデマルチプレクサDMU1には映像信号V1が与えられ、ソースバスラインSL4~SL6に対応して設けられているデマルチプレクサDMU2には映像信号V2が与えられ、ソースバスラインSL(3n-2)~SL(3n)に対応して設けられているデマルチプレクサDMUnには映像信号Vnが与えられる。また、赤色用のソースバスラインSL1、SL4、・・・、SL(3n-2)に対応して設けられているサンプリングスイッチTRU1、TRU2、・・・、TRUnのオン/オフ状態は制御信号U_ASW1によって制御され、緑色用のソースバスラインSL2、SL5、・・・、SL(3n-1)に対応して設けられているサンプリングスイッチTGU1、TGU2、・・・、TGUnのオン/オフ状態は制御信号U_ASW2によって制御され、青色用のソースバスラインSL3、SL6、・・・、SL(3n)に対応して設けられているサンプリングスイッチTBU1、TBU2、・・・、TBUnのオン/オフ状態は制御信号U_ASW3によって制御される。
 ところで、映像信号V1~Vnは、上述のソースドライバ40から送られる。従って、ソースドライバ40が未だガラス基板上に実装されていない状態で行われるパネル検査の際には、映像信号V1~VnはデマルチプレクサDMU1~DMUnには与えられない。なお、図1では、ソースドライバ40から送られる映像信号V1,V2を受け取るための入力端子にそれぞれ符号56,57を付している。
 第2の分配回路30は、複数個のデマルチプレクサからなる分配部31と、分配部31への信号の伝達を制御する動作制御部32とによって構成されている。分配部31には、図5に示すように、第1の分配回路20と同様、赤色用,緑色用,および青色用の3本のソースバスライン毎に1入力3出力のデマルチプレクサが設けられている。各デマルチプレクサには3個のスイッチ(例えば薄膜トランジスタ)が含まれている。これらのスイッチのことを以下「検査用スイッチ」という。
 第2の分配回路30においては、第1の分配回路20とは異なり、複数個のデマルチプレクサDMT1、DMT2、・・・、DMTnには共通の(1つの)テスト用映像信号T_VIDEOが入力信号として与えられる。テスト用映像信号T_VIDEOは、図1において符号55で示す入力端子に外部から与えられる。また、赤色用のソースバスラインSL1、SL4、・・・、SL(3n-2)に対応して設けられている検査用スイッチTRT1、TRT2、・・・、TRTnのオン/オフ状態は制御信号T_ASW1によって制御され、緑色用のソースバスラインSL2、SL5、・・・、SL(3n-1)に対応して設けられている検査用スイッチTGT1、TGT2、・・・、TGTnのオン/オフ状態は制御信号T_ASW2によって制御され、青色用のソースバスラインSL3、SL6、・・・、SL(3n)に対応して設けられている検査用スイッチTBT1、TBT2、・・・、TBTnのオン/オフ状態は制御信号T_ASW3によって制御される。
 動作制御部32には、図1に示すように、分配部31への信号の伝達を制御する3個のスイッチSW1~SW3が含まれている。それら3個のスイッチSW1~SW3のオン/オフ状態は、符号54で示す入力端子に外部から与えられる制御信号(切替制御信号)T_SMPによって制御される。本実施形態においては、制御信号T_SMPがハイレベルであればスイッチSW1~SW3はオン状態となり、制御信号T_SMPがローレベルであればスイッチSW1~SW3はオフ状態となる。
 ところで、第1の分配回路20や第2の分配回路30が形成されているガラス基板上には図1に示すように入力端子51~53が設けられており、それら入力端子51~53には制御信号ASW1~ASW3が与えられる。制御信号ASW1は、制御信号U_ASW1として第1の分配回路20に与えられるとともに、スイッチSW1がオン状態の時に制御信号T_ASW3として第2の分配回路30内の分配部31に与えられる。制御信号ASW2は、制御信号U_ASW2として第1の分配回路20に与えられるとともに、スイッチSW2がオン状態の時に制御信号T_ASW1として第2の分配回路30内の分配部31に与えられる。制御信号ASW3は、制御信号U_ASW3として第1の分配回路20に与えられるとともに、スイッチSW3がオン状態の時に制御信号T_ASW1として第2の分配回路30内の分配部31に与えられる。
 以上のような構成において、検査時と通常時とで、上述した3個のスイッチSW1~SW3のオン/オフ状態が切り替えられる。これにより、検査時と通常時とでは異なる動作が行われる。これについて以下に説明する。
 図6は、分配制御信号,切替制御信号,通常時用分配制御信号,および検査時用分配制御信号についての検査時および通常時における波形を示す信号波形図である。図6に示すように、制御信号T_SMPは、検査時にはハイレベルで維持され、通常時にはローレベルで維持される。このため、動作制御部32内のスイッチSW1~SW3は、検査時にはオン状態で維持され、通常時にはオフ状態で維持される。これにより、検査時においては、制御信号ASW1がハイレベルとなっている期間には制御信号U_ASW1,T_ASW3がハイレベルとなり、制御信号ASW2がハイレベルとなっている期間には制御信号U_ASW2,T_ASW1がハイレベルとなり、制御信号ASW3がハイレベルとなっている期間には制御信号U_ASW3,T_ASW2がハイレベルとなる。一方、通常時においては、制御信号ASW1がハイレベルとなっている期間には制御信号U_ASW1のみがハイレベルとなり、制御信号ASW2がハイレベルとなっている期間には制御信号U_ASW2のみがハイレベルとなり、制御信号ASW3がハイレベルとなっている期間には制御信号U_ASW3のみがハイレベルとなる。
 ここで、検査時には(ソースドライバ40が存在しないため)映像信号が第1の分配回路20に与えられないことを考慮すると、ハイレベルにされる分配制御信号と通常時に書き込みが行われるソースバスラインと検査時に書き込みが行われるソースバスラインとの対応関係は、図7に示すとおりとなる。従来の構成においては、或る分配制御信号がハイレベルになった場合に着目すると、図32に示したように、通常時と検査時とで同じソースバスラインに対して書き込みが行われていた。これに対して、本実施形態においては、或る分配制御信号がハイレベルになった場合に着目すると、通常時と検査時とでは異なるソースバスラインに対して書き込みが行われる。
 なお、本実施形態においては、赤色用,緑色用,および青色用の3本のソースバスラインによって1組の映像信号線群が構成されている。また、本実施形態においては、第1の分配回路20内のデマルチプレクサによって第1のデマルチプレクサが実現され、第2の分配回路30内のデマルチプレクサによって第2のデマルチプレクサが実現され、サンプリングスイッチによって第1スイッチが実現され、検査用スイッチによって第2スイッチが実現されている。
<1.3 液晶パネルの検査方法>
 次に、図8~図16を参照しつつ、本実施形態に係る液晶パネルの検査方法について説明する。以下において、まず、サンプリングスイッチの開放不良を検出するためのパネル検査の方法について説明し、次に、サンプリングスイッチの遮断不良を検出するためのパネル検査の方法について説明する。開放不良とは、サンプリングスイッチをオフ状態にすることができなくなっている(常にオン状態になっている)ことをいい、遮断不良とは、サンプリングスイッチをオン状態にすることができなくなっている(常にオフ状態になっている)ことをいう。なお、以下のパネル検査に関し、「テスト用映像信号T_VIDEOの書き込みが行われる前には、ソースバスラインの電位は中間階調のレベルになっている」と仮定する。以下、ソースバスラインSL1~SL3と、サンプリングスイッチTRU1,TGU1,およびTBU1と、検査用スイッチTRT1,TGT1,およびTBT1とに着目して説明する。
<1.3.1 開放不良を検出するためのパネル検査の方法>
 開放不良を検出するためのパネル検査の際には、図8に示すように、例えばASW2、ASW3、ASW1の順序で分配制御信号が所定期間ずつハイレベルとされる。なお、図8で符号T1,T2,およびT3で示す期間のことを、以下、それぞれ第1期間,第2期間,および第3期間という。切替制御信号T_SMPについては、上述したように、パネル検査が行われている期間を通じてハイレベルで維持される。これにより、通常用分配制御信号については、第1期間T1にはU_ASW2がハイレベルとなり、第2期間T2にはU_ASW3がハイレベルとなり、第3期間T3にはU_ASW1がハイレベルとなる。検査用分配制御信号については、第1期間T1にはT_ASW1がハイレベルとなり、第2期間T2にはT_ASW2がハイレベルとなり、第3期間T3にはT_ASW3がハイレベルとなる。ところで、この検査には、赤色表示の検査,緑色表示の検査,および青色表示の検査が含まれている。図8に示すように、赤色表示の検査の際には第1期間T1にのみテスト用映像信号T_VIDEOがハイレベルにされ、緑色表示の検査の際には第2期間T2にのみテスト用映像信号T_VIDEOがハイレベルにされ、青色表示の検査の際には第3期間T3にのみテスト用映像信号T_VIDEOがハイレベルにされる。例えば、共通電極の電圧を0Vとすると、テスト用映像信号T_VIDEOの電圧は、ハイレベルのときには5Vにされ、ローレベルのときには0Vにされる。
<1.3.1.1 赤色表示の検査>
 図9は、赤色表示の検査が行われるときのソースバスラインSL1~SL3の電位の変化を示す信号波形図である。このとき、上述したように、テスト用映像信号T_VIDEOについては第1期間T1にのみハイレベルとなる。
 サンプリングスイッチに開放不良がない場合には次のように動作する。第1期間T1には、制御信号T_ASW1,U_ASW2がハイレベルとなることから、検査用スイッチTRT1とサンプリングスイッチTGU1とがオン状態となる。これにより、検査用スイッチTRT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1に印加される。第2期間T2には、制御信号T_ASW2,U_ASW3がハイレベルとなることから、検査用スイッチTGT1とサンプリングスイッチTBU1とがオン状態となる。これにより、検査用スイッチTGT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL2に印加される。第3期間T3には、制御信号T_ASW3,U_ASW1がハイレベルとなることから、検査用スイッチTBT1とサンプリングスイッチTRU1とがオン状態となる。これにより、検査用スイッチTBT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL3に印加される。以上のようにして、第3期間T3が終了した時点には、ソースバスラインSL1にはハイレベルの電圧が印加され、ソースバスラインSL2,SL3にはローレベルの電圧が印加されている。その結果、正常なサンプリングスイッチのみを含むラインの領域では、赤色表示が行われる。
 サンプリングスイッチに開放不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が開放不良であると仮定する。第1期間T1には、制御信号T_ASW1,U_ASW2がハイレベルとなることから、検査用スイッチTRT1とサンプリングスイッチTGU1とがオン状態となる。これにより、検査用スイッチTRT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1に印加される。また、サンプリングスイッチTRU1が開放不良であると仮定しているので、第1期間T1には、サンプリングスイッチTRU1もオン状態となる。これにより、図10において符号19で示す矢印のように、サンプリングスイッチTRU1,TGU1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1からソースバスラインSL2に与えられる。第2期間T2には、制御信号T_ASW2,U_ASW3がハイレベルとなることから、検査用スイッチTGT1とサンプリングスイッチTBU1とがオン状態となる。これにより、検査用スイッチTGT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL2に印加される。また、サンプリングスイッチTRU1もオン状態であるので、サンプリングスイッチTRU1,TBU1を介して、ソースバスラインSL1とソースバスラインSL3との間で電荷の分配が行われる。これにより、ソースバスラインSL1の電位は低下し、ソースバスラインSL3の電位は上昇する。第3期間T3には、制御信号T_ASW3,U_ASW1がハイレベルとなることから、検査用スイッチTBT1とサンプリングスイッチTRU1とがオン状態となる。これにより、検査用スイッチTBT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL3に印加される。以上のようにして、第3期間T3が終了した時点には、ソースバスラインSL1には中間レベルの電圧が印加され、ソースバスラインSL2,SL3にはローレベルの電圧が印加されている。その結果、開放不良のサンプリングスイッチが存在するラインの領域では、赤色表示は行われず、グレー表示が行われる。
<1.3.1.2 緑色表示の検査>
 図11は、緑色表示の検査が行われるときのソースバスラインSL1~SL3の電位の変化を示す信号波形図である。このとき、上述したように、テスト用映像信号T_VIDEOについては第2期間T2にのみハイレベルとなる。
 サンプリングスイッチに開放不良がない場合には次のように動作する。第1期間T1には、制御信号T_ASW1,U_ASW2がハイレベルとなることから、検査用スイッチTRT1とサンプリングスイッチTGU1とがオン状態となる。これにより、検査用スイッチTRT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL1に印加される。第2期間T2には、制御信号T_ASW2,U_ASW3がハイレベルとなることから、検査用スイッチTGT1とサンプリングスイッチTBU1とがオン状態となる。これにより、検査用スイッチTGT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL2に印加される。第3期間T3には、制御信号T_ASW3,U_ASW1がハイレベルとなることから、検査用スイッチTBT1とサンプリングスイッチTRU1とがオン状態となる。これにより、検査用スイッチTBT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL3に印加される。以上のようにして、第3期間T3が終了した時点には、ソースバスラインSL1,SL3にはローレベルの電圧が印加され、ソースバスラインSL2にはハイレベルの電圧が印加されている。その結果、正常なサンプリングスイッチのみを含むラインの領域では、緑色表示が行われる。
 サンプリングスイッチに開放不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が開放不良であると仮定する。第1期間T1には、制御信号T_ASW1,U_ASW2がハイレベルとなることから、検査用スイッチTRT1とサンプリングスイッチTGU1とがオン状態となる。これにより、検査用スイッチTRT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL1に印加される。また、サンプリングスイッチTRU1が開放不良であると仮定しているので、第1期間T1には、サンプリングスイッチTRU1もオン状態となる。これにより、サンプリングスイッチTRU1,TGU1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL1からソースバスラインSL2に与えられる。第2期間T2には、制御信号T_ASW2,U_ASW3がハイレベルとなることから、検査用スイッチTGT1とサンプリングスイッチTBU1とがオン状態となる。これにより、検査用スイッチTGT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL2に印加される。また、サンプリングスイッチTRU1もオン状態であるので、サンプリングスイッチTRU1,TBU1を介して、ソースバスラインSL1とソースバスラインSL3との間で電荷の分配が行われる。これにより、ソースバスラインSL1の電位は上昇し、ソースバスラインSL3の電位は低下する。第3期間T3には、制御信号T_ASW3,U_ASW1がハイレベルとなることから、検査用スイッチTBT1とサンプリングスイッチTRU1とがオン状態となる。これにより、検査用スイッチTBT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL3に印加される。以上のようにして、第3期間T3が終了した時点には、ソースバスラインSL1には中間レベルの電圧が印加され、ソースバスラインSL2にはハイレベルの電圧が印加され、ソースバスラインSL3にはローレベルの電圧が印加されている。その結果、開放不良のサンプリングスイッチが存在するラインの領域では、緑色表示は行われない。
<1.3.1.3 青色表示の検査>
 図12は、青色表示の検査が行われるときのソースバスラインSL1~SL3の電位の変化を示す信号波形図である。このとき、上述したように、テスト用映像信号T_VIDEOについては第3期間T3にのみハイレベルとなる。
 サンプリングスイッチに開放不良がない場合には次のように動作する。第1期間T1には、制御信号T_ASW1,U_ASW2がハイレベルとなることから、検査用スイッチTRT1とサンプリングスイッチTGU1とがオン状態となる。これにより、検査用スイッチTRT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL1に印加される。第2期間T2には、制御信号T_ASW2,U_ASW3がハイレベルとなることから、検査用スイッチTGT1とサンプリングスイッチTBU1とがオン状態となる。これにより、検査用スイッチTGT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL2に印加される。第3期間T3には、制御信号T_ASW3,U_ASW1がハイレベルとなることから、検査用スイッチTBT1とサンプリングスイッチTRU1とがオン状態となる。これにより、検査用スイッチTBT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL3に印加される。以上のようにして、第3期間T3が終了した時点には、ソースバスラインSL1,SL2にはローレベルの電圧が印加され、ソースバスラインSL3にはハイレベルの電圧が印加されている。その結果、正常なサンプリングスイッチのみを含むラインの領域では、青色表示が行われる。
 サンプリングスイッチに開放不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が開放不良であると仮定する。第1期間T1には、制御信号T_ASW1,U_ASW2がハイレベルとなることから、検査用スイッチTRT1とサンプリングスイッチTGU1とがオン状態となる。これにより、検査用スイッチTRT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL1に印加される。また、サンプリングスイッチTRU1が開放不良であると仮定しているので、第1期間T1には、サンプリングスイッチTRU1もオン状態となる。これにより、サンプリングスイッチTRU1,TGU1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL1からソースバスラインSL2に与えられる。第2期間T2には、制御信号T_ASW2,U_ASW3がハイレベルとなることから、検査用スイッチTGT1とサンプリングスイッチTBU1とがオン状態となる。これにより、検査用スイッチTGT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL2に印加される。また、サンプリングスイッチTRU1もオン状態であるので、サンプリングスイッチTRU1,TBU1を介して、ソースバスラインSL1とソースバスラインSL3との間で電荷の分配が行われる。これにより、ソースバスラインSL1の電位は上昇し、ソースバスラインSL3の電位は低下する。第3期間T3には、制御信号T_ASW3,U_ASW1がハイレベルとなることから、検査用スイッチTBT1とサンプリングスイッチTRU1とがオン状態となる。これにより、検査用スイッチTBT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL3に印加される。以上のようにして、第3期間T3が終了した時点には、ソースバスラインSL1には中間レベルの電圧が印加され、ソースバスラインSL2にはローレベルの電圧が印加され、ソースバスラインSL3にはハイレベルの電圧が印加されている。その結果、開放不良のサンプリングスイッチが存在するラインの領域では、青色表示は行われない。
<1.3.1.4 まとめ>
 以上のように、正常なサンプリングスイッチのみを含むラインの領域では、赤色表示,緑色表示,および青色表示の全てが正常に行われる。一方、開放不良のサンプリングスイッチが存在するラインの領域では、赤色表示,緑色表示,および青色表示の全てもしくは一部が正常に行われない。これにより、サンプリングスイッチの開放不良を検出することができる。
<1.3.2 遮断不良を検出するためのパネル検査の方法>
 遮断不良を検出するためのパネル検査の際には、分配制御信号ASW1~ASW3のうちいずれか2つが所定期間(第1期間T1)ハイレベルとされる。図13には、分配制御信号のうちASW1とASW2とが第1期間T1にハイレベルにされる場合の信号波形図を示している。切替制御信号T_SMPについては、上述したように、パネル検査が行われている期間を通じてハイレベルで維持される。これにより、第1期間T1には、ハイレベルにされた分配制御信号に対応する2つの通常用分配制御信号および2つの検査用分配制御信号がハイレベルとなる。テスト用映像信号T_VIDEOについては、第1期間T1にハイレベルとされる。ところで、この検査には、赤色用および青色用のソースバスラインへの書き込み検査(以下、「R/B書込検査」という。)と、赤色用および緑色用のソースバスラインへの書き込み検査(以下、「R/G書込検査」という。)と、緑色用および青色用のソースバスラインへの書き込み検査(以下、「G/B書込検査」という。)とが含まれている。
<1.3.2.1 R/B書込検査>
 図14は、R/B書込検査が行われるときのソースバスラインSL1~SL3の電位の変化を示す信号波形図である。このとき、第1期間T1には、分配制御信号のうちASW1とASW2とがハイレベルにされる。
 サンプリングスイッチに遮断不良がない場合には次のように動作する。第1期間T1には、検査用分配制御信号についてはT_ASW1とT_ASW3とがハイレベルとなることから、検査用スイッチTRT1,TBT1がオン状態となる。これにより、検査用スイッチTRT1,TBT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1,SL3に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW1とU_ASW2とがハイレベルとなることから、サンプリングスイッチTRU1,TGU1がオン状態となる。これにより、ソースバスラインSL1からサンプリングスイッチTRU1,TGU1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL2にも印加される。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL1~SL3にはハイレベルの電圧が印加されている。その結果、正常なサンプリングスイッチのみを含むラインの領域では、白色表示が行われる。
 サンプリングスイッチに遮断不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が遮断不良であると仮定する。第1期間T1には、サンプリングスイッチに遮断不良がない場合と同様、検査用スイッチTRT1,TBT1がオン状態となり、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1,SL3に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW1とU_ASW2とがハイレベルとなるが、サンプリングスイッチTRU1が遮断不良であると仮定しているので、サンプリングスイッチTGU1のみがオン状態となる。このとき、サンプリングスイッチTRU1,TBU1はオフ状態であるので、ソースバスラインSL2にはテスト用映像信号T_VIDEOは印加されない。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL1,SL3にはハイレベルの電圧が印加され、ソースバスラインSL2には中間レベルの電圧が印加されている。その結果、遮断不良のサンプリングスイッチが存在するラインの領域では、白色表示は行われない。
<1.3.2.2 R/G書込検査>
 図15は、R/G書込検査が行われるときのソースバスラインSL1~SL3の電位の変化を示す信号波形図である。このとき、第1期間T1には、分配制御信号のうちASW2とASW3とがハイレベルにされる。
 サンプリングスイッチに遮断不良がない場合には次のように動作する。第1期間T1には、検査用分配制御信号についてはT_ASW1とT_ASW2とがハイレベルとなることから、検査用スイッチTRT1,TGT1がオン状態となる。これにより、検査用スイッチTRT1,TGT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1,SL2に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW2とU_ASW3とがハイレベルとなることから、サンプリングスイッチTGU1,TBU1がオン状態となる。これにより、ソースバスラインSL2からサンプリングスイッチTGU1,TBU1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL3にも印加される。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL1~SL3にはハイレベルの電圧が印加されている。その結果、正常なサンプリングスイッチのみを含むラインの領域では、白色表示が行われる。
 サンプリングスイッチに遮断不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が遮断不良であると仮定する。第1期間T1には、サンプリングスイッチに遮断不良がない場合と同様、検査用スイッチTRT1,TGT1がオン状態となり、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1,SL2に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW2とU_ASW3とがハイレベルとなることから、サンプリングスイッチに遮断不良がない場合と同様、ソースバスラインSL2からサンプリングスイッチTGU1,TBU1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL3にも印加される。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL1~SL3にはハイレベルの電圧が印加されている。その結果、この検査に関しては、遮断不良のサンプリングスイッチが存在するにもかかわらず、白色表示が行われる。
<1.3.2.3 G/B書込検査>
 図16は、G/B書込検査が行われるときのソースバスラインSL1~SL3の電位の変化を示す信号波形図である。このとき、第1期間T1には、分配制御信号のうちASW1とASW3とがハイレベルにされる。
 サンプリングスイッチに遮断不良がない場合には次のように動作する。第1期間T1には、検査用分配制御信号についてはT_ASW2とT_ASW3とがハイレベルとなることから、検査用スイッチTGT1,TBT1がオン状態となる。これにより、検査用スイッチTGT1,TBT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL2,SL3に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW1とU_ASW3とがハイレベルとなることから、サンプリングスイッチTRU1,TBU1がオン状態となる。これにより、ソースバスラインSL3からサンプリングスイッチTBU1,TRU1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1にも印加される。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL1~SL3にはハイレベルの電圧が印加されている。その結果、正常なサンプリングスイッチのみを含むラインの領域では、白色表示が行われる。
 サンプリングスイッチに遮断不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が遮断不良であると仮定する。第1期間T1には、サンプリングスイッチに遮断不良がない場合と同様、検査用スイッチTGT1,TBT1がオン状態となり、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL2,SL3に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW1とU_ASW3とがハイレベルとなるが、サンプリングスイッチTRU1が遮断不良であると仮定しているので、サンプリングスイッチTBU1のみがオン状態となる。このとき、サンプリングスイッチTRU1,TGU1はオフ状態であるので、ソースバスラインSL1にはテスト用映像信号T_VIDEOは印加されない。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL2,SL3にはハイレベルの電圧が印加され、ソースバスラインSL1には中間レベルの電圧が印加されている。その結果、遮断不良のサンプリングスイッチが存在するラインの領域では、白色表示は行われない。
<1.3.2.4 まとめ>
 以上のように、正常なサンプリングスイッチのみを含むラインの領域では、R/B書込検査,R/G書込検査,およびG/B書込検査の全てにおいて白色表示が行われる。一方、遮断不良のサンプリングスイッチが存在するラインの領域では、R/B書込検査,R/G書込検査,およびG/B書込検査の全てもしくは一部において白色表示が行われない。これにより、サンプリングスイッチの遮断不良を検出することができる。
<1.4 効果>
 本実施形態によれば、サンプリングスイッチおよび検査用スイッチのオン/オフ状態を制御する3つの分配制御信号のうちの任意の信号を着目制御信号としたとき、着目制御信号によってオン状態にされるサンプリングスイッチに接続されたソースバスラインと着目制御信号によってオン状態にされる検査用スイッチに接続されたソースバスラインとは異なっている。このため、テスト用映像信号T_VIDEOがハイレベルになっているときに或る分配制御信号に基づいてサンプリングスイッチと検査用スイッチとをオン状態にすると、開放不良のサンプリングスイッチが存在しなければ、1組の映像信号線群を構成する3本のソースバスラインのうち1本のソースバスラインのみにハイレベルの電圧が印加される。これに対して、開放不良のサンプリングスイッチが存在すれば、1組の映像信号線群を構成する3本のソースバスラインのうち2本以上のソースバスラインにハイレベルの電圧が印加されることや1本のソースバスラインに蓄積されていた電荷が2本以上のソースバスラインに分配されることが生じる。これにより、パネル検査の際に、サンプリングスイッチの開放不良を検出することができる。また、テスト用映像信号T_VIDEOがハイレベルになっているときに2つの分配制御信号に基づいてサンプリングスイッチと検査用スイッチとをオン状態にすると、遮断不良のサンプリングスイッチが存在しなければ、1組の映像信号線群を構成する3本のソースバスラインの全てにハイレベルの電圧が印加される。これに対して、遮断不良のサンプリングスイッチが存在すれば、1組の映像信号線群を構成する3本のソースバスラインのうち2本のソースバスラインのみにハイレベルの電圧が印加されることが生じ得る。詳しくは、遮断不良のサンプリングスイッチが存在すれば、テスト用映像信号T_VIDEOがハイレベルになっているときに、3つの分配制御信号のうちの2つの分配制御信号についての全ての組み合わせに基づいてサンプリングスイッチおよび検査用スイッチをオン状態にすると、1組の映像信号線群を構成する3本のソースバスラインのうち2本のソースバスラインのみにハイレベルの電圧が印加されることが必ず生じる。これにより、パネル検査の際に、サンプリングスイッチの遮断不良を検出することができる。
 また、図1(本実施形態における回路図)と図32(従来例における回路図)とから把握されるように、本実施形態においては、従来例と比較して回路規模が大きくなることはない。このため、パネルの狭額縁化を図ることができる。さらに、サンプリングスイッチはソースバスラインの一端側に配置され、検査用スイッチはソースバスラインの他端側に配置されているので、表示部(画素回路部)を基準としてサンプリングスイッチ側(ソースドライバ側)の狭額縁化を図ることが容易になる。
<1.5 変形例>
 上記第1の実施形態においては、第2の分配回路30内の分配部31に与えられる検査用分配制御信号の伝達を3個のスイッチSW1~SW3で制御することによってソースバスラインへのテスト用映像信号T_VIDEOの出力が制御されていたが、本発明はこれに限定されない。例えば、図17において符号33で示すように、分配部31と画素回路部10との間に各ソースバスラインへのテスト用映像信号T_VIDEOの出力を制御するスイッチ(例えば、薄膜トランジスタ)を備える構成にしても良い。また、図17に示した構成に代えて、図18において符号34で示すように、テスト用映像信号T_VIDEOを伝達する信号線と分配部31内のサンプリングスイッチとの間にテスト用映像信号T_VIDEOの伝達を制御するスイッチ(例えば、薄膜トランジスタ)を備える構成にしても良い。なお、図17に示す構成においては、符号33で示す領域内の複数個のスイッチによって動作制御部が実現され、図18に示す構成においては、符号34で示す領域内の複数個のスイッチによって動作制御部が実現されている。
 上述した変形例によると、上記第1の実施形態と比較して、ソースバスラインの延びる方向とは垂直方向(ゲートバスラインの延びる方向)についての額縁面積を大きくすることなく、パネル検査の際に通常時に動作するサンプリングスイッチの不良をも検出することができる液晶パネルが実現される。
<2.第2の実施形態>
<2.1 分配回路の構成および動作>
 図19は、本発明の第2の実施形態における第1の分配回路20および第2の分配回路30の詳細な構成を示す回路図である。なお、図1には、複数本のソースバスラインのうちの6本のソースバスラインSL1~SL6のみを示している。液晶パネルの全体構成については、上記第1の実施形態と同様であるので説明を省略する(図2,図3参照)。本実施形態においては、上記第1の実施形態とは異なり、第1の分配回路20には、6本のソースバスライン毎に1入力6出力のデマルチプレクサが設けられている。同様に、第2の分配回路30内の分配部35にも、6本のソースバスライン毎に1入力6出力のデマルチプレクサが設けられている。図19に示す6本のソースバスラインSL1~SL6に対応する構成要素に着目すると、第1の分配回路20には、6個のサンプリングスイッチTRU1,TGU1,TBU1,TRU2,TGU2,およびTBU2が設けられ、第2の分配回路30内の分配部35には、6個の検査用スイッチTRT1,TGT1,TBT1,TRT2,TGT2,およびTBT2が設けられている。また、1入力6出力のデマルチプレクサが分配部35に設けられているので、動作制御部36には6個のスイッチSW1~SW6が設けられている。これら6個のスイッチSW1~SW6のオン/オフ状態は、上記第1の実施形態と同様、外部から送られる制御信号T_SMPによって制御される。
 サンプリングスイッチTRU1,TGU1,TBU1,TRU2,TGU2,およびTBU2のオン/オフ状態は、それぞれ制御信号U_ASW1,U_ASW2,U_ASW3,U_ASW4,U_ASW5,およびU_ASW6によって制御される。検査用スイッチTRT1,TGT1,TBT1,TRT2,TGT2,およびTBT2のオン/オフ状態は、それぞれ制御信号T_ASW1,T_ASW2,T_ASW3,T_ASW4,T_ASW5,およびT_ASW6によって制御される。
 また、本実施形態においては、外部から分配制御信号ASW1~ASW6が与えられる。分配制御信号ASW1,ASW2,ASW3,ASW4,ASW5,およびASW6は、それぞれ通常用分配制御信号U_ASW1,U_ASW2,U_ASW3,U_ASW4,U_ASW5,およびU_ASW6として第1の分配回路20に与えられる。分配制御信号ASW1,ASW2,ASW3,ASW4,ASW5,およびASW6は、また、動作制御部36内のスイッチSW1~SW6がオン状態の時に、それぞれ検査用分配制御信号T_ASW6,T_ASW1,T_ASW2,T_ASW3,T_ASW4,およびT_ASW5として第2の分配回路30内の分配部35に与えられる。
 以上のような構成において、検査時と通常時とで、上述した6個のスイッチSW1~SW6のオン/オフ状態が切り替えられる。具体的には、検査時には制御信号T_SMPがハイレベルで維持されてスイッチSW1~SW6がオン状態となり、通常時には制御信号T_SMPがローレベルで維持されてスイッチSW1~SW6がオフ状態となる。これにより、検査時においては、制御信号ASW1がハイレベルとなっている期間には制御信号U_ASW1,T_ASW6がハイレベルとなり、制御信号ASW2がハイレベルとなっている期間には制御信号U_ASW2,T_ASW1がハイレベルとなり、制御信号ASW3がハイレベルとなっている期間には制御信号U_ASW3,T_ASW2がハイレベルとなり、制御信号ASW4がハイレベルとなっている期間には制御信号U_ASW4,T_ASW3がハイレベルとなり、制御信号ASW5がハイレベルとなっている期間には制御信号U_ASW5,T_ASW4がハイレベルとなり、制御信号ASW6がハイレベルとなっている期間には制御信号U_ASW6,T_ASW5がハイレベルとなる。一方、通常時においては、制御信号ASW1がハイレベルとなっている期間には制御信号U_ASW1のみがハイレベルとなり、制御信号ASW2がハイレベルとなっている期間には制御信号U_ASW2のみがハイレベルとなり、制御信号ASW3がハイレベルとなっている期間には制御信号U_ASW3のみがハイレベルとなり、制御信号ASW4がハイレベルとなっている期間には制御信号U_ASW4のみがハイレベルとなり、制御信号ASW5がハイレベルとなっている期間には制御信号U_ASW5のみがハイレベルとなり、制御信号ASW6がハイレベルとなっている期間には制御信号U_ASW6のみがハイレベルとなる。
 ここで、検査時には(ソースドライバ40が存在しないため)映像信号が第1の分配回路20に与えられないことを考慮すると、ハイレベルにされる分配制御信号と通常時に書き込みが行われるソースバスラインと検査時に書き込みが行われるソースバスラインとの対応関係は、図20に示すとおりとなる。このように、本実施形態においても、或る分配制御信号がハイレベルになった場合に着目すると、通常時と検査時とでは異なるソースバスラインに対して書き込みが行われる。
<2.2 液晶パネルの検査方法>
 次に、図21~図28を参照しつつ、本実施形態に係る液晶パネルの検査方法について説明する。なお、上記第1の実施形態と同様、以下のパネル検査に関し、「テスト用映像信号T_VIDEOの書き込みが行われる前には、ソースバスラインの電位は中間階調のレベルになっている」と仮定する。以下、ソースバスラインSL1~SL6と、サンプリングスイッチTRU1,TGU1,TBU1,TRU2,TGU2,およびTBU2と、検査用スイッチTRT1,TGT1,TBT1,TRT2,TGT2,およびTBT2とに着目して説明する。
<2.2.1 開放不良を検出するためのパネル検査の方法>
 開放不良を検出するためのパネル検査の際には、図21に示すように、例えばASW2、ASW3、ASW4、ASW5、ASW6、ASW1の順序で分配制御信号が所定期間ずつハイレベルとされる。なお、図21で符号T1,T2,T3,T4,T5,およびT6で示す期間のことを、以下、それぞれ第1期間,第2期間,第3期間,第4期間,第5期間,および第6期間という。切替制御信号T_SMPについては、上述したように、パネル検査が行われている期間を通じてハイレベルで維持される。これにより、通常用分配制御信号については、第1期間T1,第2期間T2,第3期間T3,第4期間T4,第5期間T5,および第6期間T6には、それぞれU_ASW2,U_ASW3,U_ASW4,U_ASW5,U_ASW6,およびU_ASW1がハイレベルとなる。検査用分配制御信号については、第1期間T1,第2期間T2,第3期間T3,第4期間T4,第5期間T5,および第6期間T6には、それぞれT_ASW1,T_ASW2,T_ASW3,T_ASW4,T_ASW5,およびT_ASW6がハイレベルとなる。また、本実施形態においては、図21に示すように、赤色表示の検査の際には第1期間T1および第4期間T4にテスト用映像信号T_VIDEOがハイレベルにされ、緑色表示の検査の際には第2期間T2および第5期間T5にテスト用映像信号T_VIDEOがハイレベルにされ、青色表示の検査の際には第3期間T3および第6期間T6にテスト用映像信号T_VIDEOがハイレベルにされる。
 図22は、赤色表示の検査が行われるときのソースバスラインSL1~SL6の電位の変化を示す信号波形図である。このとき、上述したように、テスト用映像信号T_VIDEOについては第1期間T1および第4期間T4にハイレベルとなる。
 サンプリングスイッチに開放不良がない場合には次のように動作する。第1期間T1には、制御信号T_ASW1,U_ASW2がハイレベルとなることから、検査用スイッチTRT1とサンプリングスイッチTGU1とがオン状態となる。これにより、検査用スイッチTRT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1に印加される。第2期間T2には、制御信号T_ASW2,U_ASW3がハイレベルとなることから、検査用スイッチTGT1とサンプリングスイッチTBU1とがオン状態となる。これにより、検査用スイッチTGT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL2に印加される。第3期間T3には、制御信号T_ASW3,U_ASW4がハイレベルとなることから、検査用スイッチTBT1とサンプリングスイッチTRU2とがオン状態となる。これにより、検査用スイッチTBT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL3に印加される。第4期間T4には、制御信号T_ASW4,U_ASW5がハイレベルとなることから、検査用スイッチTRT2とサンプリングスイッチTGU2とがオン状態となる。これにより、検査用スイッチTRT2を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL4に印加される。第5期間T5には、制御信号T_ASW5,U_ASW6がハイレベルとなることから、検査用スイッチTGT2とサンプリングスイッチTBU2とがオン状態となる。これにより、検査用スイッチTGT2を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL5に印加される。第6期間T6には、制御信号T_ASW6,U_ASW1がハイレベルとなることから、検査用スイッチTBT2とサンプリングスイッチTRU1とがオン状態となる。これにより、検査用スイッチTBT2を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL6に印加される。以上のようにして、第6期間T6が終了した時点には、ソースバスラインSL1,SL4にはハイレベルの電圧が印加され、ソースバスラインSL2,SL3,SL5,およびSL6にはローレベルの電圧が印加されている。その結果、正常なサンプリングスイッチのみを含むラインの領域では、赤色表示が行われる。
 サンプリングスイッチに開放不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が開放不良であると仮定する。第1期間T1には、制御信号T_ASW1,U_ASW2がハイレベルとなることから、検査用スイッチTRT1とサンプリングスイッチTGU1とがオン状態となる。これにより、検査用スイッチTRT1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1に印加される。また、サンプリングスイッチTRU1が開放不良であると仮定しているので、第1期間T1には、サンプリングスイッチTRU1もオン状態となる。これにより、サンプリングスイッチTRU1,TGU1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1からソースバスラインSL2に与えられる。第2期間T2には、制御信号T_ASW2,U_ASW3がハイレベルとなることから、検査用スイッチTGT1とサンプリングスイッチTBU1とがオン状態となる。これにより、検査用スイッチTGT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL2に印加される。また、サンプリングスイッチTRU1もオン状態であるので、サンプリングスイッチTRU1,TBU1を介して、ソースバスラインSL1とソースバスラインSL3との間で電荷の分配が行われる。これにより、ソースバスラインSL1の電位は低下し、ソースバスラインSL3の電位は上昇する。第3期間T3には、制御信号T_ASW3,U_ASW4がハイレベルとなることから、検査用スイッチTBT1とサンプリングスイッチTRU2とがオン状態となる。これにより、検査用スイッチTBT1を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL3に印加される。また、サンプリングスイッチTRU1もオン状態であるので、サンプリングスイッチTRU1,TRU2を介して、ソースバスラインSL1とソースバスラインSL4との間で電荷の分配が行われる。これにより、ソースバスラインSL1の電位は低下し、ソースバスラインSL4の電位は上昇する。第4期間T4には、制御信号T_ASW4,U_ASW5がハイレベルとなることから、検査用スイッチTRT2とサンプリングスイッチTGU2とがオン状態となる。これにより、検査用スイッチTRT2を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL4に印加される。また、サンプリングスイッチTRU1もオン状態であるので、サンプリングスイッチTRU1,TGU2を介して、ソースバスラインSL1とソースバスラインSL5との間で電荷の分配が行われる。これにより、ソースバスラインSL1の電位はやや低下し、ソースバスラインSL5の電位はやや上昇する。第5期間T5には、制御信号T_ASW5,U_ASW6がハイレベルとなることから、検査用スイッチTGT2とサンプリングスイッチTBU2とがオン状態となる。これにより、検査用スイッチTGT2を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL5に印加される。また、サンプリングスイッチTRU1もオン状態であるので、サンプリングスイッチTRU1,TBU2を介して、ソースバスラインSL1とソースバスラインSL6との間で電荷の分配が行われる。これにより、ソースバスラインSL1の電位はやや低下し、ソースバスラインSL6の電位はやや上昇する。第6期間T6には、制御信号T_ASW6,U_ASW1がハイレベルとなることから、検査用スイッチTBT2とサンプリングスイッチTRU1とがオン状態となる。これにより、検査用スイッチTBT2を介して、ローレベルのテスト用映像信号T_VIDEOがソースバスラインSL6に印加される。以上のようにして、第6期間T6が終了した時点には、ソースバスラインSL1には中間レベルの電圧が印加され、ソースバスラインSL2,SL3,SL5,およびSL6にはローレベルの電圧が印加され、ソースバスラインSL4にはハイレベルの電圧が印加されている。その結果、開放不良のサンプリングスイッチが存在するラインの領域では、赤色表示は行われない。
 緑色表示の検査および青色表示の検査については、赤色表示の検査と同様にして行われるので、詳しい説明を省略する。なお、図23は、緑色表示の検査が行われるときのソースバスラインSL1~SL6の電位の変化を示す信号波形図であり、図24は、青色表示の検査が行われるときのソースバスラインSL1~SL6の電位の変化を示す信号波形図である。開放不良のサンプリングスイッチが存在するラインの領域では、緑色表示の検査の結果、緑色表示は行われず、青色表示の検査の結果、青色表示は行われない。以上のようにして、1入力6出力のデマルチプレクサが第1の分配回路20に設けられた構成においても、サンプリングスイッチの開放不良を検出することができる。
<2.2.2 遮断不良を検出するためのパネル検査の方法>
 遮断不良を検出するためのパネル検査の際には、分配制御信号ASW1~ASW6のうちの4つが所定期間(第1期間T1)ハイレベルとされる。具体的には、R/B書込検査の際にはASW1,ASW2,ASW4,およびASW5がハイレベルにされ、R/G書込検査の際にはASW2,ASW3,ASW5,およびASW6がハイレベルにされ、G/B書込検査の際にはASW1,ASW3,ASW4,およびASW6がハイレベルにされる。図25には、分配制御信号のうちASW1,ASW2,ASW4,およびASW5が第1期間T1にハイレベルにされる場合の信号波形図を示している。切替制御信号T_SMPについては、上述したように、パネル検査が行われている期間を通じてハイレベルで維持される。これにより、第1期間T1には、ハイレベルにされた分配制御信号に対応する4つの通常用分配制御信号および4つの検査用分配制御信号がハイレベルとなる。テスト用映像信号T_VIDEOについては、第1期間T1にハイレベルとされる。
<2.2.2.1 R/B書込検査>
 図26は、R/B書込検査が行われるときのソースバスラインSL1~SL6の電位の変化を示す信号波形図である。このとき、第1期間T1には、分配制御信号のうちASW1,ASW2,ASW4,およびASW5がハイレベルにされる。
 サンプリングスイッチに遮断不良がない場合には次のように動作する。第1期間T1には、検査用分配制御信号についてはT_ASW1,T_ASW3,T_ASW4,およびT_ASW6がハイレベルとなることから、検査用スイッチTRT1,TBT1,TRT2,およびTBT2がオン状態となる。これにより、検査用スイッチTRT1,TBT1,TRT2,およびTBT2を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1,SL3,SL4,およびSL6に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW1,U_ASW2,U_ASW4,およびU_ASW5がハイレベルとなることから、サンプリングスイッチTRU1,TGU1,TRU2,およびTGU2がオン状態となる。これにより、ソースバスラインSL1,SL4に印加されたハイレベルのテスト用映像信号T_VIDEOが、オン状態になっているサンプリングスイッチを介してソースバスラインSL2,SL5にも印加される。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL1~SL6にはハイレベルの電圧が印加されている。その結果、正常なサンプリングスイッチのみを含むラインの領域では、白色表示が行われる。
 サンプリングスイッチに遮断不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が遮断不良であると仮定する。第1期間T1には、サンプリングスイッチに遮断不良がない場合と同様、検査用スイッチTRT1,TBT1,TRT2,およびTBT2がオン状態となり、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1,SL3,SL4,およびSL6に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW1,U_ASW2,U_ASW4,およびU_ASW5がハイレベルとなるが、サンプリングスイッチTRU1が遮断不良であると仮定しているので、サンプリングスイッチTGU1,TRU2,およびTGU2がオン状態となる。これにより、ソースバスラインSL4からサンプリングスイッチTRU2,TGU2を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL5にも印加される。また、ソースバスラインSL4からサンプリングスイッチTRU2,TGU1を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL2にも印加される。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL1~SL6にはハイレベルの電圧が印加されている。その結果、この検査に関しては、遮断不良のサンプリングスイッチが存在するにもかかわらず、白色表示が行われる
<2.2.2.2 R/G書込検査>
 図27は、R/G書込検査が行われるときのソースバスラインSL1~SL6の電位の変化を示す信号波形図である。このとき、第1期間T1には、分配制御信号のうちASW2,ASW3,ASW5,およびASW6がハイレベルにされる。サンプリングスイッチに遮断不良がない場合には、上述したR/B書込検査と同様の動作が行われ、白色表示が行われる。
 サンプリングスイッチに遮断不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が遮断不良であると仮定する。第1期間T1には、検査用分配制御信号についてはT_ASW1,T_ASW2,T_ASW4,およびT_ASW5がハイレベルとなることから、検査用スイッチTRT1,TGT1,TRT2,およびTGT2がオン状態となる。これにより、検査用スイッチTRT1,TGT1,TRT2,およびTGT2を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL1,SL2,SL4,およびSL5に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW2,U_ASW3,U_ASW5,およびU_ASW6がハイレベルとなることから、サンプリングスイッチTGU1,TBU1,TGU2,およびTBU2がオン状態となる。これにより、ソースバスラインSL2,SL5に印加されたハイレベルのテスト用映像信号T_VIDEOが、オン状態になっているサンプリングスイッチを介してソースバスラインSL3,SL6にも印加される。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL1~SL6にはハイレベルの電圧が印加されている。その結果、この検査に関しては、遮断不良のサンプリングスイッチが存在するにもかかわらず、白色表示が行われる。
<2.2.2.3 G/B書込検査>
 図28は、G/B書込検査が行われるときのソースバスラインSL1~SL6の電位の変化を示す信号波形図である。このとき、第1期間T1には、分配制御信号のうちASW1,ASW3,ASW4,およびASW6がハイレベルにされる。サンプリングスイッチに遮断不良がない場合には、上述したR/B書込検査と同様の動作が行われ、白色表示が行われる。
 サンプリングスイッチに遮断不良がある場合には次のように動作する。なお、ここでは、サンプリングスイッチTRU1が遮断不良であると仮定する。第1期間T1には、検査用分配制御信号についてはT_ASW2,T_ASW3,T_ASW5,およびT_ASW6がハイレベルとなることから、検査用スイッチTGT1,TBT1,TGT2,およびTBT2がオン状態となる。これにより、検査用スイッチTGT1,TBT1,TGT2,およびTBT2を介して、ハイレベルのテスト用映像信号T_VIDEOがソースバスラインSL2,SL3,SL5,およびSL6に印加される。また、第1期間T1には、通常用分配制御信号についてはU_ASW1,U_ASW3,U_ASW4,およびU_ASW6がハイレベルとなるが、サンプリングスイッチTRU1が遮断不良であると仮定しているので、サンプリングスイッチTBU1,TRU2,およびTBU2がオン状態となる。これにより、ソースバスラインSL3,SL6に印加されたハイレベルのテスト用映像信号T_VIDEOが、オン状態になっているサンプリングスイッチを介してソースバスラインSL4にも印加される。しかしながら、サンプリングスイッチTRU1はオフ状態であるので、ソースバスラインSL1にはテスト用映像信号T_VIDEOは印加されない。以上のようにして、第1期間T1が終了した時点においては、ソースバスラインSL2~SL6にはハイレベルの電圧が印加され、ソースバスラインSL1には中間レベルの電圧が印加されている。その結果、遮断不良のサンプリングスイッチが存在するラインの領域では、白色表示は行われない。
<2.2.2.4 まとめ>
 以上のように、本実施形態においても、遮断不良のサンプリングスイッチが存在するラインの領域では、R/B書込検査,R/G書込検査,およびG/B書込検査の全てもしくは一部において白色表示が行われない。これにより、1入力6出力のデマルチプレクサが第1の分配回路20に設けられた構成においても、サンプリングスイッチの遮断不良を検出することができる。
<2.3 効果>
 本実施形態によれば、第1の分配回路20および第2の分配回路30に1入力6出力のデマルチプレクサが設けられた構成の液晶パネルに関し、回路規模を増大させることなく、パネル検査の際に通常時に動作するサンプリングスイッチの不良をも検出することが可能となる。
<3.第3の実施形態>
<3.1 構成>
 本発明の第3の実施形態に係る液晶パネルの構成は、第1の実施形態における構成と同様である(図1~図5参照)。第1の実施形態においては、第2の分配回路30は(典型的にはドライバICを実装する前の)パネル検査用の回路として用いられていたが、本実施形態においては、ソースバスラインについてのプリチャージ(予備充電)用の回路として用いられる。従って、この第2の分配回路30は、パネル検査用の回路として用いられることもできるし、プリチャージ用の回路として用いられることもできる。なお、説明の便宜上、第1の実施形態における「テスト用映像信号」のことを「プリチャージ用映像信号」といい、第1の実施形態における「検査用スイッチ」のことを「プリチャージ用スイッチ」という。
<3.2 駆動方法>
 以下、図29を参照しつつ、第2の分配回路30がプリチャージ用の回路として用いられるときのソースバスラインの駆動方法について説明する。なお、本実施形態においては、液晶層への印加電圧の正負極性を1ゲートバスライン毎に反転させるいわゆるライン反転駆動方式が採用されている。従って、各ソースバスラインには1水平走査期間毎に極性の異なる映像信号が印加される。図29では、時点t10に或る水平走査期間が開始され、時点t20に次の水平走査期間が開始されている。プリチャージ用映像信号T_VIDEOについては、中間階調の電位に固定されている。なお、図29ではソースバスラインに印加される映像信号VIDEOを1つの波形で示しているが、実際には、表示すべき画像に応じて異なる電位の映像信号が各ソースバスラインに印加される。
 時点t10になると、制御信号ASW1~ASW3がハイレベルにされる。この時、制御信号T_SMPはハイレベルにされているので、スイッチSW1~SW3はオン状態になっている。従って、時点t10には、制御信号U_ASW1~U_ASW3,T_ASW1~T_ASW3がハイレベルとなる。これにより、全てのサンプリングスイッチと全てのプリチャージ用スイッチとがオン状態となる。ここで、時点t0においては、第1の分配回路20とソースドライバ40とが電気的に切り離された状態になっており、映像信号VIDEOの電位は不定となっている。以上より、時点t10には、全てのソースバスラインにプリチャージ電位(プリチャージ用映像信号T_VIDEOの電位)が書き込まれる。
 時点t11になると、制御信号ASW1~ASW3がローレベルにされる。これにより、全てのサンプリングスイッチと全てのプリチャージ用スイッチとがオフ状態となる。時点t12になると、制御信号T_SMPがローレベルにされる。これにより、スイッチSW1~SW3はオフ状態となる。また、時点t12には、第1の分配回路20とソースドライバ40とが電気的に接続され、表示すべき画像に応じた映像信号VIDEOがソースドライバ40から第1の分配回路20に与えられる。
 時点t13になると、制御信号ASW1がハイレベルにされる。これにより、制御信号U_ASW1がハイレベルとなる。この時、制御信号T_SMPはローレベルにされているので、スイッチSW1はオフ状態になっている。従って、制御信号T_ASW3についてはローレベルで維持される。以上より、サンプリングスイッチTRU1、TRU2、・・・、TRUnがオン状態となる。その結果、赤色用のソースバスラインSL1、SL4、・・・、SL(3n-2)に表示すべき画像に応じた映像信号VIDEOが印加される。時点t14になると、制御信号ASW1がローレベルにされる。これにより、制御信号U_ASW1がローレベルとなり、サンプリングスイッチTRU1、TRU2、・・・、TRUnがオフ状態となる。
 時点t13から時点t14までの期間と同様にして、時点t15から時点t16までの期間には緑色用のソースバスラインSL2、SL5、・・・、SL(3n-1)に表示すべき画像に応じた映像信号VIDEOが印加され、時点t17から時点t18までの期間には青色用のソースバスラインSL3、SL6、・・・、SL(3n)に表示すべき画像に応じた映像信号VIDEOが印加される。
 時点t19になると、制御信号T_SMPがハイレベルにされる。これにより、スイッチSW1~SW3がオン状態にされる。また、第1の分配回路20とソースドライバ40とが電気的に切り離された状態にされ、映像信号VIDEOの電位が不定となる。
 時点t20から時点t28までの期間には、時点t10から時点t18までの期間と同様にして、全てのソースバスラインにプリチャージ電位が書き込まれた後、赤色用、緑色用、青色用の順序で表示すべき画像に応じた映像信号VIDEOのソースバスラインへの印加が行われる。但し、ソースバスラインに印加される映像信号VIDEOの極性については、時点t13から時点t18までの期間と時点t23から時点t28までの期間とで逆になる。
<3.3 効果>
 本実施形態によれば、ソースバスラインの一端側には、映像信号VIDEOを複数のソースバスラインに出力するためのデマルチプレクサを含む第1の分配回路20が設けられ、ソースバスラインの他端側には、所定の入力信号を複数のソースバスラインに出力するためのデマルチプレクサを含む第2の分配回路30が設けられている。このような構成において、中間階調の電位に固定されたプリチャージ用映像信号T_VIDEOが上記所定の入力信号として第2の分配回路30に与えられる。そして、各水平走査期間の最初の所定期間において、第2の分配回路30内のデマルチプレクサを構成する全てのスイッチがオン状態にされる。これにより、全てのソースバスラインにプリチャージ電位が書き込まれる。その後、第2の分配回路30内のデマルチプレクサを構成する全てのスイッチはオフ状態にされ、表示すべき画像に応じた映像信号VIDEOが第1の分配回路20側から各ソースバスラインに印加される。このように、各水平走査期間においてソースバスラインへのプリチャージが行われるので、各画素形成部において目標印加電圧への到達時間が短縮され、表示品位が改善される。
 また、本実施形態においては、回路構成(第1の分配回路20および第2の分配回路30の構成)が上記第1の実施形態と同じになっている。従って、比較的簡単な構成の回路を備えるだけで、パネル検査の際に通常時に動作するサンプリングスイッチの不良をも検出することができるという効果が得られるとともに、ソースバスラインへのプリチャージが可能となり表示品位が改善されるという効果が得られる。
<3.4 変形例>
 上記第3の実施形態においては、全てのソースバスラインにプリチャージ電位が書き込まれた後、赤色用、緑色用、青色用の順序で表示すべき画像に応じた映像信号VIDEOのソースバスラインへの印加が行われているが、本発明はこれに限定されない。以下のように、青色用、緑色用、赤色用の順序でソースバスラインへのプリチャージ電位の書き込みと映像信号電位の書き込みとが行われるようにすることもできる。以下、図30を参照しつつ、本変形例におけるソースバスラインの駆動方法について説明する。なお、本変形例においても、プリチャージ用映像信号T_VIDEOは、中間階調の電位に固定されている。
 時点t10になると、制御信号ASW1がハイレベルにされる。この時、制御信号T_SMPはハイレベルにされているので、スイッチSW1はオン状態になっている。従って、時点t10には、制御信号U_ASW1,T_ASW3がハイレベルとなる。これにより、サンプリングスイッチTRU1、TRU2、・・・、TRUnとプリチャージ用スイッチTBT1、TBT2、・・・、TBTnとがオン状態となる。以上より、時点t10には、赤色用のソースバスラインSL1、SL4、・・・、SL(3n-2)に映像信号VIDEOの電位の書き込みが行われるとともに、青色用のソースバスラインSL3、SL6、・・・、SL(3n)にプリチャージ電位の書き込みが行われる。但し、時点t10における映像信号VIDEOの電位は仮の電位となっており、赤色用のソースバスラインSL1、SL4、・・・、SL(3n-2)への本来の書き込みは後述するように時点t17に行われる。時点t11になると、制御信号ASW1がローレベルにされる。これにより、制御信号U_ASW1,T_ASW3はローレベルとなり、サンプリングスイッチTRU1、TRU2、・・・、TRUnおよびプリチャージ用スイッチTBT1、TBT2、・・・、TBTnはオフ状態となる。
 時点t12になると、制御信号ASW3がハイレベルにされる。このため、制御信号U_ASW3,T_ASW2がハイレベルとなる。これにより、サンプリングスイッチTBU1、TBU2、・・・、TBUnとプリチャージ用スイッチTGT1、TGT2、・・・、TGTnとがオン状態となる。以上より、時点t12には、青色用のソースバスラインSL3、SL6、・・・、SL(3n)に映像信号VIDEOの電位の書き込みが行われるとともに、緑色用のソースバスラインSL2、SL5、・・・、SL(3n-1)にプリチャージ電位の書き込みが行われる。時点t13になると、制御信号ASW3がローレベルにされる。これにより、制御信号U_ASW3,T_ASW2はローレベルとなり、サンプリングスイッチTBU1、TBU2、・・・、TBUnおよびプリチャージ用スイッチTGT1、TGT2、・・・、TGTnはオフ状態となる。
 時点t14には、時点t12と同様にして、緑色用のソースバスラインSL2、SL5、・・・、SL(3n-1)に映像信号VIDEOの電位の書き込みが行われるとともに、赤色用のソースバスラインSL1、SL4、・・・、SL(3n-2)にプリチャージ電位の書き込みが行われる。
 時点t15に制御信号ASW2がローレベルになった後、時点t16になると、制御信号T_SMPがローレベルにされる。これにより、スイッチSW1~SW3はオフ状態となり、全てのプリチャージ用スイッチはオフ状態となる。時点t17になると、制御信号ASW1がハイレベルにされる。これにより、制御信号U_ASW1がハイレベルとなる。この時、スイッチSW1はオフ状態になっているので、制御信号T_ASW3についてはローレベルで維持される。以上より、サンプリングスイッチTRU1、TRU2、・・・、TRUnがオン状態となる。その結果、赤色用のソースバスラインSL1、SL4、・・・、SL(3n-2)に映像信号VIDEOの電位の書き込みが行われる。時点t18になると、制御信号ASW1がローレベルにされる。これにより、制御信号U_ASW1がローレベルとなり、サンプリングスイッチTRU1、TRU2、・・・、TRUnがオフ状態となる。時点t19になると、制御信号T_SMPがハイレベルにされる。これにより、スイッチSW1~SW3はオン状態となる。
 時点t20から時点t29までの期間には、時点t10から時点t19までの期間と同様にして、青色用、緑色用、赤色用の順序でソースバスラインへのプリチャージ電位の書き込みと映像信号電位の書き込みとが行われる。但し、ソースバスラインに書き込まれる映像信号の極性については、時点t12から時点t18までの期間と時点t22から時点t28までの期間とで逆になる。
 以上のように、本変形例においても、比較的簡単な構成の回路を備えるだけで、パネル検査の際に通常時に動作するサンプリングスイッチの不良をも検出することができるという効果が得られるとともに、ソースバスラインへのプリチャージが可能となり表示品位が改善されるという効果が得られる。
<4.その他>
 上記各実施形態においては液晶パネルを例に挙げて説明したが、本発明はこれに限定されない。有機EL(Electro Luminescence)パネルなど液晶パネル以外の表示パネルにも本発明を適用することができる。
 10…画素回路部
 20…第1の分配回路
 30…第2の分配回路
 31,35…分配部
 32,33,34,36…動作制御部
 40…ソースドライバ(映像信号線駆動回路)
 DMU1~DMUn,DMT1~DMTn…デマルチプレクサ
 SL1~SL(3n)…ソースバスライン
 TRT1~TRTn,TGT1~TGTn,TBT1~TBTn,…検査用スイッチ
 TRU1~TRUn,TGU1~TGUn,TBU1~TBUn,…サンプリングスイッチ
 ASW1~ASW6…分配制御信号
 U_ASW1~U_ASW6…通常用分配制御信号
 T_ASW1~T_ASW6…検査用分配制御信号
 T_SMP…切替制御信号
 T_VIDEO…テスト用映像信号

Claims (9)

  1.  表示パネルであって、
     n本毎(nは2以上の自然数)に1組の映像信号線群を構成する複数本の映像信号線が配設された表示部と、
     前記複数本の映像信号線の一端側に前記1組の映像信号線群毎に設けられ、外部から送られる第1の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第1スイッチからなる第1のデマルチプレクサと、
     前記複数本の映像信号線の他端側に前記1組の映像信号線群毎に設けられ、外部から送られる第2の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第2スイッチからなる第2のデマルチプレクサと、
     前記複数本の映像信号線への前記第2の映像信号の印加を可能とするか否かを切り替える動作制御部と
    を備え、
     前記第1のデマルチプレクサに含まれる前記n個の第1スイッチの状態は、互いに異なるn個の制御信号によって制御され、
     前記第2のデマルチプレクサに含まれる前記n個の第2スイッチの状態は、互いに異なる前記n個の制御信号によって制御され、
     前記n個の制御信号のうちの任意の制御信号を着目制御信号としたとき、各映像信号線群について、前記着目制御信号によってオン状態にされる第1スイッチに接続された映像信号線と前記着目制御信号によってオン状態にされる第2スイッチに接続された映像信号線とは異なることを特徴とする、表示パネル。
  2.  前記動作制御部は、前記第2のデマルチプレクサに含まれる前記n個の第2スイッチのそれぞれに対応して設けられるn個の制御スイッチからなり、
     各制御スイッチは、外部から与えられる切替制御信号に基づいて、前記第2スイッチに前記制御信号を与えるか否かを制御することを特徴とする、請求項1に記載の表示パネル。
  3.  前記動作制御部は、前記第2のデマルチプレクサの出力部と前記表示部との間に前記複数本の映像信号線のそれぞれに対応して設けられる複数個の制御スイッチからなり、
     各制御スイッチは、外部から与えられる切替制御信号に基づいて、前記第2のデマルチプレクサの出力部から前記複数本の映像信号線への前記第2の映像信号の印加を可能とするか否かを切り替えることを特徴とする、請求項1に記載の表示パネル。
  4.  前記動作制御部は、前記第2のデマルチプレクサの入力部近傍に前記複数本の映像信号線のそれぞれに対応して設けられる複数個の制御スイッチからなり、
     各制御スイッチは、外部から与えられる切替制御信号に基づいて、前記第2の映像信号を前記第2のデマルチプレクサの入力部に与えるか否かを切り替えることを特徴とする、請求項1に記載の表示パネル。
  5.  前記第2の映像信号は、前記複数本の映像信号線の他端側に設けられている全ての第2のデマルチプレクサの入力部に共通的に与えられていることを特徴とする、請求項1に記載の表示パネル。
  6.  前記第1のデマルチプレクサに含まれる前記n個の第1スイッチおよび前記第2のデマルチプレクサに含まれる前記n個の第2スイッチは、薄膜トランジスタであることを特徴とする、請求項1に記載の表示パネル。
  7.  請求項1に記載の表示パネルを備えた表示モジュールであって、
     前記第1のデマルチプレクサに前記第1の映像信号を与える映像信号線駆動回路が前記表示パネルに実装されていることを特徴とする、表示モジュール。
  8.  n本毎(nは2以上の自然数)に1組の映像信号線群を構成する複数本の映像信号線が配設された表示部と、前記複数本の映像信号線の一端側に前記1組の映像信号線群毎に設けられ、外部から送られる第1の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第1スイッチからなる第1のデマルチプレクサと、前記複数本の映像信号線の他端側に前記1組の映像信号線群毎に設けられ、外部から送られる第2の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第2スイッチからなる第2のデマルチプレクサと、前記複数本の映像信号線への前記第2の映像信号の印加を可能とするか否かを切り替える動作制御部と、外部から送られるn個の制御信号を受け取るための制御信号入力部とを備えた表示パネルの検査方法であって、
     前記動作制御部が前記複数本の映像信号線への前記第2の映像信号の印加を可能とする検査準備ステップと、
     前記第2の映像信号の信号レベルが所定の第1レベルになっているときに、各映像信号線群に対応して設けられている前記第1のデマルチプレクサに含まれる前記n個の第1スイッチのうちの1つおよび各映像信号線群に対応して設けられている前記第2のデマルチプレクサに含まれる前記n個の第2スイッチのうちの1つが所定期間オン状態で維持されるように前記n個の制御信号のうちの1つの信号レベルを変化させる第1レベル印加ステップと、
     前記第2の映像信号の信号レベルが前記第1レベルとは異なる第2レベルになっているときに、各映像信号線群に対応して設けられている前記第1のデマルチプレクサに含まれる前記n個の第1スイッチのうちの1つおよび各映像信号線群に対応して設けられている前記第2のデマルチプレクサに含まれる前記n個の第2スイッチのうちの1つが所定期間オン状態で維持されるように前記n個の制御信号のうちの1つの信号レベルを変化させる第2レベル印加ステップと
    を含み、
     前記n個の制御信号のうちの任意の制御信号を着目制御信号としたとき、各映像信号線群について、前記着目制御信号によってオン状態にされる第1スイッチに接続された映像信号線と前記着目制御信号によってオン状態にされる第2スイッチに接続された映像信号線とは異なり、
     検査対象の表示色に対応する映像信号線には前記第1レベルの前記第2の映像信号が印加されるよう前記第1レベル印加ステップが行われ、
     検査対象以外の表示色に対応する映像信号線には前記第2レベルの前記第2の映像信号が印加されるよう前記第2レベル印加ステップが行われることを特徴とする、検査方法。
  9.  n本毎(nは2以上の自然数)に1組の映像信号線群を構成する複数本の映像信号線が配設された表示部と、前記複数本の映像信号線の一端側に前記1組の映像信号線群毎に設けられ、外部から送られる第1の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第1スイッチからなる第1のデマルチプレクサと、前記複数本の映像信号線の他端側に前記1組の映像信号線群毎に設けられ、外部から送られる第2の映像信号を前記映像信号線群に含まれるn本の映像信号線のそれぞれに印加するか否かを切り替えるためのn個の第2スイッチからなる第2のデマルチプレクサと、前記複数本の映像信号線への前記第2の映像信号の印加を可能とするか否かを切り替える動作制御部と、外部から送られるn個の制御信号を受け取るための制御信号入力部とを備えた表示パネルの検査方法であって、
     前記動作制御部が前記複数本の映像信号線への前記第2の映像信号の印加を可能とする検査準備ステップと、
     前記第2の映像信号の信号レベルが所定の第1レベルになっているときに、各映像信号線群に対応して設けられている前記第1のデマルチプレクサに含まれる前記n個の第1スイッチのうちのm個(mはn未満の自然数)および各映像信号線群に対応して設けられている前記第2のデマルチプレクサに含まれる前記n個の第2スイッチのうちのm個が所定期間オン状態で維持されるように前記n個の制御信号のうちのm個の信号レベルを変化させるmライン書き込みステップと
    を含み、
     前記n個の制御信号のうちの任意の制御信号を着目制御信号としたとき、各映像信号線群について、前記着目制御信号によってオン状態にされる第1スイッチに接続された映像信号線と前記着目制御信号によってオン状態にされる第2スイッチに接続された映像信号線とは異なることを特徴とする、検査方法。
PCT/JP2010/067649 2010-01-19 2010-10-07 表示パネルおよびその検査方法 WO2011089762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011550789A JP5349620B2 (ja) 2010-01-19 2010-10-07 表示パネルおよびその検査方法
EP10843926.6A EP2528051A4 (en) 2010-01-19 2010-10-07 DISPLAY PANEL AND INSPECTION METHOD THEREOF
CN201080059865.5A CN102687188B (zh) 2010-01-19 2010-10-07 显示面板及其检查方法
US13/513,017 US20120249499A1 (en) 2010-01-19 2010-10-07 Display panel and inspection method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010009023 2010-01-19
JP2010-009023 2010-01-19

Publications (1)

Publication Number Publication Date
WO2011089762A1 true WO2011089762A1 (ja) 2011-07-28

Family

ID=44306578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067649 WO2011089762A1 (ja) 2010-01-19 2010-10-07 表示パネルおよびその検査方法

Country Status (5)

Country Link
US (1) US20120249499A1 (ja)
EP (1) EP2528051A4 (ja)
JP (1) JP5349620B2 (ja)
CN (1) CN102687188B (ja)
WO (1) WO2011089762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137050A (zh) * 2011-12-01 2013-06-05 三星显示有限公司 线路和分用器的缺陷检测方法、缺陷检测装置和显示面板
WO2014133176A1 (en) * 2013-02-27 2014-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666623B (zh) 2013-07-10 2019-07-21 日商半導體能源研究所股份有限公司 半導體裝置、驅動器電路及顯示裝置
TWI547933B (zh) * 2014-11-27 2016-09-01 友達光電股份有限公司 液晶顯示器及其測試電路
CN105427775B (zh) * 2015-12-30 2019-07-02 厦门天马微电子有限公司 显示面板及电子设备
TWI634745B (zh) * 2017-05-16 2018-09-01 友達光電股份有限公司 顯示面板
US10777107B2 (en) 2017-10-31 2020-09-15 Wuhan China Star Optoelectronics Technology Co., Ltd. Array substrate, testing method and display apparatus
CN107578735A (zh) * 2017-10-31 2018-01-12 武汉华星光电技术有限公司 一种阵列基板、测试方法及显示装置
CN108109566A (zh) * 2017-12-26 2018-06-01 深圳市华星光电技术有限公司 一种检测电路及显示面板
KR102542604B1 (ko) * 2018-04-03 2023-06-15 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그의 검사 방법
JP2019184856A (ja) * 2018-04-12 2019-10-24 シャープ株式会社 表示装置およびその駆動方法
CN108766373B (zh) * 2018-05-08 2020-11-24 昆山龙腾光电股份有限公司 一种检测电路和液晶显示装置
KR102573238B1 (ko) * 2018-08-27 2023-08-30 엘지디스플레이 주식회사 표시 장치
CN108962037B (zh) * 2018-09-19 2021-08-27 京东方科技集团股份有限公司 显示装置及其控制方法
CN109036237B (zh) * 2018-09-30 2021-07-09 厦门天马微电子有限公司 显示装置
US20210142702A1 (en) * 2019-11-07 2021-05-13 Lg Display Co., Ltd. Display device and method for detecting data link line defect in display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003228298A (ja) * 2002-01-31 2003-08-15 Matsushita Electric Ind Co Ltd 画像表示パネル部材、画像表示パネル、画像表示パネルの製造方法、画像表示装置
JP2007206440A (ja) 2006-02-02 2007-08-16 Seiko Epson Corp 電気光学装置用基板、電気光学装置および検査方法
JP2007256540A (ja) * 2006-03-22 2007-10-04 Sharp Corp 液晶表示装置の検査方法、及び液晶表示装置
JP2008026507A (ja) * 2006-07-20 2008-02-07 Sony Corp 表示装置および表示装置の検査方法
JP2008070702A (ja) * 2006-09-15 2008-03-27 Agilent Technol Inc Tftアレイ検査方法、製造方法および検査装置
JP2009237025A (ja) * 2008-03-26 2009-10-15 Seiko Epson Corp 電気光学装置の検査方法及び製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578911B1 (ko) * 2003-11-26 2006-05-11 삼성에스디아이 주식회사 전류 역다중화 장치 및 이를 이용한 전류 기입형 표시 장치
JP4232819B2 (ja) * 2006-11-30 2009-03-04 セイコーエプソン株式会社 電気光学装置、駆動方法および電子機器
JP5428299B2 (ja) * 2008-03-18 2014-02-26 セイコーエプソン株式会社 電気光学装置及び電子機器
KR100962921B1 (ko) * 2008-11-07 2010-06-10 삼성모바일디스플레이주식회사 유기전계발광표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003228298A (ja) * 2002-01-31 2003-08-15 Matsushita Electric Ind Co Ltd 画像表示パネル部材、画像表示パネル、画像表示パネルの製造方法、画像表示装置
JP2007206440A (ja) 2006-02-02 2007-08-16 Seiko Epson Corp 電気光学装置用基板、電気光学装置および検査方法
JP2007256540A (ja) * 2006-03-22 2007-10-04 Sharp Corp 液晶表示装置の検査方法、及び液晶表示装置
JP2008026507A (ja) * 2006-07-20 2008-02-07 Sony Corp 表示装置および表示装置の検査方法
JP2008070702A (ja) * 2006-09-15 2008-03-27 Agilent Technol Inc Tftアレイ検査方法、製造方法および検査装置
JP2009237025A (ja) * 2008-03-26 2009-10-15 Seiko Epson Corp 電気光学装置の検査方法及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2528051A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137050A (zh) * 2011-12-01 2013-06-05 三星显示有限公司 线路和分用器的缺陷检测方法、缺陷检测装置和显示面板
JP2013117709A (ja) * 2011-12-01 2013-06-13 Samsung Display Co Ltd 配線および逆多重化部の不良検出方法、不良検出装置および不良検出装置を含む表示パネル
US9390644B2 (en) 2011-12-01 2016-07-12 Samsung Display Co., Ltd. Detecting method of defects of line and demultiplexer, defect detecting device, and display panel including the defect detecting device
WO2014133176A1 (en) * 2013-02-27 2014-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device
US9337343B2 (en) 2013-02-27 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device
US9553205B2 (en) 2013-02-27 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device
TWI611567B (zh) * 2013-02-27 2018-01-11 半導體能源研究所股份有限公司 半導體裝置、驅動電路及顯示裝置
US10304555B2 (en) 2013-02-27 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device

Also Published As

Publication number Publication date
CN102687188B (zh) 2015-01-14
JP5349620B2 (ja) 2013-11-20
US20120249499A1 (en) 2012-10-04
EP2528051A1 (en) 2012-11-28
JPWO2011089762A1 (ja) 2013-05-20
EP2528051A4 (en) 2013-05-22
CN102687188A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5349620B2 (ja) 表示パネルおよびその検査方法
US9087475B2 (en) Cell test method and liquid crystal display panel for a tri-gate type pixel structure
US8174477B2 (en) Gate driver and repairing method thereof
KR101303736B1 (ko) 액정표시장치용 게이트드라이버
JP4561647B2 (ja) 電気光学装置用基板、電気光学装置および検査方法
US20120120044A1 (en) Liquid crystal display device and method for driving the same
US7710139B2 (en) Electro-optical device and electronic apparatus
JP6653593B2 (ja) 表示装置及び表示装置の検査方法
KR20080109138A (ko) 액정 표시 장치 및 그 검사 방법
JP4232819B2 (ja) 電気光学装置、駆動方法および電子機器
US8717275B2 (en) Electro-optical device driver circuit, electro-optical device, and electronic apparatus with a shortened off sequence
KR20160033351A (ko) 표시장치
US7427739B2 (en) Electro-optical device and electronic apparatus
KR20080070918A (ko) 표시 패널의 불량 검사 모듈 및 방법
US20110063260A1 (en) Driving circuit for liquid crystal display
JP6711376B2 (ja) 電気光学装置および電子機器
KR20170081046A (ko) 유기발광표시장치, 데이터 드라이버 및 샘플 홀드 회로
JP7375439B2 (ja) 電気光学装置、および電子機器
JP2014032322A (ja) 液晶表示装置および配線検査方法
JP2006308630A (ja) 電気光学装置、電子機器、及び電気光学装置の検査方法
JP2007279590A (ja) 電気光学装置および電子機器
JP2020013074A (ja) 電気光学装置および電子機器
JP4457811B2 (ja) 電気光学装置及び電子機器
JP4862461B2 (ja) 電気光学装置の検査方法及び検査装置
JP2007219354A (ja) 電気光学装置及びその駆動方法並びに電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059865.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550789

Country of ref document: JP

Ref document number: 2010843926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13513017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE