WO2011083815A1 - 抗血栓性材料を塩ビ製医療用チューブの内側にコーティングする方法 - Google Patents
抗血栓性材料を塩ビ製医療用チューブの内側にコーティングする方法 Download PDFInfo
- Publication number
- WO2011083815A1 WO2011083815A1 PCT/JP2011/050083 JP2011050083W WO2011083815A1 WO 2011083815 A1 WO2011083815 A1 WO 2011083815A1 JP 2011050083 W JP2011050083 W JP 2011050083W WO 2011083815 A1 WO2011083815 A1 WO 2011083815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- water
- plasticizer
- coating
- acrylate
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/502—Plasticizers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/141—Plasticizers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/141—Plasticizers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/0005—Use of materials characterised by their function or physical properties
- A61L33/0052—Plasticizers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/06—Use of macromolecular materials
- A61L33/068—Use of macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
Definitions
- the present invention relates to a method of coating an antithrombotic material made of a specific (meth) acrylate copolymer on the inside of a polyvinyl chloride medical tube containing a plasticizer, and in particular, poor appearance and coating due to elution of the plasticizer.
- the present invention relates to a method capable of efficiently coating a uniform and sufficient amount of an antithrombotic material on the inner surface of a tube without causing unevenness.
- polyvinyl chloride has been used extensively as a material for medical tubes because of its excellent transparency, mechanical strength, and flexibility.
- a plasticizer such as DEHP (diethylhexyl phthalate).
- DEHP diethylhexyl phthalate
- the plasticizer is eluted from the tube, and there is a problem that the plasticizer affects the living body and the tube is cured over time.
- attempts have been made to improve the blood compatibility by subjecting the tube to surface treatment, but it is difficult to perform the surface treatment in consideration of the presence of a large amount of plasticizer.
- tube materials made of an elastomer that does not contain a plasticizer and tube materials made of polybutadiene that are difficult to adsorb chemicals have been developed.
- these tube materials have poor kink resistance compared to polyvinyl chloride tubes and are easy to break.
- the tube which consists of polyolefin materials, such as polyethylene may have a large impact resilience and inferior operability.
- ethylene-vinyl acetate copolymers, styrene elastomers, and the like have been studied, but the material costs are extremely high compared to polyvinyl chloride.
- a multilayer tube composed of two or more layers, which has a chlorinated polyethylene layer as an outer layer and a polyethylene resin layer as an inner layer is disclosed (see Patent Document 1).
- This multilayer tube has moderate flexibility without kinking or bending when the tube is bent, and there is no change in shape, dimensions, etc. even when sterilized, and it is a solvent for tubes and injection molded parts with different diameters. Adhesion and the like are possible, but it is not widespread due to its high manufacturing cost compared to polyvinyl chloride alone.
- Patent Document 2 discloses a three-layer tube using a vinyl chloride resin as an outer layer, a low density polyethylene as an inner layer, and an ethylene-vinyl acetate copolymer as an adhesive layer.
- This three-layer tube uses low-density polyethylene for the inner layer, so solvent adhesion is possible, and it is flexible and excellent in flexibility. However, it is still not widespread because of its high manufacturing cost compared to polyvinyl chloride alone material. .
- anticoagulants such as heparin and sodium citrate are generally used. Since they are used at the same time, it is particularly important to suppress the activation of the platelets and the complement system of (b) and (c).
- microphase-separated surfaces and hydrophilic surfaces, particularly gelled surfaces with water-soluble polymers bonded to the surface are excellent, and hydrophobic properties such as polypropylene
- the surface is said to be inferior (see Non-Patent Documents 1 and 2).
- the surface having a microphase separation structure can express good blood compatibility by controlling to an appropriate phase separation state, but the conditions under which such phase separation can be produced are limited, There was a limit.
- PEG polyethylene glycol
- Patent Documents 6 to 9 disclose an antithrombotic material comprising a copolymer containing polyethylene glycol (meth) acrylate as a hydrophobic monomer and alkyl (meth) acrylate as a hydrophilic monomer.
- these documents do not disclose any problems in coating the inside of a polyvinyl chloride medical tube containing a plasticizer and means for solving the problems.
- Patent Document 10 discloses a (meth) acrylate copolymer comprising a hydrophobic (meth) acrylate and a hydrophilic (meth) acrylate, wherein the hydrophobic (meth) acrylate is a silicone (meth) acrylate and / or An antithrombotic material that is an alkyl (meth) acrylate is disclosed. Further, it is described that it is preferable to use methanol, ethanol, or isopropyl alcohol as an organic solvent when coating the antithrombogenic material on a medical device. However, when these alcohols are used as a coating solvent, there is a problem that the plasticizer is eluted from the polyvinyl chloride medical tube.
- Patent Document 11 discloses that an antithrombotic material having an ionic complex of an organic cation and heparin (derivative) as an essential component is dissolved in tetrahydrofuran (THF) and dissolved in the lumen of a polyvinyl chloride tube. Techniques for coating are disclosed. Since this technique uses THF as a coating solvent, there is a concern about mass elution of the plasticizer.
- THF tetrahydrofuran
- the present invention was devised in view of the current state of the prior art described above, and its purpose is to produce an antithrombotic material comprising a specific (meth) acrylate copolymer for medical use made of polyvinyl chloride containing a plasticizer.
- the present inventor has found that water and alcohol prepared so that the copolymer of the antithrombotic material is soluble but the plasticizer used for polyvinyl chloride is insoluble.
- the antithrombotic material is coated on the inner surface of the tube without eluting the plasticizer by dissolving the antithrombotic material in the solvent and passing the resulting solution through the tube.
- the coating thickness of the antithrombotic material is further uniformed by passing water through, and finally the water remaining inside is dried, so that the antithrombotic material can be easily removed without being affected by the plasticizer. It was found that uniform coating could be achieved, and the present invention was completed.
- the present invention has the following configurations (1) to (9).
- (1) Coating an antithrombotic material made of a copolymer containing methoxypolyethylene glycol (meth) acrylate, alkyl (meth) acrylate and silicone (meth) acrylate on the inside of a polyvinyl chloride medical tube containing a plasticizer.
- a method characterized by passing water through the inside, subsequently water, and then drying.
- (2) The method according to (1), wherein the alcohol is selected from the group consisting of methanol, ethanol, 1-propanol, and 2-propanol.
- the method of the present invention uses a solvent in which the antithrombotic material is soluble but the plasticizer is insoluble to coat the inner surface of the tube with the antithrombogenic material so that the plasticizer is eluted from the tube.
- water is passed through after the coating of the antithrombotic material, there is no dripping or movement of the solution in the direction of gravity even when processing a long tube, and the antithrombogenic material is uniform and sufficient. Coating in quantity can be done easily.
- FIG. 2 shows a schematic diagram of a coating solution and water passing through a tube in the method of the present invention.
- FIG. 2 shows a schematic view of an apparatus for coating the inside of a tube used in the method of the present invention. It is a microscope picture which shows the platelet adhesion state of the coating surface by the method of this invention, and an uncoated surface. It is a photograph of the tube piece after coating (inlet and outlet) and before coating by the method of the present invention.
- the method of the present invention is a method in which a specific antithrombotic material is coated on the inside of a polyvinyl chloride medical tube, and a solution in which the antithrombotic material is dissolved in a specific solvent is passed through the tube. Subsequently, water is passed through, followed by drying.
- the antithrombotic material used in the method of the present invention comprises a copolymer containing methoxypolyethylene glycol (meth) acrylate, alkyl (meth) acrylate and silicone (meth) acrylate, and each acrylate component has antithrombogenic properties.
- the compounding ratio (mol%) can be appropriately adjusted within the range of 10 to 80:10 to 80: 0.1 to 20, respectively.
- the blending ratio (mol%) is more preferably 20 to 70:20 to 80: 0.5 to 10.
- Methoxypolyethyleneglycol (meth) acrylate is represented by the following general formula [I] and has a polyethyleneglycol chain that forms an excellent hydrophilic surface. By incorporating this monomer into the copolymer, hydrophilicity is obtained. A surface can be formed to suppress protein adsorption and platelet adhesion. However, there is a possibility of elution into the blood from the surface having excellent hydrophilicity, and it is necessary to adjust the solubility so that it is difficult to elute into the blood by incorporating a hydrophobic monomer into the copolymer. is there.
- the methoxypolyethylene glycol (meth) acrylate those having a polyethylene glycol unit of 2 to 500 are preferably used.
- the polyethylene glycol unit is more preferably 2 to 100, still more preferably 2 to 50, and even more preferably 2 to 10.
- Examples include ethylene glycol (meth) acrylate, methoxyoctaethylene glycol (meth) acrylate, methoxy nonaethylene glycol (meth) acrylate, and methoxydecaethylene glycol (meth) acrylate.
- methoxytetraethylene glycol (meth) acrylate having 4 repeating polyethylene glycol units and methoxytriethylene glycol (meth) acrylate having 3 repeating polyethylene glycol units are particularly preferable.
- R 1 represents a hydrogen atom or a methyl group, and n represents an integer of 2 to 100
- the alkyl (meth) acrylate is represented by the following general formula [II], has an alkyl group having hydrophobicity, and can improve adhesion to a plastic substrate such as polyethylene or polyvinyl chloride. it can. By incorporating this monomer into the copolymer, it is possible to reduce elution into blood by imparting hydrophobicity and to improve adhesion to a medical substrate.
- Alkyl (meth) acrylates include normal hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) ) Acrylate, lauryl (meth) acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, and the like.
- R 2 represents an alkyl group or aralkyl group having 2 to 30 carbon atoms
- R 3 represents a hydrogen atom or a methyl group.
- silicone (meth) acrylate is represented by the following general formula [III], and this monomer provides the biocompatibility of silicone, that is, the physiologically inactive efficacy, and is a component related to the blood system, particularly the immune system. The activation of the body can be suppressed.
- the copolymer can contain polydimethylsiloxane as a constituent component. Polydimethylsiloxane, like polyethylene glycol, has a chain shape and is a hydrophobic component, so each forms a hydrophilic segment and a hydrophobic segment so that the surface energy gap is minimized when in contact with blood. In addition, complex structures such as microphase separation and fluid mosaic structure are formed, and excellent antithrombogenicity is imparted.
- the blending amount of this monomer is desirably up to 20 mol% of the copolymer, and if the blending amount exceeds this, the solubility in alcohol is deteriorated and the adhesion to the plastic substrate is lowered.
- silicone (meth) acrylate those having a polydimethylsiloxane moiety repeating unit of 2 to 100 are generally commercially available. In the present invention, if the polydimethylsiloxane repeating unit is too large, the viscosity of the resulting copolymer may be too high and handling may be difficult. On the other hand, if the repeating unit is too small, the viscosity is too low and it may easily disappear from the application surface of a medical device or the like.
- the polydimethylsiloxane repeating unit is more preferably 2 to 50, still more preferably 5 to 50, and even more preferably 10 to 40.
- R 4 is —C 3 H 6 — or —C 4 H 8 —
- R 5 is an alkyl group having 1 to 6 carbon atoms
- R 6 is a hydrogen atom or a methyl group
- n is an integer of 2 to 100
- the medical tube used in the method of the present invention is mainly composed of polyvinyl chloride, and contains a large amount of plasticizer in order to impart flexibility and transparency.
- the plasticizer is generally contained in an amount of 10 to 70% by weight based on the tube weight.
- plasticizers used butylbenzyl phthalate, di-ethylhexyl phthalate (DEHP), di-isodecyl phthalate, di-isononyl phthalate, di-hexyl phthalate, di-octyl phthalate, etc. have been used for a long time Among them, di-ethylhexyl phthalate (DEHP) is most frequently used.
- TOTM tri-diethylhexyl trimellitic acid
- the said medical tube is used as blood circuits, such as an artificial lung, a blood filter, and a centrifugal pump, the connection with these medical devices is required, and an internal diameter is 1/8 inch (3.20 mm), Standards such as 1/4 inch (6.40 mm), 3/8 inch (9.53 mm), and 1/2 inch (12.70 mm) are provided.
- the tube length since it is used after being cut to a length necessary for the connection of the blood circuit, it is desirable to store it in a long form such as 50 m or 100 m after the production.
- a solution obtained by dissolving an antithrombotic material in a specific solvent is used to coat the antithrombotic material on the inside of the medical tube. Since the tube contains a large amount of plasticizer, it is important in selecting the solvent that the antithrombotic material can be uniformly coated without eluting the plasticizer from the tube.
- the first point to be noted is to select a solvent in which the copolymer constituting the antithrombotic material is soluble.
- a solvent in which the copolymer constituting the antithrombotic material is soluble.
- Other techniques include water and organic solvents, adding a dispersant, and so on, which are called dispersions or emulsions, but are insoluble but uniformly dispersed solutions. For example, it is not possible to secure a sufficient coating amount and film thickness because the water content is too high and the wettability with the substrate is extremely poor.
- the second point to be noted is to select a solvent insoluble in the plasticizer used in the medical tube in order to reduce the elution of the plasticizer as much as possible. If the plasticizer elutes from the tube when coating the copolymer, it will cause poor appearance, and when passing through the long tube, the plasticizer will elute into the solution one after another, Then, the mixture of the copolymer and the plasticizer may be coated.
- the third point to be noted is the selection of the solvent itself, which is an acceptable solvent for work safety and medical use, such as water, methanol, ethanol, 1-propanol, 2-propanol and other alcohols. Is to choose from. Other solvents are less preferred in terms of operational safety and residual solvent toxicity.
- a solvent in which a copolymer is soluble and a plasticizer is insoluble is selected from a mixed solvent of water and at least one alcohol.
- a generally known solubility parameter as an index.
- the solubility parameter is only used as a reference for solubility, and a copolymer and a plasticizer are used. Therefore, it is not possible to easily select a solvent satisfying the above conditions.
- Table 1 shows the results of the solubility of water and four types of alcohol in the plasticizers DEHP (di-ethylhexyl phthalate) and TOTM (tri-diethylhexyl trimellitic acid) and the copolymers constituting the antithrombotic material. Show. As can be seen from Table 1, the plasticizer (DEHP, TOTM) was insoluble but the copolymer was not found at all from water and four types of alcohol alone.
- Table 3 shows the results of using TOTM instead of DEHP as a plasticizer for a mixed solvent of water and one of the four alcohols. As can be seen from Table 3, in the mixed solvent of water and 1-propanol, it was found that the plasticizer (TOTM) was insoluble but the copolymer was soluble (see the part circled in Table 3). ).
- Table 3 shows a plasticizer (1 ml of alcohol prepared by changing the weight ratio of ethanol: 1-propanol from 10: 0 to 0:10 for a mixed solvent of water and two kinds of alcohols (ethanol and 1-propanol). DEHP) or 0.1 g of the copolymer constituting the antithrombotic material is dissolved, and 0.1 ml of water is added at a time, and the results of visually confirming whether or not insoluble matter appears are shown.
- Table 5 shows the results of using TOTM instead of DEHP as a plasticizer for a mixed solvent of water and two alcohols (ethanol and 1-propanol).
- TOTM plasticizer
- the above method can be similarly applied to a solvent composed of a combination of water and various alcohols, and can be similarly applied even if the kind of plasticizer is changed. Further, the range of the optimum solvent composition can be known accurately and in detail by further subdividing the composition ratio of alcohol in the solvent and the amount of water based on the results obtained by the above method.
- the solvent is composed of water, ethanol and 1-propanol, and the volume ratio thereof is preferably 5 to 40: 0 to 50:20 to 80, and 5 to 35:15 to 45:25 to 65. More preferably.
- the reason why the solvent that dissolves the copolymer constituting the antithrombotic material and does not dissolve the plasticizer in the solvent composed of water and at least one alcohol is found is that the copolymer is hydrophilic. Because it consists of a component (polar component) and a hydrophobic component (nonpolar component), the solubility of the copolymer is improved by mixing the polar component (water) and nonpolar component (alcohol) of the solvent, and plasticity Since the agent is composed of a single molecule, it is considered that no significant change was observed in the solubility of the plasticizer in the mixed solvent of the polar component and the nonpolar component.
- the antithrombogenic material is dissolved in a solvent composed of water and at least one alcohol prepared as described above to form a solution.
- the concentration of the antithrombotic material in the solution is preferably 0.01 to 10% by weight. If the concentration of the antithrombotic material is less than the above range, a sufficient amount of the antithrombotic material cannot be coated on the tube surface. On the other hand, if the concentration exceeds the above range, the amount and thickness of the coating are too large. The surface may become sticky, and there may be a problem in connection and detachment with other base materials.
- the solution obtained as described above is first passed through the tube as a coating solution, followed by water (preferably distilled water), and then dried.
- a coating solution preferably distilled water
- FIG. 1 A schematic diagram of the coating solution and water passing through the tube is shown in FIG.
- the coating solution contacts the inner surface of the tube in advance, so that the antithrombogenic material is adsorbed on the inner surface of the tube, and then the excess coating solution is removed by passing water through. It is poured out at the exit. At this point, the coating of the anti-thrombogenic material inside the tube is complete, and a small amount of residual water is present in the tube, which only dries it.
- the amount of the coating solution is preferably 1 to 20% of the total volume of the tube lumen.
- the amount of the coating solution must be 1% or more because the coating solution needs to be in constant contact with the inner surface of the tube. If the solution passes through the tube, the coating solution will adhere to the inner surface of the tube. This is because it is necessary to secure a certain amount because the amount gradually decreases. For example, if a 100 m tube is to be coated, a coating solution of 1 m or more will pass therethrough, and if this amount is minimal, the coating can be carried out without any problems.
- the upper limit of the liquid amount is not particularly limited, but an amount exceeding 20% is not so preferable from the viewpoint of the cost and time of the material used.
- the amount of water subsequently passed is preferably 50 to 300% of the total volume of the tube lumen. If the amount of water is less than 50%, the coating solution cannot be washed away sufficiently, which may cause uneven coating. If it exceeds 300%, it is not preferable in terms of time and cost.
- the method of passing the coating solution and water through the tube is preferably performed by vacuum suction using a vacuum pump or the like.
- a method of passing liquid by pressurization is conceivable, there is a work risk such that a great pressure is applied to the tube connection port, the tube is ruptured or deformed, or the tube is detached and the liquid is scattered.
- the coating solution may sag due to atmospheric pressure and may not be able to contact all the inside of the tube.
- FIG. 1 An example of an apparatus for coating the inside of an actual tube is schematically shown in FIG.
- One end of the tube is connected to a drainage tank connected to a vacuum pump, and at the other end, a certain amount of the coating solution is sucked and passed, and then water is sucked.
- the switching of the liquid may be performed by lifting the end of the tube by hand and transferring it from a container containing the coating solution to a container containing water, or by using an automatic switching valve or the like.
- the timing for switching the liquid it is preferable that a distance of 1 to 100 cm is provided between the coating solution and water in the tube, and air is interposed therebetween.
- the distance is less than 1 cm or when air is not included, there is a possibility that the coating solution and water are mixed during the flow.
- the thickness exceeds 100 cm, the components of the coating solution evaporate before the water passes through after the coating solution has passed, and the solvent composition ratio may change, or the coating thickness may be uneven.
- the distance is 1 cm to 100 cm, the liquid is preferably switched in about 0.5 to 3 seconds when the tube is lifted by hand.
- a vacuum pump having a performance of 80 kPa in vacuum and a discharge air amount of 25 L / min.
- the coating solution is aspirated for approximately 3 seconds, and then air is aspirated for approximately 1 second to create a 30 cm long air layer in the tube, followed by aspirating the wash water for approximately 5 minutes.
- drying is necessary to remove the water remaining in the tube. Drying is preferably performed by circulating nitrogen or air at 5 to 40 ° C., more preferably 20 to 30 ° C., through the tube.
- the circulation time varies depending on the length of the tube, but in the case of a tube of about 100 m, drying is completed in about 4 hours with nitrogen at 25 ° C. It is not preferable to set the temperature to 40 ° C. or lower if a high heat exceeding 40 ° C. is applied to the tube for a long time, transfer of printing, elution of the plasticizer, deterioration of the tube and the like occur.
- the solvent for copolymer coating consists of an organic solvent, and the drying temperature and drying time of the organic solvent affect the coating mode and quality, so it is necessary to set the temperature and time appropriately. is there. If there is a restriction that the organic solvent must be removed quickly in order to eliminate coating unevenness, it is necessary to apply a high temperature, which may result in undesirable effects on the tube.
- the method of the present invention is free from such problems and inconveniences in the drying process.
- the tube that has been coated with the antithrombogenic material by the method of the present invention is free from elution of plasticizer and coating unevenness, has no change from the state before coating, and has a good appearance. Further, since the tube inner surface is coated with a uniform and sufficient amount of the antithrombotic material, excellent antithrombogenicity is exhibited. As an antithrombotic index, there is an inhibitory effect on platelet adhesion. For example, a tube having a smaller diameter is placed in close contact with the inside of the tube near the outlet, and the anti-thrombotic material is coated by the above-described method of the present invention. The non-coated surface (the same surface as the tube before coating) was compared with the anti-thrombogenicity of the coated surface.
- the coating unevenness of the tube obtained by the method of the present invention was confirmed.
- the hydrophilicity is improved as compared with the non-coated tube. Therefore, the coating unevenness can be confirmed by comparing the hydrophilicity of the inlet and the outlet of the tube after coating.
- 0.5 ml of water was dropped onto 5 cm of the inlet and outlet tube pieces when the 100 m tube was coated, and hydrophilicity was confirmed.
- the dropped water extends in the vertical direction because the hydrophilicity is higher after coating. The entrance and exit were almost the same.
- a tube coated with the method of the present invention can be coated with a uniform antithrombogenic material over the entire length of the tube.
- the amount of the antithrombotic material coated on the inside of the tube by the method of the present invention is preferably 1 to 500 ⁇ g / cm 2 .
- the amount of the antithrombotic material is less than 1 ⁇ g / cm 2 , the antithrombotic material cannot cover the entire inner surface of the tube, and the antithrombogenicity may not be sufficiently exhibited.
- it exceeds 500 ⁇ g / cm 2 lubricity is imparted to the inner surface of the tube, so that there is a risk that the tensile strength will be reduced when connecting to other devices as a blood circuit.
- the sample solution and the standard solution are measured by the high performance liquid chromatograph (HPLC) method, the concentration in the test solution is obtained using a calibration curve prepared from the standard solution, the calibration curve is prepared from the standard solution, and the concentration is measured from the concentration in the sample solution. The amount of thrombotic material was calculated.
- HPLC high performance liquid chromatograph
- ⁇ Complement activation test Cut the tube (inner diameter 1/4 inch) after coating and drying the antithrombotic material and the uncoated tube (inner diameter 1/4 inch) to 1.5 cm length. 1 ml of human serum (supernatant obtained by allowing human fresh blood to stand at room temperature for 4 hours and centrifuging at 1500 ⁇ g for 20 minutes) was added to these tubes, and both ends were clamped. These tubes were incubated at 37 ° C. for 2 hours.
- the measured absorbance was 1.2 times or more in the coated tube as compared to the uncoated tube, it was judged as “good” because the effect of inhibiting complement activity was exhibited. Moreover, if it was less than 1.2 times, it was set as "defective”.
- -Sustainability test The tube (inner diameter 3/8 inch) after coating and drying the antithrombotic material and the uncoated tube (inner diameter 3/8 inch) were each cut to a length of 1.5 cm. The sheet was cut into a semicircle to form a curved sheet. These sheets were aged in 100 ml of water at 37 ° C. for 7 days and sufficiently dried, and then 0.2 ml of water was dropped on the surface.
- the diameter of the dropped water droplet was 1.2 times or more in the coated sheet as compared to the uncoated sheet, it was judged as “good” because the copolymer remained on the surface. Moreover, if it was less than 1.2 times, it was set as "defective”. -Comprehensive determination of blood compatibility In the above three tests, if all three were "good”, ⁇ if two of the three were “good”, ⁇ , otherwise x.
- Examples 1 to 10 A tube made of polyvinyl chloride having an inner diameter of 9.53 mm (3/8 inch) (containing 60 wt% plasticizer DEHP) was prepared and attached to the apparatus shown in FIG. On the other hand, an antithrombotic material and a solvent having the composition shown in Table 6 were prepared, and the antithrombotic material was dissolved in the solvent so as to have a concentration of the antithrombotic material shown in Table 6 to obtain a coating solution. And the coating solution was put into 1 container of the apparatus shown in FIG. 2, and distilled water was put into 2 container.
- Methoxy nonaethylene glycol acrylate (MNEGA) (Shin Nakamura Chemical Co., Ltd.) 218.3 g, alkyl (2-ethylhexyl) acrylate (EHA) (Tokyo Chemical Industry Co., Ltd.) 180.6 g, silicone methacrylate (dimethylsiloxane repeating unit: 35, Shinetsu Silicone Co.) 0.41 g of azobisisobutyronitrile (AIBN) (Wako Pure Chemical Industries, Ltd.) was added to 20.0 g, and polymerization reaction was carried out in 828 g of ethyl acetate (Tokyo Chemical Industry Co., Ltd.) at 80 ° C.
- MNEGA Methoxy nonaethylene glycol acrylate
- EHA alkyl (2-ethylhexyl) acrylate
- AIBN azobisisobutyronitrile
- Comparative Example 1 A tube with coating completed was obtained in the same manner as in Example 1 except that distilled water was not passed through the tube.
- Table 6 shows details and evaluation results of the antithrombotic material, solvent, plasticizer and the like used in Comparative Example 1.
- Comparative Examples 2 and 3 As shown in Table 6, a tube with coating completed was obtained in the same manner as in Example 1 except that a solvent composed of water and alcohol that dissolves both the plasticizer and the antithrombotic material was used. Table 6 shows details and evaluation results of antithrombotic materials, solvents, plasticizers and the like used in Comparative Examples 2 and 3.
- Comparative Example 4 As shown in Table 6, a tube with coating completed was obtained in the same manner as in Example 1 except that a solvent composed of water and alcohol that did not dissolve the plasticizer and the antithrombotic material was used. Table 6 shows details and evaluation results of the antithrombotic material, the solvent, the plasticizer and the like used in Comparative Example 4.
- Comparative Example 5 As shown in Table 6, a tube in which coating was completed was obtained in the same manner as in Example 1 except that an alcohol solvent that dissolves both the plasticizer and the antithrombotic material was used. Table 6 shows details and evaluation results of the antithrombotic material, the solvent, the plasticizer and the like used in Comparative Example 5.
- Examples 1 ′ to 10 ′ and Comparative Examples 1 ′ to 5 ′ the same evaluation results as in Examples 1 to 10 and Comparative Examples 1 to 5 were obtained.
- the method of the present invention can efficiently and uniformly coat an antithrombotic material in a uniform and sufficient amount on the inner surface of a tube without causing poor appearance or coating unevenness due to elution of a plasticizer. It is extremely useful for connecting medical tubes.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Surgery (AREA)
- Medicinal Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Transplantation (AREA)
- Materials For Medical Uses (AREA)
- External Artificial Organs (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Laminated Bodies (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
Abstract
【課題】 特定の(メタ)アクリレート共重合体からなる抗血栓性材料を、可塑剤を含むポリ塩化ビニル製医療用チューブの内側にコーティングする方法において、可塑剤の溶出による外観不良やコーティングムラを起こさずに抗血栓性材料を簡便な方法で効率良く均一かつ十分な量でコーティングする。 【解決手段】 抗血栓性材料を構成する共重合体が可溶であるが可塑剤が不溶であるように調製した水と少なくとも1種のアルコールからなる溶媒に抗血栓性材料を溶解した溶液をチューブ内部に通液させた後に、続いて水を通液させ、その後乾燥する。
Description
本発明は、特定の(メタ)アクリレート共重合体からなる抗血栓性材料を、可塑剤を含むポリ塩化ビニル製医療用チューブの内側にコーティングする方法に関し、特に可塑剤の溶出による外観不良やコーティングムラを起こさずにチューブの内側表面に抗血栓性材料を均一かつ十分な量で効率良くコーティングすることができる方法に関する。
従来、ポリ塩化ビニルは、透明性、機械的強度、柔軟性に優れるため、医療用チューブの素材として多用されているが、ポリ塩化ビニルを医療用チューブに使用する場合には柔軟性を付与するためにDEHP(ジエチルヘキシルフタレート)などの可塑剤を含有させることが一般的である。しかし、ポリ塩化ビニル製チューブを血液や体液と接触させると、チューブから可塑剤が溶出され、可塑剤の生体への影響や経時的なチューブの硬化が生じる問題がある。また、チューブに表面処理を施して血液適合性を向上させようとする試みが行われているが、多量に含まれている可塑剤の存在を考慮して表面処理するのは困難である。
これらの問題に対処するため、可塑剤を含まないエラストマーよりなるチューブ素材や、薬剤を吸着しにくいポリブタジエン製等のチューブ素材が開発されている。しかし、これらのチューブ素材は、ポリ塩化ビニル製チューブと比較して耐キンク性に乏しく折れやすい。また、ポリエチレン等のポリオレフィン素材からなるチューブは、反発弾性が大きく操作性に劣る場合がある。また、エチレン-酢酸ビニル共重合体、スチレン系エラストマー等も検討されているが、ポリ塩化ビニルと比べると材料費が極めて高い。
一方、ポリ塩化ビニルとポリオレフィンの素材を多層化することにより、上記の課題に対応することも検討されている。例えば、2以上の層から構成される多層チューブであって、外層として塩素化ポリエチレン層を有し、内層としてポリエチレン系樹脂層を含む多層チューブが開示されている(特許文献1参照)。この多層チューブは、チューブを折り曲げた時にキンクや曲りぐせが発生せず適度の柔軟性を有し、滅菌しても形状、寸法等の変化がなく、径の異なるチューブや射出成形部品との溶剤接着等を可能とするが、ポリ塩化ビニル単独素材と比べると製造コストが高いため、普及していない。
また、特許文献2には、外層に塩化ビニル樹脂、内層に低密度ポリエチレン、接着層にエチレン-酢酸ビニル共重合体を使用した3層チューブが開示されている。この3層チューブは、内層に低密度ポリエチレンを使用するため、溶剤接着が可能で、柔軟かつ可撓性に優れるが、やはりポリ塩化ビニル単独素材と比べると製造コストが高いため、普及していない。
ところで、近年、各種の高分子材料を利用した医療機器の検討が進められており、血液フィルター、人工腎臓用膜、血漿分離用膜、カテーテル、人工肺用膜、人工血管、癒着防止膜、人工皮膚等への利用が期待されている。この場合、医療機器は、生体にとって異物である合成材料を生体内組織や血液と接触させて使用することとなるため、医療機器が生体適合性を有していることが要求される。医療機器を血液と接する材料として使用する際には、(a)血液凝固系の抑制、(b)血小板の粘着・活性化の抑制、および(c)補体系の活性化の抑制の3要素が、生体適合性として重要な項目となる。中でも、体外循環用医療機器(例えば、人工腎臓、血漿分離膜)のように、血液と接する時間が比較的短い材料として使用する場合においては、一般に、ヘパリン、クエン酸ナトリウム等の抗凝固剤を同時に使用するため、特に、前記(b)および(c)の血小板や補体系の活性化の抑制が重要な課題となる。
(b)血小板の粘着・活性化の抑制については、ミクロ相分離した表面や、親水性表面、特に、水溶性高分子を表面に結合させたゲル化表面が優れており、ポリプロピレン等の疎水性表面は劣っていると言われている(非特許文献1、2参照)。ミクロ相分離構造を有する表面は、適度な相分離状態にコントロールすることにより良好な血液適合性を発現することが可能となるが、そのような相分離を作製できる条件は限られており、用途に制限があった。また、水溶性高分子を表面に結合させたゲル化表面では、血小板の粘着は抑制されるが、材料表面で活性化された血小板や微小血栓が体内に返還され、しばしば異常な血球成分(血小板)の変動が観察され、問題となることがあった。
一方、(c)補体系の活性化の抑制については、セルロース、エチレン-ビニルアルコール共重合体等のヒドロキシ基を有する表面が高い活性を示し、ポリプロピレン等の疎水性表面では活性が軽微であることが知られている(非特許文献3参照)。したがって、セルロース系やビニルアルコール系の材料を、例えば、医療用チューブに使用すると補体系の活性化の問題が生じるが、逆に、ポリプロピレン等の疎水性の表面を使用すると血小板の粘着・活性化の問題が生じてしまう。
また、血液以外にも生体内組織や体液と接する医療機器、例えば、生体内に長期間埋入して使用される癒着防止膜、インプラント材、または創傷部(皮膚が剥がれて損傷し、生体内組織が露出した部位)に接して使用される創傷被覆材では、生体からの異物認識が少なく、生体からはく離しやすい表面(非癒着性表面)が必要とされる。しかしながら、従来上記材料として使用されているポリウレタンおよびポリテトラフルオロエチレンでは、医療機器表面に生体内組織が癒着するため、生体の異物認識が強すぎて、満足する性能が得られていなかった。シリコーンも同様に高い生体適合性を有する材料であるが、シリコーン特有の高い剥離性は基材との接着性を困難にし、複合材料などの用途への展開は困難であった。
その他の医療用材料としては、ポリエチレングリコール(PEG)がある。PEGは非常に優れた血液適合性を有しており、医療分野への応用研究も多くなされている。しかし、PEGは水溶性であるため、医療用材料として使用する場合は、他のポリマーとのブロック共重合体やグラフト共重合体にして材料表面に固定化する必要があった。
また、生体適合性材料であるポリ(2-メトキシエチルアクリレート)を医療機器の血液接触面にコーティングすることで抗血栓性を発現する技術が知られている(特許文献3参照)。しかし、コーティングの溶媒としてメタノールを使用するため、残留による毒性が懸念される。
さらに、免疫測定の際に固相の表面の保護のためにポリエチレングリコールアクリレートとアクリルアクリレートとの水溶性共重合体を使用することが知られている(特許文献4参照)。しかし、この共重合体は水溶性のため長期間の生体適合性の持続は困難である。
また別に、生体適合性の高いホスホリルコリン基を含有する親水性(メタ)アクリレートモノマーと疎水性の高いアルキル(メタ)アクリレートモノマーとを共重合することにより、良好な生体適合性を保ちつつ水不溶とすることが知られている(特許文献5参照)。しかし、この共重合体は室温で剛直な固体状であるため、コーティング後に皮膜剥がれの恐れがあるだけでなく、免疫の観点での生体適合性は十分といえるものではなかった。
本出願人は、医療機器の血液接触面に適用でき、長期の抗血栓性を発現する水不溶性の(メタ)アクリレート共重合体を既に提案した(特許文献6~9参照)。これらの文献には、疎水性モノマーであるポリエチレングリコール(メタ)アクリレートと親水性モノマーであるアルキル(メタ)アクリレートを含む共重合体からなる抗血栓性材料が開示されている。しかし、これらの文献には、可塑剤を含むポリ塩化ビニル製医療用チューブの内側にコーティングする際の問題点やその問題点を解決する手段については何ら開示されていない。
また、特許文献10には、疎水性(メタ)アクリレートと親水性(メタ)アクリレートとからなる(メタ)アクリレート共重合体であって、疎水性(メタ)アクリレートがシリコーン(メタ)アクリレート及び/又はアルキル(メタ)アクリレートである抗血栓性材料が開示されている。そして、該抗血栓性材料を医療機器にコーティングする際の有機溶媒として、メタノール、エタノール、イソプロピルアルコールを用いるのが好ましい旨記載されている。しかし、これらのアルコールをコーティング溶剤として使用した場合には、ポリ塩化ビニル製医療用チューブから可塑剤が溶出する問題がある。
また、特許文献11には、有機カチオンとヘパリン(誘導体)とのイオン性複合体を必須の構成要素とする抗血栓性材料をテトラヒドロフラン(THF)に溶解してポリ塩化ビニル製チューブの内腔にコーティングする技術が開示されている。この技術は、コーティング溶媒としてTHFを用いていることから、可塑剤の大量溶出が懸念される。
トランスアクションズ オブ アメリカンソサエティ オブ アーティフィカル インターナショナル オルガンズ(Trans.Am.Soc.Artif.Intern.Organs)、vol.XXXIII、p.75~84(1987)
高分子と医療、三田出版会、p.73(1989)
人工臓器16(2)、p.1045~1050(1987)
本発明は、上記の従来技術の現状に鑑み創案されたものであり、その目的は、特定の(メタ)アクリレート共重合体からなる抗血栓性材料を、可塑剤を含むポリ塩化ビニル製医療用チューブの内側にコーティングする方法において、可塑剤の溶出による外観不良やコーティングムラを起こさずに抗血栓性材料を簡便な方法で効率良く均一かつ十分な量でコーティングすることができる方法を提供することにある。
本発明者は、上記目的を達成するために鋭意検討した結果、抗血栓性材料の共重合体が可溶であるがポリ塩化ビニルに使用した可塑剤が不溶であるように調製した水とアルコールからなる溶媒を用意し、これに抗血栓性材料を溶解し、得られた溶液をチューブ内部に通液させることによって、チューブの内部表面に可塑剤を溶出させずに抗血栓性材料をコーティングし、さらに続いて水を通液させることによって抗血栓性材料のコーティング膜厚を均一化し、最後に内側に残った水を乾燥させることによって、可塑剤の影響を受けずに簡単に抗血栓性材料の均一なコーティングを達成できることを見出し、本発明の完成に至った。
即ち、本発明は以下の(1)~(9)の構成を有するものである。
(1)メトキシポリエチレングリコール(メタ)アクリレートとアルキル(メタ)アクリレートとシリコーン(メタ)アクリレートを含む共重合体からなる抗血栓性材料を、可塑剤を含むポリ塩化ビニル製医療用チューブの内側にコーティングする方法であって、前記共重合体が可溶であるが前記可塑剤が不溶であるように調製した水と少なくとも1種のアルコールからなる溶媒に前記抗血栓性材料を溶解した溶液を前記チューブ内部に通液させた後に、続いて水を通液させ、その後乾燥することを特徴とする方法。
(2)前記アルコールがメタノール、エタノール、1-プロパノール、及び2-プロパノールからなる群から選択されることを特徴とする(1)に記載の方法。
(3)前記溶媒が水とエタノールと1-プロパノールからなり、それらの体積比がそれぞれ10~30:20~40:30~60であることを特徴とする(2)に記載の方法。
(4)前記溶液中の前記共重合体の濃度が0.01~10重量%であることを特徴とする(1)~(3)のいずれかに記載の方法。
(5)前記溶液の前記チューブ内部への通液量が前記チューブ内腔の総体積の1~20%であり、前記水の通液量が前記チューブ内腔の総体積の50~300%であることを特徴とする(1)~(4)のいずれかに記載の方法。
(6)前記溶液及び前記水の前記チューブ内部への通液手段が減圧吸引であることを特徴とする(1)~(5)のいずれかに記載の方法。
(7)前記チューブの内側に被覆される前記抗血栓性材料の量が1~500μg/cm2であることを特徴とする(1)~(6)のいずれかに記載の方法。
(8)(1)~(7)のいずれかに記載の方法を使用して前記抗血栓性材料を内側にコーティングしたことを特徴とする医療用チューブ。
(9)前記抗血栓性材料が前記チューブの内側表面積1cm2あたり1~500μg被覆されていることを特徴とする(8)に記載の医療用チューブ。
(1)メトキシポリエチレングリコール(メタ)アクリレートとアルキル(メタ)アクリレートとシリコーン(メタ)アクリレートを含む共重合体からなる抗血栓性材料を、可塑剤を含むポリ塩化ビニル製医療用チューブの内側にコーティングする方法であって、前記共重合体が可溶であるが前記可塑剤が不溶であるように調製した水と少なくとも1種のアルコールからなる溶媒に前記抗血栓性材料を溶解した溶液を前記チューブ内部に通液させた後に、続いて水を通液させ、その後乾燥することを特徴とする方法。
(2)前記アルコールがメタノール、エタノール、1-プロパノール、及び2-プロパノールからなる群から選択されることを特徴とする(1)に記載の方法。
(3)前記溶媒が水とエタノールと1-プロパノールからなり、それらの体積比がそれぞれ10~30:20~40:30~60であることを特徴とする(2)に記載の方法。
(4)前記溶液中の前記共重合体の濃度が0.01~10重量%であることを特徴とする(1)~(3)のいずれかに記載の方法。
(5)前記溶液の前記チューブ内部への通液量が前記チューブ内腔の総体積の1~20%であり、前記水の通液量が前記チューブ内腔の総体積の50~300%であることを特徴とする(1)~(4)のいずれかに記載の方法。
(6)前記溶液及び前記水の前記チューブ内部への通液手段が減圧吸引であることを特徴とする(1)~(5)のいずれかに記載の方法。
(7)前記チューブの内側に被覆される前記抗血栓性材料の量が1~500μg/cm2であることを特徴とする(1)~(6)のいずれかに記載の方法。
(8)(1)~(7)のいずれかに記載の方法を使用して前記抗血栓性材料を内側にコーティングしたことを特徴とする医療用チューブ。
(9)前記抗血栓性材料が前記チューブの内側表面積1cm2あたり1~500μg被覆されていることを特徴とする(8)に記載の医療用チューブ。
本発明の方法は、抗血栓性材料が可溶であるが可塑剤が不溶である溶媒を使用してチューブの内側表面に抗血栓性材料をコーティングしているので、チューブからの可塑剤の溶出による外観不良が生じない。また、抗血栓性材料のコーティング後に続いて水を通液しているので、長いチューブの処理であっても液ダレや重力方向への溶液の移動がなく、抗血栓性材料の均一かつ十分な量でのコーティングを簡単に行うことができる。
本発明の方法を以下に具体的に説明するが、本発明はこれらに限定されるものではない。
本発明の方法は、特定の抗血栓性材料を、ポリ塩化ビニル製医療用チューブの内側にコーティングする方法であり、特定の溶媒に抗血栓性材料を溶解した溶液をチューブ内部に通液させた後に、続いて水を通液させ、その後乾燥することを特徴とするものである。
本発明の方法に使用される抗血栓性材料は、メトキシポリエチレングリコール(メタ)アクリレートとアルキル(メタ)アクリレートとシリコーン(メタ)アクリレートを含む共重合体からなり、各アクリレートの成分は抗血栓性に寄与する役割を有し、これらの配合比(mol%)はそれぞれ10~80:10~80:0.1~20の範囲で適宜調整されることができる。この配合比(mol%)は、より好ましくは20~70:20~80:0.5~10である。
メトキシポリエチレングリコール(メタ)アクリレートは、下記一般式[I]で示され、優れた親水性表面を形成するポリエチレングリコールの鎖を有しており、このモノマーを共重合体に組み込むことで、親水性表面を形成し、タンパク吸着や血小板粘着を抑制することができる。しかし、優れた親水性を有する面から血中へ溶出してしまう可能性もあり、共重合体中には疎水性のモノマーを組み込み、血中へ溶出し難いような溶解性に調整する必要がある。メトキシポリエチレングリコール(メタ)アクリレートとしては、ポリエチレングリコール単位が2~500であるものを使用することが好ましい。ポリエチレングリコール単位は、より好ましくは2~100、さらに好ましくは2~50、さらにより好ましくは2~10である。具体的には、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、メトキシペンタエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレート、メトキシヘプタエチレングリコール(メタ)アクリレート、メトキシオクタエチレングリコール(メタ)アクリレート、メトキシノナエチレングリコール(メタ)アクリレート、メトキシデカエチレングリコール(メタ)アクリレートなどが挙げられる。繰り返し単位が大きく親水性が増大しすぎると共重合を行っても血液中への溶解性が高くなるため、医療材料から溶出する可能性がある。従って、繰り返しポリエチレングリコール単位が4のメトキシテトラエチレングリコール(メタ)アクリレート、繰り返しポリエチレングリコール単位が3のメトキシトリエチレングリコール(メタ)アクリレートが特に好ましい。
(式中、R1は水素原子またはメチル基、nは2~100の整数を示す。)
また、アルキル(メタ)アクリレートは、下記一般式[II]で示され、疎水性を有するアルキル基を有しており、ポリエチレンやポリ塩化ビニル等のプラスチック基材との接着性を向上させることができる。このモノマーを共重合体に組み込むことで、疎水性付与による血中への溶出軽減や、医療基材との接着性向上を達成することができる。アルキル(メタ)アクリレートとしては、ノルマルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
(式中、R2は炭素原子数2~30のアルキル基またはアラルキル基、R3は水素原子またはメチル基を示す。)
さらに、シリコーン(メタ)アクリレートは、下記一般式[III]で示され、このモノマーによりシリコーンの持つ生体親和性すなわち生理的不活性の効力が得られ、血液中の成分、特に免疫系に関わる補体の活性化を抑制することができる。また、共重合体はポリジメチルシロキサンを構成成分として含有することができる。ポリジメチルシロキサンは、ポリエチレングリコールと同様に鎖状の形状をしかつ疎水性成分であるため、血液と接触した際に表面エネルギーギャップが最小となるようにそれぞれが親水性セグメントと疎水性セグメントを形成し、ミクロ相分離や流動モザイク構造のような複雑な構造を形成し、優れた抗血栓性を与える。このモノマーの配合量は共重合体の20mol%までが望ましく、これを越えて配合するとアルコールへの溶解性が悪くなったり、プラスチック基材との接着性が低下したりする。シリコーン(メタ)アクリレートとしては、ポリジメチルシロキサン部の繰り返し単位が2~100のものが一般に市販されている。本発明において、ポリジメチルシロキサン繰り返し単位が大きすぎると、得られる共重合体の粘度が高くなりすぎて取り扱いが困難となることがある。また、繰り返し単位が小さすぎると、粘度が下がりすぎて医療機器等の塗布面から容易に消失してしまうおそれがある。従って、ポリジメチルシロキサン繰り返し単位は、より好ましくは2~50であり、さらに好ましくは5~50、さらにより好ましくは10~40である。
(式中、R4は-C3H6-または-C4H8-、R5は炭素数1~6のアルキル基、R6は水素原子またはメチル基、nは2~100の整数を示す。)
本発明の方法に使用される医療用チューブは、ポリ塩化ビニルを主成分とするものであり、柔軟性と透明性を付与するために多量の可塑剤を含有している。可塑剤は一般に、チューブ重量に対して10~70重量%含有されている。使用される可塑剤としては、フタル酸ブチルベンジル、フタル酸ジ-エチルヘキシル(DEHP)、フタル酸ジ-イソデシル、フタル酸ジ-イソノニル、フタル産ジ-ヘキシル、フタル酸ジ-オクチル等が古くから使用されており、中でもフタル酸ジ-エチルヘキシル(DEHP)が最も多く使用される。また、近年では可塑剤の溶出を懸念して、溶解性の低いトリメリット酸トリ-ジエチルヘキシル(TOTM)を使用する場合もある。
また、上記医療用チューブは、人工肺や血液フィルター、遠心ポンプ等の血液回路として使用されるため、これらの医療機器との接続が必要であり、内径が1/8インチ(3.20mm)、1/4インチ(6.40mm)、3/8インチ(9.53mm)、1/2インチ(12.70mm)等の規格が設けられている。チューブ長については、血液回路の接続に必要な長さに適時切断して使用されるため、製造後は50mもしくは100m等の長尺の形態で保管されることが望ましい。
本発明では、医療用チューブの内側に抗血栓性材料をコーティングするために抗血栓性材料を特定の溶媒に溶解した溶液を使用する。チューブには多量の可塑剤が含有されているので、可塑剤をチューブから溶出させずに抗血栓性材料を均一にコーティングできることが溶媒の選定において重要である。
溶媒の選定の上で、第一の留意すべき点は、抗血栓性材料を構成する共重合体が可溶な溶媒を選択することである。共重合体を均一にムラなく被覆するためには溶媒に溶解していることが必要であり、また、抗血栓性を十分に発揮するためには一定の被覆量と膜厚を確保することが必要である。他の技術では、水と有機溶媒を混合し、分散剤を加える等して分散体もしくはエマルジョンと言われる、不溶でありながらも均一な分散状態の溶液が挙げられるが、分子の会合体のサイズが大きいためか、水の含量が多すぎて基材との濡れ性が著しく悪い等の理由で、十分な被覆量と膜厚を確保できない。
第二の留意すべき点は、可塑剤の溶出をできる限り低減させるために医療用チューブに使用した可塑剤が不溶な溶媒を選択することである。共重合体を被覆する際に可塑剤がチューブから溶出してしまうと外観不良を引き起こし、さらには長尺のチューブ内を通液させる際に可塑剤が次々と溶液中に溶出して、チューブ後方では共重合体と可塑剤の混合物が被覆されてしまうおそれがある。
第三の留意すべき点は、溶媒そのものの選択であり、作業上の安全性や医療用途として許容されうる溶媒、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコールの中から選択することである。他の溶剤に関しては、作業上の安全性、残留溶媒の毒性の点であまり好ましくない。
これらのことを考慮し、本発明では、溶媒を水と少なくとも1種のアルコールの混合溶媒の中から共重合体が可溶で可塑剤が不溶な溶媒を選択して使用する。かかる溶媒を選択するためには、一般的に知られている溶解度パラメーターを指標とすることが考えられるが、溶解度パラメーターはあくまでも溶解性の参考として用いるものであり、また、共重合体と可塑剤の溶解度パラメーターが類似しているため、上記条件を満たす溶媒を容易に選択することはできない。
そこで、以下に、実際に種々の溶媒における可塑剤と共重合体の溶解性を確認し、水とアルコールの最適組成を見出す方法を示す。
まず水と4種のアルコールの単独溶媒について可塑剤と共重合体の溶解性を確認した。確認方法としては、25mlビーカーに水もしくは4種のアルコールを20ml入れ、その中に可塑剤(DEHP,TOTM)を1g滴下する。スターラーで1時間攪拌し、完全に溶解したものを○、不溶分が認められたものを×とした。また、メトキシトリエチレングリコールアクリレートとアルキルアクリレート(2-エチルヘキシル)とシリコーンメタクリレート(ポリジメチルシロキサン部繰り返し単位:10)のmol%比が35:60:5の共重合体を準備し、25mlビーカーに水もしくは4種のアルコールを20ml入れ、その中に共重合体を1g入れる。スターラーで1時間攪拌し、完全に溶解したものを○、不溶分が認められたものを×とした。表1は、水と4種類のアルコールについて可塑剤のDEHP(フタル酸ジ-エチルヘキシル)、TOTM(トリメリット酸トリ-ジエチルヘキシル)と抗血栓性材料を構成する共重合体に対する溶解性の結果を示す。表1からわかるように、水、4種のアルコールの単独溶媒の中からは可塑剤(DEHP,TOTM)は不溶であるが共重合体は可溶であるものは全く見つからなかった。
まず水と4種のアルコールの単独溶媒について可塑剤と共重合体の溶解性を確認した。確認方法としては、25mlビーカーに水もしくは4種のアルコールを20ml入れ、その中に可塑剤(DEHP,TOTM)を1g滴下する。スターラーで1時間攪拌し、完全に溶解したものを○、不溶分が認められたものを×とした。また、メトキシトリエチレングリコールアクリレートとアルキルアクリレート(2-エチルヘキシル)とシリコーンメタクリレート(ポリジメチルシロキサン部繰り返し単位:10)のmol%比が35:60:5の共重合体を準備し、25mlビーカーに水もしくは4種のアルコールを20ml入れ、その中に共重合体を1g入れる。スターラーで1時間攪拌し、完全に溶解したものを○、不溶分が認められたものを×とした。表1は、水と4種類のアルコールについて可塑剤のDEHP(フタル酸ジ-エチルヘキシル)、TOTM(トリメリット酸トリ-ジエチルヘキシル)と抗血栓性材料を構成する共重合体に対する溶解性の結果を示す。表1からわかるように、水、4種のアルコールの単独溶媒の中からは可塑剤(DEHP,TOTM)は不溶であるが共重合体は可溶であるものは全く見つからなかった。
次に、水と4種のアルコールのうちの1種との混合溶媒について可塑剤と共重合体の溶解性を確認した。表2は、水と4種のアルコールのうちの1種との混合溶媒についてアルコール1mlに可塑剤(DEHP)または抗血栓性材料を構成する共重合体を0.1g溶解させ、さらに水を0.1mlずつ添加して不溶分が出てくるか否かを目視で確認した結果をそれぞれ示す。表2からわかるように、水と4種のアルコールのうちの1種との混合溶媒の中からは可塑剤(DEHP)は不溶であるが共重合体は可溶であるものは全く見つからなかった。
表3は、水と4種のアルコールのうちの1種との混合溶媒について可塑剤としてDEHPの代わりにTOTMを使用した結果を示す。表3からわかるように、水と1-プロパノールとの混合溶媒において可塑剤(TOTM)は不溶であるが共重合体は可溶であるものが見つかった(表3において○で囲んだ箇所を参照)。
次に、水と4種のアルコールのうちの2種との混合溶媒について可塑剤と共重合体の溶解性を確認した。表3は、水と2種のアルコール(エタノール及び1-プロパノール)との混合溶媒についてエタノール:1-プロパノールの重量比を10:0~0:10まで変化させて調製したアルコール1mlに可塑剤(DEHP)または抗血栓性材料を構成する共重合体を0.1g溶解させ、水を0.1mlずつ添加して不溶分が出てくるか否かを目視で確認した結果をそれぞれ示す。表4からわかるように、水とエタノールと1-プロパノールの混合溶媒において可塑剤(DEHP)は不溶であるが共重合体は可溶であるものが見つかった(表4の□で囲んだ部分のうち左側の表で×であるが右側の表で○の箇所を参照)。
表5は、水と2種のアルコール(エタノール及び1-プロパノール)との混合溶媒について可塑剤としてDEHPの代わりにTOTMを使用した結果を示す。表5からわかるように、水とエタノールと1-プロパノールの混合溶媒において可塑剤(TOTM)は不溶であるが共重合体は可溶であるものが見つかった(表5の□で囲んだ部分のうち左側の表で×であるが右側の表で○の箇所を参照)。
上記の方法は、水と様々なアルコールの組み合わせからなる溶媒にも同様に適用可能であり、可塑剤の種類を変更しても同様に適用可能である。また、上記の方法で得られた結果に基づいて溶媒中のアルコールの構成比や水の量をさらに細分化することによって最適な溶媒組成の範囲を正確かつ詳細に知ることができる。本発明では、溶媒は、水とエタノールと1-プロパノールからなり、それらの体積比が5~40:0~50:20~80であることが好ましく、5~35:15~45:25~65であることがさらに好ましい。上記のように、水と少なくとも1種のアルコールからなる溶媒の中に抗血栓性材料を構成する共重合体が溶解しかつ可塑剤が溶解しない溶媒が見つかった理由は、共重合体は親水性成分(極性成分)と疎水性成分(非極性成分)からなるため、溶媒の極性成分(水)と非極性成分(アルコール)が混合されることにより共重合体の溶解性が向上し、そして可塑剤は単分子からなるため、極性成分と非極性成分の混合溶媒に対して可塑剤の溶解性に特に大きな変化が見られなかったためと考えられる。
次に、上記のようにして調製された水と少なくとも1種のアルコールからなる溶媒に抗血栓性材料を溶解して溶液にする。このとき溶液中の抗血栓性材料の濃度は0.01~10重量%であることが好ましい。抗血栓性材料の濃度が上記範囲未満では、チューブ表面に十分な量の抗血栓性材料をコーティングすることができず、一方上記範囲を越えると、コーティングの量と厚みが大きすぎてチューブの内部表面がベトベトし、他の基材との接続や脱離に問題が生じる可能性がある。
本発明の方法では、まず上記のようにして得られた溶液をコーティング溶液としてチューブ内部に通液させ、続いて水(好ましくは蒸留水)を通液させ、その後乾燥する。チューブ内を通液するコーティング溶液と水の模式図を図1に示す。図1からわかるように、コーティング溶液が先行してチューブの内部表面に接触し、その結果、抗血栓性材料がチューブ内部表面に吸着され、その後、水を通液することによって余分なコーティング溶液が出口に流し出される。この時点で抗血栓性材料のチューブ内部へのコーティングは完了し、水の残液がチューブ内に少量存在し、それを乾燥するだけである。
コーティング溶液の量は、チューブ内腔の総体積の1~20%であることが好ましい。コーティング溶液の量を1%以上とするのは、コーティング溶液がチューブ内部表面に万遍なく接触することが必要であり、チューブ内を通液していると、チューブ内部表面にコーティング溶液が付着して、量が次第に減ってくるので、ある程度の量を確保する必要があるからである。例えば、100mのチューブをコーティングしようとすると、このうち1m分以上のコーティング溶液が通ることになり、この程度の量が最低限あれば、コーティングを問題なく実施できる。液量の上限は特に限定されないが、20%を越える量については、使用材料のコストや時間の観点からあまり好ましくない。一方、続いて通液される水の量は、チューブ内腔の総体積の50~300%であることが好ましい。水の量が50%未満であると、コーティング溶液を十分に洗い流すことができずに、コーティングムラの原因となるおそれがあり、300%を越えると、時間やコストの面であまり好ましくない。
コーティング溶液と水をチューブ内部に通液する方法は、真空ポンプ等による減圧吸引により行うことが好ましい。加圧で通液する方法も考えられるが、チューブ連結口に多大な圧力がかかり、チューブが破裂したり、変形したり、チューブがはずれて液が飛散する等の作業上のリスクがある。また、加圧で通液すると、コーティング溶液が大気圧によって肩ダレし、チューブ内側の全てに接触することができなくなる可能性がある。
次に、実際のチューブ内部へのコーティングのための装置の例を図2に概略的に示す。チューブの一端を、真空ポンプにつないだ排液タンクに接続し、他端で、コーティング溶液を一定量吸引して通液させ、続いて水を吸引する。液の切り替えは、チューブの端を手で持ち上げてコーティング溶液の入った容器から水の入った容器に移しても良いし、これを自動切替弁などで行ってもよい。
液を切り替えるタイミングとして、チューブ内にコーティング溶液と水の間で1~100cmの距離を持たせ、その間に空気を介在させるようにすることが好ましい。1cm未満の距離の場合もしくは空気が含まれていない場合、コーティング溶液と水が通液中に混合してしまう可能性がある。また、100cmを越える場合は、コーティング溶液が通液した後、水が通る前に、コーティング溶液の成分が蒸発し、溶媒組成比が変わってしまうとか、コーティングの厚みにムラが生じるおそれがある。1cm~100cmの距離にしようとするならば、手でチューブを持ち上げる場合、0.5~3秒程度で液を切り替えることが好ましい。具体的な操作としては、例えば、径3/8インチ、長さ100mのチューブをコーティングする場合、真空到達度-80kPa、排出空気量25L/分の性能を有する真空ポンプを使用して、初めにコーティング液をおよそ3秒間吸引し、次に空気吸引をおよそ1秒間行うことでチューブ内に長さ30cmの空気層ができ、その後に洗浄水をおよそ5分間吸引する。
水を吸い上げた後は、チューブ内に残存した水を取り除くために乾燥が必要になる。乾燥は、例えば5~40℃、より好ましくは20~30℃の窒素もしくは空気をチューブ内に循環させて行うことが好ましい。循環時間はチューブの長さによって異なるが、100m程度のチューブの場合、25℃の窒素で約4時間程度で乾燥が完了する。温度を40℃以下にするのは、チューブに40℃を越える高熱を長時間与えてしまうと、印字の転写、可塑剤の溶出、チューブの劣化等が起こり好ましくない。
本発明の方法は、上述のようにコーティング溶液の後に大量の水をチューブ内に流しているので、水が流れた時点でコーティングが完了し、後の乾燥工程が大幅に楽になることである。乾燥工程に必要なのは水を除去するだけである。通常、共重合体のコーティングのための溶媒は有機溶剤からなり、有機溶剤の乾燥温度や乾燥時間がコーティングの様態や品質に影響してしまうため、温度や時間を適切に設定することが必要である。コーティングムラをなくすために有機溶剤をすばやく除去しなければならないという制約があるとすれば、高い温度をかける必要があり、その結果、チューブに好ましくない影響が出るおそれがある。本発明の方法は、このような乾燥工程における問題や煩わしさがない。
本発明の方法によって抗血栓性材料のコーティングが完了したチューブは、可塑剤の溶出やコーティングムラがなく、コーティング前の状態と何ら変わりなく、外観が良好である。また、抗血栓性材料が均一かつ十分な量でチューブ内部表面に被覆されているので、優れた抗血栓性を発揮する。抗血栓性の指標として、血小板粘着の抑制効果がある。例えば、出口付近のチューブ内部にそれよりも径の小さいチューブを密着するように設置し、上記の本発明の方法で抗血栓性材料のコーティングを実施し、コーティング後、設置したチューブを取り外し、これをノンコート面(コーティング前のチューブと同じ面)とし、コーティング面と抗血栓性を比較したところ、図3のそれぞれの面の顕微鏡写真から明らかなように、ノンコート面には血小板が多量に付着しているが、コーティング面にはほとんど血小板が付着していなかった。このように、コーティングの境界がはっきりとわかるぐらい、本発明の方法で被覆したチューブは、十分な抗血栓性を発揮する。
次に、本発明の方法で得られたチューブのコーティングムラの確認を行った。抗血栓性材料を被覆すると、ノンコートのチューブよりも親水性が向上するため、コーティング後のチューブの入口と出口の親水性を比較することで、コーティングムラを確認することができる。100mのチューブにコーティングした際の入口と出口のチューブ片5cmに水0.5mlを滴下し、親水性を確認した。図4のコーティング後(入口及び出口)とコーティング前のチューブ片の写真に示すように、コーティング後の方が親水性が高いので、滴下した水が縦方向に伸びている様子がわかり、その度合いは入口も出口もほぼ同じであった。このように、本発明の方法で被覆したチューブは、チューブの全長にわたって均一な抗血栓性材料のコーティングが可能である。
本発明の方法でチューブの内側に被覆される抗血栓性材料の量は1~500μg/cm2であることが好ましい。抗血栓性材料の量が1μg/cm2未満では、抗血栓性材料がチューブの内側表面全体を覆うことができず、抗血栓性が十分に発揮されないおそれがある。また、500μg/cm2を越えると、チューブの内側表面に潤滑性を与えてしまうので、血液回路として他の機器に接続する際に、引張強度が低下してしまうおそれがある。
本発明の方法の優れた効果を以下の実施例によって示すが、本発明はこれらに限定されるものではない。なお、実施例中の評価方法は以下の方法に従って行った。
(1)可塑剤及び抗血栓性材料の溶解性
溶媒10mlに可塑剤または抗血栓性材料を1g添加した後、容器を密閉して振とう機で6時間振とうさせ、その後に24時間静置し、白濁または沈殿物の存在を目視で確認した。白濁または沈殿物が存在する場合は溶解性なしとして×で記載し、白濁または沈殿物が存在しない場合は溶解性ありとして○で記載した。
溶媒10mlに可塑剤または抗血栓性材料を1g添加した後、容器を密閉して振とう機で6時間振とうさせ、その後に24時間静置し、白濁または沈殿物の存在を目視で確認した。白濁または沈殿物が存在する場合は溶解性なしとして×で記載し、白濁または沈殿物が存在しない場合は溶解性ありとして○で記載した。
(2)チューブ内側表面の抗血栓性材料の量
チューブの内側表面積が100cm2となるようにチューブを中央付近から切断し、切断されたチューブ内側表面の抗血栓性材料を50mlのエタノールで抽出し、減圧下で乾固(約50℃)した。残渣にTHFを5ml加えて溶かし、試料溶液を調整した。別に、抗血栓性材料50mgをTHFで溶かし5mg/mlとなるように調整し、この原液をTHFで更に希釈して、標準溶液(100、200、500、1000、3000、5000μg/ml)を調整した。試料溶液及び標準溶液を高速液体クロマトグラフ(HPLC)法により測定し、標準溶液から作成する検量線を用いて試験液中濃度を求め、標準溶液により検量線を作成し、試料溶液中濃度から抗血栓性材料の量を算出した。HPLCの条件は以下であった。
[HPLC条件]
・分析カラム
TSgel MultiporeHXL-M(スチレンビニルベンゼン共重合体樹脂有機溶媒カラム)内径7.8mm、長さ300mm、粒子径5μm、東ソー製
・ガードカラム
TSK guardcolumn MP(XL)内径6.0mm、長さ40mm、粒子径5μm、東ソー製
・移動相
テトラヒドロフラン(THF)HMLC用(no stabilizer)
・流量
1.0mL/min
・カラム設定温度
40℃
・検出
UV220nm
・試料注入量
50μL
チューブの内側表面積が100cm2となるようにチューブを中央付近から切断し、切断されたチューブ内側表面の抗血栓性材料を50mlのエタノールで抽出し、減圧下で乾固(約50℃)した。残渣にTHFを5ml加えて溶かし、試料溶液を調整した。別に、抗血栓性材料50mgをTHFで溶かし5mg/mlとなるように調整し、この原液をTHFで更に希釈して、標準溶液(100、200、500、1000、3000、5000μg/ml)を調整した。試料溶液及び標準溶液を高速液体クロマトグラフ(HPLC)法により測定し、標準溶液から作成する検量線を用いて試験液中濃度を求め、標準溶液により検量線を作成し、試料溶液中濃度から抗血栓性材料の量を算出した。HPLCの条件は以下であった。
[HPLC条件]
・分析カラム
TSgel MultiporeHXL-M(スチレンビニルベンゼン共重合体樹脂有機溶媒カラム)内径7.8mm、長さ300mm、粒子径5μm、東ソー製
・ガードカラム
TSK guardcolumn MP(XL)内径6.0mm、長さ40mm、粒子径5μm、東ソー製
・移動相
テトラヒドロフラン(THF)HMLC用(no stabilizer)
・流量
1.0mL/min
・カラム設定温度
40℃
・検出
UV220nm
・試料注入量
50μL
(3)外観評価
抗血栓性材料をコーティングして乾燥した後のチューブにおいてオイル状の液滴(オイル痕)及び白い濁り(白濁痕)が目視で確認できるか否かを評価した。確認されないものは良好として表示し、確認されるものは不良として表示した。
抗血栓性材料をコーティングして乾燥した後のチューブにおいてオイル状の液滴(オイル痕)及び白い濁り(白濁痕)が目視で確認できるか否かを評価した。確認されないものは良好として表示し、確認されるものは不良として表示した。
(4)血液適合性
・血小板粘着試験
抗血栓性材料をコーティングして乾燥した後のチューブ(内径3/8インチ)とコーティングをしていないチューブ(内径3/8インチ)をそれぞれ長さ1.5cmにカットし、さらに半円状にカットして湾曲したシート状にした。これらのシート表面にクエン酸加ヒト血漿(クエン酸加ヒト新鮮血を250×gで20分間遠心分離して得られた上澄み)を0.5ml滴下し、37℃で4時間静置した。その後生理食塩水で十分に洗浄し、2.5%グルタールアルデヒド生理食塩水溶液に1時間浸漬した。次に注射用蒸留水で十分に洗浄して凍結乾燥を行った。得られたそれぞれのシートを1000倍の倍率で走査型電子顕微鏡(SEM、日立製、型式:S-4000)で観察し、表面に付着している血小板量が、コーティングをしていないシートに比べてコーティングをしたシートが10分の1未満であれば、優れた血小板粘着抑制効果を発揮しているとして「良好」とした。また、10分の1以上であれば「不良」とした。10分の1未満かどうかがSEM写真を見て明らかな場合は目視判定として良いが、判断が容易でないものについてはSEM写真の拡大コピーを準備し、50×50個のマス目にして、白色部分(血しょう板粘着部)と黒色部分(血しょう板非粘着部)の占有面積を算出して比較すれば良い。
・補体活性化試験
抗血栓性材料をコーティングして乾燥した後のチューブ(内径1/4インチ)とコーティングをしていないチューブ(内径1/4インチ)をそれぞれ長さ1.5cmにカットし、これらのチューブ内にヒト血清(ヒト新鮮血を常温で4時間静置し、1500×gで20分間遠心分離して得られた上澄み)を1ml加え、両端をクランプした。これらのチューブを37℃で2時間インキュベートした。得られたチューブ内液12.5μlと「オートCH50生研」(デンカ生研株式会社製)の希釈液2.6mlと感作ヒツジ赤血球0.4mlを混合し、37℃で1時間インキュベートした。その後溶血していない赤血球を沈殿させるため670×gで10分間遠心分離をし、得られた上澄みを波長541nm、蒸留水を0
ABSとして吸光度を測定した。測定した吸光度が、コーティングをしていないチューブに比べてコーティングをしたチューブで1.2倍以上であれば補体活性抑制効果を発揮しているとして「良好」とした。また、1.2倍未満であれば「不良」とした。
・持続性試験
抗血栓性材料をコーティングして乾燥した後のチューブ(内径3/8インチ)とコーティングをしていないチューブ(内径3/8インチ)をそれぞれ長さ1.5cmにカットし、さらに半円状にカットして湾曲したシート状にした。これらのシートを100mlの水中で37℃、7日間エージングして十分に乾燥させた後、表面に0.2mlの水を滴下した。滴下した水滴の直径が、コーティングをしていないシートに比べてコーティングをしたシートで1.2倍以上であれば、表面に共重合体が残存しているとして「良好」とした。また、1.2倍未満であれば「不良」とした。
・血液適合性の総合判断
上記3つの試験において、3つとも「良好」であった場合は◎、3つのうち2つが「良好」であった場合は○、それ以外を×とした。
・血小板粘着試験
抗血栓性材料をコーティングして乾燥した後のチューブ(内径3/8インチ)とコーティングをしていないチューブ(内径3/8インチ)をそれぞれ長さ1.5cmにカットし、さらに半円状にカットして湾曲したシート状にした。これらのシート表面にクエン酸加ヒト血漿(クエン酸加ヒト新鮮血を250×gで20分間遠心分離して得られた上澄み)を0.5ml滴下し、37℃で4時間静置した。その後生理食塩水で十分に洗浄し、2.5%グルタールアルデヒド生理食塩水溶液に1時間浸漬した。次に注射用蒸留水で十分に洗浄して凍結乾燥を行った。得られたそれぞれのシートを1000倍の倍率で走査型電子顕微鏡(SEM、日立製、型式:S-4000)で観察し、表面に付着している血小板量が、コーティングをしていないシートに比べてコーティングをしたシートが10分の1未満であれば、優れた血小板粘着抑制効果を発揮しているとして「良好」とした。また、10分の1以上であれば「不良」とした。10分の1未満かどうかがSEM写真を見て明らかな場合は目視判定として良いが、判断が容易でないものについてはSEM写真の拡大コピーを準備し、50×50個のマス目にして、白色部分(血しょう板粘着部)と黒色部分(血しょう板非粘着部)の占有面積を算出して比較すれば良い。
・補体活性化試験
抗血栓性材料をコーティングして乾燥した後のチューブ(内径1/4インチ)とコーティングをしていないチューブ(内径1/4インチ)をそれぞれ長さ1.5cmにカットし、これらのチューブ内にヒト血清(ヒト新鮮血を常温で4時間静置し、1500×gで20分間遠心分離して得られた上澄み)を1ml加え、両端をクランプした。これらのチューブを37℃で2時間インキュベートした。得られたチューブ内液12.5μlと「オートCH50生研」(デンカ生研株式会社製)の希釈液2.6mlと感作ヒツジ赤血球0.4mlを混合し、37℃で1時間インキュベートした。その後溶血していない赤血球を沈殿させるため670×gで10分間遠心分離をし、得られた上澄みを波長541nm、蒸留水を0
ABSとして吸光度を測定した。測定した吸光度が、コーティングをしていないチューブに比べてコーティングをしたチューブで1.2倍以上であれば補体活性抑制効果を発揮しているとして「良好」とした。また、1.2倍未満であれば「不良」とした。
・持続性試験
抗血栓性材料をコーティングして乾燥した後のチューブ(内径3/8インチ)とコーティングをしていないチューブ(内径3/8インチ)をそれぞれ長さ1.5cmにカットし、さらに半円状にカットして湾曲したシート状にした。これらのシートを100mlの水中で37℃、7日間エージングして十分に乾燥させた後、表面に0.2mlの水を滴下した。滴下した水滴の直径が、コーティングをしていないシートに比べてコーティングをしたシートで1.2倍以上であれば、表面に共重合体が残存しているとして「良好」とした。また、1.2倍未満であれば「不良」とした。
・血液適合性の総合判断
上記3つの試験において、3つとも「良好」であった場合は◎、3つのうち2つが「良好」であった場合は○、それ以外を×とした。
実施例1~10
内径9.53mm(3/8インチ)のポリ塩化ビニル製チューブ(可塑剤DEHP 60重量%含有)を100m用意し、それを図2に記載の装置に取り付けた。一方、表6に記載の組成の抗血栓性材料と溶媒を用意し、表6に記載の抗血栓性材料の濃度になるように溶媒に抗血栓性材料を溶解し、コーティング溶液とした。そして、図2に記載の装置の1の容器にコーティング溶液を入れ、2の容器に蒸留水を入れた。真空ポンプ(真空到達度-80kPa、排出空気量25L/min)を作動させ、まずチューブの一端を1の容器に付けてコーティング溶液を3秒間通液させ、その後1秒間空気を吸い込み、2の容器に付けて蒸留水を300秒間通液させた。その後、チューブの内部に25℃の窒素を4時間循環させて乾燥を行い、コーティングが完了したチューブを得た。各実施例で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
内径9.53mm(3/8インチ)のポリ塩化ビニル製チューブ(可塑剤DEHP 60重量%含有)を100m用意し、それを図2に記載の装置に取り付けた。一方、表6に記載の組成の抗血栓性材料と溶媒を用意し、表6に記載の抗血栓性材料の濃度になるように溶媒に抗血栓性材料を溶解し、コーティング溶液とした。そして、図2に記載の装置の1の容器にコーティング溶液を入れ、2の容器に蒸留水を入れた。真空ポンプ(真空到達度-80kPa、排出空気量25L/min)を作動させ、まずチューブの一端を1の容器に付けてコーティング溶液を3秒間通液させ、その後1秒間空気を吸い込み、2の容器に付けて蒸留水を300秒間通液させた。その後、チューブの内部に25℃の窒素を4時間循環させて乾燥を行い、コーティングが完了したチューブを得た。各実施例で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
表6中の抗血栓性材料の共重合体の製造方法を以下に示す。
[実施例1~5、実施例8~10、比較例1~5の共重合体]
メトキシトリエチレングリコールアクリレート(MTEGA)(新中村化学工業社)157.1g、アルキル(2-エチルヘキシル)アクリレート(EHA)(東京化成工業社)231.1g、シリコーンメタクリレート(ジメチルシロキサン部繰り返し単位:10、信越シリコーン社)52.4gにアゾビスイソブチロニトリル(AIBN)(和光純薬社)0.41gを加え、酢酸エチル(東京化成工業社)828g中で80℃、20時間の条件で重合反応を行った。重合反応終了後、反応液をメタノールに滴下し沈殿させ、生成物を単離した。生成物をテトラヒドロフラン(THF)に溶解し、メタノールに滴下する操作を二回行い、精製した。これを一昼夜60℃にて減圧乾燥し、共重合体を得た。
[実施例1~5、実施例8~10、比較例1~5の共重合体]
メトキシトリエチレングリコールアクリレート(MTEGA)(新中村化学工業社)157.1g、アルキル(2-エチルヘキシル)アクリレート(EHA)(東京化成工業社)231.1g、シリコーンメタクリレート(ジメチルシロキサン部繰り返し単位:10、信越シリコーン社)52.4gにアゾビスイソブチロニトリル(AIBN)(和光純薬社)0.41gを加え、酢酸エチル(東京化成工業社)828g中で80℃、20時間の条件で重合反応を行った。重合反応終了後、反応液をメタノールに滴下し沈殿させ、生成物を単離した。生成物をテトラヒドロフラン(THF)に溶解し、メタノールに滴下する操作を二回行い、精製した。これを一昼夜60℃にて減圧乾燥し、共重合体を得た。
[実施例6の共重合体]
メトキシノナエチレングリコールアクリレート(MNEGA)(新中村化学工業社)218.3g、アルキル(2-エチルヘキシル)アクリレート(EHA)(東京化成工業社)180.6g、シリコーンメタクリレート(ジメチルシロキサン部繰り返し単位:35、信越シリコーン社)20.0gにアゾビスイソブチロニトリル(AIBN)(和光純薬社)0.41gを加え、酢酸エチル(東京化成工業社)828g中で80℃、20時間の条件で重合反応を行った。重合反応終了後、反応液をメタノールに滴下し沈殿させ、生成物を単離した。生成物をテトラヒドロフラン(THF)に溶解し、メタノールに滴下する操作を二回行い、精製した。これを一昼夜60℃にて減圧乾燥し、共重合体を得た。
メトキシノナエチレングリコールアクリレート(MNEGA)(新中村化学工業社)218.3g、アルキル(2-エチルヘキシル)アクリレート(EHA)(東京化成工業社)180.6g、シリコーンメタクリレート(ジメチルシロキサン部繰り返し単位:35、信越シリコーン社)20.0gにアゾビスイソブチロニトリル(AIBN)(和光純薬社)0.41gを加え、酢酸エチル(東京化成工業社)828g中で80℃、20時間の条件で重合反応を行った。重合反応終了後、反応液をメタノールに滴下し沈殿させ、生成物を単離した。生成物をテトラヒドロフラン(THF)に溶解し、メタノールに滴下する操作を二回行い、精製した。これを一昼夜60℃にて減圧乾燥し、共重合体を得た。
[実施例7の共重合体]
メトキシトリエチレングリコールアクリレート(MTEGA)(新中村化学工業社)283.7g、アルキル(2-エチルヘキシル)アクリレート(EHA)(東京化成工業社)92.1g、シリコーンメタクリレート(ジメチルシロキサン部繰り返し単位:10、信越シリコーン社)120.7gにアゾビスイソブチロニトリル(AIBN)(和光純薬社)0.58gを加え、酢酸エチル(東京化成工業社)1151g中で80℃、20時間の条件で重合反応を行った。重合反応終了後、反応液をメタノールに滴下し沈殿させ、生成物を単離した。生成物をテトラヒドロフラン(THF)に溶解し、メタノールに滴下する操作を二回行い、精製した。これを一昼夜60℃にて減圧乾燥し、共重合体を得た。
メトキシトリエチレングリコールアクリレート(MTEGA)(新中村化学工業社)283.7g、アルキル(2-エチルヘキシル)アクリレート(EHA)(東京化成工業社)92.1g、シリコーンメタクリレート(ジメチルシロキサン部繰り返し単位:10、信越シリコーン社)120.7gにアゾビスイソブチロニトリル(AIBN)(和光純薬社)0.58gを加え、酢酸エチル(東京化成工業社)1151g中で80℃、20時間の条件で重合反応を行った。重合反応終了後、反応液をメタノールに滴下し沈殿させ、生成物を単離した。生成物をテトラヒドロフラン(THF)に溶解し、メタノールに滴下する操作を二回行い、精製した。これを一昼夜60℃にて減圧乾燥し、共重合体を得た。
比較例1
チューブ内部に蒸留水を通液させなかった以外は、実施例1と同様にコーティングが完了したチューブを得た。比較例1で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
チューブ内部に蒸留水を通液させなかった以外は、実施例1と同様にコーティングが完了したチューブを得た。比較例1で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
比較例2,3
表6に記載のように可塑剤も抗血栓性材料も溶解する水とアルコールからなる溶媒を使用した以外は、実施例1と同様にコーティングが完了したチューブを得た。比較例2,3で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
表6に記載のように可塑剤も抗血栓性材料も溶解する水とアルコールからなる溶媒を使用した以外は、実施例1と同様にコーティングが完了したチューブを得た。比較例2,3で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
比較例4
表6に記載のように可塑剤も抗血栓性材料も溶解しない水とアルコールからなる溶媒を使用した以外は、実施例1と同様にコーティングが完了したチューブを得た。比較例4で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
表6に記載のように可塑剤も抗血栓性材料も溶解しない水とアルコールからなる溶媒を使用した以外は、実施例1と同様にコーティングが完了したチューブを得た。比較例4で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
比較例5
表6に記載のように可塑剤も抗血栓性材料も溶解するアルコールからなる溶媒を使用した以外は、実施例1と同様にコーティングが完了したチューブを得た。比較例5で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
表6に記載のように可塑剤も抗血栓性材料も溶解するアルコールからなる溶媒を使用した以外は、実施例1と同様にコーティングが完了したチューブを得た。比較例5で使用した抗血栓性材料、溶媒、可塑剤等の詳細と評価結果を表6に示す。
実施例1′~10′、比較例1′~5′
可塑剤をDEHPからTOTMに変更した以外は、実施例1~10、比較例1~5と同様にコーティングが完了したチューブを得た。実施例1′~10′、比較例1′~5′のチューブは実施例1~10、比較例1~5と同様の評価結果が得られた。
可塑剤をDEHPからTOTMに変更した以外は、実施例1~10、比較例1~5と同様にコーティングが完了したチューブを得た。実施例1′~10′、比較例1′~5′のチューブは実施例1~10、比較例1~5と同様の評価結果が得られた。
本発明の方法は、可塑剤の溶出による外観不良やコーティングムラを起こさずにチューブの内側表面に抗血栓性材料を均一かつ十分な量で効率良くコーティングすることができるので、様々な医療機器に接続する医療用チューブにおいて極めて有用である。
Claims (9)
- メトキシポリエチレングリコール(メタ)アクリレートとアルキル(メタ)アクリレートとシリコーン(メタ)アクリレートを含む共重合体からなる抗血栓性材料を、可塑剤を含むポリ塩化ビニル製医療用チューブの内側にコーティングする方法であって、前記共重合体が可溶であるが前記可塑剤が不溶であるように調製した水と少なくとも1種のアルコールからなる溶媒に前記抗血栓性材料を溶解した溶液を前記チューブ内部に通液させた後に、続いて水を通液させ、その後乾燥することを特徴とする方法。
- 前記アルコールがメタノール、エタノール、1-プロパノール、及び2-プロパノールからなる群から選択されることを特徴とする請求項1に記載の方法。
- 前記溶媒が水とエタノールと1-プロパノールからなり、それらの体積比がそれぞれ10~30:20~40:30~60であることを特徴とする請求項2に記載の方法。
- 前記溶液中の前記共重合体の濃度が0.01~10重量%であることを特徴とする請求項1~3のいずれかに記載の方法。
- 前記溶液の前記チューブ内部への通液量が前記チューブ内腔の総体積の1~20%であり、前記水の通液量が前記チューブ内腔の総体積の50~300%であることを特徴とする請求項1~4のいずれかに記載の方法。
- 前記溶液及び前記水の前記チューブ内部への通液手段が減圧吸引であることを特徴とする請求項1~5のいずれかに記載の方法。
- 前記チューブの内側に被覆される前記抗血栓性材料の量が1~500μg/cm2であることを特徴とする請求項1~6のいずれかに記載の方法。
- 請求項1~7のいずれかに記載の方法を使用して前記抗血栓性材料を内側にコーティングしたことを特徴とする医療用チューブ。
- 前記抗血栓性材料が前記チューブの内側表面積1cm2あたり1~500μg被覆されていることを特徴とする請求項8に記載の医療用チューブ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11731813.9A EP2522375B1 (en) | 2010-01-07 | 2011-01-06 | Method for coating inner surface of medical tube made from vinyl chloride with anti-thrombotic material |
US13/520,414 US8916225B2 (en) | 2010-01-07 | 2011-01-06 | Method for coating inner surface of medical tube made from vinyl chloride with anti-thrombotic material |
JP2011549016A JP5131613B2 (ja) | 2010-01-07 | 2011-01-06 | 抗血栓性材料を塩ビ製医療用チューブの内側にコーティングする方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010001650 | 2010-01-07 | ||
JP2010-001650 | 2010-01-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011083815A1 true WO2011083815A1 (ja) | 2011-07-14 |
WO2011083815A8 WO2011083815A8 (ja) | 2012-07-26 |
Family
ID=44305552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050083 WO2011083815A1 (ja) | 2010-01-07 | 2011-01-06 | 抗血栓性材料を塩ビ製医療用チューブの内側にコーティングする方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8916225B2 (ja) |
EP (1) | EP2522375B1 (ja) |
JP (1) | JP5131613B2 (ja) |
WO (1) | WO2011083815A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013027579A1 (ja) * | 2011-08-19 | 2013-02-28 | 東洋紡株式会社 | 医療用チューブ |
WO2014046158A1 (ja) * | 2012-09-20 | 2014-03-27 | 東洋紡株式会社 | 医療用ペレット状組成物及び成形体 |
WO2016093230A1 (ja) * | 2014-12-12 | 2016-06-16 | 東洋インキScホールディングス株式会社 | 体液接触用医療用具および生体適合性重合体 |
JP2016165422A (ja) * | 2015-03-10 | 2016-09-15 | テルモ株式会社 | 抗血栓性接着用組成物、ならびに該抗血栓性接着用組成物を利用した医療用具およびその製造方法 |
JPWO2018131518A1 (ja) * | 2017-01-13 | 2019-11-07 | 富士フイルム株式会社 | 医療用潤滑性部材に用いる積層材料、医療用潤滑性部材、および医療機器 |
US20200114604A1 (en) * | 2012-08-14 | 2020-04-16 | Saint-Gobain Performance Plastics Corporation | Apparatus and method for making a silicone article |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112492876B (zh) * | 2018-07-17 | 2022-05-31 | 富士胶片株式会社 | 医疗用润滑性部件以及相关层叠材料用组合物、层叠材料、医疗器材、层叠材料的制造方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61113456A (ja) * | 1984-11-08 | 1986-05-31 | 三菱化成ポリテック株式会社 | 血液輸送チユ−ブおよびその製造方法 |
US4627844A (en) | 1985-10-30 | 1986-12-09 | High Voltage Engineering Corporation | Tri-layer tubing |
JPH1135605A (ja) | 1997-07-16 | 1999-02-09 | Nof Corp | 疎水性基及びホスホリルコリン基含有重合体の製造方法 |
JPH11164882A (ja) | 1997-12-05 | 1999-06-22 | Toyobo Co Ltd | 血液適合性組成物および医療用具 |
JPH11287802A (ja) | 1998-04-03 | 1999-10-19 | Nippon Kayaku Co Ltd | 表面保護剤 |
JP2002105136A (ja) | 2000-09-29 | 2002-04-10 | Terumo Corp | 抗血栓性表面処理剤および医療用具 |
JP2002282356A (ja) | 2001-03-23 | 2002-10-02 | Kawasumi Lab Inc | 多層チューブ及び多層チューブからなる医療用具 |
JP2007146133A (ja) | 2005-10-25 | 2007-06-14 | Toyobo Co Ltd | (メタ)アクリレート共重合体 |
JP2007197686A (ja) | 2005-12-27 | 2007-08-09 | Toyobo Co Ltd | (メタ)アクリレート共重合体の製造方法 |
JP2008264719A (ja) | 2007-04-23 | 2008-11-06 | Toyobo Co Ltd | 中空糸膜型人工肺および処理方法 |
JP2008264266A (ja) | 2007-04-20 | 2008-11-06 | Toyobo Co Ltd | 医用材料の処理液および医用材料 |
JP2008289864A (ja) | 2007-04-24 | 2008-12-04 | Toyobo Co Ltd | 抗血栓性材料 |
JP2009261437A (ja) * | 2008-04-22 | 2009-11-12 | Toyobo Co Ltd | カテーテル |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2867544A (en) * | 1956-02-23 | 1959-01-06 | Owens Illinois Glass Co | Method and apparatus for coating the interior surfaces of small diameter glass tubing |
GB2166977B (en) | 1984-11-08 | 1988-04-20 | Mitsubishi Monsanto Chem | Medical material and process for its production |
US4999210A (en) * | 1989-01-18 | 1991-03-12 | Becton, Dickinson And Company | Anti-infective and antithrombogenic medical articles and method for their preparation |
-
2011
- 2011-01-06 US US13/520,414 patent/US8916225B2/en active Active
- 2011-01-06 WO PCT/JP2011/050083 patent/WO2011083815A1/ja active Application Filing
- 2011-01-06 JP JP2011549016A patent/JP5131613B2/ja active Active
- 2011-01-06 EP EP11731813.9A patent/EP2522375B1/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61113456A (ja) * | 1984-11-08 | 1986-05-31 | 三菱化成ポリテック株式会社 | 血液輸送チユ−ブおよびその製造方法 |
US4627844A (en) | 1985-10-30 | 1986-12-09 | High Voltage Engineering Corporation | Tri-layer tubing |
JPH1135605A (ja) | 1997-07-16 | 1999-02-09 | Nof Corp | 疎水性基及びホスホリルコリン基含有重合体の製造方法 |
JPH11164882A (ja) | 1997-12-05 | 1999-06-22 | Toyobo Co Ltd | 血液適合性組成物および医療用具 |
JPH11287802A (ja) | 1998-04-03 | 1999-10-19 | Nippon Kayaku Co Ltd | 表面保護剤 |
JP2002105136A (ja) | 2000-09-29 | 2002-04-10 | Terumo Corp | 抗血栓性表面処理剤および医療用具 |
JP2002282356A (ja) | 2001-03-23 | 2002-10-02 | Kawasumi Lab Inc | 多層チューブ及び多層チューブからなる医療用具 |
JP2007146133A (ja) | 2005-10-25 | 2007-06-14 | Toyobo Co Ltd | (メタ)アクリレート共重合体 |
JP2007197686A (ja) | 2005-12-27 | 2007-08-09 | Toyobo Co Ltd | (メタ)アクリレート共重合体の製造方法 |
JP2008264266A (ja) | 2007-04-20 | 2008-11-06 | Toyobo Co Ltd | 医用材料の処理液および医用材料 |
JP2008264719A (ja) | 2007-04-23 | 2008-11-06 | Toyobo Co Ltd | 中空糸膜型人工肺および処理方法 |
JP2008289864A (ja) | 2007-04-24 | 2008-12-04 | Toyobo Co Ltd | 抗血栓性材料 |
JP2009261437A (ja) * | 2008-04-22 | 2009-11-12 | Toyobo Co Ltd | カテーテル |
Non-Patent Citations (4)
Title |
---|
"Kobunshi to Iryo", 1989, MITA SHUPPAN-KAI, pages: 73 |
ARTIFICIAL ORGANS, vol. 16, no. 2, 1987, pages 1045 - 1050 |
See also references of EP2522375A4 * |
TRANSACTIONS - AMERICAN SOCIETY FOR ARTIFICIAL INTERNAL ORGANS, vol. XXXIII, 1987, pages 75 - 84 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013027579A1 (ja) * | 2011-08-19 | 2013-02-28 | 東洋紡株式会社 | 医療用チューブ |
JPWO2013027579A1 (ja) * | 2011-08-19 | 2015-03-19 | 東洋紡株式会社 | 医療用チューブ |
EP2745865A4 (en) * | 2011-08-19 | 2015-09-16 | Toyo Boseki | MEDICAL TUBUS |
US9295763B2 (en) | 2011-08-19 | 2016-03-29 | Toyobo Co., Ltd. | Medical tube |
US20200114604A1 (en) * | 2012-08-14 | 2020-04-16 | Saint-Gobain Performance Plastics Corporation | Apparatus and method for making a silicone article |
WO2014046158A1 (ja) * | 2012-09-20 | 2014-03-27 | 東洋紡株式会社 | 医療用ペレット状組成物及び成形体 |
JPWO2014046158A1 (ja) * | 2012-09-20 | 2016-08-18 | 東洋紡株式会社 | 医療用ペレット状組成物及び成形体 |
WO2016093230A1 (ja) * | 2014-12-12 | 2016-06-16 | 東洋インキScホールディングス株式会社 | 体液接触用医療用具および生体適合性重合体 |
JP2016165422A (ja) * | 2015-03-10 | 2016-09-15 | テルモ株式会社 | 抗血栓性接着用組成物、ならびに該抗血栓性接着用組成物を利用した医療用具およびその製造方法 |
JPWO2018131518A1 (ja) * | 2017-01-13 | 2019-11-07 | 富士フイルム株式会社 | 医療用潤滑性部材に用いる積層材料、医療用潤滑性部材、および医療機器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011083815A1 (ja) | 2013-05-13 |
WO2011083815A8 (ja) | 2012-07-26 |
EP2522375B1 (en) | 2015-08-26 |
EP2522375A4 (en) | 2014-07-23 |
US8916225B2 (en) | 2014-12-23 |
EP2522375A1 (en) | 2012-11-14 |
JP5131613B2 (ja) | 2013-01-30 |
US20120283665A1 (en) | 2012-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5131613B2 (ja) | 抗血栓性材料を塩ビ製医療用チューブの内側にコーティングする方法 | |
JP4404468B2 (ja) | 血液フィルターおよびその製造方法 | |
US8142717B2 (en) | Oxygenator of a hollow fiber membrane type | |
JPH04152952A (ja) | 生体適合性医用材料 | |
JP2009514674A (ja) | 極薄フォトポリマーコーティング及びその使用 | |
KR20150115746A (ko) | 기재용 코팅 | |
JP2016508776A5 (ja) | ||
JP4100452B1 (ja) | 医用材料の処理液および医用材料 | |
JP2008289864A (ja) | 抗血栓性材料 | |
CN116003692B (zh) | 一种表面接枝交联的两性离子聚合物涂层及其制备方法与应用 | |
JP6100427B2 (ja) | 血液と接触する表面を被覆するに際して非イオン性エステルを使用する医療器具・装置 | |
JP7158993B2 (ja) | ホスホリルコリン基含有共重合体、および生体用医療基材 | |
JP4162028B2 (ja) | (メタ)アクリレート共重合体 | |
JP4079189B2 (ja) | (メタ)アクリレート共重合体の製造方法 | |
EP2100627B1 (en) | (meth)acrylate copolymer, process for producing the same and medical device | |
JP2009261437A (ja) | カテーテル | |
TWI749071B (zh) | 分離膜模組 | |
JP5114660B2 (ja) | 抗血栓性抗菌性組成物および医療用具 | |
JP2014147639A (ja) | 医療用具 | |
WO2024181302A1 (ja) | 医療用具の製造方法 | |
Yan et al. | Overview of hemodialysis membranes: Methods and strategies to improve hemocompatibility | |
CN109172877B (zh) | 一种仿生抗凝血乳液及其制备方法和使用方法 | |
TW202438117A (zh) | 醫療用具之製造方法 | |
JP4347927B2 (ja) | 抗血栓性医療用具の製造方法 | |
KR100490272B1 (ko) | 그래프트 중합체 및 이를 사용한 의료용 성형품 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11731813 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13520414 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011549016 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011731813 Country of ref document: EP |