WO2014046158A1 - 医療用ペレット状組成物及び成形体 - Google Patents

医療用ペレット状組成物及び成形体 Download PDF

Info

Publication number
WO2014046158A1
WO2014046158A1 PCT/JP2013/075250 JP2013075250W WO2014046158A1 WO 2014046158 A1 WO2014046158 A1 WO 2014046158A1 JP 2013075250 W JP2013075250 W JP 2013075250W WO 2014046158 A1 WO2014046158 A1 WO 2014046158A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate copolymer
acrylate
medical
pellet
Prior art date
Application number
PCT/JP2013/075250
Other languages
English (en)
French (fr)
Inventor
雄太 川勝
義昭 唐戸
智哉 大橋
進 柏原
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US14/416,009 priority Critical patent/US20150190551A1/en
Priority to JP2014536891A priority patent/JP6115834B2/ja
Priority to EP13838791.5A priority patent/EP2898905B1/en
Publication of WO2014046158A1 publication Critical patent/WO2014046158A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/049Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/041Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/141Plasticizers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/0005Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/0005Use of materials characterised by their function or physical properties
    • A61L33/0052Plasticizers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/062Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/064Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit

Definitions

  • the present invention relates to a medical pellet-like composition that can be suitably used for a main tube or the like constituting a blood circuit for artificial dialysis or heart-lung machine. More specifically, a medical pellet that can produce a medical material excellent in antithrombogenicity and transparency, including a polyvinyl chloride resin, a plasticizer, and a copolymer of hydrophobic (meth) acrylate and hydrophilic (meth) acrylate.
  • the present invention relates to a composition.
  • Medical tubes include infusion sets for administering infusion solutions from infusion bags to humans, transfusion sets used in the same way for transfusions, blood bags used for collecting blood from humans for blood donation, hemodialysis and artificial It is used in a great number of medical devices such as circuits used when using cardiopulmonary.
  • polyurethane resins, silicone resins, and vinyl chloride resins are generally used as materials for forming medical tubes.
  • a medical tube made of a vinyl chloride resin has characteristics such as good moldability, low raw material and manufacturing costs, suitable flexible physical properties as a tube, and good workability when assembled in a medical device. .
  • the medical tube is required to have biocompatibility (antithrombogenicity).
  • three elements are (a) suppression of blood coagulation system, (b) suppression of platelet adhesion / activation, and (c) suppression of complement system activation. Is an important item for biocompatibility.
  • anticoagulants such as heparin and sodium citrate are used at the same time. Inhibiting the activation of platelets and the complement system of b) and (c) is an important issue.
  • the present invention includes a polyvinyl chloride resin, a plasticizer, a (meth) acrylate copolymer containing a hydrophilic (meth) acrylate unit and a hydrophobic (meth) acrylate unit, and is transparent when molded into a medical tube or the like.
  • An object of the present invention is to provide a medical pellet-like composition that achieves both properties and antithrombotic properties.
  • the present invention has the following configuration. (1) 0.01 to 120 parts by weight of a plasticizer and 100 to 100 parts by weight of a polyvinyl chloride resin, and a (meth) acrylate copolymer containing a hydrophobic (meth) acrylate unit and a hydrophilic (meth) acrylate unit 0.01 to A medical pellet-like composition comprising 5 parts by weight, wherein the (meth) acrylate copolymer has a number average molecular weight of 7,000 or more and 50,000 or less.
  • the hydrophobic (meth) acrylate unit includes an alkyl (meth) acrylate unit represented by the following general formula 1 and / or a silicone (meth) acrylate unit represented by the following general formula 2.
  • a medical pellet-like composition In the formula, R 1 represents an alkyl group or aralkyl group having 6 to 14 carbon atoms, and R 2 represents a hydrogen atom or a methyl group.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkylene group having 1 to 6 carbon atoms
  • R 5 represents an alkyl group having 1 to 6 carbon atoms
  • m represents a range of 1 to 100.
  • R 6 represents a hydrogen atom or a methyl group, and n represents an integer of 2 to 4.
  • the plasticizer is one or more of di-2-ethylhexyl phthalate (DOP), tri-2-ethylhexyl trimellitic acid (TOTM), and diisononylcyclohexane-1,2-dicarboxylate (DINCH).
  • DOP di-2-ethylhexyl phthalate
  • TOTM tri-2-ethylhexyl trimellitic acid
  • DICH diisononylcyclohexane-1,2-dicarboxylate
  • the medical pellet-like composition of the present invention can provide a medical material that is excellent in antithrombogenicity and highly hydrophilic when molded. Moreover, since the clouding does not occur in the molded product, a molded article having a good appearance can be obtained and good visibility in the surgical field can be ensured.
  • the object of the present invention is to simultaneously impart antithrombogenicity and transparency to a medical pellet-like composition comprising a polyvinyl chloride resin and a plasticizer such as DOP or TOTM.
  • the following four steps (I) a step of imparting antithrombogenicity to a medical pellet-like composition, (II) a step of analyzing factors causing cloudiness of the medical pellet-like composition, (III) a medical pellet-like composition
  • the present invention was completed by a combination of a step of obtaining a (meth) acrylate copolymer that does not cause white turbidity and (IV) a step of achieving both antithrombogenicity and transparency in a medical pellet-like composition.
  • each process will be described in detail.
  • hydrophobic (meth) acrylate is easy to mix with hydrophobic components such as polyvinyl chloride resin and DOP, while hydrophilic (meth) acrylate is used in medical pellet-like compositions. It was thought that a core-shell type micelle structure with a hydrophilic core on the inside and a hydrophobic shell on the outside would become cloudy. In order to eliminate the cloudiness, it is necessary to reduce the size of the micelles so that they cannot be visually observed.
  • the number average molecular weight of the (meth) acrylate copolymer (A) was reduced for the purpose of reducing the number of polyethylene glycols in the micelle. Since the medical pellet-like composition became clouded when hydrophilicity increased even a little, it was also found that the medical pellet-like composition became cloudy regardless of which element was outside the appropriate range. The reason why a transparent medical pellet-like composition was obtained is thought to be that the micelles were so small that they were not visible as described above. However, it was also found that even the (meth) acrylate copolymer (B) obtained in this way becomes cloudy when added in a certain amount or more.
  • the number average molecular weight of the (meth) acrylate copolymer is preferably 50,000 or less. In this range, since the micelle made of the (meth) acrylate copolymer is sufficiently small, a transparent medical pellet-like composition can be obtained. On the other hand, if it is less than 7,000, the (meth) acrylate copolymer is likely to elute in the blood, and the decrease in antithrombogenicity becomes remarkable. That is, 7,000 or more is preferable, 8,000 or more is more preferable, and 9,000 or more is more preferable.
  • Examples of the method for measuring the number average molecular weight include end group determination method, osmotic pressure method, vapor pressure osmometry, vapor pressure drop method, freezing point drop method, boiling point rise method, gel permeation chromatography (GPC) method, etc.
  • GPC gel permeation chromatography
  • a gel permeation chromatography (GPC) method is adopted in terms of ease of operation.
  • alkyl (meth) acrylate of the following general formula 1, which is the hydrophobic (meth) acrylate of the present invention those having 1 to 6 carbon atoms in R 1 are preferably used, and more preferably 8 to 12 carbon atoms. is there.
  • alkyl (meth) acrylates include normal hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and nonyl (meth).
  • Examples include acrylate, decyl (meth) acrylate, and lauryl (meth) acrylate. If the number of carbon atoms is too small, the hydrophobicity is insufficient, and it may not be uniformly dissolved in the polyvinyl chloride resin and the plasticizer, and may become cloudy. Antithrombogenicity may be reduced. That is, 2-ethylhexyl (meth) acrylate and lauryl (meth) acrylate are particularly preferable.
  • R 1 represents an alkyl group or aralkyl group having 6 to 14 carbon atoms
  • R 2 represents a hydrogen atom or a methyl group.
  • the silicone (meth) acrylate of the following general formula 2 which is the hydrophobic (meth) acrylate of the present invention
  • the number of repeating units of dimethylsiloxane is more preferably 5 to 100, still more preferably 10 to 50, and still more preferably 10 to 30.
  • silicone (meth) acrylate is used as a hydrophobic monomer, water repellency is improved and there is a secondary effect that hydrolysis of the (meth) acrylate copolymer can be suppressed.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkylene group having 1 to 6 carbon atoms
  • R 5 represents an alkyl group having 1 to 6 carbon atoms
  • n represents a range of 1 to 100.
  • methoxypolyethylene glycol (meth) acrylate of the following general formula 3 which is the hydrophilic (meth) acrylate of the present invention
  • those having 2 to 4 ethylene oxide units are preferably used.
  • Specific examples include methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, and methoxytetraethylene glycol (meth) acrylate. If the repeating unit is large and the hydrophilicity is excessively increased, the medical pellet-like composition becomes cloudy. If the repeating unit is too small, the hydrophobicity is excessively increased and the antithrombogenicity may not be obtained. Accordingly, methoxytriethylene glycol (meth) acrylate having 3 repeating ethylene oxide units is more preferable.
  • R 6 represents a hydrogen atom or a methyl group
  • n represents an integer of 2 to 4.
  • the hydrophobic (meth) acrylate unit and the hydrophilic (meth) acrylate unit are copolymerized in a molar ratio of 55 to 80 to 20 to 45.
  • the molar ratio of the methoxypolyethyleneglycol (meth) acrylate unit, which is a hydrophilic monomer is within this range, the antithrombogenicity and transparency of the medical pellet composition can be compatible.
  • the addition amount of the (meth) acrylate copolymer of the present invention is preferably 0.01 to 5 parts by weight per 100 parts by weight of the polyvinyl chloride resin.
  • the weight part means a blending amount when the weight of the polyvinyl chloride resin is 100.
  • the amount is more preferably 0.02 to 4 parts by weight, still more preferably 0.03 to 3 parts by weight. Further, it is not excluded to add an antibacterial material or the like in addition to the (meth) acrylate copolymer to the medical pellet-like composition.
  • the addition amount of the plasticizer is preferably 1 to 120 parts by weight per 100 parts by weight of the polyvinyl chloride resin. If the content of the plasticizer is too small, there is a possibility that flexibility required for a molded product obtained by melt-molding a medical pellet-like composition, particularly a medical tube, may be impaired. Moreover, when there is too much content of a plasticizer, there exists a possibility that a softness
  • the number average polymerization degree of the polyvinyl chloride resin is preferably 700 to 3000.
  • the number average degree of polymerization is within this range, the molded article can exhibit good durability. If it is too low, the durability of the molded product will be insufficient. If it is too high, hydrogen bonds within the polyvinyl chloride molecule and / or between the molecules become strong and uniform mixing with the plasticizer and the (meth) acrylate copolymer becomes difficult, and it becomes difficult to obtain a good appearance. Therefore, 800 to 2800 is more preferable, and 900 to 2600 is more preferable.
  • the present inventor examined the relationship between the number average molecular weight of the (meth) acrylate copolymer, the polyethylene glycol repeating unit, the hydrophilic acrylate molar ratio, and the transparency of the medical pellet composition. Transparency is evaluated by the glossiness described later. The results are schematically shown in FIG.
  • the former is 45 mol% or less
  • the latter is 50,000 or less
  • the (meth) acrylate copolymer obtained by copolymerizing a hydrophobic (meth) acrylate unit and a hydrophilic (meth) acrylate unit has a moderate balance between hydrophilicity and hydrophobicity. It can be suitably used as an antithrombotic material.
  • the (meth) acrylate copolymer may be used in combination of two or more.
  • kneading is performed at 20 to 200 rpm for 0.2 to 5 hours under heating at 100 to 180 ° C. Do.
  • the kneaded product is supplied to a hopper of a twin screw extruder (for example, PCM-30 manufactured by Ikegai Co., Ltd.) set at a cylinder temperature of 150 to 200 ° C., and melted at a screw speed of 80 to 120 rpm to be 200 to 400 g /
  • the molten resin is discharged at a discharge speed of minutes.
  • a water tank having a length of 1 to 20 m and an internal temperature of 10 to 20 ° C. is drawn at a speed of 10 to 60 m / min to form a strand having an outer diameter of 1 to 5 mm.
  • the strand is cut with a cutter (for example, FCMini-6 / N manufactured by Hoshi Plastic Co., Ltd.) to a length of 1 to 5 mm and cooled to obtain a medical pellet-like composition.
  • FIG. 4 is a schematic view of an extrusion molding machine for producing the medical tube of the present invention.
  • a supply part for supplying pellets (raw material) of a medical pellet-like composition, a cylinder that forms a path for dissolving and transporting the raw material supplied from the supply part, and a raw material disposed inside the cylinder
  • a screw driving unit for driving the screw.
  • a die for regulating the cross-sectional shape of the tube is attached to the outlet side of the cylinder.
  • the extrusion molding machine may have a structure in which the supply / melting / conveying means (supply part, cylinder, screw) and the quantitative discharge part (gear pump and its housing part) are integrated. The structure which attached the discharge part may be sufficient.
  • the screw has a single-axis configuration, but a two-axis configuration is also applicable.
  • the supply unit can be provided with a quantitative supply device.
  • the screw drive unit can be configured by appropriately combining known motors, drive mechanisms, rotation speed conversion means (deceleration mechanism), torque conversion means, and the like.
  • the temperature control apparatus for adjusting the temperature inside a cylinder part can be provided.
  • the obtained pellets are charged from the raw material supply section of the extruder, melted with a screw in the cylinder, and extruded in a ring shape from a die at a resin temperature of 180 to 195 ° C.
  • the resin temperature is more preferably 182 ° C. or higher.
  • the resin temperature is too high, polyvinyl chloride is oxidized and the tube may be colored due to the formation of double bonds in the polymer main chain.
  • the resin temperature said here points out the temperature of the molten resin measured in the cylinder exit vicinity.
  • the molten resin melted and conveyed by the screw is extruded from a die provided on the outlet side of the cylinder.
  • a spiral straight die is preferably used as the die.
  • a spider mark is likely to be generated. Therefore, it is preferable to use a spiral die.
  • the screw rotation speed is preferably 30 to 70 rpm. If the rotational speed of the screw is too low, the shear stress becomes small, so that poor dissolution tends to occur. In particular, when dissolving at a relatively low temperature as in the present invention, it is preferable to set the rotational speed of the screw high. Although it may be set higher, it may not be increased to an unlimited level. It is more preferable if the relationship between the viscosity of the molten resin and the torque of the motor that rotates the screw, the effect of the resin temperature rise due to frictional heat, etc. are taken into account. The range is 35 to 65 rpm.
  • a screw having a compression ratio of 2.5 to 6.0 it is preferable to use a screw having a compression ratio of 2.5 to 6.0. If the compression ratio is too small or too large, the shear stress applied to the raw material flowing in the cylinder is not uniformized, which may cause poor melting.
  • the molten resin extruded from the die is sized to a predetermined size in a vacuum water tank, then cooled to about room temperature in a cooling water tank, and the obtained tube is wound up by a winder.
  • a dimension measuring device and a printing machine can be provided between the cooling water tank and the winder.
  • the water temperature of the cooling water is preferably 5 to 30 ° C. If it is 30 degrees C or less, since adjustment of an internal diameter and an outer diameter becomes easy, it is preferable because water will not freeze if it is 5 degrees C or more.
  • the degree of vacuum is normal pressure -20 to -1 kPa.
  • the take-up speed is preferably 4 to 40 m / min. If it is 4 m / min or more, it is preferable because production efficiency is improved, and if it is 40 m / min or less, it is preferable because sufficient transparency can be realized.
  • the wettability of the surface is improved by the hydrophilic effect of methoxypolyethylene glycol (meth) acrylate in the (meth) acrylate copolymer.
  • improved wettability it has been confirmed that antithrombotic properties such as platelet adhesion and blood coagulation inhibition can be imparted.
  • the ratio of the methoxypolyethylene glycol (meth) acrylate unit is increased too much, wettability increases, while elution into the blood becomes remarkable, so that it is difficult to maintain long-term antithrombogenicity.
  • a conventional method using a contact angle may be mentioned.
  • this method is suitable for a flat sample, but cannot be applied as it is in the evaluation of a tube made of a medical pellet composition because the contact surface is curved. Therefore, as a result of diligent study on the evaluation method of the tube-shaped sample, after dropping a drop of a certain volume of water on the inner surface (concave surface) of the tube cut in half in the length direction, the water droplet was moved back and forth in the length direction of the tube. The water droplets are stretched in the front-rear direction according to the wettability of the surface.
  • the wettability with respect to a curved surface can be suitably evaluated.
  • the water droplet width at which wettability can be judged appropriate is preferably 0.9 to 2.0 cm, although it depends on the inner diameter of the tube used for evaluation. When the water droplet width is in this range, it can be considered that the wettability is improved as compared with the composition composed of only the polyvinyl chloride resin and the plasticizer. If it is too small, the antithrombogenicity cannot be exhibited, which is not preferable, and if it is too large, elution into the blood may occur. That is, 1.0 to 1.5 cm is more preferable.
  • the amount of water drops is 0.07 mL for a tube having an inner diameter of 6.0 to 6.7 mm, similarly 0.085 mL for 6.8 to 8.5 mm, and 0.1 mL for 8.6 to 14.0 mm. preferable. When the amount of water drops is within this range, the wettability can be strictly evaluated.
  • the inner diameter of the tube used for wettability evaluation is preferably 5 mm or more. If it is within this range, a sufficient area for water droplets to come into contact with the inner surface can be secured, so that the difference in wettability between samples can be easily evaluated. If the inner diameter is too small, the operation of cutting the tube in the length direction becomes difficult, which is not preferable. That is, 5.5 mm or more is more preferable, and 6 mm or more is more preferable.
  • the transparency and gloss of the meat part have a certain relationship. Higher transparency indicates that incident light is less likely to be irregularly reflected, and the intensity of the reflected light, that is, the glossiness, increases.
  • the high glossiness means that the irregular reflection of light on the outer surface of the tube is small, so that the visibility inside the tube is improved.
  • the tubes have the same degree of transparency, if the outer diameter is different, the curvature will change, so the glossiness will not be the same.
  • the intensity of the reflected light increases as the tube curvature decreases.
  • the glossiness of the outer surface of the tube was determined by using a gloss meter based on the method described in JIS Z 8741 (1997), an incident / reflection angle (light receiving angle) of 60 °, a measurement area of 3 mm ⁇ 3 mm, and a light receiving part of 3.02 mm ⁇ 1. It is preferable to measure at 51 mm. When this measurement condition is used, the glossiness can be measured even in a tube having a small outer diameter because the measurement area is small. When the tube outer diameter is 7 to 9 mm, the glossiness is 25 or more, and when it is 9.2 to 15 mm, the glossiness is preferably 30 or more, more preferably 35 or more. In the case of 17 to 19 mm, the glossiness is preferably 40 or more. If the glossiness is within this range, good transparency can be exhibited, so that the visibility inside the tube can be ensured.
  • the number average molecular weight (Mn) is defined by the following formula when Ni molecules having a molecular weight Mi exist in the polymer. (For example, see POLYMER CHEMISTRY, OXFORD UNIVERSITY PRESS, p. 36 (1999)).
  • the inner diameter of the medical tube is preferably 0.1 to 30 mm. If the inner diameter is too small, blood clots are likely to be formed, or there is a possibility of kinking during use. Further, when the inner diameter of the tube is too large, it is not preferable because it becomes difficult to handle or it becomes difficult to control the blood flow rate. Accordingly, the inner diameter of the tube is more preferably 1 to 25 mm, and further preferably 2 to 20 mm. Further, the thickness of the tube is not particularly limited, but is preferably 0.2 to 5 mm from the intention of the present invention. If the wall thickness is too thin, the strength may decrease. If the wall thickness is too thick, the flexibility of the tube may not be sufficient, or the internal visibility may be reduced. Therefore, the wall thickness of the tube is more preferably 0.6 to 4 mm, and further preferably 1 to 3 mm.
  • plasticizer of the present invention it is preferable to use di-2-ethylhexyl phthalate (DOP), tridi-2-ethylhexyl trimellitic acid (TOTM), diisononylcyclohexane-1,2-dicarboxylate (DINCH). . It is more preferable to use DOP in terms of plasticization efficiency and cost.
  • DOP di-2-ethylhexyl phthalate
  • TOTM tridi-2-ethylhexyl trimellitic acid
  • DICH diisononylcyclohexane-1,2-dicarboxylate
  • the obtained tube was cut to a length of 3 cm, and further cut horizontally in the length direction so that the cross section became a semicircular shape, thereby forming a bowl shape.
  • One drop of water was dropped at the center of the bowl-shaped sample.
  • the amount of water dropped was 0.070 mL for a tube inner diameter of 6.0 to 6.7 mm, 0.085 mL for 6.8 to 8.5 mm, and 0.1 mL for 8.6 to 14.0 mm. .
  • the sample was tilted in the length direction, and the water droplets were moved once in the direction of about 1 cm to return to a predetermined position so as not to spill, and the water droplet width was measured.
  • the X and Y axes are moved so that the X and Y axes are in contact with the upper right of the outer periphery of the sample, the X and Y coordinates are reset, and the X and Y axes are moved so as to be in contact with the lower left of the outer periphery and the average value B
  • the average value C of A and B was taken as the outer diameter value.
  • the inner circumference was measured in the same manner, and the inner diameter value was calculated.
  • the glossiness of the tube outer surface was measured using a digital precision gloss meter GM-26D manufactured by Murakami Color Research Laboratory Co., Ltd. according to the method described in JIS Z 8741 (1997).
  • a sample cut to a length of 40 mm is fixed to a specimen table (100 x 120 mm) with a V-shaped groove so that a cylindrical sample can be fixed, and the glossiness at an incident / reflection angle (light receiving angle) of 60 ° is measured. did.
  • the measurement area was 3 ⁇ 3 mm, and the light receiving part was 3.02 ⁇ 1.51 mm.
  • “excellent” when the glossiness was 35 or more, “good” when it was 30 or more and less than 35, and “bad” when it was less than 30. Good or better was accepted.
  • the inside of the reactor was previously purged with nitrogen, and nitrogen bubbling was continued during the polymerization reaction.
  • the polymerization solvent was removed by evaporation for 4 days under conditions of 60 ° C. and 1 Torr to obtain a crude (meth) acrylate copolymer.
  • 2 g of the obtained crude (meth) acrylate copolymer was dissolved in 2 g of tetrahydrofuran and added dropwise to 20 g of a poor solvent under stirring (weight ratio of methanol / water 80/20) using a Pasteur pipette.
  • the precipitate was collected by decantation, and the operation of adding the same weight of tetrahydrofuran and dissolving it, and dropping it into a poor solvent was repeated twice, followed by drying under reduced pressure at 60 ° C. and 0.1 Torr for 4 days.
  • the purified product 1 was obtained.
  • Example 1 10 kg of polyvinyl chloride resin (number average degree of polymerization 1,000), 1.0 kg of DOP, and 5 g of (meth) acrylate copolymer 1 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were prepared at 160 ° C. and 100 rpm using a twin screw extruder. The obtained pellets were supplied to a supply unit (hopper) and transferred into a cylinder. A screw with a compression ratio of 4 was rotated at 56.0 rpm and transferred to the front of the cylinder while melting the pellets at a cylinder temperature of 170 ° C. The obtained molten resin was extruded from a spiral die at the cylinder outlet.
  • the resin temperature at the cylinder outlet at this time was 188 ° C.
  • the extruded molten resin was allowed to pass through a vacuum water tank having a temperature of 15 ° C., and subsequently cooled to about room temperature in a cooling water tank having the same temperature.
  • the vacuum degree of the vacuum water tank was set to -7.0 kPa.
  • the obtained tube was wound up on a winder at a take-up speed of 10 m / min.
  • Example 2 10 kg of polyvinyl chloride resin (number average degree of polymerization of 2,000), 3.0 kg of TOTM, and 10 g of (meth) acrylate copolymer 2 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet.
  • Example 3 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5.0 kg of DOP and 100 g of (meth) acrylate copolymer 3 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet.
  • Example 4 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 11.0 kg of DOP, and 300 g of (meth) acrylate copolymer 4 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet.
  • Example 5 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 11.0 kg of DINCH, and 100 g of (meth) acrylate copolymer 5 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet.
  • Example 6 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 6 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet.
  • Example 7 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 7 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet. The tube obtained in this example had a good water droplet width because of the large number of carbon atoms in the alkyl (meth) acrylate.
  • Example 8 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 8 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet. The tube obtained in this example had “good” gloss because the carbon number of the alkyl (meth) acrylate was small.
  • Example 9 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 9 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet. The tube obtained in this example had a good water droplet width because of the low hydrophilic (meth) acrylate molar ratio.
  • Example 10 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 10 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet. The tube obtained in this example had a good gloss level because of the large molar ratio of hydrophilic (meth) acrylate.
  • Example 11 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 11 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet. The tube obtained in this example had a good glossiness because of the large polyethylene glycol repeating unit.
  • Example 12 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 12 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet. The tube obtained in this example had a good water droplet width because of the small polyethylene glycol repeating unit.
  • Comparative Example 1 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 13 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet. The tube obtained in this comparative example was “bad” because the hydrophilic (meth) acrylate was not used.
  • Comparative Example 2 10 kg of polyvinyl chloride resin (number average degree of polymerization 2,500), 5 kg of DOP, and 100 g of (meth) acrylate copolymer 14 were charged and kneaded at 155 ° C. for 3 hours. Furthermore, pellets were adjusted at 160 ° C. and 100 rpm using a twin screw extruder. A tube was obtained in the same manner as in Example 1 using the obtained pellet. The tube obtained in this comparative example had a “poor” glossiness because the molecular weight of the (meth) acrylate copolymer was too high.
  • the medical pellet-like composition of the present invention contains an antithrombotic material in the composition, a post-process such as a surface treatment on the blood contact surface after molding is not required, and the cost can be greatly reduced. . Furthermore, since it can obtain a molded article having no coloring or white turbidity and high transparency when formed into a tube or the like, visibility in the tube can be secured in the surgical field. Therefore, it is important to contribute to industrial development.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

【課題】 本発明は、主としてポリ塩化ビニル樹脂からなり、成形しただけで抗血栓性を発揮する医療用ペレット状組成物を提供することを課題とする。 【解決手段】 本発明は、ポリ塩化ビニル樹脂100重量部に対して可塑剤1~120重量部および、親水性(メタ)アクリレート単位及び疎水性(メタ)アクリレート単位を含む(メタ)アクリレート共重合体0.01~5重量部とからなり、該(メタ)アクリレート共重合体の数平均分子量が7,000以上50,000以下である医療用ペレット状組成物である。

Description

医療用ペレット状組成物及び成形体
 本発明は、人工透析や人工心肺用の血液回路を構成するメインチューブ等に好適に利用できる医療用ペレット状組成物に関するものである。より詳細には、ポリ塩化ビニル樹脂、可塑剤、疎水性(メタ)アクリレートと親水性(メタ)アクリレートとの共重合体を含む、抗血栓性や透明性に優れる医用材料を製造できる医療用ペレット状組成物に関するものである。
 近年、各種の合成高分子材料を利用した医用材料の検討が進められており、血液フィルター、人工腎臓用膜、血漿分離用膜、カテーテル、人工肺用膜、人工血管、癒着防止膜、人工皮膚、医療用チューブ等に利用されている。医療用チューブは、輸液バッグから輸液をヒトに投与するときの輸液セットや、輸血するときに同じように使用する輸血セット、献血などでヒトから採血をするときに用いる血液バッグ、血液透析や人工心肺などを用いる時に使用する回路類など非常に多くの医療機器類に使用されている。
 従来、医療用チューブを成形するための材料として、ポリウレタン樹脂、シリコーン樹脂および塩化ビニル樹脂が一般的に用いられている。これらの中でも塩化ビニル樹脂からなる医療用チューブは、成形性の良さ、原料および製造コストが安価、チューブとしての柔軟な物性が適当、医療機器などに組み立てるときの加工性が良いなどの特性がある。
 また、生体にとって異物である合成高分子材料を生体内組織や血液と接触させて使用することとなるため、医療用チューブは生体適合性(抗血栓性)を有していることが要求される。医療用チューブを血液と接する材料として使用する際には、(a)血液凝固系の抑制、(b)血小板の粘着・活性化の抑制、および(c)補体系の活性化の抑制の3要素が、生体適合性として重要な項目となる。中でも、人工腎臓、血漿分離膜のように、血液と接する時間が比較的短い用途で使用する場合においては、一般に、ヘパリン、クエン酸ナトリウム等の抗凝固剤を同時に使用するため、特に、前記(b)および(c)の血小板や補体系の活性化の抑制が重要な課題となる。
 医療用チューブなどの医療用材料に生体適合性(抗血栓性)を付与することを目的に、出願人は種々検討を行っており、これまでにもチューブ表面にヘパリン乃至ヘパリン誘導体や親水性基と疎水性基とを含む(メタ)アクリレート共重合体を被覆(固定化)する技術について、既に特許出願を行っている。(例えば、特許文献1~3)。しかし、前述のような材料を有機溶媒に溶解して医療用チューブの表面に後処理によりコーティングする場合、可塑剤が溶出するとか、材料自体の特性によりチューブ表面に白濁が発生するとか、オイル欠点が生ずるなど外観不良となる問題が生じていた。
 一方、ポリ塩化ビニル樹脂の可塑剤として疎水性(メタ)アクリレート重合体を添加する技術が知られている。(例えば、特許文献4)。当該文献によると、ポリ塩化ビニル樹脂の衝撃強度や耐候性を改善する目的として、(メタ)アクリレート共重合体が用いられている。しかしながら、使用しているモノマーが疎水性であるアルキル(メタ)アクリレートのみであることから、抗血栓性が不十分である。
特許第3228409号公報 特許第4162028号公報 特許第4793700号公報 特開2005-89605号公報
 本発明は、ポリ塩化ビニル樹脂と可塑剤と親水性(メタ)アクリレート単位及び疎水性(メタ)アクリレート単位を含む(メタ)アクリレート共重合体を含み、医療用チューブなどに成型加工した際に透明性と抗血栓性を両立する医療用ペレット状組成物を提供することを課題とする。
 本発明者らは前記の従来技術の問題点を解決するために鋭意検討した結果、ついに本発明を完成した。すなわち、本発明は以下の構成を有する。
(1)ポリ塩化ビニル樹脂100重量部に対して可塑剤1~120重量部および、疎水性(メタ)アクリレート単位及び親水性(メタ)アクリレート単位を含む(メタ)アクリレート共重合体0.01~5重量部とからなり、該(メタ)アクリレート共重合体の数平均分子量が7,000以上50,000以下である医療用ペレット状組成物。
(2)前記疎水性(メタ)アクリレート単位が下記一般式1で示されるアルキル(メタ)アクリレート単位および/または下記一般式2で示されるシリコーン(メタ)アクリレート単位を含むものである、(1)に記載の医療用ペレット状組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素原子数6~14のアルキル基またはアラルキル基、Rは水素原子またはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子またはメチル基、Rは炭素原子数1~6のアルキレン基、Rは炭素数1~6のアルキル基、mは1~100の範囲を示す。)
(3)前記親水性(メタ)アクリレート単位が下記一般式3で示されるメトキシポリエチレングリコール(メタ)アクリレート単位を含むものである、(1)または(2)に記載の医療用ペレット状組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子またはメチル基、nは2~4の整数を示す。)
(4)前記ポリ塩化ビニル樹脂の数平均重合度が700~3,000である(1)~(3)のいずれかに記載の医療用ペレット状組成物。
(5)前記可塑剤がフタル酸ジ-2-エチルヘキシル(DOP)、トリメリット酸トリ-2-エチルヘキシル(TOTM)、ジイソノニルシクロヘキサン-1,2-ジカルボキシレート(DINCH)のいずれか1種以上である(1)~(4)のいずれかに記載の医療用ペレット状組成物。
(6)(1)~(5)のいずれかに記載の医療用ペレット状組成物を溶融成形してなる成形体。
(7)(1)~(5)のいずれかに記載の医療用ペレット状組成物を溶融成形してなる医療用チューブ。
 本発明の医療用ペレット状組成物は、成型加工した際に抗血栓性に優れ、かつ親水性の高い医用材料を提供することができる。また、成型加工品に白濁が生じないことから、外観良好な成形体を得、術野での良好な視認性を確保することができる。
医療用ペレット状組成物が白濁する要因を示す模式図である。 医療用ペレット状組成物の透明性が良好となる範囲を示す模式図である。 医療用ペレット状組成物の抗血栓性が良好となる範囲を示す模式図である。 医療用ペレット状組成物を用いた医療用チューブを製造するための押出成形機の概略図である。 水滴幅測定の手順を示す概略図である。
 以下、本発明の医療用ペレット状組成物およびそれからなる成形体の実施の形態を具体的に説明する。
 本発明は、ポリ塩化ビニル樹脂及び、DOPやTOTM等の可塑剤からなる医療用ペレット状組成物に、抗血栓性と透明性を同時に付与することを目的としている。以下の4工程、(I)医療用ペレット状組成物に抗血栓性を付与する工程、(II)医療用ペレット状組成物が白濁する要因を解析する工程、(III)医療用ペレット状組成物を白濁させない(メタ)アクリレート共重合体を得る工程、(IV)医療用ペレット状組成物に抗血栓性と透明性を両立させる工程、の組み合わせにより本発明を完成させた。以下、各工程を詳細に説明する。(メタ)アクリレート共重合体の組成に違いがあるため、組成変更前の(メタ)アクリレート共重合体を(メタ)アクリレート共重合体(A)、組成変更後の(メタ)アクリレート共重合体を(メタ)アクリレート共重合体(B)と表記する。
 まず、「(I)医療用ペレット状組成物に抗血栓性を付与する工程」を説明する。ポリ(アルキル(メタ)アクリレート)がポリ塩化ビニル樹脂の可塑剤として利用されていることを応用し、抗血栓性材料である(メタ)アクリレート共重合体(A)を、ポリ塩化ビニルおよび可塑剤に添加することにより、抗血栓性の医療用ペレット状組成物を得た。しかしながら、得られた医療用ペレット状組成物は、均一に混合できなかったことから白濁してしまい、商品価値がなくなってしまうことが判明した。さらに、白濁しない程度まで(メタ)アクリレート共重合体(A)の添加量を低下させると、抗血栓性を失うこともわかった。
 「(II)医療用ペレット状組成物が白濁する要因を解析する工程」を説明する。図1に示すように、疎水性(メタ)アクリレートはポリ塩化ビニル樹脂やDOP等の疎水性の成分とは混合しやすいが一方、親水性(メタ)アクリレートとは医療用ペレット状組成物中で、内部が親水性のコア、外部が疎水性のシェルとなる、コア-シェル型のミセル構造を形成し、白濁するのではないかと考えた。白濁を解消するためには、このミセルを目視できない大きさにまで小さくする必要がある。
 「(III)医療用ペレット状組成物を白濁させない(メタ)アクリレート共重合体を得る工程」を説明する。発明者は、医療用ペレット状組成物が抗血栓性を維持できる範囲内で、ポリエチレングリコール鎖長、親水性(メタ)アクリレート組成比ならびに(メタ)アクリレート共重合体(A)の数平均分子量全項目を最適にした(メタ)アクリレート共重合体(B)を添加することにより、透明な医療用ペレット状組成物を得た。具体的には、親水性を低下させる方法が有効と判断し、ポリエチレングリコール鎖長及び親水性(メタ)アクリレート組成比を低下させた。また、ミセル内のポリエチレングリコール数を低下させることを目的として(メタ)アクリレート共重合体(A)の数平均分子量を低下させた。少しでも親水性が上がってしまうと医療用ペレット状組成物が白濁してしまったので、どの要素が適切な範囲を外れても医療用ペレット状組成物が白濁してしまうことも分かった。透明な医療用ペレット状組成物が得られたのは上述のように、ミセルが可視できない程度に小さくなったことが原因と考えている。ただし、このようにして得られた(メタ)アクリレート共重合体(B)でさえ、一定量以上添加すると医療用ペレット状組成物が白濁してしまうこともわかった。
 「(IV)医療用ペレット状組成物に抗血栓性と透明性を両立させる工程」を説明する。ポリ塩化ビニル樹脂および可塑剤に対して、透明性と抗血栓性を両立できる量の(メタ)アクリレート共重合体(B)を医療用ペレット状組成物に添加し、本発明を完成させた。
 本発明において、(メタ)アクリレート共重合体の数平均分子量は50,000以下が好ましい。この範囲において、(メタ)アクリレート共重合体からなるミセルが十分小さくなることから透明な医療用ペレット状組成物を得ることができる。また、7,000未満になると(メタ)アクリレート共重合体が血中に溶出しやすくなり、抗血栓性の低下が顕著となるため好ましくない。すなわち、7,000以上が好ましく、8,000以上がより好まく、9,000以上がさらに好ましい。数平均分子量を測定する方法としては、末端基定量法、浸透圧法、蒸気圧オスモメトリー、蒸気圧降下法、氷点降下法、沸点上昇法、ゲルパーミエーションクロマトグラフィー(GPC)法などがあるが、本発明においては操作の容易さの点でゲルパーミエーションクロマトグラフィー(GPC)法を採用する。
 本発明の疎水性(メタ)アクリレートである、下記一般式1のアルキル(メタ)アクリレートとしては、Rの炭素数が6~14のものを使用するのが好ましく、より好ましくは8~12である。このようなアルキル(メタ)アクリレートの具体例として、ノルマルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート等がある。炭素数が小さすぎると疎水性が不十分で、ポリ塩化ビニル樹脂及び可塑剤に均一に溶解できず白濁してしまう恐れがあり、大きすぎると親水性が低下して医療用ペレット状組成物の抗血栓性が低下する恐れがある。すなわち、2-エチルヘキシル(メタ)アクリレート及びラウリル(メタ)アクリレートが特に好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは炭素原子数6~14のアルキル基またはアラルキル基、Rは水素原子またはメチル基を示す。)
 本発明の疎水性(メタ)アクリレートである、下記一般式2のシリコーン(メタ)アクリレートとしては、ジメチルシロキサン繰り返し単位が1~100であるシリコーン(メタ)アクリレートを用いるのが好ましい。繰り返し単位数が小さすぎると疎水性が不十分で、ポリ塩化ビニル樹脂及び可塑剤に均一に溶解できず白濁してしまう恐れがある。また、繰返し単位数が大きすぎると親水性が低下して医療用ペレット状組成物の抗血栓性が低下する恐れがある。したがって、ジメチルシロキサン繰り返し単位数は、より好ましくは5~100、さらに好ましくは10~50、よりさらに好ましくは10~30である。シリコーン(メタ)アクリレートを疎水性モノマーとして用いると、撥水性が向上して(メタ)アクリレート共重合体の加水分解を抑制できる副次効果もある。
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子またはメチル基、Rは炭素原子数1~6のアルキレン基、Rは炭素数1~6のアルキル基、nは1~100の範囲を示す。)
 本発明の親水性(メタ)アクリレートである、下記一般式3のメトキシポリエチレングリコール(メタ)アクリレートとしては、エチレンオキサイド単位が2~4であるものを使用するのが好ましい。具体的には、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレートなどがある。繰り返し単位が大きく親水性が増大しすぎると医療用ペレット状組成物が白濁してしまい、小さすぎると疎水性が高くなりすぎて抗血栓性が得られない可能性がある。したがって、繰り返しエチレンオキサイド単位が3のメトキシトリエチレングリコール(メタ)アクリレートがより好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、Rは水素原子またはメチル基、nは2~4の整数を示す。)
 本発明において、疎水性(メタ)アクリレート単位と、親水性(メタ)アクリレート単位とが55~80対20~45のモル比で共重合されていることが好ましい。親水性モノマーであるメトキシポリエチレングリコール(メタ)アクリレート単位のモル比がこの範囲にあると、医療用ペレット状組成物の抗血栓性と透明性を両立することができる。
 本発明の(メタ)アクリレート共重合体の添加量は、ポリ塩化ビニル樹脂100重量部あたり0.01~5重量部であることが好ましい。ここで、重量部とは、ポリ塩化ビニル樹脂の重量を100とした場合の配合量を意味する。この範囲内にあると、医療用ペレット状組成物の抗血栓性と透明性を両立することができるため好ましい。少なすぎると抗血栓性が生じない恐れがあるため好ましくなく、多すぎるとコストが高騰し、白濁が顕著になるため好ましくない。したがって、より好ましくは0.02~4重量部であり、さらに好ましくは0.03~3重量部である。また、医療用ペレット状組成物中に、(メタ)アクリレート共重合体のほかに、抗菌性材料などをさらに追加することも排除されない。
 本発明において、可塑剤の添加量はポリ塩化ビニル樹脂100重量部あたり1~120重量部であることが好ましい。可塑剤の含有量が少なすぎると、医療用ペレット状組成物を溶融成形してなる成形体、特に医療用チューブに必要な柔軟性が損なわれる可能性がある。また、可塑剤の含有量が多すぎると、柔軟性が上がりすぎて使用中にキンクしてしまう恐れがある。したがって、可塑剤の含有量は10~115重量部がより好ましく、30~110重量部がさらに好ましい。
 本発明において、ポリ塩化ビニル樹脂の数平均重合度としては、700~3000が好ましい。数平均重合度がこの範囲にあると、成形品が良好な耐久性を発揮することができる。低すぎると成形品の耐久性が不十分となる。高すぎるとポリ塩化ビニル分子内および/または分子間の水素結合が強固になり可塑剤及び(メタ)アクリレート共重合体との均一な混合が難しくなるため、良好な外観を得ることが難しくなる。よって、800~2800がより好ましく、900~2600がさらに好ましい。
 本発明者は、(メタ)アクリレート共重合体の数平均分子量、ポリエチレングリコール繰り返し単位、親水性アクリレートモル比と医療用ペレット状組成物の透明性との関係について調べた。透明性は、後述する光沢度で評価している。それらの結果を、図2に模式的に示した。横軸に親水性(メタ)アクリレートモル比、縦軸に(メタ)アクリレート共重合体の数平均分子量をとると、前者が45モル%以下、後者が50,000以下であり、かつポリエチレングリコール繰り返し単位が4以下の(メタ)アクリレート共重合体からなる医療用ペレット状組成物を用いて成形したチューブは、透明性が良好となることがわかった。外径9.2~15mmのチューブにおいて、透明性が良好と判断できるのは、光沢度が30以上である。
 次に、同様に医療用ペレット状組成物の抗血栓性との関係について調べた。この結果を図3に示している。親水性(メタ)アクリレートを20モル%以上、(メタ)アクリレート共重合体の数平均分子量を7,000以上、かつポリエチレングリコール繰り返し単位を2以上にした場合に医療用ペレット状組成物の抗血栓性が良好であった。抗血栓性は後述の濡れ性評価によって確認した。上述の透明性の結果と合わせると、医療用ペレット状組成物の透明性と抗血栓性を両立するためには、親水性(メタ)アクリレート単位を20~45モル%、(メタ)アクリレート共重合体の数平均分子量を7,000以上50,000以下、かつポリエチレングリコール繰り返し単位を2~4にする必要があることがわかった。
 本発明において、疎水性(メタ)アクリレート単位と親水性(メタ)アクリレート単位とを共重合することにより得られる(メタ)アクリレート共重合体は、親水性と疎水性が適度にバランスされているので、抗血栓性材料として好適に使用することができる。本発明において、(メタ)アクリレート共重合体は、2種以上を混合して用いることもできる。
 本発明において、ポリ塩化ビニル樹脂と可塑剤と(メタ)アクリレート共重合体を混練する方法として具体的には、100~180℃の加熱下において、20~200rpmで0.2~5時間混練を行う。次に、前記混練品をシリンダー温度150~200℃に設定した二軸押出機(例えば、池貝社製PCM-30)のホッパーに供給し、スクリュー回転数80~120rpmで溶融して200~400g/分の吐出速度で溶融樹脂を吐出する。長さが1~20mで内温が10~20℃の水槽内を、10~60m/分の速度で引取り、外径1~5mmのストランドにする。ストランドをカッター(例えば、星プラスチック社製FCMini-6/N)で長さが1~5mmになるように切断、冷却して医療用ペレット状組成物を得る。
 以下、本発明の医療用ペレット状組成物を用いて医療用チューブを成型する方法について詳細に説明する。図4は、本発明の医療用チューブを製造するための押出成型機の概略図である。医療用ペレット状組成物のペレット(原料)を供給するための供給部(ホッパー)と、供給部から供給された原料を溶解し搬送する経路を形成するシリンダと、シリンダの内部に配置され、原料を溶解搬送するスクリューと、スクリューを駆動するスクリュー駆動部とを備えている。さらに、シリンダの出口側にチューブの断面形状を規制するためのダイが取り付けられている。押出成型機は、供給・溶解・搬送手段部(供給部、シリンダ、スクリュー)と定量排出部(ギアポンプとそのハウジング部)が一体となった構成でもよく、供給・混錬・搬送手段部に定量排出部を取り付けた構成でもよい。
 図4においてスクリューは1軸構成であるが、2軸構成も適用できる。また、供給部には、定量供給装置を備えることができる。また、スクリュー駆動部は、公知のモーター、駆動機構、回転速度変換手段(減速機構)、トルク変換手段等を適宜組み合わせて構成できる。また、シリンダ部内部の温度を調節するための温度調節装置を備えることができる。
 本発明において、得られたペレットを押出成型機の原料供給部より投入し、シリンダ内のスクリューにて溶解し、樹脂温を180~195℃で、ダイより環状に押し出す。その際、温度が低すぎるとチューブの透明性が低下することがあるため、樹脂温は182℃以上がより好ましい。また、樹脂温が高すぎるとポリ塩化ビニルが酸化され、ポリマー主鎖に二重結合を生じることによるチューブの着色の恐れが生じるため、192℃以下がより好ましい。なお、ここで言う樹脂温とは、シリンダー出口付近で測定された溶融樹脂の温度を指す。
 スクリューにて溶解搬送された溶融樹脂は、シリンダーの出口側に設けられたダイより押出される。このとき、ダイは、スパイラル型のストレートダイを用いるのが好ましい。本発明においては、比較的低温で溶解した原料を用いることから、スパイダーマークが生じやすくなっており、そのためスパイラルダイを用いるのが好ましい。
 本発明において、スクリューの回転速度は30~70rpmとするのが好ましい。スクリューの回転速度が低すぎると、剪断応力が小さくなるため溶解不良が発生し易くなる。特に本発明のような比較的低温で溶解する際にはスクリューの回転速度を高めに設定するのが好ましい。高めに設定するとは言っても、無制限に高くしてよいわけではなく、溶融樹脂の粘度とスクリューを回転するモーターのトルクとの関係や摩擦熱による樹脂温上昇の影響等も加味すると、より好ましい範囲は35~65rpmである。
 また、本発明においては、圧縮比が2.5~6.0のスクリューを用いるのが好ましい。圧縮比が小さすぎても大きすぎても、シリンダ内を流動する原料にかかる剪断応力が均一化されないため溶解不良を起こすことがある。
 ダイから押出された溶融樹脂は、真空水槽にて所定の寸法にサイジングした後、冷却水槽にて室温程度まで冷却し、得られたチューブを巻取り機にて巻き取る。このとき、冷却水槽から巻取り機までの間に寸法測定器や印刷機を備えることもできる。冷却水の水温は5~30℃であることが好ましい。30℃以下であれば内径及び外径の調整が容易になるため好ましく、5℃以上であれば水が凍結しないために好ましい。なお、真空度は常圧-20~-1kPaである。
 本発明において、引取速度は4~40m/minであることが好ましい。4m/min以上であると生産効率が向上するため好ましく、40m/min以下であれば十分な透明性が実現できるため好ましい。
 本発明の医療用ペレット状組成物をチューブ等に成形すると、(メタ)アクリレート共重合体中のメトキシポリエチレングリコール(メタ)アクリレートの親水効果により表面の濡れ性が向上する。濡れ性が向上した結果として、血小板の粘着や血液凝固抑制といった抗血栓性を付与することができることを確認している。メトキシポリエチレングリコール(メタ)アクリレート単位の比率を上げすぎると濡れ性が増加する一方、血液への溶出が顕著になるため長期間の抗血栓性を維持することが難しくなる。
 本発明の医療用ペレット状組成物の濡れ性を評価する方法としては、従来の接触角による方法が挙げられる。しかしながら、この方法は平板状のサンプルにおいて好適であるが、医療用ペレット状組成物からなるチューブの評価においては、接触面が湾曲しているためそのままでは適用できない。そこで、チューブ状のサンプルの評価方法について鋭意検討した結果、長さ方向に半分に切断したチューブの内面(凹面)に一定容量の水滴を一滴落とした後、その水滴をチューブの長さ方向に前後に移動させると、表面の濡れ性に従って水滴が前後方向に引き伸ばされる。この方法によると、曲面に対しての濡れ性を好適に評価できる。濡れ性が適切と判断できる水滴幅としては、評価に用いるチューブ内径にもよるが、0.9~2.0cmが好ましい。水滴幅がこの範囲にあると、ポリ塩化ビニル樹脂と可塑剤のみからなる組成物よりも濡れ性が向上したとみなすことができる。小さすぎると抗血栓性が発揮できないため好ましくなく、大きすぎると血中への溶出が懸念されるため好ましくない。すなわち、1.0~1.5cmがより好ましい。
 本発明において、濡れ性の評価に使用する水滴量はチューブ内径によって適切なものを選択する必要がある。水滴量が多すぎても少なすぎてもサンプル間の差を評価することが難しくなるからである。具体的には、内径が6.0~6.7mmのチューブでは水滴量が0.07mL、同様に6.8~8.5mmでは0.085mL、8.6~14.0mmでは0.1mLが好ましい。水滴量がこの範囲にあると、濡れ性を厳密に評価することができる。
 本発明において、濡れ性の評価に使用するチューブ内径としては、5mm以上が好ましい。この範囲にあると、水滴が内表面と接触できる面積を十分確保できるため、サンプル間の濡れ性の差を評価しやすくなる。内径が小さすぎるとチューブを長さ方向に切断する作業が困難になるため好ましくない。すなわち、5.5mm以上がより好ましく、6mm以上がさらに好ましい。
 本発明の医療用チューブでは、肉部の透明性と光沢は一定の関係性を有する。透明性が高いほど入射光が乱反射し難いことを示し、反射光の強度すなわち光沢度が大きくなる。しかるに、光沢度が大きいということは、チューブ外表面での光の乱反射が少ないので、チューブ内部の視認性が向上する。しかし、透明性が同程度のチューブであっても、その外径が異なれば曲率が変わるので光沢度は同値にはならない。反射光の強度はチューブの曲率が小さいほど大きくなる。チューブ外表面の光沢度は、JIS Z 8741(1997)に記載の方法に準拠した光沢計を用い、入反射角(受光角)60°、測定面積3mm×3mm、受光部3.02mm×1.51mmで測定することが好ましい。この測定条件を用いると、測定面積が小さいために外径が小さいチューブにおいても光沢度を測定することが可能となる。チューブ外径が7~9mmの場合、光沢度は25以上、9.2~15mmの場合、光沢度は30以上が好ましく、35以上がより好ましい。17~19mmの場合、光沢度は40以上が好ましい。光沢度がこの範囲にあれば良好な透明性を発揮できるため、チューブ内部の視認性を確保できる。
 本発明において数平均分子量(Mn)とは、高分子中に分子量Miの分子がNi個存在する場合、次式で定義される。(例えば、POLYMER CHEMISTRY, OXFORD UNIVERSITY PRESS, p.36(1999)参照)。
式1
Figure JPOXMLDOC01-appb-I000010
 本発明の数平均重合度は、「数平均分子量=モノマー分子量×数平均重合度」の関係から算出できる。数平均分子量と同様にポリ塩化ビニル樹脂の分子量の指標に用いられる。
 医療用チューブの内径は、0.1~30mmが好ましい。内径が小さすぎると、血栓ができやすくなるとか、使用中にキンクしてしまう可能性がある。また、チューブの内径が大きすぎる場合には、取り扱いが困難になるとか、血液の流速を制御することが難しくなるため好ましくない。したがって、チューブの内径は1~25mmがより好ましく、2~20mmがさらに好ましい。
 また、チューブの肉厚は特に制限されないが、本発明の意図からすれば、0.2~5mmであることが好ましい。肉厚が薄すぎると、強度が低下することがある。肉厚が厚すぎると、チューブの柔軟性が十分でないとか、内部の視認性が低下する可能性がある。したがって、チューブの肉厚は、より好ましくは0.6~4mmであり、さらに好ましくは1~3mmである。
 本発明の可塑剤としては、フタル酸ジ-2-エチルヘキシル(DOP)、トリメリット酸トリジ-2-エチルヘキシル(TOTM)、ジイソノニルシクロヘキサン-1,2-ジカルボキシレート(DINCH)を使用することが好ましい。可塑化効率やコスト面でDOPを使用することがより好ましい。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらによって限定されるものではない。
(濡れ性評価)
 図5に示すように、得られたチューブを長さ3cmにカットし、さらに断面が半円状になるように長さ方向に水平にカットして、樋状にした。樋状サンプルの中心に水を1滴、滴下した。滴下した水の量は、チューブ内径が6.0~6.7mmでは水滴量が0.070mL、6.8~8.5mmでは0.085mL、8.6~14.0mmでは0.1mLとした。サンプルを長さ方向に傾け、こぼさないように水滴を約1cm前後方向に1回ずつ移動させ所定の位置に戻し、水滴幅を計測した。同様の操作をサンプル毎に4回行い、平均値を求めた。水滴幅が1.0cm以上1.5cm以下である場合に「優」、0.9cm以上1.0cm未満である場合に「良」、0.9cm未満である場合に「不良」とした。良以上を合格とする。
(数平均分子量の測定)
 (メタ)アクリレート共重合体15mgに3mLのGPC測定用の移動相を加えて溶解し、0.45μmの親水性PTFE(Millex-LH;日本ミリポア)でろ過を行った。GPC測定は510高圧ポンプ、717plus自動注入装置(日本ウォーターズ)、RI-101(昭和電工)の測定装置を用い、カラム;PLgel 5μMIXED-D(600×7.5mm)(Polymer Laboratories)、カラム温度は常温で行い、移動相は0.03重量%のジブチルヒドロキシトルエン(BHT)を添加したテトラヒドロフラン(THF)を用いた。RIにて検出を行い、50μL注入した。分子量校正は単分散PMMA(Easi Cal: Polymer Laboratories)で行った。
(共重合組成比の測定)
 NMR用試験管(規格;N-5、日本精密化学社製)中に(メタ)アクリレート共重合体50mgをパスツールピペットにて加えた後、重クロロホルム(和光純薬製)0.7mLを加え十分に混和し、試料用キャップ(規格;NC-5、日本精密化学社製)で蓋をした。共重合組成比は、VARIAN社のGEMINI-200を用いて室温下1H NMR測定を実施し、算出した。
(チューブの内径、外径の測定)
 投影機(ニコン社製V-12B)により測定した。すなわち、ホースカッター(HC03)を使用して、厚さ3mmに切断し、サンプルとした。倍率を10倍に設定し、投影図を見ながらサンプルの外周の右下がX,Y軸に接するようにステージを移動させてX,Y座標をリセットし、外周の左上にX,Y軸が接する場所まで移動させ、X,Y座標の平均値Aを取った。さらにサンプルの外周の右上にX,Y軸が接するように移動させX,Y座標値をリセットし、外周の左下に接するようにX,Y軸を移動させX,Y座標の数値の平均値Bをとり、A,Bの平均値Cを外径値とした。内周についても同様に測定し、内径値を算出した。
(光沢度の測定)
 チューブ外表面の光沢度の測定は、JIS Z 8741(1997)に記載の方法に準拠して(株)村上色彩技術研究所製のデジタル精密光沢計GM-26Dを用いて測定を行った。円筒形のサンプルを固定できるようにV字溝加工を施した試料台(100×120mm)に長さ40mmにカットしたサンプルを固定し、入反射角(受光角)60°での光沢度を測定した。測定面積は3×3mm、受光部は3.02×1.51mmとした。本実施例のチューブ外径において、光沢度が35以上である場合に「優」、30以上35未満である場合に「良」、30未満である場合に「不良」とした。良以上を合格とした。
((メタ)アクリレート共重合体1の合成)
 還流塔を装着した攪拌可能な反応装置にメトキシトリエチレングリコールアクリレート(MTEGA)(新中村化学工業社)17.5gおよび2-エチルヘキシルアクリレート(EHA)(東京化成工業社)27.4g、アゾビスイソブチロニトリル(AIBN)(和光純薬社)0.0447g、エタノール(東京化成工業社)178.9gを加え、80℃、20時間重合反応を行った。なお、反応装置内は予め窒素置換し、さらに重合反応中は窒素バブリングを継続した。重合反応終了後、60℃、1Torrの条件下で4日間エバポレートにより重合溶媒を除去し、粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体2gをテトラヒドロフラン2gに溶解し、攪拌下の貧溶媒(メタノール/水の重量比を80/20)20g中にパスツールピペットを用いて滴下した。沈殿をデカンテーションにて回収し、さらに同重量のテトラヒドロフランを加え溶解し、貧溶媒に滴下する操作を二回繰り返した後、60℃、0.1Torrの減圧条件下にて4日間減圧乾燥を行い、精製物1を得た。
((メタ)アクリレート共重合体2の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)27.6gおよびEHA(東京化成工業社)28.4g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)115.4gを加え、80℃、20時間重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物2を得た。
((メタ)アクリレート共重合体3の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)15.9gおよびEHA(東京化成工業社)40.1g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)53.6gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物3を得た。
((メタ)アクリレート共重合体4の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)15.7gおよびラウリルアクリレート(LA)(新中村化学工業社)40.3g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)35.9gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物4を得た。
((メタ)アクリレート共重合体5の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)21.8gおよびEHA(東京化成工業社)34.1g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)30.9gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物5を得た。
((メタ)アクリレート共重合体6の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)18.9gおよび2-エチルヘキシルアクリレート(EHA)(東京化成工業社)27.7g、AIBN(和光純薬社)0.0543g、ポリジメチルシロキサンメタアクリレート(PDMSMA)(Gelest社、品番:MCR-M11)3.1g、エタノール(東京化成工業社)89.5gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物6を得た。
((メタ)アクリレート共重合体7の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)15.9gおよびステアリルアクリレート(和光純薬工業社)70.8g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)86.7gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物7を得た。
((メタ)アクリレート共重合体8の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)15.9gおよびブチルアクリレート(和光純薬工業社)28.0g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)43.8gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物8を得た。
((メタ)アクリレート共重合体9の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)6.3gおよびEHA(東京化成工業社)48.2g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)54.5gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物9を得た。
((メタ)アクリレート共重合体10の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)31.7gおよびEHA(東京化成工業社)26.8g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)58.5gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物10を得た。
((メタ)アクリレート共重合体11の合成)
 還流塔を装着した攪拌可能な反応装置にメトキシノナエチレングリコールアクリレート(新中村化学工業社)35.1gおよびEHA(東京化成工業社)40.1g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)75.2gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物11を得た。
((メタ)アクリレート共重合体12の合成)
 還流塔を装着した攪拌可能な反応装置に2-メトキシエチルアクリレート(和光純薬工業社)9.5gおよびEHA(東京化成工業社)40.1g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)49.6gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物12を得た。
((メタ)アクリレート共重合体13の合成)
 還流塔を装着した攪拌可能な反応装置にEHA(東京化成工業社)56.0g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)56.0gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物13を得た。
((メタ)アクリレート共重合体14の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)15.9gおよびEHA(東京化成工業社)40.1g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)20.0gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物14を得た。
((メタ)アクリレート共重合体15の合成)
 還流塔を装着した攪拌可能な反応装置にMTEGA(新中村化学工業社)15.9gおよびEHA(東京化成工業社)40.1g、AIBN(和光純薬社)0.0543g、エタノール(東京化成工業社)350.0gを加え、80℃、20時間の条件で重合反応を行った。重合反応終了後、「(メタ)アクリレート共重合体1の合成」と同様にして粗(メタ)アクリレート共重合体を得た。得られた粗(メタ)アクリレート共重合体を「(メタ)アクリレート共重合体1の合成」と同様の処理をして、精製物15を得た。
(実施例1)
 ポリ塩化ビニル樹脂(数平均重合度1,000)を10kg、DOPを1.0kg、(メタ)アクリレート共重合体1を5g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調製した。得られたペレットを供給部(ホッパー)に供給し、シリンダ内に移送した。圧縮比4のスクリューを56.0rpmにて回転して、シリンダ温度170℃でペレットを溶融しながらシリンダ前方に移送した。得られた溶融樹脂を、シリンダ出口部のスパイラルダイより押出した。このときのシリンダ出口部の樹脂温は188℃であった。押出された溶融樹脂を温度が15℃の真空水槽を通過させ、引続き同温の冷却水槽にて室温程度になるまで冷却した。このとき真空水槽の真空度は-7.0kPaとした。得られたチューブを引取り速度10m/minにて巻取り機に巻き取った。
(実施例2)
 ポリ塩化ビニル樹脂(数平均重合度2,000)を10kg、TOTMを3.0kg、(メタ)アクリレート共重合体2を10g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
(実施例3)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5.0kg、(メタ)アクリレート共重合体3を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
(実施例4)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを11.0kg、(メタ)アクリレート共重合体4を300g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
(実施例5)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DINCHを11.0kg、(メタ)アクリレート共重合体5を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
(実施例6)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体6を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
(実施例7)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体7を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本実施例で得られたチューブは、アルキル(メタ)アクリレートの炭素数が大きいためか、水滴幅が「良」であった。
(実施例8)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体8を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本実施例で得られたチューブは、アルキル(メタ)アクリレートの炭素数が小さいためか、光沢度が「良」であった。
(実施例9)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体9を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本実施例で得られたチューブは、親水性(メタ)アクリレートのモル比が小さいためか、水滴幅が「良」であった。
(実施例10)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体10を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本実施例で得られたチューブは、親水性(メタ)アクリレートのモル比が大きいためか、光沢度が「良」であった。
(実施例11)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体11を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本実施例で得られたチューブは、ポリエチレングリコール繰り返し単位が大きいためか、光沢度が「良」であった。
(実施例12)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体12を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本実施例で得られたチューブは、ポリエチレングリコール繰り返し単位が小さいためか、水滴幅が「良」であった。
(比較例1)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体13を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本比較例で得られたチューブは、親水性(メタ)アクリレートを使用しなかったためか、水滴幅が「不良」であった。
(比較例2)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体14を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本比較例で得られたチューブは、(メタ)アクリレート共重合体の分子量が高すぎるためか、光沢度が「不良」であった。
(比較例3)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体3を600g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整しようとしたが、(メタ)アクリレート共重合体の添加部数が多すぎたためか、ストランドが得られず、ペレットを成形できなかった。
(比較例4)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5.0kg、(メタ)アクリレート共重合体3を0.1g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本比較例で得られたチューブは、(メタ)アクリレート共重合体の添加部数が少なすぎたためか、水滴幅が「不良」であった。
(比較例5)
 ポリ塩化ビニル樹脂(数平均重合度2,500)を10kg、DOPを5kg、(メタ)アクリレート共重合体15を100g仕込み、155℃で3時間混練を行った。さらに、二軸押出機を用いて160℃、100rpmでペレットを調整した。得られたペレットを用いて実施例1と同様にしてチューブを得た。
 本比較例で得られたチューブは、(メタ)アクリレート共重合体の分子量が低すぎるためか、水滴幅が「不良」であった。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 本発明の医療用ペレット状組成物は、組成中に抗血栓性材料を含有しているため、成形後に血液接触面への表面処理といった後工程が不要となり、大幅なコストダウンを図ることができる。さらに、チューブ等に成形した際に着色や白濁がなく透明性が高い成形体を得ることができるため、術野においてチューブ内の視認性を確保することができる。したがって、産業の発展に寄与することが大である。
 

Claims (7)

  1.  ポリ塩化ビニル樹脂100重量部に対して可塑剤1~120重量部および、疎水性(メタ)アクリレート単位及び親水性(メタ)アクリレート単位を含む(メタ)アクリレート共重合体0.01~5重量部とからなり、該(メタ)アクリレート共重合体の数平均分子量が7,000以上50,000以下である医療用ペレット状組成物。
  2.  前記疎水性(メタ)アクリレート単位が下記一般式1で示されるアルキル(メタ)アクリレート単位および/または下記一般式2で示されるシリコーン(メタ)アクリレート単位を含むものである、請求項1に記載の医療用ペレット状組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素原子数6~14のアルキル基またはアラルキル基、Rは水素原子またはメチル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子またはメチル基、Rは炭素原子数1~6のアルキレン基、Rは炭素数1~6のアルキル基、mは1~100の範囲を示す。)
  3.  前記親水性(メタ)アクリレート単位が下記一般式3で示されるメトキシポリエチレングリコール(メタ)アクリレート単位を含むものである、請求項1または2に記載の医療用ペレット状組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは水素原子またはメチル基、nは2~4の整数を示す。)
  4.  前記ポリ塩化ビニル樹脂の数平均重合度が700~3,000である請求項1~3のいずれかに記載の医療用ペレット状組成物。
  5.  前記可塑剤がフタル酸ジ-2-エチルヘキシル(DOP)、トリメリット酸トリ-2-エチルヘキシル(TOTM)、ジイソノニルシクロヘキサン-1,2-ジカルボキシレート(DINCH)のいずれか1種以上である請求項1~4のいずれかに記載の医療用ペレット状組成物。
  6.  請求項1~5のいずれかに記載の医療用ペレット状組成物を溶融成形してなる成形体。
  7.  請求項1~5のいずれかに記載の医療用ペレット状組成物を溶融成形してなる医療用チューブ。
     
PCT/JP2013/075250 2012-09-20 2013-09-19 医療用ペレット状組成物及び成形体 WO2014046158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/416,009 US20150190551A1 (en) 2012-09-20 2013-09-19 Pellet-shaped composition for medical use, and molded product
JP2014536891A JP6115834B2 (ja) 2012-09-20 2013-09-19 医療用ペレット状組成物及び成形体
EP13838791.5A EP2898905B1 (en) 2012-09-20 2013-09-19 Pellet-shaped composition for medical use, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-206783 2012-09-20
JP2012206783 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046158A1 true WO2014046158A1 (ja) 2014-03-27

Family

ID=50341463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075250 WO2014046158A1 (ja) 2012-09-20 2013-09-19 医療用ペレット状組成物及び成形体

Country Status (4)

Country Link
US (1) US20150190551A1 (ja)
EP (1) EP2898905B1 (ja)
JP (1) JP6115834B2 (ja)
WO (1) WO2014046158A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209465A (ja) * 2014-04-25 2015-11-24 リケンテクノス株式会社 塩化ビニル系樹脂組成物
JP2016044296A (ja) * 2014-08-27 2016-04-04 リケンテクノス株式会社 医療用塩化ビニル系樹脂組成物、及びそれからなる医療用器具
JP2016044297A (ja) * 2014-08-27 2016-04-04 リケンテクノス株式会社 塩化ビニル系樹脂組成物
WO2023068375A1 (ja) * 2021-10-22 2023-04-27 三菱ケミカル株式会社 樹脂組成物、樹脂組成物の製造方法、成形材料、及び物品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961624B2 (ja) * 2017-01-13 2021-11-05 富士フイルム株式会社 医療用潤滑性部材に用いる積層材料、医療用潤滑性部材、および医療機器
CN115607750B (zh) * 2021-07-16 2024-02-23 中国科学院宁波材料技术与工程研究所 一种原位抗凝改性医用pvc材料、其制备方法及应用
CN115746475B (zh) * 2022-11-10 2023-12-19 河南驼人医疗器械研究院有限公司 一种抗黏附高分子材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887143A (ja) * 1981-11-18 1983-05-24 Toyobo Co Ltd ポリ塩化ビニル組成物
JPS6116952A (ja) * 1984-07-04 1986-01-24 Mitsubishi Kasei Vinyl Co 塩化ビニル樹脂組成物の製法
JPS61145243A (ja) * 1984-12-19 1986-07-02 Sekisui Chem Co Ltd 医療器材用樹脂組成物
JPH06212078A (ja) * 1991-10-23 1994-08-02 Toray Ind Inc 抗血栓性ポリマ組成物およびその製造方法
JPH11164882A (ja) * 1997-12-05 1999-06-22 Toyobo Co Ltd 血液適合性組成物および医療用具
JP2003165881A (ja) * 2001-11-30 2003-06-10 Toyobo Co Ltd ポリ塩化ビニル系組成物
JP2005089605A (ja) 2003-09-17 2005-04-07 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JP2007146133A (ja) * 2005-10-25 2007-06-14 Toyobo Co Ltd (メタ)アクリレート共重合体
WO2008068868A1 (ja) * 2006-12-07 2008-06-12 Toyo Boseki Kabushiki Kaisha (メタ)アクリレート共重合体及びその製造方法及び医療用具
JP2008264266A (ja) * 2007-04-20 2008-11-06 Toyobo Co Ltd 医用材料の処理液および医用材料
JP2008289864A (ja) * 2007-04-24 2008-12-04 Toyobo Co Ltd 抗血栓性材料
JP2009261437A (ja) * 2008-04-22 2009-11-12 Toyobo Co Ltd カテーテル
WO2011083815A1 (ja) * 2010-01-07 2011-07-14 東洋紡績株式会社 抗血栓性材料を塩ビ製医療用チューブの内側にコーティングする方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478961A (en) * 1981-11-18 1984-10-23 Toyo Boseki Kabushika Kaisha Polyvinyl chloride composition
US4612340A (en) * 1983-03-09 1986-09-16 Yoshinori Ohachi Medical device
US5270046A (en) * 1988-09-27 1993-12-14 Ube Industries, Ltd. Heparin bound anti-thrombotic material

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887143A (ja) * 1981-11-18 1983-05-24 Toyobo Co Ltd ポリ塩化ビニル組成物
JPS6116952A (ja) * 1984-07-04 1986-01-24 Mitsubishi Kasei Vinyl Co 塩化ビニル樹脂組成物の製法
JPS61145243A (ja) * 1984-12-19 1986-07-02 Sekisui Chem Co Ltd 医療器材用樹脂組成物
JPH06212078A (ja) * 1991-10-23 1994-08-02 Toray Ind Inc 抗血栓性ポリマ組成物およびその製造方法
JPH11164882A (ja) * 1997-12-05 1999-06-22 Toyobo Co Ltd 血液適合性組成物および医療用具
JP3228409B2 (ja) 1997-12-05 2001-11-12 東洋紡績株式会社 血液適合性組成物および医療用具
JP2003165881A (ja) * 2001-11-30 2003-06-10 Toyobo Co Ltd ポリ塩化ビニル系組成物
JP2005089605A (ja) 2003-09-17 2005-04-07 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JP2007146133A (ja) * 2005-10-25 2007-06-14 Toyobo Co Ltd (メタ)アクリレート共重合体
JP4162028B2 (ja) 2005-10-25 2008-10-08 東洋紡績株式会社 (メタ)アクリレート共重合体
WO2008068868A1 (ja) * 2006-12-07 2008-06-12 Toyo Boseki Kabushiki Kaisha (メタ)アクリレート共重合体及びその製造方法及び医療用具
JP2008264266A (ja) * 2007-04-20 2008-11-06 Toyobo Co Ltd 医用材料の処理液および医用材料
JP2008289864A (ja) * 2007-04-24 2008-12-04 Toyobo Co Ltd 抗血栓性材料
JP4793700B2 (ja) 2007-04-24 2011-10-12 東洋紡績株式会社 抗血栓性材料
JP2009261437A (ja) * 2008-04-22 2009-11-12 Toyobo Co Ltd カテーテル
WO2011083815A1 (ja) * 2010-01-07 2011-07-14 東洋紡績株式会社 抗血栓性材料を塩ビ製医療用チューブの内側にコーティングする方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"POLYMER CHEMISTRY", 1999, OXFORD UNIVERSITY PRESS, pages: 36
See also references of EP2898905A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209465A (ja) * 2014-04-25 2015-11-24 リケンテクノス株式会社 塩化ビニル系樹脂組成物
JP2016044296A (ja) * 2014-08-27 2016-04-04 リケンテクノス株式会社 医療用塩化ビニル系樹脂組成物、及びそれからなる医療用器具
JP2016044297A (ja) * 2014-08-27 2016-04-04 リケンテクノス株式会社 塩化ビニル系樹脂組成物
WO2023068375A1 (ja) * 2021-10-22 2023-04-27 三菱ケミカル株式会社 樹脂組成物、樹脂組成物の製造方法、成形材料、及び物品

Also Published As

Publication number Publication date
EP2898905B1 (en) 2017-12-20
JPWO2014046158A1 (ja) 2016-08-18
US20150190551A1 (en) 2015-07-09
EP2898905A1 (en) 2015-07-29
JP6115834B2 (ja) 2017-04-19
EP2898905A4 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6115834B2 (ja) 医療用ペレット状組成物及び成形体
Ma et al. Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo
JP6958357B2 (ja) 医療用材料、医療用分離膜、および血液浄化器
US8142717B2 (en) Oxygenator of a hollow fiber membrane type
US9844759B2 (en) Polymer composition and porous membrane
CN105367778A (zh) 亲水嵌段共聚物和由其制备的膜
CN107406551A (zh) 共聚物以及使用其的医疗设备、医疗用分离膜模块和血液净化器
WO1994007931A1 (en) Hydrophilic material and semipermeable membrane made therefrom
CN105311974A (zh) 一种具有高抗凝血性能血液透析膜及其制备方法
TWI781951B (zh) 抑制生物體成分附著之材料
KR20140112768A (ko) 폴리비닐리덴플루오라이드 중공사 분리막과 그 제조방법
CN110743392B (zh) 一种可用于血液透析且具有抗凝特性的pvdf中空纤维膜材料及其制备方法
CN102834434B (zh) 接枝共聚物
JP6330856B2 (ja) 親水性多孔質ポリテトラフルオロエチレン膜(i)
Chang et al. Morphology and film performance of phthalate-free plasticized poly (vinyl chloride) composite particles via the graft copolymerization of acrylate swelling flower-like latex particles
KR20160141725A (ko) 주사액용 주머니 및 주사용 제제
CN101234302B (zh) 一种中空毛细管式共混超滤膜及其制备方法
JP5114660B2 (ja) 抗血栓性抗菌性組成物および医療用具
JP2006124714A (ja) 耐汚染性材料および耐汚染性半透膜
JP2003292625A (ja) ポリスルホン系共重合体
JPH05111624A (ja) 半透膜
CN115677998B (zh) 一种功能化聚碳酸酯及其制备方法和应用
US20180334519A1 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
CN112708026B (zh) 防尘离子型聚合物及其制备方法与防尘棚膜
EP3621997A1 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536891

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416009

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013838791

Country of ref document: EP