WO2011083581A1 - 微粒子検知装置 - Google Patents

微粒子検知装置 Download PDF

Info

Publication number
WO2011083581A1
WO2011083581A1 PCT/JP2010/050158 JP2010050158W WO2011083581A1 WO 2011083581 A1 WO2011083581 A1 WO 2011083581A1 JP 2010050158 W JP2010050158 W JP 2010050158W WO 2011083581 A1 WO2011083581 A1 WO 2011083581A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
component
amount
impedance
particle
Prior art date
Application number
PCT/JP2010/050158
Other languages
English (en)
French (fr)
Inventor
圭一郎 青木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080002201.5A priority Critical patent/CN102187210B/zh
Priority to PCT/JP2010/050158 priority patent/WO2011083581A1/ja
Priority to US13/057,174 priority patent/US8736284B2/en
Priority to EP10801549.6A priority patent/EP2525215B1/en
Priority to JP2010545324A priority patent/JP5141777B2/ja
Publication of WO2011083581A1 publication Critical patent/WO2011083581A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0277Average size only

Definitions

  • the present invention relates to a particulate detection device. More specifically, the present invention relates to a particulate detection device that is installed in an exhaust path of an internal combustion engine and is suitable for detecting particulates in exhaust gas.
  • Patent Document 1 a particulate sensor that detects the amount of fine particles in exhaust gas of an internal combustion engine has been disclosed.
  • This sensor includes electrodes arranged parallel to each other with a space therebetween. The sensor is installed in the exhaust path so that at least a part of the electrode is exposed to the exhaust gas. When exhaust gas flows through the exhaust path, particulates in the exhaust gas accumulate on the electrodes. As a result, the impedance between the electrodes changes. The sensor of Patent Document 1 detects this change in impedance, and detects the amount of fine particles deposited between the electrodes accordingly.
  • Patent Document 1 Although a conventional sensor such as Patent Document 1 can detect the amount of fine particles in a gas according to a change in impedance, it cannot estimate the particle diameter or the number of particles of the fine particles in the gas.
  • a device for measuring the number of fine particles in a gas for example, a particle counter using a laser beam is known, but this device is large and expensive, for example, mounted on a vehicle, for onboard use. It is difficult to use as Therefore, a simple apparatus that can grasp not only the amount of fine particles contained in the gas but also the number and diameter of the particles is desired.
  • the amount of fine particles is measured according to the impedance of the entire circuit including sensor electrodes and lead wires (hereinafter “electrodes”). Therefore, the amount of change in impedance (difference from the initial value) includes the amount of change caused by deterioration of the electrode and the like in addition to the amount of change caused by the deposition of fine particles.
  • the ratio of the change due to the deterioration of the electrode or the like in the detected change amount of the impedance becomes large. In this case, it is conceivable that the deviation between the fine particle amount calculated according to the impedance change amount and the actual fine particle amount becomes large.
  • an object of the present invention is to solve the above-mentioned problems, and to improve detection of the particle diameter and the amount of fine particles present in exhaust gas while minimizing deviation due to deterioration such as electrode deterioration.
  • a fine particle detection apparatus Provided is a fine particle detection apparatus.
  • a first invention is a particulate detection device for measuring particulates in a gas
  • a frequency control means for controlling the frequency of an alternating voltage applied to a pair of spaced electrodes
  • AC impedance detection means for detecting impedance for each frequency when AC voltages having different frequencies are applied
  • Component calculating means for calculating a resistance component and / or a capacitance component of the impedance for each frequency
  • Fine particle diameter estimation means for estimating the average diameter and / or the number of fine particles in the gas according to the change of the resistance component and / or the capacitance component; Is provided.
  • the component calculation means includes the resistance component and / or the capacitance component.
  • the fine particle diameter estimating means estimates the average diameter of the fine particles and / or the number of fine particles according to a comparison result between the intraparticle component and the grain boundary component.
  • a fine particle amount estimating means for estimating the amount of fine particles in the gas according to the intra-particle component and the grain boundary component of the resistance component is further provided.
  • An interelectrode resistance detecting means for detecting a resistance between the electrodes; Fine particle amount estimation means for estimating the amount of fine particles in the gas according to the detected resistance between the electrodes, Is further provided.
  • a fifth invention is the fourth invention, A saturation state determining means for determining whether or not the estimated amount of fine particles has reached a reference amount indicating a saturated state;
  • the alternating-current impedance detection means performs impedance detection when it is determined that the amount of the fine particles has reached the reference amount.
  • a sixth invention is a particle detector for measuring particles in a gas
  • a frequency control means for controlling the frequency of an alternating voltage applied to a pair of spaced electrodes
  • AC impedance detection means for detecting an impedance for each frequency by applying AC voltages having different frequencies
  • Particle resistance component calculation means for calculating the resistance component of the impedance for each frequency separately for a particle resistance component caused by internal characteristics and interface characteristics of the fine particles and a component caused by the other
  • Fine particle amount estimation means for estimating the amount of fine particles according to the particle resistance component of the resistance component; Is provided.
  • the average diameter or number of the fine particles can be determined. Can be estimated. Therefore, the diameter or number of fine particles can be easily detected with a small apparatus having a pair of electrodes.
  • the intra-particle component caused by the internal characteristics of the fine particles and the grain boundary component caused by the interface characteristics between the fine particles are calculated separately.
  • the intra-particle component and the grain boundary component are both components caused by the fine particles between the electrodes, and are components that do not include resistance variation due to the electrodes of this device. Therefore, according to the third invention, by estimating the amount of fine particles according to the intraparticle component and the grain boundary component, it is possible to suppress the influence of a change in resistance due to deterioration of the electrode and the like, and to more accurately determine the fine particle amount. Can be estimated.
  • the amount of fine particles, the average diameter and the number of particles can be detected by one detection device.
  • the detection of the AC impedance is executed. Therefore, it is possible to suppress the influence of impedance fluctuations that occur in the process of depositing fine particles, and to accurately estimate the average diameter and number of fine particles in a more stable state.
  • the resistance component of the impedance with respect to the fluctuating frequency is calculated by dividing into the particle resistance component caused by the internal characteristics and interface characteristics of the fine particles and the component caused by the other, and among the resistance components
  • the amount of fine particles is estimated according to the particle resistance component. Therefore, the amount of fine particles can be detected more accurately, excluding the influence of resistance fluctuations caused by electrode deterioration and the like.
  • Embodiment 1 of this invention It is a schematic diagram for demonstrating the whole structure of the system in Embodiment 1 of this invention. It is a schematic diagram for demonstrating the PM sensor in Embodiment 1 of this invention. It is a schematic diagram for demonstrating the equivalent circuit diagram when PM accumulates on PM sensor in Embodiment 1 of this invention. It is a figure for demonstrating the change of the impedance according to the frequency change of the sensor in Embodiment 1 of this invention. It is a figure for demonstrating the change of the impedance according to the frequency change of the capacity
  • FIG. 1 is a schematic diagram for explaining an installation state of a PM sensor according to Embodiment 1 of the present invention.
  • the PM sensor 2 is installed in an exhaust path 6 of an internal combustion engine 4 mounted on, for example, a vehicle.
  • An AC power supply 8 for applying AC and DC voltage is connected to the PM sensor 2 (particulate particle detector).
  • the PM sensor 2 includes a pair of electrodes 10 that are spaced apart. At least a part of the electrode 10 is installed in the exhaust path 6 so as to be in contact with the exhaust gas.
  • the PM sensor 2 is connected to an impedance detector that detects an impedance between the electrodes 10, a frequency detector that detects an AC frequency, and the like.
  • This system includes a control device 12.
  • the control device 12 is connected to various detectors of the PM sensor 2 and the AC power supply 8.
  • the control device 12 receives the output signals of these detectors, detects the AC impedance of the PM sensor 2, performs various necessary calculations, etc., issues a control signal to the AC power supply 8, and applies it to the PM sensor 2. Control the frequency of the voltage.
  • FIG. 2 is a schematic diagram for explaining the PM sensor 2 according to Embodiment 1 of the present invention.
  • the pair of electrodes 10 of the PM sensor 2 are arranged in parallel with a predetermined space therebetween.
  • the electrode 10 is installed in a state where at least a part of the electrode 10 is in contact with the exhaust gas.
  • PM particle powder
  • FIG. 2A shows an example in which the PM deposited between the electrodes 10 of the PM sensor 2 is relatively small, and FIG. In FIG. 2, PM particles having a substantially constant particle diameter are shown as being deposited between the electrodes 10, but in reality, the particle diameter of the deposited PM varies.
  • FIG. 2B for the sake of simplicity, a case where the average diameter is relatively small (FIG. 2A) and a case where the average diameter is relatively large (FIG. 2B) are schematically shown.
  • the PM sensor 2 detects the amount of PM deposited between the electrodes 10 as shown in FIG. 2 and the average diameter or the number of PMs as follows.
  • the resistance component and the capacitance component generated when an AC voltage is applied to the PM sensor 2 can be considered as being divided into three components in the PM sensor 2, respectively.
  • Components derived from the characteristics inside the PM Components within the particles
  • Component (grain boundary component) derived from the characteristics of the contact interface (grain boundary) between PM and PM Components other than PM, such as electrode 10 and electrode and lead wire of PM sensor 2
  • the PM sensor 2 has an equivalent circuit diagram as shown in FIG.
  • the PM internal resistance component R1 and the PM internal capacitance component C1 are components derived from the characteristics in the PM of (1) above
  • the PM grain boundary resistance component R2 and the PM grain boundary capacitance component C2 Is a component derived from the PM grain boundary characteristics of (2) above
  • the electrode resistance component Re represents a resistance component derived from other than PM, such as the electrode of (3).
  • the PM internal resistance component R1, the PM grain boundary resistance component R2, the PM internal capacitance component C1, and the PM grain boundary capacitance component C2 change not only with the amount of PM deposited but also with the diameter (size) of the PM. .
  • the particle size of PM becomes small (in the case of FIG. 2A)
  • the area of the PM grain boundary increases, so that the influence of the characteristics of the PM grain boundary on the entire circuit becomes large.
  • the ratio of the PM grain boundary resistance component R2 and the PM grain boundary capacitance component C2 increases, and the ratio of the PM internal resistance component R1 and the PM internal capacitance component C1 increases. Get smaller.
  • the average particle size of PM as well as the amount of PM deposition can be estimated by detecting and comparing the magnitude of resistance (or capacity) due to the components inside and at the PM grain boundaries. It is thought that you can.
  • the resistance and the like of each component shown in (1) to (3) are detected as follows.
  • FIG. 4 is a diagram for explaining a change in impedance when the frequency is changed (swept) at a constant interval from a low frequency to a high frequency and applied to the PM sensor 2 according to the first embodiment of the present invention. is there.
  • the horizontal axis represents the logarithm of frequency (logf), and the vertical axis represents the logarithm of impedance (log
  • ⁇ V / ⁇ I).
  • the impedance ideally changes stepwise as shown in FIG.
  • FIG. 5 shows, in a complex impedance plot, the change in impedance of the PM sensor 2 that is detected when the frequency of the AC voltage is continuously changed (swept) to the PM sensor 2 as shown in FIG. FIG.
  • the horizontal axis represents the real component (impedance component) of the impedance
  • the vertical axis represents the imaginary component (capacitance component).
  • Each resistance Ra, Rc, Rd is calculated from the intersection of the curve representing this complex impedance and the x-axis.
  • the resistance value Re is an electrode resistance component Re. Therefore, R1, R2, and Re are calculated from the values of Ra, Rc, and Rd, respectively.
  • FIG. 6 is a diagram showing the relationship between the ratio of the PM internal resistance component R1 to the PM grain boundary resistance component R2 and the average diameter of PM, the horizontal axis represents the resistance ratio R1 / R2, and the vertical axis represents the PM average. It represents the diameter.
  • the PM average diameter has a correlation with the resistance ratio R1 / R2, and the PM average increases as the resistance ratio R1 / R2 increases, that is, as the ratio of the PM internal resistance component R1 increases. The diameter increases.
  • the relationship between the resistance ratio R1 / R2 and the PM average diameter is obtained in advance by experiments or the like, and stored in the control device 12 as a map.
  • the frequency is continuously changed and applied, the impedance impedance value ranging from the low frequency to the high frequency is measured, the impedance characteristic as shown in FIG. 5 is predicted, the resistance component R1, R2 is calculated. Thereafter, the PM particle diameter is calculated by calculating the resistance ratio R1 / R2.
  • the resistance of the PM sensor 2 changes according to the amount of PM deposited between the electrodes 10.
  • the change in the resistance of the PM sensor 2 includes a change in the electrode resistance component Re, which is a component other than PM. Therefore, in the first embodiment, the combustion process is performed when the PM deposited on the electrode 10 is saturated, and the initial resistance Ri immediately after the combustion process is detected every time the combustion process is performed. Since PM is not deposited on the electrode 10 due to the PM combustion treatment, this resistance is considered to correspond to the electrode resistance component Re.
  • the particle amount In the detection of the particle amount, a DC voltage is applied to the PM sensor 2 (actual resistance) to detect Rm, and then the particle amount is detected based on the resistance Rm-Ri obtained by removing the initial resistance Ri from the actual resistance Rm. As a result, the resistance corresponding to the electrode resistance component Re can be removed, so that the PM deposition amount can be correctly estimated while suppressing the influence of deterioration of the electrode and the like.
  • the relationship between the resistance Rm-Ri and the PM deposition amount is obtained in advance through experiments or the like and stored in the control device 12 as a map.
  • the PM amount In the actual detection of the PM deposition amount, the PM amount is calculated according to the map in accordance with the detected resistance Rm-Ri. Moreover, in this Embodiment 1, since the average diameter and amount of PM are calculated
  • FIG. 7 is a control routine executed by the control device in the first embodiment of the present invention.
  • the routine of FIG. 7 is a routine that is repeatedly executed at regular intervals during the operation of the internal combustion engine 4. In the routine of FIG. 7, first, it is detected whether or not the internal combustion engine 4 has been started (S12). If the internal combustion engine 4 is stopped, detection of PM is unnecessary, and thus this routine ends.
  • the PM sensor 2 is in a normal state (S14).
  • the normal state is not recognized.
  • the current routine ends.
  • the initial resistance Ri is read out.
  • the initial resistance Ri is set to a resistance when a DC voltage is applied to the PM sensor 2 at a new stage, and is a value that is detected and updated in a process described later when this routine is executed thereafter. .
  • the actual resistance Rm when a DC voltage is applied between the electrodes 10 is detected (S18).
  • the PM accumulation amount is calculated (S20).
  • the PM deposition amount is calculated based on the resistance Rm-Ri obtained by subtracting the initial resistance Ri from the actual resistance Rm.
  • the initial resistance Ri is an impedance detected when no PM is deposited on the electrode 10. Therefore, the PM amount is accurately calculated by obtaining the deposited PM amount according to the resistance Rm-Ri.
  • the control device 12 calculates the deposited PM amount corresponding to the resistance Rm-Ri according to a map indicating the correlation between the resistance and the PM amount stored in advance.
  • impedance measurement is executed (S22).
  • the impedance is detected by applying an AC voltage while continuously changing the frequency.
  • the resistance components R1 and R2 are detected.
  • the average diameter of PM is calculated (S24).
  • the PM average diameter is calculated according to a map stored in advance in the control device 12 according to the ratio of the resistance components R1 and R2.
  • the number of PM particles is calculated (S26). The number of particles can be obtained by dividing the PM deposition amount by the volume obtained from the average diameter.
  • step S28 it is determined whether or not PM deposition is saturated (S28). Specifically, it is determined whether or not the actual resistance Rm obtained in step S18 is smaller than the first reference resistance ref1.
  • the first reference resistance ref1 is a value stored in the control device 12 in advance, and is set to a value near the maximum value among the resistances shown when the PM accumulation amount of the PM sensor 2 is saturated.
  • step S28 when the real resistance Rm ⁇ the first reference resistance ref1 is not established, the current process is terminated.
  • step S28 if it is recognized in step S28 that the actual resistance Rm ⁇ the first reference resistance ref1 is established, the combustion process of the PM deposited on the electrode is then performed (S30). Next, the actual resistance Rm is detected (S32).
  • the second reference resistance ref2 is a value stored in the control device 12 in advance, and is set to a value near the minimum value of the resistance indicated by the PM sensor 2 when PM is not deposited on the PM sensor 2. ing.
  • step S34 when it is not recognized that the actual resistance Rm> the second reference resistance ref2 is established, it is estimated that the PM combustion process is not yet sufficient. Therefore, the process returns to step S30 again, and the PM combustion process (S30 The actual resistance Rm is detected (S32), and the determination in step S34 is executed.
  • the PM combustion process (S30), the detection of the actual resistance Rm (S32), and the determination of whether the PM has been burned (S34) are performed until the real resistance Rm> the second reference resistance ref2 is confirmed. It is executed repeatedly.
  • step S34 if it is determined in step S34 that the actual resistance Rm> the second reference resistance ref2 is established, it can be determined that the combustion of PM is completed. Next, the current value of the actual resistance Rm is stored as the initial resistance Ri. (S36). Thereafter, the current process ends.
  • the resistance caused by the inside of the PM and the grain boundary is separately detected by changing the frequency continuously and detecting the change of the impedance corresponding thereto. be able to. Therefore, not only the PM deposition amount but also the average diameter of PM and the number of PM particles can be detected.
  • the impedance is measured by applying an alternating voltage by continuously changing the frequency, and the resistance caused by the electrode 10 and the like, and the resistance caused by PM (internal and grain boundaries) It can be detected separately. Therefore, it is possible to remove a resistance component caused by the electrode 10 or the like from the detected resistance or capacitance. Thereby, the influence of the error of the PM sensor 2 caused by electrode deterioration or the like can be removed, and the PM average diameter and the number of PM particles can be estimated more accurately.
  • the present invention is not limited to the one that can eliminate the influence of deterioration of the electrode 10 and the like in this way.
  • a sensor that estimates the PM average diameter and the number of PM particles without considering the deterioration of the electrode 10 and the like. Is also included.
  • the initial resistance Ri stored as the impedance immediately after PM combustion is subtracted from the actual resistance Rm that is the impedance at the time of measurement, and the PM deposition amount is calculated based on the resistance Rm ⁇ Ri. .
  • the PM deposition amount can also be accurately estimated by removing the influence of the error of the PM sensor 2 caused by the deterioration of the electrodes and the like.
  • the resistance (actual resistance Rm and initial resistance Ri) when a DC voltage is applied in advance is detected separately from the impedance measurement for calculating the PM average diameter.
  • a resistance component may be detected from the impedance when an AC voltage having a predetermined frequency is applied, and the PM deposition amount may be detected accordingly.
  • the PM deposition amount can be estimated according to the PM internal resistance component R1 and the PM grain boundary resistance component R2 (particle resistance component) obtained in the impedance measurement for calculating the PM average diameter. Even in this case, since the PM amount can be calculated by removing the electrode resistance component Re, it is possible to estimate the PM deposition amount by removing the influence of deterioration of the electrodes and the like.
  • the present invention does not include a sensor for estimating the PM average diameter and the number of PM particles, and can be used as a sensor for detecting only the PM deposition amount. Even in this case, by using the resistance obtained by subtracting the initial resistance Ri from the actual resistance Rm or using only the resistance components R1 and R2 caused by the PM particles, it is possible to suppress the influence due to the deterioration of the electrode 10 and the like. It is possible to accurately detect the PM deposition amount.
  • the present invention is not limited to those that can eliminate the influence of deterioration of the electrode 10 and the like as described above, and includes, for example, a sensor that estimates the PM deposition amount without considering the deterioration of the electrode 10 and the like. .
  • the PM average diameter is estimated according to the ratio between the PM internal resistance component R1 and the PM grain boundary resistance component R2 has been described.
  • the PM average diameter can be calculated by comparing the capacitance components C1 and C2.
  • the capacitance components C1 and C2 can be respectively calculated by calculating the resistances Rb and Rd and the frequencies fb and fd at that time as described above.
  • the frequency is continuously changed, and the impedance value with respect to the AC voltage from the low frequency to the high frequency is detected, so that the approximate impedance characteristic is predicted, and each resistance component R1 , R2, and capacitive components C1 and C2 have been described separately.
  • the present invention is not limited to this.
  • a plurality of frequencies at which each of the resistance components R1, R2, Re, and the capacitance components C1, C2 can be estimated are specified in advance, and only an AC voltage having a set frequency is applied. It is good as well.
  • This frequency may be a frequency of only two to three points, for example.
  • the ranges taken by the frequencies fa, fc, and fe corresponding to the resistance values Ra, Rc, and Re in FIG. 4 can be predicted to some extent. Therefore, the resistance components R1, R2, Re, and the like can be estimated by determining a frequency within the predicted range and applying an AC voltage having the determined frequency.
  • the “interelectrode resistance detecting means” of the present invention is realized by executing the process of step S18, and the “fine particle amount estimating means” is realized by executing the process of step S20.
  • the “AC impedance detecting means” is realized, and by executing step S24 or S26, the “fine particle diameter estimating means” is realized.
  • FIG. 8 is a diagram for explaining the PM accumulation amount of the PM sensor 2 and the change with time.
  • the horizontal axis represents time
  • the vertical axis represents the PM deposition amount.
  • the amount of PM deposited on the PM sensor 2 increases with time, but when it reaches a saturated state, it does not increase any more and becomes constant.
  • the resistance of the PM sensor 2 changes according to the PM deposition amount, when the PM deposition amount becomes constant in a saturated state, the resistance does not change and becomes constant.
  • the impedance is measured by applying an AC voltage whose frequency is continuously changed. Thereby, each impedance can be measured stably and the PM average diameter and the number of PM particles can be estimated more accurately.
  • FIG. 9 is a control routine executed by the system in the second embodiment of the present invention.
  • the routine of FIG. 9 is the same as the routine of FIG. 7 except that the process of step S28 is executed immediately after step S20.
  • step S40 whether or not the current PM accumulation amount is saturated, that is, the actual resistance Rm ⁇ It is determined whether or not the initial resistance Ri ⁇ the first reference resistance ref1 is established (S40).
  • the establishment of the resistance Ra ⁇ the initial resistance Ri ⁇ the first reference resistance ref1 is not recognized, it is determined that the PM deposition is not in a saturated state at present, so that impedance measurement or the like is not performed.
  • the current process ends as it is.
  • the PM average diameter and the number of particles are detected when the PM deposition amount becomes saturated. Therefore, since the value of the detected impedance is stabilized, the PM average diameter and the number of particles can be estimated more accurately.
  • step S40 it is only necessary to determine whether or not the PM deposition of the electrode 10 is in a saturated state, and thus the present invention is not limited to the determination based on the resistance value.
  • the saturation state can be determined when the amount of change in the actual resistance Rm becomes an extremely small amount smaller than a predetermined reference.
  • the “saturated state determining means” of the present invention is realized by executing the process of step S40.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 電極の劣化等の劣化によるずれを小さく抑えつつ、排気中に存在する微粒子の粒子径、微粒子の量を検知する。 気体中の微粒子を測定する微粒子検知装置の、離間して配置された一対の電極に周波数の異なる交流電圧が印加する。このとき生じる各周波数に対するインピーダンスを検出する。各周波数に対するインピーダンスの、抵抗成分及び/又は容量成分を算出する。抵抗成分及び/又は前記容量成分の変化に応じて、気体中の微粒子の平均径及び/又は微粒子の数を推定する。

Description

微粒子検知装置
 この発明は微粒子検知装置に関する。更に具体的には、内燃機関の排気経路中に設置され、排ガス中の微粒子を検知するのに好適な微粒子検知装置に関するものである。
 従来、例えば特許文献1に示されるように、内燃機関の排ガス中の微粒子量を検出するパーキュレートセンサが開示されている。このセンサは、互いに空間をあけて平行に配置された電極を備えている。センサは、電極の少なくとも一部が排ガス中に晒されるようにして排気経路に設置される。排気経路に排ガスが流通すると排ガス中の微粒子が電極に堆積する。その結果、電極間のインピーダンスが変化する。特許文献1のセンサは、このインピーダンスの変化を検出し、これに応じて電極間に堆積する微粒子量を検出する。
日本特表2006-515066号公報
 特許文献1のような従来のセンサでは、インピーダンスの変化に応じて気体中の微粒子量を検出することができるものの、気体中の微粒子の粒子径や粒子数を推定することはできない。一方、気体中の微粒子数の計測装置としては、例えばレーザ光を用いた粒子数計などが知られているが、この装置は大型かつ高額なものであり、例えば車両に搭載するなどオンボード用としての利用が難しい。従って、気体中に含まれる微粒子の量だけでなく、その粒子数や粒子径を把握できる簡便な装置が望まれる。
 また、特許文献1のような従来のセンサでは、センサ電極やリード線(以下「電極等」)を含む回路全体のインピーダンスに応じて微粒子量が測定される。従って、インピーダンスの変化量(初期値に対する差)には、微粒子の堆積に起因する変化量のほかに、電極等の劣化等に起因する変化量が含まれている。そして電極等の劣化が大きい場合、検出されたインピーダンスの変化量のうち、電極等の劣化に起因する変化の割合が大きくなる。この場合、インピーダンス変化量に応じて算出された微粒子量と、実際の微粒子量との間のずれが大きくなることが考えられる。
 従って、この発明は上記課題を解決することを目的とし、電極の劣化等の劣化によるずれを小さく抑えつつ、排気中に存在する微粒子の粒子径、微粒子の量を検知することができるように改良された微粒子検知装置を提供するものである。
 第1の発明は、上記の目的を達成するため、気体中の微粒子を測定する微粒子検知装置であって、
 離間して配置された一対の電極に印加される交流電圧の、周波数を制御する周波数制御手段と、
 周波数の異なる交流電圧が印加された場合の、各周波数に対するインピーダンスを検出する交流インピーダンス検出手段と、
 前記各周波数に対するインピーダンスの、抵抗成分及び/又は容量成分を算出する成分算出手段と、
 前記抵抗成分及び/又は前記容量成分の変化に応じて、気体中の微粒子の平均径及び/又は微粒子の数を推定する微粒子径推定手段と、
 を備える。
 第2の発明は、第1の発明において、前記成分算出手段は、前記抵抗成分及び/又は前記容量成分のうち、
 微粒子の内部特性に起因する粒子内成分と、
 微粒間の界面特性に起因する粒界成分と、
 を算出し、
 前記微粒子径推定手段は、前記粒子内成分と前記粒界成分との比較結果に応じて、前記微粒子の平均径及び/又は微粒子の数を推定する。
 第3の発明は、第1又は第2の発明において、
 前記抵抗成分のうち、前記粒子内成分と前記粒界成分とに応じて、気体中の微粒子の量を推定する微粒子量推定手段を、更に備える。
 第4の発明は、第1の発明において、
 前記電極間の抵抗を検出する電極間抵抗検出手段と、
 検出された電極間の抵抗に応じて、気体中の微粒子の量を推定する微粒子量推定手段と、
 を、更に備える。
 第5の発明は、第4の発明において、
 推定された微粒子の量が、飽和状態を示す基準量に達しているか否かを判別する飽和状態判別手段を更に備え、
 前記交流インピーダンス検出手段は、前記微粒子の量が前記基準量に達していると判別された場合に、インピーダンスの検出を実行する。
 第6の発明は、気体中の微粒子を測定する微粒子検知装置であって、
 離間して配置された一対の電極に印加される交流電圧の、周波数を制御する周波数制御手段と、
 周波数の異なる交流電圧を印加して、各周波数に対するインピーダンスを検出する交流インピーダンス検出手段と、
 前記各周波数に対するインピーダンスの抵抗成分を、微粒子の内部特性及び界面特性に起因する粒子抵抗成分と、それ以外に起因する成分とに分けて算出する粒子抵抗成分算出手段と、
 前記抵抗成分のうち前記粒子抵抗成分に応じて、微粒子の量を推定する微粒子量推定手段と、
 を、備える。
 第1の発明によれば、一対の電極に周波数の異なる交流電圧が印加された場合に検出されるインピーダンスの抵抗成分及び/又は容量成分の変化を検出することで、微粒子の平均径又は数を推定することができる。従って、一対の電極を有する小型の装置で、簡単に微粒子の径又は数を検出することができる。
 第2の発明によれば、抵抗成分及び/又は容量成分のうち、微粒子の内部特性に起因する粒子内成分と、微粒間の界面特性に起因する粒界成分とを分けて算出する。ここで、例えば粒子径が大きい場合ほど、粒子内成分の割合は大きくなり、一方、粒子径が小さい場合ほど、粒子間の接触界面が増加するため、粒界成分の割合が大きくなる。従って、第2の発明において粒子内成分と粒界成分とを比較することで、微粒子の平均径又は数をより確実に推定することができる。
 また、抵抗成分のうち、粒子内成分と粒界成分とは、共に電極間の微粒子に起因するものであり、この装置の電極等による抵抗の変動を含まない成分である。従って、第3の発明によれは、粒子内成分と粒界成分とに応じて、微粒子の量を推定することで、電極等の劣化による抵抗の変化の影響を抑え、微粒子量をより正確に推定することができる。
 第4の発明によれば、1の検知装置により、微粒子の量及びその平均径や粒子数を検出することができる。
 第5の発明によれば、微粒子が飽和状態まで堆積したことが認められた場合に、交流インピーダンスの検出が実行される。従って、微粒子の堆積過程において生じるインピーダンスの変動の影響を抑えることができ、より安定した状態で正確に微粒子の平均径や数を推定することができる。
 第6の発明によれば、変動する周波数に対するインピーダンスの抵抗成分を、微粒子の内部特性及び界面特性に起因する粒子抵抗成分と、それ以外に起因する成分とに分けて算出し、抵抗成分のうち粒子抵抗成分に応じて、微粒子の量を推定する。これにより、電極の劣化等によって生じる抵抗の変動の影響を除いて、より正確に微粒子量を検出することができる。
この発明の実施の形態1におけるシステムの全体構成について説明するための模式図である。 この発明の実施の形態1におけるPMセンサについて説明するための模式図である。 この発明の実施の形態1におけるPMセンサにPMが堆積した場合の等価回路図について説明するための模式図である。 この発明の実施の形態1におけるセンサの周波数変化に応じたインピーダンスの変化について説明するための図である。 この発明の実施の形態1におけるPMセンサの容量成分と抵抗成分の周波数変化に応じたインピーダンスの変化について説明するための図である。 この発明の実施の形態1におけるPMセンサの抵抗比と粒子径との関係を説明するための図である。 この発明の実施の形態1においてシステムが実行する制御のルーチンについて説明するためのフローチャートである。 この発明の実施の形態2における経過時間とPM堆積量について説明するための図である。 この発明の実施の形態2においてシステムが実行する制御のルーチンについて説明するためのフローチャートである。
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。
実施の形態1.
 図1はこの発明の実施の形態1におけるPMセンサの設置状態について説明するための模式図である。図1に示すように、PMセンサ2は、例えば車両等に搭載される内燃機関4の排気経路6に設置されている。PMセンサ2(微粒子検知装置)には、交流及び直流電圧を印加するための交流電源8が接続されている。PMセンサ2は、離間して配置された一対の電極10を備えている。電極10の少なくとも一部は、排ガスに接することができる状態で排気経路6内に設置される。また図示を省略するが、PMセンサ2は、電極10間のインピーダンスを検出するインピーダンス検出器や、交流周波数を検出する周波数検出器等に接続されている。
 このシステムは、制御装置12を備える。制御装置12はPMセンサ2の各種検出器等及び交流電源8に接続されている。制御装置12は、これら検出器の出力信号を受けて、PMセンサ2の交流インピーダンス等を検出すると共に、各種必要な演算等を行い、交流電源8に制御信号を発し、PMセンサ2に印加する電圧の周波数等を制御する。
 図2はこの発明の実施の形態1におけるPMセンサ2について説明するための模式図である。図2に示されるように、PMセンサ2の一対の電極10は互いに所定の空間を空けて平行に配置されている。PMセンサ2使用時は、この電極10の少なくとも一部が排ガスに接する状態で設置される。
 内燃機関4の排ガス中にはPM(particulate matter;微粒子)が存在する。PMはPMセンサ2の電極10に堆積する。図2(a)は、PMセンサ2の電極10間に堆積したPMが比較的小さい場合、図2(b)は大きい場合の例を表している。なお、図2では、PMの粒子径がほぼ一定のものが電極10間に堆積しているように表しているが、実際には堆積したPMの粒子径は区々である。図2では、簡略のためその平均的な径が比較的小さい場合(図2(a))と比較的大きい場合(図2(b))とを模式的に表している。PMセンサ2は、図2のように電極10間に堆積したPMの量とPMの平均径又はPMの数を以下のように検知する。
 PMセンサ2に交流電圧を印加した場合に生じる抵抗成分及び容量成分は、それぞれPMセンサ2内の3つの成分に分けて考えることができる。
(1)PM内部の特性に由来する成分(粒子内成分)
(2)PMとPMとの接触界面(粒界)の特性に由来する成分(粒界成分)
(3)電極10やPMセンサ2の電極やリード線等、PM以外の成分
 なお、(3)の電極等の容量成分はここでは無視することができる範囲のものである。従って、PMセンサ2は、図3に示すような等価回路図を有することとなる。図3の等価回路図において、PM内部抵抗成分R1及びPM内部容量成分C1は上記(1)のPM内部の特性に由来する成分であり、PM粒界抵抗成分R2は及びPM粒界容量成分C2は上記(2)のPM粒界特性に由来する成分であり、電極抵抗成分Reは(3)の電極等、PM以外に由来する抵抗成分を示している。
 ここで、PM内部抵抗成分R1、PM粒界抵抗成分R2及びPM内部容量成分C1、PM粒界容量成分C2は、その堆積するPMの量だけでなく、PMの径(大きさ)によって変化する。例えば、PMの粒子径が小さくなると(図2(a)のような場合)、PM粒界の面積が増加するため、PM粒界の特性が回路全体に及ぼす影響が大きくなる。従って、PM粒界成分とPM内部成分とを比較した場合に、PM粒界抵抗成分R2及びPM粒界容量成分C2の割合が大きくなり、PM内部抵抗成分R1及びPM内部容量成分C1の割合が小さくなる。
 一方、PMの粒子径が大きい場合(図2(b)のような場合)、PM内部の電子伝導性の影響が大きくなる。従って、PM粒界成分とPM内部成分とを比較した場合に、PM内部抵抗成分R1及びPM内部容量成分C1の割合が大きくなり、PM粒界抵抗成分R2及びPM粒界容量成分C2の割合が小さくなると考えられる。
 これを利用して、PM内部、PM粒界それぞれの成分による抵抗(又は容量)の大きさを検知し比較することにより、PM堆積量だけでなく、PMの平均的な粒子径を推定することができると考えられる。以上より、この実施の形態1では、(1)~(3)に示す各成分の抵抗等を、下記のように検知する。
 図4は、この発明の実施の形態1のPMセンサ2に、周波数を低周波から高周波まで一定の間隔で周波数を変化(スイープ)させて印加した場合のインピーダンスの変化を説明するための図である。図4において、横軸は周波数の対数(logf)を表し、縦軸は、インピーダンスの対数(log|z|=ΔV/ΔI)を表している。PMセンサ2に印加する交流電圧の周波数が高周波になるに連れて、インピーダンスは理想的には図4に示されるように段階的に変化する。
 図5は、図4のようにPMセンサ2に、交流電圧の周波数を連続的に変化(スイープ)させて印加した場合に検出されるPMセンサ2のインピーダンスの変化を、複素インピーダンスプロットで表した図である。横軸はインピーダンスの実数成分(抵抗成分)、縦軸は虚数成分(容量成分)を表している。
 この複素インピーダンスを表す曲線とx軸との交点から、各抵抗Ra、Rc、Rdが算出される。低周波数の印加で検出され抵抗Ra(図4の領域Aの抵抗値)は、全抵抗成分を加算した抵抗であり、Ra=Re+R1+R2となる。抵抗値Rcは、Rc=Re+R1であり、抵抗値Reは、電極抵抗成分Reである。従って、Ra、Rc、Rdの値から、それぞれR1、R2、Reが算出される。
 また、抵抗の平均値Rb=Re+R1+R2/2となるときの周波数fbを近似線や補間等に算出する。この算出値から、PM粒界容量成分C2が、R2C2=1/(2πfb)により算出される。また、抵抗の平均値Rd=Re+2/R1となるときの周波数fdを、近似線や補間等により算出する。この算出値から、PM粒界容量成分C2は、式R2C2=1/(2πfd)により算出される。
 ここで、図5における破線(a)に示されるように、粒子径が小さい場合には、PM粒界による影響が大きくなり、PM内部抵抗成分R1及びPM内部内容量成分C1が小さくなり、PM粒界抵抗成分R2及びPM粒界容量成分C2が大きくなっている。一方、図5の実線(b)に示されるように、粒子径が大きくなると、PM内部特性の影響が大きくなるため、PM内部抵抗成分R1及びPM内部容量成分C1が大きくなり、PM粒界抵抗成分R2及びPM粒界容量成分C2が小さくなっている。
 図6は、PM内部抵抗成分R1のPM粒界抵抗成分R2に対する割合と、PMの平均径との関係を表す図であり、横軸は、抵抗比R1/R2を表し、縦軸はPM平均径を表している。図6に示されるように、PM平均径は、抵抗比R1/R2に相関を有し、抵抗比R1/R2が大きくなるにつれて、即ち、PM内部抵抗成分R1の割合が大きくなるにつれて、PM平均径が大きくなる。
 実施の形態1では、抵抗比R1/R2と、PM平均径との関係を予め実験等によって求め、マップとして制御装置12に記憶しておく。内燃機関4の運転中、周波数を連続的に変化させて印加して、低周波から高周波までに渡るインピーインピーダンス値を計測し、図5に示されるようなインピーダンス特性を予測し、抵抗成分R1、R2を算出する。その後、抵抗比R1/R2を算出することで、PM粒子径を算出する。
 またPMセンサ2の抵抗は、電極10間に堆積したPM量に応じて変化する。但し、上記のようにPMセンサ2の抵抗の変化にはPM以外の成分である電極抵抗成分Reの変動が含まれている。従って、この実施の形態1においては、電極10に堆積したPMが飽和状態となったときに燃焼処理し、この燃焼処理を行なう度に、燃焼処理直後の初期抵抗Riを検出しておく。PM燃焼処理により電極10にPMが堆積していない状態となることから、この抵抗は電極抵抗成分Reに相当するものと考えられる。
 粒子量の検出では、PMセンサ2に直流電圧を印加し(実抵抗)Rmを検出した上で、実抵抗Rmから初期抵抗Riを除いた抵抗Rm-Riに基づいて粒子量を検出する。これにより電極抵抗成分Re分に相当する抵抗を除くことができるため、電極等の劣化による影響を抑えて、PM堆積量を正しく推定することができる。なお、抵抗Rm-Riと、PM堆積量との関係は、予め実験等により求め、制御装置12にマップとして記憶しておく。実際のPM堆積量の検出においては、検出された抵抗Rm-Riに応じて、マップに従ってPM量が算出される。また、この実施の形態1では、PMの平均径とPM量とが同時に求められるため、PM粒子数をも算出することができる。
 図7はこの発明の実施の形態1において制御装置が実行する制御のルーチンである。図7のルーチンは内燃機関4の運転中、一定期間ごとに繰り返し実行されるルーチンである。図7のルーチンでは、まず、内燃機関4が始動しているかどうかが検出される(S12)。内燃機関4が停止中であればPMの検知が不要であるため、今回のルーチンは終了する。
 一方、内燃機関4が始動していることが認められると、次に、PMセンサ2が正常な状態にあるかどうかが判別される(S14)。ここでは、例えば、PMセンサ2がまだ活性温度にまで暖機されていないような場合には、正常状態が認められない。このようにPMセンサ2が正常であることが認められない場合、今回のルーチンが終了する。
 一方、ステップS14において、PMセンサ2が正常であることが認められると、次に、初期抵抗Riが読み出される。初期抵抗Riは、新品の段階では、PMセンサ2に直流電圧を印加した場合の抵抗に設定されており、その後、このルーチンが実行されると、後述の処理において検出され更新される値である。
 次に、電極10間に直流電圧を印加した場合の実抵抗Rmが検出される(S18)。次に、PM堆積量が算出される(S20)。PM堆積量は、実抵抗Rmから初期抵抗Riを減算した抵抗Rm-Riに基づき算出される。初期抵抗Riは、電極10にPMが堆積していない状態で検出されるインピーダンスである。従って、抵抗Rm-Riに応じて、堆積PM量を求めることで、正確にPM量が算出される。具体的には、制御装置12は、予め記憶されている抵抗とPM量との相関を示すマップに従って、抵抗Rm-Riに応じた堆積PM量を算出する。
 次に、インピーダンスの計測が実行される(S22)。ここでは、周波数を連続的に変化させながら交流電圧を印加して、インピーダンスを検出する。これにより、抵抗成分R1、R2が検出される。
 次に、PMの平均径が演算される(S24)。PM平均径は、抵抗成分R1、R2の比に応じて、予め制御装置12に記憶されたマップに従って算出される。次に、PMの粒子数が算出される(S26)。粒子数は、PM堆積量を、平均径から求められる体積で除算することにより求められる。
 次に、PM堆積が飽和していないか否かが判別される(S28)。具体的には、ステップS18で求められた実抵抗Rmが第1基準抵抗ref1より小さくなっているか否かが判別される。第1基準抵抗ref1は、予め制御装置12に記憶された値であり、PMセンサ2のPM堆積量が飽和した場合に示す抵抗のうち最大値付近の値に設定されている。ステップS28において、実抵抗Rm<第1基準抵抗ref1の成立が認められない場合、このまま今回の処理が終了する。
 一方、ステップS28において、実抵抗Rm<第1基準抵抗ref1の成立が認められた場合、次に、電極に堆積したPMの燃焼処理が実行される(S30)。次に、実抵抗Rmが検出される(S32)。
 次に、検出された実抵抗Rmが、第2基準抵抗ref2より大きいか否かが判別される(S34)。ここで第2基準抵抗ref2は、予め制御装置12に記憶された値であり、PMセンサ2にPMが堆積していない状態の時に、PMセンサ2が示す抵抗の最小値付近の値に設定されている。
 ステップS34において、実抵抗Rm>第2基準抵抗ref2の成立が認められない場合、まだPMの燃焼処理が十分でないと推測されるため、再び、ステップS30に戻り、一定時間PMの燃焼処理(S30)が行なわれ、実抵抗Rmの検出(S32)、ステップS34の判別が実行される。このPM燃焼処理(S30)、実抵抗Rmの検出(S32)と、PMが燃焼されたか否かの判別(S34)は、実抵抗Rm>第2基準抵抗ref2の成立が認められるまでの間、繰り返し実行される。
 一方、ステップS34において実抵抗Rm>第2基準抵抗ref2の成立が認められると、PMの燃焼が完了したと判断できるため、次に、現在の実抵抗Rmの値が、初期抵抗Riとして記憶される(S36)。その後、今回の処理が終了する。
 以上説明したように、この実施の形態1によれば、周波数を連続的に変化させ、それに応じたインピーダンスの変化を検出することで、PM内部及び粒界に起因する抵抗をそれぞれ分けて検出することができる。従って、PM堆積量のみならず、PMの平均径、PM粒子数を検知することができる。
 また、この実施の形態1では、周波数を連続的に変化させて交流電圧を印加してインピーダンスを計測し、電極10等に起因する抵抗と、PM(内部及び粒界)に起因する抵抗とを分けて検出することができる。従って、検知された抵抗や容量から、電極10等に起因する抵抗成分を除去することができる。これにより、電極の劣化等によって生じるPMセンサ2の誤差の影響を除くことができPM平均径、PM粒子数を、より正確に推定することができる。
 しかし、この発明はこのように電極10等の劣化の影響を除去できるものに限るものではなく、例えば、電極10等の劣化を考慮せずに、PM平均径やPM粒子数の推定をするセンサをも含む。
 また、この実施の形態1では、測定時のインピーダンスである実抵抗Rmから、PM燃焼直後のインピーダンスとして記憶されている初期抵抗Riを減算し、抵抗Rm-Riに基づいてPM堆積量を算出する。これによって、PM堆積量についても、電極等の劣化によって生じるPMセンサ2の誤差の影響を除くことができ、正確な推定を行なうことができる。
 なお、この実施の形態1では、PM堆積量については、PM平均径の算出のためのインピーダンス計測とは別に、予め直流電圧を印加した場合の抵抗(実抵抗Rm及び初期抵抗Ri)を検出して求める場合について説明した。しかし、例えば、所定の周波数の交流電圧を印加した場合のインピーダンスから抵抗成分を検出し、これに応じてPM堆積量を検出するものであってもよい。
 また、PM平均径算出のためのインピーダンス計測において求められるPM内部抵抗成分R1及びPM粒界抵抗成分R2(粒子抵抗成分)に応じて、PM堆積量を推定することもできる。このようにしても、電極抵抗成分Reを除いてPM量を算出することができるため、電極等の劣化の影響を除去して、PM堆積量を推定することができる。
 また、この発明は、PM平均径やPM粒子数を推定するセンサを含まず、PM堆積量のみを検出するセンサとして利用することもできる。このようにしても、実抵抗Rmから初期抵抗Riを減算した抵抗を用いるか、あるいはPM粒子に起因する抵抗成分R1及びR2のみを用いることにより、電極10等の劣化等による影響を抑えることができ、正確にPM堆積量の検出をすることができる。
 但し、この発明はこれらのように電極10等の劣化の影響を除去できるものに限るものではなく、例えば、電極10等の劣化を考慮せずに、PM堆積量の推定をするセンサをも含む。
 また、この実施の形態1においては、PM内部抵抗成分R1とPM粒界抵抗成分R2との比に応じて、PM平均径を推定する場合について説明した。しかし、図5に示されるように、容量成分についても、PMが大きい場合には、PM内部容量成分C1が大きくなり、PMが小さい場合にはPM粒界容量成分C2が大きくなる。従って、容量成分C1、C2を比較することで、PM平均径を算出することもできる。なお、容量成分C1、C2は、上記したように、抵抗Rb、Rdとそのときの周波数fb、fdを算出することにより、それぞれ算出することができる。
 また、この実施の形態1においては、周波数を連続的に変化させて、低周波数から高周波数に渡る交流電圧に対するインピーダンス値を検出することで、おおよそのインピーダンス特性を予測して、各抵抗成分R1、R2、容量成分C1、C2を分離して検出する場合について説明した。しかし、この発明は、これに限るものではなく、例えば、各抵抗成分R1、R2、Re及び容量成分C1、C2を推定できる周波数を予め複数特定し、設定された周波数の交流電圧のみを印加することとしてもよい。この周波数は、例えば2点~3点のみの周波数であってもよい。より具体的に例えば、図4における抵抗値Ra、Rc、Reに対応する周波数fa、fc、feの取る範囲は、ある程度予測可能である。従って、この予測される範囲内の周波数を定めておいて、定められた周波数の交流電圧を印加することで、抵抗成分R1、R2、Re等を推測することもできる。
 なお、ステップS18の処理が実行されることで、この発明の「電極間抵抗検出手段」が実現し、ステップS20の処理が実行されることで「微粒子量推定手段」が実現し、ステップS22の処理が実行されることで「交流インピーダンス検出手段」が実現し、ステップS24又はS26が実行されることで「微粒子径推定手段」が実現する。
実施の形態2.
 実施の形態2のシステムは、PM粒子数算出のタイミングを特定する点を除いて、実施の形態1のシステムと同様のものである。図8は、PMセンサ2のPM堆積量と経時変化を説明するための図である。図8において横軸は時間を表し、縦軸はPM堆積量を表している。
 図8に示されるように、PMセンサ2へのPM堆積量は、時間と共に増加するが、飽和状態になるとそれ以上増加せず、一定となる。また、PMセンサ2の抵抗は、PM堆積量に応じて変化するため、飽和状態となってPM堆積量が一定になると、抵抗も変化せず一定となる。
 この実施の形態2では、PMセンサ2の実抵抗Rmが飽和状態を示す抵抗となったときに、周波数を連続的に変化させた交流電圧を印加してインピーダンスの計測を実行する。これにより、各インピーダンスを安定して計測することができ、より正確にPM平均径、PM粒子数を推定することができる。
 図9は、この発明の実施の形態2においてシステムが実行する制御のルーチンである。図9のルーチンは、ステップS28の処理が、ステップS20の直後に実行される点を除いて、図7のルーチンと同じものである。
 具体的に、ステップS20において実施の形態1と同様にPM堆積量が算出された後、次に、ステップS40において、現在のPM堆積量が飽和状態であるか否か、即ち、実抵抗Rm-初期抵抗Ri<第1基準抵抗ref1の成立が認められるか否かが判別される(S40)。ここで、抵抗Ra-初期抵抗Ri<第1基準抵抗ref1の成立が認められない場合、現在、PM堆積が飽和状態となっていないと判断されるため、インピーダンスの計測等が実行されることなく、今回の処理がこのまま終了する。
 一方、実抵抗Rm-初期抵抗Ri<第1基準抵抗ref1の成立が認められると、次に、実施の形態1と同様に、インピーダンスの計測(S22)、PM平均径、PM粒子数の演算(S24、S26)が実行される。その後、続けて、PM燃焼処理等、ステップS30~S36の処理が実施の形態1と同様に実行される。
 以上説明したように、この実施の形態2のシステムによれば、PM堆積量が飽和状態となった時に、PM平均径、粒子数の検知が行なわれる。これにより、検出されるインピーダンスの値が安定するため、より正確にPM平均径及び粒子数を推定することができる。 
 なお、ステップS40において、実抵抗Rm-初期抵抗Ri<第1基準抵抗ref1の成立が認められるか否かに基づく判断を行なう場合について説明した。しかし、ここでは、電極10のPM堆積が飽和状態となっているか否かが判別できればよいため、このように抵抗値に基づく判断をするものに限るものではない。
 例えば、ステップS20において算出されたPM堆積量が、飽和状態を示す基準堆積量より大きいか否かで判別することもできる。また、ステップS18で実抵抗Rmを一定時間ごとに数回検出した場合に、その実抵抗Rmの変化量が所定の基準より小さな極小さな量になった場合に、飽和状態を判断することもできる。また、例えば、前回PM燃焼処理をしてからのセンサの稼動時間が、飽和状態を予想する基準経過時間以上となったか否かで判別するようにするなど、ある程度、飽和状態であることが推定される判別を行なうものであればよい。
 なお、この実施の形態2において、ステップS40の処理が実行されることにより、この発明の「飽和状態判別手段」が実現する。
 2  PMセンサ
 8  交流電源
 10  電極
 12  制御装置
 C1  PM内部容量成分
 C2  PM粒界容量成分
 R1  PM内部抵抗成分
 R2  PM粒界抵抗成分
 Re  電極抵抗成分
 ref1 第1基準抵抗
 ref2 第2基準抵抗
 Ri  初期抵抗
 Rm  実抵抗

Claims (6)

  1.  気体中の微粒子を測定する微粒子検知装置であって、
     離間して配置された一対の電極に印加される交流電圧の、周波数を制御する周波数制御手段と、
     周波数の異なる交流電圧が印加された場合の、各周波数に対するインピーダンスを検出する交流インピーダンス検出手段と、
     前記各周波数に対するインピーダンスの、抵抗成分及び/又は容量成分を算出する成分算出手段と、
     前記抵抗成分及び/又は前記容量成分の変化に応じて、気体中の微粒子の平均径及び/又は微粒子の数を推定する微粒子径推定手段と、
     を備えることを特徴とする微粒子検知装置。
  2.  前記成分算出手段は、前記抵抗成分及び/又は前記容量成分のうち、
     微粒子の内部特性に起因する粒子内成分と、
     微粒間の界面特性に起因する粒界成分と、
     を算出し、
     前記微粒子径推定手段は、前記粒子内成分と前記粒界成分との比較結果に応じて、前記微粒子の平均径及び/又は微粒子の数を推定することを特徴とする請求項1に記載の微粒子検知装置。
  3.  前記抵抗成分のうち、前記粒子内成分と前記粒界成分とに応じて、気体中の微粒子の量を推定する微粒子量推定手段を、更に備えることを特徴とする請求項2に記載の微粒子検知装置。
  4.  前記電極間の抵抗を検出する電極間抵抗検出手段と、
     検出された電極間の抵抗に応じて、気体中の微粒子の量を推定する微粒子量推定手段と、
     を、更に備えることを特徴とする請求項1又は2に記載の微粒子検知装置。
  5.  推定された微粒子の量が、飽和状態を示す基準量に達しているか否かを判別する飽和状態判別手段を更に備え、
     前記交流インピーダンス検出手段は、前記微粒子の量が前記基準量に達していると判別された場合に、インピーダンスの検出を実行することを特徴とする請求項4に記載の微粒子検知装置。
  6.  気体中の微粒子を測定する微粒子検知装置であって、
     離間して配置された一対の電極に印加される交流電圧の、周波数を制御する周波数制御手段と、
     周波数の異なる交流電圧を印加して、各周波数に対するインピーダンスを検出する交流インピーダンス検出手段と、
     前記各周波数に対するインピーダンスの抵抗成分を、微粒子の内部特性及び界面特性に起因する粒子抵抗成分と、それ以外に起因する成分とに分けて算出する粒子抵抗成分算出手段と、
     前記抵抗成分のうち前記粒子抵抗成分に応じて、微粒子の量を推定する微粒子量推定手段と、
     を、備えることを特徴とする微粒子検知装置。
PCT/JP2010/050158 2010-01-08 2010-01-08 微粒子検知装置 WO2011083581A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080002201.5A CN102187210B (zh) 2010-01-08 2010-01-08 微粒检测装置
PCT/JP2010/050158 WO2011083581A1 (ja) 2010-01-08 2010-01-08 微粒子検知装置
US13/057,174 US8736284B2 (en) 2010-01-08 2010-01-08 Particulate matter detection device
EP10801549.6A EP2525215B1 (en) 2010-01-08 2010-01-08 Particle detection device
JP2010545324A JP5141777B2 (ja) 2010-01-08 2010-01-08 微粒子検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050158 WO2011083581A1 (ja) 2010-01-08 2010-01-08 微粒子検知装置

Publications (1)

Publication Number Publication Date
WO2011083581A1 true WO2011083581A1 (ja) 2011-07-14

Family

ID=44305325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050158 WO2011083581A1 (ja) 2010-01-08 2010-01-08 微粒子検知装置

Country Status (5)

Country Link
US (1) US8736284B2 (ja)
EP (1) EP2525215B1 (ja)
JP (1) JP5141777B2 (ja)
CN (1) CN102187210B (ja)
WO (1) WO2011083581A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096725A (ja) * 2011-10-28 2013-05-20 Toyota Motor Corp ペーストの評価装置及び評価方法
JP2013527463A (ja) * 2010-06-01 2013-06-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 排ガス流中の粒子を検出するための方法および粒子センサ
WO2016052734A1 (ja) * 2014-10-02 2016-04-07 株式会社デンソー フィルタの故障検出装置、粒子状物質検出装置
JP2016075668A (ja) * 2014-10-02 2016-05-12 株式会社日本自動車部品総合研究所 フィルタの故障検出装置、粒子状物質検出装置
WO2018110660A1 (ja) * 2016-12-15 2018-06-21 株式会社Soken 粒子状物質検出装置
JP2018096992A (ja) * 2016-12-15 2018-06-21 株式会社Soken 粒子状物質検出装置
CN111537408A (zh) * 2020-05-19 2020-08-14 北京林业大学 一种在线测定水环境中颗粒物粒径的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333383B2 (ja) 2010-08-31 2013-11-06 株式会社デンソー センサ制御装置
KR102038102B1 (ko) * 2013-03-07 2019-10-30 삼성디스플레이 주식회사 압착 품질 검사용 저항 측정 장치 및 이를 이용한 측정 방법
RU2555353C1 (ru) * 2014-03-04 2015-07-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Донской Государственный Технический Университет" (Дгту) Устройство определения спектра размеров взвешенных наночастиц
CN111257174A (zh) * 2014-09-19 2020-06-09 3达特安克斯公司 微粒物质/数同步测量装置
KR20160149898A (ko) 2015-06-19 2016-12-28 현대자동차주식회사 입자상 물질 센서
US9964481B2 (en) * 2015-09-04 2018-05-08 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing
US9951672B2 (en) * 2015-11-10 2018-04-24 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing
JP6589613B2 (ja) 2015-12-10 2019-10-16 いすゞ自動車株式会社 リアクタンス測定装置
KR101724499B1 (ko) 2015-12-11 2017-04-07 현대자동차 주식회사 입자상 물질 센서 및 이를 이용한 측정방법
DE102016223069A1 (de) 2016-11-23 2018-05-24 Robert Bosch Gmbh Verfahren zum Betrieb eines Sensorelements zur Erfassung von Partikeln eines Messgases in einem Messgasraum
JP6958863B2 (ja) * 2018-06-27 2021-11-02 矢崎総業株式会社 電気的接続部の劣化度合診断装置、及び、劣化度合診断方法
US11506631B2 (en) * 2020-01-03 2022-11-22 Southwest Research Institute Gas and particle sensor using voltage and current behavior between electrodes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128979A (ja) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd NOxセンサおよびNOx検出方法
JP2005512042A (ja) * 2001-12-03 2005-04-28 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 粒子インピーダンスセンサ
JP2006515066A (ja) 2003-11-18 2006-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ガス流中の粒子を検出するためのセンサならびに該センサを製造するための方法
JP2008064621A (ja) * 2006-09-07 2008-03-21 Ngk Insulators Ltd 微粒子センサ
WO2008096853A1 (ja) * 2007-02-09 2008-08-14 Ngk Insulators, Ltd. 流体中の微粒子濃度測定機、測定方法および測定プログラム
JP2009023883A (ja) * 2007-07-20 2009-02-05 Shin Imayado プロトン伝導体
JP2009031213A (ja) * 2007-07-30 2009-02-12 Toyota Motor Corp 酸素センサの異常診断装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710615A (en) * 1971-03-25 1973-01-16 Trw Inc Acoustic particle concentration measuring instrument and method
JPS57192856A (en) * 1981-05-25 1982-11-27 Ngk Insulators Ltd Oxygen concentration detector
CA2229528A1 (en) * 1998-02-13 1999-08-13 Shailesh Mehta Apparatus and method for analyzing particles
DE10133384A1 (de) * 2001-07-10 2003-01-30 Bosch Gmbh Robert Sensor zur Detektion von Teilchen und Verfahren zu dessen Funktionskontrolle
JP2006064621A (ja) * 2004-08-30 2006-03-09 Horiba Ltd 粒子径分布測定装置
JP2007078520A (ja) 2005-09-14 2007-03-29 Ngk Insulators Ltd 微粒子捕集フィルタ及びフィルタユニット
JP4925835B2 (ja) * 2007-01-12 2012-05-09 日東電工株式会社 物質検知センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128979A (ja) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd NOxセンサおよびNOx検出方法
JP2005512042A (ja) * 2001-12-03 2005-04-28 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 粒子インピーダンスセンサ
JP2006515066A (ja) 2003-11-18 2006-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ガス流中の粒子を検出するためのセンサならびに該センサを製造するための方法
JP2008064621A (ja) * 2006-09-07 2008-03-21 Ngk Insulators Ltd 微粒子センサ
WO2008096853A1 (ja) * 2007-02-09 2008-08-14 Ngk Insulators, Ltd. 流体中の微粒子濃度測定機、測定方法および測定プログラム
JP2009023883A (ja) * 2007-07-20 2009-02-05 Shin Imayado プロトン伝導体
JP2009031213A (ja) * 2007-07-30 2009-02-12 Toyota Motor Corp 酸素センサの異常診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2525215A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527463A (ja) * 2010-06-01 2013-06-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 排ガス流中の粒子を検出するための方法および粒子センサ
JP2013096725A (ja) * 2011-10-28 2013-05-20 Toyota Motor Corp ペーストの評価装置及び評価方法
WO2016052734A1 (ja) * 2014-10-02 2016-04-07 株式会社デンソー フィルタの故障検出装置、粒子状物質検出装置
JP2016075668A (ja) * 2014-10-02 2016-05-12 株式会社日本自動車部品総合研究所 フィルタの故障検出装置、粒子状物質検出装置
WO2018110660A1 (ja) * 2016-12-15 2018-06-21 株式会社Soken 粒子状物質検出装置
JP2018096992A (ja) * 2016-12-15 2018-06-21 株式会社Soken 粒子状物質検出装置
CN110114660A (zh) * 2016-12-15 2019-08-09 株式会社电装 颗粒状物质检测装置
CN111537408A (zh) * 2020-05-19 2020-08-14 北京林业大学 一种在线测定水环境中颗粒物粒径的方法

Also Published As

Publication number Publication date
CN102187210A (zh) 2011-09-14
JP5141777B2 (ja) 2013-02-13
CN102187210B (zh) 2014-05-14
EP2525215B1 (en) 2019-02-27
JPWO2011083581A1 (ja) 2013-05-13
EP2525215A4 (en) 2014-08-13
US8736284B2 (en) 2014-05-27
EP2525215A1 (en) 2012-11-21
US20110285410A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5141777B2 (ja) 微粒子検知装置
US8035404B2 (en) Method for influencing soot deposits on sensors
US8640526B2 (en) Method and device for operating a particle sensor
JP5094702B2 (ja) 粒子状物質検出装置
JP5553114B2 (ja) 内燃機関の制御装置
JP4742133B2 (ja) 粒子状物質検出装置および粒子状物質検出方法
JP5707982B2 (ja) 電池状態推定装置
JP2015511286A (ja) ガスセンサをダイナミック監視する方法および装置
KR101724499B1 (ko) 입자상 물질 센서 및 이를 이용한 측정방법
JPWO2012023182A1 (ja) 内燃機関の制御装置
JP5553115B2 (ja) 内燃機関の制御装置
JP6440834B2 (ja) 粒子を検出するセンサの機能制御のための方法
WO2019151295A1 (ja) オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム
JP2012026749A (ja) 電池状態推定装置
JP5299522B2 (ja) 濃度検出装置
KR20230008808A (ko) 측정 가스의 적어도 하나의 특성을 검출하는 센서 및 센서 작동 방법
JP2019086396A (ja) 制御装置
JP2012127268A (ja) 内燃機関の制御装置
JP2012159511A (ja) 化学感応性電界効果トランジスタの少なくとも1つの動作の仕方を監視するための方法および監視装置
JP2016540965A (ja) 電圧−電流時間差分を用いる電気化学センシング
KR20190071406A (ko) 정전용량 방식 pm 센서의 정확성 향상 방법 및 장치
KR102443748B1 (ko) 측정 가스 챔버 내의 측정 가스의 입자를 검출하기 위한 센서 요소를 작동시키는 방법
KR20230073321A (ko) 내연 기관의 배기 가스 영역에 배치된 센서의 모니터링 방법
EP1754970A2 (en) Technique for reducing a parasitic DC bias voltage on a sensor
JP2019211291A (ja) バッテリ容量推定装置、およびバッテリ容量推定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002201.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010545324

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010801549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13057174

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE