WO2019151295A1 - オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム - Google Patents

オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム Download PDF

Info

Publication number
WO2019151295A1
WO2019151295A1 PCT/JP2019/003090 JP2019003090W WO2019151295A1 WO 2019151295 A1 WO2019151295 A1 WO 2019151295A1 JP 2019003090 W JP2019003090 W JP 2019003090W WO 2019151295 A1 WO2019151295 A1 WO 2019151295A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
resistance value
state
determination
capacitance
Prior art date
Application number
PCT/JP2019/003090
Other languages
English (en)
French (fr)
Inventor
正隼 佐々木
恭輝 淺川
本田 知己
Original Assignee
センスプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by センスプロ株式会社 filed Critical センスプロ株式会社
Priority to DE112019000615.0T priority Critical patent/DE112019000615T5/de
Priority to US16/966,443 priority patent/US11802863B2/en
Priority to JP2019569161A priority patent/JP6910037B2/ja
Publication of WO2019151295A1 publication Critical patent/WO2019151295A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Definitions

  • the present disclosure generally relates to an oil state determination system, an oil state determination method, and an oil state determination program.
  • the present disclosure particularly relates to an oil state determination system, an oil state determination method, and an oil state determination program that determine whether or not the oil state has changed.
  • Patent Document 1 discloses an oil deterioration detection device.
  • this oil deterioration detection device two electrode plates are installed in parallel to each other in the oil flow path, the current flowing when an AC voltage is applied between the two electrode plates is measured by an ammeter, and signal processing is performed. The voltage between the plates is measured with a voltmeter by the unit (processing means). And based on the measurement result by an ammeter and a voltmeter, the electrical conductivity and electrostatic capacity of oil are calculated
  • Patent Document 1 an allowable range from an upper limit value to a lower limit value is set in advance for the conductivity and capacitance of the oil. Such tolerance can depend on the type of oil. Therefore, if the allowable range is not appropriately set according to the type of oil each time, the determination accuracy of the change in the oil state can be lowered.
  • An object of the present disclosure is to provide an oil state determination system, an oil state determination method, and an oil state determination program that can suppress a decrease in determination accuracy caused by the type of oil.
  • An oil state determination system includes a resistance value measurement unit that measures a resistance value of the oil by applying a measurement voltage between a pair of measurement electrodes that are in contact with the oil, and a change in the resistance value of the oil And a determination unit that determines that the state of the oil has changed when the tendency is reversed.
  • the oil state determination method determines that the oil state has changed when the change tendency of the resistance value of the oil is reversed.
  • the oil state determination program is a program that causes one or more processors to execute the oil state determination method described above.
  • FIG. 1 is a schematic diagram of an oil state determination system according to an embodiment.
  • FIG. 2 is a graph of the change over time in the conductivity of oil.
  • FIG. 3 is a graph of the change over time in the electrical conductivity of the oil, and particularly shows the case where the oil has been added.
  • FIG. 4 is a diagram showing a part of a flowchart of the operation of the oil state determination system.
  • FIG. 5 is a diagram showing the remaining part of the flowchart.
  • FIG. 1 shows an oil state determination system 10 according to an embodiment.
  • the oil state determination system 10 includes a resistance value measurement unit 11 and a determination unit 14.
  • the resistance value measuring unit 11 is configured to measure the resistance value of the oil 30 by applying a measurement voltage between the pair of measurement electrodes 21 and 21 in contact with the oil 30.
  • the determination unit 14 is configured to determine that the state of the oil 30 has changed when the change tendency of the resistance value of the oil 30 is reversed.
  • the oil state determination system 10 it is determined whether or not the state of the oil 30 has changed depending on whether or not the change tendency of the resistance value of the oil 30 has been reversed. That is, the oil state determination system 10 uses a relative value rather than an absolute value of the resistance value of the oil 30. Therefore, even if the initial resistance value varies depending on the type of oil 30, it can be determined whether the state of the oil 30 has changed. Thereby, it is possible to suppress a decrease in determination accuracy due to the type of oil 30.
  • the oil state determination system 10 is a system for determining whether or not the state of the oil 30 has changed.
  • the oil 30 is, for example, lubricating oil.
  • the oil 30 is assumed to be an engine oil used for a vehicle (automobile).
  • the oil state determination system 10 is connected to the sensor head 20 as shown in FIG.
  • the oil state determination system 10 determines the state of the oil 30 using the output from the sensor head 20.
  • the sensor head 20 has a pair of measurement electrodes 21, a pair of counter electrodes 22, and a temperature detection element 23.
  • the pair of measurement electrodes 21 is used for measuring the resistance value (impedance, particularly reactance) of the oil 30.
  • the pair of measurement electrodes 21 are comb electrodes.
  • the pair of measurement electrodes 21 can be formed, for example, by patterning a conductive layer formed on one surface of a substrate into a desired shape using lithography and etching techniques.
  • the pair of counter electrodes 22 is used for measuring the capacitance caused by the oil 30.
  • Each of the pair of counter electrodes 22 has a rectangular flat plate shape.
  • the pair of counter electrodes 22 are arranged so that the length direction, the width direction, and the thickness direction thereof coincide with each other and are opposed to each other in the respective thickness directions.
  • the pair of counter electrodes 22 face each other so that there is a space 221 into which the oil 30 enters.
  • One of the pair of counter electrodes 22 can be formed on a surface opposite to the pair of measurement electrodes 21 on the substrate on which the pair of measurement electrodes 21 is formed.
  • the other of the pair of counter electrodes 22 may be constituted by a part of a case that accommodates the substrate.
  • the temperature detection element 23 is used for measuring the temperature of the oil 30.
  • the temperature detection element 23 is, for example, a thermistor.
  • Such a sensor head 20 is used in a state where it is immersed in the oil 30 in the oil storage 40 as shown in FIG.
  • the sensor head 20 is used in a state where part or all of the sensor head 20 is immersed in the oil 30.
  • the sensor head 20 is disposed below the oil storage 40. Thereby, at least a part of the sensor head 20 is likely to be immersed in the oil 30.
  • the sensor head 20 is preferably arranged so that the longitudinal direction of each of the pair of counter electrodes 22 intersects (preferably orthogonally) the horizontal direction. In this way, the change in the amount of the oil 30 is easily reflected in the change in the capacitance of the oil 30 measured by the pair of counter electrodes 22.
  • the oil storage 40 is assumed to be an oil pan for engine oil.
  • the oil state determination system 10 includes a resistance value measurement unit 11, a capacitance measurement unit 12, a temperature measurement unit 13, a determination unit 14, and an output unit 15.
  • the resistance value measurement unit 11 is configured to measure the resistance value of the oil 30 by applying a measurement voltage between the pair of measurement electrodes 21 in contact with the oil 30.
  • the resistance value measuring unit 11 measures the resistance value of the oil 30 at predetermined time intervals.
  • the resistance value measurement unit 11 may measure the resistance value of the oil 30 a plurality of times at a time interval shorter than a predetermined time interval. In this case, the resistance value measuring unit 11 may output an average value of the measured resistance values of the plurality of oils 30.
  • the resistance value measuring unit 11 measures the current flowing between the pair of measurement electrodes 21 while applying the measurement voltage between the pair of measurement electrodes 21.
  • the resistance value measurement unit 11 obtains a resistance value (impedance) between the pair of measurement electrodes 21 from the measured current.
  • the resistance value between the pair of measurement electrodes 21 may be regarded as the resistance value of the oil 30.
  • the measurement voltage is an alternating voltage. Note that the measurement voltage is not necessarily an AC voltage, and may be a DC voltage. However, the measurement voltage is preferably a voltage that varies with time even if it is a DC voltage.
  • the capacitance measuring unit 12 measures the capacitance between the pair of counter electrodes 22 by applying an alternating voltage of a predetermined frequency between the pair of counter electrodes 22 facing each other so that there is a space 221 into which the oil 30 enters. Configured as follows.
  • the capacitance measuring unit 12 measures the capacitance at a predetermined time interval. In one measurement, the capacitance measuring unit 12 may measure the capacitance multiple times at a time interval shorter than a predetermined time interval. In this case, the capacitance measuring unit 12 may output an average value of the plurality of measured capacitances.
  • the capacitance measuring unit 12 is configured to switch the predetermined frequency between a first frequency and a second frequency higher than the first frequency.
  • the alternating voltage of the first frequency is a low frequency
  • the alternating voltage of the second frequency is a high frequency.
  • the first frequency is a frequency for determining the dielectric constant of the oil 30.
  • the second frequency is a frequency for determining the amount of the oil 30.
  • the first frequency is a value in the range of 100 [Hz] to 1 k [Hz]
  • the second frequency is in the range of 10 k [Hz] to 100 k [Hz].
  • the capacitance measured by applying an alternating voltage of the first frequency between the pair of counter electrodes 22 is referred to as low-frequency capacitance
  • the capacitance measured by applying an AC voltage between the pair of counter electrodes 22 is referred to as a high frequency capacitance.
  • the temperature measuring unit 13 is configured to measure the temperature of the oil 30. More specifically, the temperature measurement unit 13 measures the temperature of the oil 30 based on the output from the temperature detection element 23. The temperature measurement unit 13 measures the temperature of the oil 30 at predetermined time intervals. In one measurement, the temperature measurement unit 13 may measure the temperature of the oil 30 a plurality of times at a time interval shorter than a predetermined time interval. In this case, the temperature measurement unit 13 may output an average value of the measured temperatures of the plurality of oils 30.
  • the determination unit 14 receives the resistance value of the oil 30 from the resistance value measurement unit 11 and stores it. Accordingly, the determination unit 14 stores time series data of the resistance value of the oil 30. The determination unit 14 is configured to determine a change in the state of the oil 30 based on the time series data of the resistance value of the oil 30.
  • the usage time is a time during which the oil 30 is actually used. In the case of engine oil, this corresponds to the time during which the vehicle is running by the engine.
  • the resistance value of the oil 30 there are a time point t1 when the change tendency of the resistance value of the oil 30 changes from an increasing tendency to a decreasing tendency, and a time point t2 when the changing tendency of the oil 30 changes from a decreasing tendency.
  • the increase in the resistance value of the oil 30 up to the time point t1 is attributed to the consumption (decrease) of the additive contained in the oil 30.
  • the decrease in the resistance value of the oil 30 from the time point t1 to the time point t2 is caused by oxidation of the oil 30 (an increase in oxidation products).
  • the increase in the resistance value of the oil 30 from the time point t2 is caused by the increase in sludge.
  • the change in the resistance value of the oil 30 is classified into a phase T1 in which the additive in the oil 30 is consumed, a phase T2 in which the oil 30 is oxidized, and a phase T3 in which sludge in the oil 30 increases. Can be done. And the change tendency of the resistance value of the oil 30 is reversed between phases. Therefore, whether or not the change in the state of the oil 30 has occurred can be determined based on whether or not the change tendency of the resistance value of the oil 30 is reversed.
  • the determination unit 14 is configured to determine that the state of the oil 30 has changed when the change tendency of the resistance value of the oil 30 is reversed.
  • the determination unit 14 determines that the oxidation of the oil 30 has occurred when the change tendency of the resistance value of the oil 30 changes from a decreasing tendency to an increasing tendency.
  • the determination unit 14 determines the change tendency of the resistance value of the oil 30 based on the difference between the resistance value of the oil 30 at the first time point and the resistance value of the oil 30 at the second time point next to the first time point. Configured as follows.
  • the difference between the resistance value of the oil 30 at the first time point and the resistance value of the oil 30 at the second time point after the first time point is the resistance value of the oil 30 at the adjacent time point in the time series data of the resistance value of the oil 30. It is a difference. As an example, it is a value obtained by subtracting the previous resistance value of the oil 30 from the resistance value of the current oil 30. Therefore, a positive difference indicates that the resistance value of the oil 30 has increased, and a negative difference indicates that the resistance value of the oil 30 has decreased. According to this, the determination accuracy of the change in the state of the oil 30 can be improved.
  • the determination unit 14 is configured to determine a change tendency of the resistance value of the oil 30 when the resistance value of the oil 30 continuously changes in the same direction (positive direction or negative direction) a predetermined number of times. For example, when the difference is positive for a predetermined number of times, the determination unit 14 determines that the change tendency of the resistance value of the oil 30 is increasing. Conversely, when the difference is negative for a predetermined number of times, the determination unit 14 determines that the change tendency of the resistance value of the oil 30 is a decreasing tendency. According to this, the influence of noise or the like can be removed, and the change tendency of the resistance value of the oil 30 can be determined more accurately.
  • the predetermined number of times is not particularly limited, but is 3 to 5 times as an example.
  • the determination unit 14 ⁇ ⁇ ⁇ ⁇ receives and stores the capacitance between the pair of counter electrodes 22 (low frequency capacitance and high frequency capacitance) from the capacitance measurement unit 12. Accordingly, the determination unit 14 stores time series data of the capacitance (low frequency capacitance and high frequency capacitance) between the pair of counter electrodes 22. The determination unit 14 is configured to determine a change in the state and amount of the oil 30 based on the time series data of the capacitance between the pair of counter electrodes 22.
  • the determination unit 14 is configured to determine that the state of the oil 30 has changed when the capacitance of the oil 30 becomes equal to or greater than a threshold value.
  • the capacitance measuring unit 12 measures a low frequency capacitance and a high frequency capacitance.
  • the determination unit 14 is configured to determine that the state of the oil 30 has changed when the low-frequency capacitance (capacitance corresponding to the first frequency) exceeds a threshold value. Thereby, the state of the oil 30 can be determined more accurately.
  • the capacitance of the oil 30 increases due to an increase in impurities contained in the oil 30. Examples of impurities include moisture and soot. Therefore, when the capacitance of the oil 30 is equal to or higher than the threshold value, it can be considered that the oil 30 is contaminated.
  • the threshold value can be determined, for example, by actually measuring the electrostatic capacity of the oil 30 that is contaminated.
  • the determination unit 14 is configured to determine that the amount of the oil 30 has changed when the change in the capacitance of the oil 30 becomes equal to or greater than the determination value.
  • the capacitance measuring unit 12 measures a low frequency capacitance and a high frequency capacitance.
  • the determination unit 14 is configured to determine that the amount of the oil 30 has changed when a change in high-frequency capacitance (capacitance corresponding to the second frequency) is equal to or greater than a determination value. Thereby, it can be determined whether or not the oil 30 has been added by the change in the amount (liquid level) of the oil 30.
  • the determination unit 14 obtains a difference between the high-frequency capacitance of the previous oil 30 and the high-frequency capacitance of the current oil 30, and if the obtained difference is equal to or greater than the determination value, the oil 30 It is determined that the amount has changed.
  • the addition of the oil 30 is performed when the oil 30 is insufficient, and thus is performed when the occupation ratio of the oil 30 in the space 221 decreases.
  • the occupation ratio is expected to be 100%. Therefore, it is considered that the high-frequency capacitance greatly changes as the oil 30 is added.
  • the determination value can be determined by, for example, the amount of change in the high-frequency capacitance of the oil 30 when the oil 30 is actually added.
  • the determination unit 14 determines whether or not the state of the oil 30 has changed using the resistance value of the oil 30 before determining that the amount of the oil 30 has changed. It is configured not to use. Thereby, the misjudgment resulting from the change of the resistance value of the oil 30 before and after the addition of the oil 30 can be suppressed. More specifically, when the determination unit 14 determines that the amount of the oil 30 has changed, the determination unit 14 initializes time-series data of the resistance value of the oil 30. This is because the correlation between the usage time of the oil 30 and the resistance value greatly changes as the oil 30 is added. For example, in FIG.
  • a graph G10 shows a correlation between the use time of the oil 30 before the oil 30 is added and the resistance value
  • a graph G11 shows a use time and the resistance of the oil 30 after the oil 30 is added. Shows the correlation with the value.
  • the change in resistance value tends to decrease from the increasing trend at the time point t1
  • the change in resistance value starts from the increasing trend at the time point t3 later than the time point t1. It tends to decrease.
  • the change in resistance value tends to increase from the decreasing trend at the time point t2.
  • the change in resistance value tends to increase from the decreasing trend at the time point t4 later than the time point t2.
  • the graph G11 is a graph in which the graph G10 is moved in parallel along the operating time axis.
  • the graph G11 is more complicated depending on the amount of oil 30 added. Can be a simple graph.
  • the determination unit 14 determines that the state of the oil 30 has changed when the low-frequency capacitance (capacitance corresponding to the first frequency) is equal to or greater than the threshold value.
  • the determination unit 14 determines that the amount of the oil 30 has changed when the change in the high-frequency capacitance (capacitance corresponding to the second frequency) is equal to or greater than the determination value.
  • the determination unit 14 receives the temperature of the oil 30 from the temperature measurement unit 13 and stores it. As a result, the determination unit 14 stores time-series data of the temperature of the oil 30.
  • the resistance value of the oil 30 and the capacitance between the pair of counter electrodes 22 are affected by the temperature of the oil 30. For this reason, depending on the temperature of the oil 30, an error may occur in the measurement result of the resistance value and the capacitance. Therefore, the determination unit 14 corrects the resistance value and the capacitance according to the temperature of the oil 30 acquired from the temperature measurement unit 13. That is, the determination unit 14 is configured to perform temperature compensation of the resistance value of the oil 30 and the capacitance between the pair of counter electrodes 22 based on the temperature of the oil 30 measured by the temperature measurement unit 13.
  • the temperature compensation of the resistance value of the oil 30 can be performed using a formula or a table prepared based on the correlation between the temperature of the oil 30 and the resistance value.
  • the capacitance between the pair of counter electrodes 22 can be performed by using a formula or a table prepared based on the correlation between the capacitance between the pair of counter electrodes 22 and the resistance value. According to this, the determination accuracy of the change in the state of the oil 30 can be improved.
  • the oil 30 is engine oil, and the temperature of the engine oil is often 60 degrees or more while the vehicle is running.
  • the change in the state of the oil 30 may occur due to an increase in the traveling time of the vehicle, that is, an increase in the usage time of the oil 30.
  • the determination unit 14 is configured to determine a change in the state of the oil 30 when the temperature of the oil 30 is equal to or higher than a predetermined start temperature (for example, 60 degrees). Thereby, the power consumption by the determination part 14 can be suppressed.
  • the determination unit 14 described above is realized by, for example, one or more processors (microprocessors) and one or more memories. That is, the determination unit 14 is realized by one or more processors executing a program (oil state determination program).
  • the oil state determination method is executed by one or more processors.
  • This oil state determination method includes determining that the state of the oil 30 has changed when the change tendency of the resistance value of the oil 30 is reversed. According to such an oil state determination program and an oil state determination method, as in the oil state determination system 10, it is possible to suppress a decrease in determination accuracy due to the type of oil 30.
  • the oil state determination program may be recorded in advance in a memory, or may be provided by being recorded through a telecommunication line such as the Internet or a non-temporary recording medium such as a memory card.
  • the output unit 15 is configured to output the result of determination by the determination unit 14. Thereby, the change of the state of the oil 30 can be output.
  • the output unit 15 is a communication interface that outputs a result of determination by the determination unit 14 to an external device by a predetermined communication method.
  • the communication method in the output unit 15 may be a wired method or a wireless method.
  • the oil state determination system 10 starts operation when, for example, the engine of the vehicle is started and the vehicle starts moving by the acceleration sensor of the vehicle.
  • the oil state determination system 10 measures the temperature of the oil 30 by the temperature measurement unit 13 (S10).
  • the determination unit 14 determines whether the temperature measured by the temperature measurement unit 13 is equal to or higher than the start temperature (S11). If the temperature measured by the temperature measurement unit 13 is lower than the start temperature (S11: NO), the process returns to step S10. On the other hand, if the temperature measured by the temperature measurement unit 13 is equal to or higher than the start temperature (S11: YES), the resistance value measurement unit 11 measures the resistance value of the oil 30 (S12), and the capacitance measurement unit 12 reduces the resistance value. The frequency capacitance and the high frequency capacitance are measured (S13, S14).
  • the determination unit 14 determines whether or not the change in high-frequency capacitance is equal to or greater than a determination value (S15). If the change in the high-frequency capacitance is greater than or equal to the determination value, the determination unit 14 initializes the time-series data of the resistance value of the oil 30 (S16). Thereafter, the process returns to step S10. Therefore, when the addition of the oil 30 is performed, the past time series data of the resistance value of the oil 30 is discarded, and the time series data of the resistance value of the oil 30 is newly accumulated. On the other hand, if the change in the high-frequency capacitance is greater than or equal to the determination value, the determination unit 14 performs a process of determining the state of the oil 30 (S17).
  • the determination unit 14 determines whether the change tendency of the resistance value of the oil 30 is reversed (S20). In the present embodiment, the determination unit 14 determines whether the change tendency of the resistance value of the oil 30 has changed from a decreasing tendency to an increasing tendency. Here, if the change tendency of the resistance value of the oil 30 does not change from a decreasing tendency to an increasing tendency (S20: NO), the determination unit 14 determines whether or not the low-frequency capacitance is equal to or greater than a threshold value. (S21).
  • the determination unit 14 determines whether or not the low-frequency capacitance is equal to or higher than a threshold value ( S22).
  • step S21 if the low frequency capacitance is not equal to or greater than the threshold (S21: NO), the determination unit 14 does not change the state of the oil 30 from the initial state (that is, there is no abnormality). ) And outputs the determination result to the output unit 15 (S23).
  • step S21 if the low frequency capacitance is equal to or greater than the threshold value (S21: YES), the determination unit 14 determines that the oil 30 is not oxidized but is contaminated, and the determination. The result is output to the output unit 15 (S24).
  • step S22 if the low frequency capacitance is not greater than or equal to the threshold value (S22: NO), the determination unit 14 determines that the oil 30 has been oxidized but not contaminated, and the determination is made. The result is output to the output unit 15 (S25).
  • step S22 if the low frequency capacitance is equal to or greater than the threshold (S22: YES), the determination unit 14 determines that the oil 30 is oxidized and contaminated, and the determination result is output to the output unit 15. (S26).
  • the determination result of the oil state determination system 10 may be displayed on a vehicle meter panel, for example.
  • steps S24, S25, and S26 it is notified that the state of the oil 30 has changed. By such notification, the user can know that it is time to replace the oil 30.
  • the oil 30 is the engine oil of the vehicle, but the oil state determination system 10 can be applied to other than the engine oil of the vehicle. For example, it can be applied to lubricating oil for equipment and the like.
  • the same counter electrode 22 is used for the determination of the state of the oil 30 and the determination of the amount of the oil 30, but different counter electrodes may be prepared for each. Also. The determination of the state of the oil 30 and the determination of the amount of the oil 30 may be performed from the capacitance obtained by applying the same alternating voltage to the same counter electrode 22.
  • the determination unit 14 may determine whether or not the change tendency of the resistance value of the oil 30 is reversed by calculation from the time series data of the resistance value of the oil 30.
  • the inflection point may be extracted by performing a differentiation operation on the time series data of the resistance value of the oil 30.
  • the determination unit 14 is essential, but the other components may not be necessarily required.
  • the oil state determination system 10 may not have the capacitance measuring unit 12. That is, the determination unit 14 does not necessarily have to determine whether the state of the oil 30 has changed based on the electrostatic capacity. Moreover, the determination part 14 does not need to determine whether the quantity of the oil 30 changed based on the change of an electrostatic capacitance. For example, in general, a four-stroke engine does not consume engine oil, unlike a two-stroke engine, so that engine oil is replaced but not added. In such a case, the necessity for the determination unit 14 to determine a change in the amount of the oil 30 is low.
  • the oil state determination system 10 may not have the temperature measurement unit 13. That is, the determination unit 14 does not necessarily need to perform temperature compensation of the resistance value of the oil 30 based on the temperature. In particular, when the temperature dependency of the resistance value of the oil 30 is relatively low, the temperature compensation may not be performed.
  • the oil state determination system (10) of the first aspect includes a resistance value measurement unit (11) and a determination unit (14).
  • the resistance value measurement unit (11) is configured to measure a resistance value of the oil (30) by applying a measurement voltage between the pair of measurement electrodes (21) in contact with the oil (30).
  • the determination unit (14) is configured to determine that the state of the oil (30) has changed when the change tendency of the resistance value of the oil (30) is reversed. According to the 1st aspect, the fall of the determination precision resulting from the kind of oil (30) can be suppressed.
  • the oil state determination system (10) of the second aspect can be realized by a combination with the first aspect.
  • the determination unit (14) calculates a difference between the resistance value of the oil (30) at the first time point and the resistance value of the oil (30) at the second time point after the first time point. Based on this, the change tendency of the resistance value of the oil (30) is determined.
  • the improvement of the determination precision of the change of the state of oil (30) can be aimed at.
  • the oil state determination system (10) of the third aspect can be realized by a combination with the first or second aspect.
  • the determination unit (14) determines a change tendency of the resistance value of the oil (30) when the resistance value of the oil (30) continuously changes a predetermined number of times in the same direction. Configured. According to the 3rd aspect, the change tendency of the resistance value of oil (30) can be determined more correctly.
  • the oil state determination system (10) of the fourth aspect can be realized by a combination with any one of the first to third aspects.
  • the determination unit (14) is configured to determine that oxidation of the oil (30) occurs when the change tendency of the resistance value of the oil (30) is reversed. According to the fourth aspect, it can be determined whether or not the oil (30) is oxidized.
  • the oil state determination system (10) of the fifth aspect can be realized by a combination with any one of the first to fourth aspects.
  • the measurement voltage is an alternating voltage. According to the fifth aspect, it is possible to improve the measurement accuracy of the resistance value of the oil.
  • the oil state determination system (10) of the sixth aspect can be realized by a combination with any one of the first to fifth aspects.
  • the oil state determination system (10) further includes a capacitance measuring unit (12).
  • the capacitance measuring unit (12) applies an alternating voltage of a predetermined frequency between a pair of opposed electrodes (22) facing each other so that a space (221) into which the oil (30) enters is present. It is configured to measure the capacitance between the counter electrodes (22).
  • the determination unit (14) is configured to determine that the state of the oil (30) has changed when the capacitance is equal to or greater than a threshold value. According to the sixth aspect, the state of the oil (30) can be determined more accurately.
  • the oil state determination system (10) of the seventh aspect can be realized by a combination with the sixth aspect.
  • the determination unit (14) is configured to determine that the oil (30) is contaminated when the capacitance is equal to or greater than a threshold value. According to the seventh aspect, it can be determined whether or not the oil (30) is contaminated.
  • the oil state determination system (10) of the eighth aspect can be realized by a combination with the sixth or seventh aspect.
  • the determination unit (14) is configured to determine that the amount of the oil (30) has changed when the change in the electrostatic capacitance is equal to or greater than a determination value. According to the 8th aspect, it can be determined whether the oil (30) was poured by the change of the quantity (liquid level) of the oil (30).
  • the oil state determination system (10) of the ninth aspect can be realized by a combination with the eighth aspect.
  • the determination unit (14) determines that the amount of the oil (30) has changed
  • the resistance value is not used to determine whether the state of the oil (30) has changed.
  • the misjudgment resulting from the change of the resistance value of the oil (30) before and after the addition of the oil (30) can be suppressed.
  • the oil state determination system (10) of the tenth aspect can be realized by a combination with any one of the sixth to ninth aspects.
  • the capacitance measuring unit (12) is configured to switch the predetermined frequency between a first frequency and a second frequency higher than the first frequency.
  • the determination unit (14) is configured to determine that the state of the oil (30) has changed when the capacitance corresponding to the first frequency is equal to or greater than a threshold value.
  • the determination unit (14) is configured to determine that the amount of the oil (30) has changed when a change in the capacitance corresponding to the second frequency becomes a determination value or more.
  • the pair of counter electrodes (22) is commonly used for the determination of the change in the amount of the oil (30) and the change in the state of the oil (30), but the change in the amount of the oil (30). And the change in the state of the oil (30) can be improved.
  • the oil state determination system (10) of the eleventh aspect can be realized by a combination with any one of the first to tenth aspects.
  • the oil state determination system (10) further includes a temperature measurement unit (13) that measures the temperature of the oil (30).
  • the determination unit (14) is configured to perform temperature compensation of the resistance value of the oil (30) based on the temperature of the oil (30) measured by the temperature measurement unit (13). According to the eleventh aspect, it is possible to improve the determination accuracy of the change in the state of the oil (30).
  • the oil state determination system (10) of the twelfth aspect can be realized by a combination with any one of the first to eleventh aspects.
  • the oil state determination system (10) further includes a temperature measurement unit (13) that measures the temperature of the oil (30).
  • the determination unit (14) determines a change in the state of the oil (30) when the temperature of the oil (30) measured by the temperature measurement unit (13) is equal to or higher than a predetermined start temperature. Configured. According to the 12th aspect, the power consumption by the determination part (14) can be suppressed.
  • the oil state determination system (10) of the thirteenth aspect can be realized by a combination with any one of the first to twelfth aspects.
  • the oil state determination system (10) further includes an output unit (15) that outputs a result of determination by the determination unit (14). According to the thirteenth aspect, it is possible to output the change in the state of the oil (30).
  • the oil state determination method determines that the state of the oil (30) has changed when the change tendency of the resistance value of the oil (30) is reversed. According to the 14th aspect, the fall of the determination precision resulting from the kind of oil (30) can be suppressed.
  • the oil state determination program according to the fifteenth aspect is a program that causes one or more processors to execute the oil state determination method according to the fourteenth aspect. According to the 15th aspect, the fall of the determination precision resulting from the kind of oil (30) can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

課題は、オイルの種類に起因する判定精度の低下を抑制できるオイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラムを提供することである。オイル状態判定システム(10)は、抵抗値測定部(11)と、判定部(14)と、を備える。抵抗値測定部(11)は、オイル(30)に接触される一対の測定電極(21,21)間に測定電圧を印加してオイル(30)の抵抗値を測定する。判定部(14)は、オイル(30)の抵抗値の変化傾向が反転するとオイル(30)の状態が変化したと判定する。

Description

オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム
 本開示は、一般に、オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラムに関する。本開示は、特に、オイルの状態が変化したかどうかを判定するオイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラムに関する。
 特許文献1は、オイル劣化検出装置を開示する。このオイル劣化検出装置では、オイル流路に2枚の極板を互いに並行して設置して、2枚の極板間に交流電圧を印加したときに流れる電流を電流計で計測し、信号処理部(処理手段)により、該極板間の電圧を電圧計で計測する。そして、電流計および電圧計による計測結果に基づいてオイルの導電率および静電容量を求める。そして、オイルの導電率および静電容量の何れかについて該許容範囲外となる値となったときに、オイルが劣化していると判断する。
 特許文献1では、予め、オイルの導電率および静電容量について、それぞれ上限値から下限値までの許容範囲を設定している。このような許容範囲は、オイルの種類に依存し得る。そのため、オイルの種類に応じて許容範囲をその都度適切に設定しなければ、オイルの状態の変化の判定精度が低下し得る。
特開2009-2693号公報
 本開示の課題は、オイルの種類に起因する判定精度の低下を抑制できるオイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラムを提供することである。
 本開示の一態様のオイル状態判定システムは、オイルに接触される一対の測定電極間に測定電圧を印加して前記オイルの抵抗値を測定する抵抗値測定部と、前記オイルの抵抗値の変化傾向が反転すると前記オイルの状態が変化したと判定する判定部と、を備える。
 本開示の一態様のオイル状態判定方法は、オイルの抵抗値の変化傾向が反転すると前記オイルの状態が変化したと判定する。
 本開示の一態様のオイル状態判定プログラムは、1以上のプロセッサに、上記のオイル状態判定方法を実行させるプログラムである。
図1は、一実施形態のオイル状態判定システムの概略図である。 図2は、オイルの導電率の時間変化のグラフである。 図3は、オイルの導電率の時間変化のグラフであり、特に、オイルの注ぎ足しが行われた場合を示す。 図4は、オイル状態判定システムの動作のフローチャートの一部を示す図である。 図5は、同上のフローチャートの残部を示す図である。
 1.実施形態
 1.1 概要
 図1は、一実施形態のオイル状態判定システム10を示す。オイル状態判定システム10は、抵抗値測定部11と、判定部14と、を備える。抵抗値測定部11は、オイル30に接触される一対の測定電極21,21間に測定電圧を印加してオイル30の抵抗値を測定するように構成される。判定部14は、オイル30の抵抗値の変化傾向が反転するとオイル30の状態が変化したと判定するように構成される。
 オイル状態判定システム10では、オイル30の抵抗値の変化傾向が反転したかどうかによって、オイル30の状態が変化したかどうかを判定する。つまり、オイル状態判定システム10では、オイル30の抵抗値の絶対値というよりは相対値を利用している。そのため、オイル30の種類によって初期の抵抗値が変わる場合であっても、オイル30の状態が変化したかどうかを判定できる。これによって、オイル30の種類に起因する判定精度の低下を抑制できる。
 1.2 構成
 以下、オイル状態判定システム10について更に詳細に説明する。オイル状態判定システム10は、オイル30の状態が変化したかどうかを判定するためのシステムである。ここで、オイル30は、例えば、潤滑油である。本実施形態では、オイル30として、車両(自動車)に使用されるエンジンオイルを想定している。
 オイル状態判定システム10は、図1に示すように、センサヘッド20に接続される。オイル状態判定システム10は、センサヘッド20からの出力を利用して、オイル30の状態を判定する。
 センサヘッド20は、一対の測定電極21と、一対の対向電極22と、温度検知素子23と、を有している。一対の測定電極21は、オイル30の抵抗値(インピーダンス、特にリアクタンス)を測定するために利用される。本実施形態において、一対の測定電極21は、くし形電極である。一対の測定電極21は、例えば、基板の一面に形成された導電層を所望の形状にリソグラフィ及びエッチング技術を利用してパターニングすることで形成され得る。一対の対向電極22は、オイル30に起因する静電容量を測定するために利用される。一対の対向電極22は、いずれも矩形の平板状である。一対の対向電極22は、それぞれの長さ方向、幅方向、及び厚み方向が一致し、かつ、それぞれの厚み方向において互いに対向するように配置される。特に、一対の対向電極22は、オイル30が入り込む空間221が存在するように対向する。一対の対向電極22の一方は、一対の測定電極21が形成された基板において、一対の測定電極21とは反対側の面に形成され得る。この場合、一対の対向電極22の他方は、基板を収容するケースの一部により構成され得る。温度検知素子23は、オイル30の温度を測定するために利用される。温度検知素子23は、例えば、サーミスタである。
 このようなセンサヘッド20は、図1に示すように、オイルストレージ40内のオイル30に浸かった状態で使用される。詳細には、センサヘッド20の一部又は全部がオイル30に浸かった状態で使用される。例えば、センサヘッド20は、オイルストレージ40内の下方に配置される。これにより、センサヘッド20の少なくとも一部がオイル30に浸かった状態となりやすい。特に、センサヘッド20は、一対の対向電極22それぞれの長手方向が、水平方向と交差する(好ましくは直交する)ように、配置されることが好ましい。このようにすれば、オイル30の量の変化が、一対の対向電極22で測定されるオイル30の静電容量の変化に反映されやすくなる。なお、本実施形態では、オイルストレージ40としては、エンジンオイル用のオイルパンを想定している。
 オイル状態判定システム10は、図1に示すように、抵抗値測定部11と、静電容量測定部12と、温度測定部13と、判定部14と、出力部15と、を備えている。
 抵抗値測定部11は、オイル30に接触される一対の測定電極21間に測定電圧を印加してオイル30の抵抗値を測定するように構成される。抵抗値測定部11は、所定の時間間隔でオイル30の抵抗値の測定を行う。一回の測定において、抵抗値測定部11は、所定の時間間隔よりも短い時間間隔でオイル30の抵抗値を複数回計測してもよい。この場合、抵抗値測定部11は、計測された複数のオイル30の抵抗値の平均値を出力してもよい。
 より詳細には、抵抗値測定部11は、一対の測定電極21間に測定電圧を印加している間に、一対の測定電極21間に流れる電流を計測する。抵抗値測定部11は、測定された電流から、一対の測定電極21間の抵抗値(インピーダンス)を求める。一対の測定電極21の全体がオイル30に接触している場合には、一対の測定電極21間の抵抗値は、オイル30の抵抗値とみなしてよい。本実施形態では、測定電圧は、交流電圧である。なお、測定電圧は、必ずしも交流電圧である必要はなく、直流電圧であってもよい。ただし、測定電圧は、直流電圧であっても、時間的に変動する電圧であることが好ましい。
 静電容量測定部12は、オイル30が入り込む空間221が存在するように対向する一対の対向電極22間に所定周波数の交流電圧を印加して一対の対向電極22間の静電容量を測定するように構成される。静電容量測定部12は、所定の時間間隔で静電容量の測定を行う。一回の測定において、静電容量測定部12は、所定の時間間隔よりも短い時間間隔で静電容量を複数回計測してもよい。この場合、静電容量測定部12は、計測された複数の静電容量の平均値を出力してもよい。
 空間221がオイル30で満たされている場合、一対の対向電極22間の静電容量は、オイル30の誘電率に影響を主に受ける。一方、空間221がオイル30で満たされていない場合、一対の対向電極22間の静電容量は、主に、空間221のオイル30の占有率の影響を主に受ける。したがって、一対の対向電極22間の静電容量から、オイル30の誘電率、及び、オイル30の量を判断することができる。本実施形態では、静電容量測定部12は、所定周波数を、第1の周波数と、前記第1の周波数より高い第2の周波数との間で切り替えるように構成される。第1の周波数の交流電圧と第2の周波数の交流電圧との比較では、第1の周波数の交流電圧は低周波であり、第2の周波数の交流電圧は高周波である。第1の周波数は、オイル30の誘電率の判断のための周波数である。一方、第2の周波数は、オイル30の量の判断のための周波数である。オイル30の誘電率にもよるが、一例として、第1の周波数は100[Hz]~1k[Hz]の範囲の値であり、第2の周波数は10k[Hz]~100k[Hz]の範囲の値である。以下の説明では、必要に応じて、第1の周波数の交流電圧を一対の対向電極22間に印加して測定された静電容量を、低周波の静電容量といい、第2の周波数の交流電圧を一対の対向電極22間に印加して測定された静電容量を、高周波の静電容量という。
 温度測定部13は、オイル30の温度を測定するように構成される。より詳細には、温度測定部13は、温度検知素子23からの出力に基づいてオイル30の温度を測定する。温度測定部13は、所定の時間間隔でオイル30の温度の測定を行う。一回の測定において、温度測定部13は、所定の時間間隔よりも短い時間間隔でオイル30の温度を複数回計測してもよい。この場合、温度測定部13は、計測された複数のオイル30の温度の平均値を出力してもよい。
 判定部14は、抵抗値測定部11からオイル30の抵抗値を受け取り、記憶する。これによって、判定部14は、オイル30の抵抗値の時系列データを記憶する。判定部14は、オイル30の抵抗値の時系列データに基づいて、オイル30の状態の変化を判定するように構成される。ここで、本願の発明者らは、研究により、図2に示すように、オイル30の抵抗値と使用時間との間に、相関関係があることを見出した。ここで、使用時間は、オイル30が実際に使用されている時間である。エンジンオイルの例であれば、エンジンにより車両が走行している時間に対応する。オイル30の抵抗値と使用時間との相関関係によれば、オイル30の抵抗値の変化傾向が増加傾向から減少傾向に変わる時点t1と、減少傾向から増加傾向に変わる時点t2とがある。時点t1までのオイル30の抵抗値の増加は、オイル30に含まれる添加剤の消費(減少)に起因している。そして、時点t1から時点t2までのオイル30の抵抗値の減少は、オイル30の酸化(酸化生成物の増加)に起因している。そして、時点t2からのオイル30の抵抗値の増加は、スラッジの増加に起因している。このように、オイル30の抵抗値の変化は、オイル30内の添加剤が消費されるフェーズT1と、オイル30が酸化されるフェーズT2と、オイル30内のスラッジが増加するフェーズT3とに分類され得る。そして、フェーズ間では、オイル30の抵抗値の変化傾向が反転している。したがって、オイル30の抵抗値の変化傾向が反転したかどうかにより、オイル30の状態の変化が起きたかどうかを判定することができる。
 以上の点から、判定部14は、オイル30の抵抗値の変化傾向が反転するとオイル30の状態が変化したと判定するように構成される。特に、本実施形態では、判定部14は、オイル30の抵抗値の変化傾向が減少傾向から増加傾向に変化した際に、オイル30の酸化が発生したと判定する。ここで、判定部14は、第1時点のオイル30の抵抗値と第1時点の次の第2時点のオイル30の抵抗値との差分に基づいてオイル30の抵抗値の変化傾向を判断するように構成される。第1時点のオイル30の抵抗値と第1時点の次の第2時点のオイル30の抵抗値との差分は、オイル30の抵抗値の時系列データにおいて隣り合う時点のオイル30の抵抗値の差分である。一例としては、今回のオイル30の抵抗値から前回のオイル30の抵抗値を引いて得られる値である。したがって、差分が正であることは、オイル30の抵抗値が増加したことを示し、差分が負であることは、オイル30の抵抗値が減少したことを示す。これによれば、オイル30の状態の変化の判定精度の向上が図れる。また、判定部14は、オイル30の抵抗値が同じ方向(正方向又は負方向)に所定回数連続して変化した際にオイル30の抵抗値の変化傾向を決定するように構成される。例えば、差分が所定回数連続して正である場合、判定部14は、オイル30の抵抗値の変化傾向が増加傾向であると判定する。逆に、差分が所定回数連続して負である場合、判定部14は、オイル30の抵抗値の変化傾向が減少傾向であると判定する。これによれば、ノイズ等の影響を除去でき、オイル30の抵抗値の変化傾向をより正確に決定できる。なお、所定回数は、特に限定されないが、一例としては3回~5回である。
 また、判定部14 は、静電容量測定部12から一対の対向電極22間の静電容量(低周波の静電容量及び高周波の静電容量)を受け取り、記憶する。これによって、判定部14は、一対の対向電極22間の静電容量(低周波の静電容量及び高周波の静電容量)の時系列データを記憶する。判定部14は、一対の対向電極22間の静電容量の時系列データに基づいて、オイル30の状態及び量の変化を判定するように構成される。
 また、判定部14は、オイル30の静電容量が閾値以上になると、オイル30の状態が変化したと判定するように構成される。本実施形態では、静電容量測定部12により、低周波の静電容量と高周波の静電容量とを測定している。判定部14は、低周波の静電容量(第1の周波数に対応する静電容量)が閾値以上になると、オイル30の状態が変化したと判定するように構成される。これにより、オイル30の状態をより正確に判定できる。特に、オイル30の静電容量は、オイル30に含まれる不純物の増加により増加する。不純物の例としては、水分及びすすが挙げられる。したがって、オイル30の静電容量が閾値以上になると、オイル30の汚損が生じたと考えることができる。なお、閾値は、例えば、汚損が生じているオイル30の静電容量を実際に図ることによって、決定することができる。
 また、判定部14は、オイル30の静電容量の変化が判定値以上になると、オイル30の量が変化したと判定するように構成される。本実施形態では、静電容量測定部12により、低周波の静電容量と高周波の静電容量とを測定している。判定部14は、高周波の静電容量(第2の周波数に対応する静電容量)の変化が判定値以上になると、オイル30の量が変化したと判定するように構成される。これにより、オイル30の量(液位)の変化により、オイル30が注ぎ足されたかどうかを判定できる。より詳細には、判定部14は、前回のオイル30の高周波の静電容量と今回のオイル30の高周波の静電容量との差分を求め、求めた差分が判定値以上であれば、オイル30の量が変化したと判定する。当然ながら、オイル30の注ぎ足しは、オイル30が不足してきた際に行われるから、空間221のオイル30の占有率が低下した場合に行われる。そして、オイル30の注ぎ足しが行われた場合、占有率は100%となることが期待される。したがって、オイル30の注ぎ足しによって、高周波の静電容量は大きく変化すると考えられる。なお、判定値は、例えば、実際にオイル30の注ぎ足しが行われた際のオイル30の高周波の静電容量の変化量により、決定することができる。
 ここで、判定部14は、オイル30の量が変化したと判定した場合、オイル30の量が変化したと判定する前のオイル30の抵抗値をオイル30の状態が変化したかどうかの判定に用いないように構成される。これにより、オイル30の注ぎ足し前後のオイル30の抵抗値の変化に起因する誤判定を抑制できる。より詳細には、判定部14は、オイル30の量が変化したと判定した場合、オイル30の抵抗値の時系列データを初期化する。これは、オイル30の注ぎ足しによって、オイル30の使用時間と抵抗値との相関関係が大きく変化するからである。例えば、図3では、グラフG10は、オイル30の注ぎ足し前のオイル30の使用時間と抵抗値との相関関係を示し、グラフG11は、オイル30の注ぎ足し後のオイル30の使用時間と抵抗値との相関関係を示す。図3から明らかなように、グラフG10では、時点t1で、抵抗値の変化が増加傾向から減少傾向となるが、グラフG11では、時点t1より遅い時点t3において、抵抗値の変化が増加傾向から減少傾向となる。また、グラフG10では、時点t2で、抵抗値の変化が減少傾向から増加傾向となるが、グラフG11では、時点t2より遅い時点t4において、抵抗値の変化が減少傾向から増加傾向となる。なお、図3では、説明をわかりやすくするために、グラフG11は、グラフG10を使用時間軸に沿って平行に移動させたグラフとしているが、実際は、オイル30の注ぎ足しの量によって、より複雑なグラフになり得る。
 このように、判定部14は、低周波の静電容量(第1の周波数に対応する静電容量)が閾値以上になるとオイル30の状態が変化したと判定する。また、判定部14は、高周波の静電容量(第2の周波数に対応する静電容量)の変化が判定値以上になるとオイル30の量が変化したと判定する。これにより、一対の対向電極22をオイル30の量の変化とオイル30の状態の変化との判定に共用しながらも、オイル30の量の変化とオイル30の状態の変化との判定の精度を向上できる。
 また、判定部14は、温度測定部13からオイル30の温度を受け取り、記憶する。これによって、判定部14は、オイル30の温度の時系列データを記憶する。ここで、オイル30の抵抗値及び一対の対向電極22間の静電容量は、オイル30の温度に影響を受ける。このため、オイル30の温度によっては、抵抗値及び静電容量の測定結果に誤差が生じることがある。そこで、判定部14は、温度測定部13から取得したオイル30の温度に応じて、抵抗値及び静電容量を補正する。つまり、判定部14は、温度測定部13で測定されたオイル30の温度に基づいてオイル30の抵抗値及び一対の対向電極22間の静電容量の温度補償を行うように構成される。オイル30の抵抗値の温度補償は、オイル30の温度と抵抗値との相関関係に基づいて用意された数式又はテーブルを利用して行うことができる。同様に、一対の対向電極22間の静電容量は、一対の対向電極22間の静電容量と抵抗値との相関関係に基づいて用意された数式又はテーブルを利用して行うことができる。これによれば、オイル30の状態の変化の判定精度の向上が図れる。
 本実施形態では、オイル30は、エンジンオイルであり、車両の走行中、エンジンオイルの温度は、60度以上となることが多い。オイル30の状態の変化は、車両の走行時間の増加、つまりオイル30の使用時間の増加によって起こり得る。逆に言えば、オイル30が使用されていない場合に、判定部14がオイル30の状態の変化を判定する必要性は低い。そこで、本実施形態では、判定部14は、オイル30の温度が所定の開始温度(例えば、60度)以上である場合に、オイル30の状態の変化を判定するように構成されている。これにより、判定部14による電力消費を抑制できる。
 以上述べた判定部14は、例えば、1以上のプロセッサ(マイクロプロセッサ)と1以上のメモリとにより実現されている。つまり、判定部14は、1以上のプロセッサがプログラム(オイル状態判定プログラム)を実行することにより実現される。オイル状態判定プログラムは、1以上のプロセッサに実行されると、1以上のプロセッサに、オイル状態判定方法を実行させる。このオイル状態判定方法は、オイル30の抵抗値の変化傾向が反転するとオイル30の状態が変化したと判定することを含む。このようなオイル状態判定プログラム及びオイル状態判定方法によれば、オイル状態判定システム10と同様に、オイル30の種類に起因する判定精度の低下を抑制できる。なお、オイル状態判定プログラムは、メモリに予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。
 出力部15は、判定部14による判定の結果を出力するように構成される。これにより、オイル30の状態の変化の出力が可能になる。出力部15は、判定部14による判定の結果を、所定の通信方式によって、外部装置へ出力する通信インターフェースである。出力部15での通信方式は、有線方式であっても、無線方式であってもよい。
 1.3 動作
 以下、オイル状態判定システム10の動作について図4及び図5のフローチャートを参照して簡単に説明する。オイル状態判定システム10は、例えば、車両のエンジンが始動されて、車両の加速度センサにより車両が移動を開始した際に、動作を開始する。
 まず、オイル状態判定システム10は、温度測定部13によりオイル30の温度を測定する(S10)。次に、判定部14は、温度測定部13で測定された温度が開始温度以上かどうかを判断する(S11)。温度測定部13で測定された温度が開始温度未満であれば(S11:NO)、処理はステップS10へ戻る。一方、温度測定部13で測定された温度が開始温度以上であれば(S11:YES)、抵抗値測定部11によりオイル30の抵抗値を測定し(S12)、静電容量測定部12により低周波の静電容量及び高周波の静電容量を測定する(S13,S14)。この次に、判定部14は、高周波の静電容量の変化が判定値以上かどうかを判断する(S15)。高周波の静電容量の変化が判定値以上であれば、判定部14は、オイル30の抵抗値の時系列データを初期化する(S16)。その後、処理はステップS10へ戻る。したがって、オイル30の注ぎ足しが行われた場合には、過去のオイル30の抵抗値の時系列データが破棄され、オイル30の抵抗値の時系列データが新しく蓄積される。一方、高周波の静電容量の変化が判定値以上であれば、判定部14は、オイル30の状態を判定する処理を行う(S17)。
 次に、図5のフローチャートを参照して、オイル30の状態を判定する処理(S17)について説明する。まず、判定部14は、オイル30の抵抗値の変化傾向が反転したかどうかを判定する(S20)。本実施形態では、判定部14は、オイル30の抵抗値の変化傾向が減少傾向から増加傾向に変化したかどうかを判定する。ここで、オイル30の抵抗値の変化傾向が減少傾向から増加傾向に変化していなければ(S20:NO)、判定部14は、低周波の静電容量が閾値以上になったかどうかを判定する(S21)。また、オイル30の抵抗値の変化傾向が減少傾向から増加傾向に変化していても(S20:YES)、判定部14は、低周波の静電容量が閾値以上になったかどうかを判定する(S22)。ここで、ステップS21において、低周波の静電容量が閾値以上になっていなければ(S21:NO)、判定部14は、オイル30の状態が初期状態から変化していない(つまり、異常がない)と判定し、その判定結果を出力部15に出力する(S23)。ステップS21において、低周波の静電容量が閾値以上になっていれば(S21:YES)、判定部14は、オイル30の酸化は起きていないが、汚損が起きていると判定し、その判定結果を出力部15に出力する(S24)。ステップS22において、低周波の静電容量が閾値以上になっていなければ(S22:NO)、判定部14は、オイル30の酸化は起きているが、汚損は起きていないと判定し、その判定結果を出力部15に出力する(S25)。ステップS22において、低周波の静電容量が閾値以上になっていれば(S22:YES)、判定部14は、オイル30の酸化及び汚損が起きていると判定し、その判定結果を出力部15に出力する(S26)。
 このようなオイル状態判定システム10の判定の結果は、例えば、車両のメーターパネルに表示させてもよい。ステップS24、S25、S26の場合、オイル30の状態が変化したことが通知される。このような通知により、オイル30の交換時期が到来したことをユーザは知ることができる。
 2.変形例
 以上説明した上記実施形態は、本開示の様々な実施形態の一つに過ぎない。また、上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施形態の変形例を列挙する。
 例えば、上記実施形態では、オイル30は車両のエンジンオイルであるが、オイル状態判定システム10は、車両のエンジンオイル以外にも適用可能である。例えば、設備機器等の潤滑油にも適用できる。
 上記実施形態では、オイル30の状態の判定とオイル30の量の判定とに同じ対向電極22を利用しているが、それぞれに対して異なる対向電極を用意してもよい。また。同じ対向電極22に同じ交流電圧を印加して得られた静電容量からオイル30の状態の判定とオイル30の量の判定とを行ってもよい。
 判定部14は、オイル30の抵抗値の時系列データから演算により、オイル30の抵抗値の変化傾向が反転したかどうかを判断してもよい。例えば、オイル30の抵抗値の時系列データに対して微分演算を行い、変曲点を抽出してもよい。
 上述したオイル状態判定システム10において、判定部14は必須であるが、その他の構成要素については、必ずしも必要でない場合がある。
 例えば、オイル状態判定システム10は、静電容量測定部12を有していなくてもよい。つまり、判定部14は、必ずしも、静電容量に基づいて、オイル30の状態が変化したかどうかを判定する必要はない。また、判定部14は、静電容量の変化に基づいて、オイル30の量が変化したかどうかを判定する必要はない。例えば、一般に、4ストロークエンジンでは、2ストロークエンジンとは異なり、エンジンオイルを消費しないから、エンジンオイルの交換は行われるが、注ぎ足しは行われない。このような場合、判定部14がオイル30の量の変化を判定する必要性は低い。
 例えば、オイル状態判定システム10は、温度測定部13を有していなくてもよい。つまり、判定部14は、必ずしも、温度に基づいて、オイル30の抵抗値の温度補償を行う必要はない。特に、オイル30の抵抗値の温度依存性が比較的低い場合、温度補償を行わなくてもよいことがある。
 3.態様
 以上述べた実施形態及び変形例から明らかなように、第1の態様のオイル状態判定システム(10)は、抵抗値測定部(11)と、判定部(14)と、を備える。前記抵抗値測定部(11)は、オイル(30)に接触される一対の測定電極(21)間に測定電圧を印加してオイル(30)の抵抗値を測定するように構成される。前記判定部(14)は、前記オイル(30)の抵抗値の変化傾向が反転すると前記オイル(30)の状態が変化したと判定するように構成される。第1の態様によれば、オイル(30)の種類に起因する判定精度の低下を抑制できる。
 第2の態様のオイル状態判定システム(10)は、第1の態様との組み合わせにより実現され得る。第2の態様では、前記判定部(14)は、第1時点の前記オイル(30)の抵抗値と前記第1時点の次の第2時点の前記オイル(30)の抵抗値との差分に基づいて前記オイル(30)の抵抗値の変化傾向を判断するように構成される。第2の態様によれば、オイル(30)の状態の変化の判定精度の向上が図れる。
 第3の態様のオイル状態判定システム(10)は、第1又は第2の態様との組み合わせにより実現され得る。第3の態様では、前記判定部(14)は、前記オイル(30)の抵抗値が同じ方向に所定回数連続して変化した際に前記オイル(30)の抵抗値の変化傾向を決定するように構成される。第3の態様によれば、オイル(30)の抵抗値の変化傾向をより正確に決定できる。
 第4の態様のオイル状態判定システム(10)は、第1~第3の態様のいずれか一つとの組み合わせにより実現され得る。第4の態様では、前記判定部(14)は、前記オイル(30)の抵抗値の変化傾向が反転するとに、前記オイル(30)の酸化が起きていると判定するように構成される。第4の態様によれば、オイル(30)の酸化が起きているかどうかを判定できる。
 第5の態様のオイル状態判定システム(10)は、第1~第4の態様のいずれか一つとの組み合わせにより実現され得る。第5の態様では、前記測定電圧は、交流電圧である。第5の態様によれば、オイルの抵抗値の測定精度の向上が図れる。
 第6の態様のオイル状態判定システム(10)は、第1~第5の態様のいずれか一つとの組み合わせにより実現され得る。第6の態様では、前記オイル状態判定システム(10)は、静電容量測定部(12)を更に備える。前記静電容量測定部(12)は、前記オイル(30)が入り込む空間(221)が存在するように対向する一対の対向電極(22)間に所定周波数の交流電圧を印加して前記一対の対向電極(22)間の静電容量を測定するように構成される。前記判定部(14)は、前記静電容量が閾値以上になると、前記オイル(30)の状態が変化したと判定するように構成される。第6の態様によれば、オイル(30)の状態をより正確に判定できる。
 第7の態様のオイル状態判定システム(10)は、第6の態様との組み合わせにより実現され得る。第7の態様では、前記判定部(14)は、前記静電容量が閾値以上であると、前記オイル(30)の汚損が起きていると判定するように構成される。第7の態様によれば、オイル(30)の汚損が起きているかどうかを判定できる。
 第8の態様のオイル状態判定システム(10)は、第6又は第7の態様との組み合わせにより実現され得る。第8の態様では、前記判定部(14)は、前記静電容量の変化が判定値以上になると、前記オイル(30)の量が変化したと判定するように構成される。第8の態様によれば、オイル(30)の量(液位)の変化により、オイル(30)が注ぎ足されたかどうかを判定できる。
 第9の態様のオイル状態判定システム(10)は、第8の態様との組み合わせにより実現され得る。第9の態様では、前記判定部(14)は、前記オイル(30)の量が変化したと判定した場合、前記オイル(30)の量が変化したと判定する前の前記オイル(30)の抵抗値を前記オイル(30)の状態が変化したかどうかの判定に用いないように構成される。第9の態様によれば、オイル(30)の注ぎ足し前後のオイル(30)の抵抗値の変化に起因する誤判定を抑制できる。
 第10の態様のオイル状態判定システム(10)は、第6~第9の態様のいずれか一つとの組み合わせにより実現され得る。第10の態様では、前記静電容量測定部(12)は、前記所定周波数を、第1の周波数と、前記第1の周波数より高い第2の周波数との間で切り替えるように構成される。前記判定部(14)は、前記第1の周波数に対応する前記静電容量が閾値以上になると、前記オイル(30)の状態が変化したと判定するように構成される。前記判定部(14)は、前記第2の周波数に対応する前記静電容量の変化が判定値以上になると、前記オイル(30)の量が変化したと判定するように構成される。第10の態様によれば、一対の対向電極(22)をオイル(30)の量の変化とオイル(30)の状態の変化との判定に共用しながらも、オイル(30)の量の変化とオイル(30)の状態の変化との判定の精度を向上できる。
 第11の態様のオイル状態判定システム(10)は、第1~第10の態様のいずれか一つとの組み合わせにより実現され得る。第11の態様では、前記オイル状態判定システム(10)は、前記オイル(30)の温度を測定する温度測定部(13)を更に備える。前記判定部(14)は、前記温度測定部(13)で測定された前記オイル(30)の温度に基づいて前記オイル(30)の抵抗値の温度補償を行うように構成される。第11の態様によれば、オイル(30)の状態の変化の判定精度の向上が図れる。
 第12の態様のオイル状態判定システム(10)は、第1~第11の態様のいずれか一つとの組み合わせにより実現され得る。第12の態様では、前記オイル状態判定システム(10)は、前記オイル(30)の温度を測定する温度測定部(13)を更に備える。前記判定部(14)は、前記温度測定部(13)で測定された前記オイル(30)の温度が所定の開始温度以上である場合に、前記オイル(30)の状態の変化を判定するように構成される。第12の態様によれば、判定部(14)による電力消費を抑制できる。
 第13の態様のオイル状態判定システム(10)は、第1~第12の態様のいずれか一つとの組み合わせにより実現され得る。第13の態様では、オイル状態判定システム(10)は、前記判定部(14)による判定の結果を出力する出力部(15)を更に備える。第13の態様によれば、オイル(30)の状態の変化の出力が可能になる。
 第14の態様のオイル状態判定方法は、オイル(30)の抵抗値の変化傾向が反転すると前記オイル(30)の状態が変化したと判定する。第14の態様によれば、オイル(30)の種類に起因する判定精度の低下を抑制できる。
 第15の態様のオイル状態判定プログラムは、1以上のプロセッサに、第14の態様のオイル状態判定方法を実行させる、プログラムである。第15の態様によれば、オイル(30)の種類に起因する判定精度の低下を抑制できる。
 10 オイル状態判定システム
 11 抵抗値測定部
 12 静電容量測定部
 13 温度測定部
 14 判定部
 15 出力部
 21 測定電極
 22 対向電極
 30 オイル

Claims (15)

  1.  オイルに接触される一対の測定電極間に測定電圧を印加して前記オイルの抵抗値を測定する抵抗値測定部と、
     前記オイルの抵抗値の変化傾向が反転すると前記オイルの状態が変化したと判定する判定部と、
     を備える、
     オイル状態判定システム。
  2.  前記判定部は、第1時点の前記オイルの抵抗値と前記第1時点の次の第2時点の前記オイルの抵抗値との差分に基づいて前記オイルの抵抗値の変化傾向を判断するように構成される、
     請求項1のオイル状態判定システム。
  3.  前記判定部は、前記オイルの抵抗値が同じ方向に所定回数連続して変化した際に前記オイルの抵抗値の変化傾向を決定するように構成される、
     請求項1又は2のオイル状態判定システム。
  4.  前記判定部は、前記オイルの抵抗値の変化傾向が反転するとに、前記オイルの酸化が起きていると判定するように構成される、
     請求項1~3のいずれか一つのオイル状態判定システム。
  5.  前記測定電圧は、交流電圧である、
     請求項1~4のいずれか一つのオイル状態判定システム。
  6.  前記オイルが入り込む空間が存在するように対向する一対の対向電極間に所定周波数の交流電圧を印加して前記一対の対向電極間の静電容量を測定する静電容量測定部を更に備え、
     前記判定部は、前記静電容量が閾値以上になると、前記オイルの状態が変化したと判定するように構成される、
     請求項1~5のいずれか一つのオイル状態判定システム。
  7.  前記判定部は、前記静電容量が閾値以上であると、前記オイルの汚損が起きていると判定するように構成される、
     請求項6のオイル状態判定システム。
  8.  前記判定部は、前記静電容量の変化が判定値以上になると、前記オイルの量が変化したと判定するように構成される、
     請求項6又は7のオイル状態判定システム。
  9.  前記判定部は、前記オイルの量が変化したと判定した場合、前記オイルの量が変化したと判定する前の前記オイルの抵抗値を前記オイルの状態が変化したかどうかの判定に用いないように構成される、
     請求項8のオイル状態判定システム。
  10.  前記静電容量測定部は、前記所定周波数を、第1の周波数と、前記第1の周波数より高い第2の周波数との間で切り替えるように構成され、
     前記判定部は、
      前記第1の周波数に対応する前記静電容量が閾値以上になると、前記オイルの状態が変化したと判定し、
      前記第2の周波数に対応する前記静電容量の変化が判定値以上になると、前記オイルの量が変化したと判定する、
     ように構成される、
     請求項6~9のいずれか一つのオイル状態判定システム。
  11.  前記オイルの温度を測定する温度測定部を更に備え、
     前記判定部は、前記温度測定部で測定された前記オイルの温度に基づいて前記オイルの抵抗値の温度補償を行うように構成される、
     請求項1~10のいずれか一つのオイル状態判定システム。
  12.  前記オイルの温度を測定する温度測定部を更に備え、
     前記判定部は、前記温度測定部で測定された前記オイルの温度が所定の開始温度以上である場合に、前記オイルの状態の変化を判定するように構成される、
     請求項1~11のいずれか一つのオイル状態判定システム。
  13.  前記判定部による判定の結果を出力する出力部を更に備える、
     請求項1~12のいずれか一つのオイル状態判定システム。
  14.  オイルの抵抗値の変化傾向が反転すると前記オイルの状態が変化したと判定する、
     オイル状態判定方法。
  15.  1以上のプロセッサに、請求項14のオイル状態判定方法を実行させる、
     オイル状態判定プログラム。
PCT/JP2019/003090 2018-01-31 2019-01-30 オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム WO2019151295A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019000615.0T DE112019000615T5 (de) 2018-01-31 2019-01-30 Ölzustandsbestimmungssystem, Ölzustandsbestimmungsverfahren und Ölzustandsbestimmungsprogramm
US16/966,443 US11802863B2 (en) 2018-01-31 2019-01-30 Oil condition determination system, oil condition determination method, and oil condition determination program
JP2019569161A JP6910037B2 (ja) 2018-01-31 2019-01-30 オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-015699 2018-01-31
JP2018015699 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151295A1 true WO2019151295A1 (ja) 2019-08-08

Family

ID=67479384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003090 WO2019151295A1 (ja) 2018-01-31 2019-01-30 オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム

Country Status (4)

Country Link
US (1) US11802863B2 (ja)
JP (1) JP6910037B2 (ja)
DE (1) DE112019000615T5 (ja)
WO (1) WO2019151295A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003356A (ja) * 2018-06-28 2020-01-09 日本ピラー工業株式会社 センサ装置
JP2021109264A (ja) * 2020-01-08 2021-08-02 日本金型産業株式会社 回転工具の寿命判定方法及び装置
DE102020120921A1 (de) 2020-08-07 2022-02-10 AST (Advanced Sensor Technologies) International GmbH Sensoranordnung zur Bestimmung einer Qualität einer Flüssigkeit und Verfahren
WO2023063044A1 (ja) * 2021-10-15 2023-04-20 ディー・クルー・テクノロジーズ株式会社 測定値温度係数補正装置及び測定値温度係数補正プログラム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120848A (ja) * 1984-07-09 1986-01-29 Horiba Ltd 潤滑油の劣化度判定装置
JP2003114206A (ja) * 2001-10-03 2003-04-18 Suzuki Motor Corp エンジン油の劣化判定方法およびその装置
JP2004176566A (ja) * 2002-11-25 2004-06-24 Denso Corp オイル検出装置
JP2005337096A (ja) * 2004-05-26 2005-12-08 Toyota Motor Corp 内燃機関潤滑油劣化度判断システム及び内燃機関潤滑油劣化度判断方法
US20060232267A1 (en) * 2005-04-14 2006-10-19 Halalay Ion C Determining quality of lubricating oils in use
US20100250156A1 (en) * 2009-03-27 2010-09-30 Gm Global Technology Operations, Inc. Determination of end of life of oil by electrical means
US20100300188A1 (en) * 2009-05-26 2010-12-02 Gm Global Technology Operations, Inc. On-vehicle evaluation of oil formulation
JP2011007505A (ja) * 2009-06-23 2011-01-13 Toyota Motor Corp エンジンオイルの劣化検出方法および装置
WO2011065340A1 (ja) * 2009-11-25 2011-06-03 出光興産株式会社 潤滑油の劣化・変質度測定方法及びその測定装置
WO2017187770A1 (ja) * 2016-04-27 2017-11-02 Kyb株式会社 センサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391225B1 (en) * 2005-04-13 2008-06-24 St&I, Co., Ltd. Carbon nanotube sensor and apparatus and method for detecting change time of engine oil for automobile using the same
JP5055035B2 (ja) 2007-06-19 2012-10-24 三菱重工業株式会社 オイル劣化検出装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120848A (ja) * 1984-07-09 1986-01-29 Horiba Ltd 潤滑油の劣化度判定装置
JP2003114206A (ja) * 2001-10-03 2003-04-18 Suzuki Motor Corp エンジン油の劣化判定方法およびその装置
JP2004176566A (ja) * 2002-11-25 2004-06-24 Denso Corp オイル検出装置
JP2005337096A (ja) * 2004-05-26 2005-12-08 Toyota Motor Corp 内燃機関潤滑油劣化度判断システム及び内燃機関潤滑油劣化度判断方法
US20060232267A1 (en) * 2005-04-14 2006-10-19 Halalay Ion C Determining quality of lubricating oils in use
US20100250156A1 (en) * 2009-03-27 2010-09-30 Gm Global Technology Operations, Inc. Determination of end of life of oil by electrical means
US20100300188A1 (en) * 2009-05-26 2010-12-02 Gm Global Technology Operations, Inc. On-vehicle evaluation of oil formulation
JP2011007505A (ja) * 2009-06-23 2011-01-13 Toyota Motor Corp エンジンオイルの劣化検出方法および装置
WO2011065340A1 (ja) * 2009-11-25 2011-06-03 出光興産株式会社 潤滑油の劣化・変質度測定方法及びその測定装置
WO2017187770A1 (ja) * 2016-04-27 2017-11-02 Kyb株式会社 センサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003356A (ja) * 2018-06-28 2020-01-09 日本ピラー工業株式会社 センサ装置
JP7066089B2 (ja) 2018-06-28 2022-05-13 日本ピラー工業株式会社 センサ装置
JP2021109264A (ja) * 2020-01-08 2021-08-02 日本金型産業株式会社 回転工具の寿命判定方法及び装置
DE102020120921A1 (de) 2020-08-07 2022-02-10 AST (Advanced Sensor Technologies) International GmbH Sensoranordnung zur Bestimmung einer Qualität einer Flüssigkeit und Verfahren
WO2023063044A1 (ja) * 2021-10-15 2023-04-20 ディー・クルー・テクノロジーズ株式会社 測定値温度係数補正装置及び測定値温度係数補正プログラム

Also Published As

Publication number Publication date
DE112019000615T5 (de) 2020-10-08
JP6910037B2 (ja) 2021-07-28
JPWO2019151295A1 (ja) 2021-01-07
US11802863B2 (en) 2023-10-31
US20200363390A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2019151295A1 (ja) オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム
US8854058B2 (en) Measurement method of degradation/alteration degree of lubricant oil and measurement device thereof
JP4416033B2 (ja) 濃度センサ装置
JP5141777B2 (ja) 微粒子検知装置
US8340928B2 (en) Sensor and method for detecting oil deterioration and oil level
EP2505998B1 (en) Measuring method for degree of degradation of lubricating oil, and measuring device therefor, as well as lubricating oil monitoring system in machine and device
US9222822B2 (en) Oil sensor
JPH0616018B2 (ja) エンジンの潤滑油の状態を検出する装置
US9759646B2 (en) Scale monitoring and inhibitor quantification technique in multiphase meters
JP2009198341A (ja) オイル性状管理方法及び該装置
JP6199064B2 (ja) 電力変換装置のdc電源バス上の欠陥を検出するための方法およびシステム
WO2001027642A1 (en) Method and system for determining oil quality
JP2020003356A (ja) センサ装置
JP2004510962A (ja) 液体誘電体挙動を測定する方法及び装置
JP2003114206A (ja) エンジン油の劣化判定方法およびその装置
CN110470699B (zh) 用于确定油的品质的方法和分析系统
US8030949B2 (en) Measurement method for determining moisture content
JP2010093046A (ja) 電解コンデンサの寿命予測方法及び装置
JP4364754B2 (ja) 電解コンデンサの劣化予測方法
JP2006162441A (ja) 潤滑剤膜厚計測方法および潤滑剤膜厚計測装置
JP2009131125A (ja) 電気車制御装置
KR101259533B1 (ko) 엔진오일센서
JP5691942B2 (ja) 液体性状検出装置及び液体性状検出プログラム
JP2004117085A5 (ja)
JP2010185759A (ja) コンデンサの静電容量および内部抵抗の推定方法とその測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569161

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19747170

Country of ref document: EP

Kind code of ref document: A1