JP2004510962A - 液体誘電体挙動を測定する方法及び装置 - Google Patents

液体誘電体挙動を測定する方法及び装置 Download PDF

Info

Publication number
JP2004510962A
JP2004510962A JP2002528841A JP2002528841A JP2004510962A JP 2004510962 A JP2004510962 A JP 2004510962A JP 2002528841 A JP2002528841 A JP 2002528841A JP 2002528841 A JP2002528841 A JP 2002528841A JP 2004510962 A JP2004510962 A JP 2004510962A
Authority
JP
Japan
Prior art keywords
value
capacitor
current
leakage
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002528841A
Other languages
English (en)
Inventor
マースザレック ゲイリー エイ
Original Assignee
デトロイト・ディーゼル・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デトロイト・ディーゼル・コーポレイション filed Critical デトロイト・ディーゼル・コーポレイション
Publication of JP2004510962A publication Critical patent/JP2004510962A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/228Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

キャパシタの電極間に配置され、キャパシタ内に二重層効果を発生させる潤滑油のような誘電材料を有するキャパシタの容量を測定するシステム及び方法。可変源が抵抗器と直列に設けられ、キャパシタを通って流れる電流に変化を誘起させる。得られた電流の流れは、センサによってプロセッサ可読電流値に変換される。プロセッサは複数の電流値を記録する。誘起された電流変化に対応する初期値が記録される。電流が概ね安定状態まで指数的に減衰した後に、漏洩値が記録される。この指数減衰中に、複数の他の電流値も記録される。初期値及び漏洩値に基づいて、これらの複数の他の電流値の中から中間値が選択される。初期値、中間値、漏洩値、及び直列抵抗器の抵抗値に基づいて、キャパシタのキャパシタンスが計算される。

Description

【0001】
(技術分野)
本発明は、キャパシタの電極間に配置された液体の誘電特性を測定するためのキャパシタをベースとする方法に関する。
【0002】
(従来の技術)
機関及び機械に使用される潤滑油及び他の流体の質を測定するために、容量をベースとするセンサが広く使用されている。キャパシタセンサは、流体が電極間を流れるように位置決めされる。流体の誘電値は、時間の経過、温度、使用、及び他の型の流体の混入に伴って劣化する流体の質として変化する。例えば、機関潤滑油の誘電値は使用時間の経過に伴って増加し、もし水またはグリコールによって侵害されれば直ちに増加する。この誘電値の変化は、キャパシタセンサの合計容量の測定可能な変化として現れる。誘電値が所定のしきい値に到達した時が、保守及び流体の交換を遂行する時点である。
【0003】
キャパシタセンサの合計容量を測定するために使用される電気回路は、既知の電圧及び既知の直列抵抗器を使用して所定の電圧しきい値までキャパシタを充電する、またはキャパシタから放電するのに必要な時間を測定するように動作するものが多い。この容量測定方法は、流体の誘電挙動が静的であるものと想定している。換言すれば、流体の挙動が固体誘電体に類似しているものとしている。
【0004】
潤滑油及び類似流体は、固体誘電材料とは異なる誘電挙動を有していることが多い。流体は、双極子モーメント及び静電荷を呈する汚染物を含むことが多い。これらの汚染物は、キャパシタ内の充電電極間に発生する電場に曝されると運動する。均一な電場内の双極子汚染物は、それらが、双極子の2つの分離した電荷を互いに打ち消すように作用する電場及び力に整列するまで運動する。均一電場内の双極子汚染物は電歪を生じ、双極子汚染物は電界強度が増加する方向に向かって押し進められて流体の弾性変形をもたらすようになる。
【0005】
イオン化した汚染物は、均一及び非均一電場の影響を受けて運動する。正に帯電した汚染物は負に帯電した電極に向かって運動し、負に帯電した汚染物は正に帯電した電極に向かって運動する。正味の結果は、帯電した汚染物が電極の表面に累積し、それに伴ってキャパシタ内に二重層効果が発生することである。汚染物の運動速度は、電場の大きさ及び充電速度、並びに汚染物がそれを通って運動しなければならない流体の粘度に依存する。
【0006】
動的な汚染運動は、キャパシタセンサの容量を時間依存性にする。従来の測定技術では、容量は、充電速度及び測定に使用される所定の電圧しきい値に依存して変化する。充電時間が短いと、汚染物が平衡に達する十分な時間が与えられない。従って、測定される容量は、汚染物が電極間の周囲を運動するにつれてランダムな変動を受ける。充電時間が長いと、汚染物は安定できるようになる。しかしながら、キャパシタが完全充電に近づくと、所定の電圧の小さい変化が、測定される充電時間に、従って測定される容量に大きい変化を生じさせる。
【0007】
全ての汚染物が誘電値に変化をもたらすのではない。若干の場合には、汚染物は、概ね同一の誘電値を有する別の型の流体である。例えば、きれいな機関潤滑油にディーゼル燃料を添加しても、測定される誘電定数は僅かな変化しか生じない。流体の質は別の流体によって劣化するが、従来の誘電率検知技術はこの劣化を検出しない。その結果として、従来の容量をベースとするセンサ測定技術は、共通条件の下での精度に欠けていた。
【0008】
(発明の概要)
本発明は、キャパシタの電極間に配置された誘電材料を有するキャパシタの容量を測定するためのシステム及び方法に関する。本発明は、抵抗器に直列な可変源を使用して、キャパシタを通って流れる電流に変化を誘起させる。センサは、得られる電流の流れをプロセッサ可読電流値に変換する。プロセッサは、複数の時点における複数の電流値を記録する。誘起された電流変化に対応して、初期値が記録される。電流がほぼ安定状まで指数的に減衰した後に、漏洩値が記録される。指数減衰中に、複数の他の電流値も記録される。
【0009】
初期値及び漏洩値に基づいて、上記複数の他の電流値の中から中間値が選択される。初期値、漏洩値、中間値、電流に変化を誘起させた時点と中間値を決定する時点との間の時間、及び抵抗器の抵抗値を使用して容量を計算する。この方法は、誘電材料がキャパシタ内に二重層効果をもたらす場合に良好に働く。それは、キャパシタを殆ど完全に充電することが可能になり、従って電場及び電場内の誘電材料に安定化時間が与えられるからである。
【0010】
好ましい実施の形態では、中間値は、初期値と漏洩値との間の差の20%に設定される理想値にほぼ等しく選択される。これは中間値を、キャパシタがほぼその完全充電に到達し、測定される電流の変化速度が中庸になって良好なアナログ・ディジタル変換が可能になるような指数電流減衰上の点に配置する。代替実施の形態では、中間値は理想値の前後の関心範囲から選択される。
【0011】
容量が計算されると、キャパシタセンサの容量及び既知ジオメトリから流体の誘電値を計算することができる。誘電値は、流体内の汚染レベルの傾向を示す良好な指標である。更に、誘電散逸係数も計算することができる。
【0012】
キャパシタのジオメトリ、印加電圧、及び測定された漏洩値に基づいて、誘電材料の導電率も計算することができる。この情報は、流体の誘電値に変化をもたらす、またはもたらさない誘電材料の変化の傾向を見るのに有用である。
【0013】
流体誘電体の粘度比は、約40°C及び100°Cにおける漏洩値を測定し、次いでそれらの比を計算することによって決定することができる。
【0014】
以上に概要を説明したように、本発明の目的は、誘電体が電極間に二重層効果を発生するような、キャパシタの電極間に配置された誘電材料を有するキャパシタの容量を測定するためのシステム及び方法を提供することである。
【0015】
これらの、及び他の目的、特色、及び長所は、以下の添付図面に基づく詳細な説明から明白になるであろう。
【0016】
(実施の形態)
図1は、抵抗器と直列の電圧によって充電されるキャパシタを通して流れる電流100の正規化されたグラフである。電流100の時間102依存値を、曲線104で示す。電流値104は、時点0における初期値106から始まる。ここでは、初期値106は、1に正規化されている。電流値104は、時間102が増加し、キャパシタが完全充電に接近するにつれて指数的に減衰する。減衰の率は、キャパシタの容量と直列抵抗器の抵抗値との積である時定数τ(タウ)によって決定される。もしキャパシタが理想キャパシタであれば、電流値104は長い時間102をかけて0アンペアに到達する。実際の応用では、長い時間値は、ほぼ5時定数(5τ)よりも長い時間である。実際のキャパシタは、長い時間値に対して一定の大きさで現れる漏洩電流(漏洩値108で示す)を呈する。
【0017】
キャパシタを通って流れる電流の指数減衰は、次の方程式(1)によってモデル化することができる。
I(t) = I(− τ /RC)+I                 (1)
ここに、Iはピーク値110であり、はI漏洩値108であり、Rは直列抵抗器の抵抗値であり、そしてCはキャパシタの容量である。漏洩値108は、時間0からほぼ5時定数における、またはそれより後の電流100を測定することによって決定することができる。この時点においては容量Cの実際の値は未知であるから、5時定数が経過した時点を決定する目的のための所定の容量値を用いて近似することができる。ピーク値110は、初期値106と漏洩値108との差を計算することによって決定される。
【0018】
容量Cを計算するために、第3の、即ち中間値112を決定しなければならない。好ましくは、中間値112は、時間102の第1の時定数(1τ)と第4の時定数(4τ)との間の範囲内で決定すべきである。第1の時定数(1τ)より前に中間値112を決定すると、急速に変化する電流値104をサンプルすることが困難になるので、測定が不正確になり得る。電流測定中の時間102の小さいジッタは、電流値104に大きい差をもたらす。更に、キャパシタはそれまでに長い充電時間を与えられていないから、誘電材料の動的特性が、測定される実際の値に大きいインパクトを与える。同様に、第4の時定数(4τ)より後に中間値を決定しても、測定が不正確になる。第4の時定数4τを過ぎると、電流値104は時間102の僅かな変化に対して殆ど変化しない。従って、時間102上の電流値104の実際の変化は、測定に付随する雑音によって隠され得る。
【0019】
初期値106の電流100を1として表すように、また5時定数の時間102を1として表すように、図1のグラフを正規化すると、時点114に示すように、中間値112を決定するための理想時点はほぼ1.609時定数である。電流値104への接線(図示してない)は、1.609τにおいて−1の勾配を有している。換言すれば、キャパシタのための充電角度は、45°=[時点1.609τ(理想時点114)におけるtan−1(勾配)]である。理想時点114においては、時間102の小さい誤差が、同じように小さい誤差を測定された電流値104に生じさせる。更に、時間100の1つの瞬間から次の瞬間へステップすると、電流値104に僅かな、そして測定可能な変化をもたらす。また更に、距離116で示すように、電流100はピーク値110の20%だけ減少するに過ぎず、従ってキャパシタは完全充電状態に接近中である。この場合、中間値112は、ピーク値110の20%に等しい理想値に最も近い電流値であるように選択される。
【0020】
代替実施の形態では、理想時点114における中間値112を決定する必要はない。代わりに、中間値112は、理想時点114の前後の関心範囲から選択される。関心範囲は、例えば、理想時点114の±5%、±10%、または±20%にわたることができる。図1に示すように、例示関心範囲は、点118によって示されているようにピーク値110の28%から、点120によって示されているようにピーク値110の15%まで広がっている。時間100で表せば、関心範囲は、理想時点114の80%乃至理想時点114の120%まで広がっている。この関心領域内の何処においても、電流値104を合理的な精度で決定することができる。
【0021】
中間値112が決定され、中間値112を決定した時点が分かると、方程式(1)において未知のまま残されているのは、容量Cだけである。容量Cに関して解くと、次の方程式2が求められる。
C=−t/[R ln{(I(t)−I)/I}]          (2)
【0022】
図2は、本発明の方法を実施するシステムの例である。キャパシタセンサ200は、誘電値がkである誘電材料(図示してない)を有する純粋なキャパシタ202としてモデル化されている。溶液電流Iは、漏洩値108(I)を有するキャパシタ202に並列な定電流源204としてモデル化されている。抵抗器206の値はRであり、キャパシタ202と直列に接続されている。キャパシタ202を通って流れるリアクティブ電流Iに変化を誘起させるために、可変電圧源208が使用されている。抵抗器206を通って流れる抵抗電流Iは、リアクティブ電流Iと溶液電流Iとの和である。
【0023】
アナログ・ディジタル変換器210は、抵抗器206にまたがって発生する電圧を電圧値に変換する。電流値104はこの電圧値に比例し、抵抗器206の既知の抵抗値Rに逆比例する(即ち、I=V/R)。アナログ・ディジタル変換器210は自走型であることも、またはマイクロプロセッサ212からトリガ用信号(図中破線で示す)を受信することもできる。
【0024】
マイクロプロセッサ212は、入力としてアナログ・ディジタル変換器210から電圧値を受信し、タイミング信号を可変電圧源208へ出力する。タイミング信号は、可変源発生器208へその出力電圧を移行させる時点を通報する。またマイクロプロセッサ212は、キャパシタ202の電極間の誘電材料の温度を表す温度信号を温度センサ214から受信する。この温度情報は、後刻誘電材料の粘度比を計算する時に使用される。
【0025】
代替実施の形態では、アナログ・ディジタル変換器210は抵抗器206と直列の電流センサ(図示してない)に置換することができる。この電流センサは、抵抗器電流Iを直接測定する。(単位:アンペア)。この場合、マイクロプロセッサ212は、抵抗器電圧値を抵抗器電流値に変換するタスクから解放される。本発明の範囲内で他の変形も可能であり、可変電圧源208の代わりの可変電流源(図示してない)を含むが、これに限定するものではない。
【0026】
図3は、図2のシステムの動作を示すフロー図である。動作は、ブロック300に示すように、可変電圧源の出力を変化させることによって開始される。変化は、典型的には、負のピーク電圧と正のピーク電圧との間の階段関数である。0ボルトからピーク電圧までのステップも使用することができる。可変電圧源の出力を変化させると、キャパシタ202を通って流れるリアクティブ電流Iが変化する。この電流変化は、ブロック302に示すように抵抗器206にまたがる電圧を測定することによって測定される。抵抗器206にまたがる電圧を測定することによって決定された各電流値104は、ブロック304に示すようにマイクロプロセッサ212によって記憶される。
【0027】
判定ブロック306のNO枝路に示すように、可変電圧源の出力の変化後の5時定数までの付加的な電流値104及び時間値は、マイクロプロセッサ212によって記憶される。判定ブロック306のYES枝路に示すように、5時定数が経過した後の付加的な電流値104及び時間値は記録する必要はないが、記録することもできる。
【0028】
次いで、ブロック308に示すように、マイクロプロセッサ212は理想電流値、または若干の応用においては電流値104の関心範囲を計算する。次に、ブロック310に示すように、先に記憶した複数の電流値104の中から中間値を選択する。もし理想電流値法を使用していれば、理想値に最も近い値として中間値を選択する。関心範囲法を使用している場合には、その関心範囲内の何処からか中間値を選択する。
【0029】
ブロック312に示すように、中間値、その中間値を決定した時点、時点0において記録された初期値、5時定数において、またはその後に記録された漏洩値、及び抵抗器206の既知の値Rを使用して、マイクロプロセッサ212はキャパシタセンサ200の容量Cを計算する。
【0030】
マイクロプロセッサ212がキャパシタセンサ200のジオメトリを知っているものとすれば、ブロック314において、マイクロプロセッサ212は誘電材料の誘電値を計算することができる。ブロック316に示すように、最終的にマイクロプロセッサ212は、誘電値、及びオプションとして漏洩値を出力する。キャパシタセンサ200が平行板形態を有していれば、容量は次式3によって定義される。
C=Aεk/d                       (3)
ここに、Aは1つの板の面積であり、εは真空の誘電率であり、kは誘電材料の誘電値であり、そしてdは平行板間の距離である。キャパシタセンサ200が同軸円筒形態であれば、容量Cは次式4によって定義される。
C=2πhεk/ln(A/B)                (4)
但し、hはシリンダの高さであり、Aは内側シリンダの外径であり、Bは外側シリンダの内径である。
【0031】
誘電材料が機械または機関環境内の潤滑油である場合には、油の誘電値は煤汚染に感応する。煤汚染のレベルが高いと、誘電値は高くなる。油の誘電値の変化の傾向を検知することによって、油がその有用寿命の終わりに達したことを決定することができる。誘電値が所定のしきい値に達した時が、油を交換する時点である。
【0032】
潤滑油の誘電値は、水、及びグリコールをベースとする冷却剤の侵入にも感応する。誘電値を監視することによって、潤滑油が水またはグリコールで汚染され始めたことを迅速に決定することができる。誘電値の急激な変化は、典型的に、内部シールに障害が発生したこと、及び直ちに保守を遂行すべきことを指示している。
【0033】
マイクロプロセッサ212は、潤滑油の基底導電率を表す漏洩値108を出力することができる。漏洩値108は、酸化、油の全塩基価、並びに油の粘度に感応する。更に、漏洩値108の急速な変化は、油内への水、グリコール、またはディーゼル燃料の侵入を指示することができる。代替実施の形態では、ブロック318に示すように、流体の導電率も計算することができる。この導電率は、キャパシタセンサ200のジオメトリ、測定された漏洩値108、及び流体を横切って印加される電場の強度に基づく。
【0034】
マイクロプロセッサ212は、ブロック320に示すように、漏洩電流及びピーク電流の知識をも使用して誘電散逸係数を計算することができる。誘電散逸係数は、次の方程式(5)に示すように定義される。
Tan(δ)=リアクティブ電流/溶液電流=I/I        (5)
【0035】
誘電散逸係数は、溶液電流Iが極く小さいか、または全く存在しない場合にはほぼ90°であり、煤、酸化、及び全塩基価のような汚染の変化が大きい溶液電流Iをもたらす場合にはこの角度は小さくなる。誘電散逸係数の傾向は、潤滑油内の汚染のレベルを表している別の標識である。
【0036】
マイクロプロセッサ212は、図3の判定ブロック322のYES枝路に示すように、各周期に2回プロセスを反復することができる。可変電圧源出力の極性を反転させることによって、第2半周期中に、抵抗器206を通してキャパシタセンサ200を逆極性に充電することができる。この充電中、抵抗器206にまたがる電圧を測定して、誘電値及び誘電散逸係数の更新された値を計算することができる。抵抗器電圧の測定は少なくとも5時定数にわたって行わなければならないから、可変電圧源の出力は周期当たり2回の測定のために10時定数より大きいか、または等しい周期を有していなければならない。
【0037】
上述したように、溶液電流Iは潤滑油の粘度に感応する。図4に、4.06%の煤をロードした油の温度の関数としの溶液電流400の実験結果を示す。この実験は、100°Cにおける溶液電流値(漏洩値)と40°Cにおける溶液電流値との比が、油サンプルの粘度比と一致していることを示している。即ち、溶液電流の比(予測された204ナノアンペア/27ナノアンペア=7.56)は、40°Cにおける粘度と100°Cにおける粘度の比(124.1センチストーク/16.4センチストーク=7.57)に極めて良好に相関している。
【0038】
潤滑油の粘度比を決定すると、あるブランドの油の傾向、並びに異なるブランドの油に対する変化を監視することが可能になる。別の有用な特色は、この計算された粘度比をも使用して、その潤滑油と類似した誘電値を有する他の流体の侵入を検出できることである。例えば、ディーゼル燃料の誘電値は、機関油の誘電値と類似している。シールの破損または他の問題によって機関油内へのディーゼル燃料の混入をもたらした場合に、誘電測定ではその問題を検出することはできない。一方、粘度比測定では、ディーゼル燃料が存在することに応答して減少する変化を信号する。
【0039】
図5は、溶液電流に基づいて粘度比を決定するための方法のフロー図である。ブロック500に示すように、先ず潤滑油をほぼ100°Cまで加熱しなければならない。これは、一般に機関を動作させ、それ自体の内部熱によって油を暖めることを可能にすることによって遂行されている。ブロック502に示すように、油が100°Cになった時に溶液電流Iを測定し、得られた漏洩値を記憶する。溶液電流の測定は、図3に示すものと同一手法で達成することができる。ブロック504に示すように、その後の冷機中に潤滑油は実質的に約40°Cに到達する。ブロック506において、再度溶液電流Iを測定して第2の漏洩値を求める。ブロック508において、100°Cにおける漏洩値と40°Cにおける漏洩値との比を計算して粘度比を求める。最後に、ブロック510において、この粘度比を出力する。
【0040】
以上に本発明の実施の形態を説明したが、これらの実施の形態が本発明の全ての可能な形状を表しているものではない。本明細書は本発明を限定する意図をもって記述されたものではなく、本発明の思想及び範囲から逸脱することなく多くの変化が可能であることを理解されたい。
【図面の簡単な説明】
【図1】
キャパシタを通って流れる電流を、時間の関数として示すグラフである。
【図2】
誘電値を測定するための回路のブロック図である。
【図3】
誘電値を測定するための方法のフロー図である。
【図4】
潤滑油を通って流れる溶液電流を、温度の関数として示すグラフである。
【図5】
粘度比を決定するための方法のフロー図である。

Claims (16)

  1. キャパシタの容量を測定する方法であって、
    上記キャパシタを通って流れる電流に変化を誘起させるステップと、
    上記キャパシタを通って流れる電流に変化の誘起に応答し、初期値、及び上記電流が概ね安定状態にある時に決定される漏洩値を含む複数の電流値を決定するステップと、
    上記複数の電流値の決定に応答して上記複数の電流から中間値を選択するステップと、
    上記初期値、上記漏洩値、上記中間値、及び抵抗器を通って流れる電流に変化を誘起させた時点と上記中間値の選択に応答しての上記中間値の決定との間の時間に基づいて、上記キャパシタの容量を計算するステップと、
    を含むことを特徴とする方法。
  2. 上記漏洩電流を決定するために、上記キャパシタを通って流れる電流に変化を誘起させた後に少なくとも5時定数引き伸ばすステップを更に含み、1時定数は上記キャパシタの所定の容量と所定の抵抗値との積として定義されることを特徴とする請求項1に記載の方法。
  3. 上記キャパシタを通って流れる電流に、10時定数よりも大きい周期で周期的に変化を誘起させるステップを更に含むことを特徴とする請求項2に記載の方法。
  4. 上記複数の電流値の決定に応答して上記初期値と上記漏洩値との間の差の約20%だけオフセットした漏洩値に等しい理想値を計算するステップを更に含み、
    上記中間値は、上記理想値の計算に応答して上記理想値に概ね等しく選択されることを特徴とする請求項1に記載の方法。
  5. 上記複数の電流値の決定に応答して、上記初期値と上記漏洩値との間の差の約15%だけオフセットした漏洩値と、上記初期値と上記漏洩値との間の差の約28%だけオフセットした漏洩値との間の関心範囲を計算するステップを更に含み、
    上記中間値は、上記関心範囲の決定に応答して上記関心範囲内にあるように選択されることを特徴とする請求項1に記載の方法。
  6. 上記キャパシタ内の電流に上記変化を誘起させる前に、上記キャパシタ内に液体を供給するステップと、
    上記容量の計算に応答し、上記キャパシタの容量及び既知のジオメトリに基づいて上記液体の誘電値を計算するステップと、
    を更に含むことを特徴とする請求項1に記載の方法。
  7. 上記キャパシタ内の電流に上記変化を誘起させる前に、上記キャパシタ内に液体を供給するステップと、
    上記複数の電流値の決定に応答し、上記初期値及び上記漏洩値に基づいて上記液体の誘電散逸係数を計算するステップと、
    を更に含むことを特徴とする請求項1に記載の方法。
  8. 上記キャパシタ内の電流に上記変化を誘起させる前に、上記キャパシタ内に液体を供給するステップと、
    上記漏洩値を決定する前に、上記液体の温度を約100°Cに制御するステップと、
    上記100°Cにおける上記漏洩値の決定に応答し、上記液体の温度を約40°Cに変化させるステップと、
    上記液体の温度の変化に応答し、第2の漏洩値を決定するステップと、
    上記漏洩値及び上記第2の漏洩値に基づいて、上記液体の粘度比を計算するステップと、
    を更に含むことを特徴とする請求項1に記載の方法。
  9. キャパシタの容量を測定するシステムであって、
    上記キャパシタに接続されている抵抗器と、
    上記キャパシタを通る電流に変化を誘起させるように動作する可変源と、
    上記抵抗器を通って流れる電流を電流値に変換するように動作するセンサと、
    初期値、及び上記電流が概ね安定状態にある時に決定される漏洩値を含む複数の電流値を記録し、上記複数の電流値から中間値を選択し、上記初期値、上記漏洩値、上記中間値、及び上記抵抗器を通って流れる電流に変化を誘起させた時点と上記中間値の選択に応答した上記中間値の決定との間の時間に基づいて上記キャパシタの容量を計算するように動作するプロセッサと、
    を備えていることを特徴とするシステム。
  10. 上記プロセッサは更に、上記可変源が上記キャパシタを通って流れる電流に変化を誘起させて上記漏洩電流を決定した後に少なくとも5時定数引き伸ばすように動作し、1時定数は上記キャパシタの所定の容量と上記抵抗器の所定の抵抗値との積として定義されることを特徴とする請求項9に記載のシステム。
  11. 上記可変源は更に、上記キャパシタを通って流れる電流に少なくとも10時定数の周期で周期的に変化を誘起させるように動作することを特徴とする請求項10に記載のシステム。
  12. 上記プロセッサは更に、上記複数の電流値の決定に応答して上記初期値と上記漏洩値との間の差の約20%だけオフセットした漏洩値に等しい理想値を計算し、上記理想値に概ね等しい上記中間値を選択するように動作することを特徴とする請求項9に記載のシステム。
  13. 上記プロセッサは更に、上記初期値と上記漏洩値との間の差の約15%だけオフセットした漏洩値と、上記初期値と上記漏洩値との間の差の約28%だけオフセットした漏洩値との間で関心範囲を計算し、上記関心範囲の決定に応答して上記関心範囲内にあるように上記中間値を選択するように動作することを特徴とする請求項9に記載のシステム。
  14. 上記キャパシタ内に配置された液体を有し、上記プロセッサは更に、上記キャパシタの容量及び既知のジオメトリに基づいて上記液体の誘電値を計算するように動作することを特徴とする請求項9に記載のシステム。
  15. 上記キャパシタ内に配置された液体を有し、上記プロセッサは更に、上記初期値及び上記漏洩値に基づいて上記液体の誘電散逸係数を計算するように動作することを特徴とする請求項9に記載のシステム。
  16. 上記キャパシタ内に配置された液体を有し、
    上記システムは更に、
    上記流体の温度を温度値に変換する温度センサを備え、
    上記プロセッサは更に、約40乃至100°Cの間の上記流体の温度の変化によって誘起される上記漏洩値の変化に基づいて、上記流体の粘度比を計算するように動作することを特徴とする請求項9に記載のシステム。
JP2002528841A 2000-09-25 2001-08-20 液体誘電体挙動を測定する方法及び装置 Pending JP2004510962A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/669,162 US6509745B1 (en) 2000-09-25 2000-09-25 Method and apparatus for measuring liquid dielectric behavior
PCT/US2001/041805 WO2002025294A1 (en) 2000-09-25 2001-08-20 Method and apparatus for measuring liquid dielectric behavior

Publications (1)

Publication Number Publication Date
JP2004510962A true JP2004510962A (ja) 2004-04-08

Family

ID=24685316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002528841A Pending JP2004510962A (ja) 2000-09-25 2001-08-20 液体誘電体挙動を測定する方法及び装置

Country Status (7)

Country Link
US (1) US6509745B1 (ja)
JP (1) JP2004510962A (ja)
AU (1) AU2001285458A1 (ja)
CA (1) CA2423430A1 (ja)
DE (1) DE10196663T1 (ja)
GB (1) GB2384057A (ja)
WO (1) WO2002025294A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173295A (ja) * 2016-03-21 2017-09-28 本田技研工業株式会社 誘電性エラストマーの静電容量計測装置及び静電容量計測方法
JP2021056147A (ja) * 2019-10-01 2021-04-08 株式会社日立産機システム 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844745B1 (en) * 2003-09-15 2005-01-18 Eaton Corporation Method of determining the fluid condition of diesel engine lubricant during real time operation
US20080129306A1 (en) * 2006-11-30 2008-06-05 Electro Scientific Industries, Inc. Multi-Point, Multi-Parameter Data Acquisition For Multi-Layer Ceramic Capacitor Testing
US8461849B1 (en) 2006-11-30 2013-06-11 Electro Scientific Industries, Inc. Multivariate predictive insulation resistance measurement
JP4919819B2 (ja) * 2007-01-24 2012-04-18 富士通株式会社 マイクロマシンデバイスの駆動制御方法および装置
JP4610576B2 (ja) * 2007-03-30 2011-01-12 富士通株式会社 マイクロマシンデバイスの駆動制御方法および装置
US7609072B2 (en) 2007-04-05 2009-10-27 General Electric Company Processing tantalum capacitors on assembled PWAs to yield low failure rate
TW200951461A (en) * 2008-03-19 2009-12-16 Humo Lab Ltd A method for inspecting insulation property of a capacitor
TW201929987A (zh) * 2018-01-02 2019-08-01 國立中央大學 檢測放電加工液的金屬及非金屬顆粒濃度之方法及檢測裝置
US10175278B1 (en) * 2018-04-23 2019-01-08 Linear Technology Holding Llc Detecting value of output capacitor in switching regulator
US11674919B2 (en) * 2019-07-17 2023-06-13 Taiwan Semiconductor Manufacturing Company Ltd. Detector, detection device and method of using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3143114A1 (de) 1980-11-07 1982-07-15 Mestra AG, 4153 Reinach Verfahren und schaltung zur messung von kapazitaeten
US4429272A (en) * 1981-02-18 1984-01-31 Lucas Industries Limited Apparatus for indicating dielectric constant
DE3544187A1 (de) 1985-12-13 1987-06-19 Flowtec Ag Kapazitaetsmessschaltung
US4736156A (en) * 1986-04-11 1988-04-05 Forte Technology, Inc. Apparatus for on-line determination of dielectric constant
US5073757A (en) * 1988-09-23 1991-12-17 John Fluke Mfg. Co., Inc. Apparatus for and method of measuring capacitance of a capacitive element
DE4107366C1 (ja) 1991-03-08 1992-04-23 Leica Heerbrugg Ag, Heerbrugg, Ch
US5262732A (en) * 1991-12-11 1993-11-16 Computational Systems, Inc. Oil monitor with magnetic field
US5469364A (en) * 1993-03-15 1995-11-21 Hughey; Bradley W. Apparatus and methods for measuring and detecting variations in the value of a capacitor
US5604441A (en) * 1995-03-14 1997-02-18 Detroit Diesel Corporation In-situ oil analyzer and methods of using same, particularly for continuous on-board analysis of diesel engine lubrication systems
US6194903B1 (en) 1996-01-21 2001-02-27 I F M Electronic Gmbh Circuit for acquisition of the capacitance or capacitance change of a capacitive circuit element or component
US6028433A (en) 1997-05-14 2000-02-22 Reid Asset Management Company Portable fluid screening device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173295A (ja) * 2016-03-21 2017-09-28 本田技研工業株式会社 誘電性エラストマーの静電容量計測装置及び静電容量計測方法
JP2021056147A (ja) * 2019-10-01 2021-04-08 株式会社日立産機システム 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法
JP7311380B2 (ja) 2019-10-01 2023-07-19 株式会社日立産機システム 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法

Also Published As

Publication number Publication date
WO2002025294A1 (en) 2002-03-28
US6509745B1 (en) 2003-01-21
GB0306506D0 (en) 2003-04-23
AU2001285458A1 (en) 2002-04-02
CA2423430A1 (en) 2002-03-28
DE10196663T1 (de) 2003-08-21
GB2384057A (en) 2003-07-16

Similar Documents

Publication Publication Date Title
US4733556A (en) Method and apparatus for sensing the condition of lubricating oil in an internal combustion engine
US7729870B2 (en) Methods for detecting oil deterioration and oil level
JP2004510962A (ja) 液体誘電体挙動を測定する方法及び装置
US20100180663A1 (en) Sensor and method for detecting oil deterioration and oil level
US10976277B2 (en) Detecting composition of a sample based on thermal properties
US5824889A (en) Capacitive oil deterioration and contamination sensor
US4646070A (en) Oil deterioration detector method and apparatus
KR100957597B1 (ko) 사용 중의 윤활유 품질 측정
CA1304129C (en) Lubrication film thickness measuring system and method
JP2001524682A (ja) 高感度容量性オイル劣化およびレベルセンサ
JP6910037B2 (ja) オイル状態判定システム、オイル状態判定方法、及び、オイル状態判定プログラム
US20050149278A1 (en) Fluid presence and qualitative measurements by transient immitivity response
NL8401112A (nl) Inrichting voor het bepalen van de smeringstoestand bij ten opzichte van elkaar rollende of glijdende, door een smeermiddel gesmeerde oppervlakken.
WO2017187770A1 (ja) センサ
CN103261901A (zh) 电容器的异常检测方法及异常检测装置
CN110470699B (zh) 用于确定油的品质的方法和分析系统
JPS59168322A (ja) 潤滑油の測定方法およびその装置
JP5163947B2 (ja) 油膜厚さ計測装置および方法
JP2006162441A (ja) 潤滑剤膜厚計測方法および潤滑剤膜厚計測装置
JP2007239779A (ja) 軸受状態検査装置
JP2007240491A (ja) 軸受状態検査装置
SU1672199A1 (ru) Устройство динамического контрол толщины и несущей способности смазочного сло узлов трени
JPS5840136B2 (ja) ユマクテイコウソクテイホウホウ
Pauschitz et al. Third bodies in wet friction couples-In-situ-measurement with electrical impedance
JPH0361137B2 (ja)