JP7311380B2 - 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法 - Google Patents

電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法 Download PDF

Info

Publication number
JP7311380B2
JP7311380B2 JP2019181090A JP2019181090A JP7311380B2 JP 7311380 B2 JP7311380 B2 JP 7311380B2 JP 2019181090 A JP2019181090 A JP 2019181090A JP 2019181090 A JP2019181090 A JP 2019181090A JP 7311380 B2 JP7311380 B2 JP 7311380B2
Authority
JP
Japan
Prior art keywords
power supply
supply capacitor
current sensor
current
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019181090A
Other languages
English (en)
Other versions
JP2021056147A (ja
Inventor
隆 佐藤
深大 佐藤
正典 宍戸
将人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019181090A priority Critical patent/JP7311380B2/ja
Priority to PCT/JP2020/030956 priority patent/WO2021065219A1/ja
Priority to EP20870960.0A priority patent/EP4040170A4/en
Priority to CN202080052551.6A priority patent/CN114144685A/zh
Publication of JP2021056147A publication Critical patent/JP2021056147A/ja
Application granted granted Critical
Publication of JP7311380B2 publication Critical patent/JP7311380B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity

Description

本発明は、開閉装置等に用いられる電源コンデンサの静電容量を測定する装置及び方法に関する。
開閉装置には真空遮断器が備えられており、真空遮断器は電磁操作機構によって動作する。真空遮断器を動作させる電磁操作機構としては、電源コンデンサが用いられる。電源コンデンサの静電容量を測定するにあたっては、電源コンデンサから充放電リード線を取り外して静電容量を静電容量計で測定していたため、機器の停止が必要であった。
これを解決する技術として、例えば特許文献1に記載のものがある。特許文献1では、電源コンデンサに並列に接続した放電回路により、電源コンデンサを一定の時間だけ放電させ、その時の電源コンデンサの電圧を測定することにより、静電容量を測定している。
WO2010/150599
しかしながら、特許文献1に記載の技術においては、電源コンデンサの静電容量測定のために、電源コンデンサに対して並列に放電回路を別途接続するようにしているので、放電回路の追加に伴う故障といったリスクがあり、信頼性が低下するといった課題があった。
また、放電回路を接続するときにおいて電源コンデンサの初期電圧にばらつきが発生すると、放電回路を一定の時間だけ放電させた後の電源コンデンサの電圧値にもばらつきが発生し、電源コンデンサの静電容量測定に誤差が生じるといった課題であった。
本発明の目的は、信頼性の低下を抑制し、電源コンデンサの静電容量測定誤差を抑制することができる電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法を提供することにある。
上記目的を達成するために本発明は、電源コンデンサと、前記電源コンデンサを充電する電源と、前記電源と前記電源コンデンサとの接続をオンオフする充電スイッチとにより充電回路が構成され、前記充電回路には前記電源コンデンサの充電電流を検出する電流センサが備えられ、前記電源コンデンサに充電が開始され、前記電流センサが第1電流値を検出するまでに要した第1時間と、前記電源コンデンサに充電が開始され、前記電流センサが第2電流値を検出するまでに要した第2時間と、前記第1時間と前記第2時間との時間差から前記電源コンデンサの静電容量を測定することを特徴とする。
本発明によれば、信頼性の低下を抑制し、電源コンデンサの静電容量測定誤差を抑制することができる電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法を提供することができる。
実施例1に係る真空遮断器を備えた開閉装置の縦断面図である。 実施例1に係る真空遮断器の詳細構成を示す図である。 実施例1に係る真空遮断器の縦正断面図である。 実施例1に係る充放電回路を示す図である。 実施例1に係る蓄積・比較部のブロック図である。 実施例1に係る電源コンデンサの充電時における電圧と電流の時間特性を示す図である。 実施例1に係る電源コンデンサの充電時における電圧と電流の時間特性を示す図である。 実施例1に係る電源コンデンサの充電時における電圧と電流の時間特性を示す図である。 実施例2に係る蓄積・比較部のブロック図である。 実施例3に係る電流センサの構成を示す斜視図である。 実施例4に係る電流センサの構成を示す斜視図である。 実施例5に係る電流センサの構成を示す斜視図である。
以下、本発明を実施する上で好適となる実施例について図面を用いて説明する。尚、下記はあくまでも実施の例に過ぎず、発明の内容が下記具体的態様に限定されるものではない。本発明は、下記態様を含めて種々の態様に変形することが無論可能である。
実施例1について図1から図7を用いて説明する。
図1は、本発明の実施例1に係る真空遮断器を備えた開閉装置の縦断面図である。
図1に示すように、開閉装置150は、遮断器室154と、遮断器室154の上方に配置された計測器室152と、遮断器室154及び計測器室152の背面側に配置された母線室153及びケーブル室155に区画されている。
遮断器室154内には、真空遮断器156が備えられている。
計測器室152内には、真空遮断器156の主接点の開閉を制御する制御部220と、真空遮断器156の状態における異常の有無や異常の種類を判定する蓄積・比較部221と、蓄積・比較部221によって真空遮断器156の状態が異常であると判定された場合、真空遮断器156が異常状態であることをランプ点灯(若しくは消灯)、画像、音声などによって表示する異常状態表示部222が備えられている。蓄積・比較部221は、電源コンデンサ静電容量の測定結果を逐次蓄積し、新たに測定された結果と過去に蓄積された結果を比較することで異常を検出する。
母線室153には真空遮断器156における真空バルブ9の固定接点7に電気的に接続された母線162と、真空遮断器156における真空バルブ9の可動接点8に電気的に接続された配電用ケーブル161が備えられている。
そして、開閉装置150の筐体前面(図1中、右側)には扉が設けられており、扉を開放すると、真空遮断器156の前面に設けられたスイッチ類などを備える操作パネルが露出する。保守点検時には、作業員は、扉を開放して真空遮断器156を引き出すことができるようになっている。
次に、真空遮断器156の詳細構成につて説明する。図2は、実施例1に係る真空遮断器の詳細構成を示す図である。
図2に示すように、本実施例の真空遮断器156は、内部に主回路開閉部(固定接点7及び可動接点8)を有する真空バルブ9と、この真空バルブ9の主回路開閉部(固定接点7及び可動接点8)を開閉操作する電磁操作装置1と、電磁操作装置1と真空バルブ9を連結するリンク機構2とから概略構成されている。
電磁操作装置1は、可動鉄心302と固定鉄心306が相対向して配置され、鉛直方向に昇降する可動鉄心302に連結された電磁操作装置側ロッド3及び可動平板317、電磁石コイル17(負荷)、永久磁石304がケース305に収納されて成る電磁石14から主に構成され、ピン19、連結部品21、リンク機構2を介して第1のレバー22に接続されている。これらは、筐体10内に配置されている。
また、電磁石コイル17に励磁電流が供給されると可動鉄心302が下降し、可動鉄心302に連結された電磁操作装置側ロッド3が下降するとき、第2のレバー23が回転することで連結部品24及び真空バルブ側ロッド114が上昇し、真空バルブ9内に設けられた固定接点7と可動接点8が接触する。
絶縁フレーム130には、断路部131,132、固定導体133、真空バルブ9、可動側導体134からなる主回路部と、また、真空バルブ9の可動接点8を固定接点7と切離自在に駆動するために、真空バルブ側ロッド114、ワイプばね59、シャフト25、遮断ばね60が備えられている。
真空遮断器156の投入動作では、ワイプばね59及び遮断ばね60が圧縮され、弾性エネルギーが蓄積され、この弾性エネルギーにより遮断動作が行われる。真空バルブ9の開閉部が投入状態にあるとき、永久磁石304の吸引力により可動鉄心302及び可動平板317が保持される。
電磁操作式の真空遮断器156の遮断動作では、電磁石コイル17に投入動作とは逆向きの電流を流すことで、永久磁石304の吸引力を打ち消す方向に磁束が発生し、ワイプばね59及び遮断ばね60に蓄勢された弾性エネルギーが解放されることで、電磁操作装置側ロッド3が上昇し、真空バルブ9内に設けられた固定接点7と可動接点8が開離する。
電磁操作装置側ロッド3が上昇するとシャフト25が上方に移動し、シャフト25の移動に合わせて第3のレバー(図示せず)が回転する。第3のレバーと補助スイッチ20は連動しており、補助スイッチ20は、真空バルブ9の開閉部の状態検出と電磁石コイル17に流れる電流の制御を兼ねている。入り動作においては、第4のレバー(図示せず)がピンを中心に反時計周りに回転し、表示板(図示せず)の「入」の文字が正面側から見える位置に移動する。
また、上述した補助スイッチ20は、補助スイッチ20における信号接点である常時開接点及び常時閉接点の動作タイミングと、制御部220(図1参照)が作成する投入指令及び遮断指令(開極指令)のタイミングとの時間差に基づいて、真空遮断器156の投入動作時間及び遮断動作時間が計測される。計測される投入動作時間及び遮断動作時間の時間的変化に基づいて、真空バルブ9内の固定接点7と可動接点8の消耗、真空バルブ9の真空漏れ、可動接点8の駆動機構部における摩擦増など、真空遮断器156の状態が判定される。
図3は、実施例1に係る真空遮断器156の縦正断面図である。筐体10には、鉛直方向に延びた制御基板18が固定されている。制御基板18からは、リード線514が延びており、リード線514には、補助スイッチ20、電源コンデンサ16、電磁石コイル17に接続されている。リード線514のうち、電源コンデンサ16の充電電流が流れるリード線514aには、電流センサ504、505が取り付けられている。
図4は、実施例1に係る充放電回路を示す図である。充放電回路は、リード線514a,514bによって各機器が接続されている。直流電源500(電源)には、充電スイッチ501、充電抵抗502、電源コンデンサ16がリード線514aによって接続され、充電回路が形成される。そして、充電スイッチ501がオンすることで、電源コンデンサ16が充電される。電源コンデンサ16が充電されると、充電スイッチ501がオフとなる。
また、電源コンデンサ16には、放電スイッチ503、電磁石コイル17(負荷)がリード線514bによって接続され、放電回路が形成される。そして、放電スイッチ503がオンされることで、電源コンデンサ16から電磁石コイル17(負荷)に電流が供給され、電磁石14が動作する。電磁石14が動作後、放電スイッチ503をオフされ、充電スイッチ501がオンされることで、電源コンデンサ16が再充電される。その時の充電電流が、電流センサ504、505によって測定される。
次に、電源コンデンサ16の静電容量測定方法について図5及び図6を用いて説明する。図5は、実施例1に係る蓄積・比較部221のブロック図、図6は、実施例1に係る電源コンデンサの充電時における電圧と電流の時間特性を示す図である。
図5では、複数のデジタル電流センサを用いた例としている。図6に示すように、電源コンデンサの初期電圧が0Vの場合、電源コンデンサ充電電流507は直流電源電圧を充電抵抗で除した値から0Aまで、時間経過と共に時定数CRで漸減して行く特性を持っている。一方、電源コンデンサ電圧506は、時間経過と共に時定数CRで0Vから所定の直流電源電圧まで漸増して行く特性を持っている。
電流センサ504,505は電源コンデンサ16に充電される充電電流を検出する。電流センサ504,505には、例えば検出される電流値の感度が互いに異なる常時開接点を備えたセンサを用いる。
図6に示すように、電源コンデンサ充電電流507が時定数CRで漸減するに従い、電流センサ504(第1電流センサ)の出力信号601aが電流値I1(第1電流値)を横切った時に、閉から開に切り替わる。同様に、電流センサ505(第2電流センサ)の出力信号602が電流値I2を横切った時に、閉から開に切り替わる。電流センサ504(第1電流センサ)の出力信号601aと、電流センサ505(第2電流センサ)の出力信号602とは、時間差dtで閉から開に切り替わる。
実施例1では、2つ電流センサを組み合わせて使用する。電流センサ504、505は、電源コンデンサ充電電流507がそれぞれ、電流値I1、I2を横切るときにデジタルに出力が切り替わるように調整されている。
そして、電流センサ504,505は、それぞれ異なる電流値を検出すると、センサが閉から開に切り替わる。そして、電流センサ504が閉から開に切り替わる時刻と、電流センサ505が閉から開に切り替わる時刻の差を測定すれば、電源コンデンサ静電容量を算出することができる。
電流センサ504,505が検出した検出結果は、それぞれ蓄積・比較部221の蓄積部520,521に記憶される。
蓄積部520には、予め定められた電流値I1(第1電流値)に加え、電源コンデンサ16に充電が開始され、電流センサ504(第1電流センサ)が予め定められた電流値I1(第1電流値)を検出するまでに要した第1時間となる時間T1(電流値I1を横切る時間)が記憶される。
蓄積部521には、予め定められた電流値I2(第2電流値)に加え、電源コンデンサ16に充電が開始され、電流センサ505(第2電流センサ)が予め定められた電流値I2(第2電流値)を検出するまでに要した第2時間となる時間T2(電流値I2を横切る時間)が記憶される。
電流値I1(第1電流値)と電流値I2(第2電流値)とは異なる値とする。蓄積部520,521に記憶されたそれぞれの検出結果は差演算部522に送信される。
差演算部522では、電流値I1,I2と、電流値I1,I2を横切る時間T1,T2の時間差dtより、電源コンデンサ16の静電容量Cが以下の式で演算される。
C=(1/R)・dt/(ln(I1/I2))
ここで、電流値I1,I2、充電抵抗Rを固定すれば、時間差dtを測定することによって電源コンデンサ静電容量Cを算出できる。
次に、差演算部522で算出された電源コンデンサ静電容量Cが比較部523に送信され、比較部523では算出された電源コンデンサ静電容量Cと、予め定められた時間差判定値524とが比較される。比較部523では、算出された電源コンデンサ静電容量Cが時間差判定値524を下回るか否かが判定され、算出された電源コンデンサ静電容量Cが時間差判定値524を下回っていれば、異常を表示する指令信号を異常状態表示部222へ出力する。異常状態表示部222では、指令信号を受信後、電源コンデンサの異常を報知する。
上述した実施例では、電流センサ504,505として共に常時開接点のセンサを用いたが、例えば、電流センサ504を常時閉接点のセンサとし、電流センサ505を常時開接点のセンサとし、それぞれのセンサが検出する電流値の感度を異ならせるようにしても良い。図6に示すように、電源コンデンサ充電電流507が時定数CRで漸減するに従い、電流センサ504(第1電流センサ)の出力信号601bが10sになった時に、開から閉に切り替わる。同様に、電流センサ505(第2電流センサ)の出力信号602が15sになった時に、閉から開に切り替わる。そして、電流センサ504(第1電流センサ)の出力信号601bと、電流センサ505(第2電流センサ)の出力信号602の論理積603を監視すれば、時間差dtを測定でき、電源コンデンサ16の静電容量を算出できる。電流センサ504,505が接点出力であれば、それぞれの出力を直列接続することにより、論理積603が容易に得られる。
また、本実施例は、電流センサ504を常時開接点のセンサとし、電流センサ505を常時閉接点のセンサとしても良い。すなわち、電流センサ504(第1電流センサ)及び電流センサ505(第2電流センサ)の何れか一方は常時閉接点を備えるようにし、他方は常時開接点を備えるようにすると良い。
本実施例では、電源コンデンサ16の静電容量が異なる場合であっても、電源コンデンサ16の静電容量を測定することが可能である。
図7は、実施例1に係る電源コンデンサの充電時における電圧と電流の時間特性を示す図であり、図6で用いた電源コンデンサの静電容量よりも小さい値の静電容量を備えた電源コンデンサの特性を示すものである。図6において、電流値I1、I2は図6と等しく設定すると、算出される時間差dtは電源コンデンサの静電容量に比例して小さくなる。
図8は、実施例1に係る電源コンデンサの充電時における電圧と電流の時間特性を示す図であり、電源コンデンサ16の初期電圧が、図7よりも高い値の静電容量を備えた電源コンデンサの特性を示すものである。この場合、時刻T1、T2はいずれもゼロに向かって移動するが、その時間差dtは図7と同じ値を保つため、電源コンデンサ16の初期電圧の違いによる静電容量のばらつきを抑制した状態で静電容量を測定することができる。
本実施例によれば、電源コンデンサ充電電流507が電流値I1、I2を横切る時刻T1、T2の時間差dtを測定するようにしているので、電源コンデンサの初期電圧の影響を抑制した上で、電源コンデンサ16の静電容量を算出することができる。
また、本実施例によれば、電源コンデンサの静電容量を測定するにあたり、放電回路を新たに設ける必要がないので、信頼性の低下を抑制した電源コンデンサ静電容量測定装置を提供することができる。
次に図9を用いて実施例2について説明する。実施例1と共通する構成については同一の符号を付し、その詳細な説明は省略する。図9は、実施例2に係る蓄積・比較部221のブロック図である。実施例1と異なるところは、電流センサの設置個数を単一(1つ)としたところにある。
実施例2では、連続的に電流を測定することができる電流センサを1つだけ設置し、その出力をマイコンで連続的に監視し、電源コンデンサ充電電流507が、電流値I1、I2を横切る時間差を演算するようにしている。
図9では、単一のアナログ電流センサを用いた例としている。図9において、電流センサ901で連続的に検出される検出値は、比較部902,903に送信され、それぞれ電流判定値904,905と比較される。電流判定値904,905には、それぞれ電流値I1、I2が記憶されており、電流センサ901で連続的に検出される検出値が、電流値I1、I2と比較される。
比較部902では、電流センサ901から連続的に出力されるアナログの電流値が、電流値I1(第1電流値)となった時間を判定し、蓄積部520に記憶する。同様に、比較部903では、電流センサ901から連続的に出力されるアナログの電流値が、電流値I2(第2電流値)となった時間を判定し、蓄積部521に記憶する。その後の処理は、実施例1と同様であるので、詳細な説明は省略する。
本実施例によれば、電源コンデンサ充電電流507が電流値I1、I2を横切る時刻T1、T2の時間差dtを測定するようにしているので、電源コンデンサの初期電圧の影響を抑制した上で、電源コンデンサ16の静電容量を算出することができる。また、電源コンデンサ16の静電容量の算出を1つの電流センサで実現しているので、コストを低減することができる。
さらに、本実施例によれば、電源コンデンサの静電容量を測定するにあたり、放電回路を新たに設ける必要がないので、信頼性の低下を抑制した電源コンデンサ静電容量測定装置を提供することができる。
次に図10を用いて実施例3について説明する。図10は、実施例3に係る電流センサの構成を示す斜視図である。
図10において、実施例3の電流センサは、リードスイッチ401と、環状磁性コア402から構成されている。環状磁性コア402には、環状磁性コア402の外周の一部が径方向外側に向かって開放したスリット部403と、スリット部403と径方向において連通した中空部404が形成されており、中空部404には、中空部404を貫通するようにリード線514が配置されている。スリット部403におけるギャップは、リード線514の直径よりも大きく形成されており、リード線514はこのスリット部403から挿入され、中空部404に位置させる。中空部404もまたリード線514の直径よりも大きく形成されている。
電流センサは、スリット部403から漏れる磁束により、リードスイッチ401を動作させる。
リードスイッチ401の外郭はガラス管で形成されており、ガラス管の内部には、2本の強磁性体リードが配置されている。
リードスイッチ401が常時開接点の場合には、2本の強磁性体リードはある接点間隔を持って相対している。常時開接点のリードに外部から磁界を加えるとリードが磁化され、相対した自由端が互いに吸収し合って接触し、回路を閉ざすことができ、磁界を消去すればリードの弾性により回路を開くことができる。
リードスイッチ401が常時閉接点の場合には、2本の強磁性体リードは接点が接して相対している。常時閉接点のリードに外部から磁界を加えるとリードが磁化され、相対した自由端が互いに離れ、回路を開くことができ、磁界を消去すればリードの弾性により回路を閉じることができる。
電源コンデンサ16の充電電流を測定するために、実施例3ではリード線514を環状磁性コア402に貫通させ、環状磁性コア402のスリット部403から漏れる磁束により、環状磁性コア402に隣接配置したリードスイッチ401のリードを磁化させ動作させる。そして、実施例1に適用する場合、実施例3の電流センサを2つ備えるようにする。
実施例3によれば、非接触で電流を測定することができる。
また、実施例3によれば、環状磁性コア402とリードスイッチ401の一部にリード線514が横方向に通り抜けられるだけのギャップを設け、且つ、スリット部403についてもリード線514が横方向に通り抜けられるだけ幅を確保することにより、既存のリード線514を取り外すことなく電流センサを後付することができる。
さらに、実施例3によれば、リードスイッチは封じ切り構造のため信頼性を高めることができる。
さらにまた、実施例3によれば、スリット部403の幅や、環状磁性コア402とリードスイッチ401とのギャップを調整することによって、感度を調整することができる。
次に図11を用いて実施例4について説明する。実施例3と共通する構成については同一の符号を付し、その詳細な説明は省略する。図11は、実施例4に係る電流センサの構成を示す斜視図である。実施例3と異なるところは、環状磁性コアを2つとしたところにある。
実施例4では、第1環状磁性コア402aと、第2環状磁性コア402bの2つの環状磁性コアを備え、第1環状磁性コア402aと第2環状磁性コア402bとの間にリードスイッチ401を配置している。
第1環状磁性コア402aには、第1環状磁性コア402aの外周の一部が径方向外側に向かって開放したスリット部403aと、スリット部403aと径方向において連通した中空部404aが形成されており、中空部404aには、中空部404aを貫通するようにリード線514が配置されている。スリット部403aにおけるギャップは、リード線514の直径よりも大きく形成されており、リード線514はこのスリット部403aから挿入され、中空部404aに位置させる。中空部404aもまたリード線514の直径よりも大きく形成されている。
同様に、第2環状磁性コア402bには、第2環状磁性コア402bの外周の一部が径方向外側に向かって開放したスリット部403bと、スリット部403bと径方向において連通した中空部404bが形成されており、中空部404bには、中空部404bを貫通するようにリード線514が配置されている。スリット部403bにおけるギャップは、リード線514の直径よりも大きく形成されており、リード線514はこのスリット部403bから挿入され、中空部404bに位置させる。中空部404bもまたリード線514の直径よりも大きく形成されている。
実施例3によれば、リードスイッチ401を挟み込むように、第1環状磁性コア402a及び第2環状磁性コア402bを配置しているので、電流センサの感度を高めることができる。
次に図12を用いて実施例5について説明する。実施例3と共通する構成については同一の符号を付し、その詳細な説明は省略する。図12は、実施例5に係る電流センサの構成を示す斜視図である。実施例3と異なるところは、リードスイッチを2つとしたところにある。
実施例5では、第1リードスイッチ401aと、第2リードスイッチ401bの2つのリードスイッチを備え、第1リードスイッチ401aと第2リードスイッチ401bとの間に環状磁性コア402を配置している。
第1リードスイッチ401aと環状磁性コア402との間のギャップをG1とし、第2リードスイッチ401bと環状磁性コア402との間のギャップをG2としたとき、G1とG2の距離を変えることにより、第1リードスイッチ401aが動作する電流値と第2リードスイッチ401bが動作する電流値を変えることができる。
すなわち、実施例5によれば、G1とG2の距離を変えることにより、感度が異なる二つの出力信号を得ることができる。
また、実施例5によれば、実施例3のように電流センサを二つ取り付ける場合よりもより小形化することができる。
なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。
1…電磁操作装置、2…リンク機構、3…電磁操作装置側ロッド、7…固定接点、8…可動接点、9…真空バルブ、10…筐体、14…電磁石、16…電源コンデンサ、17…電磁石コイル、18…制御基板、19…ピン、20…補助スイッチ、21…連結部品、22…第1のレバー、23…第2のレバー、24…連結部品、25…シャフト、59…ワイプばね、60…遮断ばね、114…真空バルブ側ロッド、130…絶縁フレーム、131…断路部、132…断路部、133…固定導体、134…可動側導体、150…開閉装置、152…計測器室、153…母線室、154…遮断器室、155…ケーブル室、156…真空遮断器
161…配電用ケーブル、162…母線、220…制御部、221…蓄積・比較部、222…異常状態表示部、302…可動鉄心、304…永久磁石、305…ケース、306…固定鉄心、317…可動平板、401…リードスイッチ、401a…第1リードスイッチ、401b…第2リードスイッチ、402…環状磁性コア、402a…第1環状磁性コア、402b…第2環状磁性コア、403…スリット部、403b…スリット部、404…中空部、404a…中空部、404b…中空部、500…直流電源、501…充電スイッチ、502…充電抵抗、503…放電スイッチ、504…電流センサ、505…電流センサ、506…電源コンデンサ電圧、507…電源コンデンサ充電電流、514…リード線、514a…リード線、514b…リード線、520…蓄積部、521…蓄積部、522…差演算部、523…比較部、524…時間差判定値、603…論理積、901…電流センサ、902…比較部、903…比較部、904…電流判定値、905…電流判定値

Claims (10)

  1. 電源コンデンサと、前記電源コンデンサを充電する電源と、前記電源と前記電源コンデンサとの接続をオンオフする充電スイッチとにより充電回路が構成され、
    前記充電回路には前記電源コンデンサの充電電流を検出する電流センサが備えられ、
    前記電源コンデンサに充電が開始され、前記電流センサが第1電流値を検出するまでに要した第1時間と、前記電源コンデンサに充電が開始され、前記電流センサが第2電流値を検出するまでに要した第2時間と、
    前記第1時間と前記第2時間との時間差から前記電源コンデンサの静電容量を測定する蓄積・比較部を備えたことを特徴とする電源コンデンサ静電容量測定装置。
  2. 請求項1において、
    前記電源コンデンサにより駆動する負荷と、前記電源コンデンサと前記負荷との接続をオンオフする放電スイッチとにより構成された放電回路を備えたことを特徴とする電源コンデンサ静電容量測定装置。
  3. 請求項1又は2において、
    前記電流センサは、前記第1電流値を測定する第1電流センサと、前記第2電流値を測定する第2電流センサとからなることを特徴とする電源コンデンサ静電容量測定装置。
  4. 請求項3において、
    前記第1電流センサと前記第2電流センサとは、検出される電流値の感度が異なることを特徴とする電源コンデンサ静電容量測定装置。
  5. 請求項4において、
    前記第1電流センサ及び前記第2電流センサの出力はデジタルに切り替わるものであり、前記第1電流センサ及び前記第2電流センサの何れか一方は常時閉接点を備え、他方は常時開接点を備えることを特徴とする電源コンデンサ静電容量測定装置。
  6. 請求項1又は2において、
    前記電流センサの出力は、連続的に出力されるアナログの電流値であることを特徴とする電源コンデンサ静電容量測定装置。
  7. 請求項1又は2において、
    前記電流センサは、環状磁性コアとリードスイッチとから構成され、
    前記環状磁性コアは、外周の一部が径方向外側に向かって開放したスリット部と、前記スリット部と径方向において連通し、リード線配置する中空部とを備え、
    前記スリット部から漏れる磁束により、前記リードスイッチを動作させることを特徴とする電源コンデンサ静電容量測定装置。
  8. 請求項7において、
    前記環状磁性コアは、第1環状磁性コアと第2環状磁性コアとを備え、
    前記リードスイッチは、第1環状磁性コアと第2環状磁性コアの間に配置したことを特徴とする電源コンデンサ静電容量測定装置。
  9. 請求項7において、
    前記リードスイッチは、第1リードスイッチと第2リードスイッチとを備え、
    前記環状磁性コアは、前記第1リードスイッチと前記第2リードスイッチの間に配置したことを特徴とする電源コンデンサ静電容量測定装置。
  10. 電源コンデンサと、前記電源コンデンサを充電する電源と、前記電源と前記電源コンデンサとの接続をオンオフする充電スイッチとにより充電回路が構成され、
    前記電源コンデンサに充電が開始され、前記充電回路に備えられた電流センサが第1電流値を検出するまでに要した第1時間と、前記電源コンデンサに充電が開始され、前記電流センサが第2電流値を検出するまでに要した第2時間と、
    前記第1時間と前記第2時間との時間差から前記電源コンデンサの静電容量を測定することを特徴とする電源コンデンサ静電容量測定方法。
JP2019181090A 2019-10-01 2019-10-01 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法 Active JP7311380B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019181090A JP7311380B2 (ja) 2019-10-01 2019-10-01 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法
PCT/JP2020/030956 WO2021065219A1 (ja) 2019-10-01 2020-08-17 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法
EP20870960.0A EP4040170A4 (en) 2019-10-01 2020-08-17 DEVICE AND METHOD FOR MEASURING ELECTROSTATIC CAPACITY OF POWER CAPACITOR
CN202080052551.6A CN114144685A (zh) 2019-10-01 2020-08-17 电源电容器静电电容测量装置和电源电容器静电电容测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019181090A JP7311380B2 (ja) 2019-10-01 2019-10-01 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法

Publications (2)

Publication Number Publication Date
JP2021056147A JP2021056147A (ja) 2021-04-08
JP7311380B2 true JP7311380B2 (ja) 2023-07-19

Family

ID=75270592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019181090A Active JP7311380B2 (ja) 2019-10-01 2019-10-01 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法

Country Status (4)

Country Link
EP (1) EP4040170A4 (ja)
JP (1) JP7311380B2 (ja)
CN (1) CN114144685A (ja)
WO (1) WO2021065219A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116679144B (zh) * 2023-06-06 2023-12-19 深圳市创容新能源有限公司 一种电容器测试设备及其测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510962A (ja) 2000-09-25 2004-04-08 デトロイト・ディーゼル・コーポレイション 液体誘電体挙動を測定する方法及び装置
WO2010113223A1 (ja) 2009-04-01 2010-10-07 住友重機械工業株式会社 ハイブリッド型作業機械
JP2010259165A (ja) 2009-04-22 2010-11-11 Kyocera Corp 電力供給装置、電子装置、及び、コンデンサ容量推定方法
JP2012202687A (ja) 2011-03-23 2012-10-22 Tamura Seisakusho Co Ltd 電気二重層キャパシタの状態観測装置
US20150028887A1 (en) 2013-07-29 2015-01-29 Atmel Corporation Measuring power consumption of ciruit component operating in ultra-low power mode
JP2015197310A (ja) 2014-03-31 2015-11-09 日置電機株式会社 静電容量測定装置
US20180156853A1 (en) 2016-12-02 2018-06-07 Raydium Semiconductor Corporation Capacitance measuring circuit and capacitance measuring method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539542B2 (ja) * 1972-09-21 1978-04-06
JPS56107170A (en) * 1980-01-31 1981-08-25 Nec Corp Condenser electrostatic capacity measurement device
US4558274A (en) * 1983-09-14 1985-12-10 Johnson Service Company Apparatus and method determining the value of a capacitance
JPS62123367A (ja) * 1985-11-22 1987-06-04 Advantest Corp 容量素子の充電電流測定方法
JP2534792B2 (ja) * 1990-04-10 1996-09-18 株式会社東芝 無停電電源装置
JP3611397B2 (ja) * 1996-03-26 2005-01-19 本田技研工業株式会社 電源装置および劣化検出方法
JP3293540B2 (ja) * 1996-12-05 2002-06-17 株式会社村田製作所 コンデンサの良否判定方法
EP0961383A1 (de) * 1998-05-29 1999-12-01 Siemens Aktiengesellschaft Verfahren zum Überprüfen der Kapazität in einem Insassenschutzsystem vorgesehenen Speicherkondensators sowie Prüfvorrichtung
CN101714825B (zh) * 2003-03-17 2013-01-02 三菱电机株式会社 变换器装置
CN201057533Y (zh) * 2007-01-30 2008-05-07 王悦 一种具有精确测量电容功能的万用表
JP2010185759A (ja) * 2009-02-12 2010-08-26 Yaskawa Electric Corp コンデンサの静電容量および内部抵抗の推定方法とその測定装置
US8362784B2 (en) * 2009-06-22 2013-01-29 Mitsubishi Electric Corporation Capacitor capacitance diagnosis device and electric power apparatus equipped with capacitor capacitance diagnosis device
JP2011075507A (ja) * 2009-10-01 2011-04-14 Toyo Electric Mfg Co Ltd 電力変換装置のコンデンサ容量判定方法
CN101799496B (zh) * 2010-03-09 2013-03-20 臧佳菁 电容测量装置及其方法
JP5995420B2 (ja) * 2011-09-22 2016-09-21 三菱電機株式会社 コンデンサ容量測定装置及びコンデンサ容量測定装置を備えた電力用機器
JP6057087B2 (ja) * 2011-12-14 2017-01-11 パナソニックIpマネジメント株式会社 直流電源装置
US9573474B2 (en) * 2014-03-06 2017-02-21 Ford Global Technologies, Llc Capacitor precharging and capacitance/resistance measurement in electric vehicle drive system
CN105911373B (zh) * 2016-04-22 2019-01-29 上海市计量测试技术研究院 一种测量超级电容器静电容量的方法及装置
JP6438453B2 (ja) * 2016-12-21 2018-12-12 ファナック株式会社 モータ駆動装置
JP6474455B2 (ja) * 2017-05-01 2019-02-27 ファナック株式会社 Dcリンクコンデンサの初期充電時間を最適化するコンバータ装置
WO2019021479A1 (ja) * 2017-07-28 2019-01-31 三菱電機株式会社 インバータ装置およびインバータ装置の異常検出方法
WO2019043828A1 (ja) * 2017-08-30 2019-03-07 三菱電機株式会社 コンデンサ容量測定装置及び電力用機器
CN109839539A (zh) * 2017-11-27 2019-06-04 云南电网有限责任公司瑞丽供电局 一种高压断路器动态电阻测量方法
CA2994760A1 (en) * 2018-02-12 2019-08-12 Mitchell B. Miller A system and method utilizing deflection conversion for increasing the energy, efficiency of a circuit, different circuit configurations composing a group termed deflection converters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510962A (ja) 2000-09-25 2004-04-08 デトロイト・ディーゼル・コーポレイション 液体誘電体挙動を測定する方法及び装置
WO2010113223A1 (ja) 2009-04-01 2010-10-07 住友重機械工業株式会社 ハイブリッド型作業機械
JP2010259165A (ja) 2009-04-22 2010-11-11 Kyocera Corp 電力供給装置、電子装置、及び、コンデンサ容量推定方法
JP2012202687A (ja) 2011-03-23 2012-10-22 Tamura Seisakusho Co Ltd 電気二重層キャパシタの状態観測装置
US20150028887A1 (en) 2013-07-29 2015-01-29 Atmel Corporation Measuring power consumption of ciruit component operating in ultra-low power mode
JP2015197310A (ja) 2014-03-31 2015-11-09 日置電機株式会社 静電容量測定装置
US20180156853A1 (en) 2016-12-02 2018-06-07 Raydium Semiconductor Corporation Capacitance measuring circuit and capacitance measuring method

Also Published As

Publication number Publication date
EP4040170A4 (en) 2023-12-20
EP4040170A1 (en) 2022-08-10
CN114144685A (zh) 2022-03-04
JP2021056147A (ja) 2021-04-08
WO2021065219A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US9097766B2 (en) Electromagnetic opening/closing device
US8688391B2 (en) Method for determining contact erosion of an electromagnetic switching device, and electromagnetic switching device comprising a mechanism operating according to said method
JP4112497B2 (ja) スイッチ装置の接点摩耗度の判定方法
US8952826B2 (en) Circuit interrupter employing a linear transducer to monitor contact erosion
US20080074215A1 (en) Method and apparatus for monitoring wellness of contactors and starters
US10712312B2 (en) Flexible magnetic field coil for measuring ionic quantity
US20140218838A1 (en) Coil actuator for a switching device and related switching device
EP3740958A1 (en) Contactor with contact carrier location sensing
JP7311380B2 (ja) 電源コンデンサ静電容量測定装置及び電源コンデンサ静電容量測定方法
US5204633A (en) Electromagnetic contactor with closure fault indicator
US10036727B2 (en) System and method to predict a usable life of a vacuum interrupter in the field
WO2012128039A1 (ja) 電磁開閉装置
JP7210241B2 (ja) 真空遮断器
KR101791853B1 (ko) 차단기 차단 동작 감시 및 예방 진단 장치가 내장된 배전반
US20110062960A1 (en) Device and method to monitor electrical contact status
WO2020208978A1 (ja) 開閉装置及びその状態監視方法
JP2016024927A (ja) 遮断器のワイプ量測定方法及びそのワイプ量測定装置
JP2021139796A (ja) 電流センサ
JPH08180777A (ja) 真空開閉器の真空度劣化検知装置
JP2009212024A (ja) 開閉装置
US11901121B2 (en) Electronic safety actuator and method of condition or state detection
JP3487578B2 (ja) 開閉器用電動操作装置の異常診断装置
AU2016280719B2 (en) System and method to predict a usable life of a vacuum interrupter in the field
JPH077037B2 (ja) 接点寿命検出装置
JPH01288683A (ja) 電磁切換弁

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7311380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150