WO2011081203A1 - 磁気抵抗素子の製造方法 - Google Patents

磁気抵抗素子の製造方法 Download PDF

Info

Publication number
WO2011081203A1
WO2011081203A1 PCT/JP2010/073773 JP2010073773W WO2011081203A1 WO 2011081203 A1 WO2011081203 A1 WO 2011081203A1 JP 2010073773 W JP2010073773 W JP 2010073773W WO 2011081203 A1 WO2011081203 A1 WO 2011081203A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
metal
oxidized
substrate
Prior art date
Application number
PCT/JP2010/073773
Other languages
English (en)
French (fr)
Inventor
和正 西村
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2011547730A priority Critical patent/JP5502900B2/ja
Priority to KR1020127016618A priority patent/KR101374325B1/ko
Priority to CN201080059892.2A priority patent/CN102687297B/zh
Priority to EP10841058.0A priority patent/EP2521194B1/en
Publication of WO2011081203A1 publication Critical patent/WO2011081203A1/ja
Priority to US13/494,797 priority patent/US8728830B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Definitions

  • the present invention relates to a method of manufacturing a magnetoresistive element that exhibits a high MR ratio.
  • the tunnel magnetoresistive (TMR) element has a structure in which a tunnel barrier layer is sandwiched between two ferromagnetic layers. If the relative angle of magnetization of the two ferromagnetic layers changes when an external magnetic field is applied, the tunnel conduction probability of electrons through the tunnel barrier layer changes, and the resistance of the TMR element changes.
  • TMR element is applied to devices such as a read sensor unit of a magnetic head used for a hard disk and a non-volatile memory MRAM using magnetism.
  • an oxide such as aluminum (Al), titanium (Ti), magnesium (Mg), or the like is used.
  • a magnesium oxide (MgO) tunnel barrier layer can obtain a larger magnetoresistance change rate (MR ratio) (see Non-Patent Document 1).
  • MgO tunnel barrier layer There are two methods for producing the MgO tunnel barrier layer: a method in which an MgO target is directly formed by radio frequency (RF) sputtering, and a method in which an Mg layer is formed and then an MgO layer is formed by oxidation treatment.
  • RF radio frequency
  • the MgO layer is formed on the surface of the Mg layer by natural oxidation after forming the first Mg layer, and then A method of forming a tunnel barrier layer composed of a first Mg layer / MgO layer / second Mg layer by forming a second Mg layer has been reported (see Patent Document 1).
  • Patent Document 1 A method of forming a tunnel barrier layer composed of a first Mg layer / MgO layer / second Mg layer by forming a second Mg layer has been reported (see Patent Document 1).
  • Patent Document 1 As another method, there has been reported a method in which after the first Mg layer is formed, an oxidation treatment is performed under high pressure, and then a second Mg layer is formed and then the oxidation treatment is performed under low pressure (patent) Reference 2).
  • Patent Document 3 a laminated body of a first MgO layer and a second MgO layer is formed as a tunnel barrier layer.
  • a first Mg layer is formed, and the first Mg layer is oxidized to form a first MgO layer.
  • the first MgO layer is annealed in a magnetic field to give the first MgO layer crystal orientation.
  • a second Mg layer is formed on the first MgO layer, the second Mg layer is oxidized to form a second MgO layer, and a tunnel barrier layer that is a laminate of the first MgO layer and the second MgO layer is formed. Yes.
  • the method of forming the MgO target by RF sputtering can obtain a higher MR ratio, but this method has a problem that there are many particles. When the particles fall in a region corresponding to the TMR element on the wafer, there is a concern that the electrical characteristics of the TMR element are deteriorated.
  • the method of forming the Mg layer and then performing the oxidation treatment to form the MgO layer has fewer particles and is suitable for mass production than the method of RF sputtering the MgO target, but the MR ratio is small. There's a problem.
  • the MR ratio obtained by the method disclosed in the above-mentioned Patent Document is 34% in Patent Document 1 and about 60% in Patent Document 3.
  • the present invention provides a method of manufacturing a magnetoresistive element that can obtain a higher MR ratio in a method of forming a metal oxide layer (eg, MgO layer) by oxidizing a metal layer (eg, Mg layer).
  • the purpose is to provide.
  • a first aspect of the present invention is a method of manufacturing a magnetoresistive element, the step of providing a substrate on which a first ferromagnetic layer is formed, A step of forming a tunnel barrier layer on the ferromagnetic layer and a step of forming a second ferromagnetic layer on the tunnel barrier layer, wherein the step of forming the tunnel barrier layer includes the first strong layer.
  • a method for manufacturing a magnetoresistive element comprising: preparing a substrate on which a first ferromagnetic layer is formed; and forming a tunnel barrier layer on the first ferromagnetic layer. And a step of forming a second ferromagnetic layer on the tunnel barrier layer, and the step of producing the tunnel barrier layer comprises forming a first metal layer on the first ferromagnetic layer. Forming a film; oxidizing the first metal layer; forming a second metal layer on the oxidized first metal layer; and the oxidized first metal layer. And heat-treating the second metal layer at a temperature at which the second metal layer boils.
  • FIG. 1 is a flowchart for explaining a manufacturing process of a TMR element according to this embodiment.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the TMR element according to the present embodiment.
  • step S ⁇ b> 1 the base layer 2 having the first base layer 2 a and the second base layer 2 b and the fixed magnetic layer 4 are formed on the processing substrate 1.
  • the first underlayer 2a of the multilayer film on the processing substrate for example, tantalum (Ta), hafnium (Hf), niobium (Nb), zirconium (Zr), titanium (Ti), molybdenum (Mo) or
  • a base layer made of tungsten (W) or the like and having a thickness of about 0.5 to 5 nm is formed.
  • a second underlayer 2b containing at least one element such as nickel (Ni), iron (Fe), chromium (Cr), ruthenium (Ru) or the like is formed to a thickness of about 0.5 to 5 nm.
  • an antiferromagnetic layer 3 made of, for example, IrMn, PtMn, FeMn, NiMn, RuRhMn, CrPtMn or the like is formed to a thickness of about 3 to 15 nm.
  • a stacked body of the first base layer 2a and the second base layer 2b is used as the base layer 2.
  • the present invention is not limited to this, and the base layer 2 may be a single layer. good.
  • a ferromagnetic layer 4a made of CoFe or the like having a thickness of about 1 to 5 nm, and an alloy of at least one or more of Ru, Cr, rhodium (Rh), iridium (Ir), and rhenium (Re)
  • a nonmagnetic intermediate layer 4b having a thickness of about 0.8 nm and a ferromagnetic layer 4c having a thickness of about 1 to 5 nm made of CoFe, CoFeB, or the like are formed.
  • the antiferromagnetic layer 3, the ferromagnetic layer 4 a, the nonmagnetic intermediate layer 4 b, and the ferromagnetic layer 4 c form a synthetic type fixed magnetization layer 4.
  • the ferromagnetic layers 4a and 4b and the nonmagnetic intermediate layer 4b may be replaced with a single ferromagnetic layer.
  • the pinned magnetic layer 4 has a two-layer structure of an antiferromagnetic layer 3 and a ferromagnetic layer.
  • the fixed magnetic layer 4 is formed on the substrate 1 in step S1, but the substrate 1 on which the fixed magnetic layer 4 is formed in advance may be used. That is, in this embodiment, any method may be adopted as long as a substrate having a ferromagnetic layer on which a tunnel barrier layer is formed can be prepared.
  • a first metal layer 5a is formed on the fixed magnetic layer 4 to a thickness of about 0.5 nm to 2.0 nm.
  • Mg is preferable from the viewpoint of obtaining a high MR ratio, and Zn or an alloy of Mg and Zn is also preferable.
  • the first metal layer 5a may contain Mg.
  • the first metal layer 5a may be a metal such as Al, Ti, Zn, Hf, and Ga.
  • oxygen may be added to the metal exemplified as the first metal layer 5a (see the second embodiment), or nonmetal such as boron (B) and carbon (C). At least one may be added.
  • step S3 the substrate 1 on which the first metal layer 5a is formed is transferred to the oxidation chamber, and the first metal layer 5a is oxidized.
  • the oxidation treatment is performed with oxygen gas or an oxygen gas and an inert gas such as helium (He), neon (Ne), argon (Ar), krypton (Kr), or xenon (Xe).
  • the oxidation method may be performed by sealing oxidation with the chamber sealed, flow oxidation while exhausting, radical oxidation using active oxygen, plasma oxidation, or the like.
  • step S4 the substrate 1 on which the first metal layer 5a is oxidized is transferred to the film forming chamber, and the second metal layer 5b is formed on the oxidized first metal layer 5a.
  • This has a function of preventing or reducing the oxidation of the magnetization free layer by the oxygen remaining on the surface of the oxidized first metal layer 5a moving to the subsequently formed magnetization free layer.
  • the second metal layer 5b is preferable from the viewpoint of obtaining a high MR ratio of Mg.
  • metals such as Ti, Zn, and Hf may be used.
  • step S5 the substrate 1 on which the oxidized first metal layer 5a and the second metal layer 5b are formed is transferred to a heating chamber and subjected to heat treatment. That is, in this embodiment, the heat treatment is performed after the second metal layer 5b is formed and before the magnetization free layer 6 described later is formed.
  • the heat treatment has an effect of promoting the bonding between the metal and oxygen, homogenizing the film quality of the barrier layer, and improving the quality.
  • the second metal layer 5b is evaporated by the heat treatment.
  • the oxygen and the like that exist between the first metal layer 5a and the second metal layer 5b remaining during the oxidation of the first metal layer 5a by the heat treatment, and the like The second metal layer 5b is oxidized by reacting with the second metal layer 5b.
  • the second metal layer 5b that has not been oxidized (the metal component of the second metal layer 5b that has not been combined with oxygen by the heat treatment in this step) is evaporated in this embodiment, so that the second metal layer 5b is not oxidized.
  • the metal component that was not oxidized in the oxidation of the metal layer 5b is removed.
  • the heat treatment in this step has a function of oxidizing the second metal layer 5b and evaporating the remaining metal component without participating in the oxidation, in addition to the crystallization of the metal oxide. Therefore, the heating temperature is a temperature at which the second metal layer 5b is vaporized (a temperature at which vaporization occurs), that is, a temperature at which the evaporation of the second metal layer 5b occurs.
  • the heating temperature is the substrate temperature, 150 to 400 degrees is preferable. Below 150 degrees, the bonding of Mg and oxygen as a metal is not sufficiently promoted, and the evaporation of Mg is not complete.
  • boiling of Mg starts at about 423 K (about 150 ° C.) in an atmosphere of 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 8 Torr. Accordingly, in the second metal layer 5b, Mg that is not bonded to oxygen is boiled at a temperature of about 150 ° C.
  • Mg is vaporized. Mg not bonded to oxygen is removed from the oxide of the second metal layer 5b.
  • 150 ° C. or higher is preferable. Further, at 400 degrees or more, the fixing force of the fixed magnetic layer 4 is reduced.
  • Mg that is not bonded to oxygen can be more efficiently vaporized. That is, Mg can be removed efficiently. Further, the efficiency of the removal of Mg can shorten the time for the heat treatment of the second metal layer 5b.
  • the pressure in the heating chamber is set to a pressure other than 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 8 Torr
  • the temperature at which Mg evaporates at the set pressure may be extracted from FIG.
  • metals other than Mg as the 1st and 2nd metal layers 5a and 5b, from the temperature dependence of vapor pressure as shown in FIG. 8, at the temperature at which the metal to be used evaporates according to the set pressure.
  • Heat treatment may be performed so that the first and second metal layers 5a and 5b are heated.
  • Mg is vaporized (evaporated) even if the temperature at which Mg boils does not reach, so if the heating chamber is exhausted, Mg can be removed by vaporization (evaporation).
  • the heating method is preferably a method using radiation, such as a heating resistor or a lamp heater, or a method using heat conduction by placing a wafer directly on a heated stage.
  • a heating resistor or a lamp heater or a method using heat conduction by placing a wafer directly on a heated stage.
  • other heating methods may be used without any limitation.
  • the tunnel barrier layer 5 having the oxidized first metal layer 5a and the oxidized second metal layer 5b is formed.
  • step S6 the substrate 1 that has been subjected to the heat treatment in step S5 is moved to the film forming chamber, and the magnetization free layer 6 made of at least one layer or two layers of, for example, CoFe, CoFeB, NiFe, or the like is formed to 1 to 10 nm. Form a film.
  • a cooling process may be performed for the purpose of preventing diffusion between the tunnel barrier layer 5 and the magnetization free layer 6.
  • the substrate may be cooled to 150 degrees or less.
  • a protective layer 7 made of at least one layer or two or more layers of Ta, Ru, Ti, Pt or the like is formed on the magnetization free layer 6 to a thickness of about 1 to 30 nm.
  • Such a TMR element is manufactured in a consistent vacuum by a cluster type substrate processing apparatus as shown in FIG.
  • At least one film forming chamber, one oxidation chamber, and one substrate heating chamber are required.
  • the substrate 1 transported from the load lock chamber 8 is transported to the film forming chamber 9a, and the layers from the underlayer 2 to the second ferromagnetic layer 4c shown in FIG. Thereafter, the substrate 1 is transferred to the film forming chamber 9b, and a first metal layer 5a (for example, a first Mg layer) is formed. Thereafter, the substrate 1 on which the first metal layer 5a is formed is transferred to the oxidation chamber 10, and the first metal layer 5a is oxidized. Thereafter, the substrate 1 on which the first metal layer 5a is oxidized is returned to the film forming chamber 9b, and a second metal layer 5b (for example, a second Mg layer) is formed on the oxidized first metal layer 5a. A film is formed.
  • a first metal layer 5a for example, a first Mg layer
  • the substrate 1 on which the second metal layer 5b is formed is transferred to the heating chamber 11, and substrate heating processing is performed. Thereafter, the heat-treated substrate 1 returns to the film forming chamber 9b, and the magnetization free layer 6 and the protective layer 7 are formed.
  • the load lock chamber 8, the film forming chambers 9 a and 9 b, the oxidation chamber 10, and the heating chamber 11 are all connected by a transfer chamber 12. Each chamber can be independently evacuated with an evacuation device, and the substrate can be processed in a consistent vacuum.
  • a cooling chamber may be provided for cooling after the substrate heat treatment, and cooling may be performed before the formation of the magnetization free layer 6.
  • cooling may be performed in the film forming chamber before the film formation of the magnetization free layer 6.
  • the above-described TMR element can be used for a read sensor of a magnetic head for a hard disk, a recording cell of an MRAM, or another magnetic sensor.
  • Example 1 In the present embodiment described above, a TMR element manufacturing method capable of obtaining a high MR ratio will be described for a TMR element using a method of forming a metal layer and then forming an oxide layer by oxidation treatment. .
  • Mg was used for the first metal layer 5a, and a first Mg layer as the first metal layer 5a was formed to a thickness of 1.2 nm. Thereafter, the first Mg layer was oxidized, and a Mg (second Mg layer) film having a thickness of 0.4 nm was formed thereon as the second metal layer 5b. Thereafter, a TMR element is manufactured for the case where the substrate heating process (step S5 in FIG. 1) at the temperature at which the second Mg layer evaporates is performed (Example 1) and the case where it is not performed (Comparative Example 1). MR ratio was measured. In the substrate heat treatment, the resistor was heated and the substrate was heated by radiation. The substrate temperature is about 300 degrees. The result is shown in FIG. Moreover, although RA was changed with the oxidation time, the results of the relationship between the oxidation time and RA are shown in FIG.
  • FIG. 6 shows the relationship between the oxidation time of the element obtained in the case where the timing of performing the substrate heat treatment is changed (Comparative Example 2) and the element obtained in Comparative Example 1 and RA.
  • Comparative Example 2 the first Mg layer was formed, then the first Mg layer was oxidized, and the second Mg layer was formed after the substrate heat treatment.
  • FIG. 7 shows the relationship between the oxidation time and RA of the TMR element manufactured under these conditions.
  • FIG. 4 shows that the MR ratio in the equivalent RA is improved by performing the substrate heat treatment.
  • FIG. 5 shows that RA is increased when the heat treatment is performed for the same oxidation time. From these results, it is expected that Mg and oxygen are not sufficiently bonded during the oxidation treatment, and the substrate heat treatment promotes the bonding between Mg and oxygen, reducing defects such as pinholes. I can say that.
  • the timing of the substrate heat treatment is as follows: the first Mg layer is oxidized and the substrate heat treatment is performed as in Comparative Example 2, and the second Mg layer is formed after the heat treatment. It can be seen that the device characteristics deteriorate compared to Example 1. This is because, after the oxidation treatment, excess oxygen atoms exist in the vicinity of the surface of the MgO layer formed from the first Mg layer (first metal layer 5a), and MgO is peroxidized by heat treatment there. Alternatively, it is considered that the characteristics are degraded due to oxidation of the lower ferromagnetic layer.
  • the second Mg layer is formed and then heated. For this reason, surplus oxygen atoms existing in the vicinity of the MgO layer surface (that is, the interface between the oxidized first metal layer 5a and the second metal layer 5b formed on the first metal layer 5a). And the second Mg layer (second metal layer 5b) react to form an MgO layer. That is, by the substrate heat treatment (step S5) of the present embodiment, oxygen present at the interface is combined with Mg of the second Mg layer to convert the second Mg layer into MgO.
  • the first metal layer 5a is formed, the first metal layer 5a is oxidized, and then the second metal layer 5b is formed on the oxidized first metal layer 5a. Then, when the metal layer that is the raw material of the tunnel barrier layer is oxidized by heat treatment, the influence of oxygen remaining in the vicinity of the surface of the metal layer on the deterioration of the MR ratio can be reduced. it can. That is, in this embodiment, the second metal layer 5b is formed after the oxidation of the first metal layer 5a, and oxygen remains at the interface between the oxidized first metal layer 5a and the second metal layer 5b.
  • oxygen remaining in the vicinity of the surface of the metal layer which has conventionally caused the MR ratio deterioration, can be used for the oxidation of the second metal layer 5b, and is present at the interface as a result.
  • An effect equivalent to removing the oxygen that has been removed can be obtained. Since this oxidation is due to oxygen present at the interface, oxygen remaining on the surface of the oxidized second metal layer 5b can be eliminated or reduced. Further, since the heating temperature for causing the oxidation is set to a temperature at which the second metal layer 5b evaporates, the components not oxidized in the second metal layer 5b are vaporized and removed, and the surface It is possible to form a metal oxide in which oxygen remaining in the metal is reduced.
  • a metal layer eg, Mg layer
  • the metal oxide layer eg, MgO layer
  • the positions of the magnetization free layer 6 and the fixed magnetization layer 4 are limited, but the positions of the magnetization free layer 6 and the fixed magnetization layer 4 are not particularly limited in the present invention. That is, the magnetization free layer 6 may be formed below the tunnel barrier layer 5, and the fixed magnetization layer 4 may be formed above the tunnel barrier layer 5.
  • the first metal layer 5a when the first metal layer 5a is formed, oxygen atoms are intentionally included in the first metal layer 5a (the first metal layer 5a is doped with oxygen). That is, in the present embodiment, when the first metal layer 5a is formed, oxygen gas is also introduced into the film formation chamber, and the first metal layer 5a is formed while oxygen is contained therein.
  • the first metal layer 5a is formed by plasma sputtering
  • oxygen is added to the gas that forms plasma in step S2 of FIG. 1 so that oxygen atoms are contained in the first metal layer 5a.
  • a target of a metal for example, Mg
  • an inert gas is introduced into the film formation chamber to generate plasma, and the target is converted into plasma.
  • a first metal layer 5a is formed on the substrate 1 by sputtering.
  • oxygen gas is introduced into the film forming chamber in addition to the inert gas. At this time, the supplied oxygen gas may or may not be plasma-excited.
  • sputtered particles for example, Mg particles
  • oxygen in the case of plasma excitation, oxygen ions and oxygen radicals
  • a first metal layer is deposited in the form. That is, an oxygen-doped first metal layer is formed.
  • the introduction timing of the oxygen gas for oxygen doping may be the same as or different from the introduction timing of the inert gas as the sputtering gas. Further, the stop timing of the oxygen gas may be the same as or different from the stop timing of the inert gas.
  • the first metal layer 5a when Mg is used as the first metal layer 5a and Ar gas is used as the inert gas, for example, in an atmosphere in which 15 sccm Ar gas and 5 sccm oxygen gas are independently introduced (the mixed oxygen concentration is 25 %) May be formed as the first metal layer 5a.
  • the first metal layer 5a contains oxygen, even in the vicinity of the interface between the first metal layer 5a and the ferromagnetic layer 4c that is the lower layer of the first metal layer 5a, The first metal layer 5a can be oxidized satisfactorily.
  • the vicinity of the interface with the first layer in the second layer is oxidized. It is necessary to strictly control the oxidation. If the oxidation is too strong, the first layer will be oxidized, and if the oxidation is too weak, there will be a portion that is not oxidized in the second layer.
  • the first metal layer 5a is formed while introducing oxygen as described above, in the first metal layer 5a formed on the ferromagnetic layer 4c, Oxygen is distributed in the thickness direction, and oxygen is also present near the interface with the ferromagnetic layer 4c in the first metal layer 5a. Therefore, in the oxidation treatment in step S3, oxygen contained in the first metal layer 5a in advance also contributes to the oxidation of the first metal layer 5a. Therefore, even in the vicinity of the interface of the first metal layer 5a, It is oxidized satisfactorily by oxygen contained in the first metal layer 5a. Therefore, a high-quality metal oxide (for example, MgO) derived from the first metal layer 5a can be formed also at the interface between the first metal layer 5a and the ferromagnetic layer 4c.
  • MgO metal oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)

Abstract

本発明は、金属層(例えば、Mg層)を酸化処理することで金属酸化物層(例えば、MgO層)を形成する方法において、より高いMR比が得られる磁気抵抗効果素子の製造方法を提供する。本発明の一実施形態は、第1の強磁性層が形成された基板を用意する工程と、第1の強磁性層上にトンネルバリア層を作製する工程と、トンネルバリア層上に第2の強磁性層を形成する工程と、を含む。上記トンネルバリア層を作製する工程は、第1の強磁性層上に第1の金属層を成膜する工程と、第1の金属層を酸化する工程と、該酸化された第1の金属層上に第2の金属層を成膜する工程と、上記酸化された第1の金属層及び第2の金属層を、該第2の金属層が蒸発する温度にて加熱処理する工程とを有する。

Description

磁気抵抗素子の製造方法
 本発明は、高MR比を発揮する磁気抵抗素子の製造方法に関する。
 トンネル磁気抵抗(TMR)素子は、トンネルバリア層を2つの強磁性層で挟んだ構造を有する。外部磁場を与えたときに、2つの強磁性層の磁化の相対角度が変化すると、トンネルバリア層を介した電子のトンネル伝導確率が変化し、TMR素子の抵抗が変化する。このようなTMR素子は、ハードディスクに用いられる磁気ヘッドの読み出しセンサー部や、磁気を用いた不揮発性メモリMRAM等のデバイスに応用されている。
 TMR素子のトンネルバリア層の材料としては、アルミニウム(Al)、チタン(Ti)、マグネシウム(Mg)等の酸化物が用いられている。特にマグネシウムの酸化物(MgO)トンネルバリア層は、より大きな磁気抵抗変化率(MR比)を得ることができる(非特許文献1参照)。
 MgOトンネルバリア層の作製方法にはMgOターゲットを高周波(RF)スパッタでダイレクトに形成する方法と、Mg層を成膜し、その後に酸化処理によってMgO層を形成する方法がある。
 MgOターゲットをRFスパッタでダイレクトにMgOトンネルバリア層を形成する方法を用いたTMR素子について、特に低RA(素子抵抗×素子面積)でMR比を改善する技術として、MgOトンネルバリア層を形成後に基板加熱を行う方法が報告されている(非特許文献2参照)。
 また、Mg層を成膜して、酸化処理によってMgO層を形成する方法を用いたTMR素子について、第1のMg層を成膜後に自然酸化によってMg層の表面にMgO層を作製し、その後第2のMg層を成膜することで第1のMg層/MgO層/第2のMg層から成るトンネルバリア層を形成する方法が報告されている(特許文献1参照)。 
 その他の方法として、第1のMg層を成膜後、高圧下で酸化処理を施し、その後第2のMg層を成膜して、低圧下で酸化処理を施す方法が報告されている(特許文献2参照)。
 さらに、トンネルバリア層として、第1MgO層と第2MgO層との積層体を形成することが報告されている(特許文献3参照)。特許文献3に開示された方法では、まず、第1Mg層を形成し、該第1Mg層を酸化して第1MgO層を形成する。次いで、該第1MgO層を磁場中でアニールすることによって第1MgO層に結晶配向性を持たせる。次いで、第1MgO層上に第2Mg層を形成し、該第2Mg層を酸化して第2MgO層を形成して、第1MgO層と第2MgO層との積層体であるトンネルバリア層を形成している。
特開2007-142424号公報 特開2007-305768号公報 特開2007-173843号公報
Butlerら、Physical Review B、63、054416(2001) Appl.Phys.Lett.,93-192109
 一般的にMgOターゲットをRFスパッタで形成する方法の方が、高いMR比を得ることができるが、この方法ではパーティクルが多いと言う問題がある。パーティクルがウエハ上のTMR素子に相当する領域に落ちた場合、TMR素子の電気特性を劣化させてしまう懸念がある。
 一方、Mg層を成膜して、その後に酸化処理を行ってMgO層を形成する方法では、パーティクルが少なく、MgOターゲットをRFスパッタする方法に比べ量産に適しているが、MR比が小さいという問題がある。上記特許文献に開示された方法で得られるMR比は、特許文献1で34%であり、特許文献3で約60%である。
 そこで本発明は、金属層(例えば、Mg層)を酸化処理することで金属酸化物層(例えば、MgO層)を形成する方法において、より高いMR比が得られる磁気抵抗効果素子の製造方法を提供することを目的とする。
 このような目的を達成するために、本発明の第1の態様は、磁気抵抗素子の製造方法であって、第1の強磁性層が形成された基板を用意する工程と、前記第1の強磁性層上にトンネルバリア層を作製する工程と、前記トンネルバリア層上に第2の強磁性層を形成する工程と、を含み、前記トンネルバリア層を作製する工程は、前記第1の強磁性層上に第1の金属層を成膜する工程と、前記第1の金属層を酸化する工程と、前記酸化された第1の金属層上に第2の金属層を成膜する工程と、前記酸化された第1の金属層及び前記第2の金属層を加熱処理する工程とを有することを特徴とする。
 本発明の第2の態様は、磁気抵抗素子の製造方法であって、第1の強磁性層が形成された基板を用意する工程と、前記第1の強磁性層上にトンネルバリア層を作製する工程と、前記トンネルバリア層上に第2の強磁性層を形成する工程と、を含み、前記トンネルバリア層を作製する工程は、前記第1の強磁性層上に第1の金属層を成膜する工程と、前記第1の金属層を酸化する工程と、前記酸化された第1の金属層上に第2の金属層を成膜する工程と、前記酸化された第1の金属層及び前記第2の金属層を、該第2の金属層が沸騰する温度で加熱処理する工程とを有することを特徴とする。
 本発明によれば、パーティクルが少なく、MR比が高い磁気抵抗素子を提供することができる。
本発明の一実施形態に係る、TMR素子製造工程を説明するフロー図である。 図1の方法で製造されたTMR素子の構成を概略的に示す断面図である。 本発明の一実施形態に係るTMR素子を作製するための製造装置の構成を示す図である。 本発明の一実施形態に係る、第2のMg層成膜後に基板加熱処理を行った場合と、行わない場合とのRAとMR比との関係を示す特性図である。 本発明の一実施形態に係る、第2のMg層成膜後に基板加熱処理を行った場合と、行わない場合との酸化時間とRAとの関係を示す特性図である。 本発明の一実施形態に係る、酸化処理後に基板加熱処理を行った場合と、行わない場合とのRAとMR比との関係を示す特性図である。 本発明の一実施形態に係る、酸化処理後に基板加熱処理を行った場合と、行わない場合との酸化時間とRAとの関係を示す特性図である。 本発明の一実施形態に係る、Mgの蒸気圧の温度依存性を示す図である。
 (第1の実施形態) 
 図1は、本実施形態に係る、TMR素子の製造工程を説明するフロー図である。また図2は、本実施形態に係るTMR素子の構成を概略的に示す断面図である。
 まず、図1において、ステップS1では、処理基板1上に、第1の下地層2aおよび第2の下地層2bを有する下地層2、ならびに固定磁化層4を成膜する。例えば、処理基板1の上に多層膜の第1の下地層2aとして、例えばタンタル(Ta)、ハフニウム(Hf)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)、モリブデン(Mo)又はタングステン(W)等からなる厚さ0.5~5nm程度の下地層を成膜する。その上に、例えばニッケル(Ni),鉄(Fe),クロム(Cr),ルテニウム(Ru)等の少なくとも1つの元素を含む第2の下地層2bを0.5~5nm程度成膜する。その上に例えばIrMn,PtMn,FeMn,NiMn,RuRhMn,CrPtMn等からなる反強磁性層3を3~15nm程度成膜する。 
 なお、本実施形態では、下地層2として第1の下地層2aと第2の下地層2bとの積層体を用いているが、これに限定されず、下地層2は1層であっても良い。
 その上に例えばCoFe等からなる厚さ1~5nm程度の強磁性層4aと、Ru、Cr、ロジウム(Rh)、イリジウム(Ir)、レニウム(Re)のうち少なくとも1つまたは2つ以上の合金からなる厚さ0.8nm程度の非磁性中間層4bと、例えばCoFe、CoFeB等からなる厚さ1~5nm程度の強磁性層4cを成膜する。反強磁性層3、強磁性層4a、非磁性中間層4b、強磁性層4cはシンセティック型の固定磁化層4を形成する。強磁性層4a、4bと非磁性中間層4bを一層の強磁性層に置き換えても良い。その場合、固定磁化層4は反強磁性層3と強磁性層の2層構造となる。
 本実施形態では、ステップS1にて基板1上に固定磁化層4を形成しているが、予め固定磁化層4を成膜した基板1を用いても良い。すなわち、本実施形態では、トンネルバリア層が形成される強磁性層を有する基板を用意できれば、いずれの方法を採っても良い。
 ステップS2では、上記固定磁化層4上に第1の金属層5aを0.5nm~2.0nm程度成膜する。第1の金属層5aとしては、Mgが高いMR比を得る観点から好ましく、Zn、またはMgとZnとの合金も好ましい。あるいは、第1の金属層5aはMgを含むものであっても良い。
 その他、第1の金属層5aは、Al、Ti、Zn、Hf、Ga等の金属であっても良い。さらには、上記第1の金属層5aとして例示された金属に、酸素が添加されていても良く(第2の実施形態参照)、あるいは、ボロン(B)、炭素(C)等の非金属の少なくとも1つが添加されていても良い。
 その後、ステップS3では、第1の金属層5aが形成された基板1を酸化チャンバに搬送し、第1の金属層5aを酸化する。酸化処理は酸素ガスまたは酸素ガスと不活性ガス、例えばヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)の少なくとも1つによって行われる。酸化方法はチャンバを封止した封止酸化、排気を行いながらのフロー酸化、活性酸素を利用したラジカル酸化、およびプラズマ酸化などで行えば良い。
 その後、ステップS4では、第1の金属層5aが酸化された基板1を成膜チャンバに搬送し、上記酸化された第1の金属層5a上に第2の金属層5bを成膜する。これは、酸化された第1の金属層5aの表面に残存する酸素が、続いて形成される磁化自由層へ移動することによって、磁化自由層が酸化されることを防止ないしは低減させる機能を持つ。第2の金属層5bはMgが高いMR比を得る観点から好ましい。その他Ti、Zn、Hf等の金属を用いても良い。
 その後、ステップS5では、酸化された第1の金属層5aおよび第2の金属層5bが形成された基板1を加熱チャンバに搬送し、加熱処理を加える。即ち、本実施形態では、第2の金属層5bを成膜後であり、かつ後述する磁化自由層6を成膜する前に加熱処理を施す。加熱処理は、金属と酸素の結合を促進し、バリア層の膜質を均質化、高品位にする効果がある。さらに、本実施形態では、該加熱処理により、第2の金属層5bを蒸発させている。本実施形態では、上述のように加熱処理により、第1の金属層5aの酸化の際に残留した、第1の金属層5aと第2の金属層5bとの間に存在する酸素などと該第2の金属層5bとを反応させて、該第2の金属層5bを酸化している。このとき、酸化しなかった第2の金属層5b(本ステップによる加熱処理によって酸素と結合しなかった第2の金属層5bの金属成分)を、本実施形態では蒸発させることにより、第2の金属層5bの酸化において酸化しなかった金属成分を除去している。よって、本ステップにおける加熱処理は、金属酸化物の結晶化に加えて、第2の金属層5bの酸化、および該酸化に関与せずに残留した金属成分を蒸発させる機能を有する。よって、加熱温度は、第2の金属層5bが気化している温度(気化が起こっている温度)、すなわち、第2の金属層5bの蒸発が起こっている温度である。
 例えば、第1および第2の金属層5a、5bとしてMgを用い、加熱処理時の加熱チャンバ内の圧力が1×10-9~1×10-8Torrの場合、加熱温度は基板温度で、150~400度が好ましい。150度以下では金属としてのMgと酸素の結合が十分に促進されず、またMgの蒸発も完全ではない。図8から分かるように、Mgの場合、1×10-9~1×10-8Torrの雰囲気においては、約423K(約150℃)でMgの沸騰が始まる。従って、第2の金属層5bにおいて、1×10-9~1×10-8Torrの雰囲気においては約150℃以上の温度で酸素と結合していないMgは沸騰し、該Mgが気化し、第2の金属層5bの酸化物から酸素と結合していないMgが除去される。このように、Mgを蒸発させるために、150℃以上が好ましいのである。また、400度以上では、固定磁化層4の固着力が減少してしまう。
 このように、第2の金属層5bの加熱処理時の加熱温度として、Mgが沸騰する温度を採用することにより、酸素と結合していないMgをより効率的に気化することができる。すなわち、効率良くMgの除去を行うことができる。また、該Mg除去の効率化により、上記第2の金属層5bの加熱処理の時間を短くすることができる。
 なお、加熱チャンバ内の圧力を1×10-9~1×10-8Torr以外の圧力にする場合は、図8から設定圧力においてMgが蒸発する温度を抽出すれば良いことは言うまでもない。また、第1および第2の金属層5a、5bとしてMg以外の金属を用いる場合も、図8のような蒸気圧の温度依存性から、設定圧力に応じた、用いる金属が蒸発する温度にて第1および第2の金属層5a、5bが加熱されるように、加熱処理を行えば良い。
 なお、本実施形態では、上述のように酸素と結合していないMgを気化させることにより除去することが重要である。よって、Mgが沸騰する温度に達していなくても、Mgの気化(蒸発)は起こっているので、加熱チャンバを排気していれば、Mgを気化(蒸発)により除去することができる。
 また、加熱の方法は、発熱抵抗体やランプヒーター等、放射を利用する方法や、熱せられたステージの上に直接ウエハを置き、熱伝導を利用する方法などが良い。さらに、その他の加熱の方法でも良く、制限はない。
 このようにして、本ステップでは、酸化された第1の金属層5aおよび酸化された第2の金属層5bを有するトンネルバリア層5が形成される。
 ステップS6では、ステップS5にて加熱処理が施された基板1を成膜チャンバへ移動し、例えばCoFe、CoFeB、NiFe、等の少なくとも1層または2層以上からなる磁化自由層6を1~10nm程度成膜する。ところで、磁化自由層6を成膜する前に、トンネルバリア層5と磁化自由層6との拡散を防ぐ目的で、冷却工程を行っても良い。基板は150度以下まで冷却されていれば良い。
 ステップS7では、磁化自由層6上にTa、Ru、Ti、Pt等の少なくとも1層または2層以上からなる保護層7を1~30nm程度成膜する。
 このようなTMR素子は、図3に示したようなクラスタ型基板処理装置によって、真空一貫で作製される。
 次に、本実施形態におけるクラスタ型製造装置について説明する。
 本実施形態におけるTMR素子を作製するためには、少なくとも、1つ以上の成膜チャンバ、1つの酸化チャンバ、1つの基板加熱チャンバが必要である。
 例えば、ロードロックチャンバ8から搬送された基板1は、成膜チャンバ9aに搬送され、図2に示す下地層2から第2の強磁性層4cまでが基板1上に成膜される。その後、基板1は成膜チャンバ9bに搬送され、第1の金属層5a(例えば、第1のMg層)が成膜される。その後、第1の金属層5aが形成された基板1は酸化チャンバ10に搬送され、第1の金属層5aが酸化される。その後、第1の金属層5aが酸化された基板1は成膜チャンバ9bに戻され、酸化された第1の金属層5a上に第2の金属層5b(例えば、第2のMg層)が成膜される。その後、第2の金属層5bが形成された基板1は加熱チャンバ11に搬送され、基板加熱処理が行われる。その後、加熱処理された基板1は成膜チャンバ9bに戻り、磁化自由層6および保護層7が成膜される。ここでロードロックチャンバ8、成膜チャンバ9a、9b、酸化チャンバ10、および加熱チャンバ11はトランスファーチャンバ12ですべて繋がれている。各チャンバは排気装置を夫々備えて独立に排気可能であり、真空一貫で基板処理することが可能である。
 ここで、基板加熱処理後の冷却のため、冷却チャンバを設け、磁化自由層6の成膜の前に冷却を行っても良い。または磁化自由層6の成膜の前に、成膜チャンバ内で冷却を行っても良い。
 上述したTMR素子はハードディスク用磁気ヘッドの読み出しセンサーやMRAMの記録セル、またはその他の磁気センサーに使用することが可能である。
 以上述べた実施形態は全て本発明を例示的に示すものであり、限定的に示すものである。
 (実施例1) 
 以上説明した本実施形態において、金属層を成膜して、その後に酸化処理によって酸化層を形成する方法を用いたTMR素子について、高いMR比を得ることのできるTMR素子の製造方法について説明する。
 本実施例では、第1の金属層5aにMgを使用し、第1の金属層5aとしての第1のMg層を1.2nm成膜した。その後、第1のMg層を酸化し、その上に第2の金属層5bとしてMg(第2のMg層)を0.4nm成膜した。その後、第2のMg層が蒸発する温度による基板加熱処理(図1のステップS5)を行った場合(実施例1)と、行わない場合(比較例1)についてTMR素子を作製し、RAおよびMR比を測定した。基板加熱処理は、抵抗体を発熱させて、輻射により基板を加熱した。基板温度は約300度である。その結果を図4に示す。また、RAは酸化時間によって変化させたが、酸化時間とRAの関係について図5に結果を示す。
 図6に基板加熱処理を行うタイミングを代えた場合(比較例2)に得られた素子と、上述した比較例1で得られた素子の酸化時間とRAの関係を示す。比較例2においては第1のMg層を成膜して、その後に第1のMg層を酸化し、基板加熱処理を行ってから第2のMg層を成膜した。また図7に、この条件で作製したTMR素子の酸化時間とRAの関係を示す。
 図4から、基板加熱処理を行うことによって、同等RAにおけるMR比が向上していることが分かる。また、図5から、同じ酸化時間としても加熱処理をした方がRAが上昇していることが分かる。これらの結果より、酸化処理の際に、Mgと酸素は十分に結合しきれていないことが予想され、基板加熱処理によって、Mgと酸素の結合が促進し、ピンホールなどの欠陥を低減できていると言える。
 また図6から、基板加熱処理のタイミングとしては、比較例2のように第1のMg層を酸化処理して基板加熱処理を行い、該加熱処理後に第2のMg層を成膜すると、比較例1に比べて素子特性が劣化することが分かる。これは酸化処理後には、第1のMg層(第1の金属層5a)から形成されたMgO層表面近傍に余剰な酸素原子が存在し、そこに加熱処理を施すことによってMgOが過酸化され、あるいは下部の強磁性層が酸化されてしまうことで特性が低下していると考えられる。比較例1の結果についても同様に、酸化処理後には第1のMg層から形成されたMgO層の表面に余剰な酸素原子が存在するため、良質な結晶性MgO層が得られておらず、特性が低下していると考えられる。
 本実施例では、第1のMg層を酸化処理後に第2のMg層を成膜してから加熱している。このため、MgO層表面近傍(すなわち、酸化された第1の金属層5aと、該第1の金属層5a上に形成された第2の金属層5bとの界面)に存在する余剰な酸素原子と第2のMg層(第2の金属層5b)とが反応してMgO層が形成される。すなわち、本実施例の基板加熱処理(ステップS5)により、上記界面に存在する酸素を、第2のMg層のMgと結合させて第2のMg層をMgOに変換する。そして該基板加熱処理を施すことによって、MgO層の形成及びMgOの結晶化が促進され、Mg:Oの化学量論比がより1:1に近い良質な結晶性MgO層が得られるため、比較例に比べ良好な結果が得られたものと考えられる。
 このように、本実施形態では、第1の金属層5aを形成し該第1の金属層5aを酸化してから該酸化された第1の金属層5a上に第2の金属層5bを形成し、その後に加熱処理をすることにより、トンネルバリア層の原料となる金属層を酸化する際に、該金属層の表面近傍にどうしても残留する酸素の、MR比劣化への影響を軽減することができる。すなわち、本実施形態では、第1の金属層5aの酸化後に第2の金属層5bを形成し、酸化した第1の金属層5aと第2の金属層5bとの界面に酸素が残留した状態で加熱処理を行っているので、従来ではMR比劣化の原因となった金属層表面近傍に残留する酸素を、第2の金属層5bの酸化に用いることができ、結果的に上記界面に存在していた酸素を除去したことと等価の効果が得られる。この酸化は、上記界面に存在した酸素によるものであるので、酸化された第2の金属層5b表面に残存する酸素を無くす、ないしは低減することができる。また、上記酸化を起こすための加熱温度は、第2の金属層5bの蒸発が起こる温度に設定されているので、第2の金属層5bにおいて酸化されていない成分は気化されて除去され、表面に残存する酸素を低減した金属酸化物を形成することができる。
 以上述べたように、Mg層といった金属層の酸化処理によってMgO層といった金属の酸化層を得る方法においては、金属の酸化層(例えば、MgO層)形成後に金属層(例えば、Mg層)を成膜すること、そして該金属層を成膜してから加熱処理を施すことが肝要である。そして当該方法によれば、従来に比べMR比を向上させた磁気抵抗素子の提供が可能となる。
 なお、上述した実施形態及び実施例において、磁化自由層6及び固定磁化層4の位置を限定して記載したが、磁化自由層6及び固定磁化層4の位置は本発明においては特に問わない。即ち磁化自由層6がトンネルバリア層5の下側に形成され、固定磁化層4がトンネルバリア層5よりも上側に形成されても良い。
 (第2の実施形態) 
 本実施形態では、第1の金属層5aの形成時に、第1の金属層5aに酸素原子を意図的に含ませる(第1の金属層5aに酸素をドープする)。すなわち、本実施形態では、第1の金属層5aの形成時において、成膜チャンバに酸素ガスも導入して、その内部に酸素を含ませながら第1の金属層5aを形成する。
 例えば、第1の金属層5aをプラズマスパッタで成膜する場合、図1のステップS2において、プラズマを形成するガスに酸素を添加することで、第1の金属層5a中に酸素原子を含有させることができる。すなわち、第1の金属層5aの原料となる金属(例えば、Mg)のターゲットを成膜チャンバ内に設け、該成膜チャンバ内に不活性ガスを導入してプラズマを生成し、上記ターゲットをプラズマスパッタして基板1上に第1の金属層5aを形成する。上記例では、不活性ガスに加えて酸素ガスを成膜チャンバ内に導入している。このとき、供給された酸素ガスはプラズマ励起されても、されなくても良い。従って、ターゲットからスパッタされたスパッタ粒子(例えば、Mg粒子)と、酸素(プラズマ励起された場合は、酸素イオンや酸素ラジカル)とが基板に供給され、該基板上には供給された酸素を取り込む形で第1の金属層が成膜される。すなわち、酸素ドープされた第1の金属層が形成される。
 上記酸素ドープのための酸素ガスの導入のタイミングは、スパッタリングガスとしての不活性ガスの導入タイミングと同じであっても良いし、異なっても良い。また、上記酸素ガスの停止タイミングも、不活性ガスの停止タイミングと同じであっても良いし、異なっても良い。
 例えば、第1の金属層5aとしてMgを用い、不活性ガスとしてArガスを用いる場合、例えば、15sccmのArガスと、5sccmの酸素ガスとを独立に導入した雰囲気中(混合した酸素濃度は25%)で第1の金属層5aとしてのMgを成膜すれば良い。
 本実施形態では、第1の金属層5aが酸素を含んでいるので、該第1の金属層5aと、該第1の金属層5aの下層である強磁性層4cとの界面付近においても、第1の金属層5aの酸化を良好に行うことができる。
 通常、第1の層上に第2の層が形成された積層体に対して、第2の層を酸化する場合、第2の層における、第1の層との界面付近を酸化させるためには、酸化の制御を厳密に行う必要がある。酸化を強くし過ぎると第1の層まで酸化することになり、また酸化を弱くし過ぎると第2の層において酸化されない部分が生じる。
 これに対して、本実施形態では、上述のように酸素を導入しながら第1の金属層5aを成膜しているので、強磁性層4c上に形成された第1の金属層5aにおいては厚さ方向に酸素が分布することになり、第1の金属層5a内の強磁性層4cとの界面付近にも酸素が存在する。よって、ステップS3の酸化処理において、予め第1の金属層5aに含まれている酸素も該第1の金属層5aの酸化に寄与するので、第1の金属層5aの上記界面付近においても、第1の金属層5aに含有された酸素により良好に酸化される。従って、第1の金属層5aと強磁性層4cとの界面においても、第1の金属層5a起因の良質な金属酸化物(例えば、MgO)を形成することができる。

Claims (6)

  1.  第1の強磁性層が形成された基板を用意する工程と、
     前記第1の強磁性層上にトンネルバリア層を作製する工程と、
     前記トンネルバリア層上に第2の強磁性層を形成する工程と、を含み、
     前記トンネルバリア層を作製する工程は、
      前記第1の強磁性層上に第1の金属層を成膜する工程と、
      前記第1の金属層を酸化する工程と、
      前記酸化された第1の金属層上に第2の金属層を成膜する工程と、
      前記酸化された第1の金属層及び前記第2の金属層を加熱処理する工程と
     を有することを特徴とする磁気抵抗素子の製造方法。
  2.  前記第1の金属層を成膜する工程は、前記第1の金属層の内部に酸素を含有させるように該第1の金属層を形成することを特徴とする請求項1に記載の磁気抵抗素子の製造方法。
  3.  前記加熱処理する工程は、前記加熱処理により、前記酸化する工程にて前記酸化された第1の金属層の表面に残存する酸素と前記第2の金属層とを結合させることを特徴とする請求項1に記載の磁気抵抗素子の製造方法。
  4.  前記第1および第2の金属層の少なくとも一方は、マグネシウム、またはマグネシウムを含むことを特徴とする請求項1に記載の磁気抵抗素子の製造方法。
  5.  前記加熱処理する工程の後に、前記加熱処理が行われた基板の冷却を行うことを特徴とする請求項1に記載の磁気抵抗素子の製造方法。
  6.  第1の強磁性層が形成された基板を用意する工程と、
     前記第1の強磁性層上にトンネルバリア層を作製する工程と、
     前記トンネルバリア層上に第2の強磁性層を形成する工程と、を含み、
     前記トンネルバリア層を作製する工程は、
      前記第1の強磁性層上に第1の金属層を成膜する工程と、
      前記第1の金属層を酸化する工程と、
      前記酸化された第1の金属層上に第2の金属層を成膜する工程と、
      前記酸化された第1の金属層及び前記第2の金属層を、該第2の金属層が沸騰する温度で加熱処理する工程と
     を有することを特徴とする磁気抵抗素子の製造方法。
PCT/JP2010/073773 2009-12-28 2010-12-28 磁気抵抗素子の製造方法 WO2011081203A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011547730A JP5502900B2 (ja) 2009-12-28 2010-12-28 磁気抵抗素子の製造方法
KR1020127016618A KR101374325B1 (ko) 2009-12-28 2010-12-28 자기 저항 소자의 제조 방법
CN201080059892.2A CN102687297B (zh) 2009-12-28 2010-12-28 磁阻元件的制造方法
EP10841058.0A EP2521194B1 (en) 2009-12-28 2010-12-28 Method for manufacturing a magnetoresistive element
US13/494,797 US8728830B2 (en) 2009-12-28 2012-06-12 Manufacturing method of magneto-resistive element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009298254 2009-12-28
JP2009-298254 2009-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/494,797 Continuation US8728830B2 (en) 2009-12-28 2012-06-12 Manufacturing method of magneto-resistive element

Publications (1)

Publication Number Publication Date
WO2011081203A1 true WO2011081203A1 (ja) 2011-07-07

Family

ID=44226605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073773 WO2011081203A1 (ja) 2009-12-28 2010-12-28 磁気抵抗素子の製造方法

Country Status (7)

Country Link
US (1) US8728830B2 (ja)
EP (1) EP2521194B1 (ja)
JP (1) JP5502900B2 (ja)
KR (1) KR101374325B1 (ja)
CN (1) CN102687297B (ja)
TW (1) TWI440236B (ja)
WO (1) WO2011081203A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000805A (zh) * 2011-09-09 2013-03-27 克罗科斯科技公司 具有改进的隧穿势垒的磁隧道结
WO2015045212A1 (ja) * 2013-09-25 2015-04-02 キヤノンアネルバ株式会社 真空処理装置、真空処理方法、磁気抵抗効果素子の製造方法および磁気抵抗効果素子の製造装置
WO2015072139A1 (ja) * 2013-11-18 2015-05-21 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
WO2015072140A1 (ja) * 2013-11-18 2015-05-21 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
JP5882502B2 (ja) * 2012-12-20 2016-03-09 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
JP2016134510A (ja) * 2015-01-20 2016-07-25 東京エレクトロン株式会社 垂直磁化型磁気トンネル接合素子を形成する方法、及び垂直磁化型磁気トンネル接合素子の製造装置
US9502644B1 (en) 2015-10-21 2016-11-22 Canon Anelva Corporation Method for manufacturing magnetoresistive device
WO2017134697A1 (ja) * 2016-02-01 2017-08-10 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
WO2017149874A1 (ja) * 2016-03-01 2017-09-08 ソニー株式会社 磁気抵抗素子及び電子デバイス

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619394B1 (en) * 2012-11-29 2013-12-31 HGST Netherlands B.V. Magnetic tunnel junction with barrier cooling for magnetic read head
US9034491B2 (en) * 2012-11-30 2015-05-19 Seagate Technology Llc Low resistance area magnetic stack
KR102335104B1 (ko) 2014-05-23 2021-12-03 삼성전자 주식회사 자기 소자
US9378760B2 (en) * 2014-07-31 2016-06-28 Seagate Technology Llc Data reader with tuned microstructure
KR102287755B1 (ko) 2014-11-18 2021-08-09 삼성전자주식회사 자기 저항 메모리 소자를 형성하는 방법
KR101708548B1 (ko) * 2015-02-06 2017-02-22 한양대학교 산학협력단 개선된 터널 배리어 구조를 갖는 mtj 셀 및 그 제작 방법
US10199570B2 (en) * 2015-03-31 2019-02-05 Tdk Corporation Magnetoresistance effect element
WO2016158926A1 (ja) 2015-03-31 2016-10-06 Tdk株式会社 磁気抵抗効果素子
US10224067B2 (en) 2015-03-31 2019-03-05 Tdk Corporation Magnetoresistance effect element
WO2016189772A1 (ja) 2015-05-22 2016-12-01 キヤノンアネルバ株式会社 磁気抵抗効果素子
KR102397904B1 (ko) 2015-09-17 2022-05-13 삼성전자주식회사 낮은 보론 농도를 갖는 영역 및 높은 보론 농도를 갖는 영역을 포함하는 자유 층, 자기 저항 셀, 및 자기 저항 메모리 소자, 및 그 제조 방법
KR102437781B1 (ko) * 2015-12-10 2022-08-30 삼성전자주식회사 자기 메모리 장치 및 그 제조 방법
US10256399B2 (en) * 2016-05-18 2019-04-09 International Business Machines Corporation Fabricating a cap layer for a magnetic random access memory (MRAM) device
JP2018148158A (ja) * 2017-03-09 2018-09-20 ソニーセミコンダクタソリューションズ株式会社 強磁性トンネル接合素子及びその製造方法
KR102470367B1 (ko) * 2017-11-24 2022-11-24 삼성전자주식회사 자기 저항 메모리 소자의 제조 방법
US10648069B2 (en) 2018-10-16 2020-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Monolayer-by-monolayer growth of MgO layers using Mg sublimation and oxidation
CN113013323A (zh) * 2019-12-19 2021-06-22 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法、半导体器件
KR102323401B1 (ko) * 2020-10-26 2021-11-05 연세대학교 산학협력단 자기 터널 접합 소자, 이를 이용한 자기 메모리 장치 및 그 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101978A1 (en) * 2002-11-25 2004-05-27 Tsann Linn Method of forming a barrier layer of a tunneling magnetoresistive sensor
JP2007142424A (ja) 2005-11-16 2007-06-07 Headway Technologies Inc トンネルバリア層の形成方法、ならびにtmrセンサおよびその製造方法
JP2007173843A (ja) 2005-12-22 2007-07-05 Magic Technologies Inc トンネルバリア層およびその形成方法並びにmtj素子およびその製造方法
JP2007305768A (ja) 2006-05-11 2007-11-22 Tdk Corp トンネル磁気抵抗効果素子の製造方法、薄膜磁気ヘッドの製造方法及び磁気メモリの製造方法
JP2009117846A (ja) * 2007-11-08 2009-05-28 Headway Technologies Inc Tmr素子およびその形成方法
JP2009194398A (ja) * 2009-05-25 2009-08-27 Toshiba Corp 磁気抵抗効果素子、及び磁気抵抗効果素子を備えた磁気記憶装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871670B1 (ja) * 1997-03-26 1999-03-17 富士通株式会社 強磁性トンネル接合磁気センサ、その製造方法、磁気ヘッド、および磁気記録/再生装置
JP2003031867A (ja) * 2001-07-17 2003-01-31 Hitachi Ltd 酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子
US7576956B2 (en) * 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
JP4292128B2 (ja) 2004-09-07 2009-07-08 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
US7567956B2 (en) * 2006-02-15 2009-07-28 Panasonic Corporation Distributed meta data management middleware
JP2007242786A (ja) * 2006-03-07 2007-09-20 Tdk Corp Cpp型磁気抵抗効果素子
JP4876708B2 (ja) * 2006-05-11 2012-02-15 Tdk株式会社 トンネル磁気抵抗効果素子の製造方法、薄膜磁気ヘッドの製造方法及び磁気メモリの製造方法
US7598579B2 (en) * 2007-01-30 2009-10-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current
WO2008096700A1 (ja) * 2007-02-09 2008-08-14 Canon Anelva Corporation 酸化処理方法及び酸化処理装置
JP2008263031A (ja) * 2007-04-11 2008-10-30 Toshiba Corp 磁気抵抗効果素子とその製造方法、磁気抵抗効果素子を備えた磁気記憶装置とその製造方法
US7934309B2 (en) * 2007-12-26 2011-05-03 Tdk Corporation Methods of fabricating exchange-coupling film, magnetoresistive element, and thin-film magnetic head
WO2009157064A1 (ja) 2008-06-25 2009-12-30 キヤノンアネルバ株式会社 トンネル磁気抵抗素子の製造方法および製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101978A1 (en) * 2002-11-25 2004-05-27 Tsann Linn Method of forming a barrier layer of a tunneling magnetoresistive sensor
JP2007142424A (ja) 2005-11-16 2007-06-07 Headway Technologies Inc トンネルバリア層の形成方法、ならびにtmrセンサおよびその製造方法
JP2007173843A (ja) 2005-12-22 2007-07-05 Magic Technologies Inc トンネルバリア層およびその形成方法並びにmtj素子およびその製造方法
JP2007305768A (ja) 2006-05-11 2007-11-22 Tdk Corp トンネル磁気抵抗効果素子の製造方法、薄膜磁気ヘッドの製造方法及び磁気メモリの製造方法
JP2009117846A (ja) * 2007-11-08 2009-05-28 Headway Technologies Inc Tmr素子およびその形成方法
JP2009194398A (ja) * 2009-05-25 2009-08-27 Toshiba Corp 磁気抵抗効果素子、及び磁気抵抗効果素子を備えた磁気記憶装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 93, pages 192109
BUTLER ET AL., PHYSICAL REVIEW B, vol. 63, 2001, pages 054416
See also references of EP2521194A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000805A (zh) * 2011-09-09 2013-03-27 克罗科斯科技公司 具有改进的隧穿势垒的磁隧道结
JP5882502B2 (ja) * 2012-12-20 2016-03-09 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
JPWO2015045212A1 (ja) * 2013-09-25 2017-03-09 キヤノンアネルバ株式会社 真空処理装置、真空処理方法、磁気抵抗効果素子の製造方法および磁気抵抗効果素子の製造装置
WO2015045212A1 (ja) * 2013-09-25 2015-04-02 キヤノンアネルバ株式会社 真空処理装置、真空処理方法、磁気抵抗効果素子の製造方法および磁気抵抗効果素子の製造装置
JP6068662B2 (ja) * 2013-09-25 2017-01-25 キヤノンアネルバ株式会社 真空処理装置、真空処理方法、磁気抵抗効果素子の製造方法および磁気抵抗効果素子の製造装置
WO2015072139A1 (ja) * 2013-11-18 2015-05-21 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
WO2015072140A1 (ja) * 2013-11-18 2015-05-21 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
US10153426B2 (en) 2013-11-18 2018-12-11 Canon Anelva Corporation Manufacturing method of magnetoresistive effect element
JP6077133B2 (ja) * 2013-11-18 2017-02-08 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
JP2016134510A (ja) * 2015-01-20 2016-07-25 東京エレクトロン株式会社 垂直磁化型磁気トンネル接合素子を形成する方法、及び垂直磁化型磁気トンネル接合素子の製造装置
WO2016117359A1 (ja) * 2015-01-20 2016-07-28 東京エレクトロン株式会社 垂直磁化型磁気トンネル接合素子を形成する方法、及び垂直磁化型磁気トンネル接合素子の製造装置
JP6084335B1 (ja) * 2015-10-21 2017-02-22 キヤノンアネルバ株式会社 磁気抵抗素子の製造方法
WO2017068611A1 (ja) * 2015-10-21 2017-04-27 キヤノンアネルバ株式会社 磁気抵抗素子の製造方法
GB2548644A (en) * 2015-10-21 2017-09-27 Canon Anelva Corp Production method for magnetoresistive element
US9502644B1 (en) 2015-10-21 2016-11-22 Canon Anelva Corporation Method for manufacturing magnetoresistive device
GB2548644B (en) * 2015-10-21 2020-09-02 Canon Anelva Corp Method for manufacturing magnetoresistive device
WO2017134697A1 (ja) * 2016-02-01 2017-08-10 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
KR20180103979A (ko) * 2016-02-01 2018-09-19 캐논 아네르바 가부시키가이샤 자기 저항 효과 소자의 제조 방법
JPWO2017134697A1 (ja) * 2016-02-01 2018-09-27 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
US10461249B2 (en) 2016-02-01 2019-10-29 Canon Anelva Corporation Manufacturing method of magneto-resistive effect device
GB2561790B (en) * 2016-02-01 2021-05-12 Canon Anelva Corp Manufacturing method of magneto-resistive effect device
WO2017149874A1 (ja) * 2016-03-01 2017-09-08 ソニー株式会社 磁気抵抗素子及び電子デバイス
US11276729B2 (en) 2016-03-01 2022-03-15 Sony Corporation Magnetoresistive element and electronic device having high heat resistance

Also Published As

Publication number Publication date
EP2521194A1 (en) 2012-11-07
KR20120096054A (ko) 2012-08-29
JPWO2011081203A1 (ja) 2013-05-13
TW201145631A (en) 2011-12-16
US8728830B2 (en) 2014-05-20
KR101374325B1 (ko) 2014-03-14
TWI440236B (zh) 2014-06-01
US20120288963A1 (en) 2012-11-15
EP2521194B1 (en) 2016-03-02
CN102687297A (zh) 2012-09-19
CN102687297B (zh) 2014-12-24
EP2521194A4 (en) 2015-01-21
JP5502900B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5502900B2 (ja) 磁気抵抗素子の製造方法
JP5341082B2 (ja) トンネル磁気抵抗素子の製造方法および製造装置
EP2421063B1 (en) Ferromagnetic tunnel junction structure, and magnetoresistive effect element and spintronics device each comprising same
US7602033B2 (en) Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
US8557407B2 (en) Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
JP6084335B1 (ja) 磁気抵抗素子の製造方法
US8993351B2 (en) Method of manufacturing tunneling magnetoresistive element
US10002973B2 (en) Magnetic tunnel junction with an improved tunnel barrier
KR101786868B1 (ko) 제조방법
JP5351140B2 (ja) 磁気トンネル接合デバイスの製造方法
JP5999543B2 (ja) トンネル磁気抵抗素子の製造方法
JP2009278130A (ja) 磁気抵抗素子の製造方法
TWI821274B (zh) 磁性穿隧接合結構及其製造方法
KR102241050B1 (ko) Mg 승화 및 산화를 이용한 MgO층들의 단분자층 단위 성장
US20110084348A1 (en) Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method
JP5689932B2 (ja) トンネル磁気抵抗素子の製造方法
WO2010026703A1 (ja) 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
US20230397503A1 (en) Ferromagnetic free layer, laminated strucure comprising the same, magnetic tunnel junction structure, magnetoresistive random access memory, and iron-cobalt based target
JP2003069112A (ja) 強磁性トンネル接合素子の製造方法
WO2009096033A1 (ja) トンネル磁気抵抗効果素子の製造方法
TW202121660A (zh) 具保護層之磁性穿隧接面

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059892.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547730

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010841058

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127016618

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE