WO2015072139A1 - 磁気抵抗効果素子の製造方法 - Google Patents

磁気抵抗効果素子の製造方法 Download PDF

Info

Publication number
WO2015072139A1
WO2015072139A1 PCT/JP2014/005681 JP2014005681W WO2015072139A1 WO 2015072139 A1 WO2015072139 A1 WO 2015072139A1 JP 2014005681 W JP2014005681 W JP 2014005681W WO 2015072139 A1 WO2015072139 A1 WO 2015072139A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
cooling
shield
chamber
Prior art date
Application number
PCT/JP2014/005681
Other languages
English (en)
French (fr)
Inventor
拓哉 清野
大谷 裕一
和正 西村
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Publication of WO2015072139A1 publication Critical patent/WO2015072139A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Definitions

  • the present invention relates to a method for manufacturing a magnetoresistive element.
  • TMR element also referred to as an MTJ element
  • TMR Tunnelnel Magneto Resistance
  • Non-Patent Document 1 discloses a perpendicular magnetization type MTJ element.
  • the perpendicular magnetization type MTJ element includes a structure in which a free layer (magnetization free layer), a tunnel barrier layer, and a reference layer (magnetization fixed layer) are laminated, and the magnetization directions of the free layer and the reference layer are parallel to the lamination direction, respectively. It has become.
  • Non-Patent Document 1 In order to improve the element characteristics of the magnetoresistive effect element, it is important to increase the MR ratio (magnetoresistance ratio). It is known that the laminated structure composed of CoFeB / MgO / CoFeB described in Non-Patent Document 1 exhibits a high MR ratio exceeding 100%.
  • Non-Patent Document 1 Even the magnetoresistive effect element described in Non-Patent Document 1 cannot be said to have a sufficiently high MR ratio. While studies have been made to further increase the MR ratio by changing the structure of the magnetoresistive element, it is also required to increase the MR ratio by changing the manufacturing method rather than the structure.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a magnetoresistive effect element having an MR ratio higher than that of the prior art.
  • One aspect of the present invention is a method of manufacturing a magnetoresistive effect element, the step of forming a tunnel barrier layer on a substrate on which one of a magnetization free layer and a magnetization fixed layer is formed, and the tunnel barrier layer A step of cooling the substrate after the step of forming; and a step of forming the other of the magnetization free layer and the magnetization fixed layer on the tunnel barrier layer after the step of cooling.
  • the substrate is formed after the step of forming the tunnel barrier layer and before the step of forming the magnetization free layer or the magnetization fixed layer on the tunnel barrier layer.
  • the substrate is formed after the step of forming the tunnel barrier layer and before the step of forming the magnetization free layer or the magnetization fixed layer on the tunnel barrier layer.
  • FIG. 1 is a schematic configuration diagram illustrating a substrate cooling apparatus 100 as a substrate processing apparatus that cools a substrate according to the present embodiment.
  • the substrate cooling apparatus 100 includes a chamber 101 and an exhaust chamber 119.
  • the upper wall 101a of the chamber 101 is detachable, and maintenance, cleaning, etc. can be performed by removing the upper wall 101a.
  • a gate valve 102 that can be opened and closed is provided on the side wall 101 b of the chamber 101, and the substrate S can be transferred into and out of the chamber 101 through the gate valve 102.
  • a substrate holder 103 having a substrate placement surface 103a is provided in the chamber 101, and a substrate S can be placed on the substrate placement surface 103a.
  • the substrate holder 103 is provided with rod-like lift pins 104 that pass through the substrate placement surface 103 a and support the back surface of the substrate S.
  • the lift pins 104 are formed on the substrate S or the substrate placement surface 103 a by the lift pin drive mechanism 105. Can rise and fall along the normal direction.
  • the substrate holder 103 is provided with a mechanical chuck 106 for fixing the outer peripheral portion of the surface of the substrate S.
  • the mechanical chuck 106 is driven by the mechanical chuck drive mechanism 107 in the normal direction of the substrate S or the substrate mounting surface 103a. Can rise and fall along.
  • the lift pin drive mechanism 105 and the mechanical chuck drive mechanism 107 are arbitrary drive means such as a motor and an actuator.
  • a bellows 108 is provided.
  • an electrostatic adsorption mechanism that fixes the substrate S to the substrate holder 103 by electrostatic force may be provided.
  • a substrate holder cooling unit 109 (substrate holder cooling means) provided outside the chamber 101 is connected to the substrate holder 103 via a substrate holder column 110 penetrating the lower wall 101c of the chamber 101.
  • the substrate holder cooling unit 109 has a temperature measuring unit (not shown) (for example, a thermocouple) for measuring the temperature of the substrate holder 103.
  • the substrate holder 103 and the substrate holder support 110 are preferably made of a metal having high thermal conductivity, such as copper or aluminum.
  • a shield 111 is provided in the chamber 101.
  • the shield 111 surrounds the side of the substrate holder 103 and is provided so as to cover the upper side of the substrate holder 103. That is, the shield 111 is provided so as to surround the side of the substrate placement surface 103a and to face the substrate placement surface 103a.
  • a shield cooling part 112 provided outside the chamber 101 is connected to the shield 111 via a shield support 113 penetrating the upper wall 101a of the chamber 101.
  • the shield cooling unit 112 has a temperature measuring unit (not shown) (for example, a thermocouple) for measuring the temperature of the shield 111.
  • the shield 111 and the shield post 113 are preferably made of a metal having high thermal conductivity, such as copper or aluminum.
  • the substrate holder cooling unit 109 and the shield cooling unit 112 are cooling units for cooling by an arbitrary method.
  • a cooling device for example, Gifford- McMahon refrigerator, Stirling refrigerator, or the like
  • a refrigerant such as low-temperature liquid nitrogen supplied from the outside as a refrigerant.
  • the substrate holder cooling unit 109 and the shield cooling unit 112 are provided as separate members, but may be provided as a single cooling unit.
  • An opening 114 through which the substrate S passes is provided on the side of the shield 111 facing the gate valve 102.
  • the substrate S transported from the outside of the chamber 101 is placed on the substrate holder 103 through the gate valve 102 and the opening 114 of the shield 111, and the cooled substrate S passes through the opening 114 of the shield 111 and the gate valve 102. It passes through the chamber 101 and passes through.
  • a louver 115 for communicating the inside and the outside of the shield 111 is provided at a portion other than the opening 114 on the side surface of the shield 111.
  • a shield heater 116 is provided in the vicinity of the inner surface of the shield 111, that is, in the vicinity of the surface of the shield 111 that faces the substrate holder 103.
  • An in-chamber heater 117 is provided in the vicinity of the inside of the wall surface of the chamber 101, and an out-chamber heater 118 is provided in the vicinity of the outside of the wall surface of the chamber 101.
  • the shield heater 116 and the in-chamber heater 117 are intended to remove the gas molecules adhering to the shield 111 and the chamber 101 by applying thermal energy, and are preferably heating means such as a lamp that can be quickly heated.
  • the outside-chamber heater 118 heats the chamber 101 itself, and is preferably a heating means that can heat a wide range such as a sheath heater to high heat. Although only a part of the shield heater 116, the in-chamber heater 117, and the out-chamber heater 118 are shown in FIG. 1, they are provided at predetermined intervals so that each surface can be heated uniformly.
  • the exhaust chamber 119 is connected to the chamber 101 so that each internal space communicates.
  • the exhaust chamber 119 is provided with an exhaust pump 120 as an exhaust unit capable of evacuating the chamber 101.
  • the exhaust pump 120 any exhaust means such as a dry pump or a turbo molecular pump can be used according to the required degree of vacuum, or a combination thereof may be used.
  • the chamber 101 is provided with an in-shield vacuum gauge 121 for measuring the pressure in the shield 111, that is, the space defined by the shield 111, and the exhaust chamber 119 measures the pressure in the exhaust chamber 119.
  • An in-chamber vacuum gauge 122 is provided.
  • the substrate cooling apparatus 100 is provided with a cooling gas introduction portion 123 for introducing a cooling gas between the back surface of the substrate S and the substrate placement surface 103a in order to efficiently cool the substrate S. ing.
  • the cooling gas introduction part 123 is connected to a gas line 124 that is a pipe through which the cooling gas passes, and the gas line 124 passes through the chamber 101 and the substrate holder 103 to connect the back surface of the substrate S and the substrate mounting surface 103a. There is an opening in the space between.
  • He, Ar, or a mixed gas containing at least one of them can be used, and the cooling gas spreads to the back surface of the substrate S to quickly and uniformly cool the substrate S. be able to.
  • the gas line 124 is further connected to an exhaust pump 120, and the exhaust gas can be exhausted by driving the exhaust pump 120.
  • the gas line 124 includes a variable valve (not shown), and the path and flow rate can be changed.
  • FIG. 1 only one system of gas lines 124 is shown, but two systems of gas lines 124 for introducing the cooling gas from the cooling gas introduction section 123 and gas lines 124 for exhausting the cooling gas are separately provided. It may be provided.
  • the cooling gas introduction part 123 preferably includes gas flow rate adjusting means such as a mass flow controller (MFC) and an automatic pressure controller (APC). Note that the cooling gas introduction unit 123 is not necessarily provided, and it is a matter of course that the substrate S can be cooled even if the substrate S is directly placed on the cooled substrate placement surface 103a without using the above-described cooling gas. .
  • MFC mass flow controller
  • API automatic pressure controller
  • a gas line heater 125 is provided in the vicinity of the gas line 124. By heating the gas line 124 with the gas line heater 125, gas molecules adsorbed on the inner surface of the gas line can be efficiently removed.
  • the gas line heater 125 is provided only on a part of the gas line 124 in FIG. 1, but may be provided on the entire gas line 124. Although any heating means may be used as the gas line heater 125, for example, a ribbon heater can be used.
  • FIG. 2 is a cross-sectional view of the shield 111 included in the substrate cooling apparatus 100 according to the present embodiment.
  • the shield 111 includes a side wall portion 111a that surrounds the side of the substrate S or the substrate placement surface 103a, an upper wall portion 111b that covers the upper side of the substrate S or the substrate placement surface 103a, and the side of the substrate S or the substrate placement surface 103a. And a skirt wall 111c surrounding the side of the substrate holder 103.
  • the side wall portion 111a extends along the end surface of the substrate S or the substrate placement surface 103a
  • the upper wall portion 111b is provided to face the substrate S or the substrate placement surface 103a.
  • the part 111 extends along the side surface of the substrate holder 103.
  • the side wall portion 111a and the bottom wall portion 111c are provided substantially parallel to the normal line of the substrate S or the substrate placement surface 103a, and the upper wall portion 111b is substantially parallel to the substrate S or the substrate placement surface 103a. Is provided.
  • the side wall portion 111a, the upper wall portion 111b, and the bottom wall portion 111c are manufactured as an integral member, but may be configured such that separately manufactured members are connected.
  • the substrate holder 103 When the inside of the chamber 101 is evacuated and evacuated and the substrate holder 103 is cooled, the substrate holder 103 contains gas molecules P (such as water molecules in the space). ) Works as a vacuum pump to adsorb.
  • FIG. 2 shows gas molecules P adsorbed on the surface of the substrate holder 103.
  • the substrate S transported from the outside of the substrate cooling apparatus 100 is relatively several hundred degrees higher than the substrate holder 103 being cooled. Therefore, when an external substrate S is brought close to be placed on the substrate placement surface 103a of the substrate holder 103, thermal energy is given from the substrate S to the gas molecules P adsorbed on the surface of the substrate holder 103, and the gas The molecules P are released from the surface of the substrate holder 103.
  • the functional element is provided on the surface of the substrate S (that is, the surface opposite to the substrate holder 103), the gas molecules P on the back surface of the substrate S (that is, the surface facing the substrate holder 103). Rather than adhesion, adhesion of gas molecules P to the surface of the substrate S becomes a problem as contamination.
  • the gas molecules P released from the substrate holder 103 into the space maintained in a vacuum travel substantially straight in the space as indicated by a broken line A in FIG. Therefore, when the shield 111 cooled around the substrate holder 103 is not provided as in the prior art, the gas molecules P are once adsorbed by the inner wall of the chamber 101 and the like, and are desorbed (released) with a certain probability.
  • the substrate cooling apparatus 100 since the cooled shield 111 is provided around the substrate holder, the gas molecules P emitted from the surface of the substrate holder 103 travel substantially straight and have side walls. It collides with the part 111a and is trapped on the side wall part 111a. With such a configuration, gas molecules P that adhere to the surface of the substrate S and become a contamination source can be reduced.
  • the cosin rule will be described.
  • a cosin rule in the direction in which the gas molecules P travel.
  • the probability of flying in the normal direction of the trapped surface is the highest.
  • the cosin rule in the case of the present embodiment, the normal line of the side wall portion 111a is parallel to the substrate placement surface 103a. Therefore, when the gas molecules P trapped on the side wall portion 111a are desorbed, the substrate placement surface 103a.
  • the ratio of the gas molecules P flying in the direction parallel to is the highest. That is, when the gas molecule P trapped on the side wall 111a is desorbed, the possibility of flying toward the film formation surface (surface) of the substrate S is low.
  • some gas molecules P may be desorbed without being trapped by the side wall portion 111 a or once trapped.
  • the gas molecule P since the gas molecules P are desorbed from the side wall portion 111a according to the above-mentioned cosin rule, the gas molecule P flies in the normal direction of the side wall portion 111a with a high probability, and the direction of the substrate mounting surface 103a or the It flies away from the substrate placement surface 103a.
  • the gas molecules P flying in the normal direction of the side wall portion 111a travel substantially straight and collide with the opposing side wall portion 111a, and are trapped by the side wall portion 111a again.
  • the gas molecules P flying in a direction away from the substrate placement surface 103a travel substantially straight and collide with the upper wall portion 111b provided at a position facing the substrate placement surface 103a, and are trapped on the upper wall portion 111b. Is done. As a result, most of the gas molecules P are trapped by the side wall portion 111a or the upper wall portion 111b, so that the gas molecules P that can reach the surface of the substrate S (that is, desorbed from the side wall portion 111a and the substrate mounting surface 103a). The number of gas molecules P) flying in the direction of is greatly reduced.
  • the upper wall 111b is provided as the shield 111 in addition to the side wall 111a, the gas molecules P are trapped more securely and adhered to the surface of the substrate S than when only the side wall 111a is provided. It is possible to further reduce gas molecules.
  • the bottom wall portion 111 c of the shield 111 is provided between the substrate holder 103 and the inner wall of the chamber 101, and surrounds the side surface of the substrate holder 103. Since it is very expensive to cool the entire chamber 101, the chamber 101 itself is not cooled in this embodiment, and the inner wall of the chamber 101 is relatively hot with respect to the substrate holder 103. Therefore, if the cooled shield 111 is not provided around the substrate holder 103 as in the prior art, heat is transferred from the inner wall of the chamber 101 to the substrate holder 103 by radiation, and the temperature distribution of the substrate holder 103 is unstable or It becomes uneven.
  • the bottom wall portion 111c of the shield 111 that is being cooled is provided between the substrate holder 103 and the inner wall of the chamber 101. It is easy to suppress heat transfer to the holder 103 and to stabilize and equalize the temperature distribution in the plane of the substrate placement surface 103a of the substrate holder 103.
  • the skirt wall 111c does not necessarily surround all of the height direction of the substrate holder 103. If the bottom wall portion 111c surrounds at least a part of the height direction of the substrate holder 103, the temperature distribution of the substrate holder 103 is improved. be able to.
  • the substrate holder cooling unit is configured so that the temperatures of the substrate holder 103 and the shield 111 are substantially the same. It is desirable to operate 109 and the shield cooling part 112.
  • the louver 115 is provided such that a part of the side wall portion 111a and the bottom wall portion 111c of the shield 111 protrudes in a plate shape inclining with respect to the surfaces of the side wall portion 111a and the bottom wall portion 111c. Is open. With such a configuration, the shield 111 maintained at a low temperature realizes an effect of trapping gas molecules, and gas molecules vaporized in a refresh process to be described later are discharged from the inside of the shield 111 to the outside through the louver 115. Can do.
  • the louver 115 is provided so as to be inclined so that the angle formed by the surface including the louver 115 and the surface including the side wall 111a and the bottom wall 111c is an acute angle on the surface including the upper wall 111b. .
  • the probability that the gas molecules are directed toward the surface of the substrate S is low, and in the direction toward the upper wall portion 111b. High probability of heading.
  • both the opening 114 and the louver 115 are formed in a part of the side wall 111a, and the upper wall 111b, the side wall 111a, and the bottom wall 111c are continuous members.
  • FIG. 3 is a schematic configuration diagram of the substrate processing system 1 including the substrate cooling apparatus 100 according to the present embodiment.
  • the substrate processing system 1 is a cluster type apparatus, and includes a plurality of substrate processing chambers 2, a load lock chamber 4, and a substrate cooling apparatus 100 according to the present embodiment.
  • the plurality of substrate processing chambers 2 may perform the same processing on the substrate S or may perform different processing.
  • the plurality of substrate processing chambers 2, the load lock chamber 4, and the substrate cooling apparatus 100 are connected to each other through the transfer chamber 3, and a gate valve that can be opened and closed is provided at each connection portion.
  • the transfer chamber 3 is provided with a transfer robot 7. By driving the transfer robot 7, the substrate S is transferred among the substrate processing chambers 2, the load lock chamber 4, and the substrate cooling apparatus 100 according to a predetermined processing order.
  • Each substrate processing chamber 2, the transfer chamber 3, and the substrate cooling apparatus 100 are provided with exhaust pumps, respectively, so that the substrate S can be transferred between the chambers while maintaining a vacuum.
  • An autoloader 5 for supplying the substrate S is provided outside the load lock chamber 4.
  • the autoloader 5 is configured to take out the substrates one by one from the external cassette 6 in which a plurality of substrates are stored on the atmosphere side and store them in the load lock chamber 4.
  • FIG. 4 is a schematic diagram illustrating a configuration of an exemplary MTJ (Magnetic Tunnel Junction) element 900 that performs a cooling process using the substrate cooling apparatus 100 according to the present embodiment.
  • the MTJ element is used for, for example, an MRAM (Magnetic Random Access Memory), a magnetic sensor, or the like.
  • the MTJ element 900 is a perpendicular magnetization type MTJ element (p-MTJ element).
  • the MTJ element 900 includes a lower electrode 902, a buffer layer (Ta layer) 903, a CoFeB layer 904 as a free layer (magnetization free layer), and a tunnel barrier layer (MgO layer) 905 in this order on a substrate 901.
  • the MTJ element 900 includes a CoFeB layer 906, an orientation separation layer (Ta layer) 907, a first stacked body 908, a nonmagnetic intermediate layer (Ru layer) 909, and a second stacked body 910.
  • the MTJ element 900 is not limited to the configuration shown here, and arbitrary changes such as increase / decrease of layers, change of constituent materials of each layer, and reversal of the stacking order of upper and lower layers were made within a range not impairing the function of the perpendicular magnetization type element. A configuration can be used.
  • the cooling process using the substrate cooling apparatus 100 is performed after the tunnel barrier layer (MgO layer) 905 is formed on the free layer (CoFeB layer) 904 and the tunnel barrier layer (MgO layer) 905. Preferably, this is performed before the CoFeB layer 906 serving as a reference layer is formed thereon.
  • the cooling process is performed using the substrate cooling apparatus 100 at this timing, the characteristics of the tunnel barrier layer 905 can be improved by the cooling, and the surface of the tunnel barrier layer 905 (that is, the tunnel barrier layer 905 and the CoFeB) during the cooling. It is possible to prevent contamination of the interface with the layer 906.
  • the cooling process using the substrate cooling apparatus 100 may be performed at any other timing or may be performed at a plurality of timings.
  • the application target of the substrate cooling apparatus 100 according to the present embodiment is not limited to the MTJ element 900 of FIG. 4 and is suitably applied to any substrate or element that is subjected to a cooling process in a vacuum.
  • the substrate cooling apparatus 100 since the side wall portion 111a of the shield 111 being cooled surrounds the side of the substrate S or the substrate placement surface 103a, the substrate S approaches the substrate holder 103. It is possible to trap gas molecules released into the substrate and reduce contamination of the surface of the substrate S by gas molecules. Further, since the upper wall portion 111b of the shield 111 being cooled covers the upper side of the substrate S or the substrate mounting surface 103a, the trapped gas molecules that are not trapped by the side wall portion 111a are trapped with a high probability. Contamination of the surface of the substrate S with molecules can be further reduced.
  • the inner wall of the chamber 101 and the substrate holder Heat transfer due to radiation with the substrate 103 can be reduced, and the heat distribution of the substrate holder 103 can be stabilized and made uniform.
  • the shield heater 116 is provided in the vicinity of the inner surface of the shield 111 and the in-chamber heater 117 is provided in the vicinity of the inner surface of the wall surface of the chamber 101, the shield heater 116 and the in-chamber heater 117 are provided. Thus, it is possible to remove the gas molecules adsorbed in the shield 111 and the chamber 101 by applying thermal energy.
  • FIG. 5 is a diagram showing a flowchart of a substrate cooling method using the substrate cooling apparatus 100 according to the present embodiment.
  • the following substrate cooling method is controlled by a control device (not shown) included in the substrate cooling apparatus 100.
  • the substrate cooling apparatus 100 performs preparation before cooling (step S1).
  • the substrate cooling apparatus 100 transports the substrate S into the chamber 101 and performs a cooling process (step S2).
  • a predetermined end condition is achieved after completion of the cooling process (YES in step S3), the substrate cooling apparatus 100 ends the substrate cooling method.
  • the predetermined end condition can be arbitrarily determined such that an end instruction is input by the user, a predetermined number of processes are completed, or there is no more substrate S to be processed next.
  • the substrate cooling apparatus 100 performs a refresh process (step S5).
  • the refresh process may be performed after the elapse of a predetermined time from when the execution instruction is input by the user, or after the previous refresh process is performed (after the start of the substrate cooling method if the refresh process is not performed yet). The refresh process will be described in detail with reference to FIG.
  • the substrate cooling apparatus 100 carries the next substrate S into the chamber 101 and repeats the cooling process. (Step S2).
  • FIG. 6 is a detailed flowchart of the pre-cooling preparation (step S1) according to the present embodiment.
  • the substrate cooling apparatus 100 starts the operation of the exhaust pump 120 in a state where the substrate S is not disposed in the chamber 101 (step S11).
  • the substrate cooling apparatus 100 keeps the exhaust pump 120 operated until all the cooling processes are completed, and maintains the vacuum state in the chamber 101.
  • the substrate cooling apparatus 100 operates the shield heater 116, the in-chamber heater 117, and the out-chamber heater 118, and stops them after a predetermined time (step).
  • a predetermined degree of vacuum that is, a predetermined pressure
  • the substrate cooling apparatus 100 starts the operation of the substrate holder cooling unit 109 and the shield cooling unit 112 (step S13). After the substrate holder 103 and the shield 111 are cooled to a predetermined temperature, the substrate cooling apparatus 100 ends the pre-cooling preparation.
  • FIG. 7 is a diagram showing a detailed flowchart of the cooling process (step S2) according to the present embodiment.
  • the substrate cooling apparatus 100 opens the gate valve 102 and transports the substrate S from the outside into the substrate cooling apparatus 100 (step S21).
  • the substrate S is transferred by the transfer robot 7 of the transfer chamber 3 connected to the substrate cooling apparatus 100.
  • the transfer robot 7 may be provided in the substrate cooling apparatus 100 to transfer the substrate S. .
  • the lift pins 104 of the substrate holder 103 are raised by the lift pin drive mechanism 105, and the transfer robot 7 places the substrate S on the lift pins 104 raised.
  • the substrate cooling apparatus 100 closes the gate valve 102.
  • the substrate cooling apparatus 100 lowers the lift pins 104 by the lift pin drive mechanism 105 to place the substrate S on the substrate placement surface of the substrate holder 103 in a cooled state, and the mechanical chuck drive mechanism 107
  • the mechanical chuck 106 is lowered to fix the substrate S (step S22).
  • the lift pins 104 are being lowered and the substrate S approaches the substrate placement surface 103a (for example, when the distance between the substrate S and the substrate placement surface 103a is about 10 mm to 20 mm). It is desirable to temporarily stop the lift pin 104 and resume the lowering of the lift pin 104 after a predetermined time has elapsed.
  • the shield 111 needs to be at least cooled. Of course, it is desirable that the shield 111 is cooled when the substrate S is transported into the substrate cooling apparatus 100.
  • the substrate cooling device 100 introduces a cooling gas into the space between the substrate S and the substrate placement surface 103a from the cooling gas introduction unit 123, thereby cooling the substrate S. (Step S23). Completion of the cooling of the substrate S may be determined by elapse of a predetermined time, or may be determined by measuring the temperature of the substrate S by providing an arbitrary temperature measurement unit in the substrate cooling apparatus 100. Thereafter, the introduction of the cooling gas is stopped, and the exhaust gas is exhausted from the space between the substrate S and the substrate placement surface 103a by the exhaust pump 120.
  • the mechanical chuck 106 is raised by the mechanical chuck drive mechanism 107, and the lift pins 104 are raised by the lift pin drive mechanism 105 to remove the substrate S from the substrate holder 103 (step S24).
  • the substrate cooling apparatus 100 opens the gate valve 102 and transports the substrate S to the outside of the substrate cooling apparatus 100 (step S25). Similarly to step S ⁇ b> 21, the substrate S is transferred by the transfer robot 7 in the transfer chamber 3 connected to the substrate cooling apparatus 100. Thereafter, the substrate cooling apparatus 100 closes the gate valve 102 and ends the cooling process. Subsequently, when the next substrate S is cooled, the next substrate S may be transferred into the substrate cooling apparatus 100 before the gate valve 102 is closed.
  • FIG. 8 is a diagram showing a detailed flowchart of the refresh process (step S5) according to the present embodiment.
  • the substrate cooling apparatus 100 performs a refresh process that operates the shield heater 116 provided in the internal space of the shield 111 to vaporize and remove gas molecules.
  • the substrate cooling apparatus 100 operates the shield heater 116 in a state where the substrate S is not disposed in the chamber 101 (step S11).
  • the shield heater 116 is stopped after being operated for several seconds. Accordingly, the shield heater 116 can vaporize the gas molecules adsorbed on the inner walls of the substrate holder 103 and the shield 111 by vaporizing them, and can be discharged out of the shield 111 via the louver 115. The gas molecules are further discharged out of the substrate cooling apparatus 100 from the exhaust pump 120.
  • the temperature of the substrate holder 103 and the shield 111 and the degree of vacuum in the chamber 101 are confirmed, and the refresh process is terminated when the respective values reach predetermined values (step S52).
  • control device provided in the substrate cooling apparatus 100 controls the start and end of each step shown in the flowcharts of FIGS. 5 to 8, but the substrate cooling is performed by a control apparatus provided separately from the substrate cooling apparatus 100. Control of the apparatus 100 may be performed.
  • the user may explicitly instruct the substrate cooling apparatus 100 to start and end part or all of the steps, or the user himself / herself may execute some or all of the steps.
  • FIG. 9 is a schematic configuration diagram illustrating a substrate cooling apparatus 200 as a substrate processing apparatus that cools a substrate according to the present embodiment.
  • the substrate cooling apparatus 200 is different from the substrate cooling apparatus 100 according to the first embodiment only in the configuration relating to the shield 211, and the other configurations are the same.
  • FIG. 10 is a cross-sectional view of the shield 211 included in the substrate cooling apparatus 200 according to this embodiment.
  • the shield 211 includes a side wall portion 211a that surrounds the side of the substrate S or the substrate placement surface 103a, an upper wall portion 211b that covers the upper side of the substrate S or the substrate placement surface 103a, and the side of the substrate S or the substrate placement surface 103a. And a bottom wall portion 211c surrounding the side of the substrate holder 103.
  • the difference from the shield 111 according to the first embodiment is that the side wall portion 211a is provided with an inclination.
  • the side wall part 211a is provided so as to incline continuously (that is, smoothly) from the outer peripheral part of the upper wall part 211b, and the side wall part 211a is larger than the diameter of the outer peripheral part of the upper wall part 211b. The diameter is smaller.
  • the surface including the upper wall portion 211b and the surface including the side wall portion 211a form an acute angle on the substrate holder side.
  • the skirt wall portion 211c is provided so as to be flush with the side wall portion 211a. Therefore, the skirt wall portion 211c is also inclined similarly to the side wall portion 211a.
  • the gas molecules desorbed from the side wall part 211a have the highest probability of flying in the normal direction of the side wall part 211a. That is, when the gas molecules trapped in the side wall part 211a are released, the side wall part 211a has a probability of going in the direction in which the gas molecule approaches the upper wall part 211b, that is, in the direction away from the substrate placement surface 103a. It is provided to be the highest. Therefore, when gas molecules are desorbed from the side wall portion 211a, the probability of moving toward the surface of the substrate S is further reduced, and the probability of moving toward the upper wall portion 211b is increased. As a result, the probability that gas molecules are trapped in the upper wall portion 211b increases, and contamination of the surface of the substrate S by gas molecules can be further reduced.
  • the louver 215 is provided such that a part of the inclined side wall part 211a and the bottom wall part 211c is inclined with respect to the surfaces of the side wall part 211a and the bottom wall part 211c and protrudes in a plate shape. It is open. Louver 215 is provided so as to be inclined at an acute angle with respect to the direction from side wall 211a and bottom wall 211c to upper wall 211b. With such a configuration, even when gas molecules are desorbed by the louver 215, the gas molecules are less likely to be directed toward the surface of the substrate S, and are more likely to be directed toward the upper wall portion 211b.
  • FIG. 11 is a schematic configuration diagram illustrating a substrate cooling apparatus 300 as a substrate processing apparatus that cools a substrate according to the present embodiment.
  • the substrate cooling apparatus 300 is different from the substrate cooling apparatus 100 according to the first embodiment only in the configuration related to the shield 311, and the other configurations are the same.
  • the shield 311 can be raised and lowered along the normal direction of the substrate S or the substrate mounting surface 103a by the shield driving mechanism 326.
  • the shield drive mechanism 326 is an arbitrary drive unit such as a motor or an actuator.
  • An extendable bellows 327 is provided between the shield 311 and the shield drive mechanism 326 so that the shield 311 can be moved while the chamber 101 is kept sealed.
  • the shield 311 is not provided with the opening 114 and the louver 115.
  • the substrate S can be transported without the opening 114 by moving the shield 311 upward (that is, the direction away from the substrate S or the substrate placement surface 103a).
  • the gas molecules released from the surface of the substrate holder 103 can be discharged without the louver 115 by moving the shield 311 upward.
  • the shield drive mechanism 326 capable of raising and lowering the shield 311 is provided, the configuration of the shield 311 can be simplified.
  • the opening 114 and the louver 115 are not provided, it is possible to further reduce the probability that gas molecules enter the inside from the outside of the shield 311 and contaminate the surface of the substrate S during cooling.
  • the substrate cooling device 300 When the substrate S is cooled by using the substrate cooling device 300, the substrate cooling device 300 first raises the shield 311 by the shield driving mechanism 326 and then above the substrate placement surface 103a, The substrate S is moved to a position not in contact with the surface 103a. Thereafter, after the shield 311 is lowered by the shield driving mechanism 326, the substrate S is placed on the substrate placement surface 103a. In this state, a predetermined time is waited to cool the substrate. Thus, by lowering the shield 311 before the substrate S comes into contact with the substrate placement surface 103a, it is possible to trap gas molecules released from the substrate holder 103 when the substrate S is lowered on the shield 311. become.
  • the device characteristics of the MTJ element are improved by devising the configuration of the substrate cooling apparatus, whereas in the present embodiment, the MTJ element is devised by devising the timing of the cooling process. This improves the device characteristics.
  • FIG. 12 is a schematic diagram showing a configuration of an exemplary MTJ element 1000 (magnetoresistive element) manufactured using the film forming method according to the present embodiment.
  • the MTJ element 1000 is a perpendicular magnetization type MTJ element (p-MTJ element).
  • the MTJ element 1000 includes a lower electrode 1002, a Ta layer (seed layer) 1003, a CoFe layer 1004, a Ta layer 1005, a CoFeB layer 1006 as a free layer (magnetization free layer), and an MgO layer (on a substrate 1001). Tunnel barrier layer) 1007 in order.
  • the MTJ element 1000 further includes a CoFeB layer 1008 as a reference layer (magnetization fixed layer), a Ta layer 1009, a stacked body 1010, a Ta layer (cap layer) 1011 and an upper electrode 1012 in this order. .
  • the laminated body 1010 is obtained by alternately stacking a predetermined number N of Co layers and Pt layers.
  • the MTJ element 1000 is not limited to the configuration shown here, and arbitrary changes such as increase / decrease of layers, change of constituent materials of each layer, and reversal of the upper and lower stacking order were performed within the range not impairing the function of the perpendicular magnetization type element. A configuration can be used.
  • FIG. 13 is a view showing a flowchart of the film forming method according to the present embodiment.
  • the film forming method according to the present embodiment will be described using the cluster-type substrate processing system 1 shown in FIG. 3, but the present invention is not limited to this.
  • an inline type substrate processing system may be used.
  • the substrate cooling apparatus 300 shown in FIG. 11 is used as the substrate cooling apparatus included in the substrate processing system 1, but any other substrate cooling apparatus may be used.
  • the substrate S is carried into the load lock chamber 4 of the substrate processing system 1 (step S91).
  • step S92 by driving the transfer robot 7 of the transfer chamber 3, the substrate S is moved to the predetermined substrate processing chamber 2, and the first film forming process is performed (step S92).
  • impurities and the like attached on the substrate are removed by an etching method, and then the lower electrode 1002, Ta layer 1003, CoFe on the film below the MgO layer 1007 in the MTJ element 1000, that is, on the substrate 1001.
  • a layer 1004, a Ta layer 1005, and a CoFeB layer 1006 as a free layer are sequentially formed by a sputtering method.
  • the substrate S is moved to the predetermined substrate processing chamber 2, and the second film forming process is performed (step S93).
  • the MgO layer 1007 is formed in the MTJ element 1000.
  • the MgO layer 1007 is formed by a radio frequency (RF) sputtering method using an MgO target.
  • RF radio frequency
  • a Mg layer may be formed on the CoFeB layer 1006 as a free layer by a sputtering method using an Mg target, and then the Mg layer may be oxidized.
  • the film formation process and the oxidation process may be performed in the same substrate processing chamber 2 or may be performed in different substrate processing chambers 2.
  • step S94 the substrate S on which the MgO layer 1007 is formed is cooled to a temperature of 200K or lower (in this embodiment, 100K).
  • a temperature of 200K or lower in this embodiment, 100K.
  • an amorphous phase can be formed in the CoFeB layer 1008 as a reference layer to be formed thereafter.
  • the cooling process shown in the flowchart of FIG. As a result, as described in the first to third embodiments, an additional effect of quickly cooling the substrate S and reducing impurities in the film can be obtained.
  • the cooling process according to the present embodiment is not limited to this, and any cooling device configuration and cooling process can be performed as long as the substrate S on which the MgO layer 1007 is formed can be cooled to a predetermined temperature.
  • a method may be used.
  • analysis of structural components, such as the formed CoFeB layer 1008, can be performed by, for example, an X-ray diffraction method.
  • a third film forming process is performed (step S95).
  • a CoFeB layer 1008, a Ta layer 1009, a stacked body 1010, a Ta layer 1011 and an upper electrode 1012 are formed on a film above the CoFeB layer 1008 as a reference layer in the MTJ element 1000, that is, on the MgO layer 1007. Films are formed sequentially by a sputtering method.
  • an annealing process at a predetermined temperature for example, 150 to 400 degrees
  • the film forming process and the annealing process may be performed in the same substrate processing chamber 2 or may be performed in different substrate processing chambers 2.
  • the substrate S is moved to the transfer position (substrate unloading position) in the load lock chamber 4 by driving the transfer robot 7 of the transfer chamber 3 (step S97).
  • the substrate S is sent to a downstream process of the substrate processing system 1.
  • the annealing process may be performed by an apparatus different from the substrate processing system 1. In this case, an annealing process is performed as a process downstream of the substrate processing system 1.
  • each layer formed in the first to third film forming steps is formed by sputtering, but may be formed by any other film forming method. .
  • two or more films may be formed in the same substrate processing chamber 2, and all the films may be formed. Films may be formed in different substrate processing chambers 2. At least one of the first to third film forming steps (steps S92, S93, and S95) and the cooling step (step S94) may be performed in the same chamber.
  • the MTJ element 1000 has a top pin structure having the reference layer 1008 on the tunnel barrier layer 1007, but may have a bottom pin structure having the free layer 1006 on the tunnel barrier layer 1007.
  • the CoFeB layer 1008 as the reference layer is formed in the first film formation step (step S92), and then the CoFeB as the reference layer in the second film formation step (step S93).
  • An MgO layer 1007 is formed over the layer 1008.
  • a cooling process step S94
  • a CoFeB layer 1006 as a free layer is formed on the MgO layer 1007 in the third film forming process (step S95).
  • the film forming method according to the present embodiment can be applied to both a top pin structure and a bottom pin structure, and one of a free layer and a reference layer is formed, and a tunnel barrier layer is formed on one of the free layer and the reference layer. It is formed and cooled, and the other of the free layer and the reference layer is formed on the tunnel barrier layer.
  • FIG. 14 is a diagram showing a graph of MR ratio with respect to RA (area resistance) of the MTJ element manufactured using the film forming method according to the present embodiment.
  • the MTJ element was manufactured by changing the presence and timing of the cooling step (step S94) in the flowchart of FIG. 13 in various ways, and the RA and MR ratio were measured.
  • the horizontal axis of FIG. 14 is RA ( ⁇ ⁇ ⁇ m 2 ), and the vertical axis is the MR ratio (%). It can be said that the lower the RA and the higher the MR ratio, the better the element characteristics of the MTJ element.
  • the square points are the measurement results of the MTJ elements that were formed without cooling, and the circular points are the measurement results of the MTJ elements that were formed after cooling. .
  • the MTJ element according to any measurement result is manufactured according to the flowchart of FIG.
  • the symbols I to VII attached to the circular points in the graph of FIG. 14 mean that cooling is performed at any timing of I to VII of the MTJ element 1000 of FIG.
  • a circular dot marked with I in the graph of FIG. 14 means that cooling was performed after the formation of the lower electrode 1002 of FIG. 12 and before the formation of the Ta layer 1003.
  • cooling is performed after the MgO layer 1007 is formed and before the CoFeB layer 1008 as the reference layer is formed. Corresponds to the attached circular point.
  • the MR ratio is improved as compared with the conventional case where the cooling is not performed. Further, among the timings I to VII, when the cooling is performed at the timing of VI according to the present embodiment, that is, after the formation of the MgO layer 1007 and before the formation of the CoFeB layer 1008 as the reference layer, it is particularly high. It can be seen that MR ratio and low RA can be realized. As described above, in order to manufacture the MTJ element 1000 having good element characteristics, it is effective to perform cooling after the formation of the MgO layer 1007 and before the formation of the CoFeB layer 1008 as a reference layer. confirmed.
  • FIG. 15 is a diagram showing a graph of MR ratio with respect to B content (boron content) in a CoFeB layer as a reference layer in an MTJ element manufactured by using the film forming method according to the present embodiment.
  • the B ratio in the CoFeB layer 1008 as the reference layer was variously changed, and the MR ratio was measured.
  • the horizontal axis in FIG. 15 is the B content (at%) in the CoFeB layer as the reference layer 1008, and the vertical axis is the MR ratio (%).
  • square points are measurement results of MTJ elements formed without cooling, and circular points are after the formation of the MgO layer 1007 and the CoFeB layer 1008 as a reference layer.
  • the measurement result (circular point) of the film forming method according to the present embodiment is the measurement result (rectangular point) when cooling is not performed as in the conventional case at any B content. It can be seen that a higher MR ratio is realized. In particular, it is desirable to set the B content in the CoFeB layer 1008 as the reference layer to 15 at% or less because the MR ratio is significantly higher than that in the case where cooling is not performed.
  • the measurement result (circular point) of the film forming method according to the present embodiment it can be seen that the MR ratio increases as the B content decreases. Therefore, according to the film forming method according to the present embodiment, it is possible to set the B content lower than the conventional one while maintaining a high MR ratio, and the degree of freedom of the composition of the CoFeB layer 1008 as the reference layer. Is expensive.
  • the MR ratio can be improved when the reference layer has an amorphous phase.
  • B in order to make a conventional CoFeB layer into an amorphous phase, it is necessary to add B in a predetermined ratio (about 20% as described above).
  • the film forming method according to the present embodiment realizes a higher MR ratio with a lower B content than in the prior art after the tunnel barrier layer is formed and before the reference layer is formed. This is probably because an amorphous phase is easily formed in the reference layer. That is, by the cooling process of the film forming method according to the present embodiment, the reference layer has an amorphous phase even at a low B content, and a high MR ratio is realized.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
  • Each of the above embodiments has been described as being applied to the manufacture of an MTJ element (TMR element) used in an MRAM, but the same cooling method and film formation method can be applied to the manufacture of other MTJ elements. It is.
  • the direction of gravity is described as the vertical direction, but the direction in which the apparatus is configured is arbitrary.
  • the vertical direction in each of the above-described embodiments is What is necessary is just to read as a direction perpendicular

Abstract

 本発明は、従来よりも高いMR比を有する磁気抵抗効果素子の製造方法を提供する。本発明の一実施形態に係る磁気抵抗効果素子の製造方法は、磁化自由層および磁化固定層の一方が表面に形成された基板上にトンネルバリア層を形成する工程S93と、前記トンネルバリア層を形成する工程の後に、前記基板を冷却する工程S94と、前記冷却する工程の後に、前記トンネルバリア層上に前記磁化自由層および前記磁化固定層の他方を形成する工程S95と、を備える。

Description

磁気抵抗効果素子の製造方法
 本発明は、磁気抵抗効果素子の製造方法に関するものである。
 磁場によって電気抵抗が変化する磁気抵抗効果素子として、TMR(Tunnel Magneto Resistance)効果を利用して情報の記憶や磁気の検出を行うTMR素子(MTJ素子ともいう)が知られている。近年、MRAM等へのMTJ素子の利用が期待されている。
 非特許文献1には、垂直磁化型のMTJ素子が開示されている。垂直磁化型のMTJ素子は、フリー層(磁化自由層)、トンネルバリア層、およびリファレンス層(磁化固定層)が積層された構造を含み、フリー層およびリファレンス層の磁化方向はそれぞれ積層方向と平行になっている。
 磁気抵抗効果素子の素子特性の向上のためには、MR比(磁気抵抗比)を高くすることが重要である。非特許文献1に記載のCoFeB/MgO/CoFeBからなる積層構造は100%を超える高いMR比を示すことが知られている。
D. C. Worledge et al., "Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions", Appl. Phys. Lett. 98, 2011, 022501
 しかしながら、非特許文献1に記載の磁気抵抗効果素子であっても、十分に高いMR比とはいえない。磁気抵抗効果素子の構造を変更することによってMR比をさらに高める研究がなされている一方で、構造ではなく製造方法を変更することによってMR比を高めることも求められている。
 本発明は、上述の問題点を解決するためになされたものであって、従来よりも高いMR比を有する磁気抵抗効果素子の製造方法を提供することを目的とする。
 本発明の一態様は、磁気抵抗効果素子の製造方法であって、磁化自由層および磁化固定層の一方が表面に形成された基板上にトンネルバリア層を形成する工程と、前記トンネルバリア層を形成する工程の後に、前記基板を冷却する工程と、前記冷却する工程の後に、前記トンネルバリア層上に前記磁化自由層および前記磁化固定層の他方を形成する工程と、を備えることを特徴とする。
 本発明に係る磁気抵抗効果素子の製造方法によれば、トンネルバリア層を形成する工程の後であって、トンネルバリア層上に磁化自由層又は磁化固定層を形成する工程の前に、基板を冷却する工程を行うことによって、高いMR比を有する磁気抵抗効果素子を実現することができる。
本発明の一実施形態に係る基板冷却装置を示す概略構成図である。 本発明の一実施形態に係るシールドの断面図である。 本発明の一実施形態に係る基板冷却装置を備える基板処理システムの概略構成図である。 本発明の一実施形態に係る基板冷却装置を用いて冷却処理を行う例示的な素子構成を示す模式図である。 本発明の一実施形態に係る基板冷却方法のフローチャートを示す図である。 本発明の一実施形態に係る冷却前準備の詳細なフローチャートを示す図である。 本発明の一実施形態に係る冷却処理の詳細なフローチャートを示す図である。 本発明の一実施形態に係るリフレッシュ処理の詳細なフローチャートを示す図である。 本発明の一実施形態に係る基板冷却装置を示す概略構成図である。 本発明の一実施形態に係るシールドの断面図である。 本発明の一実施形態に係る基板冷却装置を示す概略構成図である。 本発明の一実施形態に係る成膜方法により製造される素子構成を示す模式図である。 本発明の一実施形態に係る成膜方法のフローチャートを示す図である。 本発明の一実施形態に係る成膜方法により製造される素子のMR比のグラフを示す図である。 本発明の一実施形態に係る成膜方法により製造される素子のMR比のグラフを示す図である。
 以下、図面を参照して、本発明の実施の形態を説明するが、本発明は本実施形態に限定されるものではない。なお、以下で説明する図面で、同機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。
(第1の実施形態)
 図1は、本実施形態に係る基板の冷却を行う基板処理装置としての基板冷却装置100を示す概略構成図である。基板冷却装置100はチャンバ101と排気チャンバ119とを備えている。チャンバ101の上壁101aは取り外し可能に設けられており、上壁101aを取り外してメンテナンス、クリーニング等を行うことができる。チャンバ101の側壁101bには開閉可能なゲートバルブ102が設けられており、ゲートバルブ102を介して基板Sをチャンバ101の内外に搬送可能である。チャンバ101内には基板載置面103aを有する基板ホルダ103が設けられており、基板載置面103a上には基板Sを載置可能である。
 基板ホルダ103には基板載置面103aを貫通して基板Sの裏面を支持するための棒状のリフトピン104が設けられており、リフトピン104はリフトピン駆動機構105によって基板Sまたは基板載置面103aの法線方向に沿って上昇および下降可能である。また、基板ホルダ103には基板Sの表面の外周部を固定するためのメカニカルチャック106が設けられており、メカニカルチャック106はメカニカルチャック駆動機構107によって基板Sまたは基板載置面103aの法線方向に沿って上昇および下降可能である。リフトピン駆動機構105およびメカニカルチャック駆動機構107は、モータ、アクチュエータ等の任意の駆動手段である。リフトピン104とリフトピン駆動機構105との間、およびメカニカルチャック106とメカニカルチャック駆動機構107との間には、チャンバ101の密閉状態を保ったままリフトピン104およびメカニカルチャック106を移動できるように、伸縮可能なベローズ108が設けられている。
 基板Sを固定するために、メカニカルチャック106およびメカニカルチャック駆動機構107の代わりに、静電力により基板Sを基板ホルダ103に固定する静電吸着機構(ESC)を設けてもよい。
 基板ホルダ103には、チャンバ101の下壁101cを貫通する基板ホルダ支柱110を介して、チャンバ101の外部に設けられている基板ホルダ冷却部109(基板ホルダ冷却手段)が接続されている。基板ホルダ冷却部109を用いて基板ホルダ103を低温に維持することによって、基板載置面103aに載置された基板Sを冷却可能である。基板ホルダ冷却部109は、基板ホルダ103の温度を測定するための不図示の温度測定部(例えば、熱電対)を有する。基板ホルダ103および基板ホルダ支柱110は、熱伝導性の高い金属、例えば銅またはアルミニウムを用いて作製されていることが望ましい。
 チャンバ101内において、シールド111が設けられている。シールド111は基板ホルダ103の側方を取り囲むとともに、基板ホルダ103の上方を覆うように設けられている。すなわち、シールド111は、基板載置面103aの側方を取り囲むとともに、基板載置面103aに対向するように設けられている。
 シールド111には、チャンバ101の上壁101aを貫通するシールド支柱113を介して、チャンバ101の外部に設けられているシールド冷却部112が接続されている。シールド冷却部112を用いてシールド111を低温に維持することによって、基板Sの搬送時に基板ホルダ103から放出される気体分子がシールド111の表面に到達した際に、該気体分子をトラップする、すなわち表面に保持することができる。シールド冷却部112は、シールド111の温度を測定するための不図示の温度測定部(例えば、熱電対)を有する。シールド111およびシールド支柱113は、熱伝導性の高い金属、例えば銅またはアルミニウムを用いて作製されていることが望ましい。
 基板ホルダ冷却部109およびシールド冷却部112(シールド冷却手段)は、任意の方法により冷却を行うための冷却手段であり、例えばヘリウムの断熱膨張を利用して冷却を行う冷却装置(例えば、Gifford-McMahon冷凍機やスターリング冷凍機など)であってよく、または冷媒として外部から供給される低温の液体窒素等の冷媒を流すことにより冷却を行う装置であってよい。本実施形態では基板ホルダ冷却部109とシールド冷却部112とは別個の部材として設けられているが、単一の冷却部として設けられてもよい。
 シールド111の側面におけるゲートバルブ102に対向する部分には、基板Sが通るための開口部114が設けられている。チャンバ101の外部から搬送される基板Sはゲートバルブ102およびシールド111の開口部114を通って基板ホルダ103に載置され、また冷却後の基板Sはシールド111の開口部114およびゲートバルブ102を通ってチャンバ101の外部に搬送される。また、シールド111の側面における開口部114以外の部分には、シールド111の内側と外側とを連通させるためのルーバー115が設けられている。
 シールド111の内側の面の近傍、すなわちシールド111の基板ホルダ103に対向する面の近傍には、シールドヒータ116が設けられている。また、チャンバ101の壁面の内側近傍にはチャンバ内ヒータ117が設けられており、チャンバ101の壁面の外側近傍にはチャンバ外ヒータ118が設けられている。シールドヒータ116およびチャンバ内ヒータ117は、シールド111およびチャンバ101に付着した気体分子に熱エネルギーを与えて除去するものであり、ランプ等の素早く加熱できる加熱手段であることが望ましい。一方、チャンバ外ヒータ118は、チャンバ101そのものを加熱するものであり、シースヒータ等の広範囲を高熱に加熱できる加熱手段であることが望ましい。シールドヒータ116、チャンバ内ヒータ117およびチャンバ外ヒータ118は、図1には一部のみ示されているが、各面を均一に加熱することができるように所定の間隔で設けられる。
 チャンバ101には、それぞれの内部空間が連通するように排気チャンバ119が接続されている。排気チャンバ119にはチャンバ101内を真空排気可能な排気部としての排気ポンプ120が設けられている。排気ポンプ120としては、必要とする真空度に応じてドライポンプ、ターボ分子ポンプ等の任意の排気手段を用いることができ、それらを組み合わせて用いてもよい。さらに、チャンバ101にはシールド111内、すなわちシールド111により区画される空間内の圧力を測定するためのシールド内真空計121が設けられており、排気チャンバ119には排気チャンバ119内の圧力を測定するためのチャンバ内真空計122が設けられている。
 さらに、基板冷却装置100には、基板Sの冷却を効率的に行うために、基板Sの裏面と基板載置面103aとの間に冷却ガスを導入するための冷却ガス導入部123が設けられている。冷却ガス導入部123は冷却ガスが通るための管であるガスライン124に接続されており、ガスライン124はチャンバ101および基板ホルダ103を貫通して基板Sの裏面と基板載置面103aとの間の空間に開口している。冷却ガス導入部123から導入される冷却ガスとしてはHe、Arまたはそれらの少なくとも一方を含む混合ガスを用いることができ、冷却ガスが基板Sの裏面に行き渡ることで基板Sを素早く均一に冷却することができる。ガスライン124はさらに排気ポンプ120に接続されており、排気ポンプ120を駆動することによって使用後の冷却ガスを排気することができる。ガスライン124は不図示の可変バルブを備えており、経路や流量を変更可能である。図1ではガスライン124は1系統のみ示されているが、冷却ガス導入部123から冷却ガスを導入するためのガスライン124と冷却ガスを排気するためのガスライン124との2系統が別個に設けられてもよい。冷却ガス導入部123は、マスフロー制御器(MFC)、自動圧力制御器(APC)等のガス流量調整手段を備えていることが望ましい。なお、冷却ガス導入部123は必ずしも設けられなくともよく、上述の冷却ガスを用いず、基板Sを冷却された基板載置面103aに直接載置しても基板Sを冷却できることはもちろんである。
 ガスライン124の近傍には、ガスラインヒータ125が設けられている。ガスラインヒータ125によってガスライン124を加熱することによって、ガスラインの内面に吸着される気体分子を効率的に除去することができる。ガスラインヒータ125は、図1ではガスライン124の一部にのみ設けられているが、ガスライン124の全体に設けられてもよい。ガスラインヒータ125としては、任意の加熱手段を用いてよいが、例えばリボンヒータを用いることができる。
 図2は、本実施形態に係る基板冷却装置100に含まれるシールド111の断面図である。シールド111は、基板Sまたは基板載置面103aの側方を取り囲む側壁部111aと、基板Sまたは基板載置面103aの上方を覆う上壁部111bと、基板Sまたは基板載置面103aの側方よりも下であって基板ホルダ103の側方を取り囲む裾壁部111cとを含む。換言すると、側壁部111aは基板Sまたは基板載置面103aの端面に沿って延在しており、上壁部111bは基板Sまたは基板載置面103aに対向して設けられており、裾壁部111は基板ホルダ103の側面に沿って延在している。側壁部111aおよび裾壁部111cは基板Sまたは基板載置面103aの法線に対して略平行に設けられており、上壁部111bは基板Sまたは基板載置面103aに対して略平行に設けられている。本実施形態では側壁部111a、上壁部111bおよび裾壁部111cは、一体の部材として作製されているが、別々に作製された部材が接続されている構成でもよい。
 チャンバ101内が排気されて真空にされるとともに、基板ホルダ103が冷却されている際には、基板ホルダ103は空間中の水分子等の気体分子P(気体様の挙動をする微小粒子を含む)を吸着する真空ポンプとして働く。図2には、基板ホルダ103の表面に吸着されている気体分子Pが示されている。この状態において、基板冷却装置100の外部から搬送されてくる基板Sは、冷却されている基板ホルダ103よりも相対的に数百度も高温である。そのため、外部からの基板Sを基板ホルダ103の基板載置面103aに載置するために近付けると、基板Sから基板ホルダ103の表面に吸着されている気体分子Pに熱エネルギーが与えられ、気体分子Pは基板ホルダ103の表面から放出される。
 一般的に基板Sの表面(すなわち、基板ホルダ103とは逆側の面)に機能素子が設けられるため、基板Sの裏面(すなわち、基板ホルダ103に向かい合う側の面)への気体分子Pの付着よりも、基板Sの表面への気体分子Pの付着が汚染として問題となる。真空に維持されている空間に基板ホルダ103から放出された気体分子Pは、空間中を図2中の破線Aで示すように略直進する。そのため、従来のように基板ホルダ103の周囲に冷却されたシールド111が設けられていない場合には、気体分子Pはチャンバ101の内壁等で一旦吸着され、ある確率で脱離(放出)され、基板Sの表面に到達して汚染源となる。一方、本実施形態に係る基板冷却装置100においては、基板ホルダの周囲に冷却されているシールド111が設けられているため、基板ホルダ103の表面から放出された気体分子Pは略直進して側壁部111aに衝突し、側壁部111a上にトラップされる。このような構成により、基板Sの表面に付着して汚染源となる気体分子Pを低減することができる。
 ここで、cosin則について説明する。チャンバ101の内壁やシールド111にトラップされた気体分子Pが放出される際、気体分子Pが進む方向には、一般的にcosin則と言われる確率的な分布があることが知られている。cosin則によれば、トラップされている面の法線方向に飛行する確率が最も高い。cosin則によれば、本実施形態の場合、側壁部111aの法線は基板載置面103aに平行であるため、側壁部111aにトラップされた気体分子Pが脱離すると、基板載置面103aに平行な方向に飛行する気体分子Pの割合がもっとも高い。すなわち、側壁部111aにトラップされた気体分子Pが脱離するとき、基板Sの成膜面(表面)に向かって飛行する可能性は低い。
 図2中の破線Bで示すように、気体分子Pの中には側壁部111aでトラップされずに又は一旦トラップされた後に脱離するものも存在し得る。このとき、気体分子Pは側壁部111aから上述のcosin則にしたがって脱離するため、高い確率で側壁部111aの法線方向に飛行し、それよりも低い確率で基板載置面103aの方向又は基板載置面103aから遠ざかる方向に飛行する。側壁部111aの法線方向に飛行する気体分子Pは、略直進して対向する側壁部111aに衝突し、再度側壁部111aにトラップされる。また、基板載置面103aから遠ざかる方向に飛行する気体分子Pは、略直進して基板載置面103aに対向する位置に設けられている上壁部111bに衝突し、上壁部111bにトラップされる。その結果、大部分の気体分子Pが側壁部111a又は上壁部111bによりトラップされるため、基板Sの表面に到達し得る気体分子P(すなわち、側壁部111aから脱離して基板載置面103aの方向に飛行する気体分子P)の数は大幅に低減される。したがって、本実施形態ではシールド111として側壁部111aに加えて上壁部111bを設けているため、側壁部111aのみを設ける場合よりもより確実に気体分子Pをトラップし、基板Sの表面に付着する気体分子をより低減することが可能である。
 さらにシールド111の裾壁部111cは、基板ホルダ103とチャンバ101の内壁との間に設けられており、基板ホルダ103の側面を取り囲んでいる。チャンバ101全体を冷却することは大きなコストが掛かるため、本実施形態ではチャンバ101自体は冷却されておらず、チャンバ101の内壁は基板ホルダ103に対して相対的に高温である。そのため、従来のように基板ホルダ103の周囲に冷却されたシールド111が設けられていない場合は、輻射によりチャンバ101の内壁から基板ホルダ103に熱が伝わり、基板ホルダ103の温度分布が不安定または不均一になる。一方、本実施形態に係る基板冷却装置100においては、冷却されているシールド111の裾壁部111cが基板ホルダ103とチャンバ101の内壁との間に設けられているため、チャンバ101の内壁から基板ホルダ103への熱伝達を抑制し、基板ホルダ103の基板載置面103aの面内における温度分布を安定化および均一化することが容易である。裾壁部111cは必ずしも基板ホルダ103の高さ方向の全てを取り囲んでいなくてもよく、基板ホルダ103の高さ方向の少なくとも一部を取り囲んでいれば、基板ホルダ103の温度分布を改善することができる。また、シールド111と基板ホルダ103との間の熱伝達を抑制して基板ホルダ103の温度分布をより改善するために、基板ホルダ103およびシールド111の温度が略同一となるように基板ホルダ冷却部109およびシールド冷却部112を作動させることが望ましい。
 ルーバー115は、シールド111の側壁部111aおよび裾壁部111cの一部が、側壁部111aおよび裾壁部111cの面に対して傾斜して板状に突出して設けられており、ルーバー115の根元は開口している。このような構成により、低温に維持されたシールド111が気体分子をトラップする効果を実現するとともに、後述するリフレッシュ処理において気化した気体分子をシールド111の内部から外部へルーバー115を介して排出することができる。さらに、ルーバー115を含む面と側壁部111aおよび裾壁部111cを含む面とがなす角が、上壁部111bを含む面側で鋭角になるように、ルーバー115は傾斜して設けられている。上述したcosin則によれば、このような構成により、気体分子がルーバー115により脱離される場合であっても、気体分子は基板Sの表面に向かう確率は低く、上壁部111bに向かう方向に向かう確率が高い。なお、図1中で、開口部114とルーバー115は、いずれも側壁部111aの一部に形成されており、上壁部111b、側壁部111a及び裾壁部111cは連続した部材である。
 図3は、本実施形態に係る基板冷却装置100を備える基板処理システム1の概略構成図である。基板処理システム1はクラスタ型の装置であり、複数の基板処理チャンバ2と、ロードロックチャンバ4と、本実施形態に係る基板冷却装置100とを備えている。複数の基板処理チャンバ2は基板Sに対して同一の処理を行うものであってもよく、または異なる処理を行うものであってもよい。複数の基板処理チャンバ2と、ロードロックチャンバ4と、基板冷却装置100とは搬送チャンバ3を介して接続されており、それぞれの接続部分には開閉可能なゲートバルブが設けられている。搬送チャンバ3には搬送ロボット7が設けられており、搬送ロボット7を駆動させることによって各基板処理チャンバ2、ロードロックチャンバ4および基板冷却装置100の間で所定の処理順にしたがって基板Sが搬送される。各基板処理チャンバ2、搬送チャンバ3および基板冷却装置100にはそれぞれ排気ポンプが設けられており、真空を保ったままチャンバ間で基板Sを搬送可能である。ロードロックチャンバ4の外側には、基板Sを供給するためのオートローダ5が設けられている。オートローダ5は、大気側において複数の基板が収納されている外部カセット6から基板を一枚ずつ取り出し、ロードロックチャンバ4内に収容するように構成されている。
 図4は、本実施形態に係る基板冷却装置100を用いて冷却処理を行う例示的なMTJ(Magnetic Tunnel Junction)素子900の構成を示す模式図である。MTJ素子は、例えばMRAM(Magnetic Random Access Memory)、磁気センサ等に用いられる。
 MTJ素子900は、垂直磁化型MTJ素子(p-MTJ素子)である。MTJ素子900は、基板901上に下部電極902と、バッファー層(Ta層)903と、フリー層(磁化自由層)としてのCoFeB層904と、トンネルバリア層(MgO層)905とを順に備える。さらにその上に、MTJ素子900は、CoFeB層906と、配向分離層(Ta層)907と、第1の積層体908と、非磁性中間層(Ru層)909と、第2の積層体910とが積層されてなるリファレンス層(磁化固定層)と、Ru層911とTa層912とが積層されてなるキャップ層と、上部電極913とを順に備える。MTJ素子900としてはここに示した構成に限られず、垂直磁化型素子の機能を損なわない範囲で層の増減、各層の構成材料の変更、上下の積層順の逆転等の任意の変更を行った構成を用いることができる。
 本実施形態に係る基板冷却装置100を用いる冷却処理は、フリー層(CoFeB層)904上にトンネルバリア層(MgO層)905が成膜された後であって、トンネルバリア層(MgO層)905の上にリファレンス層のCoFeB層906が成膜される前に行われることが好ましい。このタイミングで基板冷却装置100を用いて冷却処理を行うと、冷却によりトンネルバリア層905の特性を向上させることができ、かつ冷却中にトンネルバリア層905の表面(すなわち、トンネルバリア層905とCoFeB層906との間の界面)が汚染されることを抑えることができる。基板冷却装置100を用いる冷却処理は、その他の任意のタイミングで行われてよく、複数のタイミングで行われてよい。
 本実施形態に係る基板冷却装置100の適用対象は図4のMTJ素子900に限られるものではなく、真空中で冷却処理が行われる任意の基板または素子に対して好適に適用される。
 本実施形態に係る基板冷却装置100によれば、冷却されているシールド111の側壁部111aが基板Sまたは基板載置面103aの側方を取り囲んでいるため、基板ホルダ103に基板Sが近付く際に放出される気体分子をトラップし、気体分子による基板Sの表面の汚染を低減することができる。また、冷却されているシールド111の上壁部111bが基板Sまたは基板載置面103aの上方を覆っているため、側壁部111aによりトラップされず脱離した気体分子を高確率でトラップし、気体分子による基板Sの表面の汚染をさらに低減することができる。また、冷却されているシールド111の裾壁部111cが基板Sまたは基板載置面103aの側方よりも下であって基板ホルダ103の側方を取り囲んでいるため、チャンバ101の内壁と基板ホルダ103との間の輻射による熱移動を低減し、基板ホルダ103の熱分布を安定化および均一化することができる。
 さらに、シールド111の内側の面の近傍にはシールドヒータ116が設けられており、またチャンバ101の壁面の内側近傍にはチャンバ内ヒータ117が設けられているため、シールドヒータ116およびチャンバ内ヒータ117によりシールド111およびチャンバ101に吸着された気体分子に熱エネルギーを与えて除去することが可能である。
 図5は、本実施形態に係る基板冷却装置100を用いる基板冷却方法のフローチャートを示す図である。以下の基板冷却方法は、基板冷却装置100が備える不図示の制御装置により制御される。まず、基板Sをチャンバ101内に配置していない状態で、基板冷却装置100は、冷却前準備を行う(ステップS1)。冷却前準備の完了後に、基板冷却装置100は基板Sをチャンバ101内に搬送して冷却処理を行う(ステップS2)。冷却処理の完了後に、所定の終了条件が達成された場合には(ステップS3のYES)、基板冷却装置100は基板冷却方法を終了する。所定の終了条件とは、ユーザにより終了指示が入力された、所定の枚数の処理が完了した、または次に処理されるべき基板Sが無くなった等、任意に定めることができる。
 さらに、所定の終了条件が達成されていない場合であって(ステップS3のNO)、前回のリフレッシュ処理の実行後(まだリフレッシュ処理が行われていない場合は基板冷却方法の開始後)から数えて所定枚数(例えば、10~20枚)の基板が冷却処理された場合には(ステップS4のYES)、基板冷却装置100はリフレッシュ処理を行う(ステップS5)。リフレッシュ処理はユーザによる実行指示が入力された場合、または前回のリフレッシュ処理の実行後(まだリフレッシュ処理が行われていない場合は基板冷却方法の開始後)から所定時間経過後に行われてもよい。なお、リフレッシュ処理については図8を用いて詳細に説明する。
 所定枚数の基板が冷却処理されていない場合(ステップS4のNO)、またはリフレッシュ処理(ステップS5)の完了後に、基板冷却装置100は次の基板Sをチャンバ101内に搬送して冷却処理を繰り返す(ステップS2)。
 図6は、本実施形態に係る冷却前準備(ステップS1)の詳細なフローチャートを示す図である。まず、基板冷却装置100は、基板Sがチャンバ101内に配置されていない状態で、排気ポンプ120の作動を開始する(ステップS11)。基板冷却装置100は、全ての冷却処理が完了するまで排気ポンプ120を作動させたままにし、チャンバ101内の真空状態を維持する。チャンバ101内が所定の真空度、すなわち所定の圧力になった後に、基板冷却装置100は、シールドヒータ116、チャンバ内ヒータ117およびチャンバ外ヒータ118を作動させ、所定の時間経過後に停止させる(ステップS12)。これにより、チャンバ101の内壁およびシールド111に付着していた気体分子等を気化させて排気ポンプ120から排出し、冷却処理時に発生し得る基板Sの汚染を低減することができる。その後、基板冷却装置100は、基板ホルダ冷却部109およびシールド冷却部112の作動を開始する(ステップS13)。基板ホルダ103およびシールド111が所定の温度まで冷却された後、基板冷却装置100は冷却前準備を終了する。
 図7は、本実施形態に係る冷却処理(ステップS2)の詳細なフローチャートを示す図である。まず、基板冷却装置100は、ゲートバルブ102を開き、基板冷却装置100内に外部から基板Sを搬送させる(ステップS21)。本実施形態における基板Sの搬送は基板冷却装置100に接続されている搬送チャンバ3の搬送ロボット7によって行われるが、基板冷却装置100内に搬送ロボット7を設けて基板Sを搬送させてもよい。このとき、基板ホルダ103のリフトピン104はリフトピン駆動機構105により上昇された状態であり、搬送ロボット7は基板Sを上昇されたリフトピン104上に配置する。その後、基板冷却装置100は、ゲートバルブ102を閉じる。
 その後、基板冷却装置100は、リフトピン駆動機構105によりリフトピン104を下降させて、冷却された状態にある基板ホルダ103の基板載置面上に基板Sを載置するとともに、メカニカルチャック駆動機構107によりメカニカルチャック106を下降させて基板Sを固定する(ステップS22)。このとき、リフトピン104の下降中であって、基板Sが基板載置面103aに近付いたとき(例えば、基板Sと基板載置面103aとの間が10mm~20mm程度の距離になったとき)にリフトピン104を一旦停止させ、所定時間経過後にリフトピン104の下降を再開させることが望ましい。これにより、基板Sを基板ホルダ103に急に接触させて変形や割れが生じることを防ぐことができる。なお、基板ホルダ103の基板載置面103a上に基板Sが載置される際には、シールド111は少なくとも冷却された状態となっている必要がある。もちろん、基板冷却装置100内に基板Sが搬送されるときに、シールド111が冷却されていることが望ましい。
 基板Sが基板載置面103aに固定された後、基板冷却装置100は、冷却ガス導入部123から基板Sと基板載置面103aとの間の空間に冷却ガスを導入し、基板Sの冷却が完了するまで待機する(ステップS23)。基板Sの冷却の完了は、所定時間経過により判定されてもよく、または基板冷却装置100に任意の温度測定部を設けて基板Sの温度を測定することにより判定されてもよい。その後、冷却ガスの導入を停止させて、排気ポンプ120により基板Sと基板載置面103aとの間の空間から冷却ガスを排気する。
 基板Sの冷却完了後に、メカニカルチャック駆動機構107によりメカニカルチャック106を上昇させるとともに、リフトピン駆動機構105によりリフトピン104を上昇させて基板ホルダ103上から基板Sを取り外す(ステップS24)。基板冷却装置100は、ゲートバルブ102を開き、基板冷却装置100の外部へ基板Sを搬送させる(ステップS25)。ステップS21と同様に、基板Sの搬送は基板冷却装置100に接続されている搬送チャンバ3の搬送ロボット7によって行われる。その後、基板冷却装置100は、ゲートバルブ102を閉じ、冷却処理を終了する。続いて次の基板Sの冷却処理を行う場合には、ゲートバルブ102を閉じる前に次の基板Sを基板冷却装置100内に搬送してもよい。
 図8は、本実施形態に係るリフレッシュ処理(ステップS5)の詳細なフローチャートを示す図である。基板Sの冷却処理を複数回行うにつれて、基板冷却装置100の外部から徐々に気体分子が持ち込まれ、基板ホルダ103およびシールド111に吸着されている気体分子が増加していく。その結果、吸着されている気体分子が脱離して基板Sを汚染するおそれが高まっていく。そこで、基板冷却装置100は所定の数の基板Sの冷却処理を行うごとに、シールド111の内部空間に設けられたシールドヒータ116を作動させて気体分子を気化および除去するリフレッシュ処理を行う。まず、基板冷却装置100は、基板Sがチャンバ101に配置されていない状態で、シールドヒータ116の作動を行う(ステップS11)。本実施形態ではシールドヒータ116は数秒程度作動させた後に停止させる。これにより、シールドヒータ116が基板ホルダ103およびシールド111の内壁に吸着された気体分子に熱エネルギーを与えて気化させ、ルーバー115を介してシールド111の外に排出することができる。気体分子はさらに排気ポンプ120から基板冷却装置100の外に排出される。シールドヒータ116の作動および停止後に、基板ホルダ103およびシールド111の温度、ならびにチャンバ101内の真空度を確認し、それぞれ所定の値になったらリフレッシュ処理を終了する(ステップS52)。
 本実施形態では、基板冷却装置100が備える制御装置により図5~8のフローチャートに示す各ステップの開始および終了の制御が行われるが、基板冷却装置100とは別に設けられた制御装置により基板冷却装置100の制御が行われてもよい。また、ユーザが一部または全部のステップについて基板冷却装置100に対して明示的に開始および終了の指示を行ってもよく、またはユーザ自身が一部または全部のステップを実行してもよい。
(第2の実施形態)
 図9は、本実施形態に係る基板の冷却を行う基板処理装置としての基板冷却装置200を示す概略構成図である。基板冷却装置200は、第1の実施形態に係る基板冷却装置100とはシールド211に関する構成のみが異なり、その他の構成は同様である。
 図10は、本実施形態に係る基板冷却装置200に含まれるシールド211の断面図である。シールド211は、基板Sまたは基板載置面103aの側方を取り囲む側壁部211aと、基板Sまたは基板載置面103aの上方を覆う上壁部211bと、基板Sまたは基板載置面103aの側方よりも下であって基板ホルダ103の側方を取り囲む裾壁部211cとを含む。第1の実施形態に係るシールド111と異なる点としては、側壁部211aが傾斜して設けられていることである。具体的には、基板Sまたは基板載置面103aの法線方向Cに対して側壁部211aのなす角度をD(基板Sまたは基板載置面103aの法線についてD=0度とし、基板Sまたは基板載置面103aから離れる方向を正方向とする)と定義するとき、0度<D<90度となるように側壁部211aが傾斜している。換言すると、シールド211において、上壁部211bの外周部から側壁部211aが連続的に(すなわち、滑らかに)傾斜して設けられており、上壁部211bの外周部の径よりも側壁部211aの径が小さくなっている。そのため、上壁部211bを含む面と側壁部211aを含む面とは、基板ホルダ側において鋭角をなしている。本実施形態では裾壁部211cは側壁部211aと面一になるよう設けられているため、裾壁部211cも側壁部211aと同様に傾斜している。
 cosin則によれば、シールド211の側壁部211aを傾斜させることによって、側壁部211aから脱離する気体分子は、側壁部211aの法線方向に飛行する確率が最も高くなる。すなわち、側壁部211aは、側壁部211aにトラップされていた気体分子が放出される際に、該気体分子が、上壁部211bに近付く方向、すなわち基板載置面103aから遠ざかる方向に向かう確率が最も高くなるように設けられている。そのため、気体分子が側壁部211aから脱離する場合に、基板Sの表面の方向に向かう確率が一層低くなり、上壁部211bの方向に向かう確率が上昇する。その結果、気体分子が上壁部211bにトラップされる確率が上昇するため、気体分子による基板Sの表面の汚染をより低減することができる。
 ルーバー215は、傾斜した側壁部211aおよび裾壁部211cの一部が、側壁部211aおよび裾壁部211cの面に対して傾斜して板状に突出して設けられており、ルーバー215の根元は開口している。ルーバー215は、側壁部211aおよび裾壁部211cから上壁部211bに向かう方向に対して鋭角になるように傾斜して設けられている。このような構成により、気体分子がルーバー215により脱離される場合であっても、気体分子は基板Sの表面方向に向かう確率は低く、上壁部211b方向に向かう確率は高くなる。
(第3の実施形態)
 図11は、本実施形態に係る基板の冷却を行う基板処理装置としての基板冷却装置300を示す概略構成図である。基板冷却装置300は、第1の実施形態に係る基板冷却装置100とはシールド311に関する構成のみが異なり、その他の構成は同様である。
 基板冷却装置300においては、シールド311はシールド駆動機構326によって基板Sまたは基板載置面103aの法線方向に沿って上昇および下降可能である。シールド駆動機構326は、モータ、アクチュエータ等の任意の駆動手段である。シールド311とシールド駆動機構326との間には、チャンバ101の密閉状態を保ったままシールド311を移動できるように、伸縮可能なベローズ327が設けられている。
 シールド311には、第1の実施形態とは異なり、開口部114およびルーバー115が設けられていない。基板Sの搬送時には、シールド311を上方向(すなわち、基板Sまたは基板載置面103aから離れる方向)に移動させることによって、開口部114がなくとも基板Sの搬送を行うことができる。また、リフレッシュ処理時には、シールド311を上方向に移動させることによって、ルーバー115がなくとも基板ホルダ103の表面から放出された気体分子を排出することができる。このように、本実施形態ではシールド311を上昇および下降可能なシールド駆動機構326が設けられているため、シールド311の構成を簡略化することができる。また、開口部114およびルーバー115がないため、冷却中にシールド311の外側から内側に気体分子が侵入して基板Sの表面を汚染する確率をより低減することができる。
 基板冷却装置300を用いて基板Sの冷却を行う際には、まず基板冷却装置300はシールド駆動機構326によってシールド311を上昇させた後、基板載置面103aの上方であって、基板載置面103aに接触しない位置に基板Sを移動させる。その後、シールド駆動機構326によってシールド311を下降させた後、基板載置面103a上に基板Sを載置する。この状態で所定時間待機し、基板を冷却する。このように基板載置面103a上に基板Sが接触する前にシールド311を下降させることによって、基板Sを下降させる際に基板ホルダ103から放出される気体分子をシールド311にトラップすることが可能になる。
(第4の実施形態)
 第1~第3の実施形態は基板冷却装置の構成を工夫することによってMTJ素子の素子特性を向上させるものであるのに対して、本実施形態は冷却処理のタイミングを工夫することによってMTJ素子の素子特性を向上させるものである。
 図12は、本実施形態に係る成膜方法を用いて製造される例示的なMTJ素子1000(磁気抵抗効果素子)の構成を示す模式図である。MTJ素子1000は、垂直磁化型MTJ素子(p-MTJ素子)である。MTJ素子1000は、基板1001上に下部電極1002と、Ta層(シード層)1003と、CoFe層1004と、Ta層1005と、フリー層(磁化自由層)としてのCoFeB層1006と、MgO層(トンネルバリア層)1007とを順に備える。MTJ素子1000は、さらにその上に、リファレンス層(磁化固定層)としてのCoFeB層1008と、Ta層1009と、積層体1010と、Ta層(キャップ層)1011と、上部電極1012とを順に備える。積層体1010は、Co層とPt層とを交互に所定の数Nだけ積層したものである。MTJ素子1000としてはここに示した構成に限られず、垂直磁化型素子の機能を損なわない範囲で層の増減、各層の構成材料の変更、上下の積層順の逆転等の任意の変更を行った構成を用いることができる。
 図13は、本実施形態に係る成膜方法のフローチャートを示す図である。ここでは図3に示すクラスタ型の基板処理システム1を用いて本実施形態に係る成膜方法の説明を行うが、これに限られるものではない。例えば、インライン型の基板処理システムを用いてもよい。また、本実施形態では基板処理システム1に含まれる基板冷却装置として図11に示す基板冷却装置300を用いるが、その他任意の基板冷却装置を用いてもよい。
 まず、基板処理システム1のロードロックチャンバ4に基板Sを搬入する(ステップS91)。
 次に、搬送チャンバ3の搬送ロボット7を駆動させることによって、所定の基板処理チャンバ2に基板Sを移動し、第1成膜工程を行う(ステップS92)。第1成膜工程では、エッチング法によって基板上に付着した不純物等を除去し、その後にMTJ素子1000のうちMgO層1007より下の膜、すなわち基板1001上に下部電極1002、Ta層1003、CoFe層1004、Ta層1005、およびフリー層としてのCoFeB層1006を順にスパッタリング法によって成膜する。
 次に、搬送チャンバ3の搬送ロボット7を駆動させることによって、所定の基板処理チャンバ2に基板Sを移動し、第2成膜工程を行う(ステップS93)。第2成膜工程では、MTJ素子1000のうちMgO層1007を成膜する。MgO層1007は、MgOターゲットを用いた高周波(RF)スパッタリング法によって成膜されている。別の方法として、Mgターゲットを用いたスパッタリング法によってフリー層としてのCoFeB層1006の上にMg層を成膜し、その後に該Mg層に対して酸化処理を行うことによって形成してもよい。成膜処理と酸化処理とは同じ基板処理チャンバ2内で行われてもよく、異なる基板処理チャンバ2内で行われてもよい。
 次に、搬送チャンバ3の搬送ロボット7を駆動させることによって、基板冷却装置300に基板Sを移動し、冷却工程を行う(ステップS94)。冷却工程では、MgO層1007が成膜された基板Sを200K以下の温度(本実施形態では100K)まで冷却する。200K以下の温度まで基板Sを冷却することによって、この後に成膜されるリファレンス層としてのCoFeB層1008中にアモルファス相を形成することができる。冷却工程においては、基板冷却装置300を用いて図7のフローチャートに示す冷却処理を行う。これにより、第1~第3の実施形態について説明したように、基板Sの冷却を素早く行いかつ膜中の不純物を低減するという追加の効果を得ることができる。本実施形態に係る冷却工程はこれに限られるものではなく、MgO層1007が成膜された基板Sを所定の温度まで冷却することが可能であれば、任意の冷却装置の構成および冷却処理の方法を用いてよい。なお、成膜したCoFeB層1008などの構成成分の分析は、例えばX線回折法によって行うことができる。
 次に、搬送チャンバ3の搬送ロボット7を駆動させることによって、所定の基板処理チャンバ2に基板Sを移動し、第3成膜工程を行う(ステップS95)。第3成膜工程では、MTJ素子1000のうちリファレンス層としてのCoFeB層1008から上の膜、すなわちMgO層1007上にCoFeB層1008、Ta層1009、積層体1010、Ta層1011、上部電極1012を順にスパッタリング法によって成膜する。
 その後、所定の温度(例えば150~400度)でのアニーリング処理を行い、成膜を終了する(ステップS96)。成膜処理とアニーリング処理とは同じ基板処理チャンバ2内で行われてもよく、異なる基板処理チャンバ2内で行われてもよい。最後に、搬送チャンバ3の搬送ロボット7を駆動させることによって、ロードロックチャンバ4内の搬送位置(基板搬出位置)に基板Sを移動する(ステップS97)。その後、基板Sは、基板処理システム1の下流の工程に送られる。なお、基板処理システム1とは別の装置でアニーリング処理を行ってもよい。この場合、基板処理システム1の下流の工程としてアニーリング工程が行われる。
 本実施形態では、第1~第3成膜工程(ステップS92、S93、S95)で成膜される各層はスパッタリング法によって成膜されるが、その他任意の成膜方法によって成膜されてもよい。
 第1~第3成膜工程(ステップS92、S93、S95)で成膜される複数の膜のうち、2以上の膜が同じ基板処理チャンバ2内で成膜されてもよく、全ての膜が異なる基板処理チャンバ2内で成膜されてもよい。第1~第3成膜工程(ステップS92、S93、S95)のうち少なくとも1つと、冷却工程(ステップS94)とが同一のチャンバ中で行われてもよい。
 本実施形態に係るMTJ素子1000は、トンネルバリア層1007の上にリファレンス層1008を有するトップピン構造であるが、トンネルバリア層1007の上にフリー層1006を有するボトムピン構造でもよい。この場合には、図13のフローチャートにおいて、第1成膜工程(ステップS92)でリファレンス層としてのCoFeB層1008を成膜し、その後に第2成膜工程(ステップS93)でリファレンス層としてのCoFeB層1008上にMgO層1007を成膜する。そして冷却工程(ステップS94)を行い、第3成膜工程(ステップS95)でMgO層1007上にフリー層としてのCoFeB層1006を成膜する。
 本実施形態に係る成膜方法は、トップピン構造とボトムピン構造のいずれにも適用可能であり、フリー層およびリファレンス層の一方を形成し、該フリー層およびリファレンス層の一方上にトンネルバリア層を形成し、冷却を行い、該トンネルバリア層上にフリー層およびリファレンス層の他方を形成するものである。
 図14は、本実施形態に係る成膜方法を用いて製造されたMTJ素子のRA(面積抵抗)に対するMR比のグラフを示す図である。ここでは図13のフローチャートの冷却工程(ステップS94)の有無およびタイミングを様々に変更してMTJ素子を製造し、RAおよびMR比の測定を行った。図14の横軸はRA(Ω・μm)であり、縦軸はMR比(%)である。RAが低いほど、またMR比が高いほど、MTJ素子の素子特性が良好であるといえる。図14のグラフにおいて、四角形の点は冷却を行わないで成膜が行われたMTJ素子の測定結果であり、円形の点は冷却を行って成膜が行われたMTJ素子の測定結果である。いずれの測定結果に係るMTJ素子も図13のフローチャートにしたがって製造されたものであるが、冷却工程(ステップS94)の有無およびタイミングのみが異なる。
 図14のグラフの円形の点に付されたI~VIIの記号は、それぞれ図12のMTJ素子1000のI~VIIのいずれかのタイミングで冷却を行った場合を意味する。例えば、図14のグラフにおけるIの記号が付された円形の点は、図12の下部電極1002の形成後であってTa層1003の形成前に冷却が行われたことを意味する。本実施形態に係る成膜方法は、MgO層1007の成膜後であってリファレンス層としてのCoFeB層1008の成膜前に冷却が行われるものであるため、図14のグラフにおけるVIの点が付された円形の点に対応する。
 図14によれば、I~VIIのいずれかのタイミングで冷却を行って成膜を行うと、従来のように冷却を行わない場合に比べてMR比が向上することがわかる。さらに、I~VIIのタイミングのうち、本実施形態に係るVIのタイミングで、すなわちMgO層1007の成膜後であってリファレンス層としてのCoFeB層1008の成膜前に冷却を行うと、特に高いMR比かつ低いRAを実現することができることがわかる。以上により、素子特性の良好なMTJ素子1000を製造するためには、MgO層1007の成膜後であってリファレンス層としてのCoFeB層1008の成膜前に冷却を行うことが有効であることが確認された。
 図15は本実施形態に係る成膜方法を用いて製造されたMTJ素子におけるリファレンス層としてのCoFeB層中のB含有率(ホウ素含有率)に対するMR比のグラフを示す図である。ここではリファレンス層としてのCoFeB層1008中のB含有率を様々に変更し、MR比の測定を行った。図15の横軸はリファレンス層1008としてのCoFeB層中のB含有率(at%)であり、縦軸はMR比(%)である。図15のグラフにおいて、四角形の点は冷却を行わないで成膜が行われたMTJ素子の測定結果であり、円形の点はMgO層1007の成膜後であってリファレンス層としてのCoFeB層1008の成膜前に冷却を行って成膜が行われたMTJ素子の測定結果である。いずれの測定結果に係るMTJ素子も図13のフローチャートにしたがって製造されたものであるが、冷却工程(ステップS94)の有無のみが異なる。
 図15のグラフによれば、本実施形態に係る成膜方法の測定結果(円形の点)は、いずれのB含有率においても従来のように冷却を行わない場合の測定結果(四角形の点)よりも高いMR比を実現していることがわかる。特に、リファレンス層としてのCoFeB層1008中のB含有率を15at%以下にすると、冷却を行わない場合に比べて顕著にMR比が高くなるため、望ましい。
 また、図15のグラフから明らかなように、従来のように冷却を行わない場合の測定結果(四角形の点)においては、B含有率が約20%のときに最大のMR比が得られる。そのため、従来ではCoFeB層のB含有率を約20%にすることが一般的である(例えば、Co:Fe:B=20:60:20)。それに対して、本実施形態に係る成膜方法の測定結果(円形の点)においては、B含有率が低いほどMR比が大きくなっていることがわかる。そのため、本実施形態に係る成膜方法によれば、高いMR比を維持しつつも従来よりもB含有率を低く設定することが可能であり、リファレンス層としてのCoFeB層1008の組成の自由度が高い。
 リファレンス層がアモルファス相を有することによって、MR比を向上できることが知られている。しかしながら、従来CoFeB層をアモルファス相にするためには、Bを所定の割合(上述のように約20%)添加する必要があった。それに対して、本実施形態に係る成膜方法において従来よりも低いB含有率で高いMR比が実現されているのは、トンネルバリア層成膜後であってリファレンス層成膜前に冷却を行うことによって、リファレンス層中にアモルファス相が形成されやすくなるためだと考えられる。すなわち、本実施形態に係る成膜方法の冷却工程によって、低いB含有率においてもリファレンス層がアモルファス相を有するようになり、高いMR比を実現されている。
 本発明は、上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。上述の各実施形態はMRAMに利用されるMTJ素子(TMR素子)の製造に適用されるものとして説明が行われたが、同様の冷却方法および成膜方法がその他のMTJ素子の製造に適用可能である。
 上述の各実施形態では重力方向を上下方向として説明を行ったが、装置を構成する方向は任意である。例えば、上述の各実施形態に係る基板冷却装置を90度倒して設ける(すなわち、基板Sの表面が重力方向に沿って固定される)場合には、上述の各実施形態における上下方向は、重力方向に対して垂直な方向として読み替えればよい。

 

Claims (5)

  1.  磁化自由層および磁化固定層の一方が表面に形成された基板上にトンネルバリア層を形成する工程と、
     前記トンネルバリア層を形成する工程の後に、前記基板を冷却する工程と、
     前記冷却する工程の後に、前記トンネルバリア層上に前記磁化自由層および前記磁化固定層の他方を形成する工程と、
     を備えることを特徴とする磁気抵抗効果素子の製造方法。
  2.  前記磁化自由層および前記磁化固定層はいずれもCoFeB層であり、
     前記磁化自由層および前記磁化固定層の前記他方はアモルファス相を有し、
     前記磁化自由層および前記磁化固定層の前記他方の中のホウ素含有率は15at%以下である
     ことを特徴とする、請求項1に記載の製造方法。
  3.  前記トンネルバリア層はMgO層であることを特徴とする、請求項1又は2に記載の製造方法。
  4.  前記MgO層は、MgOターゲットを用いたスパッタリング法で形成されることを特徴とする、請求項3に記載の製造方法。
  5.  前記磁気抵抗効果素子は、垂直磁化型MTJ素子であることを特徴とする、請求項1に記載の製造方法。
     

     
PCT/JP2014/005681 2013-11-18 2014-11-12 磁気抵抗効果素子の製造方法 WO2015072139A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-237543 2013-11-18
JP2013237543 2013-11-18
JP2014-082914 2014-04-14
JP2014082914 2014-04-14

Publications (1)

Publication Number Publication Date
WO2015072139A1 true WO2015072139A1 (ja) 2015-05-21

Family

ID=53057089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005681 WO2015072139A1 (ja) 2013-11-18 2014-11-12 磁気抵抗効果素子の製造方法

Country Status (2)

Country Link
TW (1) TW201531579A (ja)
WO (1) WO2015072139A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134510A (ja) * 2015-01-20 2016-07-25 東京エレクトロン株式会社 垂直磁化型磁気トンネル接合素子を形成する方法、及び垂直磁化型磁気トンネル接合素子の製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203702A (ja) * 2004-01-19 2005-07-28 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
JP2006286669A (ja) * 2005-03-31 2006-10-19 Tdk Corp 磁気抵抗効果素子の製造方法
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2011054238A (ja) * 2009-09-02 2011-03-17 Hitachi Global Storage Technologies Netherlands Bv トンネル接合型磁気抵抗効果ヘッド及びその製造方法
WO2011081203A1 (ja) * 2009-12-28 2011-07-07 キヤノンアネルバ株式会社 磁気抵抗素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203702A (ja) * 2004-01-19 2005-07-28 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
JP2006286669A (ja) * 2005-03-31 2006-10-19 Tdk Corp 磁気抵抗効果素子の製造方法
JP2009081315A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2011054238A (ja) * 2009-09-02 2011-03-17 Hitachi Global Storage Technologies Netherlands Bv トンネル接合型磁気抵抗効果ヘッド及びその製造方法
WO2011081203A1 (ja) * 2009-12-28 2011-07-07 キヤノンアネルバ株式会社 磁気抵抗素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134510A (ja) * 2015-01-20 2016-07-25 東京エレクトロン株式会社 垂直磁化型磁気トンネル接合素子を形成する方法、及び垂直磁化型磁気トンネル接合素子の製造装置
WO2016117359A1 (ja) * 2015-01-20 2016-07-28 東京エレクトロン株式会社 垂直磁化型磁気トンネル接合素子を形成する方法、及び垂直磁化型磁気トンネル接合素子の製造装置

Also Published As

Publication number Publication date
TW201531579A (zh) 2015-08-16

Similar Documents

Publication Publication Date Title
JP6067877B2 (ja) 基板処理装置および方法
US8837924B2 (en) Vacuum heating/cooling apparatus and manufacturing method of magnetoresistance element
US9410742B2 (en) High capacity magnetic annealing system and method of operating
RU2550464C2 (ru) Способ и устройство для быстрого нагревания и охлаждения подложки и немедленного последующего нанесения на нее покрытия в вакууме
JP6077133B2 (ja) 磁気抵抗効果素子の製造方法
TWI632711B (zh) Magnetoresistance effect element
JP7134039B2 (ja) 基板載置機構、成膜装置、および成膜方法
WO2015072139A1 (ja) 磁気抵抗効果素子の製造方法
US11251027B2 (en) Stage device and processing apparatus
KR102304166B1 (ko) 산화 처리 모듈, 기판 처리 시스템 및 산화 처리 방법
JP7112629B2 (ja) 設置面積を減少した製造環境のための垂直マルチ・バッチ磁気アニールシステム
US10566525B2 (en) Method for manufacturing magnetoresistive element
JP7426842B2 (ja) ステージ装置、給電機構、および処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861692

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP