WO2011078381A1 - ファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法 - Google Patents

ファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法 Download PDF

Info

Publication number
WO2011078381A1
WO2011078381A1 PCT/JP2010/073596 JP2010073596W WO2011078381A1 WO 2011078381 A1 WO2011078381 A1 WO 2011078381A1 JP 2010073596 W JP2010073596 W JP 2010073596W WO 2011078381 A1 WO2011078381 A1 WO 2011078381A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
hole
coercive force
high coercive
magnetic circuit
Prior art date
Application number
PCT/JP2010/073596
Other languages
English (en)
French (fr)
Inventor
昭洋 木本
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2011514928A priority Critical patent/JP5644761B2/ja
Priority to US13/321,598 priority patent/US8817370B2/en
Priority to KR1020127014919A priority patent/KR101737658B1/ko
Priority to EP10839609.4A priority patent/EP2518552A4/en
Priority to CN201080013670.7A priority patent/CN102362211B/zh
Publication of WO2011078381A1 publication Critical patent/WO2011078381A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • the present invention relates to a magnetic circuit for a Faraday rotator used for a high-power laser such as a fiber laser and a method for manufacturing a magnetic circuit for a Faraday rotator.
  • the Faraday rotator is a device that consists of a magnetic circuit for a Faraday rotator and a Faraday element, and allows light to pass through only in one direction by the Faraday effect and block in the opposite direction.
  • a magnetic field is applied to the Faraday element by the magnetic circuit for the Faraday rotator, the polarization plane of the laser beam becomes a predetermined rotation angle when the laser beam exits the Faraday element.
  • Faraday rotators are used for various purposes, and Faraday rotators for communication use rare earth iron garnet Faraday elements such as yttrium iron garnet (YIG) as Faraday elements.
  • YIG yttrium iron garnet
  • a ferrite magnet is used in a magnetic circuit for a Faraday rotator that generates a magnetic field applied to the Faraday element.
  • a Faraday element of a rare earth iron garnet such as yttrium iron garnet (YIG)
  • YIG yttrium iron garnet
  • the crystal of the Faraday element absorbs light.
  • a terbium gallium garnet (TGG) crystal having a small temperature dependency as a Faraday element (a focus shift is difficult to occur due to a temperature rise) is used as a Faraday element for a high-power laser.
  • this TGG has a small Faraday rotation coefficient (Verde constant) compared to rare earth iron garnets such as yttrium iron garnet (YIG). For this reason, in order to obtain a predetermined rotation angle, it was necessary to improve the strength of the magnetic field applied to the Faraday element or to lengthen the Faraday element.
  • the magnetic circuit for the Faraday rotator in which the Faraday element is arranged is also lengthened, and there is a disadvantage that the Faraday rotator is enlarged.
  • the TGG crystal itself which is a Faraday element, is made long, light is distorted in the crystal, so that expensive optical glass for correction is also required.
  • a magnetic circuit for a Faraday rotator for suppressing an increase in size of the Faraday rotator is known.
  • Such a magnetic circuit for a Faraday rotator is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-229802.
  • JP 2009-229802 discloses a first magnet that is magnetized in a direction perpendicular to the optical axis and toward the optical axis, and a second magnet that is magnetized in a direction perpendicular to the optical axis and away from the optical axis,
  • a small-sized Faraday comprising a magnetic circuit that is arranged between them and that is parallel to the optical axis and that is composed of a third magnet that is magnetized in a direction from the second magnet toward the first magnet, and a Faraday element.
  • a rotor is disclosed.
  • the magnetic circuit of the small Faraday rotator disclosed in JP 2009-229802 is provided with a hole in which a Faraday element is disposed.
  • the direction of the magnetic field composed of the first magnet and the second magnet in the hole is configured to be parallel to the optical axis and to the direction from the first magnet to the second magnet. ing. That is, the direction of the magnetic field composed of the first magnet and the second magnet in the hole is configured to be opposite to the magnetization direction of the third magnet. Further, when the length of the first magnet and the second magnet in the optical axis direction is L2, and the length of the third magnet in the optical axis direction is L3, the relationship of L2 / 10 ⁇ L3 ⁇ L2 is established. It is configured as follows.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a magnetic circuit for a Faraday rotator and a Faraday capable of suppressing the occurrence of irreversible demagnetization. It is providing the manufacturing method of the magnetic circuit for rotors.
  • a magnetic circuit for a Faraday rotator is a magnetic circuit for a Faraday rotator in which a Faraday element of the Faraday rotator is disposed, and includes a first through hole extending in an axial direction, A first magnet magnetized in a direction perpendicular to the direction and away from the first through hole, and a second through hole extending in the axial direction, and magnetized in a direction perpendicular to the axial direction and toward the second through hole A second magnet disposed between the first magnet and the second magnet in the axial direction, and magnetized in a direction parallel to the axial direction and from the first magnet toward the second magnet.
  • the third magnet includes a third through hole that extends in the axial direction so as to connect the first through hole and the second through hole and in which the Faraday element is disposed, and the third magnet has a third through hole.
  • the first high coercivity is at least near the inner peripheral surface of the hole. Pass is provided.
  • the magnetic circuit for a Faraday rotator in the magnetic circuit for a Faraday rotator according to the first aspect of the present invention, as described above, by providing the first high coercive force region in the vicinity of at least the inner peripheral surface of the third through hole of the third magnet, In the vicinity of the inner peripheral surface of the third through hole of the third magnet, which is likely to cause irreversible demagnetization due to the reverse magnetic field caused by the magnetic field composed of the second magnet, a coercive force higher than that of the other portions of the third magnet. Since one high coercive force region can be provided, irreversible demagnetization in the first high coercive force region can be suppressed.
  • the first high coercive force region provided in the third magnet is along the axial direction of the inner peripheral surface of the third through hole of the third magnet. It is provided at least in the center of the third magnet. If comprised in this way, in the center part of the 3rd magnet along the axial direction among the internal peripheral surfaces of the 3rd through-hole of the 3rd magnet which tends to raise
  • the magnetic direction of the first magnet and the magnetization direction of the second magnet out of the magnetic field composed of the first magnet and the second magnet are substantially orthogonal.
  • a first high coercive force region is provided in a portion of the third magnet that is positioned in the axial direction and in the vicinity of the magnetic field that extends in the direction from the second magnet toward the first magnet. If comprised in this way, since the 1st high coercive force area
  • the third magnet includes a rare earth element R (including Nd and Pr as main components and Nd of 50% or more) and a transition element mainly including Fe.
  • R including Nd and Pr as main components and Nd of 50% or more
  • a transition element mainly including Fe mainly including Fe.
  • an RTB-based magnet mainly containing B (boron) and in the first high coercive force region, heavy rare earth elements are concentrated near the inner peripheral surface of the third through hole of the third magnet. Is formed by. In the vicinity of the inner peripheral surface, heavy rare earth elements are substituted by replacing only a part of light rare earth elements Nd or Pr in the main phase of the RTB-based sintered magnet with heavy rare earth elements Dy or Tb.
  • the coercive force of the first high coercive force region can be improved while suppressing the decrease in the residual magnetic flux density.
  • the coercivity of the third magnet including the first high coercive force region can be improved while maintaining the magnetic field strength of the magnetic circuit for the Faraday rotator.
  • the first high coercive force region is mainly composed of a main phase of an R 2 Fe 14 B type compound that is a tetragonal crystal, and at least one of Dy and Tb is formed in an outer shell portion of the main phase. It is formed by heavy rare earth elements being diffused from the outside and concentrated.
  • the heavy rare earth element consisting of at least one of Dy and Tb in the vicinity of the inner peripheral surface of the third through hole of the third magnet, without substantially causing a decrease in residual magnetic flux density,
  • the third magnet including the first high coercive force region with improved coercive force can be easily formed.
  • the first high coercive force region is provided in a circumferential shape so as to surround a third through hole in which the Faraday element is disposed. If comprised in this way, since a 1st high coercive-force area
  • region can be provided so that a Faraday element may be surrounded, it can suppress more that the influence of a reverse magnetic field reaches a 3rd magnet. As a result, irreversible demagnetization in the third magnet can be further suppressed.
  • the first high coercive force region is in the entire axial direction on the inner peripheral surface of the third through hole. It is provided across. If comprised in this way, the irreversible demagnetization with a 3rd magnet can be suppressed more.
  • the first high coercive force region is 3 mm from the inner peripheral surface of the third through hole in a direction orthogonal to the axial direction and away from the third through hole. It is formed over the above range. If comprised in this way, the irreversible demagnetization with a 3rd magnet can be suppressed more.
  • the coercive force of the third magnet other than the first high coercive force region is equal to or greater than the coercive force of the first magnet and the second magnet. If comprised in this way, since not only the 1st high coercive force area
  • the coercive force of the third magnet other than the first high coercive force region is preferably 2350 kA / m or more and the coercive force of the first high coercive force region. Smaller than.
  • the third magnet is irreversibly demagnetized not only by the first high coercive force region but also by a portion of the third magnet having a high coercive force of 2350 kA / m or more other than the first high coercive force region. Can be suppressed.
  • the third magnet has a residual magnetic flux density of 1.0 T or more. With such a configuration, a sufficient magnetic field strength can be generated, so that a desired rotation angle can be obtained even in a small Faraday rotator using a terbium gallium garnet (TGG) crystal as a Faraday element.
  • TGG terbium gallium garnet
  • the first high coercive force region is distributed from the inner peripheral surface in a direction away from the third through hole.
  • the range is configured to increase from the both end portions side of the third magnet along the axial direction toward the central portion side.
  • the third magnet is formed by being divided by a plane orthogonal to the axial direction, and a second high coercive force region is provided for each.
  • a plurality of first magnet pieces are combined in the axial direction to form a first high coercive force region including a plurality of second high coercive force regions, and a first high coercive force region including a plurality of second high coercive force regions. Is provided at least in the vicinity of the inner peripheral surface of the third through hole.
  • region is provided in the internal peripheral surface of a through-hole in the state in which the through-hole is formed.
  • region can be reliably provided in the surface corresponding to the internal peripheral surface of the divided
  • region of a 3rd magnet can be formed more reliably by combining the some 1st magnet piece in which the 2nd high coercive force area
  • the first magnet and the second magnet are arranged alternately along the axial direction with the third magnet interposed therebetween. If comprised in this way, even if it is a case where a Faraday rotator which has a magnetic circuit for Faraday rotators which makes the 1st magnet, the 2nd magnet, and the 3rd magnet 1 unit, a sufficient Faraday effect cannot be obtained, By arranging the first magnet and the second magnet so as to be alternately arranged along the axial direction with the third magnet in between, a plurality of units of the Faraday rotator magnetic circuit can be formed. Thereby, the Faraday rotator can be configured so as to obtain a sufficient Faraday effect.
  • the distance from one end to the other end in the direction orthogonal to the axial direction of the first magnet, the second magnet, and the third magnet is the first distance.
  • the distance from one end to the other end in the direction orthogonal to the axial direction of the first through hole, the second through hole, and the third through hole is the second distance
  • the first distance is 8 of the second distance. 2 times or more and 20 times or less. If comprised in this way, it can suppress that it becomes difficult to form high magnetic field intensity in the magnetic circuit for Faraday rotators by making 1st distance 8 times or more of 2nd distance. Further, by making the first distance 20 times or less the second distance, irreversible demagnetization tends to occur in the first high coercive force region due to the magnetic field strength in the Faraday rotator magnetic circuit being too high. Can be suppressed.
  • a method for manufacturing a magnetic circuit for a Faraday rotator includes a first through hole extending in the axial direction, and is magnetized in a direction perpendicular to the axial direction and away from the first through hole.
  • the first through hole and the second through hole are connected to the magnet and the second magnet including the second through hole extending in the axial direction and magnetized in the direction perpendicular to the axial direction and toward the second through hole.
  • a third magnet that extends in the axial direction includes a third through hole in which the Faraday element is disposed, and is magnetized in a direction parallel to the axial direction and from the first magnet toward the second magnet.
  • a method for manufacturing a magnetic circuit for a Faraday rotator comprising: a rare earth element R (containing Nd and Pr as main components and containing 50% or more of Nd), a transition element mainly containing Fe, and B (boron) Third magnet composed mainly of RTB-based magnet
  • the first high coercive force region is provided by providing the first high coercive force region in the vicinity of at least the inner peripheral surface of the third through hole.
  • the irreversible demagnetization at can be suppressed.
  • the first high coercive force region has a high coercive force, irreversible demagnetization due to a temperature rise can also be suppressed.
  • the first high coercive force region is provided at least in the vicinity of the inner peripheral surface of the third through hole. Since only a part of Nd or Pr that is a light rare earth element in the main phase of the magnetized magnet can be replaced with Dy or Tb that is a heavy rare earth element, the first high coercive force is suppressed while suppressing a decrease in residual magnetic flux density. The coercive force of the region can be improved. As a result, the coercive force of the first high coercive force region can be improved while maintaining the magnetic field strength of the magnetic circuit for the Faraday rotator.
  • the step of providing the first high coercive force region diffuses heavy rare earth elements from the inner peripheral surface of the third through hole of the third magnet.
  • region in the center part at least among the internal peripheral surfaces of a 3rd through-hole is included. If comprised in this way, in the center part of the 3rd magnet along the axial direction among the internal peripheral surfaces of the 3rd through-hole of the 3rd magnet which tends to raise
  • the step of providing the first high coercive force region includes a step that surrounds the third through-hole in which the Faraday element is disposed. 1
  • region is included. If comprised in this way, since a 1st high coercive-force area
  • the step of providing the first high coercive force region in the central part is performed on the inner peripheral surface of the third through hole.
  • a step of providing a first high coercive force region over the entire region in the axial direction on the inner peripheral surface of the third through hole by diffusing heavy rare earth elements from substantially the entire surface is included.
  • the step of providing the first high coercive force region in the central portion is within the direction away from the third through hole.
  • the Faraday rotator 100 includes a Faraday rotator magnetic circuit 1 having a cylindrical shape and a columnar Faraday element 10.
  • the Faraday rotator magnetic circuit 1 maintained this cross-sectional shape in a state in which a cross section (YZ plane) orthogonal to the axial direction (X direction) in which the central axis 1000 extends had an annular shape. It is formed so as to extend in the X direction.
  • a through hole 1a extending in the X direction from one end surface to the other end surface is formed at the center of the cross section (YZ plane) of the magnetic circuit 1 for Faraday rotator.
  • the Faraday element 10 is comprised so that it may be arrange
  • the Faraday element 10 has a function of emitting the incident laser light with its polarization plane rotated at a predetermined rotation angle when the Faraday element 10 is disposed inside the magnetic field formed by the magnetic circuit 1 for the Faraday rotator.
  • the rotation angle depends on the Faraday rotation coefficient (Verde constant) peculiar to the material of the Faraday element 10, the magnetic field intensity required to cause the Faraday effect (rotation angle), and the diameter L 2 of the through hole 1 a to be described later. Determined.
  • the magnetic field strength necessary for obtaining a desired Faraday effect varies depending on the length of the Faraday element 10 arranged in the magnetic circuit 1 for the Faraday rotator. Specifically, the magnetic field strength necessary for obtaining a desired Faraday effect (rotation angle) and the length of the Faraday element 10 are in an inversely proportional relationship. For example, when the magnetic field strength required to obtain a desired Faraday effect with a Faraday element of a predetermined length is 2T, while the magnetic field strength obtained with the magnetic circuit for the Faraday rotator is 1T, the Faraday element If the length is not twice as long as the predetermined length, the same characteristics (desired Faraday effect) cannot be obtained.
  • the Faraday element 10 is made of terbium gallium garnet (TGG), which has a small temperature dependency (a focus shift is difficult to occur due to a temperature rise).
  • TGG terbium gallium garnet
  • This TGG has a Faraday rotation coefficient smaller than that of rare earth iron garnet such as yttrium iron garnet (YIG).
  • FIG. 2 shows a cross section of the magnetic circuit 1 for the Faraday rotator.
  • the outer diameter L1 in the cross section (YZ plane) of the magnetic circuit 1 for the Faraday rotator in FIG. 2 is preferably about 30 mm or more and about 70 mm or less.
  • the diameter L2 of the through hole 1a of the Faraday rotator magnetic circuit 1 is preferably about 3 mm or more and about 7 mm or less.
  • the length L3 in the X direction of the Faraday rotator magnetic circuit 1 (through hole 1a) is preferably about 20 mm or more and about 60 mm or less.
  • the Faraday rotator magnetic circuit 1 includes a first magnet 2, a second magnet 3 and a third magnet 4 each having a cylindrical shape as shown in FIG.
  • the first magnet 2 is disposed on one side (X1 side) of the Faraday rotator magnetic circuit 1
  • the second magnet 3 is disposed on the other side (X2 side) of the Faraday rotator magnetic circuit 1.
  • the 1st magnet 2 and the 2nd magnet 3 have the same shape.
  • the third magnet 4 is disposed between the first magnet 2 and the second magnet 3 in the axial direction (X direction).
  • the 1st magnet 2, the 2nd magnet 3, and the 3rd magnet 4 are arrange
  • the first magnet 2, the second magnet 3, and the third magnet 4 all have an annular cross-sectional shape in the YZ plane orthogonal to the axial direction (X direction) in which the central axis 1000 extends. It is formed to extend.
  • through holes 2a, 3a and 4a extending in the X direction are formed at the centers of the cross sections (YZ planes) of the first magnet 2, the second magnet 3 and the third magnet 4, respectively.
  • the through holes 2a, 3a and 4a have a circular cross section (YZ plane).
  • the through holes 2a, 3a and 4a are examples of the “first through hole”, the “second through hole” and the “third through hole” in the present invention, respectively.
  • the through holes 1a are formed by connecting the through holes 2a, 3a and 4a to each other. Further, the Faraday element 10 is disposed inside the through hole 1 a in a state where the center portion in the X direction is substantially located at the center portion in the X direction of the through hole 4 a of the third magnet 4.
  • the outer diameters of the first magnet 2, the second magnet 3, and the third magnet 4 are the same as the outer diameter L1 of the magnetic circuit 1 for the Faraday rotator.
  • the diameters of the through holes 2a, 3a and 4a are the same as the diameter L2 of the through hole 1a.
  • the outer diameter L1 of the first magnet 2, the second magnet 3, and the third magnet 4 is configured to be about 10 times the diameter L2 of the through holes 2a, 3a, and 4a.
  • the third magnet since the high coercivity third magnet is formed with the high coercivity region from the through hole 4a, the third magnet is difficult to irreversibly demagnetize even at a high temperature of 70 ° C.
  • the diameters of the through holes 2a, 3a and 4a can be made the same as the diameter L2 of the through hole 1a.
  • the outer diameter L1 is an example of the “first distance” in the present invention, and the diameter L2 is an example of the “second distance” in the present invention.
  • the third magnet 4 has a high temperature of about 70 ° C. or more and 80 ° C. or less. Irreversible demagnetization does not occur even under temperature conditions. Therefore, it is not necessary to increase the outer diameter by the through-hole 4a and reduce the influence of the magnetic field of the first magnet 2 and the second magnet 3 on the third magnet 4, so that the diameters of the through-holes 2a, 3a and 4a are the same.
  • the length (L2) can be set.
  • the length L4 in the X direction of the first magnet 2 (through hole 2a) and the second magnet 3 (through hole 3a) is preferably about 8.5 mm or more and about 25 mm or less.
  • the length L5 in the X direction of the third magnet 4 (through hole 4a) is preferably about 3 mm or more and about 10 mm or less.
  • the first magnet 2 is magnetized in the direction perpendicular to the axial direction (X direction) and away from the through hole 2a (arrow A direction).
  • the second magnet 3 is magnetized in a direction (arrow B direction) perpendicular to the axial direction (X direction) and toward the through hole 3a. That is, the magnetization direction (arrow B direction) of the second magnet 3 is configured to be opposite to the magnetization direction (arrow A direction) of the first magnet 2.
  • the direction of the magnetic field in the inside of the through-hole 4a is comprised so that it may become a direction (arrow X1 direction) which goes to the 1st magnet 2 from the 2nd magnet 3 along an axial direction (X direction).
  • the third magnet 4 is magnetized in a direction parallel to the axial direction (X direction) and from the first magnet 2 toward the second magnet 3 (arrow X2 direction). That is, the direction of the magnetic field (in the direction of the arrow X1) inside the through hole 4a and the direction of magnetization of the third magnet 4 (in the direction of the arrow X2) are opposite to each other.
  • the first magnet 2, the second magnet 3 and the third magnet 4 are made of an R—Fe—B based sintered magnet capable of generating a strong magnetic field of about 1.5T or more and about 3.0T or less.
  • the R—Fe—B based sintered magnet mainly contains a rare earth element R (mainly containing Nd and Pr and containing 50% or more of Nd), a transition element mainly containing Fe, and B (boron). It is out. Thereby, the length of the Faraday element 10 in the X direction is reduced by generating a strong magnetic field of about 1.5 T or more and about 3.0 T or less using the first magnet 2, the second magnet 3, and the third magnet 4. Even so, it is possible to obtain a desired Faraday effect (rotation angle).
  • the third magnet 4 is the same R—Fe—B sintered magnet as the R—Fe—B sintered magnet of the first magnet 2 and the second magnet 3 or the first magnet 2 and the second magnet 2.
  • the magnet 3 is made of an R—Fe—B based sintered magnet having a larger coercive force than that of the R—Fe—B based sintered magnet.
  • the third magnet 4 has a residual magnetic flux density of at least about 1.0 T and a coercive force of at least 2350 kA / m. This makes it possible to generate a strong magnetic field of about 1.5 T or more and about 3.0 T or less in the through hole 1a of the Faraday rotator magnetic circuit 1 using TGG as a Faraday element. Therefore, the length of the Faraday element 10 can be reduced.
  • a high coercive force region 4 b is formed in the vicinity of the inner peripheral surface of the through hole 4 a of the third magnet 4.
  • the high coercive force region 4b has a coercive force (about 2800 kA / m) larger than the coercive force (about 2350 kA / m) of the third magnet 4 other than the high coercive force region 4b.
  • the high coercive force region 4b is formed in layers and in a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 4a of the third magnet 4. That is, the high coercive force region 4b is uniformly formed not only from the central portion 4c but also from the end portion 4d on the X1 side to the end portion 4e on the X2 side on the inner peripheral surface of the through hole 4a of the third magnet 4. . Further, the high coercive force region 4b is formed to have a depth (thickness) L6 of at least about 3 mm from the inner peripheral surface of the through hole 4a toward the inside of the third magnet 4 (in the direction of arrow A). The high coercive force region 4b is an example of the “first high coercive force region” in the present invention.
  • the high coercive force region 4b is formed by diffusing a heavy rare earth element RH composed of at least one of Dy and Tb from the entire inner peripheral surface of the through hole 4a.
  • the high coercive force region 4b is mainly composed of a main phase composed of crystal grains of an R 2 Fe 14 B type compound that is a tetragonal crystal, and is a rare earth element located in the outer shell portion (near the grain boundary) of the main phase.
  • the light rare earth element RL (at least one of Nd and Pr) of R is formed by substitution with a heavy rare earth element RH composed of at least one of Dy and Tb.
  • the coercive force in the high coercive force region 4b is large.
  • the heavy rare earth element RH does not diffuse in the R 2 T 14 B phase itself (inside the crystal grains) that is the main phase, the light rare earth element RL remains inside the crystal. Thereby, the fall of the residual magnetic flux density in the high coercive force area
  • a first magnet body, a second magnet body, and a third magnet body each having a cylindrical shape and having through holes 2a, 3a, and 4a are prepared.
  • a rare earth element R containing Nd and Pr as main components and containing 50% or more of Nd
  • a transition element mainly containing Fe An R—Fe—B based sintered magnet mainly containing B (boron) is used.
  • an R—Fe—B based sintered magnet having a coercive force of 2350 kA / m is used for at least the third magnet.
  • the first magnet body, the second magnet body, and the third magnet body respectively correspond to the first magnet 2, the second magnet 3, and the third magnet 4 before being magnetized.
  • the high-maintenance shown in FIG. 3 is formed near the inner peripheral surface of the through hole 4a of the third magnet body.
  • the magnetic region 4b is formed.
  • a bulk body (not shown) containing heavy rare earth element RH (at least one selected from the group including at least Dy and Tb) is placed in a processing chamber (not shown) together with a third magnet body. Opposing to the. Then, by heating the bulk body and the third magnet body in the processing chamber to about 700 ° C. or more and about 1000 ° C.
  • the heavy rare earth element RH is supplied from the bulk body to the inner peripheral surface side of the through hole 4a of the third magnet body. By doing so, it is diffused inside the third magnet body. If necessary, heat treatment is further performed to diffuse the heavy rare earth element RH to the inside of the third magnet body.
  • the high coercive force region 4b shown in FIG. 3 is formed in layers and circumferentially so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 4a of the third magnet body.
  • the high coercive force region 4b is formed to have a depth (thickness) L6 of at least about 3 mm from the inner peripheral surface of the through hole 4a toward the inside of the third magnet 4 (in the direction of arrow A).
  • it is possible to form a high coercive force region only in a portion other than the mask by forming a mask in a predetermined region of the third magnet body.
  • the high coercive force region 4b is formed in the vicinity of the inner peripheral surface of the through hole 4a of the third magnet body by performing heat treatment after depositing the heavy rare earth element RH in the vicinity of the inner peripheral surface of the through hole 4a of the third magnet body. May be formed.
  • the first magnet 2 is formed by magnetizing the first magnet body in a direction perpendicular to the axial direction (X direction) and away from the through hole 2a (arrow A direction).
  • the second magnet 3 is formed by magnetizing the second magnet body in the direction perpendicular to the axial direction (X direction) and toward the through hole 3a (arrow B direction).
  • the third magnet body is parallel to the axial direction (X direction) and in a direction (arrow X2 direction) from the first magnet 2 (first magnet body) to the second magnet 3 (second magnet body). By magnetizing, the third magnet 4 is formed.
  • the first magnet 2, the third magnet 4, and the second magnet 3 are arranged from the X1 side toward the X2 side so that the through holes 2a, 3a, and 4a are connected to each other. Thereafter, the first magnet 2, the third magnet 4, and the second magnet 3 are joined to each other using a two-liquid mixed adhesive. Thereby, the magnetic circuit 1 for Faraday rotators is formed.
  • the Faraday element 10 made of TGG is disposed inside the through hole 1a of the magnetic circuit 1 for the Faraday rotator. At this time, the Faraday element 10 is arranged so that the center portion in the X direction of the Faraday element 10 is substantially located at the center portion in the X direction of the through hole 3a. Thereby, the Faraday rotator 100 is manufactured.
  • the high coercive force region 4b is in the vicinity of the magnetic field in the direction (arrow X1 direction) from the second magnet 3 toward the first magnet 2 along the axial direction (X direction).
  • the three magnets 4 are composed of the first magnet 2 and the second magnet 3 by forming a layered shape and a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 4a. Irreversible demagnetization of the entire third magnet 4 due to the reverse magnetic field caused by the magnetic field can be suppressed.
  • the high coercive force region 4b has a high coercive force, irreversible demagnetization due to temperature rise can also be suppressed.
  • the Faraday rotator magnetic circuit 1 of the first embodiment is particularly suitable when a TGG having a small Faraday rotation speed is used as the Faraday element 10.
  • the third magnet 4 includes the rare earth element R (containing Nd and Pr as main components and containing 50% or more of Nd), a transition element mainly containing Fe, and B
  • the coercive force of the high coercive force region 4b can be improved without substantially reducing the residual magnetic flux density. Thereby, the coercive force of the high coercive force region 4b can be easily improved while maintaining the magnetic field strength of the magnetic circuit 1 for the Faraday rotator.
  • the high coercive force region 4b is formed at a depth (thickness) L6 of at least 3 mm from the inner peripheral surface of the through hole 4a toward the inside of the third magnet 4 (in the direction of arrow A). Since the high coercive force region 4b can be provided in a range of 3 mm from the inner peripheral surface in the through hole 4a of the third magnet 4 that is likely to cause irreversible demagnetization due to a reverse magnetic field. The irreversible demagnetization at 4 can be further suppressed. Therefore, the magnetic circuit 1 for a Faraday rotator in the first embodiment is optimal for a Faraday rotator using TGG as a Faraday element.
  • the third magnet 4 is replaced with the same R—Fe—B sintered magnet as the R—Fe—B sintered magnet of the first magnet 2 and the second magnet 3.
  • the first magnet 2 and the second magnet 3 are made of an R—Fe—B based sintered magnet having a coercive force larger than that of the R—Fe—B based sintered magnet of the first magnet 2 and the second magnet 3.
  • the third magnet 4 Since the coercive force is large not only in the high coercive force region 4b of the third magnet 4 but also in the portions other than the high coercive force region 4b of the third magnet 4, the entire third magnet 4 is irreversibly demagnetized starting from the irreversibly demagnetized high coercive force region 4b. It can be suppressed more.
  • the coercive force of the third magnet 4 other than the high coercive force region 4b is at least 2350 kA / m and is smaller than the coercive force of the high coercive force region 4b.
  • the third magnet 4 is prevented from being irreversibly demagnetized not only by the high coercive force region 4b but also by the third magnet 4 having a high coercive force of at least 2350 kA / m other than the high coercive force region 4b. can do.
  • a small terbium gallium garnet (TGG) crystal is used as the Faraday element 10 if the third magnet 4 is configured to have a residual magnetic flux density of at least about 1.0 T. Also in the Faraday rotator 100, a sufficient magnetic field strength (about 1.5 T or more and about 3.0 T or less) can be generated.
  • TGG terbium gallium garnet
  • the outer diameter L1 of the first magnet 2, the second magnet 3, and the third magnet 4 is about 10 times the diameter L2 of the through holes 2a, 3a, and 4a. It is good to configure.
  • the Faraday rotator magnetism It is possible to prevent the formation of a high magnetic field strength in the circuit 1 and to suppress irreversible demagnetization in the high coercive force region 4b due to the magnetic field strength in the magnetic circuit 1 for the Faraday rotator being too high. Can be prevented from occurring easily.
  • each magnet section 220 has an arc shape (fan shape) in cross section.
  • arc shape fan shape
  • the Faraday rotator magnetic circuit 201 of the Faraday rotator 200 includes a first magnet 202 and a second magnet 203 having a cylindrical shape, as shown in FIGS. And the third magnet 4. Further, the first magnet 202 and the second magnet 203 have the same shape. In addition, the 1st magnet 202, the 2nd magnet 203, and the 3rd magnet 4 are arrange
  • through holes 202a and 203a extending in the X direction are formed at the center of the cross section (YZ plane) of the first magnet 202 and the second magnet 203, respectively.
  • the through holes 202a and 203a are examples of the “first through hole” and the “second through hole” in the present invention, respectively.
  • each of the first magnet 202 and the second magnet 203 is formed of eight magnet pieces formed by being radially divided from the central axis 1000 toward the outer peripheral surfaces of the first magnet 202 and the second magnet 203. 220 and 230 are combined.
  • the eight magnet pieces 220 and 230 are formed so as to extend in the X direction with the same arcuate (fan-shaped) cross section in the YZ plane orthogonal to the axial direction (X direction). Has been.
  • the arc angles of the magnet pieces 220 and 230 are both about 45 degrees.
  • Other configurations according to the first modification of the first embodiment are the same as those of the first embodiment.
  • восем ⁇ magnet body pieces corresponding to the eight magnet pieces 220, eight magnet body pieces corresponding to the eight magnet pieces 230, a third magnet body having a cylindrical shape and having a through hole 4a formed therein Prepare.
  • the eight magnet body pieces corresponding to the eight magnet pieces 220 and the eight magnet body pieces corresponding to the eight magnet pieces 230 have the same arcuate (fan-shaped) cross section. , So as to extend in the X direction.
  • Eight magnet pieces 220 are formed. Further, by magnetizing eight magnet body pieces corresponding to the eight magnet pieces 230 in a direction perpendicular to the axial direction (X direction) and toward a portion corresponding to the through hole 203a (arrow B direction), Eight magnet pieces 230 are formed.
  • FIG. 5 Eight magnet pieces 220 and 230 are arranged in a circumferential shape so as to form through holes 2a and 3a, respectively. Then, the eight magnet pieces 220 and 230 are bonded to each other using a two-component mixed adhesive. Thereby, the 1st magnet 202 and the 2nd magnet 203 are formed, respectively.
  • Other manufacturing processes according to the first modification of the first embodiment are the same as those of the first embodiment.
  • a Faraday rotator magnetic circuit 301 of a Faraday rotator 300 according to a second modification of the first embodiment of the present invention includes a first magnet 302 and a second magnet having a regular octagonal prism shape, as shown in FIGS. 303 and a third magnet 304.
  • the first magnet 302 and the second magnet 303 have the same shape.
  • the 1st magnet 302, the 2nd magnet 303, and the 3rd magnet 304 are arrange
  • the first magnet 302, the second magnet 303, and the third magnet 304 are all in a state having a regular octagonal cross-sectional shape in the YZ plane orthogonal to the axial direction (X direction) along the central axis 1000. It is formed to extend in the direction.
  • through holes 302a, 303a, and 304a extending in the X direction are formed at the centers of the cross sections (YZ planes) of the first magnet 302, the second magnet 303, and the third magnet 304, respectively.
  • the through holes 302a, 303a and 304a have a regular octagonal cross section (YZ plane).
  • the through holes 302a, 303a, and 304a are examples of the “first through hole”, the “second through hole”, and the “third through hole” in the present invention, respectively.
  • first magnet 302 and the second magnet 303 are each formed of eight magnet pieces formed by being radially divided from the central axis 1000 toward the outer peripheral surface side of the first magnet 302 and the second magnet 303.
  • 320 and 330 are combined.
  • the eight magnet pieces 320 and 330 have a quadrangular prism shape and are formed so as to extend in the X direction with the same trapezoidal cross section in the YZ plane orthogonal to the axial direction (X direction). Has been.
  • the third magnet 304 is formed with a high coercive force region 304b.
  • the high coercive force region 304b is formed in a layered shape and a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 304a.
  • Other configurations according to the second modification of the first embodiment are the same as those of the first embodiment.
  • the eight magnet body pieces corresponding to the eight magnet pieces 320 and the eight magnet body pieces corresponding to the eight magnet pieces 330 have the same trapezoidal cross section and extend in the X direction. Is formed.
  • the third magnet body corresponds to the third magnet 304 before being magnetized.
  • the high coercive force region 304b is formed in a layered manner and a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 304a of the third magnet body.
  • the third magnet body corresponding to the third magnet 304 is parallel to the axial direction (X direction) and is directed from the first magnet 302 (first magnet body) to the second magnet 303 (second magnet body).
  • the third magnet 304 is formed by magnetizing in the direction (arrow X2 direction).
  • Example 1 Next, referring to FIG. 1 to FIG. 8, the compositions of the Faraday rotator magnetic circuits 1, 200 and 300 according to the first embodiment and the first and second modifications of the first embodiment are confirmed. The simulation of the distribution state of the permeance coefficient and the irreversible demagnetization temperature measurement performed for this purpose will be described.
  • the outer diameter L1 in the cross section (YZ plane) of the first magnet 2, the second magnet 3, and the third magnet 4 is 50 mm, and the through hole 2a,
  • the diameter L2 of 3a and 4a was assumed to be 5 mm.
  • the length L4 in the X direction of the first magnet 2 and the second magnet 3 is both 20 mm, and the length L5 in the X direction of the third magnet 4 is assumed to be 5 mm.
  • the first magnet 2 and the second magnet 3 were assumed to have a residual magnetic flux density of 1.30 T and a coercive force of 1270 kA / m. Further, the third magnet 4 was assumed to have a residual magnetic flux density of 1.14 T and a coercive force of 2350 kA / m.
  • the permeance coefficient is small and irreversible demagnetization is likely to occur in the central portion 4c of the third magnet 4 along the X direction in the inner peripheral surface of the through hole 4a of the third magnet 4. .
  • region where a permeance coefficient is small exists in the deep position from the internal peripheral surface of the through-hole 4a rather than the internal peripheral surface of the other through-hole 4a.
  • the region where the permeance coefficient is small is formed in the central portion 4c of the third magnet 4 to a range of 3 mm (distance L7) from the inner peripheral surface of the through hole 4a.
  • the magnetic circuit 201 for a Faraday rotator including the third magnet 4 provided with the high coercive force region 4b shown in FIG. 5 is provided as Example 1 corresponding to the first modification of the first embodiment.
  • Example 1 a Faraday rotator magnetic circuit including a third magnet not provided with a high coercive force region was manufactured.
  • the first magnet, the second magnet, and the third magnet are both R-Fe having a residual magnetic flux density of 1.14 T and a coercive force of 2350 kA / m.
  • -B-type sintered magnet (NMX-33UH manufactured by Hitachi Metals, Ltd.).
  • Example 2 corresponding to the second modification of the first embodiment, a magnetic circuit 301 for a Faraday rotator including a third magnet 304 provided with a high coercive force region 304b shown in FIG. 7 was produced.
  • Comparative Example 2 with respect to Example 2 a Faraday rotator magnetic circuit including a third magnet not provided with a high coercive force region was manufactured.
  • both the first magnet and the second magnet have an R—Fe—B system firing in which the residual magnetic flux density is 1.30 T and the coercive force is 1270 kA / m. It comprised so that it might consist of a magnet (NMX-43SH by Hitachi Metals, Ltd.). Further, the third magnet is constituted by an R—Fe—B based sintered magnet (NMX-33UH manufactured by Hitachi Metals, Ltd.) having a residual magnetic flux density of 1.14 T and a coercive force of 2350 kA / m. .
  • Example 3 corresponding to the first modification of the first embodiment, a Faraday rotator magnetic circuit 201 including the third magnet 4 provided with the high coercive force region 4b shown in FIG. 5 was produced. Further, as Comparative Example 3 with respect to Example 3, a Faraday rotator magnetic circuit including a third magnet not provided with a high coercive force region was manufactured.
  • both the first magnet and the second magnet have an R—Fe—B system firing in which the residual magnetic flux density is 1.30 T and the coercive force is 1270 kA / m. It comprised so that it might consist of a magnet (NMX-43SH by Hitachi Metals, Ltd.). Further, the third magnet is constituted by an R—Fe—B based sintered magnet (NMX-33UH manufactured by Hitachi Metals, Ltd.) having a residual magnetic flux density of 1.14 T and a coercive force of 2350 kA / m. .
  • the outer diameter L1 (see FIG. 2) in the cross section (YZ plane) of the first magnet, the second magnet, and the third magnet is 50 mm. Yes, and the diameter L2 of the through hole (see FIG. 2) was 5 mm.
  • the length L4 (see FIG. 2) in the X direction of the first magnet and the second magnet is 20 mm, and the length L5 (see FIG. 2) in the X direction of the third magnet is 5 mm. did.
  • the residual magnetic flux density and coercive force were measured with a BH tracer.
  • each of the third magnet 4 (304) has a layered shape and a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 4a (304a) of the third magnet 4 (304).
  • the high coercive force region 4b (304b) was formed. Specifically, by the method described in WO2007 / 102391, the bulk body that is the RH diffusion source and the third magnet are opposed to each other and heated to 900 ° C., and the heavy rare earth element RH made of Dy is converted into the third magnet. It was introduced from the inner peripheral surface side of the through-hole 4a (304a) of the body and diffused inside the third magnet body. Further, heat treatment was performed at 800 ° C.
  • the high coercive force region is obtained by replacing the light rare earth element RL in the rare earth element R of the R 2 Fe 14 B type compound located in the outer shell portion (near the grain boundary) of the main phase with the heavy rare earth element RH. 4b (304b) was formed. Further, the high coercive force region 4b (304b) has a depth (thickness) L6 of 3 mm from the inner peripheral surface of the through hole 4a (304a) toward the inside of the third magnet 4 (304) (in the direction of arrow A) (FIG. 2). To see).
  • Example 1 to 3 and Comparative Examples 1 to 3 the first magnet, the third magnet, and the second magnet were joined to each other from the X1 side to the X2 side using a two-liquid mixed adhesive.
  • Example 1 and 2 and Comparative Examples 1 and 2 under the temperature condition of room temperature (20 ° C.), the residual magnetic flux density and the coercive force on the inner peripheral surface of the through hole of the third magnet were measured using a BH tracer. Measured.
  • the residual magnetic flux density and the coercive force on the inner peripheral surface of the through hole 4a of the third magnet 4 of the first and second embodiments are the same as the third magnet of the first and second embodiments (NMX-33UH) and the same RH. It was produced under diffusion conditions, and only the high coercive force region 4b (304b) was cut out and measured with a BH tracer.
  • Example 1 and 2 and Comparative Examples 1 and 2 the temperature was raised from room temperature (20 ° C.) to a predetermined temperature (55 ° C., 70 ° C. and 80 ° C.) and then decreased again to 20 ° C.
  • the temperature history was added to the magnetic circuit for the Faraday rotator. And the magnetic field intensity in the through-hole of the 3rd magnet after adding temperature history was measured using the magnetic probe (not shown), respectively.
  • the value of the magnetic field strength after adding the temperature history is less than 99% of the value of the magnetic field strength before adding the temperature history, it is determined that irreversible demagnetization has occurred and irreversible demagnetization has occurred.
  • the predetermined temperature (55 ° C., 70 ° C., and 80 ° C.) at that time was assumed to be the irreversible demagnetizing temperature.
  • Example 3 In the Faraday rotator magnetic circuit of Example 3 and Comparative Example 3, the temperature was raised from room temperature (20 ° C.) to a predetermined temperature (55 ° C., 70 ° C., 80 ° C. and 100 ° C.), and then again 20 A temperature history was added to the magnetic circuit for the Faraday rotator by reducing the temperature to 0C. And the magnitude
  • Example 2 and Comparative Example 2 As the experimental results shown in Table 1, the magnetic field strengths of Example 2 and Comparative Example 2 in which R—Fe—B sintered magnets having a residual magnetic flux density of 1.30 T were used as the first magnet and the second magnet (2. 3T) is larger than the magnetic field strength (2.0 T) of Example 1 and Comparative Example 1 in which R-Fe-B sintered magnets having a residual magnetic flux density of 1.14 T are used for the first magnet and the second magnet. became.
  • the coercive force on the inner peripheral surface of the through hole of the third magnet is 2800 kA / m. It became larger than the coercive force (2350 kA / m) in parts other than the high coercive force region 4b (304b) of the magnet 4 (304).
  • the third magnet is not provided with a high coercive force region
  • the normal coercive force (2350 kA / m) of the third magnet is obtained, whereas in the Comparative Example 2 in which the third magnet is not provided with a high coercive force region.
  • the coercive force became 1680 kA / m.
  • the magnetic field strength (2.3 T) of the comparative example 2 is higher than the magnetic field strength (2.0 T) of the comparative example 1, so that the magnetic circuit strength for the Faraday rotator of the comparative example 2 was already manufactured. This is considered to be because irreversible demagnetization occurred in the third magnet due to the reverse magnetic field caused by the magnetic field composed of one magnet and the second magnet.
  • the irreversible demagnetization temperature of Example 3 was 100 ° C. This is because the high coercive force region 4b (304b) is provided in the vicinity of the inner peripheral surface of the through hole 4a (304a) of the third magnet 4 (304) in which the irreversible demagnetization is likely to occur in the first to third embodiments. This is probably because irreversible demagnetization could be suppressed in the following temperature range.
  • the first magnet 2 and the second magnet 3 of the magnetic circuit 401 for the Faraday rotator sandwich the third magnet 4 and the central axis 1000 A case will be described in which they are alternately arranged along the extending axial direction.
  • the Faraday rotator magnetic circuit 401 of the Faraday rotator 400 includes two first magnets 2, two second magnets 3, and 3 having a cylindrical shape.
  • the first magnet 2 and the second magnet 3 are alternately arranged with the third magnet 4 interposed therebetween along the axial direction (X direction) in which the central axis 1000 extends.
  • X direction axial direction
  • the first magnet 2, the third magnet 4, the second magnet 3, the third magnet 4, the first magnet 2, the third magnet 4, and the second magnet 3 are sequentially arranged. Has been placed.
  • the three third magnets 4 are magnetized in a direction parallel to the axial direction (X direction) and from the first magnet 2 toward the second magnet 3. That is, the third magnet 4 (two on both ends) where the first magnet 2 is located on the X1 side is magnetized in the direction of the arrow X2, while the third magnet 4 (where the first magnet 2 is located on the X2 side). One on the center side is magnetized in the direction of the arrow X1.
  • a high coercive force region 4b is formed in the vicinity of the inner peripheral surface of the through holes 4a of the three third magnets 4.
  • the high coercive force region 4 b is formed in a layered shape and a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 4 a of the third magnet 4.
  • Other structures according to the second embodiment are the same as those of the first embodiment.
  • two first magnets 2, two second magnets 3, and three third magnets 4 are formed by the same manufacturing process as in the first embodiment.
  • the two first magnets 2, the two second magnets 3, and the three third magnets 4 are moved from the X1 side toward the X2 side, the first magnet 2, the third magnet 4, the second magnet 3, and the third magnet. 4, the first magnet 2, the third magnet 4, and the second magnet 3 are arranged in this order. And the 1st magnet 2, the 2nd magnet 3, and the 3rd magnet 4 which were arrange
  • the third magnet 4 (two at both ends) where the first magnet 2 is located on the X1 side is arranged so that the magnetization direction is in the direction of the arrow X2, and the first magnet 2 is located on the X2 side.
  • the third magnet 4 (one on the center side) is arranged so that the magnetization direction is the arrow X1 direction. Thereby, the magnetic circuit 401 for the Faraday rotator is formed.
  • Other manufacturing processes according to the second embodiment are the same as those of the first embodiment.
  • the high coercive force region 4b is formed in a layered and circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surfaces of the through holes 4a of the three third magnets 4.
  • the high coercive force region 4b having a higher coercive force than the other part so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 4a of the third magnet 4 that is likely to cause irreversible demagnetization. Therefore, the irreversible demagnetization of the high coercive force region 4b and the third magnet 4 as a whole can be suppressed.
  • the high coercive force region 4b has a high coercive force, irreversible demagnetization due to temperature rise can also be suppressed.
  • the first magnet 2 and the second magnet 3 are arranged in this order.
  • the Faraday rotator 400 can be configured to obtain the Faraday effect.
  • the remaining effects of the second embodiment are similar to those of the first embodiment.
  • a Faraday rotator magnetic circuit 501 of a Faraday rotator 500 according to a modification of the second embodiment of the present invention includes two first magnets 202 having two cylindrical shapes and two second magnets 203 as shown in FIG. And three third magnets 4. Moreover, both the 1st magnet 202 and the 2nd magnet 203 have the same structure as the 1st modification of above-described 1st Embodiment. That is, the first magnet 202 and the second magnet 203 are configured by combining eight magnet pieces 220 and 230, respectively. Other configurations according to the modification of the second embodiment are the same as those of the second embodiment.
  • Example 4 In the irreversible demagnetization temperature measurement, a Faraday rotator including three third magnets 4 provided with a high coercive force region 4b (see FIG. 10) is provided as Example 4 corresponding to the modification of the second embodiment shown in FIG. A magnetic circuit 501 was prepared. Further, as Comparative Example 4 with respect to Example 4, a magnetic circuit for a Faraday rotator including three third magnets not provided with a high coercive force region was manufactured.
  • both the first magnet and the second magnet have an R—Fe—B system firing in which the residual magnetic flux density is 1.30 T and the coercive force is 1270 kA / m. It comprised so that it might consist of a magnet (NMX-43SH by Hitachi Metals, Ltd.). Further, the third magnet is constituted by an R—Fe—B based sintered magnet (NMX-33UH manufactured by Hitachi Metals, Ltd.) having a residual magnetic flux density of 1.14 T and a coercive force of 2350 kA / m. .
  • Example 4 and Comparative Example 4 the outer diameter L1 (see FIG. 10) in the cross section (YZ plane) of the first magnet, the second magnet, and the third magnet is 50 mm, and the through hole The diameter L2 (see FIG. 10) was 5 mm. Further, the length L4 (see FIG. 10) in the X direction of the first magnet and the second magnet is 20 mm, and the length L5 (see FIG. 10) in the X direction of the third magnet is 5 mm. did.
  • the high coercive force region 4b was formed in a layered shape and a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 4a of the three third magnets 4. . Further, the high coercive force region 4b was formed from the inner peripheral surface of the through hole 4a to the depth (thickness) L6 (see FIG. 10) of 3 mm from the inside of the third magnet 4 (in the direction of arrow A).
  • Example 4 and Comparative Example 4 the first magnet, the third magnet, the second magnet, the third magnet, the first magnet, the third magnet, and the second magnet in this order from the X1 side toward the X2 side. They were joined to each other using a two-component mixed adhesive. At this time, the third magnets (two on both ends) where the first magnet is located on the X1 side are arranged so that the magnetization direction is in the direction of the arrow X2, and the third magnet is located on the X2 side. The magnet (one on the center side) was arranged so that the direction of magnetization was in the direction of arrow X1.
  • Example 4 In the Faraday rotator magnetic circuit of Example 4 and Comparative Example 4, the temperature was raised from room temperature (20 ° C.) to a predetermined temperature (55 ° C., 70 ° C., 80 ° C. and 100 ° C.), A temperature history was added to the magnetic circuit for the Faraday rotator by reducing the temperature to 0C. And the magnitude
  • Example 4 in which the high coercive force regions 4b are provided in the three third magnets 4, the value of the magnetic field strength after applying the temperature history is 80 ° C. or less in the temperature range. While it was 99% or more of the magnetic field strength value before adding the history, the magnetic field strength value after adding the temperature history at 100 ° C. was less than 99% of the magnetic field strength value before adding the temperature history. there were. That is, the irreversible demagnetization temperature of Example 4 was 100 ° C.
  • Example 4 the high coercive force region 4b is provided in the vicinity of the inner peripheral surface of the through hole 4a of the third magnet 4 where irreversible demagnetization is likely to occur, so that irreversible demagnetization is suppressed in a temperature range of 80 ° C. or lower. This is probably because it was made.
  • the value of the magnetic field strength after applying the temperature history in the temperature range of 55 ° C. or lower is the magnetic field strength before adding the temperature history.
  • the magnetic field strength value after applying the temperature history was less than 99% of the magnetic field strength value before adding the temperature history. That is, the irreversible demagnetization temperature of Comparative Example 4 was 70 ° C. This is thought to be due to the fact that irreversible demagnetization occurred in the vicinity of the inner peripheral surface of the through hole of the third magnet in the temperature range of 70 ° C. or higher in Comparative Example 4.
  • the value of the magnetic field strength after adding the temperature history is 99% of the value of the magnetic field strength before adding the temperature history. It is thought that it became less than%.
  • the cylindrical third magnet 604 is a cylindrical magnet positioned on the X1 side.
  • the piece 640 and the cylindrical magnet piece 650 located on the X2 side are formed by being combined in the axial direction (X direction) along the central axis 1000.
  • the magnet pieces 640 and 650 are formed by dividing the third magnet 604 into the X1 side and the X2 side by a YZ plane passing through the center of the third magnet 604 in the X direction.
  • Magnet pieces 640 and 650 are examples of the “first magnet piece” in the present invention.
  • the magnet pieces 640 and 650 have through holes 640a and 650a and high coercive force regions 640b and 650b, respectively.
  • the through holes 640a and 650a are connected to each other to form a through hole 604a.
  • the through holes 640a and 650a are configured to be connected to the through holes 2a and 3a, respectively.
  • the through hole 604a is an example of the “third through hole” in the present invention.
  • the high coercive force regions 640b and 650b are combined to form a high coercive force region 604b.
  • the high coercive force regions 640b and 650b are layered and circumferentially so as to surround the inner peripheral surface over the entire inner peripheral surface of the through holes 640a and 650a (through hole 604a). Is formed.
  • the high coercive force regions 640b and 650b are examples of the “second high coercive force region” in the present invention.
  • the other structure according to the third embodiment is the same as that of the first embodiment.
  • two cylindrical magnet pieces corresponding to the magnet pieces 640 and 650 are prepared. Then, high coercive force regions 640b and 650b are formed over the entire inner peripheral surfaces of the through holes 640a and 650a of the two magnet body pieces, respectively. Thereafter, the two magnet body pieces are parallel to the axial direction (X direction) and are directed from the first magnet 2 (first magnet body) to the second magnet 3 (second magnet body) (arrow X2 direction). Magnet pieces 640 and 650 shown in FIG. 13 are formed.
  • the magnet pieces 640 and 650 are arranged along the axial direction (X direction, see FIGS. 1 and 2) so that the through holes 640a and 650a are connected to each other. Then, the magnet pieces 640 and 650 are joined to each other using a two-component mixed adhesive. Thereby, the third magnet 604 shown in FIG. 13 is formed.
  • the other manufacturing processes according to the third embodiment are the same as those in the first embodiment.
  • the high coercive force regions 640b and 650b are spread over the entire inner peripheral surface of the through hole 640a of the magnet piece 640 and the inner peripheral surface of the through hole 650a of the magnet piece 650, respectively.
  • the entire inner peripheral surface of the through hole 640a of the magnet piece 640 and the inner peripheral surface of the through hole 650a of the magnet piece 650 that easily cause irreversible demagnetization.
  • the high coercive force regions 640b and 650b having a higher coercive force than the other portions can be provided, the irreversible demagnetization of the high coercive force region 604b and the third magnet 604 can be suppressed. Further, since the high coercive force regions 640b and 650b have a high coercive force, irreversible demagnetization due to a temperature rise can be suppressed.
  • the pieces 640 and 650 are combined in the axial direction to form a high coercive force region 604b composed of the high coercive force regions 640b and 650b, and the high coercive force regions 640b and 650b (high coercive force region 604b) are respectively formed on the magnet pieces 640.
  • the third magnet 604 has a large thickness in the axial direction (X direction).
  • the inner peripheral surface of each magnet piece 640 and 650 can be provided reliably high-coercivity regions 640b and 650b.
  • the high coercive force region 604b of the third magnet 604 can be more reliably formed by combining the magnet pieces 640 and 650 provided with the high coercive force regions 640b and 650b.
  • the remaining effects of the third embodiment are similar to those of the first embodiment.
  • the third magnets 704 of the Faraday rotator magnetic circuit 701 are divided into four in the axial direction (X direction) along the central axis 1000. The case where it is divided will be described.
  • the Faraday rotator magnetic circuit 701 of the Faraday rotator 700 includes a first magnet 702, a second magnet 703, and a third magnet having a regular quadrangular prism shape, as shown in FIGS. 704.
  • Through holes 702a, 703a and 704a (see FIG. 15) having a square cross-sectional shape are formed at the centers of the cross sections (YZ plane) of the first magnet 702, the second magnet 703 and the third magnet 704, respectively.
  • the 1st magnet 702, the 2nd magnet 703, and the 3rd magnet 704 are formed so that it may extend in a Z direction.
  • the through holes 702a, 703a, and 704a are examples of the “first through hole”, the “second through hole”, and the “third through hole” in the present invention, respectively.
  • the first magnet 702, the second magnet 703, and the third magnet 704 are radially divided from the central axis 1000 toward the outer peripheral surfaces of the first magnet 702, the second magnet 703, and the third magnet 704, respectively.
  • the four magnet pieces 720, 730, and 760 formed in this manner are combined.
  • portions corresponding to the through holes 702a, 703a, and 704a out of the four square corners are square. It has a cross section of the shape cut out.
  • the through holes 702a, 703a and 704a are formed by combining magnet pieces 720, 730 and 760 in a circumferential shape, respectively.
  • first magnet 702 is magnetized clockwise around the central axis 1000 as a rotation axis when viewed from the X1 side by combining four magnet pieces 720 magnetized in the direction perpendicular to the axial direction (X direction).
  • the second magnet 703 is magnetized counterclockwise around the central axis 1000 as a rotation axis when viewed from the X1 side by combining four magnet pieces 730 magnetized in the direction perpendicular to the axial direction (X direction). ing.
  • high coercive force regions 760b are formed in the vicinity of the inner peripheral surface on the through hole 704a side of the four magnet pieces 760, respectively.
  • the four high coercive force regions 760b are combined to form the high coercive force region 704b of the third magnet 704.
  • the high coercive force region 704b is formed in a layered shape and a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 704a.
  • the remaining structure according to the fourth embodiment is similar to that of the first embodiment.
  • the twelve magnet body pieces include four magnet body pieces corresponding to the four magnet pieces 720, four magnet body pieces corresponding to the four magnet pieces 730, and four magnet bodies corresponding to the four magnet pieces 760.
  • the pieces are formed such that the magnetization direction extends in the direction of the white arrow in FIG. 15 in a state where the through holes 702a, 703a, and 704a are formed.
  • a high coercive force region 760b is formed in the vicinity of the inner peripheral surface of the four magnet body pieces corresponding to the four magnet pieces 760 on the through hole 704a side. Thereafter, the magnet body pieces are magnetized in a predetermined direction (in the direction of the white arrow) to form four magnet pieces 720, four magnet pieces 730, and four magnet pieces 760.
  • the four magnet pieces 720, the four magnet pieces 730, and the four magnet pieces 760 are arranged circumferentially so as to form the through holes 702a, 703a, and 704a, respectively.
  • the four magnet pieces 720 are arranged so as to be magnetized clockwise with the central axis 1000 as the rotation axis when viewed from the X1 side.
  • the four magnet pieces 730 are arranged so as to be magnetized counterclockwise with the central axis 1000 as the rotation axis when viewed from the X1 side.
  • the four magnet pieces 760 are arranged so as to be magnetized in a direction parallel to the axial direction (X direction) and from the first magnet 702 toward the second magnet 703.
  • the four magnet pieces 720, the four magnet pieces 730, and the four magnet pieces 760 are bonded to each other using a two-liquid mixed adhesive. Thereby, the 1st magnet 702, the 2nd magnet 703, and the 3rd magnet 704 are formed, respectively.
  • the other manufacturing processes according to the fourth embodiment are the same as those of the first embodiment.
  • the high coercive force region 704b is formed in a layered shape and a circumferential shape so as to surround the inner peripheral surface over the entire inner peripheral surface of the through hole 704a of the third magnet 704.
  • a high coercive force region 704b having a higher coercive force than other portions can be provided over the entire inner peripheral surface of the through hole 704a of the third magnet 704 that is likely to cause irreversible demagnetization. Irreversible demagnetization in the entire region 704b and the third magnet 704 can be suppressed.
  • the high coercive force region 704b has a high coercive force, irreversible demagnetization due to a temperature rise can be suppressed.
  • the inner circumference of the through hole 704a is obtained by combining the four magnet pieces 760 formed by dividing the third magnet 704 along the axial direction (X direction). If a high coercive force region 704b composed of four high coercive force regions 760b is formed so as to surround the inner peripheral surface over the entire area of the surface, the inner peripheral surface of the through hole 704a is formed into four magnet pieces. 760 can be divided into 760, and compared with the case where the high coercive force region 704b is provided on the inner peripheral surface of the through-hole 704a in a state where the through-hole 704a is formed, the divided through-hole among the four magnet pieces 760 is divided.
  • the high coercive force region 760b can be reliably provided on the surface corresponding to the inner peripheral surface of 704a. Thereby, the high coercive force region 704b of the third magnet 704 can be more reliably formed by combining the four magnet pieces 760 provided with the high coercive force region 760b.
  • the remaining effects of the fourth embodiment are similar to those of the first embodiment.
  • the first magnet 802, the second magnet 803, and the third magnet 804 of the Faraday rotator magnetic circuit 801 are each a rectangular parallelepiped. The case where it consists of four magnet pieces 820, 830 and 870 in a shape will be described.
  • the first magnet 802, the second magnet 803, and the third magnet 804 are respectively It is formed by combining four rectangular parallelepiped magnet pieces 820, 830 and 870.
  • a through hole 802a having a square cross-sectional shape, 803a and 804a are formed at the center of the cross section (YZ plane) orthogonal to the axial direction (X direction) of the first magnet 802, the second magnet 803, and the third magnet 804, respectively.
  • the through holes 802a, 803b and 804a are each formed by combining four rectangular parallelepiped magnet pieces 820, 830 and 870 in a circumferential shape.
  • the through holes 802a, 803b, and 804a are examples of the “first through hole”, the “second through hole”, and the “third through hole” in the present invention, respectively.
  • the inner peripheral surface of the third magnet 904 of the Faraday rotator magnetic circuit 901 is directed from both ends 4d and 4e toward the center 4c.
  • the case where the high coercive force region 904b is formed so that the distribution range becomes large will be described.
  • a high coercive force region 904b is formed on the inner peripheral surface of the through hole 4a of the third magnet 904, as shown in FIG. Yes.
  • the distribution range (depth) from the inner peripheral surface of the through hole 4a toward the inside of the third magnet 904 (arrow A direction) is the both end portions 4d on the X1 side and the X2 side of the third magnet 904. And from 4e, it is comprised so that it may become large gradually toward the center part 4c side.
  • the remaining structure according to the fifth embodiment is similar to that of the first embodiment.
  • the high coercive force region 904b has a distribution range from the inner peripheral surface of the through hole 4a toward the inside of the third magnet 904 (in the direction of arrow A), and the X1 side of the third magnet 904 and It is the same as that of 1st Embodiment except forming in the internal peripheral surface of the through-hole 4a so that it may become large gradually toward both ends 4d and 4e by the side of X2, and the center part 4c side.
  • the distribution range of the high coercive force region 904b from the inner peripheral surface of the through hole 4a toward the inside of the third magnet 904 is the X1 side of the third magnet 904 and
  • the X1 side of the third magnet 904 By configuring so as to gradually increase from both end portions 4d and 4e on the X2 side toward the central portion 4c side, other inner surfaces of the through holes 4a of the third magnet 904 that easily cause irreversible demagnetization Since the high coercive force region 904b having a higher coercive force than the portion can be provided, irreversible demagnetization in the entire high coercive force region 904b and the third magnet 904 can be suppressed.
  • the high coercive force region 904b has a high coercive force, irreversible demagnetization due to a temperature rise can be suppressed. Further, since the high coercive force region 904b can be distributed over a wider range at the central portion 4c that is more likely to cause irreversible demagnetization due to a reverse magnetic field, the irreversible demagnetization at the central portion 4c of the third magnet 904 is reduced. It can be effectively suppressed by the concentration of the heavy rare earth element RH.
  • the remaining effects of the fifth embodiment are similar to those of the first embodiment.
  • the high coercive force region may be provided over the entire area of the third magnet by diffusing the heavy rare earth element RH from the entire area of the surface of the third magnet into the inside of the third magnet. Thereby, the irreversible demagnetization in the whole 3rd magnet can be suppressed more.
  • the high coercive force region is provided only in the third magnet.
  • the present invention is not limited to this.
  • the high coercive force region may be provided not only in the third magnet but also in the first magnet and the second magnet.
  • the high coercive force region is provided in the central portion in the axial direction on the inner surface and outer peripheral surface of the through hole. preferable.
  • the heavy rare earth element RH is diffused from the through hole side of the third magnet body and the magnet piece into the third magnet body and the magnet piece based on the RH diffusion method.
  • the third magnet and the magnet piece are composed of an inner diameter side magnet piece and an outer diameter side magnet piece, and the RH diffusion method is applied to the inner surface of the through hole of the inner diameter side magnet piece or the entire inner diameter side magnet piece.
  • a high coercive force region is formed in the inner diameter side magnet piece.
  • the high coercive force region is preferably formed to a depth of at least 3 mm from the inner peripheral surface of the through hole toward the inside of the third magnet and the magnet piece.
  • the R—Fe—B sintered magnet having a coercive force of about 2350 kA / m is used as the third magnet.
  • the present invention is not limited to this. I can't.
  • an R—Fe—B based sintered magnet having a coercive force greater than about 2350 kA / m may be used, or a magnet other than the R—Fe—B based sintered magnet may be used. May be.
  • the third magnet 904 is an integral magnet
  • the present invention is not limited to this.
  • the third magnet 904 may be divided into two in the YZ plane, like the third magnet 604 of the third embodiment.
  • the heavy rare earth element RH is diffused by the method described in WO2007 / 102391 in a state where the through hole 640a of the magnet piece 640 and the through hole 650a of the 650 are opposed to the bulk body that is the RH diffusion source,
  • the heavy rare earth element RH is diffused not only on the inner peripheral surfaces of the through holes 640a and 650a but also on the surface facing the bulk body.
  • the surface of the magnet piece 640 in which the heavy rare earth element RH is diffused and the surface of the magnet piece 650 in which the heavy rare earth element RH is diffused are bonded using a two-component mixed adhesive. .
  • the surfaces facing the bulk body in which the heavy rare earth element RH is diffused substantially over the entire surface can be arranged in the central portion 4c of the third magnet 904.
  • the distribution range from the inner peripheral surface of the through-hole 4a toward the inside of the third magnet 904 (in the direction of the arrow A) can be easily distributed between the X1 side and the X2 side ends of the third magnet 904. It can be formed so as to gradually increase from 4d and 4e toward the central portion 4c.
  • the present invention is suitable for a Faraday rotator for a high-power laser using TGG as a Faraday element.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 不可逆減磁が発生するのを抑制することが可能なファラデー回転子用磁気回路を提供する。このファラデー回転子用磁気回路(100、200、300、400、500、600、700、800、900)は、第1磁石(2、202、302、702、802)と、第2磁石(3、203、303、703、803)と、第3磁石(4、304、604、704、804、904)とを備え、第3磁石の第3貫通孔(4a、304a、604a、704a、804a、904a)の少なくとも内周面近傍には、第1高保磁力領域(4b、304b、604b、704b、904b)が設けられている。

Description

ファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法
 本発明は、ファイバーレーザーなどの高出力レーザーに用いられるファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法に関する。
 ファラデー回転子は、ファラデー回転子用磁気回路とファラデー素子とからなり、ファラデー効果によって光を一方向のみ通し、逆方向には遮断するデバイスである。ファラデー素子に対してファラデー回転子用磁気回路により磁界を印加させると、レーザー光がファラデー素子から出る際にはレーザー光の偏光面が所定の回転角度になるように構成されている。
 ファラデー回転子は様々な用途に使われており、通信用のファラデー回転子には、ファラデー素子としてイットリウム鉄ガーネット(YIG)等の希土類鉄ガーネットのファラデー素子が使用される。また、ファラデー素子に印加される磁界を作り出すファラデー回転子用磁気回路には、フェライト磁石が使用されている。
 一方、加工やマーキングに使用される高出力レーザー用のファラデー回転子に、イットリウム鉄ガーネット(YIG)等の希土類鉄ガーネットのファラデー素子を用いた場合には、ファラデー素子の結晶が光を吸収することにより温度が上昇する。この結果、レーザー光の焦点がずれることに起因して、ファラデー素子の光の遮断特性に影響を与えるという問題点があった。このため、高出力レーザー用のファラデー回転子には、ファラデー素子として温度依存性が小さい(温度上昇に伴う焦点のずれが起こりにくい)テルビウムガリウムガーネット(TGG)の結晶がファラデー素子として用いられる。
 しかしながら、このTGGは、イットリウム鉄ガーネット(YIG)等の希土類鉄ガーネットと比べて、ファラデー回転係数(ベルデ定数)が小さい。このため、所定の回転角度を得るためには、ファラデー素子に印加する磁界強度を向上させるか、または、ファラデー素子を長くする必要があった。ここで、ファラデー素子を長くする場合には、ファラデー素子が配置されるファラデー回転子用磁気回路も長くなってしまい、ファラデー回転子が大型化してしまうという不都合があった。また、ファラデー素子であるTGGの結晶自体を長く構成すると光が結晶内で歪むため、補正するための高価な光学ガラスも必要となるという不都合もあった。このため、従来から、ファラデー回転子の大型化を抑制するためのファラデー回転子用磁気回路が知られている。このようなファラデー回転子用磁気回路は、たとえば、特開2009-229802号公報に開示されている。
 特開2009-229802号公報には、光軸と垂直で光軸に向かう方向に磁化された第1の磁石と、光軸と垂直で光軸から離れる方向に磁化された第2の磁石と、これらの間に配置され光軸と平行で、かつ、第2の磁石から第1の磁石に向かう方向に磁化された第3の磁石とで構成された磁気回路と、ファラデー素子とを備える小型ファラデー回転子が開示されている。この特開2009-229802号公報の小型ファラデー回転子の磁気回路にはファラデー素子が配置される孔部が設けられている。また、孔部における第1の磁石と第2の磁石とから構成される磁界の方向は、光軸と平行で、かつ、第1の磁石から第2の磁石に向かう方向になるように構成されている。つまり、孔部における第1の磁石と第2の磁石とから構成される磁界の方向は、第3の磁石の磁化方向と逆の方向になるように構成されている。また、第1の磁石と第2の磁石の光軸方向の長さをL2、第3の磁石の光軸方向の長さをL3としたとき、L2/10≦L3≦L2の関係が成立するように構成されている。
特開2009-229802号公報
 しかしながら、特開2009-229802号公報に記載のファラデー回転子では、高出力レーザーに用いるために高い磁界強度を有するファラデー回転子用磁気回路を用いた場合に、孔部における第3の磁石の磁化方向と、第1の磁石と第2の磁石とから構成された磁界の方向とが逆方向になるため、逆磁界に起因して第3の磁石の磁石動作点が低くなる。このため、第3の磁石が不可逆減磁しやすくなるという問題点がある。また、高出力のレーザーに用いられる場合には、ファラデー素子がTGGからなる場合であっても温度上昇しやすいため、70℃以上の温度上昇に伴う熱エネルギーに起因して、さらに第3の磁石が不可逆減磁しやすくなるという問題点もある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、不可逆減磁が発生するのを抑制することが可能なファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法を提供することである。
課題を解決するための手段および発明の効果
 この発明の第1の局面によるファラデー回転子用磁気回路は、ファラデー回転子のファラデー素子が内部に配置されるファラデー回転子用磁気回路であって、軸方向に延びる第1貫通孔を含み、軸方向と垂直でかつ第1貫通孔から離れる方向に磁化されている第1磁石と、軸方向に延びる第2貫通孔を含み、軸方向と垂直でかつ第2貫通孔に向かう方向に磁化されている第2磁石と、軸方向の第1磁石と第2磁石との間に配置され、軸方向と平行で、かつ、第1磁石から第2磁石に向かう方向に磁化されている第3磁石とを備え、第3磁石は、第1貫通孔および第2貫通孔を接続するように軸方向に延びるとともに、ファラデー素子が内部に配置される第3貫通孔を含み、第3磁石の第3貫通孔の少なくとも内周面近傍には、第1高保磁力領域が設けられている。
 この発明の第1の局面によるファラデー回転子用磁気回路では、上記のように、第3磁石の第3貫通孔の少なくとも内周面近傍に第1高保磁力領域を設けることによって、第1磁石と第2磁石とから構成された磁界に起因する逆磁界によって不可逆減磁を起こしやすい第3磁石の第3貫通孔の内周面近傍に、第3磁石の他の部分よりも保磁力の高い第1高保磁力領域を設けることができるので、第1高保磁力領域における不可逆減磁を抑制することができる。これにより、第3磁石の全体が内周面近傍に設けられた第1高保磁力領域によって不可逆減磁されるのを抑制することができる。また、第1高保磁力領域は保磁力が高いので、温度上昇に起因する不可逆減磁も抑制することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第3磁石に設けられる第1高保磁力領域は、第3磁石の第3貫通孔の内周面のうちの軸方向に沿った第3磁石の少なくとも中央部に設けられている。このように構成すれば、逆磁界による不可逆減磁をより起こしやすい第3磁石の第3貫通孔の内周面のうちの軸方向に沿った第3磁石の中央部に、他の部分よりも保磁力の高い第1高保磁力領域を設けることができるので、第3磁石での不可逆減磁を効果的に抑制することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第1磁石と第2磁石とから構成される磁界のうち、第1磁石の磁化方向および第2磁石の磁化方向と略直交する軸方向で、かつ、第2磁石から第1磁石に向かう方向に向かう磁界の近傍に位置する第3磁石の部分に、第1高保磁力領域が設けられている。このように構成すれば、逆磁界による不可逆減磁を起こしやすい第3磁石の部分に、他の部分よりも保磁力の高い第1高保磁力領域を設けることができるので、第3磁石での不可逆減磁を抑制することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第3磁石は、希土類元素R(Nd、Prを主成分とし、Ndを50%以上含む)と、Feを主とする遷移元素と、B(ホウ素)とを主に含むR-T-B系磁石からなり、第1高保磁力領域は、重希土類元素が第3磁石の第3貫通孔の内周面近傍に濃化することによって形成されている。前記内周面近傍は、R-T-B系焼結磁石の主相中の軽希土類元素であるNdまたはPrの一部のみを重希土類元素であるDyまたはTbに置換することによって重希土類元素が濃化しているので、残留磁束密度の低下を抑制しつつ、第1高保磁力領域の保磁力を向上させることができる。その結果、ファラデー回転子用磁気回路の磁界強度を維持しつつ、第1高保磁力領域を含む第3磁石の保磁力を向上させることができる。
 この場合、好ましくは、第1高保磁力領域は、正方晶であるR2Fe14B型化合物の主相を主体とするとともに、主相の外殻部にDyおよびTbの少なくともいずれか一方からなる重希土類元素が外部から拡散され、濃化することによって形成されている。このように、第3磁石の第3貫通孔の内周面近傍にDyおよびTbの少なくともいずれか一方からなる重希土類元素を濃化させることによって、残留磁束密度の低下を略生じさせることなく、保磁力が向上した第1高保磁力領域を含む第3磁石を容易に形成することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第1高保磁力領域は、ファラデー素子が内部に配置される第3貫通孔を取り囲むように周状に設けられている。このように構成すれば、ファラデー素子を取り囲むように第1高保磁力領域を設けることができるので、逆磁界の影響が第3磁石に及ぶのをより抑制することができる。その結果、第3磁石での不可逆減磁をより抑制することができる。
 上記第1高保磁力領域が第3磁石の中央部に設けられているファラデー回転子用磁気回路において、好ましくは、第1高保磁力領域は、第3貫通孔の内周面における軸方向の全域に渡って設けられている。このように構成すれば、第3磁石での不可逆減磁をより抑制することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第1高保磁力領域は、軸方向と直交し、かつ、第3貫通孔から離れる方向に第3貫通孔の内周面から3mm以上の範囲に渡って形成されている。このように構成すれば、第3磁石での不可逆減磁をより抑制することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第3磁石の第1高保磁力領域以外の部分の保磁力は、第1磁石および第2磁石の保磁力以上である。このように構成すれば、第3磁石の第1高保磁力領域だけでなく、第3磁石の第1高保磁力領域以外の部分も保磁力が大きいので、第1高保磁力領域を発端として第3磁石の全体が不可逆減磁するのをより有効に抑制することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第3磁石の第1高保磁力領域以外の部分の保磁力は、2350kA/m以上であるとともに、第1高保磁力領域の保磁力よりも小さい。このように構成すれば、第1高保磁力領域のみならず、第1高保磁力領域以外の2350kA/m以上の高い保磁力を有する第3磁石の部分によっても、第3磁石が不可逆減磁するのを抑制することができる。さらに好ましくは、第3磁石は1.0T以上の残留磁束密度を有する。このように構成すれば、十分な磁界強度を発生させることができるので、テルビウムガリウムガーネット(TGG)の結晶をファラデー素子として用いる小型のファラデー回転子においても、所望の回転角度を得ることができる。
 上記第1高保磁力領域が第3磁石の中央部に設けられているファラデー回転子用磁気回路において、好ましくは、第1高保磁力領域は、第3貫通孔から離れる方向の内周面からの分布範囲が、軸方向に沿った第3磁石の両端部側から中央部側に向かって大きくなるように構成されている。このように構成すれば、第1高保磁力領域を、逆磁界による不可逆減磁をより起こしやすい中央部でより広い範囲に分布させることができるので、より少ないDy、Tbの少なくともいずれかの重希土類元素の拡散によって第3磁石の中央部での不可逆減磁を効果的に抑制することができる。なお、逆磁界により不可逆減磁を起こしやすい分布範囲が第3磁石の両端部側から中央部側に向かって大きくなる点については、後述するシミュレーションにおいて確認済みである。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第3磁石は、軸方向と直交する面で分断されることにより形成されるととともに、各々に第2高保磁力領域が設けられている複数の第1磁石片が軸方向に組み合わされて、複数の第2高保磁力領域からなる第1高保磁力領域が構成されており、複数の第2高保磁力領域からなる第1高保磁力領域は、第3貫通孔の少なくとも内周面近傍に設けられている。このように構成すれば、貫通孔の内周面を複数の第1磁石片に分割することができるので、貫通孔が形成されている状態で貫通孔の内周面に第1高保磁力領域を設ける場合と比べて、個々の第1磁石片のうち、分割された貫通孔の内周面に対応する面に、確実に第2高保磁力領域を設けることができる。これにより、第2高保磁力領域が設けられている複数の第1磁石片を組み合わせることによって、第3磁石の第1高保磁力領域をより確実に形成することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第1磁石と第2磁石とは、第3磁石を間に挟んで軸方向に沿って交互に並ぶように配置されている。このように構成すれば、第1磁石と第2磁石と第3磁石とを1単位とするファラデー回転子用磁気回路を有するファラデー回転子では十分なファラデー効果が得られない場合であっても、第1磁石と第2磁石とを第3磁石を間に挟んで軸方向に沿って交互に並ぶように配置することによって、複数単位のファラデー回転子用磁気回路を形成することができる。これにより、十分なファラデー効果が得られるようにファラデー回転子を構成することができる。
 上記第1の局面によるファラデー回転子用磁気回路において、好ましくは、第1磁石、第2磁石および第3磁石の軸方向と直交する方向における一方端から他方端までの距離は、第1距離であり、第1貫通孔、第2貫通孔および第3貫通孔の軸方向と直交する方向における一方端から他方端までの距離は、第2距離であり、第1距離は、第2距離の8倍以上20倍以下である。このように構成すれば、第1距離を第2距離の8倍以上にすることによって、ファラデー回転子用磁気回路において高い磁界強度を形成するのが困難になるのを抑制することができる。また、第1距離を第2距離の20倍以下にすることによって、ファラデー回転子用磁気回路における磁界強度が高すぎることに起因して、第1高保磁力領域において不可逆減磁が起きやすくなるのを抑制することができる。
 この発明の第2の局面によるファラデー回転子用磁気回路の製造方法は、軸方向に延びる第1貫通孔を含み、軸方向と垂直でかつ第1貫通孔から離れる方向に磁化されている第1磁石と、軸方向に延びる第2貫通孔を含み、軸方向と垂直でかつ第2貫通孔に向かう方向に磁化されている第2磁石と、第1貫通孔および第2貫通孔を接続するように軸方向に延びるとともに、ファラデー素子が内部に配置される第3貫通孔を含み、軸方向と平行で、かつ、第1磁石から第2磁石に向かう方向に磁化されている第3磁石とを備えるファラデー回転子用磁気回路の製造方法であって、希土類元素R(Nd、Prを主成分とし、Ndを50%以上含む)と、Feを主とする遷移元素と、B(ホウ素)とを主に含むR-T-B系磁石からなる第3磁石の第3貫通孔の内周面から重希土類元素を拡散させることによって、第3貫通孔の少なくとも内周面近傍に第1高保磁力領域を設ける工程と、第1貫通孔、第2貫通孔および第3貫通孔が軸方向に接続するとともに、第3磁石が軸方向の第1磁石と第2磁石との間に配置されるように第1磁石、第2磁石および第3磁石を接続する工程とを備える。
 この発明の第2の局面によるファラデー回転子用磁気回路の製造方法では、上記のように、第3貫通孔の少なくとも内周面近傍に第1高保磁力領域を設けることによって、第1高保磁力領域での不可逆減磁を抑制することができる。これにより、不可逆減磁した第1高保磁力領域が内周面近傍に設けられた第3磁石の全体が不可逆減磁されるのを抑制することができる。また、第1高保磁力領域は保磁力が高いので、温度上昇に起因する不可逆減磁も抑制することができる。また、希土類元素R(Nd、Prを主成分とし、Ndを50%以上含む)と、Feを主とする遷移元素と、B(ホウ素)とを主に含むR-T-B系磁石からなる第3磁石の第3貫通孔の内周面から重希土類元素を拡散させることにより、第3貫通孔の少なくとも内周面近傍に第1高保磁力領域を設けることによって、R-T-B系焼結磁石の主相中の軽希土類元素であるNdまたはPrの一部のみを重希土類元素であるDyまたはTbに置換することができるので、残留磁束密度の低下を抑制しつつ、第1高保磁力領域の保磁力を向上させることができる。その結果、ファラデー回転子用磁気回路の磁界強度を維持しつつ、第1高保磁力領域の保磁力を向上させることができる。
 上記第2の局面によるファラデー回転子用磁気回路の製造方法において、好ましくは、第1高保磁力領域を設ける工程は、第3磁石の第3貫通孔の内周面から重希土類元素を拡散させることによって、第3貫通孔の内周面のうちの少なくとも中央部に第1高保磁力領域を設ける工程を含む。このように構成すれば、逆磁界による不可逆減磁をより起こしやすい第3磁石の第3貫通孔の内周面のうちの軸方向に沿った第3磁石の中央部に、他の部分よりも保磁力の高い第1高保磁力領域を設けることができるので、第3磁石での不可逆減磁を効果的に抑制することができる。
 上記第2の局面によるファラデー回転子用磁気回路の製造方法において、好ましくは、第1高保磁力領域を設ける工程は、ファラデー素子が内部に配置される第3貫通孔を取り囲むように周状に第1高保磁力領域を設ける工程を含む。このように構成すれば、ファラデー素子を取り囲むように第1高保磁力領域を設けることができるので、逆磁界の影響が第3磁石に及ぶのをより抑制することができる。その結果、第3磁石での不可逆減磁をより抑制することができる。
 上記中央部に第1高保磁力領域を設ける工程を含むファラデー回転子用磁気回路の製造方法において、好ましくは、中央部に第1高保磁力領域を設ける工程は、第3貫通孔の内周面の略全面から重希土類元素を拡散させることによって、第3貫通孔の内周面における軸方向の全域に渡って第1高保磁力領域を設ける工程を含む。このように構成すれば、逆磁界による不可逆減磁を起こしやすい第3磁石の第3貫通孔の内周面における軸方向の全域に渡って第1高保磁力領域を設けることができるので、第3磁石での不可逆減磁をより抑制することができる。
 上記中央部に第1高保磁力領域を設ける工程を含むファラデー回転子用磁気回路の製造方法において、好ましくは、中央部に第1高保磁力領域を設ける工程は、第3貫通孔から離れる方向の内周面からの分布範囲が、軸方向に沿った第3磁石の両端部側から中央部側に向かって大きくなるように第1高保磁力領域を設ける工程を含む。このように構成すれば、第1高保磁力領域を、逆磁界による不可逆減磁をより起こしやすい中央部でより広い範囲に分布させることができるので、第3磁石の中央部での不可逆減磁を効果的に抑制することができる。
本発明の第1実施形態によるファラデー回転子の構造を示した斜視図である。 本発明の第1実施形態によるファラデー回転子を中心軸線の延びる方向に沿って切断した場合の断面図である。 本発明の第1実施形態による第3磁石を中心軸線の延びる方向に対して垂直に切断した場合の断面図である。 本発明の第1実施形態の第1変形例によるファラデー回転子の構造を示した斜視図である。 本発明の第1実施形態の第1変形例によるファラデー回転子用磁気回路の構造を示した分解斜視図である。 本発明の第1実施形態の第2変形例によるファラデー回転子の構造を示した斜視図である。 本発明の第1実施形態の第2変形例によるファラデー回転子用磁気回路の構造を示した分解斜視図である。 本発明の第1実施形態の効果を確認するために行ったシミュレーションの結果を示した図である。 本発明の第2実施形態によるファラデー回転子の構造を示した斜視図である。 本発明の第2実施形態によるファラデー回転子を中心軸線の延びる方向に沿って切断した場合の断面図である。 本発明の第2実施形態の変形例によるファラデー回転子の構造を示した斜視図である。 本発明の第3実施形態によるファラデー回転子の構造を示した斜視図である。 本発明の第3実施形態によるファラデー回転子用磁気回路の構造を示した分解斜視図である。 本発明の第4実施形態によるファラデー回転子の構造を示した斜視図である。 本発明の第4実施形態によるファラデー回転子用磁気回路の構造を示した分解斜視図である。 本発明の第4実施形態の変形例によるファラデー回転子の構造を示した斜視図である。 本発明の第5実施形態によるファラデー回転子を中心軸線の延びる方向に沿って切断した場合の断面図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 (第1実施形態)
 まず、図1~図3を参照して、本発明の第1実施形態によるファラデー回転子100の構成について説明する。
 本発明の第1実施形態におけるファラデー回転子100は、図1に示すように、円筒形状を有するファラデー回転子用磁気回路1と、円柱状のファラデー素子10とを備えている。具体的には、ファラデー回転子用磁気回路1は、中心軸線1000の延びる軸方向(X方向)と直交する断面(Y-Z平面)が円環状を有した状態で、この断面形状を保ったままX方向に延びるように形成されている。また、ファラデー回転子用磁気回路1の断面(Y-Z平面)の中央には、一方端面から他方端面に向かってX方向に延びる貫通孔1aが形成されている。そして、ファラデー素子10は、ファラデー回転子用磁気回路1の貫通孔1a内に配置されるように構成されている。
 ファラデー素子10は、ファラデー素子10がファラデー回転子用磁気回路1によって形成された磁界の内部に配置された際、入射したレーザー光の偏光面を所定の回転角度に回転させた状態で出射させる機能を有する。この際、回転角度は、ファラデー素子10の材質に特有のファラデー回転係数(ベルデ定数)と、ファラデー効果(回転角度)を起こすのに必要な磁界強度と、貫通孔1aの後述する直径L2とによって決まる。
 また、所望のファラデー効果(回転角度)を得るために必要な磁界強度は、ファラデー回転子用磁気回路1内に配置されるファラデー素子10の長さによって変わってくる。具体的には、所望のファラデー効果(回転角度)を得るために必要な磁界強度と、ファラデー素子10の長さとは、反比例の関係にある。例えば、所定の長さのファラデー素子で所望のファラデー効果を得るために必要な磁界強度が2Tである一方、ファラデー回転子用磁気回路で得られる磁界強度が1Tであった場合には、ファラデー素子は所定の長さの2倍の長さにしないと同等の特性(所望のファラデー効果)を得ることができない。このため、ファラデー素子の長さが大きくなるのに伴い、ファラデー回転子用磁気回路が大型化するとともに、レーザー光の形状がファラデー素子の結晶内で歪むため、レーザー光の歪みを補正するための高価なガラスも必要となる。したがって、ファラデー回転子用磁気回路を大型化するのに必要な大型の磁石と、歪みを補正するためのガラスとを必要とするため、余計なコストがかかってしまう。
 また、ファラデー素子10は、温度依存性が小さい(温度上昇に伴う焦点のずれが起こりにくい)テルビウムガリウムガーネット(TGG)からなる。このTGGは、イットリウム鉄ガーネット(YIG)等の希土類鉄ガーネットと比べて、ファラデー回転係数が小さい。
 また、図2にファラデー回転子用磁気回路1の断面を示す。TGGを用いた小型のファラデー回転子として、図2のファラデー回転子用磁気回路1の断面(Y-Z平面)における外径L1は、約30mm以上約70mm以下が好ましい。また、ファラデー回転子用磁気回路1の貫通孔1aの直径L2は、約3mm以上約7mm以下が好ましい。また、ファラデー回転子用磁気回路1(貫通孔1a)のX方向の長さL3は、約20mm以上約60mm以下が好ましい。
 また、ファラデー回転子用磁気回路1は、図1に示すように、円筒形状を有する第1磁石2、第2磁石3および第3磁石4からなる。第1磁石2は、ファラデー回転子用磁気回路1の一方側(X1側)に配置されているとともに、第2磁石3は、ファラデー回転子用磁気回路1の他方側(X2側)に配置されている。また、第1磁石2と第2磁石3とは、同一の形状を有している。また、第3磁石4は、軸方向(X方向)における第1磁石2と第2磁石3との間に挟まれて配置されている。なお、第1磁石2と第2磁石3と第3磁石4とは、X方向に延びる同一の中心軸線1000に沿って配置されている。
 第1磁石2、第2磁石3および第3磁石4は、共に、中心軸線1000の延びる軸方向(X方向)と直交するY-Z平面において円環状の断面形状を有した状態で、X方向に延びるように形成されている。また、第1磁石2、第2磁石3および第3磁石4の断面(Y-Z平面)の中央には、それぞれ、X方向に延びる貫通孔2a、3aおよび4aが形成されている。この貫通孔2a、3aおよび4aは、円形状の断面(Y-Z平面)を有している。なお、貫通孔2a、3aおよび4aは、それぞれ、本発明の「第1貫通孔」、「第2貫通孔」および「第3貫通孔」の一例である。
 また、貫通孔2a、3aおよび4aが互いに接続されることによって、貫通孔1aが形成されている。また、ファラデー素子10は、X方向の中央部が、第3磁石4の貫通孔4aのX方向の中央部に略位置する状態で、貫通孔1aの内部に配置されている。
 また、図2に示すように、第1磁石2、第2磁石3および第3磁石4の外径は、ファラデー回転子用磁気回路1の外径L1と同一である。また、貫通孔2a、3aおよび4aの直径は、貫通孔1aの直径L2と同一である。また、第1磁石2、第2磁石3および第3磁石4の外径L1は、貫通孔2a、3aおよび4aの直径L2の約10倍になるように構成されているのが好ましい。本発明では、高保磁力の第3磁石において貫通孔4aから高保磁力領域を形成されていることにより、高出力レーザーに用いられる70℃以上の高温下でも第3磁石が不可逆減磁しにくいため、貫通孔2a、3aおよび4aの直径は、貫通孔1aの直径L2と同一にすることができている。なお、外径L1は、本発明の「第1距離」の一例であり、直径L2は、本発明の「第2距離」の一例である。
 なお、第1実施形態では、上記特許文献1で懸念されるような第1磁石2および第2磁石3の磁界の影響があっても、第3磁石4が約70℃以上80℃以下の高温度条件下にあっても不可逆減磁が発生しない。そのため、貫通孔4aだけ外径を大きくして、第3磁石4における第1磁石2および第2磁石3の磁界の影響を小さくする必要がないので、貫通孔2a、3aおよび4aの直径を同じ長さ(L2)にすることができる。
 また、第1磁石2(貫通孔2a)および第2磁石3(貫通孔3a)のX方向の長さL4は、共に約8.5mm以上約25mm以下が好ましい。また、第3磁石4(貫通孔4a)のX方向の長さL5は、約3mm以上約10mm以下が好ましい。
 第1磁石2は、軸方向(X方向)と垂直で、かつ、貫通孔2aから離れる方向(矢印A方向)に磁化されている。また、第2磁石3は、軸方向(X方向)と垂直で、かつ、貫通孔3aに向かう方向(矢印B方向)に磁化されている。すなわち、第2磁石3の磁化の方向(矢印B方向)は、第1磁石2の磁化の方向(矢印A方向)と反対方向であるように構成されている。これにより、貫通孔4aの内部における磁界の方向は、軸方向(X方向)に沿って第2磁石3から第1磁石2に向かう方向(矢印X1方向)になるように構成されている。
 一方、第3磁石4は、軸方向(X方向)と平行で、かつ、第1磁石2から第2磁石3に向かう方向(矢印X2方向)に磁化されている。すなわち、貫通孔4aの内部における磁界の方向(矢印X1方向)と、第3磁石4の磁化の方向(矢印X2方向)とは、反対方向になるように構成されている。
 また、第1磁石2、第2磁石3および第3磁石4は、約1.5T以上約3.0T以下の強い磁界を発生させることが可能なR-Fe-B系焼結磁石からなる。R-Fe-B系焼結磁石は、希土類元素R(Nd、Prを主成分とし、Ndを50%以上含む)と、Feを主とする遷移元素と、B(ホウ素)とを主に含んでいる。これにより、第1磁石2、第2磁石3および第3磁石4を用いて約1.5T以上約3.0T以下の強い磁界を発生させることによって、ファラデー素子10のX方向の長さを小さくしても所望のファラデー効果(回転角度)を得ることが可能である。
 また、第3磁石4は、第1磁石2および第2磁石3のR-Fe-B系焼結磁石と同一のR-Fe-B系焼結磁石か、または、第1磁石2および第2磁石3のR-Fe-B系焼結磁石よりも保磁力が大きなR-Fe-B系焼結磁石からなる。また、第3磁石4は少なくとも約1.0Tの残留磁束密度と、少なくとも2350kA/mの保磁力とを有している。これにより、TGGをファラデー素子に用いたファラデー回転子用磁気回路1の貫通孔1aの内部に、約1.5T以上約3.0T以下の強い磁界を発生させることが可能になるので、磁界強度が大きい分、ファラデー素子10の長さを小さくすることが可能である。
 ここで、第1実施形態では、図2および図3に示すように、第3磁石4の貫通孔4aの内周面近傍には、高保磁力領域4bが形成されている。高保磁力領域4bは、第3磁石4の高保磁力領域4b以外の部分の保磁力(約2350kA/m)よりも大きな保磁力(約2800kA/m)を有する。これにより、第3磁石4において、70℃以上の温度条件下で逆磁界に起因する磁石動作点の低下を抑制することが可能である。
 また、高保磁力領域4bは、第3磁石4の貫通孔4aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成されている。つまり、高保磁力領域4bは、第3磁石4の貫通孔4aの内周面において、中央部4cだけでなく、X1側の端部4dからX2側の端部4eまで一様に形成されている。また、高保磁力領域4bは、貫通孔4aの内周面から第3磁石4の内部(矢印A方向)に向かって少なくとも約3mmの深さ(厚み)L6を有して形成されている。なお、高保磁力領域4bは、本発明の「第1高保磁力領域」の一例である。
 なお、図3に示すように、高保磁力領域4bは、DyおよびTbの少なくとも一方からなる重希土類元素RHが貫通孔4aの内周面の全域から拡散されることによって形成されている。好ましくは、高保磁力領域4bは、正方晶であるR2Fe14B型化合物の結晶粒からなる主相を主体とするとともに、主相の外殻部(粒界の近傍)に位置する希土類元素Rのうちの軽希土類元素RL(Nd、Prの少なくともいずれか)が、DyおよびTbの少なくともいずれか一方からなる重希土類元素RHと置換されることによって形成される。これにより、主相であるR14B相の外殻部における結晶磁気異方性が高められるので、高保磁力領域4bにおける保磁力が大きい。一方、主相であるR14B相自体(結晶粒の内部)には重希土類元素RHは拡散しないので、軽希土類元素RLが結晶内部に残る。これにより、高保磁力領域4bにおける残留磁束密度の低下が抑制される。
 次に、図1~図3を参照して、本発明の第1実施形態によるファラデー回転子100の製造プロセスについて説明する。
 まず、円筒形状を有するとともに、貫通孔2a、3aおよび4aが形成された第1磁石体、第2磁石体および第3磁石体をそれぞれ準備する。この第1磁石体、第2磁石体および第3磁石体には、共に、希土類元素R(Nd、Prを主成分とし、Ndを50%以上含む)と、Feを主とする遷移元素と、B(ホウ素)とを主に含むR-Fe-B系焼結磁石を用いる。また、少なくとも第3磁石には、2350kA/mの保磁力を有するR-Fe-B系焼結磁石を用いる。なお、第1磁石体、第2磁石体および第3磁石体は、それぞれ、磁化される前の第1磁石2、第2磁石3および第3磁石4に対応している。
 ここで、第1実施形態では、WO2007/102391に記載の蒸着拡散法(以下、RH拡散法という)に基づいて、第3磁石体の貫通孔4aの内周面近傍に、図3に示す高保磁力領域4bを形成する。具体的には、重希土類元素RH(少なくともDyおよびTbを含む群から選択された少なくとも1種)を含有するバルク体(図示せず)を、第3磁石体と共に処理室(図示せず)内に対向配置する。そして、処理室内のバルク体および第3磁石体を約700℃以上約1000℃以下に加熱することにより、バルク体から重希土類元素RHを第3磁石体の貫通孔4aの内周面側に供給することによって、第3磁石体の内部に拡散させる。必要によりさらに熱処理を行い、第3磁石体のより内部まで重希土類元素RHを拡散させる。
 これにより、主相の外殻部(粒界の近傍)に位置するR2Fe14B型化合物の希土類元素Rのうちの軽希土類元素RLが、重希土類元素RHと置換される。この結果、第3磁石体の貫通孔4aの内周面の全域に渡って、図3に示す高保磁力領域4bが内周面を取り囲むように層状、かつ、周状に形成される。なお、高保磁力領域4bは、貫通孔4aの内周面から第3磁石4の内部(矢印A方向)に向かって少なくとも約3mmの深さ(厚み)L6を有して形成される。なお、第3磁石体の所定の領域にマスクを形成することによって、マスク以外の部分にのみ高保磁力領域を形成することが可能である。
 なお、第3磁石体の貫通孔4aの内周面近傍に高保磁力領域4bを形成する方法として、上記した蒸着拡散法以外の方法を用いてもよい。たとえば、第3磁石体の貫通孔4aの内周面近傍に重希土類元素RHを被着させた後に熱処理をすることによって、第3磁石体の貫通孔4aの内周面近傍に高保磁力領域4bを形成してもよい。
 その後、第1磁石体を、軸方向(X方向)と垂直で、かつ、貫通孔2aから離れる方向(矢印A方向)に磁化することによって、第1磁石2を形成する。また、第2磁石体を、軸方向(X方向)と垂直で、かつ、貫通孔3aに向かう方向(矢印B方向)に磁化することによって、第2磁石3を形成する。また、第3磁石体を、軸方向(X方向)と平行で、かつ、第1磁石2(第1磁石体)から第2磁石3(第2磁石体)に向かう方向(矢印X2方向)に磁化することによって、第3磁石4を形成する。
 そして、X1側からX2側に向かって第1磁石2、第3磁石4および第2磁石3を、貫通孔2a、3aおよび4aが互いに接続されるように配置する。その後、第1磁石2、第3磁石4および第2磁石3を2液混合式の接着剤を用いて互いに接合する。これにより、ファラデー回転子用磁気回路1が形成される。
 最後に、TGGからなるファラデー素子10をファラデー回転子用磁気回路1の貫通孔1aの内部に配置する。この際、ファラデー素子10を、ファラデー素子10のX方向の中央部が貫通孔3aのX方向の中央部に略位置するように配置する。これにより、ファラデー回転子100が製造される。
 第1実施形態では、上記のように、高保磁力領域4bを、軸方向(X方向)に沿って第2磁石3から第1磁石2に向かう方向(矢印X1方向)の磁界の近傍である第3磁石4の貫通孔4aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成することによって、第1磁石2と第2磁石3とから構成された磁界に起因する逆磁界による第3磁石4全体での不可逆減磁を抑制することができる。また、高保磁力領域4bは保磁力が高いので、温度上昇に起因する不可逆減磁も抑制することができる。この結果、十分に高い磁界(約1.5T以上約3.0T以下)をファラデー素子10に印加することができるとともに、ある程度の高温(70℃以上80℃以下)の温度条件下であっても、不可逆減磁も抑制することができる。つまり、第1実施形態のファラデー回転子用磁気回路1は、ファラデー回転数が小さいTGGをファラデー素子10として用いた場合に特に適している。
 また、第1実施形態では、上記のように、第3磁石4が、希土類元素R(Nd、Prを主成分とし、Ndを50%以上含む)と、Feを主とする遷移元素と、B(ホウ素)とを主に含むR-Fe-B系焼結磁石からなるとともに、高保磁力領域4bを、DyおよびTbの少なくとも一方からなる重希土類元素RHを貫通孔4aの内周面の全域から導入し、正方晶であるR2Fe14B型化合物の結晶粒からなる主相の外殻部(粒界の近傍)に位置する軽希土類元素RL(Nd、Pr)と置換させることによって形成すれば、残留磁束密度の低下を略生じさせることなく、高保磁力領域4bの保磁力を向上させることができる。これにより、ファラデー回転子用磁気回路1の磁界強度を維持しつつ、高保磁力領域4bの保磁力を容易に向上させることができる。
 また、第1実施形態では、上記のように、高保磁力領域4bを、貫通孔4aの内周面から第3磁石4の内部(矢印A方向)に向かって少なくとも3mmの深さ(厚み)L6まで形成すれば、逆磁界による不可逆減磁を起こしやすい第3磁石4の貫通孔4aの内部に、内周面から3mmの範囲に渡って高保磁力領域4bを設けることができるので、第3磁石4での不可逆減磁をより抑制することができる。したがって、第1実施形態におけるファラデー回転子用磁気回路1は、TGGをファラデー素子に用いるファラデー回転子に最適である。
 また、第1実施形態では、上記のように、第3磁石4を、第1磁石2および第2磁石3のR-Fe-B系焼結磁石と同一のR-Fe-B系焼結磁石か、または、第1磁石2および第2磁石3のR-Fe-B系焼結磁石よりも保磁力が大きなR-Fe-B系焼結磁石からなるように構成すれば、第3磁石4の高保磁力領域4bだけでなく、第3磁石4の高保磁力領域4b以外の部分も保磁力が大きいので、不可逆減磁した高保磁力領域4bを発端として、第3磁石4の全体が不可逆減磁するのをより抑制することができる。
 また、第1実施形態では、上記のように、第3磁石4の高保磁力領域4b以外の部分の保磁力を、少なくとも2350kA/mであるとともに、高保磁力領域4bの保磁力よりも小さくなるように構成すれば、高保磁力領域4bのみならず、高保磁力領域4b以外の少なくとも2350kA/mの高い保磁力を有する第3磁石4の部分によっても、第3磁石4が不可逆減磁するのを抑制することができる。
 また、第1実施形態では、上記のように、第3磁石4が少なくとも約1.0Tの残留磁束密度を有するように構成すれば、テルビウムガリウムガーネット(TGG)の結晶をファラデー素子10として用いる小型のファラデー回転子100においても、十分な磁界強度(約1.5T以上約3.0T以下)を発生させることができる。
 また、第1実施形態では、上記のように、第1磁石2、第2磁石3および第3磁石4の外径L1を、貫通孔2a、3aおよび4aの直径L2の約10倍になるように構成するのがよい。第1磁石2、第2磁石3および第3磁石4の外径L1を、それぞれ、貫通孔2a、3aおよび4aの直径L2の約10倍になるように構成することにより、ファラデー回転子用磁気回路1において高い磁界強度を形成するのが困難になるのを抑制することができるとともに、ファラデー回転子用磁気回路1における磁界強度が高すぎることに起因して、高保磁力領域4bにおいて不可逆減磁が起きやすくなるのを抑制することができる。
 (第1実施形態の第1変形例)
 次に、図4および図5を参照して、本発明の第1実施形態の第1変形例について説明する。この第1実施形態の第1変形例によるファラデー回転子200では、上記第1実施形態と異なり、ファラデー回転子用磁気回路201において、個々の断面形状が円弧状(扇形状)を有する磁石片220および230をそれぞれ8つ組み合わせて、1つの第1磁石202および第2磁石203を構成している場合について説明する。
 本発明の第1実施形態の第1変形例によるファラデー回転子200のファラデー回転子用磁気回路201は、図4および図5に示すように、円筒形状を有する第1磁石202、第2磁石203および第3磁石4からなる。また、第1磁石202と第2磁石203とは同一の形状を有している。なお、第1磁石202と第2磁石203と第3磁石4とは、X方向に延びる同一の中心軸線1000に沿って配置されている。
 また、第1磁石202と第2磁石203の断面(Y-Z平面)の中央には、それぞれ、X方向に延びる貫通孔202aおよび203aが形成されている。なお、貫通孔202aおよび203aは、それぞれ、本発明の「第1貫通孔」および「第2貫通孔」の一例である。
 また、第1磁石202および第2磁石203は、それぞれ、中心軸線1000から第1磁石202および第2磁石203の外周面側に向かって放射状に分割されることによって形成された、8つの磁石片220および230が組み合わされて構成されている。この8つの磁石片220および230は、共に、軸方向(X方向)と直交するY-Z平面において、同一の円弧状(扇形状)の断面を有した状態で、X方向に延びるように形成されている。なお、磁石片220および230の円弧の角度は、共に、約45度になるように構成されている。なお、第1実施形態の第1変形例によるその他の構成は、第1実施形態と同様である。
 次に、図5を参照して、本発明の第1実施形態の第1変形例によるファラデー回転子200の製造プロセスについて説明する。
 まず、8つの磁石片220に対応する8つの磁石体片と、8つの磁石片230に対応する8つの磁石体片と、円筒形状を有するとともに、貫通孔4aが形成された第3磁石体とを準備する。なお、8つの磁石片220に対応する8つの磁石体片と、8つの磁石片230に対応する8つの磁石体片とは、共に、同一の円弧状(扇形状)の断面を有した状態で、X方向に延びるように形成されている。
 その後、8つの磁石片220に対応する8つの磁石体片を、軸方向(X方向)と垂直で、かつ、貫通孔202aに対応する部分から離れる方向(矢印A方向)に磁化することによって、8つの磁石片220を形成する。また、8つの磁石片230に対応する8つの磁石体片を、軸方向(X方向)と垂直で、かつ、貫通孔203aに対応する部分に向かう方向(矢印B方向)に磁化することによって、8つの磁石片230を形成する。
 そして、図5に示すように、8つの磁石片220および230を、それぞれ、貫通孔2aおよび3aを形成するように周状に配置する。そして、8つの磁石片220および230を、それぞれ、2液混合式の接着剤を用いて互いに接着する。これにより、第1磁石202および第2磁石203がそれぞれ形成される。なお、第1実施形態の第1変形例によるその他の製造プロセスは、第1実施形態と同様である。
 また、第1実施形態の第1変形例による効果は、第1実施形態と同様である。
 (第1実施形態の第2変形例)
 次に、図6および図7を参照して、本発明の第1実施形態の第2変形例について説明する。この第1実施形態の第2変形例によるファラデー回転子300では、上記第1実施形態と異なり、ファラデー回転子用磁気回路301において、四角柱状を有する磁石片320および330をそれぞれ8つ組み合わせて、1つの第1磁石302および第2磁石303を構成している場合について説明する。
 本発明の第1実施形態の第2変形例によるファラデー回転子300のファラデー回転子用磁気回路301は、図6および図7に示すように、正八角柱形状を有する第1磁石302、第2磁石303および第3磁石304からなる。また、第1磁石302と第2磁石303とは同一の形状を有している。なお、第1磁石302と第2磁石303と第3磁石304とは、X方向に延びる同一の中心軸線1000に沿って配置されている。
 第1磁石302、第2磁石303および第3磁石304は、共に、中心軸線1000に沿った軸方向(X方向)と直交するY-Z平面において正八角形の断面形状を有した状態で、X方向に延びるように形成されている。また、第1磁石302、第2磁石303および第3磁石304の断面(Y-Z平面)の中央には、それぞれ、X方向に延びる貫通孔302a、303aおよび304aが形成されている。この貫通孔302a、303aおよび304aは、正八角形の断面(Y-Z平面)を有している。なお、貫通孔302a、303aおよび304aは、それぞれ、本発明の「第1貫通孔」、「第2貫通孔」および「第3貫通孔」の一例である。
 また、第1磁石302および第2磁石303は、それぞれ、中心軸線1000から第1磁石302および第2磁石303の外周面側に向かって放射状に分割されることによって形成された、8つの磁石片320および330が組み合わされて構成されている。この8つの磁石片320および330は、四角柱形状を有するとともに、軸方向(X方向)と直交するY-Z平面において同一の台形状の断面を有した状態で、X方向に延びるように形成されている。
 また、第3磁石304には、高保磁力領域304bが形成されている。この高保磁力領域304bは、貫通孔304aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成されている。なお、第1実施形態の第2変形例によるその他の構成は、第1実施形態と同様である。
 次に、図7を参照して、本発明の第1実施形態の第2変形例によるファラデー回転子300の製造プロセスについて説明する。
 まず、8つの磁石片320に対応する8つの磁石体片と、8つの磁石片330に対応する8つの磁石体片と、正八角柱形状を有するとともに、貫通孔304aが形成された第3磁石体とを準備する。なお、8つの磁石片320に対応する8つの磁石体片と、8つの磁石片330に対応する8つの磁石体片とは、同一の台形状の断面を有した状態で、X方向に延びるように形成されている。なお、第3磁石体は、磁化される前の第3磁石304に対応する。
 そして、第3磁石体の貫通孔304aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に高保磁力領域304bを形成する。
 その後、8つの磁石片320に対応する8つの磁石体片を、軸方向(X方向)と垂直で、かつ、貫通孔302aに対応する部分から離れる方向(矢印A方向)に磁化することによって、8つの磁石片320を形成する。また、8つの磁石片330に対応する8つの磁石体片を、軸方向(X方向)と垂直で、かつ、貫通孔303aに対応する部分に向かう方向(矢印B方向)に磁化することによって、8つの磁石片330を形成する。また、第3磁石304に対応する第3磁石体を、軸方向(X方向)と平行で、かつ、第1磁石302(第1磁石体)から第2磁石303(第2磁石体)に向かう方向(矢印X2方向)に磁化することによって、第3磁石304を形成する。
 そして、図7に示すように、8つの磁石片320および330を、それぞれ、貫通孔302aおよび303aを形成するように周状に配置する。そして、8つの磁石片320および330を、それぞれ、2液混合式の接着剤を用いて互いに接着する。これにより、第1磁石302および第2磁石303がそれぞれ形成される。なお、第1実施形態の第2変形例によるその他の製造プロセスは、第1実施形態と同様である。
 また、第1実施形態の第2変形例による効果は、第1実施形態と同様である。
 [実施例1]
 次に、図1~図8を参照して、上記第1実施形態と上記第1実施形態の第1変形例および第2変形例によるファラデー回転子用磁気回路1、200および300の組成を確認するために行ったパーミアンス係数の分布状態のシミュレーションと、不可逆減磁温度測定とについて説明する。
 (パーミアンス係数の分布状態のシミュレーション)
 まず、図1、図2および図8を参照して、パーミアンス係数の分布状態のシミュレーションについて説明する。パーミアンス係数の分布状態のシミュレーションでは、図1および図2に示す第1実施形態に対応する第1磁石2、第2磁石3および第3磁石4からなるファラデー回転子用磁気回路1を想定して、ファラデー回転子用磁気回路1におけるパーミアンス係数の分布状態をシミュレーションにより求めた。なお、パーミアンス係数とは、磁石の特性を示す減磁曲線における、磁石動作点と原点とを結んだ直線の傾きのことである。このパーミアンス係数が大きい場合には、磁石において不可逆減磁が起こりにくいことを示す一方、パーミアンス係数が小さい場合には、磁石において不可逆減磁が起こりやすいことを示す。
 具体的な構成としては、図2に示すように、第1磁石2、第2磁石3および第3磁石4の断面(Y-Z平面)における外径L1は、50mmであり、貫通孔2a、3aおよび4aの直径L2は、5mmであると想定した。また、第1磁石2および第2磁石3のX方向の長さL4は、共に20mmであり、第3磁石4のX方向の長さL5は、5mmであると想定した。
 また、第1磁石2および第2磁石3は、残留磁束密度が1.30Tであり、保磁力が1270kA/mであると想定した。また、第3磁石4は、残留磁束密度が1.14Tであり、保磁力が2350kA/mであると想定した。
 図8に示すパーミアンス係数の分布状態のシミュレーション結果から、第3磁石4の貫通孔4aの内周面近傍は、パーミアンス係数が小さく不可逆減磁が起こりやすいことが分かった。これにより、第3磁石4の貫通孔4aの少なくとも内周面近傍に高保磁力層を設けることによって、第3磁石4が不可逆減磁するのを抑制できることが判明した。
 また、特に、第3磁石4の貫通孔4aの内周面のうちの、X方向に沿った第3磁石4の中心部4cにおいては、パーミアンス係数が小さく不可逆減磁が起こりやすいことが分かった。また、中心部4cにおいては、パーミアンス係数が小さい領域が、他の貫通孔4aの内周面よりも、貫通孔4aの内周面から深い位置にまで存在することが分かった。さらに、パーミアンス係数が小さい領域は、第3磁石4の中心部4cにおいて、貫通孔4aの内周面から3mm(距離L7)の範囲まで形成されていることが分かった。これにより、少なくとも第3磁石4の中心部4cにおいて、貫通孔4aの内周面から3mm以上の深さまで高保磁力領域4bを設けることによって、第3磁石4が不可逆減磁するのをより抑制できることが判明した。
 (不可逆減磁温度測定)
 次に、図2、図5および図7を参照して、不可逆減磁温度測定について説明する。不可逆減磁温度測定では、上記第1実施形態の第1変形例に対応する実施例1として、図5に示す高保磁力領域4bが設けられた第3磁石4を備えるファラデー回転子用磁気回路201を作製した。また、実施例1に対する比較例1として、高保磁力領域が設けられていない第3磁石を備えるファラデー回転子用磁気回路を作製した。
 具体的には、実施例1および比較例1において、第1磁石、第2磁石および第3磁石が、共に、残留磁束密度が1.14Tであり、保磁力が2350kA/mであるR-Fe-B系焼結磁石(日立金属株式会社製 NMX―33UH)からなるように構成した。
 また、上記第1実施形態の第2変形例に対応する実施例2として、図7に示す高保磁力領域304bが設けられた第3磁石304を備えるファラデー回転子用磁気回路301を作製した。一方、実施例2に対する比較例2として、高保磁力領域が設けられていない第3磁石を備えるファラデー回転子用磁気回路を作製した。
 具体的には、実施例2および比較例2において、第1磁石および第2磁石が、共に、残留磁束密度が1.30Tであり、保磁力が1270kA/mであるR-Fe-B系焼結磁石(日立金属株式会社製 NMX―43SH)からなるように構成した。また、第3磁石が、残留磁束密度が1.14Tであり、保磁力が2350kA/mであるR-Fe-B系焼結磁石(日立金属株式会社製 NMX―33UH)からなるように構成した。
 また、上記第1実施形態の第1変形例に対応する実施例3として、図5に示す高保磁力領域4bが設けられた第3磁石4を備えるファラデー回転子用磁気回路201を作製した。また、実施例3に対する比較例3として、高保磁力領域が設けられていない第3磁石を備えるファラデー回転子用磁気回路を作製した。
 具体的には、実施例3および比較例3において、第1磁石および第2磁石が、共に、残留磁束密度が1.30Tであり、保磁力が1270kA/mであるR-Fe-B系焼結磁石(日立金属株式会社製 NMX―43SH)からなるように構成した。また、第3磁石が、残留磁束密度が1.14Tであり、保磁力が2350kA/mであるR-Fe-B系焼結磁石(日立金属株式会社製 NMX―33UH)からなるように構成した。
 また、実施例1~3と比較例1~3とにおいて、共に、第1磁石、第2磁石および第3磁石の断面(Y-Z平面)における外径L1(図2参照)は、50mmであり、貫通孔の直径L2(図2参照)は、5mmであるように構成した。また、第1磁石および第2磁石のX方向の長さL4(図2参照)は、20mmであり、第3磁石のX方向の長さL5(図2参照)は、5mmであるように構成した。残留磁束密度、保磁力はB-Hトレーサで測定した。
 また、実施例1~3においては、それぞれ、第3磁石4(304)の貫通孔4a(304a)の内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に、高保磁力領域4b(304b)を形成した。具体的には、WO2007/102391に記載の方法によって、RH拡散源であるバルク体と第3磁石とを対向配置した状態で、900℃に加熱し、Dyからなる重希土類元素RHを第3磁石体の貫通孔4a(304a)の内周面側から導入し、第3磁石体の内部に拡散させた。さらに、800℃で熱処理を行なった。これにより、主相の外殻部(粒界の近傍)に位置するR2Fe14B型化合物の希土類元素Rのうちの軽希土類元素RLを、重希土類元素RHと置換することによって高保磁力領域4b(304b)を形成した。また、高保磁力領域4b(304b)を、貫通孔4a(304a)の内周面から第3磁石4(304)の内部(矢印A方向)に向かって3mmの深さ(厚み)L6(図2参照)まで形成した。
 また、実施例1~3と比較例1~3とにおいて、X1側からX2側に向かって第1磁石、第3磁石および第2磁石を2液混合式の接着剤を用いて互いに接合した。
 そして、室温(20℃)の温度条件下における実施例1および2と比較例1および2とにおいて、ファラデー素子が配置される貫通孔(第3貫通孔)における磁界強度を磁気プローブ(図示せず)を用いてそれぞれ測定した。
 また、室温(20℃)の温度条件下における実施例1および2と比較例1および2とにおいて、第3磁石の貫通孔の内周面における残留磁束密度および保磁力をB-Hトレーサを用いて測定した。ここで、実施例1および2の第3磁石4の貫通孔4aの内周面における残留磁束密度および保磁力は、実施例1および2の第3磁石と同じ磁石(NMX-33UH)および同じRH拡散条件にて作製し、高保磁力領域4b(304b)のみ切り出してB-Hトレーサによって測定した。
 実施例1および2と比較例1および2とにおいて、室温(20℃)から所定の温度(55℃、70℃および80℃)まで上昇させた後、再度、20℃まで温度を減少させることによって、ファラデー回転子用磁気回路に温度履歴を加えた。そして、温度履歴を加えた後の第3磁石の貫通孔での磁界強度を磁気プローブ(図示せず)を用いてそれぞれ測定した。この際、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%未満であった場合に、不可逆減磁が生じたと判断し、不可逆減磁が生じた際の所定の温度(55℃、70℃および80℃)を不可逆減磁温度であるとした。これらの結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、実施例3と比較例3とのファラデー回転子用磁気回路において、室温(20℃)から所定の温度(55℃、70℃、80℃および100℃)まで上昇させた後、再度、20℃まで温度を減少させることによって、ファラデー回転子用磁気回路に温度履歴を加えた。そして、温度履歴を加える前の磁界強度に対する温度履歴を加えた後の磁界強度の大きさ(%)を測定した。この結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示す実験結果としては、第1磁石および第2磁石に残留磁束密度が1.30TのR-Fe-B系焼結磁石を用いた実施例2および比較例2の磁界強度(2.3T)は、第1磁石および第2磁石に残留磁束密度が1.14TのR-Fe-B系焼結磁石を用いた実施例1および比較例1の磁界強度(2.0T)よりも大きくなった。
 また、第3磁石4(304)に高保磁力領域4b(304b)を設けた実施例1および2では、第3磁石の貫通孔の内周面における保磁力は、2800kA/mになり、第3磁石4(304)の高保磁力領域4b(304b)以外の部分における保磁力(2350kA/m)よりも大きくなった。また、第3磁石に高保磁力領域を設けていない比較例1では、第3磁石の通常の保磁力(2350kA/m)になった一方、第3磁石に高保磁力領域を設けていない比較例2では、保磁力が1680kA/mになった。これは、比較例2の磁界強度(2.3T)は、比較例1の磁界強度(2.0T)よりも高いため、比較例2のファラデー回転子用磁気回路を製造した段階で、すでに第1磁石と第2磁石とから構成された磁界に起因する逆磁界によって第3磁石に不可逆減磁が発生したからであると考えられる。
 また、表1に示す第3磁石4(304)に高保磁力領域4b(304b)を設けた実施例1および2では、不可逆減磁温度が測定できなかった。つまり、実施例1および2の不可逆減磁温度は、80℃より大きくなった。また、表2に示す第3磁石4に高保磁力領域4bを設けた実施例3の実測値では、80℃以下の温度範囲において、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%以上であった一方、100℃において、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%未満であった。つまり、実施例3の不可逆減磁温度は、100℃であった。これは、実施例1~3において、不可逆減磁が起こりやすい第3磁石4(304)の貫通孔4a(304a)の内周面近傍に高保磁力領域4b(304b)を設けたので、80℃以下の温度範囲において不可逆減磁を抑制できたからであると考えられる。
 一方、第3磁石に高保磁力領域を設けなかった比較例1では、不可逆減磁温度が55℃であった。また、表2に示す第3磁石に高保磁力領域を設けなかった比較例3の実測値では、55℃以下の温度範囲において、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%以上であった一方、70℃以上の温度範囲において、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%未満であった。つまり、比較例3の不可逆減磁温度は、70℃であった。これは、比較例1および3において、55℃以上の温度範囲(比較例1)および70℃以上の温度範囲(比較例3)で、第3磁石の貫通孔の内周面近傍において不可逆減磁が発生したと考えられる。そして、不可逆減磁した部分を発端として、第3磁石の他の領域においても不可逆減磁したため、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%未満になったと考えられる。
 (第2実施形態)
 次に、図9および図10を参照して、本発明の第2実施形態について説明する。この第2実施形態によるファラデー回転子400では、上記第1実施形態と異なり、ファラデー回転子用磁気回路401の第1磁石2および第2磁石3が、第3磁石4を挟んで、中心軸線1000の延びる軸方向に沿って交互に配置されている場合について説明する。
 本発明の第2実施形態によるファラデー回転子400のファラデー回転子用磁気回路401は、図9に示すように、円筒形状を有する2つの第1磁石2と、2つの第2磁石3と、3つの第3磁石4とからなる。また、ファラデー回転子用磁気回路401では、中心軸線1000の延びる軸方向(X方向)に沿って、第1磁石2と第2磁石3とが、第3磁石4を間に挟んで交互に並ぶように配置されている。具体的には、X1側からX2側に向かって、第1磁石2、第3磁石4、第2磁石3、第3磁石4、第1磁石2、第3磁石4および第2磁石3の順に配置されている。
 また、3つの第3磁石4は、軸方向(X方向)と平行で、かつ、第1磁石2から第2磁石3に向かう方向に磁化されている。つまり、X1側に第1磁石2が位置する第3磁石4(両端側の2つ)は、矢印X2方向に磁化されている一方、X2側に第1磁石2が位置する第3磁石4(中央側の1つ)は、矢印X1方向に磁化されている。
 また、図10に示すように、3つの第3磁石4の貫通孔4aの内周面近傍には、高保磁力領域4bが形成されている。この高保磁力領域4bは、第3磁石4の貫通孔4aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成されている。なお、第2実施形態によるその他の構造は、第1実施形態と同様である。
 次に、図9および図10を参照して、本発明の第2実施形態によるファラデー回転子400の製造プロセスについて説明する。
 まず、第1実施形態と同様の製造プロセスによって、2つの第1磁石2、2つの第2磁石3および3つの第3磁石4を形成する。
 その後、2つの第1磁石2、2つの第2磁石3および3つの第3磁石4を、X1側からX2側に向かって第1磁石2、第3磁石4、第2磁石3、第3磁石4、第1磁石2、第3磁石4および第2磁石3の順に配置する。そして、配置した第1磁石2、第2磁石3および第3磁石4を2液混合式の接着剤を用いて互いに接合する。この際、X1側に第1磁石2が位置する第3磁石4(両端側の2つ)は、磁化の方向が矢印X2方向になるように配置するとともに、X2側に第1磁石2が位置する第3磁石4(中央側の1つ)は、磁化の方向が矢印X1方向になるように配置する。これにより、ファラデー回転子用磁気回路401が形成される。なお、第2実施形態によるその他の製造プロセスは、第1実施形態と同様である。
 第2実施形態では、上記のように、高保磁力領域4bを、3つの第3磁石4の貫通孔4aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成することによって、不可逆減磁を起こしやすい第3磁石4の貫通孔4aの内周面の全域に渡って、内周面を取り囲むように他の部分よりも保磁力の高い高保磁力領域4bを設けることができるので、高保磁力領域4bおよび第3磁石4の全体での不可逆減磁を抑制することができる。また、高保磁力領域4bは保磁力が高いので、温度上昇に起因する不可逆減磁も抑制することができる。
 また、第2実施形態では、上記のように、X1側からX2側に向かって、第1磁石2、第3磁石4、第2磁石3、第3磁石4、第1磁石2、第3磁石4および第2磁石3の順に配置すれば、第1実施形態のファラデー回転子用磁気回路1を有するファラデー回転子100では十分なファラデー効果が得られない場合であっても、第1磁石2と第2磁石3とを第3磁石4を間に挟んで軸方向に沿って交互に並ぶように配置することによって、複数単位のファラデー回転子用磁気回路401を形成することができるので、十分なファラデー効果が得られるようにファラデー回転子400を構成することができる。なお、第2実施形態によるその他の効果は、第1実施形態と同様である。
 (第2実施形態の変形例)
 次に、図11を参照して、本発明の第2実施形態の変形例について説明する。この第2実施形態の変形例によるファラデー回転子500では、上記第2実施形態と異なり、ファラデー回転子用磁気回路501において、個々の断面形状が円弧状(扇形状)を有する磁石片220および230をそれぞれ8つ組み合わせて、1つの第1磁石202および第2磁石203を構成している場合について説明する。
 本発明の第2実施形態の変形例によるファラデー回転子500のファラデー回転子用磁気回路501は、図11に示すように、円筒形状を有する2つの第1磁石202と、2つの第2磁石203と、3つの第3磁石4とからなる。また、第1磁石202と第2磁石203とは、共に、上記した第1実施形態の第1変形例と同一の構成を有している。つまり、第1磁石202および第2磁石203は、それぞれ、8つの磁石片220および230が組み合わされて構成されている。なお、第2実施形態の変形例によるその他の構成は、第2実施形態と同様である。
 また、本発明の第2実施形態によるファラデー回転子500の製造プロセスでは、第1実施形態の第1変形例と同様の製造プロセスによって、8つの磁石片220が組み合わされた2つの第1磁石202と、8つの磁石片230が組み合わされた2つの第2磁石203と、3つの第3磁石4を形成する。なお、第2実施形態の変形例によるその他の製造プロセスは、第2実施形態と同様である。
 また、第2実施形態の変形例による効果は、第2実施形態と同様である。
 [実施例2]
 次に、図10および図11を参照して、上記第2実施形態の変形例によるファラデー回転子用磁気回路501の組成を確認するために行った不可逆減磁温度測定について説明する。
 (不可逆減磁温度測定)
 不可逆減磁温度測定では、図11に示す第2実施形態の変形例に対応する実施例4として、高保磁力領域4b(図10参照)が設けられた3つの第3磁石4を備えるファラデー回転子用磁気回路501を作製した。また、実施例4に対する比較例4として、高保磁力領域が設けられていない3つの第3磁石を備えるファラデー回転子用磁気回路を作製した。
 具体的には、実施例4および比較例4において、第1磁石および第2磁石が、共に、残留磁束密度が1.30Tであり、保磁力が1270kA/mであるR-Fe-B系焼結磁石(日立金属株式会社製 NMX―43SH)からなるように構成した。また、第3磁石が、残留磁束密度が1.14Tであり、保磁力が2350kA/mであるR-Fe-B系焼結磁石(日立金属株式会社製 NMX―33UH)からなるように構成した。
 また、実施例4と比較例4とにおいて、共に、第1磁石、第2磁石および第3磁石の断面(Y-Z平面)における外径L1(図10参照)は、50mmであり、貫通孔の直径L2(図10参照)は、5mmであるように構成した。また、第1磁石および第2磁石のX方向の長さL4(図10参照)は、20mmであり、第3磁石のX方向の長さL5(図10参照)は、5mmであるように構成した。
 また、実施例4においては、3つの第3磁石4の貫通孔4aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に、高保磁力領域4bを形成した。また、高保磁力領域4bを、貫通孔4aの内周面から第3磁石4の内部(矢印A方向)に向かって3mmの深さ(厚み)L6(図10参照)まで形成した。
 なお、実施例4と比較例4とにおいて、X1側からX2側に向かって、第1磁石、第3磁石、第2磁石、第3磁石、第1磁石、第3磁石および第2磁石の順に並ぶように2液混合式の接着剤を用いて互いに接合した。この際、X1側に第1磁石が位置する第3磁石(両端側の2つ)は、磁化の方向が矢印X2方向になるように配置するとともに、X2側に第1磁石が位置する第3磁石(中央側の1つ)は、磁化の方向が矢印X1方向になるように配置した。
 また、実施例4と比較例4とのファラデー回転子用磁気回路において、室温(20℃)から所定の温度(55℃、70℃、80℃および100℃)まで上昇させた後、再度、20℃まで温度を減少させることによって、ファラデー回転子用磁気回路に温度履歴を加えた。そして、温度履歴を加える前の磁界強度に対する温度履歴を加えた後の磁界強度の大きさ(%)を測定した。この結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す実験結果としては、3つの第3磁石4に高保磁力領域4bを設けた実施例4では、80℃以下の温度範囲において、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%以上であった一方、100℃において、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%未満であった。つまり、実施例4の不可逆減磁温度は、100℃であった。これは、実施例4において、不可逆減磁が起こりやすい第3磁石4の貫通孔4aの内周面近傍に高保磁力領域4bを設けたので、80℃以下の温度範囲において、不可逆減磁を抑制できたからであると考えられる。
 一方、3つの第3磁石に高保磁力領域を設けなかった比較例4では、55℃以下の温度範囲において、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%以上であった一方、70℃以上の温度範囲において、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%未満であった。つまり、比較例4の不可逆減磁温度は、70℃であった。これは、比較例4において、70℃以上の温度範囲で、第3磁石の貫通孔の内周面近傍において不可逆減磁が発生したと考えられる。そして、不可逆減磁した部分を発端として、第3磁石の他の領域においても不可逆減磁したため、温度履歴を加えた後の磁界強度の値が、温度履歴を加える前の磁界強度の値の99%未満になったと考えられる。
 (第3実施形態)
 次に、図12および図13を参照して、本発明の第3実施形態について説明する。この第3実施形態によるファラデー回転子600では、上記第1実施形態と異なり、ファラデー回転子用磁気回路601の第3磁石604が、中心軸線1000に直交する断面(Y-Z平面)で2つに分断されている場合について説明する。
 本発明の第3実施形態によるファラデー回転子600のファラデー回転子用磁気回路601では、図12および図13に示すように、円筒状の第3磁石604は、X1側に位置する円筒状の磁石片640と、X2側に位置する円筒状の磁石片650とが、中心軸線1000に沿った軸方向(X方向)に組み合わされることによって形成されている。この磁石片640および650は、第3磁石604のX方向の中心を通るY-Z平面により、第3磁石604がX1側およびX2側に分断されることによって形成されている。なお、磁石片640および650は、本発明の「第1磁石片」の一例である。
 また、磁石片640および650は、それぞれ、貫通孔640aおよび650aと、高保磁力領域640bおよび650bとを有している。この貫通孔640aおよび650aが互いに接続されることによって、貫通孔604aが形成されている。また、貫通孔640aおよび650aは、それぞれ、貫通孔2aおよび3aと接続されるように構成されている。なお、貫通孔604aは、本発明の「第3貫通孔」の一例である。
 また、高保磁力領域640bおよび650bが組み合わされることによって、高保磁力領域604bが形成されている。また、高保磁力領域640bおよび650b(高保磁力領域604b)は、貫通孔640aおよび650a(貫通孔604a)の内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成されている。なお、高保磁力領域640bおよび650bは、本発明の「第2高保磁力領域」の一例である。また、第3実施形態によるその他の構造は、第1実施形態と同様である。
 次に、図13を参照して、本発明の第3実施形態によるファラデー回転子600の製造プロセスについて説明する。
 まず、磁石片640および650に対応する2つの円筒状の磁石体片を準備する。そして、2つの磁石体片の貫通孔640aおよび650aの内周面の全域に渡って、それぞれ、高保磁力領域640bおよび650bを形成する。その後、2つの磁石体片を、軸方向(X方向)と平行で、かつ、第1磁石2(第1磁石体)から第2磁石3(第2磁石体)に向かう方向(矢印X2方向)に磁化することによって、図13に示す磁石片640および650を形成する。
 その後、磁石片640および650を、貫通孔640aおよび650aが互いに接続されるように、軸方向(X方向、図1および図2参照)に沿うように配置する。そして、磁石片640および650を2液混合式の接着剤を用いて互いに接合する。これにより、図13に示す第3磁石604が形成される。なお、第3実施形態によるその他の製造プロセスは、第1実施形態と同様である。
 第3実施形態では、上記のように、高保磁力領域640bおよび650bを、それぞれ、磁石片640の貫通孔640aの内周面および磁石片650の貫通孔650aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成することによって、不可逆減磁を起こしやすい磁石片640の貫通孔640aの内周面および磁石片650の貫通孔650aの内周面の全域に渡って、他の部分よりも保磁力の高い高保磁力領域640bおよび650bをそれぞれ設けることができるので、高保磁力領域604bおよび第3磁石604の全体での不可逆減磁を抑制することができる。また、高保磁力領域640bおよび650bは保磁力が高いので、温度上昇に起因する不可逆減磁も抑制することができる。
 また、第3実施形態では、上記のように、第3磁石604のX方向の中心を通るY-Z平面により、第3磁石604がX1側およびX2側に分断されることによって形成された磁石片640および650が軸方向に組み合わされて、高保磁力領域640bおよび650bからなる高保磁力領域604bが形成されるとともに、高保磁力領域640bおよび650b(高保磁力領域604b)を、それぞれ、磁石片640の貫通孔640aの内周面および磁石片650の貫通孔650a(貫通孔604a)の内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成することによって、貫通孔604aの内周面を磁石片640および650に分割することができるので、第3磁石604の軸方向(X方向)の厚みが大きい状態で高保磁力領域604bを設ける場合と比べて、個々の磁石片640および650の内周面に、確実に高保磁力領域640bおよび650bを設けることができる。これにより、高保磁力領域640bおよび650bが設けられている磁石片640および650を組み合わせることによって、第3磁石604の高保磁力領域604bをより確実に形成することができる。なお、第3実施形態によるその他の効果は、第1実施形態と同様である。
 (第4実施形態)
 次に、図14および図15を参照して、本発明の第4実施形態について説明する。この第4実施形態によるファラデー回転子700では、上記第1実施形態と異なり、ファラデー回転子用磁気回路701の第3磁石704が、中心軸線1000に沿った軸方向(X方向)に4つに分断されている場合について説明する。
 本発明の第4実施形態によるファラデー回転子700のファラデー回転子用磁気回路701は、図14および図15に示すように、正四角柱形状を有する第1磁石702、第2磁石703および第3磁石704からなる。この第1磁石702、第2磁石703および第3磁石704の断面(Y-Z平面)の中央には、それぞれ、正方形の断面形状を有する貫通孔702a、703aおよび704a(図15参照)が形成されている。また、第1磁石702、第2磁石703および第3磁石704は、Z方向に延びるように形成されている。なお、貫通孔702a、703aおよび704aは、それぞれ、本発明の「第1貫通孔」、「第2貫通孔」および「第3貫通孔」の一例である。
 また、第1磁石702、第2磁石703および第3磁石704は、それぞれ、中心軸線1000から第1磁石702、第2磁石703および第3磁石704の外周面側に向かって放射状に分割されることによって形成された、4つの磁石片720、730および760が組み合わされて構成されている。この4つの磁石片720、730および760は、共に、軸方向(X方向)と直交するY-Z平面において、正方形の4角のうち、貫通孔702a、703aおよび704aに対応する部分が正方形状に切り取られた形状の断面を有する。また、貫通孔702a、703aおよび704aは、それぞれ、磁石片720、730および760が周状に組み合わされることによって形成されている。
 また、第1磁石702は、軸方向(X方向)と垂直な方向に磁化した4つの磁石片720を組み合わせることによって、X1側から見て、中心軸線1000を回転軸として時計回りに磁化されている。また、第2磁石703は、軸方向(X方向)と垂直な方向に磁化した4つの磁石片730を組み合わせることによって、X1側から見て、中心軸線1000を回転軸として反時計回りに磁化されている。
 また、4つの磁石片760の貫通孔704a側の内周面近傍には、それぞれ高保磁力領域760bが形成されている。この4つの高保磁力領域760bが組み合わされることによって、第3磁石704の高保磁力領域704bが形成されている。なお、高保磁力領域704bは、貫通孔704aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成されている。なお、第4実施形態によるその他の構造は、第1実施形態と同様である。
 次に、図15を参照して、本発明の第4実施形態によるファラデー回転子700の製造プロセスについて説明する。
 まず、4つの磁石片720に対応する4つの磁石体片と、4つの磁石片730に対応する4つの磁石体片と、4つの磁石片760に対応する4つの磁石体片とを準備する。なお、12個の磁石体片は、4つの磁石片720に対応する4つの磁石体片、4つの磁石片730に対応する4つの磁石体片および4つの磁石片760に対応する4つの磁石体片は、それぞれ、貫通孔702a、703aおよび704aが形成された状態で、磁化方向が図15の白抜き矢印方向に延びるように形成されている。
 そして、4つの磁石片760に対応する4つの磁石体片の貫通孔704a側の内周面近傍に高保磁力領域760bを形成する。その後、磁石体片をそれぞれ所定の方向(白抜き矢印の方向)に磁化することによって、4つの磁石片720、4つの磁石片730および4つの磁石片760を形成する。
 そして、4つの磁石片720、4つの磁石片730および4つの磁石片760を、それぞれ、貫通孔702a、703aおよび704aを形成するように周状に配置する。この際、4つの磁石片720を、X1側から見て、中心軸線1000を回転軸として時計回りに磁化するように配置する。また、4つの磁石片730を、X1側から見て、中心軸線1000を回転軸として反時計回りに磁化するように配置する。また、4つの磁石片760を、軸方向(X方向)と平行で、かつ、第1磁石702から第2磁石703に向かう方向に磁化するように配置する。そして、4つの磁石片720、4つの磁石片730および4つの磁石片760を、それぞれ、2液混合式の接着剤を用いて互いに接着する。これにより、第1磁石702、第2磁石703および第3磁石704がそれぞれ形成される。なお、第4実施形態によるその他の製造プロセスは、第1実施形態と同様である。
 第4実施形態では、上記のように、高保磁力領域704bを、第3磁石704の貫通孔704aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に形成することによって、不可逆減磁を起こしやすい第3磁石704の貫通孔704aの内周面の全域に渡って、他の部分よりも保磁力の高い高保磁力領域704bを設けることができるので、高保磁力領域704bおよび第3磁石704の全体での不可逆減磁を抑制することができる。また、高保磁力領域704bは保磁力が高いので、温度上昇に起因する不可逆減磁も抑制することができる。
 また、第4実施形態では、上記のように、第3磁石704を軸方向(X方向)に沿って分割することによって形成された4つの磁石片760を組み合わせることによって、貫通孔704aの内周面の全域に渡って、内周面を取り囲むように層状、かつ、周状に4つの高保磁力領域760bからなる高保磁力領域704bを形成すれば、貫通孔704aの内周面を4つの磁石片760に分割することができるので、貫通孔704aが形成されている状態で貫通孔704aの内周面に高保磁力領域704bを設ける場合と比べて、4つの磁石片760うち、分割された貫通孔704aの内周面に対応する面に、確実に高保磁力領域760bを設けることができる。これにより、高保磁力領域760bが設けられている4つの磁石片760を組み合わせることによって、第3磁石704の高保磁力領域704bをより確実に形成することができる。なお、第4実施形態によるその他の効果は、第1実施形態と同様である。
 (第4実施形態の変形例)
 次に、図16を参照して、本発明の第4実施形態の変形例について説明する。この第4実施形態の変形例によるファラデー回転子800では、上記第4実施形態と異なり、ファラデー回転子用磁気回路801の第1磁石802、第2磁石803および第3磁石804が、それぞれ、直方体状の4つの磁石片820、830および870からなる場合について説明する。
 本発明の第4実施形態の変形例によるファラデー回転子800のファラデー回転子用磁気回路801では、図16に示すように、第1磁石802、第2磁石803および第3磁石804は、それぞれ、直方体状の4つの磁石片820、830および870が組み合わされることによって形成されている。また、第1磁石802、第2磁石803および第3磁石804の軸方向(X方向)と直交する断面(Y-Z平面)の中央には、それぞれ、正方形の断面形状を有する貫通孔802a、803aおよび804aが形成されている。また、貫通孔802a、803bおよび804aは、それぞれ、直方体状の4つの磁石片820、830および870が周状に組み合わされることによって形成されている。なお、貫通孔802a、803bおよび804aは、それぞれ、本発明の「第1貫通孔」、「第2貫通孔」および「第3貫通孔」の一例である。
 なお、第4実施形態の変形例によるその他の構造、製造プロセスおよび効果は、第4実施形態と同様である。
 (第5実施形態)
 次に、図17を参照して、本発明の第5実施形態について説明する。この第5実施形態によるファラデー回転子900では、上記第1実施形態と異なり、ファラデー回転子用磁気回路901の第3磁石904の内周面に両端部4dおよび4e側から中央部4c側に向かって分布範囲が大きくなるように高保磁力領域904bが形成されている場合について説明する。
 本発明の第5実施形態によるファラデー回転子900のファラデー回転子用磁気回路901では、図17に示すように、第3磁石904の貫通孔4aの内周面に高保磁力領域904bが形成されている。この高保磁力領域904bでは、貫通孔4aの内周面から第3磁石904の内部(矢印A方向)に向かう分布範囲(深さ)が、第3磁石904のX1側およびX2側の両端部4dおよび4eから、中央部4c側に向かって徐々に大きくなるように構成されている。なお、第5実施形態によるその他の構造は、第1実施形態と同様である。
 また、第5実施形態による製造プロセスは、高保磁力領域904bを、貫通孔4aの内周面から第3磁石904の内部(矢印A方向)に向かう分布範囲が、第3磁石904のX1側およびX2側の両端部4dおよび4eから中央部4c側に向かって徐々に大きくなるように貫通孔4aの内周面に形成することを除いて、第1実施形態と同様である。
 第5実施形態では、上記のように、高保磁力領域904bを、貫通孔4aの内周面から第3磁石904の内部(矢印A方向)に向かう分布範囲が、第3磁石904のX1側およびX2側の両端部4dおよび4eから、中央部4c側に向かって徐々に大きくなるように構成することによって、不可逆減磁を起こしやすい第3磁石904の貫通孔4aの内周面に、他の部分よりも保磁力の高い高保磁力領域904bを設けることができるので、高保磁力領域904bおよび第3磁石904の全体での不可逆減磁を抑制することができる。また、高保磁力領域904bは保磁力が高いので、温度上昇に起因する不可逆減磁も抑制することができる。また、高保磁力領域904bを、逆磁界による不可逆減磁をより起こしやすい中央部4cでより広い範囲に分布させることができるので、第3磁石904の中央部4cでの不可逆減磁を、より少ない重希土類元素RHの濃化により効果的に抑制することができる。なお、第5実施形態によるその他の効果は、第1実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記第1~第5実施形態では、第3磁石の内周面側にのみ高保磁力領域を設けた例を示したが、本発明はこれに限られない。本発明では、第3磁石の表面の全域から重希土類元素RHを第3磁石の内部に拡散させることによって、第3磁石の全域に渡って高保磁力領域を設けてもよい。これにより、第3磁石の全体での不可逆減磁をより抑制することが可能である。
 また、上記第1~第5実施形態では、第3磁石にのみ高保磁力領域を設けた例を示したが、本発明はこれに限られない。本発明では、第3磁石だけでなく、第1磁石および第2磁石にも高保磁力領域を設けてもよい。この場合、図8に示すパーミアンス係数の分布状態に関するシミュレーションの結果から、第1磁石および第2磁石においては、貫通孔の内側面および外周面における軸方向の中央部に高保磁力領域を設けるのが好ましい。
 また、上記第1~第5実施形態では、RH拡散法に基づいて、重希土類元素RHを第3磁石体および磁石体片の貫通孔側から第3磁石体および磁石体片の内部に拡散させることによって、高保磁力領域を形成した例を示したが、本発明はこれに限られない。本発明では、第3磁石および磁石片を内径側磁石片と外径側磁石片とから構成し、内径側磁石片の貫通孔の内側面または内径側磁石片の全体にRH拡散法を施すことによって、内径側磁石片に高保磁力領域を形成する。その後、内径側磁石片と外径側磁石片とを接着することによって、第3磁石および磁石片を形成してもよい。このとき、高保磁力領域は、貫通孔の内周面から第3磁石および磁石片の内部に向かって少なくとも3mmの深さまで形成されるのが好ましい。
 また、上記第1~第5実施形態では、第3磁石として、約2350kA/mの保磁力を有するR-Fe-B系焼結磁石を用いた例を示したが、本発明はこれに限られない。本発明では、第3磁石として、約2350kA/mよりも大きい保磁力を有するR-Fe-B系焼結磁石を用いてもよいし、R-Fe-B系焼結磁石以外の磁石を用いてもよい。
 また、上記第5実施形態では、第3磁石904が一体的な磁石からなる例を示したが、本発明はこれに限られない。本発明では、第3磁石904は、第3実施形態の第3磁石604のように、Y-Z平面で2つに分断されていてもよい。このとき、WO2007/102391に記載の方法によって、磁石片640の貫通孔640aおよび650の貫通孔650aとがRH拡散源であるバルク体と対向配置した状態で重希土類元素RHを拡散させた場合、貫通孔640aおよび650aの内周面だけでなく、バルク体と対向する面にも重希土類元素RHが拡散される。そして、磁石片640の重希土類元素RHが拡散された面と、磁石片650の重希土類元素RHが拡散された面とが互いに対向するように、2液混合式の接着剤を用いて接合する。これにより、重希土類元素RHが略全面に拡散されたバルク体と対向していた面同士を、第3磁石904の中央部4cに配置することができる。この結果、容易に、高保磁力領域904bを、貫通孔4aの内周面から第3磁石904の内部(矢印A方向)に向かう分布範囲が、第3磁石904のX1側およびX2側の両端部4dおよび4eから、中央部4c側に向かって徐々に大きくなるように形成することが可能である。
 本発明によれば、TGGをファラデー素子として用いた高出力レーザー用ファラデー回転子に好適である。

Claims (19)

  1.  ファラデー回転子(100、200、300、400、500、600、700、800、900)のファラデー素子(10)が内部に配置されるファラデー回転子用磁気回路(1、201、301、401、501、601、701、801、901)であって、
     軸方向に延びる第1貫通孔(2a、202a、302a、702a、802a)を含み、前記軸方向と垂直でかつ前記第1貫通孔から離れる方向に磁化されている第1磁石(2、202、302、702、802)と、
     前記軸方向に延びる第2貫通孔(3a、203a、303a、703a、803a)を含み、前記軸方向と垂直でかつ前記第2貫通孔に向かう方向に磁化されている第2磁石(3、203、303、703、803)と、
     前記軸方向の前記第1磁石と前記第2磁石との間に配置され、前記軸方向と平行で、かつ、前記第1磁石から前記第2磁石に向かう方向に磁化されている第3磁石(4、304、604、704、804、904)とを備え、
     前記第3磁石は、前記第1貫通孔および前記第2貫通孔を接続するように前記軸方向に延びるとともに、前記ファラデー素子が内部に配置される第3貫通孔(4a、304a、604a、704a、804a、904a)を含み、
     前記第1高保磁力領域(4b、304b、604b、704b、904b)は、前記第3磁石の前記第3貫通孔の少なくとも内周面近傍に設けられている、ファラデー回転子用磁気回路。
  2.  前記第3磁石に設けられる前記第1高保磁力領域は、前記第3磁石の前記第3貫通孔の内周面のうちの前記軸方向に沿った前記第3磁石の少なくとも中央部(4c)に設けられている、請求項1に記載のファラデー回転子用磁気回路。
  3.  前記第1磁石と前記第2磁石とから構成される磁界のうち、前記第1磁石の磁化方向および前記第2磁石の磁化方向と略直交する前記軸方向で、かつ、前記第2磁石から前記第1磁石に向かう方向に向かう前記磁界の近傍に位置する前記第3磁石の部分に、前記第1高保磁力領域が設けられている、請求項1に記載のファラデー回転子用磁気回路。
  4.  前記第3磁石は、希土類元素R(Nd、Prを主成分とし、Ndを50%以上含む)と、Feを主とする遷移元素と、B(ホウ素)とを主に含むR-T-B系磁石からなり、
     前記第1高保磁力領域は、重希土類元素が前記第3磁石の前記第3貫通孔の内周面近傍に濃化することによって形成されている、請求項1に記載のファラデー回転子用磁気回路。
  5.  前記第1高保磁力領域は、正方晶であるR2Fe14B型化合物の主相を主体とするとともに、前記主相の外殻部にDyおよびTbの少なくともいずれか一方からなる前記重希土類元素が拡散され、濃化することによって形成されている、請求項4に記載のファラデー回転子用磁気回路。
  6.  前記第1高保磁力領域は、前記ファラデー素子が内部に配置される前記第3貫通孔を取り囲むように周状に設けられている、請求項1に記載のファラデー回転子用磁気回路。
  7.  前記第1高保磁力領域は、前記第3貫通孔の内周面における前記軸方向の全域に渡って設けられている、請求項2に記載のファラデー回転子用磁気回路。
  8.  前記第1高保磁力領域は、前記軸方向と直交し、かつ、前記第3貫通孔から離れる方向に前記第3貫通孔の内周面から3mm以上の範囲に渡って形成されている、請求項1に記載のファラデー回転子用磁気回路。
  9.  前記第3磁石の前記第1高保磁力領域以外の部分の保磁力は、前記第1磁石および前記第2磁石の保磁力以上である、請求項1に記載のファラデー回転子用磁気回路。
  10.  前記第3磁石の前記第1高保磁力領域以外の部分の保磁力は、2350kA/m以上であるとともに、前記第1高保磁力領域の保磁力よりも小さい、請求項1に記載のファラデー回転子用磁気回路。
  11.  前記第1高保磁力領域は、前記第3貫通孔から離れる方向の前記内周面からの分布範囲が、前記軸方向に沿った前記第3磁石の両端部(4d、4e)側から前記中央部側に向かって大きくなるように構成されている、請求項2に記載のファラデー回転子用磁気回路。
  12.  前記第3磁石は、前記軸方向と直交する面で分断されることにより形成されるととともに、各々に第2高保磁力領域(640b、650b)が設けられている複数の第1磁石片(640、650)が軸方向に組み合わされて、複数の前記第2高保磁力領域からなる前記第1高保磁力領域が構成されており、
     前記複数の第2高保磁力領域からなる前記第1高保磁力領域は、前記第3貫通孔の少なくとも前記内周面近傍に設けられている、請求項1に記載のファラデー回転子用磁気回路。
  13.  前記第1磁石と前記第2磁石とは、前記第3磁石を間に挟んで前記軸方向に沿って交互に並ぶように配置されている、請求項1に記載のファラデー回転子用磁気回路。
  14.  前記第1磁石、前記第2磁石および前記第3磁石の前記軸方向と直交する方向における一方端から他方端までの距離は、第1距離(L1)であり、
     前記第1貫通孔、前記第2貫通孔および前記第3貫通孔の前記軸方向と直交する方向における一方端から他方端までの距離は、第2距離(L2)であり、
     前記第1距離は、前記第2距離の8倍以上20倍以下である、請求項1に記載のファラデー回転子用磁気回路。
  15.  軸方向に延びる第1貫通孔を含み、前記軸方向と垂直でかつ前記第1貫通孔から離れる方向に磁化されている第1磁石と、前記軸方向に延びる第2貫通孔を含み、前記軸方向と垂直でかつ前記第2貫通孔に向かう方向に磁化されている第2磁石と、前記第1貫通孔および前記第2貫通孔を接続するように前記軸方向に延びるとともに、前記ファラデー素子が内部に配置される第3貫通孔を含み、前記軸方向と平行で、かつ、前記第1磁石から前記第2磁石に向かう方向に磁化されている第3磁石とを備えるファラデー回転子用磁気回路の製造方法であって、
     希土類元素R(Nd、Prを主成分とし、Ndを50%以上含む)と、Feを主とする遷移元素と、B(ホウ素)とを主に含むR-T-B系磁石からなる前記第3磁石の前記第3貫通孔の内周面から重希土類元素を拡散させることによって、前記第3貫通孔の少なくとも内周面近傍に第1高保磁力領域を設ける工程と、
     前記第1貫通孔、前記第2貫通孔および前記第3貫通孔が前記軸方向に接続するとともに、前記第3磁石が前記軸方向の前記第1磁石と前記第2磁石との間に配置されるように前記第1磁石、前記第2磁石および前記第3磁石を接続する工程とを備える、ファラデー回転子用磁気回路の製造方法。
  16.  前記第1高保磁力領域を設ける工程は、前記第3磁石の前記第3貫通孔の内周面から前記重希土類元素を拡散させることによって、前記第3貫通孔の内周面のうちの少なくとも前記中央部に前記第1高保磁力領域を設ける工程を含む、請求項15に記載のファラデー回転子用磁気回路の製造方法。
  17.  前記第1高保磁力領域を設ける工程は、前記ファラデー素子が内部に配置される前記第3貫通孔を取り囲むように周状に前記第1高保磁力領域を設ける工程を含む、請求項15に記載のファラデー回転子用磁気回路の製造方法。
  18.  前記中央部に前記第1高保磁力領域を設ける工程は、前記第3貫通孔の内周面の略全面から重希土類元素を拡散させることによって、前記第3貫通孔の内周面における前記軸方向の全域に渡って前記第1高保磁力領域を設ける工程を含む、請求項16に記載のファラデー回転子用磁気回路の製造方法。
  19.  前記中央部に前記第1高保磁力領域を設ける工程は、前記第3貫通孔から離れる方向の前記内周面からの分布範囲が、前記軸方向に沿った前記第3磁石の両端部側から前記中央部側に向かって大きくなるように前記第1高保磁力領域を設ける工程を含む、請求項16に記載のファラデー回転子用磁気回路の製造方法。
PCT/JP2010/073596 2009-12-25 2010-12-27 ファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法 WO2011078381A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011514928A JP5644761B2 (ja) 2009-12-25 2010-12-27 ファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法
US13/321,598 US8817370B2 (en) 2009-12-25 2010-12-27 Magnetic circuit for faraday rotator and method of manufacturing magnetic circuit for faraday rotator
KR1020127014919A KR101737658B1 (ko) 2009-12-25 2010-12-27 패러데이 회전자용 자기 회로 및 패러데이 회전자용 자기 회로의 제조 방법
EP10839609.4A EP2518552A4 (en) 2009-12-25 2010-12-27 Magnetic circuit for a faraday rotator and method for manufacturing a magnetic circuit for a faraday rotator
CN201080013670.7A CN102362211B (zh) 2009-12-25 2010-12-27 法拉第转子用磁路和法拉第转子用磁路的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009294914 2009-12-25
JP2009-294914 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078381A1 true WO2011078381A1 (ja) 2011-06-30

Family

ID=44195904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073596 WO2011078381A1 (ja) 2009-12-25 2010-12-27 ファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法

Country Status (6)

Country Link
US (1) US8817370B2 (ja)
EP (1) EP2518552A4 (ja)
JP (1) JP5644761B2 (ja)
KR (1) KR101737658B1 (ja)
CN (1) CN102362211B (ja)
WO (1) WO2011078381A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146627A (ja) * 2013-01-25 2014-08-14 Aichi Elec Co 永久磁石および永久磁石製造方法
WO2019230420A1 (ja) * 2018-05-31 2019-12-05 日本電気硝子株式会社 磁気回路、ファラデー回転子及び磁気光学素子
JP2019211753A (ja) * 2018-05-31 2019-12-12 日本電気硝子株式会社 磁気回路、ファラデー回転子及び磁気光学素子
US20200227193A1 (en) * 2019-01-14 2020-07-16 Te Connectivity Germany Gmbh Magnetizing Device With Reduced Stray Field
WO2021256256A1 (ja) * 2020-06-15 2021-12-23 日本電気硝子株式会社 磁気回路、ファラデー回転子、及び磁気光学デバイス
WO2021256255A1 (ja) * 2020-06-15 2021-12-23 日本電気硝子株式会社 磁気回路、ファラデー回転子、及び磁気光学デバイス

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627120B2 (en) * 2010-05-19 2017-04-18 The Board Of Regents Of The University Of Texas System Magnetic throttling and control: magnetic control
CN102279478A (zh) * 2010-06-12 2011-12-14 北京优立光太科技有限公司 光隔离器
US10091594B2 (en) 2014-07-29 2018-10-02 Cochlear Limited Bone conduction magnetic retention system
US10130807B2 (en) 2015-06-12 2018-11-20 Cochlear Limited Magnet management MRI compatibility
US20160381473A1 (en) 2015-06-26 2016-12-29 Johan Gustafsson Magnetic retention device
US10917730B2 (en) 2015-09-14 2021-02-09 Cochlear Limited Retention magnet system for medical device
US9872115B2 (en) * 2015-09-14 2018-01-16 Cochlear Limited Retention magnet system for medical device
US11595768B2 (en) 2016-12-02 2023-02-28 Cochlear Limited Retention force increasing components
DE102017122791B4 (de) * 2017-09-29 2019-04-25 Amphos GmbH Magnetanordnung mit einstellbarer mittlerer Magnetebene und Faraday-Rotator mit einer solchen Magnetanordnung
CN111679458A (zh) * 2020-05-25 2020-09-18 电子科技大学 一种平面化磁光开关

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176622A (ja) * 1988-12-28 1990-07-09 Tokin Corp 光アイソレータ
JP2004302412A (ja) * 2003-03-14 2004-10-28 Murata Mfg Co Ltd 磁気光学デバイス
WO2007102391A1 (ja) 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
JP2009229802A (ja) 2008-03-24 2009-10-08 Sumitomo Metal Mining Co Ltd ファラデー回転子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114420U (ja) * 1984-12-27 1986-07-19
US5528415A (en) * 1994-11-09 1996-06-18 Duke University Compact enhanced performance optical isolator using a faraday rotator
US6594068B2 (en) * 2000-07-05 2003-07-15 Zhifeng Sui High switching speed digital faraday rotator device and optical switches containing the same
JP2003195241A (ja) * 2001-12-25 2003-07-09 Tdk Corp ファラデー回転子の製造方法、ファラデー回転子、ビスマス置換型希土類鉄ガーネット単結晶膜の製造方法、光アイソレータ
JP3997795B2 (ja) * 2002-02-22 2007-10-24 住友金属鉱山株式会社 半導体モジュールの製造方法
DE10333570A1 (de) 2003-07-23 2005-06-09 Linos Photonics Gmbh & Co. Kg Faradayrotator
US20080241513A1 (en) 2007-03-29 2008-10-02 Matahiro Komuro Rare earth magnet and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176622A (ja) * 1988-12-28 1990-07-09 Tokin Corp 光アイソレータ
JP2004302412A (ja) * 2003-03-14 2004-10-28 Murata Mfg Co Ltd 磁気光学デバイス
WO2007102391A1 (ja) 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
JP2009229802A (ja) 2008-03-24 2009-10-08 Sumitomo Metal Mining Co Ltd ファラデー回転子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2518552A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146627A (ja) * 2013-01-25 2014-08-14 Aichi Elec Co 永久磁石および永久磁石製造方法
WO2019230420A1 (ja) * 2018-05-31 2019-12-05 日本電気硝子株式会社 磁気回路、ファラデー回転子及び磁気光学素子
JP2019211753A (ja) * 2018-05-31 2019-12-12 日本電気硝子株式会社 磁気回路、ファラデー回転子及び磁気光学素子
JP7356631B2 (ja) 2018-05-31 2023-10-05 日本電気硝子株式会社 磁気回路、ファラデー回転子及び磁気光学素子
US20200227193A1 (en) * 2019-01-14 2020-07-16 Te Connectivity Germany Gmbh Magnetizing Device With Reduced Stray Field
US11955278B2 (en) * 2019-01-14 2024-04-09 Te Connectivity Germany Gmbh Magnetizing device with reduced stray field
WO2021256256A1 (ja) * 2020-06-15 2021-12-23 日本電気硝子株式会社 磁気回路、ファラデー回転子、及び磁気光学デバイス
WO2021256255A1 (ja) * 2020-06-15 2021-12-23 日本電気硝子株式会社 磁気回路、ファラデー回転子、及び磁気光学デバイス
JP7476686B2 (ja) 2020-06-15 2024-05-01 日本電気硝子株式会社 磁気回路、ファラデー回転子、及び磁気光学デバイス
JP7484470B2 (ja) 2020-06-15 2024-05-16 日本電気硝子株式会社 磁気回路、ファラデー回転子、及び磁気光学デバイス

Also Published As

Publication number Publication date
JP5644761B2 (ja) 2014-12-24
KR101737658B1 (ko) 2017-05-18
EP2518552A4 (en) 2017-06-07
CN102362211B (zh) 2014-12-24
KR20120104230A (ko) 2012-09-20
JPWO2011078381A1 (ja) 2013-05-09
US8817370B2 (en) 2014-08-26
US20120062992A1 (en) 2012-03-15
EP2518552A1 (en) 2012-10-31
CN102362211A (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
JP5644761B2 (ja) ファラデー回転子用磁気回路およびファラデー回転子用磁気回路の製造方法
US20130002392A1 (en) Magnetic core
JP2000092763A (ja) 永久磁石形モータ
EP2450918B1 (en) Dipole-ring magnetic circuit
KR20120048510A (ko) 스퍼터 장치용 자기 회로
JP5370912B2 (ja) 磁界発生装置
CN210155455U (zh) 法拉第旋光器及磁光学元件
JP2019211753A (ja) 磁気回路、ファラデー回転子及び磁気光学素子
US11901118B2 (en) Method for manufacturing Halbach magnet array and Halbach magnet array
JP2019083679A (ja) 永久磁石及びモータ
JP7484470B2 (ja) 磁気回路、ファラデー回転子、及び磁気光学デバイス
WO2019225116A1 (ja) ファラデー回転子及び磁気光学素子
WO2019239696A1 (ja) ファラデー回転子及び磁気光学素子
US11735345B2 (en) Method for manufacturing Halbach magnet array
JP2004302412A (ja) 磁気光学デバイス
JP3581030B2 (ja) ファラデー回転角可変装置
WO2019230420A1 (ja) 磁気回路、ファラデー回転子及び磁気光学素子
JP2022184626A (ja) ファラデー回転子モジュール及び光アイソレータ
JP2000298247A (ja) 光アイソレータ及び非可逆相反部品
JP2013118772A (ja) 永久磁石埋込型モータ
JP2006126607A (ja) 光アイソレータ
JPH06281885A (ja) 光アイソレータ
JP2009278025A (ja) 薄型チョークコイル
JP2000105355A (ja) 光アイソレータ及びその製造方法
JPH0464207A (ja) 内燃機関用点火コイル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013670.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011514928

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13321598

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010839609

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127014919

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE