WO2011077754A1 - 電極および蓄電デバイス - Google Patents

電極および蓄電デバイス Download PDF

Info

Publication number
WO2011077754A1
WO2011077754A1 PCT/JP2010/007527 JP2010007527W WO2011077754A1 WO 2011077754 A1 WO2011077754 A1 WO 2011077754A1 JP 2010007527 W JP2010007527 W JP 2010007527W WO 2011077754 A1 WO2011077754 A1 WO 2011077754A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
active material
atom
electrode active
electrode
Prior art date
Application number
PCT/JP2010/007527
Other languages
English (en)
French (fr)
Inventor
貴史 塚越
友 大塚
北條 伸彦
山本 隆一
博基 福元
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10838992.5A priority Critical patent/EP2518797B1/en
Priority to JP2011547333A priority patent/JP5389946B2/ja
Priority to US13/516,162 priority patent/US9640335B2/en
Priority to CN201080056752.XA priority patent/CN102687315B/zh
Publication of WO2011077754A1 publication Critical patent/WO2011077754A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to an electrode and a power storage device using the electrode.
  • Patent Document 1 and Patent Document 2 propose using a conductive organic complex and a radical compound as an electrode active material of a battery having a high voltage and a long lifetime.
  • Patent Document 3 proposes an electricity storage device having a ⁇ -electron conjugated cloud as an electrode active material capable of high-speed charge / discharge.
  • Patent Document 3 proposes an electricity storage device including an electrode active material having a ⁇ electron conjugated cloud as an electrode active material capable of high-speed charge / discharge. Specifically, for example, it has been proposed to use tetrathiafulvalene (hereinafter referred to as TTF) having a structure represented by the following chemical formula (2) as an electrode active material.
  • TTF tetrathiafulvalene
  • Patent Document 3 proposes to use a polymer compound including a plurality of organic compound sites having such a ⁇ -electron conjugated cloud as an electrode active material for an electricity storage device.
  • a polymer compound obtained by bonding an organic compound moiety having a ⁇ -electron conjugated cloud to a polymer compound having a polyacetylene or polymethyl methacrylate chain as a main chain is disclosed.
  • the high molecular compound obtained by carrying out the dehydration condensation of the side chain which has carboxytetrathiafulvalene to the polyvinyl alcohol main chain is disclosed.
  • Patent Document 3 discloses an active material obtained by mixing an active material, a conductive additive, and a binder. A dry method in which a mixture is prepared, and the obtained active material mixture is pressure-bonded onto a conductive support to produce an electrode for an electricity storage device.
  • Patent Document 4 discloses a paste obtained by mixing and dispersing an active material in a solvent. Is applied to a conductive support and the solvent is removed to disclose a wet method for producing an electrode for an electricity storage device.
  • Patent Document 5 discloses a method for preparing a polymer electrode by dissolving an organic sulfur compound monomer in an organic solvent, mixing the obtained solution and a conductive material, and then polymerizing the monomer in the mixture. Disclosure.
  • Patent Document 6 produces a slurry containing a mixture of an organic radical polymer and a conductivity-imparting agent obtained by mixing and drying a sol-like organic radical polymer and a conductivity-imparting agent that are produced by mixing with a solvent.
  • a method of manufacturing an electrode by applying the prepared slurry to a current collector and then removing the solvent is disclosed.
  • the resistance component included in the electricity storage device includes positive electrode active material reaction resistance, positive electrode electric conduction resistance, positive electrode ion conduction resistance, negative electrode active material reaction resistance, negative electrode plate electron conduction resistance, negative electrode plate ion conduction resistance, and positive electrode current collector electron conduction. It can be subdivided into resistance, negative electrode current collector electronic conduction resistance, electrolyte ion conduction resistance, and electronic conduction resistance such as cases and leads. Among them, the active material reaction resistance of the positive electrode and the negative electrode accounts for a large proportion of the internal resistance. Therefore, in order to increase the output of the electricity storage device, it is necessary to reduce the active material reaction resistance.
  • Patent Document 3 and Patent Document 4 disclose a method for manufacturing an electrode using an organic compound, but there is no knowledge about a method for manufacturing a high-power storage device electrode.
  • An object of the present invention is to solve such problems of the prior art, to reduce an active material reaction resistance, and to provide an electrode capable of high capacity, excellent repetitive characteristics and high output, and an electricity storage device using the same. Yes.
  • the electrode of the present invention is an electrode comprising a conductive support, an electrode active material and a conductive additive, and an active material layer provided on the conductive support, wherein the electrode active material is A main first polymer compound having a tetrachalcogenofulvalene skeleton as a repeating unit of a main chain, and a first unit having the tetrachalcogenofulvalene skeleton as a side chain and the tetrachalcogenofulvalene skeleton as a side chain.
  • At least one of a second polymer compound that is a copolymer with a second unit that does not have, and in the active material layer, the electrode active material does not constitute particles, and at least one of the surfaces of the conductive additive. The part is covered.
  • the chalcogenofulvalene skeleton is represented by the following general formula (1), and in the general formula (1), four X's are independently an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom.
  • R1 to R4 represents a bond to the main chain or the adjacent repeating unit of the first polymer compound or the second polymer compound, and the other three Or the two are independent chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, cyclic saturated hydrocarbon groups, cyclic unsaturated hydrocarbon groups, phenyl groups, hydrogen atoms, hydroxyl groups, cyano groups, amino groups,
  • Hydrogen groups each including a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom and a silicon atom, at least one selected from the group consisting of phosphorus and boron atoms.
  • a weight ratio of the electrode active material included in the active material layer is 30 wt% or more.
  • the conductive assistant is carbon black.
  • the conductive auxiliary agent has a specific surface area of 800 m 2 / g or more.
  • the conductive support has a surface layer having a surface in contact with the active material layer, and the surface of the surface layer has irregularities.
  • the surface layer is an electrolytically etched aluminum layer.
  • each of the first polymer compound and the second polymer compound has a degree of polymerization of 4 or more.
  • the second polymer compound has a structure represented by the following general formula (37), and in the general formula (37), R31 and R32 constitute the main chain of the second polymer compound.
  • R31 and R32 are trivalent residues, and independently of each other, at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom and a sulfur atom, a saturated aliphatic group having 1 to 10 carbon atoms, and L1 is an ester group, an ether group, a carbonyl group, a cyano group, a nitro group, or a nitroxyl group that includes at least one substituent selected from the group consisting of unsaturated aliphatic groups, or at least one hydrogen atom, and is bonded to R31.
  • a group, an alkyl group, a phenyl group, an alkylthio group, a sulfone group or a sulfoxide group, and RR33 is composed of 1 to C32 bonded to R32 and M1.
  • a divalent residue containing at least one selected from the group consisting of substituted or unsubstituted alkylene, alkenylene, arylene, ester, amide and ether, and M1 is represented by the general formula (1), N and m are integers representing the number of repeating monomer units, and the composition ratio of the unit number m of the second unit to the unit number n of the first unit constituting the second polymer compound m / n is greater than 0 and 5 or less.
  • the L1 contains at least one selected from an ester group, an ether group and a carbonyl group.
  • the active material layer is formed by applying a mixture containing an aprotic solvent in which the electrode active material is dissolved and the conductive auxiliary agent onto the conductive support, and applying the aprotic solvent to the active material layer. It is formed by removing.
  • the aprotic solvent is N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, toluene, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran or chloroform.
  • the electrochemical device of the present invention includes a positive electrode, a negative electrode, and an electrolytic solution, and at least one of the positive electrode and the negative electrode is composed of any of the electrodes described above.
  • the electrolytic solution contains a salt of a quaternary ammonium cation and an anion.
  • An electricity storage device of the present invention comprises a positive electrode comprising any one of the electrodes described above, a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, and a salt of the lithium ions and anions, wherein the positive electrode and the depression And an electrolytic solution filled in between.
  • the portable electronic device of the present invention includes the above electricity storage device.
  • the vehicle of the present invention includes the above electricity storage device.
  • the method for producing an electrode of the present invention is a method for producing an electrode according to any one of the above, and a step of preparing a mixture containing the aprotic solvent in which the electrode active material is dissolved and the conductive additive; Removing the aprotic solvent from the mixture.
  • the method for producing an electricity storage device of the present invention includes an electrode defined in any of the above, a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, and a salt composed of the lithium ions and anions, A method of manufacturing an electricity storage device comprising an electrolyte filled between the negative electrodes, the step of preparing a mixture containing the aprotic solvent in which the electrode active material is dissolved and the conductive additive; Removing the aprotic solvent from the mixture.
  • the active material layer has a gap located between the electrode active materials covering the conductive additive.
  • the active material layer further includes a binder.
  • At least a part of the surface of the conductive auxiliary agent is coated with a mixture of the electrode active material and the binder.
  • the binder is a fluororesin.
  • the side chain of the second unit includes a functional group having an affinity with a non-aqueous solvent.
  • the side chain of the second unit is selected from an ester group, an ether group, a carbonyl group, a cyano group, a nitro group, a nitroxyl group, an alkyl group, a phenyl group, an alkylthio group, a sulfone group, and a sulfoxide group. Contains at least one.
  • the second polymer compound is represented by the following formula (38), and in the general formula (38), R36 is a substituted or unsubstituted alkylene, alkenylene, arylene having 1 to 4 carbon atoms. , R34 and R35 are each independently selected from the group consisting of a saturated aliphatic group having 1 to 4 carbon atoms and a phenyl group.
  • R37 to R39 each represent an independent chain aliphatic group, cyclic aliphatic group, hydrogen atom, hydroxyl group, cyano group, amino group, nitro group, nitroso group Alternatively, it is an alkylothio group, and R38 and R39 may be bonded to each other to form a ring.
  • L1 is an ester group, an ether group, a carbonyl group, a cyano group, a nitro group, a nitroxyl group, an alkyl group, a phenyl group, an alkylthio group, a sulfone group or a sulfoxide group, and n and m are integers representing the number of repeating monomer units. is there.
  • L1 contains at least one selected from an ester group, an ether group, and a carbonyl group.
  • the second polymer compound has a structure represented by the following formula (39), and in the formula (39), n and m are integers representing the number of repeating monomer units.
  • the composition ratio m / n of the number of units m of the second unit to the number of units n of the first unit constituting the copolymer compound is greater than 0 and 5 or less.
  • the aprotic solvent is an aprotic polar solvent.
  • the mixture further includes a binder, and the binder is dissolved in the aprotic solvent.
  • the binder is a fluororesin.
  • the carbon black has an average particle size of 50 nm or less.
  • the degree of polymerization of the copolymer compound is 4 or more.
  • At least a part of the surface of the conductive auxiliary agent is coated with a mixture of the electrode active material and the binder.
  • the first polymer compound is a copolymer containing repeating units represented by the following general formulas (3) and (4), and in the general formulas (3) and (4), X is independently an oxygen atom, a sulfur atom, a selenium atom or a tellurium atom, and R5 to R8 are each an independent chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group, a cyclic saturated hydrocarbon group, a cyclic unsaturated group.
  • the unsaturated hydrocarbon group, cyclic saturated hydrocarbon group and cyclic unsaturated hydrocarbon group are each selected from the group consisting of carbon atom, oxygen atom, nitrogen atom, sulfur atom and silicon atom. Even without comprise one, a combination of R5 and R6 is different from the combination of R7 and R8.
  • the first polymer compound is represented by the following general formula (6), and in the general formula (6), four Xs are independently an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom.
  • R5 and R6 are each an independent chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon group, phenyl group, hydrogen atom, hydroxyl group, cyano group, It is at least one selected from the group consisting of an amino group, a nitro group, a nitroso group, or an alkylthio group, and the chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, and cyclic unsaturated hydrocarbon Each group includes at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom, and R9 represents an acetylene skeleton or a
  • R9 includes at least one of an acetylene skeleton and a thiophene skeleton.
  • the X is a sulfur element, wherein R5 and R6 are each, CH 3, SC 6 H 13 , a C 10 H 21 or C 6 H 5.
  • R9 has a structure represented by any one of the following general formulas (9-a), (9-b), and (9-c), and the general formulas (9-a), (9- In b) and (9-c), R10 to R14 are each an independent chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon group, phenyl group, hydrogen atom , A hydroxyl group, a cyano group, an amino group, a nitro group, a nitroso group, or an alkylthio group, the chain saturated hydrocarbon group, the chain unsaturated hydrocarbon group, and the cyclic saturated hydrocarbon
  • the group and the cyclic unsaturated hydrocarbon group each contain at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom.
  • the first polymer compound is represented by the following general formula (11), and in the general formula (11), four Xs are independently an oxygen atom, a sulfur atom, a selenium atom, or Tellurium atom, R5, R6, R10 to R12 and R14 are each an independent chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon group, phenyl group, hydrogen atom, It contains at least one selected from the group consisting of hydroxyl group, cyano group, amino group, nitro group, nitroso group or alkylthio group.
  • the chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group and cyclic unsaturated hydrocarbon group are each selected from the group consisting of carbon atom, oxygen atom, nitrogen atom, sulfur atom and silicon atom. Contains at least one selected.
  • R5 and R6 are each a phenyl group, an alkylthio group, or a saturated hydrocarbon group.
  • R5 and R6 are each a methyl group.
  • the first polymer compound is represented by the following general formula (31), and in the general formula (31), four Xs are independently an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom.
  • Each of R15 and R16 is an independent chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon group, phenyl group, hydrogen atom, hydroxyl group, cyano group, It is at least one selected from the group consisting of an amino group, a nitro group, a nitroso group, or an alkylthio group, and the chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, and cyclic unsaturated hydrocarbon
  • Each group includes at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom, and R27 represents an acetylene skeleton and
  • the first polymer compound is represented by the following general formula (8), and in the general formula (8), four Xs are each independently an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom.
  • Each of R15, R16, R23 and R24 is an independent chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon group, phenyl group, hydrogen atom, hydroxyl group, It is at least one selected from the group consisting of a cyano group, an amino group, a nitro group, a nitroso group or an alkylthio group, and the chain saturated hydrocarbon group, the chain unsaturated hydrocarbon group, the cyclic saturated hydrocarbon group and the cyclic unsaturated group.
  • the saturated hydrocarbon group includes at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom, and R22 and R25 are respectively Independently, it is a chain unsaturated hydrocarbon group or cyclic unsaturated hydrocarbon group containing at least one of an acetylene skeleton and a thiophene skeleton, and is selected from the group consisting of carbon atom, oxygen atom, nitrogen atom, sulfur atom and silicon atom Including at least one selected from the group consisting of
  • the active material layer is formed by applying a mixture containing an aprotic solvent in which the electrode active material is dissolved and the conductive auxiliary agent to the conductive support, and removing the aprotic solvent. It is formed by doing.
  • the aprotic solvent is N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, toluene, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran or chloroform.
  • the electrode of the present invention contains a polymer compound having a tetrachalcogenofulvalene skeleton as a repeating unit as an electrode active material, it can stably perform a redox reaction repeatedly.
  • the electrode active material is present covering at least a part of the surface of the conductive additive. For this reason, the contact area of an electrode active material and a conductive support agent is large, and the movement of an electron between an electrode active material and a conductive support agent is performed smoothly.
  • the electrode active material can exist as a thin film on the surface of the conductive additive, the migration distance of the counter ion from the electrolytic solution to the oxidation-reduction reaction portion in the electrode active material is shortened, and resistance due to diffusion of the counter ion is reduced. Can be reduced. As a result, the resistance at the electrode during the oxidation-reduction reaction can be reduced.
  • an electricity storage device having excellent repeatability, high capacity, and high output is realized.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of an electricity storage device according to the present invention. It is typical sectional drawing which shows 2nd Embodiment of the electrode by this invention. It is typical sectional drawing which expands and shows a part of active material layer of the electrode shown in FIG. It is typical sectional drawing which shows the structure of the conventional electrode. It is typical sectional drawing which shows 2nd Embodiment of the electrical storage device by this invention.
  • (A) is a SEM image which shows the cross section of the electrode of Example 2
  • (b) is an image which shows distribution of sulfur in the cross section.
  • (A) is a SEM image which shows the cross section of the electrode of the comparative example 1
  • (b) is an image which shows distribution of sulfur in the cross section.
  • (A) is a SEM image which shows the cross section of the electrode of the comparative example 3
  • (b) is an image which shows distribution of sulfur in the cross section.
  • (A) is the SEM image which shows the cross section of the electrode of Example 7,
  • (c) are the carbon distribution image and sulfur distribution image in the cross section, respectively.
  • (A) is a SEM image which shows the cross section of the electrode of the comparative example 13
  • (b) is an image which shows distribution of sulfur in the cross section.
  • 6 is a graph showing the relationship between the active material blending ratio and the charge / discharge capacity ratio in the electricity storage devices of Examples 3 to 6 and Comparative Examples 6 to 9.
  • 6 is a graph showing the relationship between the active material blending ratio and the charge / discharge capacity ratio in the electricity storage devices of Examples 7 to 10 and Comparative Examples 10 to 13.
  • 16 is a SEM image showing a cross section of the electrode of Example 14.
  • the present invention is not limited to the lithium secondary battery and the electrode for the lithium secondary battery, and can be suitably used for an electrochemical element such as a capacitor utilizing a chemical reaction.
  • FIG. 1 schematically shows a cross-sectional structure of a first embodiment of an electrode 101 according to the present invention.
  • the electrode 101 includes a conductive support 11 and an active material layer 12 provided on the conductive support 11.
  • the conductive support 11 is made of a low-resistance substance having electrical conductivity, for example, a material used as a current collector for a positive electrode or a negative electrode of a secondary battery.
  • the conductive support 11 is composed of a metal foil or mesh made of aluminum, gold, silver, stainless steel, an aluminum alloy, or the like, a porous body, and a resin film containing a conductive filler made of these metals. .
  • the active material layer 12 includes an electrode active material 13 and a conductive additive 14.
  • the electrode active material 13 includes a polymer compound having a structure described in detail below.
  • Another feature of the present invention is that in the active material layer 12, the electrode active material 13 does not form particles and covers at least a part of the surface of the conductive additive 14.
  • the electrode active material 13 is an organic compound that performs a reversible oxidation-reduction reaction, and specifically, a polymer compound including a tetrachalcogenofulvalene skeleton.
  • the tetrachalcogenofulvalene skeleton is represented by the following general formula (1).
  • the tetrachalcogenofulvalene skeleton may be included in the main chain of the polymer compound or may be included in the side chain.
  • X is chalcogen, that is, the 16th element of the periodic table. Specifically, the four Xs are independently a chalcogen is an oxygen atom, a sulfur atom, a selenium atom or a tellurium atom.
  • tetrachalcogenofulvalene skeleton When the tetrachalcogenofulvalene skeleton is contained in the main chain of the polymer compound (first polymer compound), two selected from R1 to R4 are tetrachalcogeno represented by the adjacent general formula (1) This represents a bond with a monomer having a chemical structure other than the fulvalene skeleton or the general formula (1), and the other two are independent chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, and cyclic saturated hydrocarbons.
  • a chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group, a cyclic saturated hydrocarbon group and a cyclic unsaturated hydrocarbon group are respectively a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom and a silicon atom, a phosphorus atom and a boron atom. It contains at least one selected from the group consisting of atoms.
  • the tetrachalcogenofulvalene skeleton is contained in the side chain of the polymer compound (second polymer compound), one selected from R1 to R4 is bonded to the main chain of the polymer compound or the other part of the side chain.
  • the other three are independent chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, cyclic saturated hydrocarbon groups, cyclic unsaturated hydrocarbon groups, phenyl groups, hydrogen atoms, It is at least one selected from the group consisting of a hydroxyl group, a cyano group, an amino group, a nitro group, a nitroso group, and an alkiothio group.
  • a chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group, a cyclic saturated hydrocarbon group and a cyclic unsaturated hydrocarbon group are respectively a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom and a silicon atom, a phosphorus atom and a boron atom. It contains at least one selected from the group consisting of atoms.
  • R1 and R2 may be bonded to each other to form a ring, and R3 and R4 may be bonded to each other to form a ring.
  • the tetrachalcogenofulvalene skeleton represented by the general formula (1) includes a chalcogen atom having an unpaired electron and a double bond in each of two five-membered rings. This forms a ⁇ -electron conjugated cloud in which the five-membered ring is delocalized. For this reason, the tetrachalcogenofulvalene skeleton can maintain a stable state even in an oxidized state in which ⁇ electrons are emitted one by one from the two 5-membered rings.
  • TTF tetrathiafulvalene
  • the tetrachalcogenofulvalene skeleton can be used as an electrode active material capable of accumulating charges.
  • the tetrachalcogenofulvalene skeleton represented by the general formula (1) is used for a positive electrode of a lithium secondary battery, the tetrachalcogenofulvalene skeleton is in an electrically neutral state during discharge, that is, the formula ( Take the state on the left side of R1). In the charged state, the tetrachalcogenofulvalene skeleton is positively charged, that is, the state on the right side of the formula (R1).
  • R1 When X is a sulfur atom, a selenium atom, a tellurium atom, and an oxygen atom, it has redox characteristics represented by the formula (R1), for example, TTF Chemistry, Fundamentals and Applications of Tetrathiafulvalene, Journal of the American Chemical Society, Society1975, 97 (10), P2921-2922, Chemical Communication, 1997, P1925-1926.
  • tetrachalcogenofulvalene skeleton itself, and the functional group of the tetrachalcogenofulvalene skeleton, that is, the structure of R1 to R4 in the structure represented by the general formula (1) Is not particularly limited as long as it does not contribute to redox.
  • Synthesis of compounds having various structures from R1 to R4 and having the same oxidation-reduction characteristics as chalcogenofulvalene include, for example, TTF Chemistry, Fundamentals and Applications of Tetrathiafulvalene, Journal of the American Chemical Society It is reported by.
  • polyaniline, polythiophene, and derivatives thereof are known as polymers having a ⁇ -electron conjugated cloud. These polymers contain a ⁇ -electron conjugated cloud in the main chain, and are similar to the polymer compound of the electrode active material used for the electrode of the present invention in that it contains a ⁇ -electron conjugated cloud.
  • polyaniline, polyacetylene and their derivatives form a resonance structure with conjugated double bonds throughout the main chain, when electrons are extracted from the main chain, the resulting positive charge spreads to some extent in the main chain. To do. As a result, when an electron is continuously extracted from the adjacent repeating unit, the positive charge generated by extracting the first electron is delocalized over the adjacent unit, and the electron is extracted from the adjacent unit by electrical repulsion. It becomes difficult.
  • the ⁇ -electron conjugated cloud has electrons delocalized only within each 5-membered ring. Turn into. For this reason, the oxidation-reduction reaction is completed for each 5-membered ring of the polymer, and the oxidation state of a certain 5-membered ring is considered not to have a great influence on the oxidation-reduction reaction of the adjacent 5-membered ring. For this reason, it is possible to exchange electrons corresponding to the number of 5-membered rings contained in the polymer. That is, the electrode active material used for the electrode of the present invention can achieve a high charge / discharge capacity.
  • the tetrachalcogenofulvalene skeleton represented by the general formula (1) is contained in the repeating unit of the main chain of the polymer compound, or the side chain of the polymer compound is include.
  • the tetrachalcogenofulvalene skeleton represented by the general formula (1) in the polymer compound the molecular weight of the molecule containing the tetrachalcogenofulvalene skeleton increases, and the solubility in an organic solvent decreases. Therefore, it is possible to suppress deterioration of cycle characteristics in an electricity storage device that uses an organic solvent as an electrolytic solution.
  • the site where the redox reaction is performed contributes to the polymerization of the polymer. Therefore, it is possible to form a polymer structure in which a portion where no redox reaction is performed is made as small as possible. This makes it possible to realize an electrode having a high energy density and excellent charge / discharge or oxidation / reduction cycle characteristics.
  • the molecular weight of the polymer is preferably large so that the polymer of the tetrachalcogenofulvalene skeleton represented by the general formula (1) is not dissolved in the organic solvent.
  • it contains four or more tetrachalcogenofulvalene skeletons represented by the general formula (1), that is, the degree of polymerization of the polymer (n represented by the following general formula or chemical formula, or n and m The sum is preferably 4 or more.
  • the degree of polymerization of the polymer is 10 or more, and more preferably 20 or more and 4000 or less.
  • the polymer used for the electrode of the present invention has a chemical structure having a high affinity with a specific aprotic solvent. Thereby, it becomes easy to obtain a structure in which the electrode active material 13 does not constitute particles and covers at least a part of the surface of the conductive auxiliary agent 14. Therefore, it is preferable to have a chemical structure having high affinity with an aprotic solvent other than the tetrachalcogenofulvalene skeleton.
  • Chemical structures with high affinity to aprotic solvents include chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, cyclic saturated hydrocarbon groups, cyclic unsaturated hydrocarbons, phenyl groups, hydrogen atoms, hydroxyl groups, cyano Group, amino group, nitro group, nitroso group and alkylthio group are preferred, chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon to oxygen element, nitrogen element, sulfur Elements and silicon elements may be included. Furthermore, a chain saturated hydrocarbon group and a cyclic unsaturated hydrocarbon group are preferable, and a saturated hydrocarbon group and a phenyl group are more preferable.
  • Chemical structures with high affinity to aprotic solvents include chain saturated hydrocarbon groups, chain unsaturated hydrocarbon groups, cyclic saturated hydrocarbon groups, cyclic unsaturated hydrocarbons, phenyl groups, hydrogen atoms, hydroxyl groups, cyano Group, amino group, nitro group, nitroso group and alkylthio group are preferred, chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon to oxygen element, nitrogen element, sulfur Elements and silicon elements may be included.
  • a chain unsaturated hydrocarbon group and a cyclic unsaturated hydrocarbon group are preferable, and an acetylene skeleton, a phenyl group, and a thiophene group are more preferable. Furthermore, it is preferable that the phenyl group is bonded at the meta position to form a main chain.
  • the electrode active material 13 is a polymer compound including a tetrachalcogenofulvalene skeleton represented by the general formula (1) in the main chain or the side chain.
  • a polymer compound containing a tetrachalcogenofulvalene skeleton in the main chain (hereinafter sometimes referred to as a first polymer compound) will be described.
  • the tetrachalcogenofulvalene skeleton constitutes the main chain
  • the tetrachalcogenofulvalene skeleton is fixed by chemical bonds at two positions of the reaction skeleton in the main chain.
  • the degree of freedom of molecular motion of the skeleton is small, and it is difficult to overlap with the closest tetrachalcogenofulvalene skeleton in the polymer molecule. That is, tetrachalcogenofulvalene skeletons having ⁇ -electron conjugated clouds are planarly stacked and a strong intermolecular force is suppressed from acting.
  • a strong intermolecular force is difficult to work between molecules, the molecule is easily solvated, that is, dissolved, so that the solubility of the polymer represented by the general formula (1) in the solvent is generally high.
  • the non-aqueous solvent generally used for the non-aqueous electrolyte secondary battery does not have a high dissolving ability to dissolve the organic compound polymer, and the polymer represented by the general formula (1) is also a non-aqueous electrolyte secondary battery. It does not dissolve in non-aqueous solvents used in batteries.
  • the above-mentioned “high solubility” means that the polymer represented by the general formula (1) is dissolved in a solvent appropriately selected from aprotic polar solvents having a high solubility for organic compound polymers. It means that.
  • the first polymer compound that is the electrode active material 13 has a tetrachalcogenofulvalene skeleton represented by the general formula (1) as long as the main chain includes the tetrachalcogenofulvalene skeleton represented by the general formula (1).
  • a copolymer of a monomer and a monomer having a chemical structure other than the general formula (1) may be used.
  • the main chain of the polymer is formed by directly bonding the tetrachalcogenofulvalene skeletons to each other.
  • the polymer may be a polymer obtained by copolymerizing two or more monomers each including a tetrachalcogenofulvalene skeleton but having different substituents.
  • examples of the first polymer compound used as the electrode active material 13 of the electrode according to the present invention include copolymer compounds containing repeating units represented by the following general formulas (3) and (4). These are polymers in which positions 1 and 4 of the tetrachalcogenofulvalene skeleton are directly bonded to each other, but the tetrachalcogenofulvalene skeleton of the repeating unit has a different substituent.
  • the tetrachalcogenofulvalene skeletons are directly bonded to each other to form a main chain of the copolymer. Therefore, the proportion of the constituent parts contributing to the oxidation-reduction reaction in the main chain is high, and charges can be accumulated at a high energy density as a power storage material.
  • the copolymer containing the repeating units represented by the general formulas (3) and (4) may be a block copolymer, an alternating copolymer, or a random copolymer. Also good. Specifically, it is a copolymer in which a unit in which a plurality of repeating units represented by general formula (3) are directly bonded and a unit in which a plurality of repeating units represented by general formula (4) are directly bonded are alternately arranged. May be. Moreover, the copolymer which the repeating unit represented by General formula (3) and the repeating unit represented by General formula (4) arranged alternately may be sufficient. Or the copolymer which the repeating unit represented by General formula (3) and the repeating unit represented by General formula (3) arranged at random may be sufficient.
  • Xs are each independently an oxygen atom, a sulfur atom, a selenium atom or a tellurium atom
  • R5 to R8 are each an independent chain saturated hydrocarbon group, At least one selected from the group consisting of saturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon group, phenyl group, hydrogen atom, hydroxyl group, cyano group, amino group, nitro group, nitroso group or alkylthio group It is.
  • the chain saturated hydrocarbon group, the chain unsaturated hydrocarbon group, the cyclic saturated hydrocarbon group, and the cyclic unsaturated hydrocarbon group are each selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom. Including at least one selected from the group consisting of However, the combination of R5 and R6 is different from the combination of R7 and R8.
  • R5 and R6 may each be a phenyl group
  • R7 and R8 may each be a chain hydrocarbon group
  • the electrode active material 13 is a polymer represented by the following chemical formula (5) in which X is a sulfur atom, R5 and R6 are each a phenyl group, and R7 and R8 are decyl groups. Also good.
  • the sum of n and m represents the degree of polymerization and is an integer of 2 or more.
  • the repeating units having two tetrachalcogenofulvalene skeletons may be regularly arranged or randomly arranged. The ratio between n and m is arbitrary.
  • the molecular weight of the polymer is preferably large so that the polymer does not dissolve in the organic solvent.
  • the tetrachalcogenofulvalene skeleton is 4 or more, that is, the degree of polymerization of the polymer (the sum of n and m) is 4 or more.
  • the electrode active material 13 may be a polymer represented by the following general formula (6).
  • chain unsaturated hydrocarbon groups or cyclic unsaturated hydrocarbon groups containing an acetylene skeleton or a thiophene skeleton as a linker are alternately arranged with a tetrachalcogenofulvalene skeleton in the main chain.
  • the tetrachalcogenofulvalene skeleton constitutes the main chain through a chain unsaturated hydrocarbon group or a cyclic unsaturated hydrocarbon group containing an acetylene skeleton or a thiophene skeleton.
  • the chain unsaturated hydrocarbon group or cyclic unsaturated hydrocarbon group containing an acetylene skeleton or a thiophene skeleton suppresses the electronic interaction between the tetrachalcogenofulvalene skeletons, and in each tetrachalcogenofulvalene skeleton, Stability against electrochemical redox can be increased.
  • all the tetrachalcogenofulvalene skeletons of the polymer can be reversibly oxidized and reduced, and a high-capacity electrode active material can be realized.
  • a chain unsaturated hydrocarbon group or a cyclic unsaturated hydrocarbon group containing an acetylene skeleton or a thiophene skeleton as a linker is alternately arranged with the tetrachalcogenofulvalene skeleton, thereby intermolecular between the tetrachalcogenofulvalene skeletons. Power is weakened more. Moreover, the affinity with respect to a non-aqueous solvent is heightened by the electron withdrawing action of those linker structures. Therefore, the polymer represented by the general formula (6) is easily solvated, that is, dissolved in the aprotic polar solvent.
  • the solvent since the solvent easily enters the intermolecular gap caused by the steric hindrance between the substituents, the solvent is easily solvated in the aprotic polar solvent to the extent that it does not dissolve in the electrolyte solvent.
  • four Xs are independently an oxygen atom, a sulfur atom, a selenium atom or a tellurium atom, and R5 and R6 are independent chain saturated hydrocarbon groups and chain unsaturated groups, respectively.
  • At least one selected from the group consisting of hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon group, phenyl group, hydrogen atom, hydroxyl group, cyano group, amino group, nitro group, nitroso group or alkylthio group is there.
  • the chain saturated hydrocarbon group, the chain unsaturated hydrocarbon group, the cyclic saturated hydrocarbon group, and the cyclic unsaturated hydrocarbon group are each at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom. Including species.
  • R9 is a chain unsaturated hydrocarbon group or cyclic unsaturated hydrocarbon group containing an acetylene skeleton or a thiophene skeleton, and is at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom including.
  • the electrode active material 13 is a polymer represented by the following chemical formula (8), wherein X is a sulfur atom, R5 and R6 are each a phenyl group, and R9 has a structure represented by the following chemical formula (7). There may be.
  • the electrode active material 13 may be a polymer having a structure represented by any one of the following general formulas (9-a) to (9-c) in the general formula (6).
  • the electrode active material 13 includes a polymer represented by the following general formula (10) or (11).
  • four Xs are independently an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom
  • R5, R6, and R10 to R13 are each an independent chain saturated hydrocarbon group, a chain An unsaturated hydrocarbon group, a cyclic saturated hydrocarbon group, a cyclic unsaturated hydrocarbon group, a phenyl group, a hydrogen atom, a hydroxyl group, a cyano group, an amino group, a nitro group, a nitroso group, or an alkylthio group.
  • the chain saturated hydrocarbon group, the chain unsaturated hydrocarbon group, the cyclic saturated hydrocarbon group, and the cyclic unsaturated hydrocarbon group each include a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, silicon It contains at least one selected from the group consisting of atoms.
  • Xs are independently an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom
  • R5, R6, R10 to R12 and R14 are each an independent chain saturated hydrocarbon group.
  • the electrode active material 13 has the following formula (10), wherein X is a sulfur atom, R5 and R6 are each a thiohexyl group, a methyl group, or a decyl group, and R10 to R13 are hydrogen groups. It may be a polymer represented by chemical formula (12), (13) or (14).
  • the electrode active material 13 is represented by the general formula (10), wherein X is a sulfur atom, R5 and R6 are each a phenyl group, R10 and R13 are each a methoxy group, and R11 and R12 are each a hydrogen group. There may be a polymer represented by the following chemical formula (15).
  • the electrode active material 13 is represented by the following general formula (11), wherein X is a sulfur atom, R5 and R6 are each a methyl group or a phenyl group, and R10 to R12 and R14 are each a hydrogen group. It may be a polymer represented by chemical formula (16) or (17).
  • R9 may have any structure represented by the following chemical formulas (18) to (22) including a thiophene skeleton.
  • the polymer when X is a sulfur atom, the polymer may be a polymer represented by the following chemical formulas (23) to (30). It is preferable that four or more tetrachalcogenofulvalene skeletons are included so that the polymer does not dissolve in the organic solvent. That is, n in the following chemical formulas (23) to (30) is preferably 4 or more, and m in the chemical formula (30) is preferably 4 or more.
  • the repeating unit having a tetrathiafulvalene skeleton and the repeating unit having a thiophene skeleton may be regularly arranged or randomly arranged. The ratio between n and m is arbitrary.
  • the main chain of the polymer is constituted by R1 and R3 of the tetrachalcogenofulvalene skeleton represented by the general formula (1), that is, the 1-position and the 4-position of the tetrachalcogenofulvalene skeleton.
  • R1 and R2 (or R3 and R4) of the tetrachalcogenofulvalene skeleton represented by the general formula (1) that is, the 1st and 2nd positions (or 3rd and 4th positions) of the tetrachalcogenofulvalene skeleton. It may constitute the main chain of the polymer.
  • the electrode active material 13 may be a polymer represented by the following general formula (31).
  • four Xs are each independently an oxygen atom, a sulfur atom, a selenium atom or a tellurium atom, and R15 and R16 are independent chain saturated hydrocarbon groups and chain unsaturated groups, respectively.
  • the chain saturated hydrocarbon group, the chain unsaturated hydrocarbon group, the cyclic saturated hydrocarbon group, and the cyclic unsaturated hydrocarbon group each comprise a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom. It contains at least one selected from the group.
  • R27 is a chain unsaturated hydrocarbon group or a cyclic unsaturated hydrocarbon group containing at least one of an acetylene skeleton and a thiophene skeleton, and is selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom. Including at least one selected from the group consisting of
  • R27 may have a structure represented by any of the following chemical formula (7), general formula (9-a), (9-b) and (9-c).
  • R10 to R14 are each an independent chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon
  • Each of the group, the chain unsaturated hydrocarbon group, the cyclic saturated hydrocarbon group, and the cyclic unsaturated hydrocarbon group is at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom.
  • the electrode active material 13 may be a polymer represented by the following general formula (32).
  • four Xs are each independently an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom, and R15 to R20 are each an independent chain saturated hydrocarbon group, chain-like non-chain.
  • the chain saturated hydrocarbon group, the chain unsaturated hydrocarbon group, the cyclic saturated hydrocarbon group and the cyclic unsaturated hydrocarbon group are each composed of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom and a silicon atom, respectively.
  • the electrode active material 13 may be a polymer represented by the following chemical formula (33), in which X is a sulfur atom, R15 and R16 are thiohexyl groups, and R17 to R20 are hydrogen atoms.
  • the electrode active material 13 may be a polymer represented by the following general formula (34).
  • four Xs are independently an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom
  • R15 to R19 and R21 are each an independent chain saturated hydrocarbon group, At least one selected from the group consisting of saturated hydrocarbon group, cyclic saturated hydrocarbon group, cyclic unsaturated hydrocarbon group, phenyl group, hydrogen atom, hydroxyl group, cyano group, amino group, nitro group, nitroso group or alkylthio group including.
  • the chain saturated hydrocarbon group, chain unsaturated hydrocarbon group, cyclic saturated hydrocarbon group and cyclic unsaturated hydrocarbon group are each selected from the group consisting of carbon atom, oxygen atom, nitrogen atom, sulfur atom and silicon atom. Contains at least one selected.
  • the electrode active material 13 may have a structure represented by the following general formula (35).
  • four Xs are each independently an oxygen atom, a sulfur atom, a selenium atom or a tellurium atom
  • R15, R16, R23 and R24 are each an independent chain saturated hydrocarbon group, Selected from the group consisting of chain unsaturated hydrocarbon groups, cyclic saturated hydrocarbon groups, cyclic unsaturated hydrocarbon groups, phenyl groups, hydrogen atoms, hydroxyl groups, cyano groups, amino groups, nitro groups, nitroso groups or alkylthio groups
  • the chain saturated hydrocarbon group, the chain unsaturated hydrocarbon group, the cyclic saturated hydrocarbon group and the cyclic unsaturated hydrocarbon group are each a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, It contains at least one selected from the group consisting of silicon atoms.
  • R22 and R25 are each independently a chain unsaturated hydrocarbon group or a cyclic unsaturated hydrocarbon group containing at least one of an acetylene skeleton and a thiophene skeleton, and are a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom. At least one selected from the group consisting of:
  • R22 and R25 may have a structure represented by the following chemical formula (7).
  • the electrode active material 13 may be a polymer represented by the following chemical formula (36) in which X is a sulfur atom, R15 and R16 are thiohexyl groups, and R23 and R24 are phenyl groups. It is preferable that four or more tetrachalcogenofulvalene skeletons are included so that the polymer does not dissolve in the organic solvent. That is, n in the following chemical formula (36) is preferably 2 or more.
  • tetracarbons are introduced via a chain unsaturated hydrocarbon group or a cyclic unsaturated hydrocarbon group containing an acetylene skeleton or a thiophene skeleton.
  • the genofulvalene skeleton constitutes the main chain.
  • the chain-like unsaturated hydrocarbon group or the cyclic unsaturated hydrocarbon group suppresses the electronic interaction between the tetrachalcogenofulvalene skeletons and prevents the electrochemical redox in each tetrachalcogenofulvalene skeleton. Stability can be increased.
  • all the tetrachalcogenofulvalene skeletons of the polymer can be reversibly oxidized and reduced, and a high-capacity electrode active material can be realized.
  • Each polymer described above can be synthesized by polymerizing a monomer containing a tetrachalcogenofulvalene skeleton.
  • the polymer may be synthesized by any method as long as it has the structure represented by the general formulas (1) to (18).
  • it has a molecular structure containing the predetermined substituents represented by the general formulas (1) to (18) described above, and has a halogen or other functional group at a position to become a bond during polymerization.
  • the electrode active material 13 has the redox site having the structure represented by the general formula (1) in the side chain. It is a copolymer compound of the 1st unit which has, and the 2nd unit which does not have a redox reaction site
  • the tetrachalcogenofulvalene skeleton located in the side chain is likely to be close to each other. For this reason, it becomes difficult to secure a migration path for the counter anion during the oxidation-reduction reaction, and the oxidation-reduction reaction cannot be performed smoothly. In this case, since it becomes difficult to obtain a stable oxidation state of the tetrachalcogenofulvalene skeleton, the oxidation reaction also hardly proceeds. This becomes resistance of the active material reaction.
  • the second anion does not have a redox reaction site in the side chain so that the counter anion approaches the redox site and is easily coordinated.
  • the unit is copolymerized with a first unit having a redox site having a structure represented by the general formula (1) in the side chain. This reduces steric hindrance near the redox site, makes it easier for the counter anion to coordinate to the redox site, and reduces the resistance of the active material reaction.
  • the tetrachalcogenofulvalene skeletons located in the sidechain are easily close to each other, and in the polymer compound not including the second unit, the adjacent tetrachalcogenofulvalene is The skeletons are easy to stack. Therefore, the solubility of the polymer compound in the solvent is low.
  • the solubility of the polymer compound in the solvent is low.
  • the second unit does not have a site for electrochemically performing a redox reaction within the potential range where the structure represented by the general formula (1) performs a redox reaction.
  • the side chain of the second unit is a functional group having an affinity for an aprotic solvent, whereby the solvated counter anion can easily approach the vicinity of the redox site.
  • Structures having such chemical characteristics include oxygen-containing functional groups such as ester groups, ether groups, carbonyl groups, nitrogen-containing functional groups such as cyano groups, nitro groups, nitroxyl groups, and alkyl functional groups composed of carbon. Group, phenyl group, sulfur-containing functional group, alkylthio group, sulfone group, sulfoxide group, and the like.
  • the side chain of the second unit is an ester group, an ether group, or a carbonyl group.
  • the side chain of the second unit preferably contains at least one selected from these, and may contain two or more.
  • the terminal portion of the functional group of the ester group, ether group, carbonyl group, sulfone group, or sulfoxide group is not particularly limited, but an alkyl group or aromatic group having a small number of carbon atoms such as a methyl group or an ethyl group is desirable.
  • Preferred ester groups include, for example, alkyl esters represented by (—COO—CH 3 ) and (—COO—C 2 H 5 ), phenyl esters (—COO—C 6 H 5 ), and the like.
  • Preferred ether groups include alkyl ethers represented by (—O—CH 3 ) and (—O—C 2 H 5 ) and phenyl ether (—O—C 6 H 5 ).
  • Preferred examples of the carbonyl group include (—C ( ⁇ O) —CH 3 ), (—C ( ⁇ O) —C 2 H 5 ), (—C ( ⁇ O) —C 6 H 5 ), and the like.
  • Preferred sulfone groups include (—S ( ⁇ O) 2 —CH 3 ), (—S ( ⁇ O) 2 —C 2 H 5 ), (—S ( ⁇ O) 2 —C 6 H 5 ).
  • Preferred sulfoxide groups include (—S ( ⁇ O) —CH 3 ), (—S ( ⁇ O) —C 2 H 5 ), (—S ( ⁇ O) —C 6 H 5 ) and the like.
  • the side chain of the second unit preferably contains an ester group, an ether group, or a carbonyl group having high affinity with an aprotic solvent.
  • the main chain of the copolymer compound is not particularly limited, and includes a trivalent residue containing at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom and a sulfur atom as a repeating unit.
  • the repeating unit may contain a substituent selected from the group consisting of a saturated aliphatic group having 1 to 10 carbon atoms and an unsaturated aliphatic group. That is, the repeating unit has at least one hydrogen or a substituent selected from the group consisting of a saturated aliphatic group having 1 to 10 carbon atoms and an unsaturated aliphatic group.
  • polyethylene and polypropylene which are saturated hydrocarbons include polyethylene and polypropylene which are saturated hydrocarbons, polyacetylene which is unsaturated hydrocarbons, polycarbonates containing aromatics, polystyrene, and those in which some of these protons are substituted with halogens.
  • the degree of polymerization of the copolymer compound composed of the first unit and the second unit is preferably large so as not to dissolve in the organic solvent. Specifically, it is preferable that the total number of first units and second units contained in the copolymer compound is 4 or more, that is, the degree of polymerization is 4 or more. Thereby, a power storage material that is hardly soluble in an organic solvent is realized. More preferably, the degree of polymerization of the polymer is 10 or more, and more preferably 20 or more and 4000 or less.
  • the side chain of the second unit of the copolymer compound is a functional group having an affinity for a non-aqueous solvent
  • the number of second unit units m relative to the type of side chain of the second unit and the number of first unit units n According to the composition ratio m / n, the affinity of the entire copolymer compound to the solvent can be controlled.
  • m and n are integers of 1 or more.
  • the component ratio m / n in the present invention means an average value of values obtained by dividing the total number m of the second units constituting the copolymer compound by the total number n of the first units.
  • the aprotic solvent having high affinity with the copolymer compound composed of the first unit and the second unit will be described in detail below.
  • the composition ratio m / N may be larger than 0.
  • the second unit does not include a redox site, the charge density of the copolymer compound decreases as the second unit increases. According to the detailed study of the present inventor, it was found that when the component ratio m / n is 5 or less, the charge density can be increased and the redox reaction can be stably and repeatedly caused.
  • the copolymer compound contained in the electricity storage material of the present invention can be represented by the following general formula (37).
  • R31 and R32 constitute the main chain of the copolymer compound.
  • R32 and R32 are trivalent residues, and independently of each other, at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom and a sulfur atom, a saturated aliphatic group having 1 to 10 carbon atoms and an unsaturated group And at least one substituent selected from the group consisting of aliphatic groups, or at least one hydrogen.
  • L1 is an ester group, an ether group, a carbonyl group, a cyano group, a nitro group, a nitroxyl group, an alkyl group, a phenyl group, an alkylthio group, a sulfone group or a sulfoxide group bonded to R31.
  • L1 is preferably an ester group, an ether group, or a carbonyl group having high affinity with an aprotic solvent.
  • R33 is a divalent residue containing at least one selected from the group consisting of C1-C4 substituted or unsubstituted alkylene, alkenylene, arylene, ester, amide, or ether bonded to R32 and M1.
  • M1 is the general formula (1), which is bonded to R33 by the above-described bond, and n and m are integers representing the number of repeating monomer units.
  • R31 and R32 may include side chains other than M 1 and L1.
  • m + n is preferably 4 or more, more preferably 10 or more, and still more preferably 20 or more and 4000 or less.
  • m / n is preferably greater than 0 and 5 or less.
  • the repeating unit including L1 and the repeating unit including M1 may be regularly arranged or may be random.
  • One preferred embodiment of the electricity storage material of the present invention includes a tetrathiafulvalene skeleton in the side chain of the first unit of the copolymer compound as described above.
  • the tetrathiafulvalene skeleton is stable even in a two-electron oxidized state, it is suitable for a power storage material.
  • the structure represented by the following general formula (38) is included in the first unit of the copolymer compound.
  • R36 is a divalent residue containing at least one selected from the group consisting of substituted or unsubstituted alkylene, alkenylene, arylene, ester, amide and ether having 1 to 4 carbon atoms.
  • R34 3 and R35 independent of each other, hydrogen atom is one selected from the group consisting of saturated aliphatic group and a phenyl group having 1 to 4 carbon atoms
  • R39 is, independently, an acyclic aliphatic from R37 Group, a cyclic aliphatic group, a hydrogen atom, a hydroxyl group, a cyano group, an amino group, a nitro group, a nitroso group or an alkiothio group
  • R 15 and R 16 may be bonded to each other to form a ring.
  • L 1 is an ester group, ether group, carbonyl group, cyano group, nitro group, nitroxyl group, alkyl group, phenyl group, alkylthio group, sulfone group or sulfoxide group.
  • the tetrathiafulvalene skeleton is very stable even in an oxidized state, and the redox reaction of the tetrathiafulvalene skeleton is not significantly affected by the structure outside the skeleton.
  • the above-mentioned second polymer compound used for the electricity storage material of the present invention may be synthesized by any method as long as it contains the above-described first unit and second unit.
  • a copolymer main chain compound to be a main chain of the copolymer compound may be synthesized, and then a side chain including the structure represented by the general formula (1) may be introduced into the copolymer main chain compound.
  • a copolymer compound is synthesized by introducing a side chain containing the structure represented by the general formula (1) into the monomer body used for the synthesis of the main chain compound of the copolymer compound and synthesizing the main chain. Also good.
  • a copolymer main chain compound in order to prevent the dislocation of active bonds during the polymerization reaction and synthesize a highly regular copolymer compound in which the molecular weight, the mixing ratio of the first unit and the second unit, and the like are controlled, It is preferable to first synthesize a copolymer main chain compound to be a main chain and introduce a side chain having a structure represented by the general formula (1) into the copolymer main chain compound by a coupling reaction.
  • a coupling reaction with a halogen element and a hydroxyl group, a coupling reaction with a halogen element and an amino group, and the like can be mentioned.
  • One of the halogen element and the hydroxyl group, or the halogen element and the amino group is introduced into the copolymer main chain compound, and the other is introduced into the side chain.
  • a copolymer compound in which the main chain of the copolymer compound and the side chain containing the structure represented by the general formula (1) are bonded by an ester bond is obtained.
  • a copolymer compound in which the main chain of the copolymer compound and the side chain containing the structure represented by the general formula (1) are bonded by an amide bond is obtained. It is done.
  • a side chain including the structure represented by the general formula (1) may be introduced into the copolymer main chain compound by dehydration condensation between hydroxyl groups.
  • a copolymer compound in which the main chain of the copolymer compound and the side chain including the structure represented by the general formula (1) are bonded by an ether bond is obtained. Specific examples are shown in the following examples.
  • the first polymer compound having a tetrachalcogenofulvalene skeleton in the repeating unit of the main chain, and the first unit having the tetrachalcogenofulvalene skeleton in the side chain has been described.
  • the tetrachalcogenofulvalene skeleton independently exhibits a redox reaction without depending much on the polymer structure.
  • the electrode of this embodiment should just contain at least one among the 1st polymer compound and the 2nd polymer compound as the electrode active material 13, and may use both of these.
  • the electrode active material 13 having a side chain including the structure represented by the general formula (1) as a copolymer compound has at least a part of the surface of the conductive additive 14. It is covered.
  • FIG. 2 is a schematic diagram showing an enlarged part of the active material layer 12.
  • the electrode active material 13 does not constitute particles and covers the surface of the conductive additive 14. That is, the electrode active material 13 exists in a state of a film covering the conductive auxiliary agent 14. As described above, in the present specification, the electrode active material 13 covers the surface of the conductive additive 14, and the electrode active material 13 exists as a continuous body along the shape of the surface of the conductive additive 14. Refers to the state. Although it is preferable that the electrode active material 13 forms a continuous film having a uniform film thickness on the surface of the conductive additive 14, the film thickness may be distributed.
  • the electrode active material 13 when the electrode active material 13 is coated on the surface of the conductive auxiliary agent 14 by dissolving the electrode active material 13 in a solvent, mixing with the conductive auxiliary agent 14 and drying, a part of the electrode active material 13 May not be dissolved, and a particle-shaped convex portion may be locally formed on the film of the electrode active material 13.
  • the particle-shaped convex portion is preferably smaller than 100 nm.
  • the conductive auxiliary agent 14 is shown in an elliptical cross section, but the shape of the conductive auxiliary agent 14 is not limited to an elliptical shape, and various shapes of conductive auxiliary agents generally used as conductive auxiliary agents for electrode materials. One of them.
  • the electrode active material 13 may not completely cover the particle shape of the conductive auxiliary agent 14, and there may be a portion where the particles of the conductive auxiliary agent 14 are in contact with each other.
  • the film thickness of the electrode active material 13 covering the conductive auxiliary agent 14 is preferably smaller than the size of the conductive auxiliary agent 14. That is, when the average particle diameter of the conductive additive 14 is d, the film thickness t of the electrode active material 13 preferably satisfies t ⁇ d. More specifically, the average particle diameter of the conductive auxiliary agent 14 is about several tens nm to several ⁇ m, and the film thickness t of the electrode active material 13 is preferably about several nm to several hundred nm. As shown in FIG. 1, the active material layer 12 preferably has a gap 12 a between the electrode active materials 13 covering the conductive additive 14.
  • the film thickness t of the electrode active material 13 When the film thickness t of the electrode active material 13 is smaller than several nanometers, the proportion of the active material layer occupied by the electrolytic material 13 becomes small, and the charge capacity of the electrode 101 becomes small. Further, when the film thickness t of the electrode active material 13 exceeds several hundreds of nm, as will be described below, the distance of anion movement inside the electrode active material also becomes longer, so that the resistance component of the electrode increases. Moreover, when the average particle diameter of the conductive support agent 14 is smaller than several tens of nm or larger than several ⁇ m, it may be difficult to obtain the electrode active material 13 having the thickness t described above.
  • the active material layer 12 Since the active material layer 12 has such a structure, the contact area between the electrode active material 13 and the conductive auxiliary agent 14 is increased, and electrons accompanying oxidation and reduction are generated between the conductive auxiliary agent 14 and the electrode active material 13. Can be moved smoothly. The redox reaction in the electrode active material 13 also tends to occur uniformly.
  • the anion in the electrolytic solution is a redox site in the electrode active material 13 from the surface in contact with the electrolytic solution of the electrode active material 13. It is necessary to move to the vicinity of the structure shown in FIG. In the electrode active material 13, anions are less likely to move than in the electrolytic solution, and become a resistance component. Therefore, the shorter the anion transfer distance, the faster the redox reaction proceeds.
  • the electrode active material 13 exists in a thin film state in the active material layer 12, the distance that the electrode active material 13 moves from the surface in contact with the electrolytic solution to the inside is short. Furthermore, since the space
  • the electrode active material 13 which is a copolymer compound having a side chain including the structure represented by the general formula (1) has a high affinity for a specific aprotic solvent. It can be produced by utilizing the feature of having.
  • a copolymer compound having a side chain containing the structure represented by the general formula (1) is dissolved in a specific aprotic solvent to form a solution, and the conductive assistant is mixed with this solution.
  • the active material layer having the structure shown in FIG. 1 in which the surface of the conductive auxiliary agent 14 is covered with a thin film of the electrode active material 13 by applying the mixture to the conductive support 11 and removing the aprotic solvent. 12 can be formed.
  • the polymer having TTF in the side chain disclosed in Patent Document 4 has a low affinity for an organic solvent and does not dissolve.
  • a polymer having TTF in the side chain, a conductive additive and an organic solvent are mixed to prepare a slurry, and after applying the slurry to a current collector, the organic solvent is removed to prepare an electrode.
  • the electrode obtained in this way the polymer having TTF in the side chain does not dissolve in the organic solvent. Therefore, as shown in FIG. 3, the obtained electrode is a polymer having TTF in the side chain.
  • the electrode active material 13 ′ is considered to form particles of about several ⁇ m. For this reason, it is considered that the particles formed by the conductive additive 14 ′ and the particles of the electrode active material 13 ′ are independent of each other and exist on the current collector in a mixed particle state.
  • the conductive auxiliary agent 14 various electron conductive materials that do not cause a chemical change in the reaction potential of the electrode can be used.
  • the electrode of the present embodiment is used as a positive electrode of a lithium secondary battery
  • a conductive auxiliary carbon black, graphite, carbon materials such as carbon fiber, metal fibers, metal powders, conductive whiskers, conductive metal oxidation A thing etc. can be used individually or as a mixture thereof.
  • particulate carbon material such as carbon black or carbon fiber.
  • particulate carbon or carbon fiber having a large specific surface area.
  • the weight ratio of the electrode active material 13 in the active material layer 12 is preferably 30 wt% or more.
  • the weight ratio becomes too large, the ratio of the conductive auxiliary agent becomes small, and the film thickness of the electrode active material 13 covering the conductive auxiliary agent becomes large. Since the electrode active material 13 has lower electronic conductivity than the conductive auxiliary agent, when the electrode active material 13 covering the conductive auxiliary agent becomes thick, the electrode active material 13 covering the conductive auxiliary agent has an electronic conductivity. It cannot be ensured sufficiently, and it becomes difficult to charge and discharge the entire active material layer uniformly.
  • the film thickness of the electrode active material 13 is about 100 nm. Fast charge / discharge becomes difficult. That is, it becomes difficult to realize a high-capacity and high-power storage device.
  • the weight ratio of the active material in the material layer 12 is preferably 30 wt% or more and 80 wt% or less. More preferably, it is 50 wt% or more and 70 wt% or less.
  • the active material layer 12 may contain a binder.
  • the binder may be either a thermoplastic resin or a thermosetting resin.
  • polyolefin resins such as polyethylene and polypropylene
  • fluorine resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), and copolymer resins thereof, styrene butadiene Rubber, polyacrylic acid or a copolymer resin thereof can be used as a binder.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • copolymer resins thereof styrene butadiene Rubber
  • polyacrylic acid or a copolymer resin thereof can be used as a binder.
  • the electrode active material is dissolved in a specific organic solvent and coated with a conductive additive, the electrode active material
  • the binder covers the surface of the conductive additive 14 together with the electrode active material 13. On the surface of the conductive additive 14, the electrode active material 13 and the binder are in a mixed state.
  • the active material layer 12 having the above-described structure of the present embodiment is prepared, for example, by preparing a mixture containing an aprotic solvent in which an electrode active material is dissolved and a conductive additive, and aprotic from the obtained mixture. Obtained by removing the solvent.
  • an embodiment of an electrode manufacturing method of the present embodiment will be described in detail.
  • the method for manufacturing an electrode according to the present embodiment includes a step of preparing a mixture containing an aprotic solvent in which an electrode active material is dissolved and a conductive additive, and a step of removing the aprotic solvent from the mixture.
  • the electrode active material 13 may be dissolved in an aprotic solvent, and the aprotic solvent and the conductive additive 14 may be mixed, or the aprotic solvent and the conductive additive 14 may be mixed.
  • the electrode active material 13 may be dissolved in the mixture.
  • the mixture may contain a binder. What was mentioned above can be used for a binder.
  • the conductive auxiliary agent 14 and the binder may not be dissolved in the aprotic solvent.
  • the order of mixing them is arbitrary. It is desirable that the electrode active material 13 is dissolved in an aprotic solvent and uniformly dispersed. Therefore, the order in which the electrode active material 13 is first dissolved in the aprotic solvent and then the conductive additive 14 and the binder are mixed is preferable.
  • the aprotic solvent is not particularly limited. A thing with high affinity with respect to the electrode active material mentioned above is preferable. Specifically, N-methylpyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), tetrahydrofuran (THF), toluene, dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO) and aprotic solvents such as chloroform are preferred, and NMP, DMI, and THF are more preferred.
  • a mixing method commonly used in this field can be used as long as the electrode active material is dissolved in an aprotic solvent.
  • dissolution can be performed using a kneader such as a planetary mixer.
  • the aprotic solvent is removed from the obtained mixture.
  • a method commonly used in this field can be used.
  • the obtained mixture is applied onto a substrate such as a conductive support, and the solvent is removed by high-temperature drying using a drying furnace or the like.
  • a method commonly used in this field can be used as the application method.
  • the mixture can be applied onto the conductive support 11 using spin coating, screen printing, a coater, or the like.
  • distributing the obtained mixture and drying at high temperature like spray drying is also mentioned.
  • the obtained mixture is applied onto a conductive support, and the solvent is removed by high-temperature drying using a drying furnace or the like. Accordingly, the conductive support obtained after drying and the layer containing the electrode active material and the conductive agent formed on the conductive support can be used as an electrode of the electricity storage device.
  • a layer containing an electrode active material and a conductive agent obtained by drying is supported on the conductive support.
  • the solvent is removed by spray drying or the like, it is supported on the conductive support. Thereby, the electrode for electrical storage devices is obtained.
  • the electrode 101 in which the electrode active material 13 does not constitute particles and the active material layer 12 covering the surface of the conductive additive 14 is formed on the conductive support 11 is completed.
  • the electrode active material is coated with the conductive additive, the contact area between the electrode active material and the conductive aid is large, and electrons between the electrode active material and the conductive aid are Moves smoothly.
  • the electrode active material exists as a thin film on the surface of the conductive additive, the migration distance of the counter ion from the electrolytic solution to the oxidation-reduction reaction portion in the electrode active material is shortened, and resistance due to diffusion of the counter ion is reduced. Can be reduced. As a result, the resistance at the electrode during the oxidation-reduction reaction can be reduced.
  • FIG. 4 is a cross-sectional view schematically showing a coin-type lithium secondary battery which is an embodiment of the electricity storage device according to the present invention.
  • the coin-type lithium secondary battery shown in FIG. 4 includes a positive electrode 31, a negative electrode 32, and a separator 24.
  • the positive electrode 31 includes the positive electrode current collector 22 and the positive electrode active material layer 23, and the electrode 101 shown in FIG. 1 can be used.
  • the negative electrode 32 includes a negative electrode active material layer 26 and a negative electrode current collector 27, and the negative electrode active material layer 26 is supported by the negative electrode current collector 27.
  • the negative electrode active material layer 26 includes a negative electrode active material.
  • a negative electrode active material a known negative electrode active material that reversibly occludes and releases lithium is used.
  • graphite materials such as natural graphite and artificial graphite, amorphous carbon materials, lithium metal, lithium-containing composite nitride, lithium-containing titanium oxide, silicon, alloys containing silicon, silicon oxide, tin, alloys containing tin,
  • a material capable of reversibly occluding and releasing lithium such as tin oxide, a carbon material having an electric double layer capacity such as activated carbon, an organic compound material having a ⁇ -electron conjugated cloud, or the like can be used.
  • negative electrode materials may be used alone or in combination with a plurality of negative electrode materials.
  • a material known as a current collector for a negative electrode for a lithium ion secondary battery such as copper, nickel, and stainless steel, can be used.
  • the negative electrode current collector 27 is made of a metal foil, a mesh, a porous body, a resin film containing a conductive filler made of these metals, or the like.
  • the negative electrode active material layer 26 may contain only the negative electrode active material, or may contain one or both of a conductive additive and a binder. What was mentioned above can be used for a conductive support agent. Moreover, what was mentioned above can also be used for a binder.
  • the positive electrode 31 and the negative electrode 32 are opposed to each other with the separator 24 interposed therebetween so that the positive electrode active material layer 23 and the negative electrode active material layer 26 are in contact with the separator 24 to constitute an electrode group.
  • the separator 24 is a resin layer made of a resin that does not have electronic conductivity, and is a microporous film that has a large ion permeability and has a predetermined mechanical strength and electrical insulation. From the viewpoint of excellent organic solvent resistance and hydrophobicity, a polyolefin resin in which polypropylene, polyethylene or the like is used alone or in combination is preferable. Instead of the separator 24, a resin layer that swells containing an electrolytic solution and functions as a gel electrolyte may be provided.
  • the electrode group is stored in the space inside the case 21.
  • an electrolytic solution 29 is injected into the space inside the case 21, and the positive electrode 31, the negative electrode 32, and the separator 24 are impregnated in the electrolytic solution 29. Since the separator 24 includes a fine space for holding the electrolytic solution 29, the electrolytic solution 29 is held in the fine space, and the electrolytic solution 29 is disposed between the positive electrode 31 and the negative electrode 32. Yes.
  • the opening of the case 21 is sealed with a sealing plate 25 using a gasket 28.
  • the electrolytic solution 29 is composed of a non-aqueous solvent and a supporting salt that dissolves in the non-aqueous solvent.
  • a non-aqueous solvent known solvents that can be used for non-aqueous secondary batteries and non-aqueous electric double layer capacitors can be used.
  • a solvent containing a cyclic carbonate can be suitably used. This is because cyclic carbonates have a very high dielectric constant as represented by ethylene carbonate and propylene carbonate. Of the cyclic carbonates, propylene carbonate is preferred. This is because the freezing point is ⁇ 49 ° C., which is lower than that of ethylene carbonate, and the electricity storage device can be operated even at a low temperature.
  • a solvent containing a cyclic ester can be suitably used. This is because the cyclic ester has a very high relative dielectric constant as represented by ⁇ -butyrolactone, and therefore, by including these solvents as a component, the entire non-aqueous solvent of the electrolytic solution 29 is very large. It can have a high dielectric constant.
  • non-aqueous solvent Only one of these may be used as the non-aqueous solvent, or a plurality of solvents may be mixed and used.
  • other solvents that can be used include chain carbonates, chain esters, cyclic ethers, and the like.
  • non-aqueous solvents such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dioxolane, sulfolane, and acetonitrile can be used.
  • the non-aqueous solvent of the electrolytic solution enters the positive electrode active material layer 23 of the positive electrode, and the positive electrode active material layer 23 is swollen with the non-aqueous solvent, so that the reaction resistance of the redox reaction at the positive electrode can be reduced.
  • the nonaqueous solvent does not elute the electrode active material 13 used for the positive electrode active material layer 23.
  • Examples of the supporting salt include supporting salts composed of the following cations and anions.
  • Examples of the cation include alkali metal cations such as lithium, sodium and potassium, alkaline earth metal cations such as magnesium, and quaternary ammonium cations such as tetraethylammonium and 1,3-ethylmethylimidazolium.
  • a cation can be used individually by 1 type or in combination of 2 or more types. Among these, lithium cation, quaternary ammonium cation and the like are preferable.
  • anion examples include halide anion, perchlorate anion, trifluoromethanesulfonate anion, tetraborofluoride anion, trifluorophosphoric hexafluoride anion, trifluoromethanesulfonate anion, bis (trifluoromethanesulfonyl) imide anion, bis ( Perfluoroethylsulfonyl) imide anion and the like.
  • An anion can be used individually by 1 type or in combination of 2 or more types.
  • the supporting salt include, for example, lithium fluoride, lithium chloride, lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetraborofluoride, lithium bistrifluoromethylsulfonylimide, lithium thiocyanate, magnesium perchlorate, Examples include magnesium trifluoromethanesulfonate, sodium tetraborofluoride, and the like.
  • the electricity storage device using the electrode of the present invention is not only excellent in high capacity and cycle characteristics but also a high output electricity storage device. Therefore, the electricity storage device using the electrode of the present invention is suitably used for vehicles such as hybrid cars and portable electronic devices.
  • the vehicle and the portable electronic device provided with the electricity storage device of the present invention are characterized in that the electricity storage device is lightweight, has a large output, and is excellent in repetition characteristics. For this reason, in particular, it is possible to reduce the weight, which is difficult to achieve with a power storage device using a conventional inorganic compound in terms of weight.
  • the electrode and the electricity storage device of the present invention have been described in the form of being used for a lithium secondary battery.
  • the electrode and the electricity storage device of the present invention can be used for various energy storage devices and sensors that use electrochemical charge storage.
  • an electric double layer capacitor may be configured by using the electrode of the present invention as a positive electrode and combining with an activated carbon negative electrode.
  • electrochemical capacitors other than a secondary battery such as a lithium ion capacitor combined with the negative electrode which can occlude-release lithium, such as lithium occlusion graphite.
  • a polymer actuator can be constituted by using, for example, a polymer gel electrolyte that expands and contracts due to charge / discharge as an electrolyte.
  • a chromic display element can be configured.
  • a salt of a quaternary ammonium salt and an anion is contained as a supporting salt for the electrolytic solution.
  • FIG. 5 schematically shows a cross-sectional structure of the electrode 102 of the present embodiment.
  • the electrode 102 includes a conductive support 11 and an active material layer 12 provided on the conductive support 11.
  • the conductive support 11 is made of a low-resistance substance having electrical conductivity, for example, a material used as a current collector for a positive electrode or a negative electrode of a secondary battery.
  • the conductive support 11 is composed of a metal foil or mesh made of aluminum, gold, silver, stainless steel, an aluminum alloy, or the like, a porous body, and a resin film containing a conductive filler made of these metals. .
  • the active material layer 12 includes an electrode active material 13 and a conductive additive 114.
  • the electrode active material 13 does not constitute particles and covers at least a part of the surface of the conductive auxiliary agent 114, and the conductive auxiliary agent 114 is 800 m 2 / g or more.
  • the carbon black having a specific surface area is different from that of the first embodiment in that it is carbon black.
  • the electrode active material 13 has the first polymer compound or the second polymer compound described in the first embodiment, that is, the tetrachalcogenofulvalene skeleton represented by the general formula (1) as a main chain or a side chain.
  • the polymer compound contained in is used.
  • the electrode active material 13 that is a polymer compound including the structure represented by the general formula (1) is at least part of the surface of the conductive additive 114. Is covered.
  • FIG. 6 is an enlarged schematic view showing a part of the active material layer 12. As shown in FIGS. 5 and 6, as in the first embodiment, the electrode active material 13 does not constitute particles and covers the surface of the conductive additive 114. That is, the electrode active material 13 exists in a state of a film covering the conductive auxiliary agent 114.
  • the conductive auxiliary agent 114 is shown in an elliptical cross section, but the shape of the conductive auxiliary agent 114 is not limited to an elliptical shape, and various shapes of conductive auxiliary agents that are generally used as conductive auxiliary agents for electrode materials. One of them.
  • the electrode active material 13 may not be completely covered with the particle shape of the conductive auxiliary agent 114, and there may be a portion where the conductive auxiliary agent 114 particles are in contact with each other.
  • the film thickness of the electrode active material 13 covering the conductive auxiliary agent 114 is preferably smaller than the size of the conductive auxiliary agent 114. That is, when the average particle diameter of the conductive auxiliary agent 114 is d, the film thickness t of the electrode active material 13 preferably satisfies t ⁇ d. More specifically, the average particle diameter of the conductive auxiliary agent 114 is about several tens of nm to several hundreds of nm, and the film thickness t of the electrode active material 13 is preferably about several nm to several hundreds of nm. Further, as shown in FIG. 5, the active material layer 12 preferably has a gap 12 a between the electrode active materials 13 covering the conductive additive 114.
  • the film thickness t of the electrode active material 13 When the film thickness t of the electrode active material 13 is smaller than several nanometers, the ratio of the electrolytic material 13 in the active material layer becomes small, and the charge capacity of the electrode 102 becomes small. Further, when the film thickness t of the electrode active material 13 exceeds several hundreds of nm, as will be described below, the distance of anion movement inside the electrode active material also becomes longer, so that the resistance component of the electrode increases. When the average particle diameter of the conductive auxiliary agent 114 is smaller than several tens of nm or larger than several ⁇ m, it may be difficult to obtain the electrode active material 13 having the thickness t described above.
  • the contact area between the electrode active material 13 and the conductive auxiliary agent 114 increases, and electrons accompanying oxidation and reduction occur between the conductive auxiliary agent 114 and the electrode active material 13. Can be moved smoothly. The redox reaction in the electrode active material 13 also tends to occur uniformly.
  • the anion in the electrolytic solution is a redox site in the electrode active material 13 from the surface in contact with the electrolytic solution of the electrode active material 13. It is necessary to move to the vicinity of the structure shown in FIG. In the electrode active material 13, anions are less likely to move than in the electrolytic solution, and become a resistance component. Therefore, the shorter the anion transfer distance, the faster the redox reaction proceeds.
  • the electrode active material 13 exists in a thin film state in the active material layer 12, the distance that the electrode active material 13 moves from the surface in contact with the electrolytic solution to the inside is short. Furthermore, since the space
  • the electrode active material 13 which is a polymer compound including the structure represented by the general formula (1) has a high affinity for a specific aprotic solvent. It can produce by utilizing the feature.
  • a copolymer compound having a side chain containing the structure represented by the general formula (1) is dissolved in a specific aprotic solvent to form a solution, and the conductive assistant is mixed with this solution.
  • An active material layer 12 having the structure shown in FIG. 5 in which the surface of the conductive auxiliary agent 114 is covered with a thin film of the electrode active material 13 is formed by a manufacturing method including a step of producing a mixture and removing the aprotic solvent. can do.
  • the inventor of the present application is a carbon black having a specific surface area of 800 m 2 / g or more. It has been found that a high-output electrode for an electricity storage device can be realized.
  • the polymer compound has a large molecular weight so as not to elute into the electrolytic solution.
  • the molecular weight in terms of polystyrene is preferably 10,000 or more.
  • the organic solvent has a certain viscosity. Therefore, when using a carbon material with a large specific surface area having nanometer-order pores typified by activated carbon, the organic solvent in which the polymer compound is dissolved does not reach the deepest part of the pores. It is considered that the large specific surface area unique to the auxiliary agent cannot be fully utilized, and the above-described effects cannot be obtained.
  • Carbon black which is a particulate carbon material
  • the organic solvent in which the electrode active material is dissolved reaches all of the large surface area and can be coated.
  • Carbon black is amorphous carbon fine particles that are industrially controlled and produced, and usually has an average particle diameter of about several tens of nm to several hundreds of nm.
  • the specific surface area of carbon black is 800 m 2 / g or more
  • the film thickness of the layer containing the electrode active material 13 on the surface of the conductive additive 114 becomes sufficiently small, and the above-described effects are remarkable.
  • the average particle size of carbon black is 50 nm or less. This is because when the average particle size of the carbon black is larger than 50 nm, the film thickness t of the electrode active material on the conductive additive becomes too thick, so that high output cannot be obtained.
  • the carbon black that can be used as the conductive auxiliary agent 114 is not particularly limited as long as it is a carbon black having a specific surface area of 800 m 2 / g or more. Furnace black by furnace method, channel black by channel method, acetylene black by acetylene method, ketjen black and the like can be used. The specific surface area of carbon black can be measured by a gas adsorption method such as the BET method.
  • the polymer having TTF in the side chain disclosed in Patent Document 4 has a low affinity for an organic solvent and does not dissolve.
  • a polymer having TTF in the side chain, a conductive additive and an organic solvent are mixed to prepare a slurry, and after applying the slurry to a current collector, the organic solvent is removed to prepare an electrode.
  • the electrode obtained in this way the polymer having TTF in the side chain does not dissolve in the organic solvent. Therefore, as shown in FIG. 7, the obtained electrode is a polymer having TTF in the side chain.
  • the electrode active material 13 ′ is considered to form particles of about several ⁇ m. For this reason, it is considered that the particles formed by the conductive assistant 114 ′ and the particles of the electrode active material 13 ′ are independent of each other and exist on the current collector in a mixed particle state.
  • the conductive auxiliary agent 114 ′ and the electrode active material 13 ′ are in contact with each other. It is considered that the movement of electrons due to oxidation / reduction cannot be performed smoothly between them, and the oxidation-reduction reaction in the electrode active material 13 ′ is likely to be uneven. In addition, it is considered that the anion of the electrolytic solution is difficult to move to the inside of the particles of the electrode active material 13 ′, and the distance of movement of the anion inside the electrode active material becomes long, so that the resistance component of the electrode increases.
  • the active material layer 12 may contain a binder.
  • the binder may be either a thermoplastic resin or a thermosetting resin.
  • polyolefin resins such as polyethylene and polypropylene
  • fluorine resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), and copolymer resins thereof, styrene butadiene Rubber, polyacrylic acid or a copolymer resin thereof can be used as a binder.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • copolymer resins thereof styrene butadiene Rubber
  • polyacrylic acid or a copolymer resin thereof can be used as a binder.
  • the electrode active material is dissolved in a specific organic solvent and coated with a conductive additive, the electrode active material
  • the binder covers the surface of the conductive additive 114 together with the electrode active material 13. On the surface of the conductive additive 114, the electrode active material 13 and the binder constitute a mixed mixture.
  • the active material layer 12 having the above-described structure according to the present embodiment is prepared by, for example, preparing a mixture including an aprotic solvent in which an electrode active material is dissolved and a conductive additive, and removing the aprotic solvent. can get.
  • aprotic solvent in which an electrode active material is dissolved and a conductive additive
  • the electrode manufacturing method of the present embodiment includes a step of preparing a mixture containing an aprotic solvent in which an electrode active material is dissolved and a conductive additive, and a step of removing the aprotic solvent from the coating mixture. Including.
  • the electrode active material 13 may be dissolved in an aprotic solvent, and the aprotic solvent and the conductive auxiliary agent 114 may be mixed, or a mixed mixture of the aprotic solvent and the conductive auxiliary agent.
  • the electrode active material 13 may be dissolved in the body.
  • the mixture may contain a binder. What was mentioned above can be used for a binder.
  • the conductive auxiliary agent 114 and the binder may not be dissolved in the aprotic solvent.
  • the order of mixing them is arbitrary. It is desirable that the electrode active material is dissolved in an aprotic solvent and uniformly dispersed. Therefore, the order in which the electrode active material is first dissolved in the aprotic solvent and then the conductive additive and the binder are mixed is preferable.
  • the aprotic solvent is not particularly limited. A thing with high affinity with respect to the electrode active material mentioned above is preferable. Specifically, N-methylpyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), tetrahydrofuran (THF), toluene, chloroform, dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl
  • NMP N-methylpyrrolidone
  • DMI 1,3-dimethyl-2-imidazolidinone
  • THF tetrahydrofuran
  • toluene chloroform
  • dimethylformamide DMF
  • DMAc dimethylacetamide
  • An aprotic solvent such as sulfoxide (DMSO) is preferred, and NMP, DMI, and THF are more preferred.
  • a mixing method commonly used in this field can be used as long as the electrode active material is dissolved in an aprotic solvent.
  • dissolution can be performed using a kneader such as a planetary mixer.
  • the aprotic solvent is removed from the obtained mixture.
  • a method commonly used in this field can be used.
  • the obtained mixture is applied onto a substrate such as a conductive support, and the solvent is removed by high-temperature drying using a drying furnace or the like.
  • a method commonly used in this field can be used as the application method.
  • the mixture can be applied onto the conductive support 11 using spin coating, screen printing, a coater, or the like.
  • distributing the obtained mixture and drying at high temperature like spray drying is also mentioned.
  • the obtained mixture is applied onto a conductive support, and the solvent is removed by high-temperature drying using a drying furnace or the like. Accordingly, the conductive support obtained after drying and the layer containing the electrode active material and the conductive agent formed on the conductive support can be used as an electrode of the electricity storage device.
  • a layer containing an electrode active material and a conductive agent obtained by drying is supported on the conductive support.
  • the solvent is removed by spray drying or the like, it is supported on the conductive support. Thereby, the electrode for electrical storage devices is obtained.
  • the electrode 102 in which the electrode active material 13 does not constitute particles and the active material layer 12 covering the surface of the conductive auxiliary agent 114 is formed on the conductive support 11 is completed.
  • the electrode active material is coated with the conductive additive, the contact area between the electrode active material and the conductive aid is large, and electrons between the electrode active material and the conductive aid are Moves smoothly.
  • the electrode active material exists as a thin film on the surface of the conductive additive, the migration distance of the counter ion from the electrolytic solution to the oxidation-reduction reaction portion in the electrode active material is shortened, and resistance due to diffusion of the counter ion is reduced. Can be reduced. As a result, the resistance at the electrode during the oxidation-reduction reaction can be reduced.
  • the conductive assistant is carbon black having a specific surface area of 800 m 2 / g or more, the conductive assistant has a large surface area, and the electrode active material covers the conductive assistant as a thin film. For this reason, the effect mentioned above is acquired notably and, thereby, the high output electrical storage device electrode is implement
  • FIG. 8 is a cross-sectional view schematically showing a coin-type lithium secondary battery 202 which is an embodiment of the electricity storage device according to the present invention.
  • the coin-type lithium secondary battery shown in FIG. 8 includes a positive electrode 31, a negative electrode 32, and a separator 24.
  • the positive electrode 31 includes the positive electrode current collector 22 and the positive electrode active material layer 23, and the electrode 102 shown in FIG. 5 can be used.
  • the negative electrode 32 includes a negative electrode active material layer 26 and a negative electrode current collector 27, and the negative electrode active material layer 26 is supported by the negative electrode current collector 27.
  • the negative electrode active material layer 26 includes a negative electrode active material.
  • a negative electrode active material a known negative electrode active material that reversibly occludes and releases lithium is used.
  • graphite materials such as natural graphite and artificial graphite, amorphous carbon materials, lithium metal, lithium-containing composite nitride, lithium-containing titanium oxide, silicon, alloys containing silicon, silicon oxide, tin, alloys containing tin,
  • a material capable of reversibly occluding and releasing lithium such as tin oxide, a carbon material having an electric double layer capacity such as activated carbon, an organic compound material having a ⁇ -electron conjugated cloud, or the like can be used.
  • negative electrode materials may be used alone or in combination with a plurality of negative electrode materials.
  • a material known as a current collector for a negative electrode for a lithium ion secondary battery such as copper, nickel, and stainless steel, can be used.
  • the negative electrode current collector 27 is made of a metal foil, a mesh, a porous body, a resin film containing a conductive filler made of these metals, or the like.
  • the negative electrode active material layer 26 may contain only the negative electrode active material, or may contain one or both of a conductive additive and a binder. What was mentioned above can be used for a conductive support agent. Moreover, what was mentioned above can also be used for a binder.
  • the positive electrode 31 and the negative electrode 32 are opposed to each other with the separator 24 interposed therebetween so that the positive electrode active material layer 23 and the negative electrode active material layer 26 are in contact with the separator 24 to constitute an electrode group.
  • the separator 24 is a resin layer made of a resin that does not have electronic conductivity, and is a microporous film that has a large ion permeability and has a predetermined mechanical strength and electrical insulation. From the viewpoint of excellent organic solvent resistance and hydrophobicity, a polyolefin resin in which polypropylene, polyethylene or the like is used alone or in combination is preferable. Instead of the separator 24, a resin layer that swells containing an electrolytic solution and functions as a gel electrolyte may be provided.
  • the electrode group is stored in the space inside the case 21.
  • an electrolytic solution 29 is injected into the space inside the case 21, and the positive electrode 31, the negative electrode 32, and the separator 24 are impregnated in the electrolytic solution 29. Since the separator 24 includes a fine space for holding the electrolytic solution 29, the electrolytic solution 29 is held in the fine space, and the electrolytic solution 29 is disposed between the positive electrode 31 and the negative electrode 32. Yes.
  • the opening of the case 21 is sealed with a sealing plate 25 using a gasket 28.
  • the electrolytic solution 29 is composed of a non-aqueous solvent and a supporting salt that dissolves in the non-aqueous solvent.
  • a non-aqueous solvent known solvents that can be used for non-aqueous secondary batteries and non-aqueous electric double layer capacitors can be used.
  • a solvent containing a cyclic carbonate can be suitably used. This is because cyclic carbonates have a very high dielectric constant as represented by ethylene carbonate and propylene carbonate. Of the cyclic carbonates, propylene carbonate is preferred. This is because the freezing point is ⁇ 49 ° C., which is lower than that of ethylene carbonate, and the electricity storage device can be operated even at a low temperature.
  • a solvent containing a cyclic ester can also be suitably used.
  • the cyclic ester has a very high relative dielectric constant as represented by ⁇ -butyrolactone, and therefore, by including these solvents as a component, the entire non-aqueous solvent of the electrolytic solution 29 is very large. It can have a high dielectric constant.
  • non-aqueous solvent Only one of these may be used as the non-aqueous solvent, or a plurality of solvents may be mixed and used.
  • solvents that can be used include chain carbonate esters, chain esters, cyclic or chain ethers, and the like.
  • nonaqueous solvents such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, acetonitrile, dimethyl sulfoxide, and the like can be used.
  • the non-aqueous solvent of the electrolytic solution enters the positive electrode active material layer 23 of the positive electrode, and the positive electrode active material layer 23 is swollen with the non-aqueous solvent, so that the reaction resistance of the redox reaction at the positive electrode can be reduced.
  • the solubility of the positive electrode active material in the nonaqueous solvent is too high, the positive electrode active material layer 23 may be eluted. For this reason, it is preferable that the non-aqueous solvent does not elute the electrode active material 13 used for the positive electrode active material layer 23.
  • Examples of the supporting salt include supporting salts composed of the following cations and anions.
  • Examples of the cation include alkali metal cations such as lithium, sodium and potassium, alkaline earth metal cations such as magnesium, and quaternary ammonium cations such as tetraethylammonium and 1,3-ethylmethylimidazolium.
  • a cation can be used individually by 1 type or in combination of 2 or more types. Among these, lithium cation, quaternary ammonium cation and the like are preferable.
  • anion examples include halide anion, perchlorate anion, trifluoromethanesulfonate anion, tetraborofluoride anion, trifluorophosphoric hexafluoride anion, trifluoromethanesulfonate anion, bis (trifluoromethanesulfonyl) imide anion, bis ( Perfluoroethylsulfonyl) imide anion and the like.
  • An anion can be used individually by 1 type or in combination of 2 or more types.
  • the supporting salt include, for example, lithium fluoride, lithium chloride, lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetraborofluoride, lithium bistrifluoromethylsulfonylimide, lithium thiocyanate, magnesium perchlorate, Examples include magnesium trifluoromethanesulfonate, sodium tetraborofluoride, and the like.
  • the electricity storage device using the electrode of the present embodiment is not only excellent in high capacity and cycle characteristics but also a high output electricity storage device. Therefore, the electrical storage device using the electrode of this embodiment is suitably used for vehicles such as hybrid vehicles and portable electronic devices.
  • the vehicle and the portable electronic device provided with the electricity storage device of the present invention are characterized in that the electricity storage device is lightweight, has a large output, and is excellent in repetition characteristics. For this reason, in particular, it is possible to reduce the weight, which is difficult to achieve with a power storage device using a conventional inorganic compound in terms of weight.
  • the electrode and the electricity storage device of the present invention have been described in the form of being used for a lithium secondary battery.
  • the electrode and the electricity storage device of the present invention can be used for various energy storage devices and sensors that use electrochemical charge storage.
  • an electric double layer capacitor may be configured by using the electrode of the present invention as a positive electrode and combining with an activated carbon negative electrode.
  • electrochemical capacitors other than a secondary battery such as a lithium ion capacitor combined with the negative electrode which can occlude-release lithium, such as lithium occlusion graphite.
  • it can use suitably also for the electrode used for various electrochemical elements.
  • a polymer actuator can be constituted by using, for example, a polymer gel electrolyte that expands and contracts due to charge / discharge as an electrolyte.
  • a polymer gel electrolyte that expands and contracts due to charge / discharge as an electrolyte.
  • a chromic display element can be configured.
  • the inventor of the present application uses a polymer compound containing a plurality of reaction skeletons having a ⁇ -electron conjugated cloud as an electrode active material, and increases the ratio of the electrode active material in the electroactive material layer, thereby increasing the capacity of the electricity storage device. I examined that. As a result, when the content of the electrode active material was increased, the output characteristics as an electrode were deteriorated, and it was confirmed that a high capacity and high output electrode as designed could not be obtained.
  • FIG. 9 schematically shows a cross-sectional structure of an embodiment of the electrode 103 of the present embodiment.
  • the electrode 103 includes a conductive support 11 and an active material layer 12 provided on the conductive support 11.
  • the conductive support 11 includes an electrolytically etched aluminum layer 11a and a conductive layer 11b, and the active material layer 12 is in contact with the electrolytically etched aluminum layer 11a.
  • the electrolytically etched aluminum layer 11a is made of aluminum, and the surface is roughened by forming fine holes.
  • the micro holes are a plurality of etching holes formed by electrolytic etching, and are preferably arranged on the surface of the electrolytic etching aluminum layer 11a in a self-aligning manner.
  • the hole diameter of the etching hole is preferably about 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness of the electrolytically etched aluminum layer 11a is preferably 0.5 ⁇ m or more and 5 ⁇ m or less, and more preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the depth of the etching hole is also about the same as the thickness of the electrolytic etching aluminum layer 11a.
  • the thickness of the etching layer is larger than 5 ⁇ m, or when the etching hole is larger than 0.5 ⁇ m, the strength of the electrolytically etched aluminum layer 11a is lowered. Moreover, when an etching hole is larger than 0.5 micrometer, an electrode active material will enter into an etching hole, and possibility that an etching hole will be filled up arises. Conversely, when the thickness of the etching layer is smaller than 0.5 ⁇ m, or when the hole diameter of the etching hole is smaller than 0.05 ⁇ m, the effect of the electrolytically etched aluminum layer 11a may not be sufficiently obtained. If the etching hole is smaller than 0.05 ⁇ m, the etching hole cannot be sufficiently impregnated with the electrolyte, and the effect of the present invention cannot be sufficiently obtained.
  • the conductive layer 11b may be formed of any material as long as it has conductivity, may be formed of a composite material such as aluminum or stainless steel, and is formed of, for example, another metal. May be. Further, for example, a material obtained by depositing a metal material such as aluminum on the surface of the resin film may be used.
  • the electrolytic etching aluminum layer 11a may be formed by performing electrolytic etching on the surface of the aluminum foil, and the unetched portion may be used as the conductive layer 11b.
  • the thickness of the conductive layer 11b is determined in consideration of mechanical strength and electrical characteristics required for the conductive support 11.
  • the total thickness of the conductive support 11 including the conductive layer 11b and the electrolytically etched aluminum layer 11a is 10 ⁇ m or more and 30 ⁇ m or less.
  • the entire thickness of the conductive support 11 is less than 10 ⁇ m, the electrode strength becomes weak.
  • the thickness is larger than 30 ⁇ m, the volume of the portion that does not contribute to power storage in the power storage device increases and the capacity density decreases.
  • the electrolytic etching treatment for forming the electrolytically etched aluminum layer 11a can be performed by applying a direct current or an alternating current to the aluminum foil in an aqueous solution.
  • a direct current or an alternating current to the aluminum foil in an aqueous solution.
  • AC etching for example, it can be performed by applying a current of about 100 to 1000 mA / cm 2 at a frequency of about 5 to 50 Hz in a hydrochloric acid aqueous solution at 20 to 60 ° C.
  • the active material layer 12 includes a conductive additive 14 and an electrode active material 13.
  • the electrode active material 13 has the first polymer compound or the second polymer compound described in the first embodiment, that is, the tetrachalcogenofulvalene skeleton represented by the general formula (1) as a main chain or a side chain.
  • the polymer compound contained in is used.
  • the weight ratio of the electrode active material 13 in the active material layer 12 is preferably 30 wt% or more. As the weight ratio of the electrode active material 13 is increased, the charge capacity of the electricity storage device using the electrode 103 is increased. However, when the weight ratio becomes too large, the ratio of the conductive auxiliary agent becomes small, and it becomes difficult to charge and discharge the entire active material layer uniformly. For this reason, the weight ratio of the active material in the material layer 12 is preferably 30 wt% or more and 80 wt% or less. More preferably, it is 50 wt% or more and 70 wt% or less.
  • the conductive assistant is a carbon material such as carbon black, graphite, acetylene black, a conductive polymer such as polyaniline, polypyrrole, or polythiophene, carbon fiber, metal Conductive fibers such as fibers, metal powders, conductive whiskers, conductive metal oxides and the like can be used alone or as a mixture thereof. Of these, carbon materials are desirable.
  • the active material layer 12 may further contain a binder 15.
  • the binder 15 may be either a thermoplastic resin or a thermosetting resin.
  • polyolefin resins such as polyethylene and polypropylene
  • fluorine resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), and copolymer resins thereof, styrene butadiene Rubber, polyacrylic acid or a copolymer resin thereof can be used as a binder.
  • the electrode 103 having the above-described configuration, if the content ratio of the electrode active material in the active material layer 12 is 30% or more, the electrode 103 can achieve higher output. Moreover, the surface of the electrolytically etched aluminum layer 11a is roughened. For this reason, the surface area is large, and the contact probability between the conductive support 11 in the conductive support 11 and the active material layer 12 and the electrode active material at the interface between the conductive support 11 and the active material layer 12 is high. It is considered that the electron conductivity increases and good electron conductivity is secured.
  • the surface of the electrolytically etched aluminum layer 11a has pores. Since the electrode active material 13 cannot penetrate into the pores, when the electrode 103 is immersed in the electrolytic solution, the electrolytic solution penetrates into the pores, and the layer is formed at the interface between the active material layer 12 and the conductive support 11. There may be an electrolyte at the interface. This facilitates the movement of ions necessary for the charge / discharge reaction. In particular, the anion mobility is considered to be smooth.
  • the conductive support 11 may be provided with a conductive surface layer having irregularities with the same degree of roughness as the electrolytic etched aluminum layer 11a, instead of the electrolytic etched aluminum layer 11a.
  • a metal current collector having irregularities formed by dry etching a metal current collector having a predetermined pattern formed by vapor deposition or machining, a metal film having predetermined irregularities, or a predetermined film You may use the electrical power collector which formed the metal mesh etc. which have a space
  • the above-described materials can be used as the current collector material. Or the like may be used instead of the electrolytically etched aluminum layer 11a.
  • a conductive support 11 including an electrolytically etched aluminum layer 11a and a conductive layer 11b is prepared.
  • the procedure described above is followed.
  • the electrode active material 13 exists in the active material layer 12 in the state of particles
  • the particulate electrode active material 13 and the conductive auxiliary agent 14 are mixed using a suitable solvent, and the conductive support 11 After coating on the electrolytically etched aluminum layer 11a, the electrode 103 can be produced by removing the solvent.
  • the electrode active material 13 in order to uniformly disperse the electrode active material 13 in the active material layer 12, a solution in which the electrode active material 13 is dissolved is used. Specifically, the electrode active material 13 is dissolved in an aprotic solvent and mixed with a conductive additive. After the obtained mixture is applied on the electrolytically etched aluminum layer 11a of the conductive support 11, it is obtained by removing the aprotic solvent.
  • the surface of the conductive support is a smooth surface, the surface of the conductive support is covered with the electrode active material 13, and the conductive support and the electrode active material are not covered. There is a possibility that the electron conductivity of will be extremely lowered.
  • the electrolytically etched aluminum layer 11a is provided on the surface of the conductive support 11, the electrolytic solution enters the pores of the electrolytically etched aluminum layer 11a, and the active material layer 12 and Electronic conductivity with the conductive support 11 is ensured.
  • the electrode active material 13 constitutes particles or is uniformly dispersed in the active material layer 12. However, as described in the first embodiment and the second embodiment, the electrode active material 13 may cover the conductive aid 14 in the active material layer 12.
  • the conductive support 11 includes an electrolytically etched aluminum layer 11a and a conductive layer 11b, and the active material layer 12' is in contact with the electrolytically etched aluminum layer 11a.
  • the electrode active material 13 that is a polymer compound having a side chain including the structure represented by the general formula (1) covers at least a part of the surface of the conductive additive 13.
  • FIG. 11 is an enlarged schematic view showing a part of the active material layer 12 ′. As shown in FIGS. 10 and 11, the electrode active material 13 does not constitute particles and covers the surface of the conductive additive 14. That is, the electrode active material 13 exists in a state of a film covering the conductive auxiliary agent 14.
  • the conductive auxiliary agent 14 is shown in an elliptical cross section, but the shape of the conductive auxiliary agent 14 is not limited to an elliptical shape, and various shapes of conductive auxiliary agents generally used as a conductive auxiliary agent for electrode materials. One of them.
  • the electrode active material 13 may not completely cover the particle shape of the conductive auxiliary agent 14, and there may be a portion where the particles of the conductive auxiliary agent 14 are in contact with each other.
  • the film thickness of the electrode active material 13 covering the conductive auxiliary agent 14 is preferably smaller than the size of the conductive auxiliary agent 14. That is, when the average particle diameter of the conductive additive 14 is d, the film thickness t of the electrode active material 13 preferably satisfies t ⁇ d. More specifically, the average particle diameter of the conductive auxiliary agent 14 is about several tens of nm to several hundreds of nm, and the film thickness t of the electrode active material 13 is preferably about several nm to several hundreds of nm. Further, as shown in FIG. 10, the active material layer 12 ′ preferably has a gap 12 a between the electrode active materials 13 covering the conductive additive 14.
  • the film thickness t of the electrode active material 13 When the film thickness t of the electrode active material 13 is smaller than several nanometers, the ratio occupied by the electrolytic material 13 in the active material layer becomes small, and the charge capacity of the electrode 103 becomes small. Further, when the film thickness t of the electrode active material 13 exceeds several hundreds of nm, as will be described below, the distance of anion movement inside the electrode active material also becomes longer, so that the resistance component of the electrode increases. When the average particle diameter of the conductive auxiliary agent 14 is smaller than several tens of nm, or larger than several ⁇ m, it may be difficult to obtain the electrode active material 13 having the thickness t described above.
  • the active material layer 12 has such a structure, in addition to the effect of the electrolytically etched aluminum layer 11a of the conductive support 11 described above, as described in the first embodiment and the second embodiment.
  • the contact area between the electrode active material 13 and the conductive auxiliary agent 14 is increased, and electrons are transferred smoothly between the conductive auxiliary agent 14 and the electrode active material 13 due to oxidation and reduction.
  • the redox reaction in the electrode active material 13 also tends to occur uniformly.
  • the anion in the electrolytic solution is a redox site in the electrode active material 13 from the surface in contact with the electrolytic solution of the electrode active material 13.
  • anions are less likely to move than in the electrolytic solution, and become a resistance component. Therefore, the shorter the anion transfer distance, the faster the redox reaction proceeds.
  • the electrode active material 13 exists in a thin film state, the distance that the electrode active material 13 moves from the surface in contact with the electrolytic solution to the inside is short. Furthermore, since the space
  • the electrode active material 13 which is a polymer compound including the structure represented by the general formula (1) has a high affinity for a specific aprotic solvent. It can produce by utilizing the feature.
  • a copolymer compound having a side chain containing the structure represented by the general formula (1) is dissolved in a specific aprotic solvent to form a solution, and the conductive assistant is mixed with this solution.
  • An active material layer 12 ′ having a structure shown in FIG. 10 in which the surface of the conductive auxiliary agent 14 is covered with a thin film of the electrode active material 13 is manufactured by a manufacturing method including a step of preparing a mixture and removing the aprotic solvent. Can be formed.
  • the active material layer 12 ′ may contain a binder.
  • the above-mentioned materials can be used for the binder.
  • the electrode active material is dissolved in a specific organic solvent and coated with a conductive additive, the electrode active material and the binder are dissolved in the same organic solvent in order to improve the film uniformity.
  • a fluororesin is preferred.
  • the binder covers the surface of the conductive additive 14 together with the electrode active material 13. On the surface of the conductive additive 14, the electrode active material 13 and the binder constitute a mixed mixture.
  • the method for producing the electrode 103 ′ includes a step of preparing a mixture containing an aprotic solvent in which an electrode active material is dissolved and a conductive additive, and a step of removing the aprotic solvent from the coating mixture.
  • the electrode active material 13 may be dissolved in an aprotic solvent, and the aprotic solvent and the conductive additive 14 may be mixed, or the mixed mixture of the aprotic solvent and the conductive auxiliary agent.
  • the electrode active material 13 may be dissolved in the body.
  • the mixture may contain a binder. What was mentioned above can be used for a binder.
  • the conductive auxiliary agent 14 and the binder may not be dissolved in the aprotic solvent.
  • the order of mixing them is arbitrary. It is desirable that the electrode active material is dissolved in an aprotic solvent and uniformly dispersed. Therefore, the order in which the electrode active material is first dissolved in the aprotic solvent and then the conductive additive and the binder are mixed is preferable.
  • a mixing method commonly used in this field can be used as long as the electrode active material is dissolved in an aprotic solvent.
  • dissolution can be performed using a kneader such as a planetary mixer.
  • the aprotic solvent is removed from the obtained mixture.
  • a method commonly used in this field can be used.
  • the obtained mixture is applied onto a substrate such as a conductive support, and the solvent is removed by high-temperature drying using a drying furnace or the like.
  • a method commonly used in this field can be used as the application method.
  • the mixture can be applied onto the conductive support 11 using spin coating, screen printing, a coater, or the like.
  • distributing the obtained mixture and drying at high temperature like spray drying is also mentioned.
  • the obtained mixture is applied onto a conductive support, and the solvent is removed by high-temperature drying using a drying furnace or the like. Accordingly, the conductive support obtained after drying and the layer containing the electrode active material and the conductive agent formed on the conductive support can be used as an electrode of the electricity storage device.
  • a layer containing an electrode active material and a conductive agent obtained by drying is supported on the conductive support.
  • the solvent is removed by spray drying or the like, it is supported on the conductive support. Thereby, the electrode for electrical storage devices is obtained.
  • the electrode 103 in which the electrode active material 13 does not constitute particles and the active material layer 12 covering the surface of the conductive additive 14 is formed on the conductive support 11 is completed.
  • the electrode active material is coated with the conductive assistant, the contact area between the electrode active material and the conductive assistant is large, and the contact between the electrode active material and the conductive assistant is large. Electrons move smoothly.
  • the electrode active material exists as a thin film on the surface of the conductive additive, the migration distance of the counter ion from the electrolytic solution to the oxidation-reduction reaction portion in the electrode active material is shortened, and resistance due to diffusion of the counter ion is reduced. Can be reduced. As a result, the resistance at the electrode during the oxidation-reduction reaction can be reduced. For this reason, the effect mentioned above is acquired notably and, thereby, the high output electrical storage device electrode is implement
  • FIG. 12 is a cross-sectional view schematically showing a coin-type lithium secondary battery 203 which is an embodiment of the electricity storage device according to the present invention.
  • the coin-type lithium secondary battery shown in FIG. 12 includes a positive electrode 31, a negative electrode 32, and a separator 24.
  • the positive electrode 31 includes the positive electrode current collector 22 and the positive electrode active material layer 23, and the electrode 103 shown in FIG. 9 or the electrode 103 'shown in FIG. 10 can be used.
  • the negative electrode 32 includes a negative electrode active material layer 26 and a negative electrode current collector 27, and the negative electrode active material layer 26 is supported by the negative electrode current collector 27.
  • the negative electrode active material layer 26 includes a negative electrode active material.
  • a negative electrode active material a known negative electrode active material that reversibly occludes and releases lithium is used.
  • graphite materials such as natural graphite and artificial graphite, amorphous carbon materials, lithium metal, lithium-containing composite nitride, lithium-containing titanium oxide, silicon, alloys containing silicon, silicon oxide, tin, alloys containing tin,
  • a material capable of reversibly occluding and releasing lithium such as tin oxide, a carbon material having an electric double layer capacity such as activated carbon, an organic compound material having a ⁇ -electron conjugated cloud, or the like can be used.
  • negative electrode materials may be used alone or in combination with a plurality of negative electrode materials.
  • a material known as a current collector for a negative electrode for a lithium ion secondary battery such as copper, nickel, and stainless steel, can be used.
  • the negative electrode current collector 27 is made of a metal foil or a resin film containing a conductive filler made of these metals.
  • the negative electrode active material layer 26 may contain only the negative electrode active material, or may contain one or both of a conductive additive and a binder. What was mentioned above can be used for a conductive support agent. Moreover, what was mentioned above can also be used for a binder.
  • the positive electrode 31 and the negative electrode 32 are opposed to each other with the separator 24 interposed therebetween so that the positive electrode active material layer 23 and the negative electrode active material layer 26 are in contact with the separator 24 to constitute an electrode group.
  • the separator 24 is a resin layer made of a resin that does not have electronic conductivity, and is a microporous film that has a large ion permeability and has a predetermined mechanical strength and electrical insulation. From the viewpoint of excellent organic solvent resistance and hydrophobicity, a polyolefin resin in which polypropylene, polyethylene or the like is used alone or in combination is preferable. Instead of the separator 24, a resin layer that swells containing an electrolytic solution and functions as a gel electrolyte may be provided.
  • the electrode group is stored in the space inside the case 21.
  • an electrolytic solution 29 is injected into the space inside the case 21, and the positive electrode 31, the negative electrode 32, and the separator 24 are impregnated in the electrolytic solution 29. Since the separator 24 includes a fine space for holding the electrolytic solution 29, the electrolytic solution 29 is held in the fine space, and the electrolytic solution 29 is disposed between the positive electrode 31 and the negative electrode 32. Yes.
  • the opening of the case 21 is sealed with a sealing plate 25 using a gasket 28.
  • the electrolytic solution 29 is composed of a non-aqueous solvent and a supporting salt that dissolves in the non-aqueous solvent.
  • a non-aqueous solvent known solvents that can be used for non-aqueous secondary batteries and non-aqueous electric double layer capacitors can be used.
  • a solvent containing a cyclic carbonate can be suitably used. This is because cyclic carbonates have a very high dielectric constant as represented by ethylene carbonate and propylene carbonate. Of the cyclic carbonates, propylene carbonate is preferred. This is because the freezing point is ⁇ 49 ° C., which is lower than that of ethylene carbonate, and the electricity storage device can be operated even at a low temperature.
  • a solvent containing a cyclic ester can also be suitably used.
  • the cyclic ester has a very high relative dielectric constant as represented by ⁇ -butyrolactone, and therefore, by including these solvents as a component, the entire non-aqueous solvent of the electrolytic solution 29 is very large. It can have a high dielectric constant.
  • non-aqueous solvent Only one of these may be used as the non-aqueous solvent, or a plurality of solvents may be mixed and used.
  • solvents that can be used include chain carbonate esters, chain esters, cyclic or chain ethers, and the like.
  • nonaqueous solvents such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, acetonitrile, dimethyl sulfoxide, and the like can be used.
  • the non-aqueous solvent of the electrolytic solution enters the positive electrode active material layer 23 of the positive electrode, and the positive electrode active material layer 23 is swollen with the non-aqueous solvent, whereby the reaction resistance of the redox reaction at the positive electrode can be reduced.
  • the solubility of the positive electrode active material in the nonaqueous solvent is too high, the positive electrode active material layer 23 may be eluted. For this reason, it is preferable that the non-aqueous solvent does not elute the electrode active material 13 used for the positive electrode active material layer 23.
  • Examples of the supporting salt include supporting salts composed of the following cations and anions.
  • Examples of the cation include alkali metal cations such as lithium, sodium and potassium, alkaline earth metal cations such as magnesium, and quaternary ammonium cations such as tetraethylammonium and 1,3-ethylmethylimidazolium.
  • a cation can be used individually by 1 type or in combination of 2 or more types. Among these, lithium cation, quaternary ammonium cation and the like are preferable.
  • anion examples include halide anion, perchlorate anion, trifluoromethanesulfonate anion, tetraborofluoride anion, trifluorophosphoric hexafluoride anion, trifluoromethanesulfonate anion, bis (trifluoromethanesulfonyl) imide anion, bis ( Perfluoroethylsulfonyl) imide anion and the like.
  • An anion can be used individually by 1 type or in combination of 2 or more types.
  • the supporting salt include, for example, lithium fluoride, lithium chloride, lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetraborofluoride, lithium bistrifluoromethylsulfonylimide, lithium thiocyanate, magnesium perchlorate, Examples include magnesium trifluoromethanesulfonate, sodium tetraborofluoride, and the like.
  • the electricity storage device using the electrode of the present invention is not only excellent in high capacity and cycle characteristics but also a high output electricity storage device. Therefore, the electricity storage device using the electrode of the present invention is suitably used for vehicles such as hybrid cars and portable electronic devices.
  • the vehicle and the portable electronic device provided with the electricity storage device of the present invention are characterized in that the electricity storage device is lightweight, has a large output, and is excellent in repetition characteristics. For this reason, in particular, it is possible to reduce the weight, which is difficult to achieve with a power storage device using a conventional inorganic compound in terms of weight.
  • the electrode and the electricity storage device of the present invention have been described in the form of being used for a lithium secondary battery.
  • the electrode and the electricity storage device of the present invention can be used for various energy storage devices and sensors that use electrochemical charge storage.
  • an electric double layer capacitor may be configured by using the electrode of the present invention as a positive electrode and combining with an activated carbon negative electrode.
  • electrochemical capacitors other than a secondary battery such as a lithium ion capacitor combined with the negative electrode which can occlude-release lithium, such as lithium occlusion graphite.
  • it can use suitably also for the electrode used for various electrochemical elements.
  • a polymer actuator can be constituted by using, for example, a polymer gel electrolyte that expands and contracts due to charge / discharge as an electrolyte.
  • a polymer gel electrolyte that expands and contracts due to charge / discharge as an electrolyte.
  • a chromic display element can be configured.
  • a polymer having a tetrachalcogenofulvalene skeleton as a repeating unit is synthesized, an electrode and an electricity storage device using the polymer are prepared, and the results of evaluating the characteristics of the electricity storage device are described in detail.
  • Example 1 Production of electrode and electricity storage device (Example 1) (1) Production of Positive Electrode As a positive electrode active material, a copolymer compound represented by the following formula (39) (hereinafter referred to as copolymer compound 39) was synthesized.
  • the second unit (having a redox site in the side chain) with respect to the number of units n of the first unit (unit having a redox site in the side chain) constituting the copolymer compound to be co-synthesized represented by the chemical formula (39)
  • the composition ratio m / n of the number of units m) is approximately 1.
  • the copolymer compound 39 was synthesized by being divided into synthesis of a tetrathiafulvalene precursor contained in the side chain, synthesis of a copolymer main chain compound, and coupling of tetrathiafulvalene to the copolymer main chain compound. This will be described in order below.
  • tetrathiafulvalene precursor was synthesized by the route shown in the following formula (R2). 5 g of tetrathiafulvalene 2 (Aldrich) was added to Kolben, and 80 cc of tetrahydrofuran (Aldrich) was further added. After cooling this to ⁇ 78 ° C., a 1-molar lithium n-hexane-tetrahydrofuran solution (manufactured by Kanto Chemical Co.) was added dropwise over 10 minutes, and then 7.3 g of paraformaldehyde (manufactured by Kanto Chemical Co., Ltd.). The reaction was allowed to proceed by stirring for 15 hours.
  • the solution thus obtained was poured into 900 cc of water, extracted twice with 1 L of diethyl ether (manufactured by Kanto Chemical Co., Inc.), washed with 500 cc of saturated ammonium chloride aqueous solution and 500 cc of saturated saline, and then with anhydrous sodium sulfate. Dried. After removing the desiccant, the solution was concentrated under reduced pressure, and 6.7 g of the resulting crude product was purified by a silica gel column to obtain 1.7 g of a purified product. It was confirmed by H-NMR and IR that the purified product was tetrathiafulvalene precursor 51.
  • the copolymer main chain compound was synthesized by the route shown in the following formula (R3).
  • a monomer raw material 40 g of methyl methacrylate 53 (manufactured by Aldrich) and 21 g of methacrylonyl chloride 52 (manufactured by Aldrich) are mixed with 90 g of toluene (manufactured by Aldrich), and 4 g of azoisobutyrate is used as a polymerization initiator. Ronitrile (Aldrich) was added. The reaction was allowed to proceed by stirring the mixture at 100 ° C. for 4 hours. The solution thus obtained was reprecipitated by adding hexane to obtain 57 g of a precipitated product.
  • the product was a copolymer main chain compound represented by Formula 54.
  • a peak derived from hydrogen of a methyl group bonded to the main chain of each of the first unit and the second unit, and a methyl group bonded to a side chain portion of the second unit are obtained. It can be observed at different peaks. Therefore, the ratio of the second unit in the copolymer main chain compound is obtained from the ratio of the integrated values of the respective peaks of the obtained H-NMR spectrum, and the composition ratio m / n of the second unit to the first unit is determined. Can be calculated.
  • the copolymer main chain compound used in this example was measured at the time of H-NMR measurement in a chloroform solvent, the main chain of each of the first unit and the second unit was bonded to the main chain.
  • the peak derived from the methyl group can be observed around 0.5 to 2.2 ppm, and the peak derived from the methyl group bonded to the side chain portion of the second unit can be observed around 3.6 ppm. From the ratio of the integrated value of the peak of the NMR spectrum, the constituent ratio of the first unit and the second unit of the synthesized copolymer main chain compound can be calculated.
  • the carbonyl group (C ⁇ O) in the first unit side chain part, the Cl part, and the carbonyl group in the second unit side chain part can be measured as different peaks.
  • the molecular weight of the synthesized copolymer main chain compound was measured using GPC, and it was confirmed that the degree of polymerization exceeded 20.
  • Coupling of the tetrathiafulvalene precursor 51 to the copolymer main chain compound 54 was performed by the route represented by the following formula (R4). Under an Ar gas stream, 1.0 g of tetrathiafulvalene precursor 51 and 26 cc of tetrahydrofuran were placed in a reaction vessel and stirred at room temperature. To the reaction solution, 0.17 g of NaH (60 wt% in mineral oil) (manufactured by Aldrich) was dropped, and the mixture was stirred at 40 ° C. for 1 hour, and 0.58 g of the copolymer main chain compound 54 was added to 8.5 cc of tetrahydrofuran. The solution in which was dissolved was mixed.
  • R4 Coupling of the tetrathiafulvalene precursor 51 to the copolymer main chain compound 54 was performed by the route represented by the following formula (R4). Under an Ar gas stream, 1.0 g of tetrathiafulvalene precursor
  • the reaction was allowed to proceed by stirring the mixture at 70 ° C. overnight. Hexane was added to the solution thus obtained, and 0.2 g of a precipitated product was obtained by reprecipitation. It was confirmed by H-NMR, IR, and GPC that the obtained product was a copolymer compound 39.
  • the constituent ratio of the first unit and the second unit can be determined using H-NMR measurement in the same manner as the copolymer main chain compound.
  • a peak derived from hydrogen of a methylene group that bonds the main chain with tetrathiafulvalene that is a redox site is around 4.8 ppm, and a peak that originates from hydrogen other than the bond with the main chain of tetrathiafulvalene. It can be observed around 6.8 to 7.0 ppm. For this reason, the composition ratio of the first unit and the second unit can be obtained from the ratio between the intensity of the peak due to the first unit and the intensity of the peak derived from the methyl group of the second unit side chain.
  • composition ratio of a present Example is the methyl group couple
  • the number n of TTF units contained in the polymer was 72, and the degree of polymerization (the sum of n and m) was 144, confirming that it was 4 or more.
  • the sulfur content was 30.2 wt%.
  • the theoretical capacity of the copolymer compound 39 is calculated from the sulfur content, it is 125 mAh / g.
  • a positive electrode was produced in a glow box in an argon atmosphere equipped with a gas purifier.
  • a mixture in which the copolymer compound 39 was dissolved was prepared. 50 mg of the copolymer compound 39 is pulverized in a mortar, 150 mg of NMP (manufactured by Wako Pure Chemical Industries, Ltd.) is added as an aprotic solvent, and the mixture is kneaded in a mortar, whereby the copolymer compound 39 is aprotic polar solvent. Was dissolved.
  • the particle size distribution of the copolymer compound 39 in NMP was measured by a laser diffraction / scattering method using SALD-7000 manufactured by Shimadzu Corporation.
  • the measurement conditions were a measurement particle size range of 0.015 ⁇ m to 500 ⁇ m, a measurement interval of 2 seconds, and measurement was performed while stirring the solvent using an attached stirring plate. As a result of the measurement, no diffraction / scattering intensity was observed, and it was confirmed that there were no grains of 0.015 ⁇ m or more in NMP. Further, ultraviolet-visible absorption spectrum (UV-vis) measurement was performed, and by confirming an absorption peak derived from the TTF ring in the vicinity of 300 to 320 nm, it was confirmed that the copolymer compound 39 was present in NMP. .
  • UV-vis ultraviolet-visible absorption spectrum
  • the obtained mixture was applied to a current collector.
  • a current collector an aluminum foil with a thickness of 20 ⁇ m was used.
  • the mixture was applied to the aluminum foil using a coater.
  • Application was performed with a gap width of 300 ⁇ m and a maneuvering speed of 7 mm / sec.
  • NMP which is an aprotic solvent was removed.
  • the mixture applied on the aluminum foil was placed in a thermostat and dried at a temperature of 80 ° C. for 1 hour to remove the aprotic solvent.
  • a positive electrode was produced by punching and cutting into a disk shape having a diameter of 13.5 mm.
  • FIG. 13A shows a scanning electron microscope (SEM) image near the current collector of the produced positive electrode.
  • the thickness of the positive electrode active material layer of the produced positive electrode was 90 ⁇ m from the SEM image.
  • the distribution of sulfur derived from the electrode active material was observed at a magnification of 1000 times with an electron beam microanalyzer (EPMA, JEOL Ltd. JXA-8900) on the prepared positive electrode cross section.
  • EPMA electron beam microanalyzer
  • FIG. 13B a region where sulfur is present is displayed in monochrome gradation, a portion where there is a lot of sulfur is shown in white, and a region where no sulfur is present is shown in black. From the measurement results, active material particles of 1 ⁇ m or more were not observed, and it was found that sulfur was uniformly distributed in the electrode plate.
  • the coating weight of the positive electrode active material was 0.2 mg / cm 2 per electrode plate area.
  • FIG. 14A shows a cross-sectional SEM image of the analysis region
  • FIGS. 14B and 14C show a carbon distribution image and a sulfur distribution image of the region corresponding to the cross-sectional SEM image.
  • FIG. 14 (b) the area where carbon is present is displayed in monochrome gradation, the portion with a lot of carbon is shown in white, and the area where no carbon is present is shown in black. From FIG. 14B, particles derived from the conductive auxiliary agent can be confirmed.
  • FIG. 14C the area where sulfur is present is displayed in monochrome gradation, the portion rich in sulfur is shown in white, and the area where no sulfur is present is shown in black. From FIG. 14C, the distribution of the electrode active material polymer can be confirmed. 14B and 14C, it can be confirmed that the active material is distributed so as to substantially overlap the distribution of the conductive auxiliary agent particles. Further, it can be confirmed that the elemental sulfur is distributed so as to cover the conductive auxiliary agent particles.
  • Example 1 the electrode active material covered the conductive additive in the active material layer.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the produced positive electrode, negative electrode, and electrolyte were stored in the case of the coin-type battery shown in FIG. 3, the opening of the case was sandwiched with a sealing plate fitted with a gasket, and caulked and sealed with a press to obtain a coin-type electricity storage device. .
  • Example 2 Production of Positive Electrode As a positive electrode active material, a polymer compound represented by the following formula (17) (hereinafter referred to as polymer compound 17) was synthesized.
  • a polymer represented by the chemical formula (17) was synthesized.
  • the polymer represented by the chemical formula (17) is referred to as a polymer compound 17.
  • the structure of the obtained compound was identified by H-NMR (CDCl 3 ) and IR measurement (KBr method).
  • H-NMR a chemical shift derived from a phenyl group was observed in the vicinity of 7.4 to 7.5 ppm.
  • IR measurement a peak derived from C—H stretching vibration was observed near 3052 cm ⁇ 1 .
  • the theoretical values are 35.53 carbon, 1.64 hydrogen, 21.05 sulfur, 41.78% by weight iodine, whereas the experimental values are carbon 35.43, hydrogen 1.68, sulfur 22 79, iodine 37.77% by weight. From the above results, it was confirmed that the obtained powder was the compound 55.
  • the structure of the obtained polymer was identified from molecular weight analysis by GPC and IR measurement.
  • IR measurement KBr method
  • peaks were observed in the vicinity of 692, 755, 793, 1031, 1076, 1442, 1473, 1595, and 2960 cm ⁇ 1 .
  • a CS stretching vibration derived from a TTF skeleton was confirmed in the vicinity of 800 to 650 cm ⁇ 1 .
  • the obtained product had three molecular weight distributions.
  • the respective peak molecular weights were 37670, 1200, and 680 in terms of polystyrene.
  • the obtained product had a unit structure represented by the polymer compound 17, but contained a low polymer such as a monomer or a dimer.
  • the product containing this low polymer was designated as polymer compound 17 '.
  • a positive electrode was produced in a glow box equipped with a gas purifier and in an argon atmosphere.
  • a mixture containing an aprotic solvent in which the polymer compound 17 was dissolved and a conductive additive was prepared.
  • 80 mg of the polymer compound 17 was pulverized in a mortar, 240 mg of NMP was added as an aprotic solvent, and the mixture was kneaded in the mortar to dissolve the polymer compound 17 in the aprotic solvent.
  • the particle size distribution of the polymer compound 17 in NMP was measured by a laser diffraction / scattering method using SALD-7000 manufactured by Shimadzu Corporation. The measurement conditions were a measurement particle size range of 0.015 ⁇ m to 500 ⁇ m, a measurement interval of 2 seconds, and measurement was performed while stirring the solvent using an attached stirring plate.
  • the obtained mixture was applied to a current collector.
  • a current collector an aluminum foil with a thickness of 20 ⁇ m was used.
  • the mixture was applied to the aluminum foil using a coater.
  • Application was performed with a gap width of 300 ⁇ m and a maneuvering speed of 7 mm / sec.
  • aprotic solvent was removed.
  • the mixture applied on the aluminum foil was placed in a thermostatic bath and dried for 1 hour in an atmosphere at a temperature of 80 ° C. to remove the aprotic solvent.
  • a positive electrode was produced by punching and cutting into a disk shape having a diameter of 13.5 mm.
  • FIG. 15A shows a scanning electron microscope (SEM) image near the current collector of the produced positive electrode.
  • the thickness of the positive electrode active material layer of the produced positive electrode was 90 ⁇ m from the SEM image.
  • the distribution of sulfur derived from the electrode active material was observed at a magnification of 1000 times with an electron beam microanalyzer (EPMA, JXA-8900) on the prepared positive electrode cross section.
  • EPMA, JXA-8900 electron beam microanalyzer
  • FIG. 15B a region where sulfur is present is displayed in monochrome gradation, a portion where there is much sulfur is shown in white, and a region where no sulfur is present is shown in black. From the measurement results, it was found that active material particles of 1 ⁇ m or more were not observed, and that sulfur was observed to be uniformly distributed in the electrode plate at a magnification of about 1000 times.
  • a positive electrode active material mixture was obtained by adding 400 mg of acetylene black to 50 mg of the copolymer compound 39 pulverized in a mortar, mixing uniformly, and adding and mixing 100 mg of polytetrafluoroethylene. This positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, and punched and cut into a disk shape having a diameter of 13.5 mm to produce a positive electrode.
  • the particle size of the copolymer compound 39 pulverized with a mortar was about 5 to 20 ⁇ m.
  • the cross section of the produced electrode plate was observed with an electron microscope and an electron beam microanalyzer (EPMA), and the distribution of sulfur derived from the electrode active material was measured.
  • 16A and 16B show an SEM image showing an enlarged portion of the electrode active material portion of the positive electrode cross section of Comparative Example 1 and a sulfur distribution image by EPMA, respectively.
  • a granular sulfur distribution from 5 ⁇ m to a maximum of 20 ⁇ m was observed by EPMA. From this, it was confirmed that the electrode active material was present in the form of particles.
  • the thickness of the positive electrode active material layer of the produced positive electrode was 90 ⁇ m.
  • the weight of the positive electrode active material was 0.2 mg / cm 2 per electrode plate unit area.
  • a positive electrode active material mixture was obtained by adding 256 mg of acetylene black to 80 mg of the polymer compound pulverized in a mortar, mixing uniformly, and adding and mixing 64 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the copolymer compound pulverized in a mortar is about 10 ⁇ m, and when the distribution of sulfur derived from the electrode active material is measured with an electron beam microanalyzer (EPMA) on the cross section of the produced electrode plate, it is about 10 ⁇ m. Active material grains were observed. Moreover, the thickness of the positive electrode active material layer of the produced positive electrode plate was 90 ⁇ m.
  • polymer compound 40 (hereinafter referred to as polymer compound 40) was synthesized as a positive electrode active material.
  • the polymer compound 40 does not include the second unit of the copolymer compound represented by the formula (37) but includes only the first unit including the redox site.
  • the polymer compound 40 was synthesized by being divided into synthesis of a tetrathiafulvalene precursor contained in a side chain, synthesis of a polymer main chain compound, and coupling of tetrathiafulvalene to the polymer main chain compound.
  • a polymer compound represented by the formula (40) (hereinafter referred to as polymer compound 40) was synthesized as a positive electrode active material.
  • the polymer compound 40 does not include the second unit of the copolymer compound represented by the formula (37) but includes only the first unit including the redox site.
  • the polymer compound 40 was synthesized by being divided into synthesis of a tetrathiafulvalene precursor contained in a side chain
  • the synthesis of the tetrathiafulvalene precursor 51 was performed in the same manner as in Example 1.
  • the synthesis of the polymer main chain compound was carried out by the route shown in the following formula (R7).
  • As a monomer material 50 g of methacrylonyl chloride 52 (Aldrich) was mixed with 24 g of toluene (Aldrich), and 0.5 g of azoisobutyronitrile (Aldrich) was added as a polymerization initiator. It was. The reaction was allowed to proceed by stirring the mixture at 65 ° C. for 6 hours. It was confirmed by H-NMR, IR, and GPC that the product was a compound represented by the formula (58) (hereinafter referred to as polymer main chain compound 18).
  • Coupling of the tetrathiafulvalene precursor 51 to the polymer main chain compound 18 was performed by the route represented by the formula (R8). Under an Ar gas stream, 3.4 g of tetrathiafulvalene precursor 51 and 88 cc of tetrahydrofuran were placed in a reaction vessel and stirred at room temperature. 0.574 g of NaH (60 wt% in mineral oil) (manufactured by Aldrich) was added dropwise to the reaction solution over 20 minutes, and 1.0 g of the polymer main chain compound was added to 15 cc of tetrahydrofuran while stirring at 40 ° C. for 1 hour. The solution in which 58 was dissolved was mixed.
  • the reaction was allowed to proceed by stirring the mixture at 80 ° C. overnight.
  • the solution thus obtained was concentrated, 50 cc of water was added to the obtained solid and stirred, and then the solid obtained by filtration was stirred in 50 cc of methanol and filtered.
  • the obtained solid was washed with hexane, washed with methanol, and then dried under reduced pressure at 40 ° C. for 5 hours to obtain 2.2 g of a product. It was confirmed by H-NMR, IR, and GPC that the obtained product was polymer compound 40.
  • the synthesized polymer compound 40 had a weight average molecular weight of about 44,000.
  • the sulfur content was 38.9 wt%.
  • the theoretical capacity of the polymer compound 40 is calculated from the sulfur content, it is 168 mAh / g.
  • a positive electrode was produced in the same manner as in Example 1 except that the polymer compound 40 was used as the positive electrode active material. After adding the polymer compound 40 to the aprotic solvent NMP and kneading, the particle size distribution of the polymer compound 40 in the NMP was measured, and it was confirmed that particles of about 5 to 20 ⁇ m were present. . Moreover, it was confirmed visually that the polymer compound 40 was not dissolved in NMP.
  • FIGS. 17A and 17B show an SEM image showing an enlarged portion of the electrode active material portion of the positive electrode cross section of Comparative Example 2 and a sulfur distribution image by EPMA, respectively. As shown in FIG. 17B, granular sulfur distribution of about 20 ⁇ m at the maximum was observed by EPMA. From this, it was confirmed that the active material was present in the form of particles.
  • the thickness of the positive electrode active material layer of the produced positive electrode was 90 ⁇ m.
  • the weight of the positive electrode active material was 0.2 mg / cm 2 per electrode plate unit area.
  • Polymer compound 41 was synthesized by reacting polyvinyl alcohol and a tetrathiafulvalene carboxyl derivative by dehydration condensation.
  • the polymer compound 13 used had a weight average molecular weight of about 50,000.
  • the sulfur content was 45.3 wt%.
  • the theoretical capacity of the polymer compound 41 calculated from the sulfur content is 196 mAh / g.
  • a positive electrode was produced in the same manner as in Comparative Example 1 except that the polymer compound 41 was used as the positive electrode active material.
  • the output evaluation was performed by resistance value evaluation and large current charge / discharge capacity evaluation. Resistance value evaluation evaluated using the resistance value of the alternating current impedance measurement in 1 Hz in the discharge state after repeating charging / discharging 3 times.
  • the measurement condition for the AC impedance measurement was a voltage amplitude of 10 mV.
  • the charge / discharge conditions were a charge upper limit voltage of 4.0V and a discharge lower limit voltage of 3.0V. After the end of charging, the rest time until the start of discharging and the time after the end of discharging until the start of charging were set to zero, and constant current charging / discharging at 0.1 mA.
  • the large current charge / discharge capacity evaluation is obtained by dividing the discharge capacity at the time of constant current discharge of 3 mA by the discharge capacity at the time of constant current discharge of 0.1 mA, that is, at the time of constant current discharge of 3 mA relative to the time of 0.1 mA constant current discharge.
  • the capacity maintenance rate was evaluated.
  • the charge / discharge conditions were a charge upper limit voltage of 4.0 V, a discharge lower limit voltage of 3.0 V, and charging was a constant current charge of 0.1 mA.
  • Table 1 summarizes the charge / discharge capacity evaluation and output characteristic evaluation results of the electricity storage devices of Examples 1 and 2 and Comparative Examples 1 to 5.
  • Example 1 and 2 are greatly reduced as compared with Comparative Examples 1 to 5. Since Example 1, Example 2, and Comparative Examples 1 to 5 differ only in the positive electrode, the decrease in the resistance value in Example 1 and Example 2 is caused by the decrease in the resistance value of the positive electrode.
  • Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2 both use the same compound as an electrode active material, and differ only in the positive electrode manufacturing method and the active material structure. Specifically, in Example 1 and Example 2, the electrode active material is dissolved in a solvent, so that the polymer compound 4 and the polymer compound 17 that are electrode active materials cover the surface of the conductive additive. , Dispersed in the active material layer. On the other hand, in Comparative Example 1 and Comparative Example 2, the electrode active material exists as particles. For this reason, Example 1 and Example 2 are more susceptible to the oxidation reaction of copolymer compound 39 and polymer compound 17 in the active material layer, and the reaction resistance of the active material is reduced compared to Comparative Example 1. As a result, it is considered that the resistance of the electricity storage device has decreased.
  • the positive electrode active material used in Comparative Examples 3 and 4 is the polymer compound 40, but the formation method of the positive electrode active material layer is different.
  • the polymer compound 40 was mixed with NMP, and the mixture was applied to the positive electrode current collector. However, since the solubility of the polymer compound 40 is low, the polymer compound 40 The polymer compound 40 was present as particles in the positive electrode active material layer.
  • Comparative Example 4 is added to the positive electrode active material layer in the form of particles.
  • the reaction resistance of the active material is increased as in Comparative Example 1, and the electricity storage device It is thought that the resistance of became high.
  • Example 1 a capacity of 63% was maintained even during a constant current discharge at 3 mA, and in Example 2, a capacity of 75% was maintained even during a constant current discharge at 3 mA.
  • the discharge capacity was 5% or less. This is considered due to the high resistance value of the electricity storage device.
  • Comparative Examples 1 to 5 since the voltage drop during large current discharge is large, the reduction potential is 3.0 V or less and the discharge capacity is 5% or less, whereas in Examples 1 and 2, the voltage drop is Since the reduction potential is 3.0 V or higher, it is considered that the capacity retention rate is high even when discharging at 3 mA. Thus, it was confirmed that a high-output power storage device can be realized by using the electrode of the present invention.
  • Example 3 Production of electrode and electricity storage device (Example 3) (1) Production of Positive Electrode A positive electrode was produced in the same manner as in Example 1 except that the copolymer compound 39 was used as an electrode active material and the gap width at the time of application was 150 ⁇ m.
  • As the positive electrode current collector a plain aluminum foil not subjected to electrolytic etching was used.
  • the plain aluminum foil described here has an average roughness (Ra) defined in JIS B 0601-1994 of 0.5 ⁇ m or less, a maximum height (Ry) of 2.0 ⁇ m or less, and a 10-point average roughness (Rz) of 1. It means a smooth aluminum foil having a surface irregularity of 0.0 ⁇ m or less.
  • the plain aluminum foil used in this comparative example had a thickness of 20 ⁇ m, an average roughness (Ra) of 0.1 ⁇ m, a maximum height (Ry) of 0.6 ⁇ m, and a ten-point average roughness (Rz) of 0.6 ⁇ m. It was.
  • the thickness of the active material layer of the obtained positive electrode was 40 ⁇ m.
  • the mixing ratio of the active material layer was 6% by weight of the electrode active material, 75% by weight of the conductive additive, and 19% by weight of the binder.
  • the obtained positive electrode was used after being punched into a disk shape having a diameter of 13.5 mm and cut.
  • a coin-type battery 201 having the structure shown in FIG. 4 was produced.
  • the electrode described above is used as the positive electrode 31 including the positive electrode current collector 22 and the positive electrode active material layer 23.
  • the positive electrode is disposed in the case 21 so that the positive electrode current collector plate 22 is in contact with the inner surface of the case 21, and a porous polyethylene sheet is formed thereon.
  • a separator 24 made of Next, a nonaqueous electrolyte was injected into the case 28.
  • As the non-aqueous solvent electrolyte an electrolytic solution in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1: 3 was used.
  • the negative electrode current collector 27 and the negative electrode active material layer 26 were pressed onto the inner surface of the sealing plate 25 in this order.
  • the positive electrode 31, the negative electrode 32, and the electrolytic solution 28 are accommodated in a coin-type battery case shown in FIG. 4, the opening of the case is sandwiched by a sealing plate fitted with a gasket, and caulked and sealed with a press machine to obtain a coin-type electricity storage device. It was.
  • a graphite electrode having a thickness of 40 ⁇ m coated on a negative electrode current collector 27 made of a copper foil having a thickness of 20 ⁇ m was used.
  • the graphite negative electrode 32 was punched into a disk shape having a diameter of 13.5 mm and cut for use.
  • the graphite electrode uses a Li metal counter electrode and performs three cycles of pre-charging / discharging at a current value of 0.4 mA / cm 2 between a lower limit of 0 V and an upper limit of 1.5 V (lithium reference potential). It was confirmed that it has a reversible capacity of 1.6 mAh / cm 2 and can be reversibly charged and discharged.
  • the graphite electrode used was charged to 70% of the reversible capacity, that is, a lithium pre-doped state.
  • the same electrolytic solution used in the electricity storage device and a separator made of a porous polyethylene sheet were used.
  • Example 4 Production of positive electrode A positive electrode was produced in the same manner as in Example 3 except that the blending ratio of the copolymer compound 39 in the active material layer was different.
  • the thickness of the positive electrode active material layer obtained was 40 ⁇ m. Moreover, the compounding ratio in the active material layer was 20% by weight of the electrode active material, 64% by weight of the conductive additive, and 16% by weight of the binder.
  • the obtained positive electrode was used after being punched into a disk shape having a diameter of 13.5 mm and cut.
  • Example 5 Production of positive electrode A positive electrode was produced in the same manner as in Example 3 except that the blending ratio of the copolymer compound 39 in the active material layer was different.
  • the thickness of the positive electrode active material layer obtained was 40 ⁇ m.
  • the mixing ratio in the active material layer was 30 wt% active material, 56 wt% conductive aid, and 14 wt% binder.
  • the obtained positive electrode was used after being punched into a disk shape having a diameter of 13.5 mm and cut.
  • Example 6 Production of positive electrode A positive electrode was produced in the same manner as in Example 3 except that the blending ratio of the copolymer compound 39 in the active material layer was different.
  • the thickness of the positive electrode active material layer obtained was 40 ⁇ m.
  • the mixing ratio in the active material layer was 50% by weight of the electrode active material, 40% by weight of the conductive auxiliary agent, and 10% by weight of the binder.
  • the obtained positive electrode was used after being punched into a disk shape having a diameter of 13.5 mm and cut.
  • Example 7 Production of positive electrode Using the polymer compound 17 as a positive electrode active material, a positive electrode plate was produced by the production method described below.
  • a mixture containing an aprotic solvent in which the polymer compound 17 was dissolved and a conductive additive was prepared.
  • 40 mg of the polymer compound 17 was pulverized in a mortar, 120 mg of NMP was added as an aprotic solvent, and kneaded in the mortar to dissolve the polymer compound 17 in the aprotic solvent.
  • the particle size distribution of the polymer compound 17 in NMP was measured in the same manner as in Example 1, and it was confirmed that there were no particles of 0.015 ⁇ m or more in NMP. Further, UV-vis measurement was performed, and by confirming an absorption peak derived from the tetrathiafulvalene skeleton in the vicinity of 300 nm, it was confirmed that a copolymer was present in NMP.
  • the obtained mixture was applied onto a current collector and dried in the same manner as in Example 1, the aprotic solvent was removed, and the positive electrode was produced by punching and cutting into a disk shape having a diameter of 13.5 mm. .
  • the mixing ratio of the active material layer of the obtained positive electrode was 10 wt% of the electrode active material, 72 wt% of the conductive additive, and 18 wt% of the binder.
  • FIG. 18A shows a cross-sectional SEM image of the analysis region
  • FIGS. 18B and 18C show a carbon distribution image and a sulfur distribution image of the region corresponding to the cross-sectional SEM image by Auger electron spectroscopy. ing. From the cross-sectional SEM observation, the thickness of the active material layer was 90 ⁇ m. Further, from the carbon distribution image and the sulfur distribution image, it was confirmed that there were no electrode active material particles of 1 ⁇ m or more in the active material layer, and the electrode active material covered the conductive additive.
  • Example 8 (1) Production of positive electrode In Example 8, only the mixing ratio of the electrode active material, the conductive additive and the binder in the positive electrode was different, and the positive electrode plate same as that of Example 7 was otherwise obtained as follows. Produced.
  • a mixture containing an aprotic solvent in which the polymer compound 17 was dissolved and a conductive additive was prepared.
  • 80 mg of the polymer compound 17 was pulverized in a mortar, 240 mg of NMP was added as an aprotic solvent, and the mixture was kneaded in the mortar to dissolve the polymer compound 17 in the aprotic solvent.
  • the particle size distribution of the polymer compound 17 in NMP was measured in the same manner as in Example 1, and it was confirmed that there were no particles of 0.015 ⁇ m or more in NMP. Further, UV-vis measurement was performed, and by confirming an absorption peak derived from the tetrathiafulvalene skeleton in the vicinity of 300 nm, it was confirmed that a copolymer was present in NMP.
  • the obtained mixture was applied onto a current collector and dried in the same manner as in Example 1, the aprotic solvent was removed, and the positive electrode was produced by punching and cutting into a disk shape having a diameter of 13.5 mm. .
  • the mixing ratio of the active material layer of the obtained positive electrode was 20 wt% of the electrode active material, 64 wt% of the conductive additive, and 16 wt% of the binder.
  • the cross-sectional SEM observation and AES analysis of the positive electrode active material layer of the produced positive electrode were performed in the same manner as in Example 1. From the cross-sectional SEM observation, the thickness of the active material layer was 90 ⁇ m. It was also confirmed that no electrode active material particles of 1 ⁇ m or more were present in the active material layer, and that the electrode active material covered the conductive additive.
  • Example 9 (1) Production of positive electrode In Example 9, only the mixing ratio of the electrode active material, the conductive additive and the binder in the positive electrode was different, and the positive electrode plate same as that of Example 7 except that was as follows. Produced.
  • a mixture containing an aprotic solvent in which the polymer compound 17 was dissolved and a conductive additive was prepared.
  • 120 mg of the polymer compound 17 was pulverized in a mortar, 360 mg of NMP was added as an aprotic solvent, and the mixture was kneaded in the mortar to dissolve the polymer compound 17 in the aprotic solvent.
  • the particle size distribution of the polymer compound 17 in NMP was measured in the same manner as in Example 1, and it was confirmed that there were no particles of 0.015 ⁇ m or more in NMP. Further, UV-vis measurement was performed, and by confirming an absorption peak derived from the tetrathiafulvalene skeleton in the vicinity of 300 nm, it was confirmed that a copolymer was present in NMP.
  • the obtained mixture was applied onto a current collector and dried in the same manner as in Example 1, the aprotic solvent was removed, and the positive electrode was produced by punching and cutting into a disk shape having a diameter of 13.5 mm. .
  • the mixing ratio of the active material layer of the obtained positive electrode was 30 wt% of the electrode active material, 56 wt% of the conductive additive, and 14 wt% of the binder.
  • the cross-sectional SEM observation and AES analysis of the positive electrode active material layer of the produced positive electrode were performed in the same manner as in Example 1. From the cross-sectional SEM observation, the thickness of the active material layer was 90 ⁇ m. It was also confirmed that no electrode active material particles of 1 ⁇ m or more were present in the active material layer, and that the electrode active material covered the conductive additive.
  • Example 10 (1) Production of positive electrode In Example 10, only the mixing ratio of the electrode active material, the conductive additive and the binder in the positive electrode is different, and the positive electrode plate same as that in Example 7 except that is as follows. Produced.
  • a mixture containing an aprotic solvent in which the polymer compound 17 was dissolved and a conductive additive was prepared.
  • 200 mg of the polymer compound 17 was pulverized in a mortar, 600 mg of NMP was added as an aprotic solvent, and the mixture was kneaded in the mortar to dissolve the polymer compound 17 in the aprotic solvent.
  • the particle size distribution of the polymer compound 17 in NMP was measured in the same manner as in Example 1, and it was confirmed that there were no particles of 0.015 ⁇ m or more in NMP. Further, UV-vis measurement was performed, and by confirming an absorption peak derived from the tetrathiafulvalene skeleton in the vicinity of 300 nm, it was confirmed that a copolymer was present in NMP.
  • the obtained mixture was applied onto a current collector and dried in the same manner as in Example 1, the aprotic solvent was removed, and the positive electrode was produced by punching and cutting into a disk shape having a diameter of 13.5 mm. .
  • the mixing ratio of the active material layer of the obtained positive electrode was 50% by weight of the electrode active material, 40% by weight of the conductive additive, and 10% by weight of the binder.
  • the cross-sectional SEM observation and AES analysis of the positive electrode active material layer of the produced positive electrode were performed in the same manner as in Example 1. From the cross-sectional SEM observation, the thickness of the active material layer was 90 ⁇ m. It was also confirmed that no electrode active material particles of 1 ⁇ m or more were present in the active material layer, and that the electrode active material covered the conductive additive.
  • a positive electrode active material mixture was obtained by adding 300 mg of acetylene black to 24 mg of the copolymer compound pulverized in a mortar, mixing uniformly, and further adding and mixing 76 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the copolymer compound pulverized in a mortar is about 10 ⁇ m, and when the distribution of sulfur derived from the electrode active material is measured with an electron beam microanalyzer (EPMA) on the cross section of the produced electrode plate, it is about 10 ⁇ m. Active material grains were observed.
  • EPMA electron beam microanalyzer
  • the thickness of the positive electrode active material layer of the produced positive electrode plate was 40 ⁇ m.
  • the mixing ratio of the active material layer of the obtained positive electrode was 6 wt% of the electrode active material, 75 wt% of the conductive additive, and 19 wt% of the binder.
  • Comparative Example 7 (1) Production of Positive Electrode As in Comparative Example 6, the production method described below is used except that the copolymer compound 39 is used as the positive electrode active material and the blending ratio of the electrode active material, the conductive additive and the binder is different. A positive electrode plate was prepared.
  • a positive electrode active material mixture was obtained by adding 256 mg of acetylene black to 80 mg of the copolymer compound pulverized in a mortar, mixing uniformly, and adding and mixing 64 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the copolymer compound pulverized in a mortar is about 10 ⁇ m, and when the distribution of sulfur derived from the electrode active material is measured with an electron beam microanalyzer (EPMA) on the cross section of the produced electrode plate, it is about 10 ⁇ m. Active material grains were observed.
  • EPMA electron beam microanalyzer
  • the thickness of the positive electrode active material layer of the produced positive electrode plate was 40 ⁇ m.
  • the mixing ratio of the active material layer of the obtained positive electrode was 20 wt% of the electrode active material, 64 wt% of the conductive additive, and 16 wt% of the binder.
  • Comparative Example 8 (1) Production of Positive Electrode As in Comparative Example 6, the production method described below is used except that the copolymer compound 39 is used as the positive electrode active material and the blending ratio of the electrode active material, the conductive additive and the binder is different. A positive electrode plate was prepared.
  • a positive electrode active material mixture was obtained by adding 224 mg of acetylene black to 120 mg of a copolymer compound pulverized in a mortar, mixing uniformly, and adding and mixing 56 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the copolymer compound pulverized in a mortar is about 10 ⁇ m, and when the distribution of sulfur derived from the electrode active material is measured with an electron beam microanalyzer (EPMA) on the cross section of the produced electrode plate, it is about 10 ⁇ m. Active material grains were observed.
  • EPMA electron beam microanalyzer
  • the thickness of the positive electrode active material layer of the produced positive electrode plate was 40 ⁇ m.
  • the mixing ratio of the active material layer of the obtained positive electrode was 30 wt% of the electrode active material, 56 wt% of the conductive additive, and 14 wt% of the binder.
  • Comparative Example 9 (1) Production of Positive Electrode As in Comparative Example 6, the production method described below is used except that the copolymer compound 39 is used as the positive electrode active material and the blending ratio of the electrode active material, the conductive additive and the binder is different. A positive electrode plate was prepared.
  • a positive electrode active material mixture was obtained by adding 160 mg of acetylene black to 200 mg of the copolymer compound pulverized in a mortar, mixing uniformly, and further adding and mixing 40 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the copolymer compound pulverized in a mortar is about 10 ⁇ m, and when the distribution of sulfur derived from the electrode active material is measured with an electron beam microanalyzer (EPMA) on the cross section of the produced electrode plate, it is about 10 ⁇ m. Active material grains were observed.
  • EPMA electron beam microanalyzer
  • the thickness of the positive electrode active material layer of the produced positive electrode plate was 40 ⁇ m.
  • the mixing ratio of the active material layer of the obtained positive electrode was 50% by weight of the electrode active material, 40% by weight of the conductive additive, and 10% by weight of the binder.
  • a positive electrode active material mixture was obtained by adding 288 mg of acetylene black to 40 mg of the polymer compound pulverized in a mortar, mixing uniformly, and adding and mixing 72 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the copolymer compound pulverized in a mortar is about 10 ⁇ m, and when the distribution of sulfur derived from the electrode active material is measured with an electron beam microanalyzer (EPMA) on the cross section of the produced electrode plate, it is about 10 ⁇ m. Active material grains were observed.
  • EPMA electron beam microanalyzer
  • the thickness of the positive electrode active material layer of the produced positive electrode plate was 90 ⁇ m.
  • the mixing ratio of the active material layer of the obtained positive electrode was 10 wt% of the electrode active material, 72 wt% of the conductive additive, and 18 wt% of the binder.
  • Comparative Example 11 (1) Production of positive electrode As in Comparative Example 10, the polymer method 17 was used as the positive electrode active material, and the production method described below was used in the same manner except that the mixing ratio of the electrode active material, the conductive additive and the binder was different. A polar plate was prepared.
  • a positive electrode active material mixture was obtained by adding 256 mg of acetylene black to 80 mg of the polymer compound pulverized in a mortar, mixing uniformly, and adding and mixing 64 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the copolymer compound pulverized in a mortar is about 10 ⁇ m, and when the distribution of sulfur derived from the electrode active material is measured with an electron beam microanalyzer (EPMA) on the cross section of the produced electrode plate, it is about 10 ⁇ m. Active material grains were observed.
  • EPMA electron beam microanalyzer
  • the thickness of the positive electrode active material layer of the produced positive electrode plate was 90 ⁇ m.
  • the mixing ratio of the active material layer of the obtained positive electrode was 20 wt% of the electrode active material, 64 wt% of the conductive additive, and 16 wt% of the binder.
  • Comparative Example 12 (1) Production of Positive Electrode As in Comparative Example 10, the production method described below is used to produce the positive electrode except that polymer compound 17 is used as the positive electrode active material and the blending ratio of the electrode active material, the conductive additive and the binder is different. A plate was made.
  • a positive electrode active material mixture was obtained by adding 224 mg of acetylene black to 120 mg of the polymer compound pulverized in a mortar, mixing uniformly, and adding and mixing 56 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the copolymer compound pulverized in a mortar is about 10 ⁇ m, and when the distribution of sulfur derived from the electrode active material is measured with an electron beam microanalyzer (EPMA) on the cross section of the produced electrode plate, it is about 10 ⁇ m. Active material grains were observed.
  • EPMA electron beam microanalyzer
  • the thickness of the positive electrode active material layer of the produced positive electrode plate was 90 ⁇ m.
  • the mixing ratio of the active material layer of the obtained positive electrode was 30 wt% of the electrode active material, 56 wt% of the conductive additive, and 14 wt% of the binder.
  • Comparative Example 13 (1) Production of Positive Electrode As in Comparative Example 10, the production method described below is used to produce the positive electrode except that polymer compound 17 is used as the positive electrode active material and the blending ratio of the electrode active material, the conductive additive and the binder is different. A plate was made.
  • a positive electrode active material mixture was obtained by adding 160 mg of acetylene black to 200 mg of the polymer compound pulverized in a mortar, mixing uniformly, and further adding and mixing 40 mg of polytetrafluoroethylene. Furthermore, this positive electrode mixture was pressure-bonded onto an aluminum wire mesh, vacuum-dried, punched and cut into a disk shape having a diameter of 13.5 mm, and a positive electrode plate was produced.
  • the particle size of the polymer 30 pulverized in a mortar was about 5 to 20 ⁇ m.
  • the cross section of the produced electrode plate was observed with an electron microscope and an electron beam microanalyzer (EPMA), and the distribution of sulfur derived from the electrode active material was measured.
  • FIGS. 19A and 19B show an SEM image showing an enlarged portion of the electrode active material portion of the positive electrode cross section of Comparative Example 13 and a sulfur distribution image by EPMA, respectively. As shown in FIG. 19B, a granular sulfur distribution of about several ⁇ m to 10 ⁇ m was observed by EPMA. From this, it was confirmed that the electrode active material was present in the form of particles.
  • the thickness of the positive electrode active material layer of the produced positive electrode plate was 90 ⁇ m.
  • the mixing ratio of the active material layer of the obtained positive electrode was 50% by weight of the electrode active material, 40% by weight of the conductive additive, and 10% by weight of the binder.
  • Example 3 and Comparative Example 6 0.06 mA in Example 4 and Comparative Example 7, 0.09 mA in Example 5 and Comparative Example 8, 0 in Example 6 and Comparative Example 9 .15 mA, 0.03 mA in Example 7 and Comparative Example 10, 0.12 mA in Example 8 and Comparative Example 11, 0.18 mA in Example 9 and Comparative Example 12, 0.3 mA in Example 10 and Comparative Example 13 It was.
  • the charge / discharge conditions were a charge upper limit voltage of 4.0V and a discharge lower limit voltage of 2.5V. The rest time from the end of charging to the start of discharging was set to zero.
  • Table 2 summarizes the charge / discharge capacity evaluation results of the electricity storage devices of Examples 3 to 10 and Comparative Examples 6 to 13.
  • the evaluation results of Examples 3 to 6 and Comparative Examples 6 to 9 are shown in FIG. 20, and the evaluation results of Examples 7 to 10 and Comparative Examples 10 to 13 are shown in FIG. 20 and 21, the vertical axis indicates the value obtained by dividing the obtained capacity by the theoretical capacity, that is, the charge / discharge utilization rate.
  • the electrode in the active material layer regardless of the electrode active material. It can be confirmed that the charge / discharge capacity ratio decreases when the mixing ratio of the electrode active material is 30 wt% or more. From this, using the polymer having the tetrachalcogenofulvalene skeleton in the repeating unit as the electrode active material, and the electrode having the electrode active material as particles, the mixing ratio of the electrode active material in the electrode active material layer is When it becomes 30 wt% or more, it turns out that a charge / discharge capacity rate falls and it is difficult to increase the capacity.
  • the electrode active material is present as particles, the contact area between the electrode active material and the conductive additive is small, and it is not sufficient to secure an electron transfer path during redox. It is considered that the number of electrode active materials that are electrically isolated and do not contribute to charge / discharge increased.
  • Examples 3 to 10 which are the electrodes of the present invention
  • a high charge / discharge capacity ratio can be maintained even when the mixing ratio of the electrode active material in the active material layer is 30 wt% or more. This is presumably because the contact area between the electrode active material and the conductive additive is large in the electrode of the present invention, and the conductivity in the active material layer can be secured. This indicates that the electrode of the present invention is suitable for increasing the capacity of the electrode.
  • Example 6 Example 10, Comparative Example 9, and Comparative Example 13 were evaluated.
  • the output characteristics were evaluated by evaluating a large current charge / discharge capacity.
  • Large current charge / discharge was performed by constant current charge / discharge at a current value of 1/20 hour rate (20C rate) so that the charge / discharge time rate would be equal.
  • it was 3 mA in Example 6 and Comparative Example 9, and 6 mA in Example 10 and Comparative Example 13.
  • the charge upper limit voltage was set to 4.0V
  • the discharge lower limit voltage was set to 2.5V.
  • the rest time from the end of charging to the start of discharging was set to zero.
  • the large current charge / discharge capacity was evaluated by dividing the capacity at the time of discharging at the 20C rate by the capacity at the time of discharging at the 1C rate, that is, the capacity maintenance rate at the time of 20C rate discharging with respect to the discharging at the 1C rate.
  • Table 3 shows the output characteristic evaluation of Example 6, Example 10, Comparative Example 9, and Comparative Example 13.
  • the electricity storage devices of Examples 6 and 10 having a high active material ratio of 50 wt% have a high capacity retention rate even during large current charge / discharge. It was confirmed that From this, it was confirmed that a high-capacity and high-output power storage device can be realized by using the electrode of the present invention.
  • Example 11 Production of electrode and electricity storage device (Example 11) Using the copolymer compound 39 synthesized by the same method as in Example 1, a positive electrode was produced in a glow box equipped with a gas purifier and in an argon atmosphere.
  • a mixture in which the copolymer compound 39 was dissolved was prepared. 200 mg of the copolymer compound 39 is pulverized in a mortar, 600 mg of NMP (manufactured by Wako Pure Chemical Industries, Ltd.) is added as an aprotic solvent, and the mixture is kneaded in the mortar, whereby the copolymer compound 39 is aprotic polar solvent. Was dissolved.
  • the particle size distribution of the copolymer compound 39 in NMP was measured by a laser diffraction / scattering method using SALD-7000 manufactured by Shimadzu Corporation.
  • the measurement conditions were a measurement particle size range of 0.015 ⁇ m to 500 ⁇ m, a measurement interval of 2 seconds, and measurement was performed while stirring the solvent using an attached stirring plate. As a result of the measurement, no diffraction / scattering intensity was observed, and it was confirmed that there were no grains of 0.015 ⁇ m or more in NMP. Further, UV-vis measurement was performed, and by confirming an absorption peak derived from the tetrathiafulvalene skeleton in the vicinity of 300 to 320 nm, it was confirmed that the copolymer compound 39 was present in NMP.
  • the obtained mixture was applied to a current collector.
  • a current collector an aluminum foil with a thickness of 20 ⁇ m was used.
  • the mixture was applied to the aluminum foil using a coater.
  • Application was performed with a gap width of 300 ⁇ m and a maneuvering speed of 7 mm / sec.
  • NMP which is an aprotic solvent was removed.
  • the mixture applied on the aluminum foil was placed in a thermostatic bath and dried at a temperature of 80 ° C. for 1 hour to remove the aprotic solvent.
  • a positive electrode was produced by punching and cutting into a disk shape having a diameter of 13.5 mm.
  • the coating weight of the positive electrode active material was 0.2 mg / cm 2 per electrode plate area.
  • a coin-type battery 202 having the structure shown in FIG. 8 was produced.
  • the electrode described above is used as the positive electrode 31 including the positive electrode current collector 22 and the positive electrode active material layer 23.
  • the positive electrode is disposed in the case 21 so that the positive electrode current collector plate 22 is in contact with the inner surface of the case 21, and a porous polyethylene sheet is formed thereon.
  • the non-aqueous solvent electrolyte an electrolytic solution in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1: 3 was used.
  • the negative electrode current collector 27 and the negative electrode active material layer 26 were pressed onto the inner surface of the sealing plate 25 in this order.
  • the positive electrode 31, the negative electrode 32, and the electrolyte solution 28 are accommodated in the case of the coin-type battery shown in FIG. 8, the opening of the case is sandwiched by a sealing plate fitted with a gasket, and caulked and sealed with a press machine to obtain a coin-type electricity storage device. It was.
  • a graphite electrode having a thickness of 40 ⁇ m coated on a negative electrode current collector 27 made of a copper foil having a thickness of 20 ⁇ m was used.
  • the graphite negative electrode 32 was punched into a disk shape having a diameter of 13.5 mm and cut for use.
  • the graphite electrode uses a Li metal counter electrode and performs three cycles of pre-charging / discharging at a current value of 0.4 mA / cm 2 between a lower limit of 0 V and an upper limit of 1.5 V (lithium reference potential). It was confirmed that it has a reversible capacity of 1.6 mAh / cm 2 and can be reversibly charged and discharged.
  • the graphite electrode used was charged to 70% of the reversible capacity, that is, a lithium pre-doped state.
  • the same electrolytic solution used in the electricity storage device and a separator made of a porous polyethylene sheet were used.
  • Example 12 Production of positive electrode A positive electrode was produced in the same manner as in Example 11 except that carbon black having a large specific surface area (made by Lion Corporation, Ketjen Black ECP300J, BET specific surface area: 800 m 2 / g) was used as a conductive additive. .
  • carbon black having a large specific surface area made by Lion Corporation, Ketjen Black ECP300J, BET specific surface area: 800 m 2 / g
  • Example 11 when the distribution of the electrode active material was measured in the same manner as in Example 11, it was confirmed that the electrode active material was coated with the conductive additive as in Example 1.
  • Example 13 (1) Production of positive electrode A positive electrode plate was produced in the same manner as in Example 10 except that carbon black having a large specific surface area (made by Lion Corporation, Ketjen Black ECP300J, BET specific surface area: 800 m 2 / g) was used as the conductive agent. .
  • the charge / discharge capacity evaluation and output evaluation of the electricity storage devices of Examples 10 to 13 prepared for evaluation of the mixing ratio of the electrode active material in the active material layer were performed.
  • the charge / discharge capacity evaluation of the electricity storage device was performed by charging and discharging three cycles with a constant current in a voltage range of a lower limit potential of 2.5 V and an upper limit potential of 4.0 V. The rest time from the end of charging to the start of discharging was set to zero.
  • the charge / discharge current value was set to 0.3 mA / cm 2 .
  • capacitance were obtained was obtained as charging / discharging capacity
  • the output evaluation of the electricity storage device was evaluated based on the discharge capacity when charging / discharging with a large current.
  • the output evaluation of the electricity storage device was performed by charging and discharging three cycles with a constant current in a voltage range of a lower limit potential of 2.5 V and an upper limit potential of 4.0 V.
  • the rest time from the end of charging to the start of discharging was set to zero.
  • the current value of charging / discharging was 10 mA / cm 2 .
  • the discharge capacity at the current value of 10 mA / cm 2 was divided by the discharge capacity at the current value of 0.3 mA / cm 2 from the discharge capacity at the third cycle where a stable capacity with little variation was obtained.
  • the value, that is, the maintenance rate with respect to the small current charge / discharge capacity was evaluated.
  • Table 4 shows the charge / discharge capacity evaluation results and output characteristic evaluation results of Examples 10 to 13.
  • Example 14 Production of electrode and electricity storage device (Example 14) (1) Production of positive electrode Copolymer compound 39 was synthesized in the same manner as in Example 1. Using the synthesized copolymer compound 39, a positive electrode was produced in a glow box equipped with a gas purifier and in an argon atmosphere.
  • a mixture in which the copolymer compound 39 was dissolved was prepared. 50 mg of the copolymer compound 39 is pulverized in a mortar, 500 mg of NMP (manufactured by Wako Pure Chemical Industries, Ltd.) is added as an aprotic solvent, and the mixture is kneaded in a mortar, whereby the copolymer compound 39 is aprotic polar solvent. Was dissolved. The particle size distribution of the NMP solution in which the copolymer compound 39 was dissolved was measured, and particles of 0.015 ⁇ m or more were not detected, and absorption from the TTF skeleton was confirmed by UV measurement of the NMP solution. It was confirmed that the copolymer compound 39 was dissolved.
  • the electroconductive support body was produced using the electrolytic etching aluminum foil.
  • an aluminum foil having a purity of 99.9% by weight or more and a thickness of 30 ⁇ m etching the aluminum foil with an alternating current of 35 Hz in a hydrochloric acid aqueous solution at a temperature of 45 ° C. and a current density of 0.4 A / cm 2 .
  • etching was performed with an alternating current of 25 Hz under the conditions of a temperature of 25 ° C. and a current density of 0.3 A / cm 2 .
  • the thickness of the obtained conductive support was 29 ⁇ m.
  • the thickness of the electrolytically etched aluminum layer was 2.5 ⁇ m, and the average hole diameter of the etching holes was 0.1 ⁇ m.
  • the obtained mixture was applied on the electrolytically etched aluminum layer of the conductive support, and the aprotic polar solvent was removed by vacuum drying to obtain an electrode.
  • the positive electrode active material layer thus obtained had a thickness of 40 ⁇ m.
  • the mixing ratio in the active material layer was 6 wt% active material, 75 wt% conductive aid, and 19 wt% binder.
  • the obtained positive electrode was used after being punched into a disc shape having a diameter of 13.5 mm and cut.
  • FIG. 22 shows a cross-sectional SEM (electron microscope) image of the obtained positive electrode. It was confirmed that an active material layer was formed on the electrolytically etched aluminum layer of the conductive support. It was also confirmed that the electrolytically etched aluminum layer had fine etching holes (holes) impregnated with the electrolytic solution.
  • a coin-type battery 203 having the structure shown in FIG. 12 was produced.
  • the electrode described above is used as the positive electrode 31 including the positive electrode current collector 22 and the positive electrode active material layer 23.
  • the positive electrode is disposed in the case 21 so that the positive electrode current collector plate 22 is in contact with the inner surface of the case 21, and a porous polyethylene sheet is formed thereon.
  • a separator 24 made of Next, a nonaqueous electrolyte was injected into the case 28.
  • As the non-aqueous solvent electrolyte an electrolytic solution in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1: 3 was used.
  • the negative electrode current collector 27 and the negative electrode active material layer 26 were pressed onto the inner surface of the sealing plate 25 in this order.
  • the positive electrode 31, the negative electrode 32, and the electrolytic solution 28 are accommodated in a coin-type battery case shown in FIG. 12, the opening of the case is sandwiched by a sealing plate fitted with a gasket, and caulked and sealed with a press machine to obtain a coin-type electricity storage device. It was.
  • a graphite electrode having a thickness of 40 ⁇ m coated on a negative electrode current collector 27 made of a copper foil having a thickness of 20 ⁇ m was used.
  • the graphite negative electrode 32 was punched into a disk shape having a diameter of 13.5 mm and cut for use.
  • the graphite electrode uses a Li metal counter electrode and performs three cycles of pre-charging / discharging at a current value of 0.4 mA / cm 2 between a lower limit of 0 V and an upper limit of 1.5 V (lithium reference potential). It was confirmed that it has a reversible capacity of 1.6 mAh / cm 2 and can be reversibly charged and discharged.
  • the graphite electrode used was charged to 70% of the reversible capacity, that is, a lithium pre-doped state.
  • the same electrolytic solution used in the electricity storage device and a separator made of a porous polyethylene sheet were used.
  • Example 15 In Example 15, the same electricity storage device as in Example 14 was produced except that the blending ratio of the electrode active material, the conductive agent, and the binder in the positive electrode used was different.
  • the positive electrode was produced as follows. First, a mixture in which the copolymer compound 39 was dissolved was produced. 50 mg of the copolymer compound 39 is pulverized in a mortar, and 500 mg of NMP (manufactured by Wako Pure Chemical Industries, Ltd.) is added as an aprotic polar solvent, and the copolymer compound 39 is kneaded in the mortar. Dissolved in solvent.
  • NMP manufactured by Wako Pure Chemical Industries, Ltd.
  • the particle size distribution of the NMP solution in which the copolymer compound 39 was dissolved was measured, and particles of 0.015 ⁇ m or more were not detected, and absorption from the TTF skeleton was confirmed by UV measurement of the NMP solution. It was confirmed that the copolymer compound 39 was dissolved.
  • Example 14 By using the electrolytically etched aluminum foil produced in the same manner as in Example 14 as the current collector film, the obtained mixture was applied on the current collector film, vacuum dried, and the aprotic polar solvent was removed. An electrode was obtained.
  • the mixture layer thickness of the positive electrode thus obtained was 40 ⁇ m.
  • the mixing ratio in the active material layer was 20 wt% active material, 64 wt% conductive aid, and 16 wt% binder.
  • the obtained positive electrode was used after being punched into a disk shape having a diameter of 13.5 mm and cut.
  • Example 16 In Example 16, only the blending ratio of the active material, the conductive agent, and the binder in the positive electrode was different, and the same electricity storage device as that of Example 14 was configured except that.
  • the positive electrode was produced as follows.
  • the particle size distribution of the NMP solution in which the copolymer compound 39 was dissolved was measured, and particles of 0.015 ⁇ m or more were not detected, and absorption from the TTF skeleton was confirmed by UV measurement of the NMP solution. It was confirmed that the copolymer compound 39 was dissolved.
  • Example 14 By using an electrolytically etched aluminum foil produced in the same manner as in Example 14 as a conductive support, the obtained mixture was applied on a current collector film, vacuum-dried, and the aprotic polar solvent was removed, An electrode was obtained.
  • the mixture layer thickness of the positive electrode thus obtained was 40 ⁇ m. Moreover, the compounding ratio in the positive electrode mixture was 30 wt% of the active material, 56 wt% of the conductive additive, and 14 wt% of the binder. The obtained positive electrode was used after being punched into a disk shape having a diameter of 13.5 mm and cut.
  • Example 17 In Example 17, only the mixing ratio of the active material, the conductive agent, and the binder in the positive electrode was different, and the same electricity storage device as that of Example 14 was configured otherwise.
  • the positive electrode was produced as follows.
  • the particle size distribution of the NMP solution in which the copolymer compound 39 was dissolved was measured, and particles of 0.015 ⁇ m or more were not detected, and absorption from the TTF skeleton was confirmed by UV measurement of the NMP solution. It was confirmed that the copolymer compound 39 was dissolved.
  • Example 2 By using an electrolytically etched aluminum foil produced in the same manner as in Example 1 as a conductive support, the obtained mixture was applied on a current collector film, vacuum-dried, and the aprotic polar solvent was removed, An electrode was obtained.
  • the mixture layer thickness of the positive electrode thus obtained was 40 ⁇ m.
  • the mixing ratio in the positive electrode mixture was 50 wt% active material, 46 wt% conductive auxiliary agent, and 10 wt% binder.
  • the obtained positive electrode was used after being punched into a disk shape having a diameter of 13.5 mm and cut.
  • Example 18 Production of positive electrode A positive electrode was produced in the same manner as in Example 10 except that an electrolytically etched aluminum foil was used as a current collector.
  • the output characteristics were evaluated by evaluating a large current charge / discharge capacity. Charging / discharging was performed by constant current charging / discharging at a current value of 1/50 hour rate (50C rate) so that the charge / discharge time rate would be equal. Specifically, Example 3 and Example 14 were 0.75 mA, Example 4 and Example 15 were 3 mA, Example 5 and Example 16 were 4.5 mA, Example 6 and Example 17 were 7.5 mA. In Examples 10 and 18, the current was 15 mA.
  • the charge / discharge conditions were a charge upper limit voltage of 4.0V and a discharge lower limit voltage of 2.5V. The rest time from the end of charging to the start of discharging was set to zero.
  • the large current charge / discharge capacity was evaluated by dividing the capacity at the time of discharging at the 50C rate by the capacity at the time of discharging at the 1C rate, that is, the capacity maintenance ratio at the time of 50C rate discharging with respect to the discharging at the 1C rate.
  • Table 5 shows the charge / discharge capacity evaluation and output characteristic evaluation of the electricity storage devices of Examples 3 to 6, Example 10, and Examples 14 to 18.
  • the copolymer compound 39 used in Example 1 and Comparative Examples 2 and 3 were used.
  • PMMA is a polymer compound composed only of the second unit of the copolymer compound 39 used in Example 1.
  • Solvent solubility evaluation was performed by adding 10 mg of compound to 20 g of solvent, performing ultrasonic stirring for 5 minutes, and then measuring the particle size distribution in the solvent. In the particle size distribution measurement, no diffraction / scattering intensity is observed, and it is determined that the particles are dissolved if there are no particles of 0.015 ⁇ m or more in the solvent, and they are not dissolved if particles of 0.015 ⁇ m or more are present (non- Dissolved). When dissolved, it was confirmed by UV-vis measurement that the compound was present in the solvent.
  • Table 6 shows the evaluation results when NMP, tetrahydrofuran (THF) (manufactured by Kanto Chemical Co., Inc.), and ethanol (manufactured by Kanto Chemical Co., Ltd.) are used as the solvent.
  • the copolymer compound 39 was also dissolved in NMP and THF in which PMMA was dissolved was obtained.
  • the second unit of the copolymer compound 39 is the same as the repeating unit of PMMA and has a high affinity for NMP and THF. That is, it means that the solvent affinity of the entire copolymer compound 39 is improved by copolymerizing the second unit having a high affinity for the solvent with the first unit. From this result, the copolymer compound 39 is a compound having an affinity for the solvent of each of the first unit and the second unit. By changing the structure and copolymerization ratio of the second unit to be copolymerized, the copolymer compound 39 is obtained. It is considered that the solvent affinity of the polymer compound 39 can be controlled.
  • NMP NMP, THF, N, N-dimethylformamide (DMF) (manufactured by Wako Pure Chemical Industries), dimethyl sulfoxide (DMSO) (manufactured by Wako Pure Chemical Industries), and toluene (manufactured by Aldrich) were used.
  • the results are shown in Table 7.
  • the structure of the side chain portion of the second unit of the copolymer compound includes an ester group that is an oxygen-containing functional group, an ether group, a carbonyl group, a cyano group that is a nitrogen-containing functional group, and a nitro group. It can be seen that a nitroxyl group, an alkyl group that is a functional group composed of carbon, a phenyl group, an alkylthio group that is a sulfur-containing functional group, a sulfone group, and a sulfoxide group are suitable.
  • Polymer 5 is a polymer in which tetrachalcogenofulvalene skeletons are directly bonded to each other.
  • reaction formula (R9) a compound in which tetrachalcogenofulvalene skeletons are directly bonded to each other is obtained by a dehalogenation polycondensation method using a diiodinated tetrathiafulvalene and a Ni (0) complex. It can be synthesized by using.
  • X represents a sulfur or oxygen atom
  • cod represents 1,5-cyclooctadiene
  • bpy represents 2,2'-bipyridine.
  • Polymer 23 to polymer 28 are polymers in which tetrachalcogenofulvalene skeletons are bonded together through at least a thiophene skeleton. As shown in the following reaction formula (R10), these compounds can be synthesized from a trimethylstannyl tetrathiafulvalene and an iodinated thiophene skeleton by a still coupling reaction using a Pd catalyst. . Even when an iodinated form of tetrathiafulvalene and a trimethylstannyl form of a thiophene skeleton are used, they can be similarly synthesized by a still coupling reaction.
  • Polymer 12 to polymer 17 are polymers in which tetrachalcogenofulvalene skeletons are bonded via a triple bond / aromatic / triple bond. These compounds can be synthesized by a Sonogashira reaction between a tetraiofulvalene diiodide and a compound having a triple bond site, as shown in the following reaction formula (R11). As can be seen from Reaction Formula C, tetrachalcogenofulvalene skeletons can be bonded to each other as long as they are compounds having triple bond sites.
  • the linker moiety includes a thiophene skeleton, but the linker moiety may be aromatic. For example, even if the linker moiety is a benzene ring, the tetrachalcogenofulvalene skeleton However, a polymer bonded through a triple bond / aromatic / triple bond can be synthesized.
  • Solvent solubility evaluation was performed by adding 10 mg of polymer to 20 g of solvent, performing ultrasonic stirring for 5 minutes, and then measuring the particle size distribution in the solvent. In the particle size distribution measurement, no diffraction / scattering intensity is observed, and it is determined that the particles are dissolved if there are no particles of 0.015 ⁇ m or more in the solvent, and they are not dissolved if particles of 0.015 ⁇ m or more are present (non- Dissolved). When dissolved, the IR measurement was performed to confirm the presence of the compound in the solvent.
  • Table 8 shows the evaluation results when NMP, tetrahydrofuran (THF) (manufactured by Kanto Chemical Co., Inc.) and chloroform (manufactured by Kanto Chemical Co., Ltd.) are used as the solvent.
  • THF tetrahydrofuran
  • chloroform manufactured by Kanto Chemical Co., Ltd.
  • the solubility in an aprotic solvent varies depending on the molecular structure of the polymer. It can be seen that the polymer 5, the polymer 12 to the polymer 17, and the polymers 23 to 28 are dissolved in any one of NMP, THF, and CHCl 3 . If the polymer is dissolved in the aprotic solvent, the same electrode structure as in Example 1 can be realized, and the same effect as in Example 2 can be obtained.
  • the electrode of the present invention is lightweight and can stably perform a reversible oxidation-reduction reaction at a high energy density.
  • the electrical storage device according to the desired characteristic is implement
  • Such an electricity storage device has high output, high capacity, and excellent repeatability. For this reason, it is suitably used for various portable devices, transportation devices, uninterruptible power supplies and the like. Further, it is suitably used for various electrochemical elements including polymer actuators and electrochromic display elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の電極は、導電性支持体(11)と、電極活物質(13)および導電助剤(14)を含み、導電性支持体(11)上に設けられた活物質層(12)とを備えた電極であって、電極活物質(13)が、テトラカルコゲノフルバレン骨格を主鎖の繰り返し単位に有する第1重合体化合物、および、前記テトラカルコゲノフルバレン骨格を側鎖に有する第1ユニットと前記テトラカルコゲノフルバレン骨格を側鎖に有さない第2ユニットとの共重合体である第2重合体化合物の少なくとも一方を含み、活物質層(13)において、電極活物質(13)は粒子を構成せず、導電助剤(14)の表面の少なくとも一部を被覆している。

Description

電極および蓄電デバイス
 本発明は、電極およびこれを用いた蓄電デバイスに関する。
 近年、携帯オーディオデバイス、携帯電話、ラップトップコンピュータといった携帯型電子機器が広く普及している。また、省エネルギーの観点、あるいは、二酸化炭素の排出量を低減する観点から、従来の内燃機関を用いた自動車において、電気による駆動力を併用するハイブリッド自動車が普及し始めている。これらの普及に伴い、電源として用いられる蓄電デバイスに対する、高性能化への要求が高まっている。具体的には、高出力、高容量、優れた繰り返し特性を有する蓄電デバイスが要求されている。
 蓄電デバイスの高性能化に対し、様々な取り組みが行われている。蓄電デバイスのこれらの性能は、正極材料や負極材料に大きく依存するため、正極材料および負極材料の検討が積極的に行われている。従来の二次電池では、金属酸化物や炭素、無機化合物が正極材料や負極材料として用いられている。
 これに対し、特許文献1および特許文献2は、高電圧かつ寿命の長い電池の電極活物質として、導電性有機錯体およびラジカル化合物を用いることを提案している。
 また、特許文献3では、高速充放電が可能な電極活物質として、π電子共役雲を有する蓄電デバイスが提案されている。
 特許文献3は、高速充放電が可能な電極活物質として、π電子共役雲を有する電極活物質を備えた蓄電デバイスを提案している。具体的には、例えば下記化学式(2)に示す構造を有するテトラチアフルバレン(以下、TTFと記す)を電極活物質として用いることを提案している。
Figure JPOXMLDOC01-appb-C000001
 また、特許文献3は、このようなπ電子共役雲を有する有機化合物部位を複数含む高分子化合物を蓄電デバイスの電極活物質に用いることを提案している。例えば、ポリアセチレン、ポリメチルメタクリレート鎖を主鎖として有する高分子化合物に、π電子共役雲を有する有機化合物部位を結合させて得られる高分子化合物を開示している。また、ポリビニルアルコール主鎖に、カルボキシテトラチアフルバレンを有する側鎖を脱水縮合させて得られる高分子化合物を開示している。
 有機化合物を活物質として用いた蓄電デバイスの製造方法、特に蓄電デバイスの電極製造方法については、さまざまな方法が提案されている。TTFに代表されるようなπ電子共役雲を有する有機化合物を活物質とした蓄電デバイスの製造方法としては、特許文献3は、活物質と導電助剤と結着剤とを混合して活物質合剤を作製し、得られた活物質合剤を導電支持体上に圧着して蓄電デバイス用電極を作製する乾式法、特許文献4は、活物質を溶媒に混合分散させ、得られたペーストを導電性支持体上に塗布し、溶媒を除去することによって、蓄電デバイス用電極を作製する湿式法を開示している。
 また、特許文献5は、有機イオウ化合物モノマーを有機溶媒中に溶解し、得られた溶液と導電性物質とを混合した後、混合物中のモノマーを重合することにより、ポリマー電極を作製する方法を開示している。
 特許文献6は、溶媒と混合して作製したゾル状の有機ラジカルポリマーと導電付与剤とを混合物し、乾燥することによって得られた有機ラジカルポリマーと導電付与剤との混合体を含むスラリーを作製し、作製したスラリーを集電体に塗布後、溶媒を除去することにより電極を製造する方法を開示している。
特開昭60-14762号公報 特開2002-117852号公報 特開2004-111374号公報 特開2007-305461号公報 特開平6-150909号公報 WO2008/099557
 蓄電デバイスに対する要求の一つとして、高出力化が挙げられる。蓄電デバイスの高出力化には、蓄電デバイスの動作電圧の向上および電流密度の向上が必要である。一般的には、電流密度の増加に伴い蓄電デバイスに含まれる抵抗成分による動作電圧の低下が起こる。蓄電デバイスに含まれる抵抗成分は正極活物質反応抵抗、正極電気伝導抵抗、正極イオン伝導抵抗、負極活物質反応抵抗、負極極板電子伝導抵抗、負極極板イオン伝導抵抗、正極集電体電子伝導抵抗、負極集電体電子伝導抵抗、電解液イオン伝導抵抗、ケースやリードなどの電子伝導抵抗に細分化できる。そのなかでも、正極、負極の活物質反応抵抗が内部抵抗の大きな割合を占める。そのため、蓄電デバイスの高出力化のためには、活物質反応抵抗の低減が必要である。
 特許文献3や特許文献4には、有機化合物を用いた電極の製造方法が開示されているが、高出力な蓄電デバイス用電極の製造方法についての知見はない。
 本発明はこのような従来技術の課題を解決し、活物質反応抵抗を低減させ、高容量、優れた繰り返し特性および高出力が可能な電極およびそれを用いた蓄電デバイスを提供することを目的としている。
 本発明の電極は、導電性支持体と、電極活物質および導電助剤を含み、前記導電性支持体上に設けられた活物質層とを備えた電極であって、前記電極活物質が、テトラカルコゲノフルバレン骨格を主鎖の繰り返し単位に有する主第1重合体化合物、および、前記テトラカルコゲノフルバレン骨格を側鎖に有する第1ユニットと前記テトラカルコゲノフルバレン骨格を側鎖に有さない第2ユニットとの共重合体である第2重合体化合物の少なくとも一方を含み、前記活物質層において、前記電極活物質は粒子を構成せず、前記導電助剤の表面の少なくとも一部を被覆している。
 ある好ましい実施形態において、前記カルコゲノフルバレン骨格が、下記一般式(1)で表され、一般式(1)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R1からR4のうちから選ばれる1つまたは2つは、前記第1重合体化合物または前記第2重合体化合物の主鎖または隣接する繰り返し単位との結合手を表し、他の3つまたは2つはそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基またはニトロソ基およびアルキオチオ基よりなる群から選ばれる少なくとも1種であり、鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子、リン原子およびホウ素原子よりなる群から選ばれる少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000002
 ある好ましい実施形態において、前記活物質層において、前記活物質層含まれる前記電極活物質の重量比率が30wt%以上である。
 ある好ましい実施形態において、前記導電助剤がカーボンブラックである。
 ある好ましい実施形態において、前記導電助剤の比表面積が800m2/g以上である。
 ある好ましい実施形態において、前記導電性支持体は、前記活物質層と接触している表面を有する表面層を有し、前記表面層の表面は凹凸を有する。
 ある好ましい実施形態において、前記表面層は電解エッチングアルミニウム層である。
 ある好ましい実施形態において、前記第1重合体化合物および前記第2重合体化合物の重合度がそれぞれ4以上である。
 ある好ましい実施形態において、前記第2重合体化合物は、下記一般式(37)で表わされる構造を有し、一般式(37)中、R31およびR32は前記第2重合体化合物の主鎖を構成し、R31およびR32は3価残基であって、互いに独立に、炭素原子、酸素原子、窒素原子および硫黄原子からなる群から選ばれる少なくとも1つと、炭素数1から10の飽和脂肪族基および不飽和脂肪族基からなる群から選ばれる少なくとも1つの置換基、または、少なくとも1つの水素原子とを含み、L1はR31と結合したエステル基、エーテル基、カルボニル基、シアノ基、ニトロ基、ニトロキシル基、アルキル基、フェニル基、アルキルチオ基、スルホン基またはスルホキシド基であり、RR33は、R32およびM1と結合した炭素数1から4の置換もしくは非置換のアルキレン、アルケニレン、アリーレン、エステル、アミドおよびエーテルからなる群から選ばれる少なくとも1つを含む2価残基であり、M1は一般式(1)であり、前記結合手によってR33と結合しており、nおよびmはモノマー単位の繰り返し数を表わす整数であり、前記第2重合体化合物を構成する前記第1ユニットのユニット数nに対する前記第2ユニットのユニット数mの構成比率m/nが、0より大きく、5以下である。
Figure JPOXMLDOC01-appb-C000003
 ある好ましい実施形態において、前記L1がエステル基、エーテル基およびカルボニル基から選ばれる少なくとも1種を含む。
 ある好ましい実施形態において、前記活物質層は、前記電極活物質が溶解した非プロトン性溶媒と前記導電助剤とを含む混合体を前記導電性支持体上に塗布し、前記非プロトン性溶媒を除去することによって形成されている。
 ある好ましい実施形態において、前記非プロトン性溶媒が、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、トルエン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフランまたはクロロホルムである。
 本発明の電気化学素子は、正極と、負極と、電解液とを備え、前記正極および前記負極の少なくとも一方が上記いずれかに記載の電極からなる。
 ある好ましい実施形形態において、前記電解液が、4級アンモニウムカチオンとアニオンとの塩を含む。
 本発明の蓄電デバイスは、上記いずれかに記載の電極からなる正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、前記リチウムイオンとアニオンとの塩を含み、前記正極および前記不況の間に満たされた電解液とを備える。
 本発明の携帯型電子機器は、上記蓄電デバイスを備える。
 本発明の車両は、上記蓄電デバイスを備える。
 本発明の電極の製造方法は、上記いずれかに記載の電極の製造方法であって、前記電極活物質が溶解した非プロトン性溶媒と前記導電助剤とを含む混合体を用意する工程と、前記混合体から前記非プロトン性溶媒を除去する工程とを包含する。
 本発明の蓄電デバイスの製造方法は、上記いずれかに規定される電極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、前記リチウムイオンとアニオンとからなる塩を含み、前記正極および前記負極の間に満たされた電解液とを備えた蓄電デバイスの製造方法であって、前記電極活物質が溶解した非プロトン性溶媒と前記導電助剤とを含む混合体を用意する工程と、前記混合体から前記非プロトン性溶媒を除去する工程とを包含する。
 ある好ましい実施形態において、前記活物質層は、前記導電助剤を被覆する前記電極活物質間に位置する空隙を有する。
 ある好ましい実施形態において、前記活物質層は結着剤をさらに含む。
 ある好ましい実施形態において、前記導電助剤の表面の少なくとも一部を前記電極活物質および前記結着剤の混合体が被覆している。
 ある好ましい実施形態において、前記結着剤はフッ素樹脂である。
 ある好ましい実施形態において、前記第2ユニットの側鎖は、非水溶媒と親和性を有する官能基を含む。
 ある好ましい実施形態において、前記第2ユニットの側鎖は、エステル基、エーテル基、カルボニル基、シアノ基、ニトロ基、ニトロキシル基、アルキル基、フェニル基、アルキルチオ基、スルホン基およびスルホキシド基から選ばれる少なくとも1種を含む。
 ある好ましい実施形態において、前記第2重合体化合物は、下記式(38)で表わされ、一般式(38)中、R36は、炭素数1から4の置換もしくは非置換のアルキレン、アルケニレン、アリーレン、エステル、アミドおよびエーテルからなる群から選ばれる少なくとも1つを含む2価残基であり、R34およびR35は、互いに独立した、炭素数1から4の飽和脂肪族基およびフェニル基からなる群から選ばれる1つ、または、水素原子であり、R37からR39は、互いに独立した鎖状の脂肪族基、環状の脂肪族基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキオチオ基であり、R38とR39とが互いに結合して環を形成していてもよい。L1はエステル基、エーテル基、カルボニル基、シアノ基、ニトロ基、ニトロキシル基、アルキル基、フェニル基、アルキルチオ基、スルホン基またはスルホキシド基であり、nおよびmはモノマー単位の繰り返し数を表わす整数である。
Figure JPOXMLDOC01-appb-C000004
 ある好ましい実施形態において、L1は、エステル基、エーテル基、カルボニル基から選ばれる少なくとも1種を含む。
 ある好ましい実施形態において、前記第2重合体化合物は、下記式(39)で表わされる構造を有し、式(39)中、nおよびmはモノマー単位の繰り返し数を表わす整数である。
Figure JPOXMLDOC01-appb-C000005
 ある好ましい実施形態において、前記共重合体化合物を構成する前記第1ユニットのユニット数nに対する前記第2ユニットのユニット数mの構成比率m/nが、0より大きく、5以下である。
 ある好ましい実施形態において、前記非プロトン性溶媒が非プロトン性極性溶媒である。
 ある好ましい実施形態において、前記混合体が結着剤をさらに含み、前記結着剤が前記非プロトン性溶媒に溶解している。
 ある好ましい実施形態において、前記結着剤はフッ素樹脂である。
 ある好ましい実施形態において、前記カーボンブラックの平均粒径が50nm以下である。
 ある好ましい実施形態において、前記共重合体化合物の重合度は4以上である。
 ある好ましい実施形態において、前記導電助剤の表面の少なくとも一部を前記電極活物質および前記結着剤の混合体が被覆している。
 ある好ましい実施形態において、前記第1重合体化合物は下記一般式(3)および(4)で表わされる繰り返し単位を含む共重合体であって、一般式(3)および(4)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R5からR8はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含み、R5およびR6の組み合わせはR7およびR8の組み合わせと異なっている。
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007
 ある好ましい実施形態において、前記第1重合体化合物は下記一般式(6)で表わされ、一般式(6)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R5、R6はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含み、R9は、アセチレン骨格またはチオフェン骨格を含む鎖状不飽和炭化水素基または環状不飽和炭化水素基であり、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000008
 ある好ましい実施形態において、前記R9がアセチレン骨格およびチオフェン骨格の少なくとも一方を含む。
 ある好ましい実施形態において、前記Xが硫黄元素であり、前記R5およびR6は、それぞれ、CH3、SC613、C1021またはC65である。
 ある好ましい実施形態において、前記R9は、下記一般式(9-a)、(9-b)および(9-c)のいずれかに示す構造を備え、一般式(9-a)、(9-b)および(9-c)中、R10からR14はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種を含み、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011
 ある好ましい実施形態において、前記第1重合体化合物は、下記一般式(11)で表わされ、一般式(11)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子、またはテルル原子、R5、R6、R10からR12およびR14はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種を含む。前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000012
 ある好ましい実施形態において、前記R5およびR6はそれぞれフェニル基、アルキルチオ基または飽和炭化水素基である。
 ある好ましい実施形態において、前記R5およびR6はそれぞれメチル基である。
 ある好ましい実施形態において、前記第1重合体化合物は下記一般式(31)で表わされ、一般式(31)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R15、R16はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含み、R27は、アセチレン骨格およびチオフェン骨格の少なくともいずれかを含む鎖状不飽和炭化水素基または環状不飽和炭化水素基であり、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000013
 ある好ましい実施形態において、前記第1重合体化合物は下記一般式(8)表わされ、一般式(8)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R15、R16、R23およびR24はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含み、R22、R25はそれぞれ独立に、アセチレン骨格およびチオフェン骨格の少なくともいずれかを含む鎖状不飽和炭化水素基または環状不飽和炭化水素基であり、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000014
 ある好ましい実施形態において、前記活物質層は、前記電極活物質が溶解した非プロトン性溶媒と前記導電助剤とを含む混合体を前記導電性支持体に塗布し、前記非プロトン性溶媒を除去することによって形成されている。
 ある好ましい実施形態において、前記非プロトン性溶媒が、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、トルエン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフランまたはクロロホルムである。
 本発明の電極は、テトラカルコゲノフルバレン骨格を繰り返し単位に有する重合体化合物を電極活物質として含むため、安定して繰り返し酸化還元反応を行うことができる。また、活物質層において、電極活物質は導電助剤の表面の少なくとも一部を被覆して存在している。このため、電極活物質と導電助剤との接触面積が大きく、電極活物質と導電助剤の間における電子の移動が円滑に行われる。また、電極活物質は導電助剤の表面で薄膜として存在することができるため、電解液から電極活物質中における酸化還元反応部までの対イオンの移動距離が短くなり、対イオンの拡散による抵抗が低減できる。その結果、酸化還元反応時の電極における抵抗を低減することができる。
 よって本発明の電極を用いることによって、繰り返し特性に優れ、高容量であり、高出力な蓄電デバイスが実現する。
本発明による電極の第1の実施形態を示す模式的な断面図である。 図1に示す電極の活物質層の一部を拡大して示す模式的な断面図である。 従来の電極の構造を示す模式的な断面図である。 本発明による蓄電デバイスの第1の実施形態を示す模式的な断面図である。 本発明による電極の第2の実施形態を示す模式的な断面図である。 図5に示す電極の活物質層の一部を拡大して示す模式的な断面図である。 従来の電極の構造を示す模式的な断面図である。 本発明による蓄電デバイスの第2の実施形態を示す模式的な断面図である。 本発明による電極の第3の実施形態を示す模式的な断面図である。 第3の実施形態の他の形態を示す模式的な断面図である。 図10の導電助剤近傍の構造を拡大して示す模式的な断面図である。 本発明による蓄電デバイスの第3の実施形態を示す模式的な断面図である。 (a)は実施例1の電極の断面を示すSEM像であり、(b)は、その断面における硫黄の分布を示す像である。 (a)は実施例1の電極の断面を示すSEM像であり、(b)および(c)は、それぞれその断面における炭素分布像および硫黄分布像である。 (a)は実施例2の電極の断面を示すSEM像であり、(b)は、その断面における硫黄の分布を示す像である。 (a)は比較例1の電極の断面を示すSEM像であり、(b)は、その断面における硫黄の分布を示す像である。 (a)は比較例3の電極の断面を示すSEM像であり、(b)は、その断面における硫黄の分布を示す像である。 (a)は実施例7の電極の断面を示すSEM像であり、(b)および(c)は、それぞれその断面における炭素分布像および硫黄分布像である。 (a)は比較例13の電極の断面を示すSEM像であり、(b)は、その断面における硫黄の分布を示す像である。 実施例3~6および比較例6~9の蓄電デバイスにおける活物質配合比率と充放電容量率との関係を示すグラフである。 実施例7~10および比較例10~13の蓄電デバイスにおける活物質配合比率と充放電容量率との関係を示すグラフである。 実施例14の電極の断面を示すSEM像である。
 以下、リチウム二次電池を例に挙げて本発明による電極およびそれを用いた蓄電デバイスを説明する。しかし、本発明はリチウム二次電池やリチウム二次電池用電極に限られず、化学反応を利用したキャパシタなどの電気化学素子にも好適に用いられる。
 (第1の実施形態)
 以下、本発明による電極およびそれを用いた蓄電デバイスの第1の実施形態を説明する。
 図1は、本発明による電極101の第1の実施形態の断面構造を模式的に示している。電極101は、導電性支持体11と導電性支持体11上に設けられた活物質層12とを備えている。
 導電性支持体11は電気伝導性を有する低抵抗の物質、例えば、二次電池の正極や負極の集電体として用いられる材料によって構成されている。具体的には、導電性支持体11は、アルミニウム、金、銀、ステンレス、アルミニウム合金等からなる金属箔やメッシュ、多孔体およびこれらの金属からなる導電性フィラーを含む樹脂フィルムなどから構成される。
 活物質層12は、電極活物質13と導電助剤14とを含む。本発明の特徴の一つは、電極活物質13が、以下において詳細に説明する構造を備えた重合体化合物を含む点にある。また、本発明の他の特徴の1つは、活物質層12において、電極活物質13が、粒子を構成せず、導電補助剤14の表面の少なくとも一部を被覆している点にある。
 まず、電極活物質13を詳細に説明する。電極活物質13は、可逆的に酸化還元反応を行う有機化合物であり、具体的には、テトラカルコゲノフルバレン骨格を含む重合体化合物である。テトラカルコゲノフルバレン骨格は、下記一般式(1)で表わされる。テトラカルコゲノフルバレン骨格は重合体化合物の主鎖に含まれていてもよいし、側鎖に含まれていてもよい。
Figure JPOXMLDOC01-appb-C000015
ここで、Xはカルコゲン、すなわち、周期表第16元素である。具体的には、4つのXは独立して、カルコゲンは酸素原子、硫黄原子、セレン原子またはテルル原子である。
 テトラカルコゲノフルバレン骨格が重合体化合物の主鎖に含まれる(第1重合体化合物)場合、R1からR4のうちから選ばれる2つは、隣接する一般式(1)で表わされるテトラカルコゲノフルバレン骨格あるいは一般式(1)以外の化学構造を有するモノマーとの結合手を表し、他の2つはそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基またはニトロソ基およびアルキオチオ基よりなる群から選ばれる少なくとも1種である。鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子、リン原子およびホウ素原子よりなる群から選ばれる少なくとも1種を含む。
 テトラカルコゲノフルバレン骨格が重合体化合物の側鎖に含まれる(第2重合体化合物)場合、R1からR4から選ばれる1つは、重合体化合物の主鎖または側鎖の他の部分と結合するための結合手を表し、他の3つはそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基およびアルキオチオ基よりなる群から選ばれる少なくとも1種である。鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子、リン原子およびホウ素原子よりなる群から選ばれる少なくとも1種を含む。R1とR2とが互いに結合して環を形成していてもよく、またR3とR4とが互いに結合して環を形成していてもよい。
 一般式(1)で示されるテトラカルコゲノフルバレン骨格は、2つの5員環のそれぞれにおいて、不対電子を有するカルコゲン原子と、二重結合とを含む。これにより、5員環が非局在化したπ電子共役雲を形成している。このため、テトラカルコゲノフルバレン骨格は、この2つの5員環から1つずつπ電子を放出した酸化状態をとっても安定な状態を維持し得る。
 一般式(1)で表わされる構造において、X1からX4が硫黄原子である場合には一般式(1)の骨格は下記式(2)で示されるテトラチアフルバレン(TTFと略されることもある)である。
Figure JPOXMLDOC01-appb-C000016
 以下の式(R1)に示すように、一般式(1)に示すテトラカルコゲノフルバレン骨格が1電子酸化を受けると、2つの5員環のうち一方の電子が引き抜かれ、正に帯電する。このため、対アニオンがテトラカルコゲノフルバレン骨格に1つ配位する。さらに、1電子酸化を受けると、他方の5員環の電子が引き抜かれ、正に帯電する。このため、もう1つ、対アニオンがテトラカルコゲノフルバレン骨格に配位する。
 酸化された状態でも、テトラカルコゲノフルバレン骨格は安定であり、電子を受け取ることによって還元され、電気的に中性な状態に戻ることができる。したがって、この可逆的な酸化還元反応を利用することにより、テトラカルコゲノフルバレン骨格を、電荷の蓄積が可能な電極活物質として用いることができる。例えば、一般式(1)で表わされるテトラカルコゲノフルバレン骨格を、リチウム二次電池の正極に用いる場合、放電時には、テトラカルコゲノフルバレン骨格が電気的に中性の状態、つまり、式(R1)の左側の状態をとる。また、充電状態では、テトラカルコゲノフルバレン骨格が正に帯電した状態、つまり、式(R1)の右側の状態をとる。
Figure JPOXMLDOC01-appb-C000017
 Xが硫黄原子、セレン原子やテルル原子、および酸素原子である場合に、式(R1)で示される酸化還元特性を有することが、例えば、TTF Chemistry, Fundamentals and Applications of Tetrathiafulvalene、Journal of the American Chemical Society, 1975, 97(10), P2921-2922、Chemical Communication, 1997, P1925-1926などにおいて報告されている。
 また、良好な酸化還元特性に重要なのは、テトラカルコゲノフルバレン骨格自体であり、テトラカルコゲノフルバレン骨格の有する官能基、すなわち一般式(1)で表される構造におけるR1からR4の構造に関しては、酸化還元に寄与しない部位であれば特に限定されない。R1からR4に種々の構造を有している化合物の合成、および、カルコゲノフルバレンと同様の酸化還元特性を有することは、例えば、TTF Chemistry,Fundamentals and Applications of Tetrathiafulvalene、Journal of the American Chemical Societyにより報告されている。
 なお、π電子共役雲を有する高分子として、ポリアニリンやポリチオフェンおよびこれらの誘導体が知られている。これらの高分子はπ電子共役雲を主鎖に含んでおり、π電子共役雲を含むという点で本発明の電極に用いる電極活物質の重合体化合物と類似している。しかし、ポリアニリンやポリアセチレンおよびこれらの誘導体では、主鎖全体に共役二重結合による共鳴構造が形成されるため、主鎖から電子を引き抜くと、それにより生じる正電荷は主鎖において、ある程度広がって分布する。その結果、隣接する繰り返単位から続けて電子を引き抜こうとした場合、最初の電子を引き抜くことによって生じた正電荷が隣接するユニットにわたって非局在化し、電気的反発によって隣接するユニットから電子を引き抜きにくくなる。
 これに対し、一般式(1)に示されるテトラカルコゲノフルバレン骨格を主鎖または側鎖に含む重合体化合物の場合、π電子共役雲はそれぞれの5員環内においてのみ電子が非局在化する。このため、重合体の5員環ごとに酸化還元反応が完結し、ある5員環の酸化状態は、隣接する5員環の酸化還元反応に大きな影響を与えないと考えられる。このため、重合体に含まれる5員環の数に対応した電子の授受が可能である。つまり、本発明の電極に用いる電極活物質は高い充放電容量を達成することができる。
 本発明の電極に用いる電極活物質は、一般式(1)に示すテトラカルコゲノフルバレン骨格が、重合体化合物の主鎖の繰り返し単位に含まれているか、または、重合体化合物の側鎖に含まれている。一般式(1)に示されるテトラカルコゲノフルバレン骨格が重合体化合物に含まれていることによって、テトラカルコゲノフルバレン骨格を含む分子の分子量が大きくなり、有機溶媒に対する溶解度が低下する。したがって、有機溶媒を電解液に用いる蓄電デバイスにおけるサイクル特性の劣化を抑制することができる。特に、テトラカルコゲノフルバレン骨格が重合体の主鎖に含まれる場合、酸化還元反応を行う部位が重合体の高分子化に寄与する。したがって、酸化還元反応を行わない部分をなるべく小さくした重合体構造を形成することができる。これにより、高いエネルギー密度と、充放電あるいは酸化還元のサイクル特性に優れた電極を実現することが可能となる。
 前述したように一般式(1)で表わされるテトラカルコゲノフルバレン骨格の重合体が有機溶媒に溶解しないよう、重合体の分子量は大きいことが好ましい。具体的には、一般式(1)で表わされるテトラカルコゲノフルバレン骨格を4以上含むこと、つまり、重合体の重合度(以下の一般式または化学式で示すn、あるいは、nとmとの和)は4以上であることが好ましい。これにより、有機溶媒に溶けにくい電極活物質が実現する。より好ましくは、重合体の重合度は、10以上であり、より好ましくは、20以上4000以下である。
 本発明の電極に用いる重合体は、特定の非プロトン性溶媒と親和性の高い化学構造を有していることが望ましい。これにより、電極活物質13が、粒子を構成せず、導電補助剤14の表面の少なくとも一部を被覆している構造が得やすくなる。そのため、テトラカルコゲノフルバレン骨格以外に非プロトン性溶媒と親和性の高い化学構造を有していることが好ましい。
 非プロトン性溶媒に対して親和性の高い重合体の化学構造の一つとして、テトラカルコゲノフルバレン骨格の主鎖を形成する結合手以外の結合手の置換基として、非プロトン性溶媒と親和性の高い化学構造を有していることが好ましい。非プロトン性溶媒と親和性の高い化学構造として、鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基、アルキルチオ基が好ましく、鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素に酸素元素、窒素元素、硫黄元素、珪素元素が含まれていてもよい。さらに鎖状飽和炭化水素基、環状不飽和炭化水素基が好ましく、飽和炭化水素基、フェニル基がより好ましい。
 また、非プロトン性極性溶媒に対して親和性の高い重合体の化学構造の一つとして、テトラカルコゲノフルバレン骨格の主鎖を形成する結合手のリンカー部位として、非プロトン性溶媒と親和性の高い化学構造を有していることが好ましい。非プロトン性溶媒と親和性の高い化学構造として、鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基、アルキルチオ基が好ましく、鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素に酸素元素、窒素元素、硫黄元素、珪素元素が含まれていてもよい。さらに鎖状不飽和炭化水素基、環状不飽和炭化水素基が好ましく、アセチレン骨格、フェニル基、チオフェン基がより好ましい。さらに、フェニル基がメタ位の位置で結合して、主鎖を形成していることが好ましい。
 以下、本発明による電極の電極活物質13として用いる重合体化合物をより具体的に説明する。上述したように、電極活物質13は、一般式(1)で表わされるテトラカルコゲノフルバレン骨格を主鎖、または、側鎖に含む重合体化合物である。まず、テトラカルコゲノフルバレン骨格を主鎖に含む重合体化合物(以下、第1重合体化合物と呼ぶ場合がある)を説明する。テトラカルコゲノフルバレン骨格が主鎖を構成している場合、テトラカルコゲノフルバレン骨格は、主鎖中において反応骨格の2箇所で化学結合により固定されていることから、テトラカルコゲノフルバレン反応骨格の分子運動の自由度が小さく、重合体の分子中において最も近接したテトラカルコゲノフルバレン骨格と重なりにくい。つまり、π電子共役雲を有するテトラカルコゲノフルバレン骨格同士が平面スタックし、強固な分子間力が働くことが抑制される。分子間に強固な分子間力が働きにくい場合、分子は溶媒和すなわち溶解しやすくなるので、一般式(1)で表される重合体の溶媒に対する溶解性は一般的に高い。
 ただし、一般に非水電解質二次電池に用いる非水溶媒は有機化合物重合体を溶解するほど高い溶解能を有しておらず、一般式(1)で表される重合体も非水電解質二次電池に用いる非水溶媒には溶解しない。上述の「溶解性が高い」とは、一般式(1)で表される重合体は、有機化合物重合体に対する溶解能の高い非プロトン性極性溶媒の中から適切に選択される溶媒に溶解するという意味である。
 電極活物質13である第1重合体化合物は、一般式(1)で表わされるテトラカルコゲノフルバレン骨格を主鎖に含む限り、一般式(1)で表わされるテトラカルコゲノフルバレン骨格を有するモノマーと、一般式(1)以外の化学構造を有するモノマーとの共重合体であってもよい。ただし、より高いエネルギー密度を得るためには、テトラカルコゲノフルバレン骨格同士が直接結合することにより、重合体の主鎖を構成していることが好ましい。この場合、例えば、一般式(1)で表わされるテトラカルコゲノフルバレン骨格のR1からR4のうち、隣接するテトラカルコゲノフルバレン骨格との結合に用いられないものが互いに異なるテトラカルコゲノフルバレン骨格をそれぞれ含む2つ以上のモノマーの共重合体であってもよい。言い換えれば、いずれもテトラカルコゲノフルバレン骨格を含むが置換基が互いに異なる2つ以上のモノマーを共重合させた重合体であってもよい。いずれもテトラカルコゲノフルバレン骨格を含むが置換基が互いに異なる2つ以上のモノマーを共重合させた重合体では、隣り合うテトラカルコゲノフルバレン骨格の有する置換基が異なることから、置換基同士の分子間力や立体障害により、テトラカルコゲノフルバレン骨格同士の分子間力がより弱められる。さらに置換基同士の立体障害により生じる分子間の隙間に溶媒が侵入しやすくなる。したがって、このような構造を有する一般式(1)で表わされる重合体は電解液溶媒には溶解しない程度に、非プロトン性極性溶媒に溶媒和すなわち溶解しやすくなる。
 まず、本発明による電極の電極活物質13として用いる第1重合体化合物として、以下の一般式(3)および(4)で表わされる繰り返し単位を含む共重合体化合物を挙げることができる。これらは、テトラカルコゲノフルバレン骨格の1、4位同士が直接結合した重合体であるが、繰り返し単位のテトラカルコゲノフルバレン骨格が異なる置換基を有している。一般式(3)および(4)で表わされる繰り返し単位を含む共重合体は、テトラカルコゲノフルバレン骨格同士が直接結合し、共重合体の主鎖を形成している。したがって、主鎖における酸化還元反応に寄与する構成部分の割合が高く、蓄電材料として高いエネルギー密度で電荷を蓄積することができる。
 一般式(3)および(4)で表わされる繰り返し単位を含む共重合体は、ブロック共重合体であってもよいし、交互共重合体であってもよいし、ランダム共重合体であってもよい。具体的には、一般式(3)で表わされる繰り返し単位が複数直接結合したユニットと、一般式(4)で表わされる繰り返し単位が複数直接結合したユニットとが交互に配列した共重合体であってもよい。また、一般式(3)で表わされる繰り返し単位および一般式(4)で表わされる繰り返し単位が交互に配列した共重合体であってもよい。あるいは、一般式(3)で表わされる繰り返し単位および一般式(3)で表わされる繰り返し単位がランダムに配列した共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019
ここで一般式(3)および(4)中、4つのXは独立に酸素原子、硫黄原子、セレン原子またはテルル原子であり、R5からR8はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種である。鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。ただし、R5およびR6の組み合わせはR7およびR8の組み合わせと異なる。
 例えば、R5およびR6はそれぞれフェニル基であり、R7およびR8はそれぞれ鎖状炭化水素基であってもよい。具体的には、電極活物質13は、Xが硫黄原子であり、R5およびR6がそれぞれフェニル基であり、R7およびR8がデシル基である以下の化学式(5)で示される重合体であってもよい。ここで、nとmとの和は重合度を示し、2以上の整数である。2つのテトラカルコゲノフルバレン骨格を有する繰り返し単位は規則的に配列されていてよいし、ランダムに配列されていてもよい。また、nとmとの比は任意である。重合体が有機溶媒に溶解しないよう、重合体の分子量は大きいことが好ましい。具体的には、テトラカルコゲノフルバレン骨格を4以上含むこと、つまり、重合体の重合度(nとmとの和)は4以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 また、電極活物質13は以下の一般式(6)で表わされる重合体であってもよい。これらの重合体は、主鎖において、リンカーとしてのアセチレン骨格またはチオフェン骨格を含む鎖状不飽和炭化水素基または環状不飽和炭化水素基がテトラカルコゲノフルバレン骨格と交互に配置されている。一般式(6)で表わされる重合体では、アセチレン骨格またはチオフェン骨格を含む鎖状不飽和炭化水素基または環状不飽和炭化水素基を介してテトラカルコゲノフルバレン骨格が主鎖を構成している。このため、アセチレン骨格またはチオフェン骨格を含む鎖状不飽和炭化水素基または環状不飽和炭化水素基がテトラカルコゲノフルバレン骨格間の電子的な相互作用を抑制し、各テトラカルコゲノフルバレン骨格における電気化学的な酸化還元に対する安定性を高めることができる。その結果、重合体の全ての各テトラカルコゲノフルバレン骨格を可逆的に酸化還元することができ、高い容量の電極活物質を実現することができる。
 リンカーとしてのアセチレン骨格またはチオフェン骨格を含む鎖状不飽和炭化水素基または環状不飽和炭化水素基がテトラカルコゲノフルバレン骨格と交互に配置されることによって、テトラカルコゲノフルバレン骨格同士の分子間力がより弱められる。また、それらのリンカー構造の電子吸引作用により非水溶媒に対する親和性が高められる。したがって、一般式(6)で表わされる重合体は非プロトン性極性溶媒に溶媒和すなわち溶解しやすくなる。さらに置換基同士の立体障害により生じる分子間の隙間には溶媒が侵入しやすくなることから、電解液溶媒には溶解しない程度に、非プロトン性極性溶媒に溶媒和すなわち溶解しやすくなる。
Figure JPOXMLDOC01-appb-C000021
ここで、一般式(6)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R5、R6はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種である。鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。R9は、アセチレン骨格またはチオフェン骨格を含む鎖状不飽和炭化水素基または環状不飽和炭化水素基であり、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。
 例えば、電極活物質13は、Xが硫黄原子であり、R5およびR6がそれぞれフェニル基であり、R9が下記化学式(7)に示す構造を備える、以下の化学式(8)で示される重合体であってもよい。
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023
 また、電極活物質13は、一般式(6)において、R9が下記一般式(9-a)から(9-c)のいずれかに示す構造を備える重合体であってもよい。例えば、R9が一般式(9-a)または(9-b)に示す構造を備える場合、電極活物質13は、以下の一般式(10)または(11)で示される重合体を含む。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
ここで、一般式(10)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子、またはテルル原子、R5、R6およびR10からR13はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種を含み、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000026
ここで、一般式(11)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子、またはテルル原子、R5、R6、R10からR12およびR14はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種を含む。前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。
 例えば、電極活物質13は、一般式(10)において、Xが硫黄原子であり、R5、R6がそれぞれ、チオヘキシル基、メチル基またはデシル基であり、R10からR13が水素基である、以下の化学式(12)、(13)または(14)で示される重合体であってもよい。
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029
 また、電極活物質13は、一般式(10)において、Xが硫黄原子であり、R5、R6がそれぞれ、フェニル基であり、R10およびR13がそれぞれメトキシ基でありR11およびR12がそれぞれ水素基である、以下の化学式(15)で示される重合体であってもよい。
Figure JPOXMLDOC01-appb-C000030
 また、電極活物質13は、一般式(11)において、Xが硫黄原子であり、R5、R6がそれぞれ、メチル基またはフェニル基であり、R10からR12およびR14がそれぞれ水素基である、以下の化学式(16)または(17)で示される重合体であってもよい。
Figure JPOXMLDOC01-appb-C000031

Figure JPOXMLDOC01-appb-C000032
 あるいは一般式(6)において、R9はチオフェン骨格を含む下記化学式(18)から(22)に示すいずれかの構造を備えていてもよい。
Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-C000036

Figure JPOXMLDOC01-appb-C000037
 より具体的には、Xが硫黄原子である場合重合体は下記化学式(23)から(30)で表わされる重合体であってもよい。重合体が有機溶媒に溶解しないよう、テトラカルコゲノフルバレン骨格を4以上含むことが好ましい。すなわち、下記化学式(23)から(30)におけるnは4以上、また、化学式(30)におけるmは4以上であることが好ましい。化学式(30)で表わされる重合体において、テトラチアフルバレン骨格を有する繰り返し単位とチオフェン骨格を有する繰り返し単位とは規則的に配列されていてよいし、ランダムに配列されていてもよい。また、nとmとの比は任意である。
Figure JPOXMLDOC01-appb-C000038

Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043

Figure JPOXMLDOC01-appb-C000044

Figure JPOXMLDOC01-appb-C000045
 これまで説明してきた重合体は、一般式(1)で表わされるテトラカルコゲノフルバレン骨格のR1およびR3、つまり、テトラカルコゲノフルバレン骨格の1位および4位によって重合体の主鎖を構成していた。しかし、一般式(1)で表わされるテトラカルコゲノフルバレン骨格のR1およびR2(またはR3およびR4)、つまり、テトラカルコゲノフルバレン骨格の1位および2位(または3位および4位)によって重合体の主鎖を構成していてもよい。
 たとえは、電極活物質13は下記一般式(31)で表わされる重合体であってもよい。
Figure JPOXMLDOC01-appb-C000046
ここで、一般式(31)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R15、R16はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。R27は、アセチレン骨格およびチオフェン骨格の少なくともいずれかを含む鎖状不飽和炭化水素基または環状不飽和炭化水素基であり、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含む。
 R27は、より具体的には、下記化学式(7)、下記一般式(9-a)、(9-b)および(9-c)のいずれかに示す構造を備えていてもよい。
Figure JPOXMLDOC01-appb-C000047

Figure JPOXMLDOC01-appb-C000048
ここで、一般式(9-a)、(9-b)および(9-c)中、R10からR14はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種を含み、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。
 一般式(31)において、R17が化学式(9-a)で示される構造を備える場合、電極活物質13は、下記一般式(32)で表わされる重合体であってもよい。
Figure JPOXMLDOC01-appb-C000049
ここで、一般式(32)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子、またはテルル原子であり、R15からR20はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種を含み、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。
 例えば、電極活物質13は、Xが硫黄原子であり、R15およびR16がチオヘキシル基であり、R17からR20が水素原子である、下記化学式(33)で示される重合体であってもよい。
Figure JPOXMLDOC01-appb-C000050
 また、一般式(31)において、R17が化学式(9-b)で示される構造を備える場合、電極活物質13は、下記一般式(34)で表わされる重合体であってもよい。
Figure JPOXMLDOC01-appb-C000051
ここで、一般式(34)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子、またはテルル原子、R15からR19およびR21はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種を含む。前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。
 また、電極活物質13は下記一般式(35)で表わされる構造を備えていてもよい。
Figure JPOXMLDOC01-appb-C000052
ここで、一般式(35)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R15、R16、R23およびR24はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含む。R22、R25はそれぞれ独立に、アセチレン骨格およびチオフェン骨格の少なくともいずれかを含む鎖状不飽和炭化水素基または環状不飽和炭化水素基であり、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含む。
 一般式(18)において、R22、R25は、下記化学式(7)に示す構造を備えていてもよい。
 例えば、電極活物質13は、Xが硫黄原子であり、R15およびR16はチオヘキシル基であり、R23およびR24はフェニル基である、下記化学式(36)で示される重合体であってもよい。重合体が有機溶媒に溶解しないよう、テトラカルコゲノフルバレン骨格を4以上含むことが好ましい。すなわち、下記化学式(36)におけるnは2以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000054
 一般式(31)、(32)、(34)、(35)で表わされる重合体でも、アセチレン骨格やチオフェン骨格を含む鎖状不飽和炭化水素基または環状不飽和炭化水素基を介してテトラカルコゲノフルバレン骨格が主鎖を構成している。このため、鎖状不飽和炭化水素基または環状不飽和炭化水素基がテトラカルコゲノフルバレン骨格間の電子的な相互作用を抑制し、各テトラカルコゲノフルバレン骨格における電気化学的な酸化還元に対する安定性を高めることができる。その結果、重合体の全ての各テトラカルコゲノフルバレン骨格を可逆的に酸化還元することができ、高い容量の電極活物質を実現することができる。
 上述の各重合体は、テトラカルコゲノフルバレン骨格を含むモノマーを重合させることにより合成することができる。上述した一般式(1)から(18)で示す構造を有する限り、どのような方法で重合体を合成してもよい。しかし、重合中の活性な結合手の転位を防止し、規則性の高い重合体を形成するためには、カップリング反応による重合によって重合体を合成することが好ましい。具体的には、上述した一般式(1)から(18)で示す所定の置換基を含む分子構造を有し、重合の際、結合手となる位置に、ハロゲンやその他の官能基を有するテトラカルコゲノフルバレン骨格のモノマーを用意し、薗頭カップリング反応やその他のカップリング反応による重合によって、重合体を合成することが好ましい。具体的な合成方法は実施例において説明する。
 次に電極活物質13としてテトラカルコゲノフルバレン骨格を側鎖に含む重合体化合物を説明する(以下、第2重合体化合物と呼ぶ場合がある)。テトラカルコゲノフルバレン骨格を繰り返し単位に有する重合体がテトラカルコゲノフルバレン骨格を側鎖に含む場合、電極活物質13は、一般式(1)で表わされる構造の酸化還元部位を側鎖に有する第1ユニットと、酸化還元反応部位を側鎖に有さない第2ユニットとの共重合体化合物である。
 テトラカルコゲノフルバレン骨格を側鎖に含む場合、側鎖に位置するテトラカルコゲノフルバレン骨格が互いに近接し易くなる。そのため、酸化還元反応時における対アニオンの移動経路を確保することが困難になり、酸化還元反応が円滑に行われなくなる。この場合、テトラカルコゲノフルバレン骨格の安定な酸化状態が得にくくなるため、酸化反応も進行しにくくなる。これは、活物質反応の抵抗となる。
 このため、一般式(1)で表わされる構造の酸化還元部位が酸化した場合に対アニオンが酸化還元部位に接近し、配位しやすいように、酸化還元反応部位を側鎖に有しない第2ユニットを、一般式(1)で表わされる構造の酸化還元部位を側鎖に有する第1ユニットと共重合させる。これにより、酸化還元部位近傍の立体障害を低減し、対アニオンが酸化還元部位に配位しやすくなり、活物質反応の抵抗も低減する。
 また、テトラカルコゲノフルバレン骨格を側鎖に含む場合、側鎖に位置するテトラカルコゲノフルバレン骨格が互いに近接し易く、第2ユニットを含まない重合体化合物では、隣り合うテトラカルコゲノフルバレン骨格同士がスタックし易い。そのため、重合体化合物の溶媒に対する溶解性は低い。テトラカルコゲノフルバレン骨格を有しない第2ユニットと共重合させることで、テトラカルコゲノフルバレン骨格がスタックすることを防ぐことができ、溶媒に対する溶解性が向上する。
 具体的には、一般式(1)に示される構造が酸化還元反応を行う電位の範囲において、電気化学的に酸化還元反応を行う部位を第2ユニットは有していない。好ましくは、第2ユニットの側鎖は、非プロトン性溶媒と親和性を有する官能基であり、これによって、溶媒和した対アニオンが、酸化還元部位近傍に接近し易くなる。このような化学的特性を有する構造としては、酸素含有官能基であるエステル基、エーテル基、カルボニル基、窒素含有官能基であるシアノ基、ニトロ基、ニトロキシル基、炭素からなる官能基であるアルキル基、フェニル基、硫黄含有官能基であるアルキルチオ基、スルホン基、スルホキシド基などが挙げられる。好ましくは、第2ユニットの側鎖は、エステル基、エーテル基、カルボニル基である。
 第2ユニットの側鎖は、これらの中から選ばれる少なくとも1種を含んでいることが好ましく、2種以上含んでいてもよい。
 エステル基、エーテル基、カルボニル基、スルホン基、スルホキシド基の官能基の末端部は特に限定されないが、メチル基、エチル基のような炭素数の少ないアルキル基、芳香族基が望ましい。好ましいエステル基としては、例えば(-COO-CH3)、(-COO-C25)で表されるアルキルエステルやフェニルエステル(-COO-C65)などが挙げられる。また、好ましいエーテル基としては、例えば(-O-CH3)、(-O-C25)で表されるアルキルエーテルやフェニルエ―テル(-O-C65)などが挙げられる。また、好ましいカルボニル基としては、例えば(-C(=O)-CH3)、(-C(=O)-C25)、(-C(=O)-C65)などが挙げられる。また、好ましいスルホン基としては、(-S(=O)2-CH3)、(-S(=O)2-C25)、(-S(=O)2-C65)などが挙げられる。また、好ましくいスルホキシド基としては、(-S(=O)-CH3)、(-S(=O)-C25)、(-S(=O)-C65)などが挙げられる。特に、第2ユニットの側鎖は非プロトン性溶媒との親和性の高いエステル基、エーテル基、カルボニル基を含むことが好ましい。
 また、共重合体化合物の主鎖は特に限定されず、炭素原子、酸素原子、窒素原子および硫黄原子からなる群から選ばれる少なくとも1つを含む3価残基を繰り返しユニットとして含んでいる。繰り返しユニットは、炭素数1から10の飽和脂肪族基および不飽和脂肪族基よりなる群から選ばれる置換基を含んでいてもよい。つまり、繰り返しユニットは、少なくとも1つの水素、または、炭素数1から10の飽和脂肪族基および不飽和脂肪族基よりなる群から選ばれる置換基を有する。具体的には、飽和炭化水素であるポリエチレン、ポリプロピレン、不飽和炭化水素であるポリアセチレン、芳香族を含むポリカーボネート、ポリスチレン、あるいはこれらのプロトンの一部がハロゲンに置換されたものなどが挙げられる。
 第1ユニットおよび第2ユニットからなる共重合体化合物の重合度は、有機溶媒に溶解しないよう、大きいことが好ましい。具体的には、共重合体化合物に含まれる第1ユニットおよび第2ユニットの数の合計が4以上、つまり、重合度は4以上であることが好ましい。これにより、有機溶媒に溶けにくい蓄電材料が実現する。より好ましくは、重合体の重合度は、10以上であり、さらに好ましくは、20以上4000以下である。
 共重合体化合物の第2ユニットの側鎖が非水溶媒と親和性を有する官能基である場合、第2ユニットの側鎖の種類や第1ユニットのユニット数nに対する第2ユニットのユニット数mの構成比率m/nによって、共重合体化合物全体の溶媒に対する親和性を制御することができる。ここで、m、nは1以上の整数である。詳細な検討の結果、第2ユニットの側鎖が非水溶媒に対して親和性を有する官能基である場合、電解液溶媒以外の特定の非プロトン性溶媒に対して親和性が大きく向上し、重合体の重合度が10以上においても溶解することを見出した。本発明における構成比率m/nとは、共重合体化合物を構成する第2ユニットの総数mを第1ユニットの総数nで割った値の平均値を意味する。第1ユニットおよび第2ユニットからなる共重合体化合物と親和性の高い非プロトン性溶媒については以下において詳細に説明する。
 上述したように、酸化還元部位を側鎖に有しない第2ユニットが共重合体化合物に少しでも含まれていれば、酸化還元部近傍の立体障害を低減する効果は得られるため、構成比率m/nは0より大きければよい。また、非プロトン性溶媒との親和性を高めるためには、第2ユニットは多いほうが好ましく、構成比率m/nが大きいほど、上述した効果を得ることができる。しかし、第2ユニットは酸化還元部位を含まないため、第2ユニットが多くなると共重合体化合物の充電密度は低下する。本願発明者の詳細な検討によれば、構成比率m/nが5以下である場合に、充電密度を高め、かつ、安定して繰り返し酸化還元反応を生じさせることができることが分かった。
 つまり、本発明の蓄電材料に含まれる共重合体化合物は、下記一般式(37)で表わすことができる。
Figure JPOXMLDOC01-appb-C000055
ここで、R31およびR32は、共重合体化合物の主鎖を構成している。R32およびR32は3価残基であって、互いに独立に、炭素原子、酸素原子、窒素原子および硫黄原子からなる群から選ばれる少なくとも1つと、炭素数1から10の飽和脂肪族基および不飽和脂肪族基から群から選ばれる少なくとも1つの置換基、または、少なくとも1つの水素とを含む。L1は、R31と結合したエステル基、エーテル基、カルボニル基、シアノ基、ニトロ基、ニトロキシル基、アルキル基、フェニル基、アルキルチオ基、スルホン基またはスルホキシド基である。前述したように、L1は、非プロトン性溶媒との親和性の高いエステル基、エーテル基、カルボニル基であることが好ましい。R33は、R32およびM1と結合した炭素数1から4の置換もしくは非置換のアルキレン、アルケニレン、アリーレン、エステル、アミドまたはエーテルからなる群から選ばれる少なくとも1つを含む2価残基である。M1は一般式(1)であり、上述の結合手によってR33に結合しており、nおよびmはモノマー単位の繰り返し数を表わす整数である。
 一般式(2)に示すように、R31およびR32は、M1およびL1以外の側鎖を含んでいてもよい。また、m+nは、4以上が好ましく、10以上がより好ましく、20以上4000以下であることが更に好ましい。共重合体化合物が高充電密度を備え、かつ、非プロトン性極性溶媒と良好な親和性を有するためには、m/nは0より大きく5以下であることが好ましい。L1を含む繰り返しユニットとM1を含む繰り返しユニットは、規則的に配列していてもよく、ランダムであってもよい。
 本発明の蓄電材料の好ましい実施形態の1つは、上述したようにテトラチアフルバレン骨格を共重合体化合物の第1ユニットの側鎖に含んでいる。テトラチアフルバレン骨格は上述したように、2電子酸化された状態でも安定であるため、蓄電材料に適している。具体的には下記一般式(38)で示される構造を共重合体化合物の第1ユニットに含んでいる。
Figure JPOXMLDOC01-appb-C000056
ここで、R36は、炭素数1から4の置換もしくは非置換のアルキレン、アルケニレン、アリーレン、エステル、アミドおよびエーテルからなる群から選ばれる少なくとも1つを含む2価残基である。R343およびR35は、互いに独立した、水素原子、炭素数1から4の飽和脂肪族基およびフェニル基からなる群から選ばれる1つであり、R37からR39は、互いに独立した鎖状の脂肪族基、環状の脂肪族基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキオチオ基であり、R15とR16とが互いに結合して環を形成していてもよい。L1はエステル基、エーテル基、カルボニル基、シアノ基、ニトロ基、ニトロキシル基、アルキル基、フェニル基、アルキルチオ基、スルホン基またはスルホキシド基である。上述したように、テトラチアフルバレン骨格は酸化状態でも非常に安定であり、テトラチアフルバレン骨格の酸化還元反応は骨格外の構造にあまり影響を受けない。
 本発明の蓄電材料に用いる上述の第2重合体化合物は、上述した第1ユニットおよび第2ユニットを含む限り、どのような方法で合成してもよい。例えば、共重合体化合物の主鎖となる共重合体主鎖化合物を合成し、その後、共重合体主鎖化合物に一般式(1)に示される構造を含む側鎖を導入してもよい。あるいは、共重合体化合物の主鎖化合物の合成に用いるモノマー体に一般式(1)に示される構造を含む側鎖を導入し、主鎖の合成を行うことによって共重合体化合物を合成してもよい。しかし、重合反応中の活性な結合手の転位を防止し、分子量や、第1ユニットと第2ユニットとの混合比率などが制御された規則性の高い共重合体化合物を合成するためには、主鎖となる共重合体主鎖化合物をまず合成し、カップリング反応によって、一般式(1)に示される構造を含む側鎖を共重合体主鎖化合物に導入することが好ましい。例えば、ハロゲン元素およびヒドロキシル基によるカップリング反応、ハロゲン元素およびアミノ基によるカップリング反応などが挙げられる。ハロゲン元素およびヒドロキシル基、または、ハロゲン元素およびアミノ基の一方は共重合体主鎖化合物に導入され、他方が側鎖に導入される。ハロゲン元素およびヒドロキシル基によるカップリング反応によれば、共重合体化合物の主鎖と一般式(1)に示される構造を含む側鎖とがエステル結合により結合された共重合体化合物が得られる。また、ハロゲン元素およびアミノ基のカップリング反応によれば、共重合体化合物の主鎖と一般式(1)に示される構造を含む側鎖とがアミド結合により結合された共重合体化合物が得られる。
 また、ヒドロキシル基同士を脱水縮合させることにより、一般式(1)に示される構造を含む側鎖を共重合体主鎖化合物に導入してもよい。この場合、共重合体化合物の主鎖と一般式(1)に示される構造を含む側鎖とがエーテル結合で結合された共重合体化合物が得られる。以下の実施例において具体的な例を示す。
 以上、電極活物質13に用いることのできる化合物として、テトラカルコゲノフルバレン骨格を主鎖の繰り返し単位に有する第1重合体化合物、および、テトラカルコゲノフルバレン骨格を側鎖に有する第1ユニットと前記テトラカルコゲノフルバレン骨格を側鎖に有さない第2ユニットとの共重合体である第2重合体化合物を説明した。これら2種類の重合体化合物において、テトラカルコゲノフルバレン骨格は、高分子構造にあまり依存することなく独立して酸化還元反応を示す。このため、テトラカルコゲノフルバレン骨格の酸化還元電位は、これら2種類の重合体化合物においてほぼ等しい。よって本実施形態の電極は、電極活物質13として、第1重合体化合物および第2重合体化合物のうち少なくとも一方を含んでいればよく、これらの両方を用いてもよい。
 次に本発明の他の特徴の1つである活物質層12の構造的特徴を説明する。図1に示すように、活物質層12において、一般式(1)に示される構造を含む側鎖を共重合体化合物である電極活物質13は、導電助剤14の表面の少なくとも一部を被覆している。
 図2は、活物質層12の一部を拡大して示す模式図である。図1および図2に示すように、本実施形態では、電極活物質13は、粒子を構成しておらず、導電助剤14の表面を被覆している。つまり、電極活物質13は導電助剤14を覆う被膜の状態で存在している。このように本願明細書において、電極活物質13が、導電助剤14の表面を被覆しているとは、電極活物質13が導電助剤14の表面の形状に沿うような連続体として存在している状態を指す。導電助剤14の表面上において、電極活物質13が均一な膜厚の連続体を形成している状態が好ましいが、膜厚に分布があってもよい。後述するように、電極活物質13を溶媒に溶解させ、導電助剤14と混合、乾燥させることで、電極活物質13を導電助剤14の表面を被覆させる場合、電極活物質13の一部が溶解せず、局所的に粒子形状の凸部が電極活物質13の膜に生じていてもよい。この場合、粒子形状の凸部は100nmより小さいことが好ましい。
 図1および図2では導電助剤14は楕円の断面で示されているが、導電助剤14の形状は楕円に限られず、電極材料の導電助剤として一般に用いられる導電助剤の種々の形状の一つであってよい。また、導電助剤14が構成する粒子形状を完全に電極活物質13が被覆していなくてもよく、導電助剤14の粒子同士が接触している部分があってもよい。
 導電助剤14のサイズに比べて、導電助剤14を被覆している電極活物質13の膜厚は小さい方が好ましい。つまり、導電助剤14の平均粒径をdとした場合、電極活物質13の膜厚tはt<dを満たすことが好ましい。より具体的には、導電助剤14の平均粒径は数十nm~数μm程度であり、電極活物質13の膜厚tは、数nm~数百nm程度であることが好ましい。また、図1に示すように、活物質層12は、導電助剤14を被覆する電極活物質13間に空隙12aを有していることが好ましい。電極活物質13の膜厚tが数nmより小さい場合、活物質層における電解物質13が占める割合が小さくなり、電極101の充電容量が小さくなってしまう。また、電極活物質13の膜厚tが数百nmを超えると、以下において説明するように、電極活物質内部におけるアニオンの移動距離も長くなるため、電極の抵抗成分が増加する。また、導電助剤14の平均粒径は数十nmより小さい場合、または数μmよりも大きい場合、上述した厚さtの電極活物質13を得ることが困難となることがある。
 活物質層12がこのような構造を備えているため、電極活物質13と導電助剤14との接触面積が増大し、導電助剤14と電極活物質13との間で酸化還元に伴う電子の移動が円滑に行われる。電極活物質13における酸化還元反応も均一に起こりやすくなる。
 また、電極活物質13が酸化還元反応を行う場合、電解液中のアニオンは、電極活物質13の電解液と接する表面から、電極活物質13内部の酸化還元部位である上述した一般式(1)に示される構造近傍にまで移動する必要がある。電極活物質13内は電解液中に比べてアニオンが移動しにくく、抵抗成分となる。したがって、アニオンの移動距離が短いほど酸化還元反応は速く進行する。
 本実施形態によれば、活物質層12において、電極活物質13は薄膜の状態で存在するため、電極活物質13が電解液と接する表面から内部まで移動する距離は短い。さらに、好ましくは活物質層12内に空隙12aが存在するため、この空隙12aに電解液が浸入することによって、電極活物質13の電解液と接触する面積も拡大する。このため、電極活物質13内部に存在する酸化還元部位である一般式(1)に示される構造の近傍までアニオンが到達し易くなり、電極101における抵抗成分を低減することができる。
 このような構造を有する活物質層12は、一般式(1)に示される構造を含む側鎖を有する共重合体化合物である電極活物質13が特定の非プロトン性溶媒に対して高い親和性を有しているという特徴を利用することによって作製することができる。
 具体的には、一般式(1)に示される構造を含む側鎖を有する共重合体化合物を特定の非プロトン性溶媒に溶解させ溶液を形成し、この溶液とで導電助剤とを混合した混合体を、導電性支持体11に塗布し、非プロトン性溶媒を除去することによって、導電助剤14の表面が薄い電極活物質13の膜で覆われた図1に示す構造の活物質層12を形成することができる。
 本願発明者の検討によれば、特許文献4で開示されているTTFを側鎖に有する重合体は、有機溶媒への親和性が低く、溶解しないことがわかった。特許文献4は、TTFを側鎖に有する重合体と導電助剤と有機溶媒とを混合してスラリーを作製し、スラリーを集電体に塗布後、有機溶媒を除去することにより、電極を作製することを開示している。しかし、このように得られた電極では、TTFを側鎖に有する重合体が有機溶媒に溶解しないため、図3に示すように、得られた電極において、TTFを側鎖に有する重合体である電極活物質13’は数μm程度の粒子を形成していると考えられる。このため、導電助剤14’が形成する粒子と電極活物質13’の粒子とはそれぞれ独立しており、混合粒子の状態で集電体上に存在していると考えられる。
 このような構造では、電極活物質13’の粒子は、導電助剤14’と点または小さな面積で接触しているに過ぎないため、上述したように導電助剤14’と電極活物質13’との間で酸化還元に伴う電子の移動が円滑に行えず、電極活物質13’における酸化還元反応も不均一になり易いと考えられる。また、電極活物質13’の粒子の内部まで電解液のアニオンが移動しにくく、電極活物質内部におけるアニオンの移動距離も長くなるため、電極の抵抗成分が増加すると考えられる。
 導電助剤14には、電極の反応電位において、化学変化を起こさない種々の電子伝導性材料を用いることができる。例えば本実施形態の電極をリチウム二次電池の正極として用いる場合、導電助剤としてはカーボンブラック、グラファイト、炭素繊維等の炭素材料、金属繊維、金属粉末類、導電性ウィスカー類、導電性金属酸化物などを単独又はこれらの混合物として用いることができる。
 重量あたりのエネルギー密度を高くできるという点から、カーボンブラックなどの粒子状カーボン材料や炭素繊維を用いることが好ましい。さらに、接触面積を増大させるためには比表面積の大きな粒子状カーボンや炭素繊維を用いることが望ましい。
 また、電極の重量あたりのエネルギー密度を高くできるという点から、活物質層12中の電極活物質13の重量比率は30wt%以上であることが好ましい。電極活物質13の重量比率が大きいほど電極101を用いた蓄電デバイスの充電容量は大きくなる。しかし、重量比率が大きくなりすぎると、導電助剤の割合が小さくなり、導電助剤を被覆する電極活物質13の膜厚が大きくなる。電極活物質13は導電助剤に比べて電子伝導性が低いため、導電助剤を被覆する電極活物質13が厚くなると、導電助剤を被覆している電極活物質13において、電子伝導性が十分に確保することができなくなり、活物質層全体を均一に充放電することが困難になる。たとえば、導電助剤としてアセチレンブラックを用い、活物質比率を80wt%とした電極において、導電助剤の表面を均一に電極活物質13が被覆した場合、電極活物質13の膜厚は約100nmとなり、高速充放電が困難になる。つまり、高容量かつ高出力な蓄電デバイスの実現が困難になる。このため、物質層12中の活物質の重量比率は好ましくは、30wt%以上80wt%以下である。さらに好ましくは、50wt%以上70wt%以下である。
 活物質層12は結着剤を含んでいてもよい。結着剤は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。例えば、ポリエチレン、ポリプロピレンをはじめとするポリオレフィン樹脂、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン(HFP)をはじめとするフッ素系樹脂やそれらの共重合体樹脂、スチレンブタジエンゴム、ポリアクリル酸やその共重合体樹脂などを結着剤として用いることができる。また、電極活物質を特定の有機溶媒に溶解させ、導電助剤に被覆させる場合、膜の均一性を向上させるためには、電極活物質と結着剤とが同じ有機溶媒に溶解していることが望ましく、フッ素系樹脂が好ましい。活物質層12が結着剤を含む場合、結着剤は電極活物質13とともに導電助剤14の表面を被覆している。導電助剤14の表面において、電極活物質13と結着剤とは混合した状態にある。
 本実施形態の上述した構造を備える活物質層12は、例えば電極活物質が溶解している非プロトン性溶媒と導電助剤とを含む混合体を作製し、得られた混合体から非プロトン性溶媒を除去することによって得られる。以下、本実施形態の電極の製造方法の実施形態を詳細に説明する。
 本実施形態の電極の製造方法は、電極活物質が溶解した非プロトン性溶媒と導電助剤とを含む混合体を用意する工程と、混合体から非プロトン性溶媒を除去する工程とを含む。
 混合体の作製は、まず非プロトン性溶媒に電極活物質13を溶解させ、その非プロトン性溶媒と導電助剤14を混合しても良いし、非プロトン性溶媒と導電助剤14を混合した混合体に電極活物質13を溶解させても良い。また、混合体は結着剤を含んでいてもよい。結着剤には、上述したものを用いることができる。導電助剤14および結着剤は非プロトン性溶媒に溶解しなくてもよい。また、混合体が結着剤を含んでいる場合、それぞれを混合する順番は任意である。電極活物質13が非プロトン性溶媒に溶解し、均一分散していることが望ましい。そのため、まず非プロトン性溶媒に電極活物質13を溶解させ、その後導電助剤14および結着剤を混合させる順番が好ましい。
 非プロトン性溶媒としては、特に限定されない。上述した電極活物質に対して親和性が高いものが好ましい。具体的には、N-メチルピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)、テトラヒドロフラン(THF)、トルエン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、クロロホルムなどの非プロトン性溶媒が好ましく、NMP、DMI、THFがより好ましい。
 混合体の作製には、電極活物質が非プロトン性溶媒に溶解していれば、この分野で常用されている混合方法を用いることができる。例えば、プラネタリーミキサーなどの混練機を用いて溶解を行うことができる。
 次に、得られた混合体から非プロトン性溶媒を除去する。非プロトン性溶媒の除去方法に特に制限はなく、この分野で常用されている手法を用いることができる。例えば、得られた混合体を導電性支持体などの基材上に塗布し、乾燥炉などを用いて高温乾燥による溶媒除去が挙げられる。作製した混合体を基材上に塗布し、溶媒を除去する場合、塗布方法はこの分野で常用されている手法を用いることができる。具体的には、スピンコートやスクリーン印刷法、コーターなどを用いて導電性支持体11上に混合体を塗布することができる。また、噴霧乾燥のように、得られた混合体を分散、高温乾燥することで、非プロトン性極性溶媒を除去する手法なども挙げられる。
 好ましくは、得られた混合体を導電性支持体上に塗布し、乾燥炉などを用いて高温乾燥によって溶媒を除去する。これにより、乾燥後に得られる導電性支持体と導電性支持体上に形成された電極活物質と導電剤を含む層は、蓄電デバイスの電極として用いることができる。
 基材として非導電性支持体を用いる場合には、乾燥により得られた電極活物質と導電剤を含む層を導電性支持体上支持させる。また、噴霧乾燥などにより溶媒除去を行った場合も同様に、導電性支持体上に支持させる。これにより、蓄電デバイス用の電極が得られる。
 このようにして、電極活物質13が粒子を構成しておらず、導電助剤14の表面を被覆している活物質層12が導電性支持体11上に形成された電極101が完成する。
 本実施形態の電極によれば、電極活物質が導電助剤と被覆しているため、電極活物質と導電助剤との接触面積が大きく、電極活物質と導電助剤との間における電子の移動が円滑に行われる。また、電極活物質は導電助剤の表面で薄膜として存在しているため、電解液から電極活物質中における酸化還元反応部までの対イオンの移動距離が短くなり、対イオンの拡散による抵抗が低減できる。その結果、酸化還元反応時の電極における抵抗を低減することができる。
 次に本発明の電極を正極として用いた蓄電デバイスについて詳細に説明する。図4は、本発明による蓄電デバイスの一実施形態であるコイン形リチウム二次電池を模式的に示した断面図である。図4に示すコイン形リチウム二次電池は、正極31と、負極32と、セパレータ24とを備えている。正極31は、正極集電体22および正極活物質層23を含み、図1に示す電極101を用いることができる。負極32は負極活物質層26および負極集電体27を含み、負極活物質層26は負極集電体27に支持されている。
 負極活物質層26は、負極活物質を含む。負極活物質としては、リチウムを可逆的に吸蔵および放出する公知の負極活物質が用いられる。例えば天然黒鉛や人造黒鉛などの黒鉛材料、非晶質炭素材料、リチウム金属、リチウム含有複合窒化物、リチウム含有チタン酸化物、珪素、珪素を含む合金、珪素酸化物、錫、錫を含む合金、および錫酸化物、等のリチウムを可逆に吸蔵放出することのできる材料、もしくは、活性炭などの電気二重層容量を有する炭素材料、π電子共役雲を有する有機化合物材料などを用いることができる。これら負極材料は、それぞれ単独で用いてもよいし、複数の負極材料と混合して用いてもよい。負極集電体27には、例えば銅、ニッケル、ステンレスなど、リチウムイオン二次電池用負極の集電体として公知の材料を用いることができる。正極集電体22と同様、負極集電体27も金属箔やメッシュ、多孔体およびこれらの金属からなる導電性フィラーを含む樹脂フィルムなどが用いられる。
 負極活物質層26は、負極活物質のみを含んでいてもよいし、導電助剤および結着剤のいずれか一方、または、両方を含んでいてもよい。導電助剤には、上述したものを用いることができる。また、結着剤も、上述したものを用いることができる。
 正極31および負極32は正極活物質層23および負極活物質層26がセパレータ24と接するようにセパレータ24を挟んで対向し、電極群を構成している。セパレータ24は、電子伝導性を有しない樹脂によって構成された樹脂層であり、大きなイオン透過度を有し、所定の機械的強度および電気的絶縁性を備えた微多孔膜である。耐有機溶剤性および疎水性に優れるという観点から、ポリプロピレン、ポリエチレンなどを単独または組み合わせたポリオレフィン樹脂が好ましい。セパレータ24の代わりに、電解液を含んで膨潤し、ゲル電解質として機能する電子伝導性を有する樹脂層を設けてもよい。
 電極群はケース21の内部の空間に収納されている。また、ケース21の内部の空間には電解液29が注入され、正極31、負極32およびセパレータ24は電解液29に含浸されている。セパレータ24は、電解液29を保持する微細な空間を含んでいるため、微細な空間に電解液29が保持され、電解液29が正極31と負極32との間に配置された状態をとっている。ケース21の開口は、ガスケット28を用いて封口板25により封止されている。
 電解液29は、非水溶媒と、非水溶媒に溶解する支持塩とから構成される。非水溶媒としては、非水二次電池や非水系電気二重層キャパシタに用いることのできる公知の溶媒を使用可能である。具体的には、環状炭酸エステルを含んでいる溶媒を好適に用いることが出来る。なぜなら、環状炭酸エステルは、エチレンカーボネート、プロピレンカーボネートに代表されるように、非常に高い比誘電率を有しているからである。環状炭酸エステルの中でもプロピレンカーボネートが好適である。なぜなら、凝固点が-49℃とエチレンカーボネートよりも低く、蓄電デバイスを低温でも作動させることができるからである。
 また、環状エステルを含んでいる溶媒もまた好適に用いることが出来る。なぜなら、環状エステルは、γ-ブチロラクトンに代表されるように、非常に高い比誘電率を有していることから、これら溶媒を成分として含むことにより、電解液29の非水溶媒全体として非常に高い誘電率を有することができる。
 非水溶媒としてこれらの1つのみを用いてもよいし、複数の溶媒を混合して用いてもよい。その他の溶媒として用いることの出来る溶媒としては、鎖状炭酸エステル、鎖状エステル、環状あるいは鎖状のエーテル等が挙げられる。具体的には、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジオキソラン、スルホラン、アセトニトリル等の非水溶媒を用いることができる。電解液の非水溶媒が正極の正極活物質層23に浸入し、正極活物質層23が非水溶媒で膨潤した状態となることによって正極における酸化還元反応の反応抵抗を低減することができる。ただし、非水溶媒への正極活物質の溶解度が高すぎると正極活物質層23が溶出してしまう可能性がある。このため、非水溶媒は、正極活物質層23に用いる電極活物質13を溶出しないものであることが好ましい。
 支持塩としては、以下に挙げるカチオンとアニオンとからなる支持塩が挙げられる。カチオンとしては、たとえば、リチウム、ナトリウム、カリウムなどのアルカリ金属のカチオン、マグネシウムなどのアルカリ土類金属のカチオン、テトラエチルアンモニウム、1,3-エチルメチルイミダゾリウムなどの4級アンモニウムカチオンを使用できる。カチオンは1種を単独でまたは2種以上を組み合わせて使用できる。これらの中でも、リチウムのカチオン、4級アンモニウムカチオンなどが好ましい。
 アニオンとしては、たとえば、ハロゲン化物アニオン、過塩素酸アニオン、トリフルオロメタンスルホン酸アニオン、四ホウフッ化物アニオン、トリフルオロリン6フッ化物アニオン、トリフルオロメタンスルホン酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(パーフルオロエチルスルホニル)イミドアニオンなどが挙げられる。アニオンは1種を単独でまたは2種以上を組み合わせて使用できる。支持塩の具体例としては、例えば、フッ化リチウム、塩化リチウム、過塩素酸リチウム、トリフロロメタンスルホン酸リチウム、四ホウフッ化リチウム、ビストリフロロメチルスルホニルイミドリチウム、チオシアン酸リチウム、過塩素酸マグネシウム、トリフロロメタンスルホン酸マグネシウム、四ホウフッ化ナトリウムなどが挙げられる。
 本発明の電極を用いた蓄電デバイスは、高容量、サイクル特性に優れるだけでなく、高出力な蓄電デバイスである。そのため、本発明の電極を用いた蓄電デバイスは、ハイブリッド自動車などの車両や携帯型電子機器に好適に用いられる。本発明の蓄電デバイスを備えた車両および携帯型電子機器は、蓄電デバイスが軽量であり、また、出力が大きく、かつ、繰り返し特性に優れているという特徴を有する。このため、特に、重量の点で従来の無機化合物を用いた蓄電デバイスでは達成し難かった軽量化が可能となる。
 本実施形態では、本発明の電極および蓄電デバイスを、リチウム二次電池に用いた形態で説明した。しかし、本発明の電極および蓄電デバイスは、電気化学的な電荷の蓄積を利用する種々のエネルギー蓄積デバイスやセンサなどに用いることができる。具体的には、本発明の電極を正極とし、活性炭負極と組み合わせて電気二重層キャパシタを構成してもよい。また、リチウム吸蔵黒鉛などのリチウムを吸蔵放出可能な負極と組み合わせたリチウムイオンキャパシタなど、二次電池以外の電気化学キャパシタなどに用いてもよい。
 また、各種電気化学素子や、電気化学素子に用いる電極にも好適に用いることができる。電気化学素子の例としては、例えば充放電に伴う膨張収縮するような高分子ゲル電解質を電解質に用いることにより、高分子アクチュエーターを構成することができる。また、本発明の電極は充放電に伴い色が変化することから、導電性支持体として透明導電性ガラスを用い、かつ外装の一部にフィルムやガラスのような透明材を用いることにより、エレクトロクロミック表示素子を構成することができる。
 本発明の電極を電気化学素子に用いる場合には、電解液の支持塩として、4級アンモニウム塩とアニオンとの塩を含んでいることが好ましい。
(第2の実施形態)
 以下、本発明による電極およびそれを用いた蓄電デバイスの第2の実施形態を説明する。
 図5は、本実施形態の電極102の断面構造を模式的に示している。電極102は、導電性支持体11と導電性支持体11上に設けられた活物質層12とを備えている。
 導電性支持体11は電気伝導性を有する低抵抗の物質、例えば、二次電池の正極や負極の集電体として用いられる材料によって構成されている。具体的には、導電性支持体11は、アルミニウム、金、銀、ステンレス、アルミニウム合金等からなる金属箔やメッシュ、多孔体およびこれらの金属からなる導電性フィラーを含む樹脂フィルムなどから構成される。
 活物質層12は、電極活物質13と導電助剤114とを含む。本実施形態は、活物質層12において、電極活物質13が、粒子を構成せず、導電助剤114の表面の少なくとも一部を被覆しており、導電助剤114が、800m2/g以上の比表面積を有するカーボンブラックある点で第1の実施形態と異なる。
 電極活物質13には第1の実施形態で説明した第1重合体化合物または第2重合体化合物、つまり、一般式(1)で表わされるテトラカルコゲノフルバレン骨格を主鎖、または、側鎖に含む重合体化合物が用いられる。
 第1の実施形態で説明したように、活物質層12において、一般式(1)に示される構造を含む重合体合物である電極活物質13は、導電助剤114の表面の少なくとも一部を被覆している。図6は、活物質層12の一部を拡大して示す模式図である。図5および図6に示すように、第1の実施形態と同様、電極活物質13は、粒子を構成しておらず、導電助剤114の表面を被覆している。つまり、電極活物質13は導電助剤114を覆う被膜の状態で存在している。図5および図6では導電助剤114は楕円の断面で示されているが、導電助剤114の形状は楕円に限られず、電極材料の導電助剤として一般に用いられる導電助剤の種々の形状の一つであってよい。また、導電助剤114が構成する粒子形状を完全に電極活物質13が被覆していなくてもよく、導電助剤114の粒子同士が接触している部分があってもよい。
 導電助剤114のサイズに比べて、導電助剤114を被覆している電極活物質13の膜厚は小さい方が好ましい。つまり、導電助剤114の平均粒径をdとした場合、電極活物質13の膜厚tはt<dを満たすことが好ましい。より具体的には、導電助剤114の平均粒径は数十nm~数百nm程度であり、電極活物質13の膜厚tは、数nm~数百nm程度であることが好ましい。また、図5に示すように、活物質層12は、導電助剤114を被覆する電極活物質13間に空隙12aを有していることが好ましい。電極活物質13の膜厚tが数nmより小さい場合、活物質層における電解物質13が占める割合が小さくなり、電極102の充電容量が小さくなってしまう。また、電極活物質13の膜厚tが数百nmを超えると、以下において説明するように、電極活物質内部におけるアニオンの移動距離も長くなるため、電極の抵抗成分が増加する。導電助剤114の平均粒径が数十nmより小さい場合、または数μmよりも大きい場合、上述した厚さtの電極活物質13を得ることが困難となることがある。
 活物質層12がこのような構造を備えているため、電極活物質13と導電助剤114との接触面積が増大し、導電助剤114と電極活物質13との間で酸化還元に伴う電子の移動が円滑に行われる。電極活物質13における酸化還元反応も均一に起こりやすくなる。
 また、電極活物質13が酸化還元反応を行う場合、電解液中のアニオンは、電極活物質13の電解液と接する表面から、電極活物質13内部の酸化還元部位である上述した一般式(1)に示される構造の近傍にまで移動する必要がある。電極活物質13内は電解液中に比べてアニオンが移動しにくく、抵抗成分となる。したがって、アニオンの移動距離が短いほど酸化還元反応は速く進行する。
 本実施形態によれば、活物質層12において、電極活物質13は薄膜の状態で存在するため、電極活物質13が電解液と接する表面から内部まで移動する距離は短い。さらに、好ましくは活物質層12内に空隙12aが存在するため、この空隙12aに電解液が浸入することによって、電極活物質13の電解液と接触する面積も拡大する。このため、電極活物質13内部に存在する酸化還元部位である一般式(1)に示される構造の近傍までアニオンが到達し易くなり、電極102における抵抗成分を低減することができる。
 このような構造を有する活物質層12は、一般式(1)に示される構造を含む重合体化合物である電極活物質13が特定の非プロトン性溶媒に対して高い親和性を有しているという特徴を利用することによって作製することができる。
 具体的には、一般式(1)に示される構造を含む側鎖を有する共重合体化合物を特定の非プロトン性溶媒に溶解させ溶液を形成し、この溶液とで導電助剤とを混合した混合体を作製し、非プロトン性溶媒を除去する工程を含む製造方法によって、導電助剤114の表面が薄い電極活物質13の膜で覆われた図5に示す構造の活物質層12を形成することができる。
 本願発明者は、このように、導電助剤114の表面を電極活物質13が薄く被覆した構造を実現するために、導電助剤114は800m2/g以上の比表面積を有するカーボンブラックであることが好ましく、これにより、高出力な蓄電デバイス用電極が実現することを見出した。
 一般的には、上述した方法によって、導電助剤の表面を電極活物質で被覆し、反応抵抗の低減などの効果を得るためには、活性炭などの比表面積の大きな炭素材料を用いることが適していると考えられる。比表面積が大きいほど電極活物質の薄い被膜で導電助剤を覆うことができると考えられるからである。また、導電助剤として用いる炭素材料はカーボンブラック、炭素繊維など種々の形態ものが知られている。
 しかし、本願発明者の詳細な研究により、一部の活性炭など微細な細孔を有する比表面積が大きな材料では、細孔のサイズが小さすぎため、電極活物質13が溶解した溶媒が細孔内に浸入せず、導電助剤の細孔表面を電極活物質13で均一に覆うことができない場合があると考えられることがわかった。
 一般式(1)に示される構造を含む重合体化合物を用いて蓄電デバイスを作製する場合、重合体化合物は、電解液に溶出しないように、大きな分子量を備えていることが好ましい。例えば、ポリスチレン換算における分子量が10000以上であることが好ましい。このような重合体化合物を有機溶媒に溶解させた場合、有機溶媒は一定の粘度を有する。そのため、活性炭に代表されるようなナノメートルオーダーの細孔を有する大比表面積の炭素材料を用いた場合、細孔の最深部まで高分子化合物が溶解している有機溶媒が到達せず、導電助剤特有の大比表面積を十分に活用できず、上述した効果を得ることができないと考えられる。
 本発明者は、粒子状の炭素材料であるカーボンブラックを用いた場合、大きな表面積のすべてに、電極活物質が溶解している有機溶媒が到達し、被覆することが可能であることを見出した。カーボンブラックは、工業的に制御され製造される無定形炭素の微粒子であり、通常、平均粒子径は数十nmから数百nm程度である。詳細な検討の結果、特に、カーボンブラックの比表面積が800m2/g以上であれば、導電助剤114表面における電極活物質13を含む層の膜厚が十分に小さくなり、上述した効果が顕著に現れることを見出した。より好ましくは、カーボンブラックの平均粒径は50nm以下である。カーボンブラックの平均粒径が50nmより大きい場合、導電助剤上の電極活物質の膜厚tが厚くなりすぎることから、高出力が得られなくなってしまうからである。
 導電助剤114として用いることのできるカーボンブラックは、800m2/g以上の比表面積を有するカーボンブラックであればカーボンブラックの製造方法や種類に特に制限はない。ファーネス法によるファーネスブラック、チャネル法によるチャネルブラック、アセチレン法によるアセチレンブラック、ケッチェンブラックなどを用いることができる。カーボンブラックの比表面積はBET法などのガス吸着法により測定することができる。
 また検討の結果、特許文献4で開示されているTTFを側鎖に有する重合体は、有機溶媒への親和性が低く、溶解しないことがわかった。特許文献4は、TTFを側鎖に有する重合体と導電助剤と有機溶媒とを混合してスラリーを作製し、スラリーを集電体に塗布後、有機溶媒を除去することにより、電極を作製することを開示している。しかし、このように得られた電極では、TTFを側鎖に有する重合体が有機溶媒に溶解しないため、図7に示すように、得られた電極において、TTFを側鎖に有する重合体である電極活物質13’は数μm程度の粒子を形成していると考えられる。このため、導電助剤114’が形成する粒子と電極活物質13’の粒子とはそれぞれ独立しており、混合粒子の状態で集電体上に存在していると考えられる。
 このような構造では、電極活物質13’の粒子は、導電助剤114’と点または小さな面積で接触しているに過ぎないため、上述したように導電助剤114’と電極活物質13’との間で酸化還元に伴う電子の移動が円滑に行えず、電極活物質13’における酸化還元反応も不均一になり易いと考えられる。また、電極活物質13’の粒子の内部まで電解液のアニオンが移動しにくく、電極活物質内部におけるアニオンの移動距離も長くなるため、電極の抵抗成分が増加すると考えられる。
 活物質層12は結着剤を含んでいてもよい。結着剤は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。例えば、ポリエチレン、ポリプロピレンをはじめとするポリオレフィン樹脂、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン(HFP)をはじめとするフッ素系樹脂やそれらの共重合体樹脂、スチレンブタジエンゴム、ポリアクリル酸やその共重合体樹脂などを結着剤として用いることができる。また、電極活物質を特定の有機溶媒に溶解させ、導電助剤に被覆させる場合、膜の均一性を向上させるためには、電極活物質と結着剤とが同じ有機溶媒に溶解していることが望ましく、フッ素系樹脂が好ましい。活物質層12が結着剤を含む場合、結着剤は電極活物質13とともに導電助剤114の表面を被覆している。導電助剤114の表面において、電極活物質13と結着剤とは混合した混合体を構成している。
 本実施形態の上述した構造を備える活物質層12は、例えば電極活物質が溶解している非プロトン性溶媒と導電助剤とを含む混合体を作製し、非プロトン性溶媒を除去することによって得られる。以下、本実施形態の電極の製造方法の実施形態を詳細に説明する。
 本実施形態の電極の製造方法は、電極活物質が溶解した非プロトン性溶媒と導電助剤とを含む混合体を用意する工程と、塗布用混合体から非プロトン性溶媒を除去する工程とを含む。
 混合体の作製は、まず非プロトン性溶媒に電極活物質13を溶解させ、その非プロトン性溶媒と導電助剤114を混合しても良いし、非プロトン性溶媒と導電助剤を混合した混合体に電極活物質13を溶解させても良い。また、混合体は結着剤を含んでいてもよい。結着剤には、上述したものを用いることができる。導電助剤114および結着剤は非プロトン性溶媒に溶解しなくてもよい。また、混合体が結着剤を含んでいる場合、それぞれを混合する順番は任意である。電極活物質が非プロトン性溶媒に溶解し、均一分散していることが望ましい。そのため、まず非プロトン性溶媒に電極活物質を溶解させ、その後導電助剤および結着剤を混合させる順番が好ましい。
 非プロトン性溶媒としては、特に限定されない。上述した電極活物質に対して親和性が高いものが好ましい。具体的には、N-メチルピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)、テトラヒドロフラン(THF)、トルエン、クロロホルム、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)などの非プロトン性溶媒が好ましく、NMP、DMI、THFがより好ましい。
 混合体の作製には、電極活物質が非プロトン性溶媒に溶解していれば、この分野で常用されている混合方法を用いることができる。例えば、プラネタリーミキサーなどの混練機を用いて溶解を行うことができる。
 次に、得られた混合体から非プロトン性溶媒を除去する。非プロトン性溶媒の除去方法に特に制限はなく、この分野で常用されている手法を用いることができる。例えば、得られた混合体を導電性支持体などの基材上に塗布し、乾燥炉などを用いて高温乾燥による溶媒除去が挙げられる。作製した混合体を基材上に塗布し、溶媒を除去する場合、塗布方法はこの分野で常用されている手法を用いることができる。具体的には、スピンコートやスクリーン印刷法、コーターなどを用いて導電性支持体11上に混合体を塗布することができる。また、噴霧乾燥のように、得られた混合体を分散、高温乾燥することで、非プロトン性極性溶媒を除去する手法なども挙げられる。
 好ましくは、得られた混合体を導電性支持体上に塗布し、乾燥炉などを用いて高温乾燥によって溶媒を除去する。これにより、乾燥後に得られる導電性支持体と導電性支持体上に形成された電極活物質と導電剤を含む層は、蓄電デバイスの電極として用いることができる。
 基材として非導電性支持体を用いる場合には、乾燥により得られた電極活物質と導電剤を含む層を導電性支持体上支持させる。また、噴霧乾燥などにより溶媒除去を行った場合も同様に、導電性支持体上に支持させる。これにより、蓄電デバイス用の電極が得られる。
 このようにして、電極活物質13が粒子を構成しておらず、導電助剤114の表面を被覆している活物質層12が導電性支持体11上に形成された電極102が完成する。
 本実施形態の電極によれば、電極活物質が導電助剤と被覆しているため、電極活物質と導電助剤との接触面積が大きく、電極活物質と導電助剤との間における電子の移動が円滑に行われる。また、電極活物質は導電助剤の表面で薄膜として存在しているため、電解液から電極活物質中における酸化還元反応部までの対イオンの移動距離が短くなり、対イオンの拡散による抵抗が低減できる。その結果、酸化還元反応時の電極における抵抗を低減することができる。特に導電助剤が800m2/g以上の比表面積を有するカーボンブラックであるため、導電助剤の表面積が大きく、電極活物質が薄い被膜として導電助剤を覆っている。このため、上述した効果が顕著に得られ、これにより、高出力な蓄電デバイス用電極が実現する。
 次に本発明の電極を正極として用いた蓄電デバイスについて詳細に記載する。図8は、本発明による蓄電デバイスの一実施形態であるコイン形リチウム二次電池202を模式的に示した断面図である。図8に示すコイン形リチウム二次電池は、正極31と、負極32と、セパレータ24とを備えている。正極31は、正極集電体22および正極活物質層23を含み、図5に示す電極102を用いることができる。負極32は負極活物質層26および負極集電体27を含み、負極活物質層26は負極集電体27に支持されている。
 負極活物質層26は、負極活物質を含む。負極活物質としては、リチウムを可逆的に吸蔵および放出する公知の負極活物質が用いられる。例えば天然黒鉛や人造黒鉛などの黒鉛材料、非晶質炭素材料、リチウム金属、リチウム含有複合窒化物、リチウム含有チタン酸化物、珪素、珪素を含む合金、珪素酸化物、錫、錫を含む合金、および錫酸化物、等のリチウムを可逆に吸蔵放出することのできる材料、もしくは、活性炭などの電気二重層容量を有する炭素材料、π電子共役雲を有する有機化合物材料などを用いることができる。これら負極材料は、それぞれ単独で用いてもよいし、複数の負極材料と混合して用いてもよい。負極集電体27には、例えば銅、ニッケル、ステンレスなど、リチウムイオン二次電池用負極の集電体として公知の材料を用いることができる。正極集電体22と同様、負極集電体27も金属箔やメッシュ、多孔体およびこれらの金属からなる導電性フィラーを含む樹脂フィルムなどが用いられる。
 負極活物質層26は、負極活物質のみを含んでいてもよいし、導電助剤および結着剤のいずれか一方、または、両方を含んでいてもよい。導電助剤には、上述したものを用いることができる。また、結着剤も、上述したものを用いることができる。
 正極31および負極32は正極活物質層23および負極活物質層26がセパレータ24と接するようにセパレータ24を挟んで対向し、電極群を構成している。セパレータ24は、電子伝導性を有しない樹脂によって構成された樹脂層であり、大きなイオン透過度を有し、所定の機械的強度および電気的絶縁性を備えた微多孔膜である。耐有機溶剤性および疎水性に優れるという観点から、ポリプロピレン、ポリエチレンなどを単独または組み合わせたポリオレフィン樹脂が好ましい。セパレータ24の代わりに、電解液を含んで膨潤し、ゲル電解質として機能する電子伝導性を有する樹脂層を設けてもよい。
 電極群はケース21の内部の空間に収納されている。また、ケース21の内部の空間には電解液29が注入され、正極31、負極32およびセパレータ24は電解液29に含浸されている。セパレータ24は、電解液29を保持する微細な空間を含んでいるため、微細な空間に電解液29が保持され、電解液29が正極31と負極32との間に配置された状態をとっている。ケース21の開口は、ガスケット28を用いて封口板25により封止されている。
 電解液29は、非水溶媒と、非水溶媒に溶解する支持塩とから構成される。非水溶媒としては、非水二次電池や非水系電気二重層キャパシタに用いることのできる公知の溶媒を使用可能である。具体的には、環状炭酸エステルを含んでいる溶媒を好適に用いることができる。なぜなら、環状炭酸エステルは、エチレンカーボネート、プロピレンカーボネートに代表されるように、非常に高い比誘電率を有しているからである。環状炭酸エステルの中でもプロピレンカーボネートが好適である。なぜなら、凝固点が-49℃とエチレンカーボネートよりも低く、蓄電デバイスを低温でも作動させることができるからである。
 また、環状エステルを含んでいる溶媒もまた好適に用いることができる。なぜなら、環状エステルは、γ-ブチロラクトンに代表されるように、非常に高い比誘電率を有していることから、これら溶媒を成分として含むことにより、電解液29の非水溶媒全体として非常に高い誘電率を有することができる。
 非水溶媒としてこれらの1つのみを用いてもよいし、複数の溶媒を混合して用いてもよい。その他の溶媒として用いることのできる溶媒としては、鎖状炭酸エステル、鎖状エステル、環状あるいは鎖状のエーテル等が挙げられる。具体的には、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド等の非水溶媒を用いることができる。電解液の非水溶媒が正極の正極活物質層23に浸入し、正極活物質層23が非水溶媒で膨潤した状態となることによって正極における酸化還元反応の反応抵抗を低減することができる。ただし、非水溶媒への正極活物質の溶解度が高すぎると正極活物質層23が溶出してしまう可能性がある。このため、非水溶媒は、正極活物質層23に用いる電極活物質13を溶出しないものであることが好ましい。
 支持塩としては、以下に挙げるカチオンとアニオンとからなる支持塩が挙げられる。カチオンとしては、たとえば、リチウム、ナトリウム、カリウムなどのアルカリ金属のカチオン、マグネシウムなどのアルカリ土類金属のカチオン、テトラエチルアンモニウム、1,3-エチルメチルイミダゾリウムなどの4級アンモニウムカチオンを使用できる。カチオンは1種を単独でまたは2種以上を組み合わせて使用できる。これらの中でも、リチウムのカチオン、4級アンモニウムカチオンなどが好ましい。
 アニオンとしては、たとえば、ハロゲン化物アニオン、過塩素酸アニオン、トリフルオロメタンスルホン酸アニオン、四ホウフッ化物アニオン、トリフルオロリン6フッ化物アニオン、トリフルオロメタンスルホン酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(パーフルオロエチルスルホニル)イミドアニオンなどが挙げられる。アニオンは1種を単独でまたは2種以上を組み合わせて使用できる。支持塩の具体例としては、例えば、フッ化リチウム、塩化リチウム、過塩素酸リチウム、トリフロロメタンスルホン酸リチウム、四ホウフッ化リチウム、ビストリフロロメチルスルホニルイミドリチウム、チオシアン酸リチウム、過塩素酸マグネシウム、トリフロロメタンスルホン酸マグネシウム、四ホウフッ化ナトリウムなどが挙げられる。
 本実施形態の電極を用いた蓄電デバイスは、高容量、サイクル特性に優れるだけでなく、高出力な蓄電デバイスである。そのため、本実施形態の電極を用いた蓄電デバイスは、ハイブリッド自動車などの車両や携帯型電子機器に好適に用いられる。本発明の蓄電デバイスを備えた車両および携帯型電子機器は、蓄電デバイスが軽量であり、また、出力が大きく、かつ、繰り返し特性に優れているという特徴を有する。このため、特に、重量の点で従来の無機化合物を用いた蓄電デバイスでは達成し難かった軽量化が可能となる。
 本実施形態では、本発明の電極および蓄電デバイスを、リチウム二次電池に用いた形態で説明した。しかし、本発明の電極および蓄電デバイスは、電気化学的な電荷の蓄積を利用する種々のエネルギー蓄積デバイスやセンサなどに用いることができる。具体的には、本発明の電極を正極とし、活性炭負極と組み合わせて電気二重層キャパシタを構成してもよい。また、リチウム吸蔵黒鉛などのリチウムを吸蔵放出可能な負極と組み合わせたリチウムイオンキャパシタなど、二次電池以外の電気化学キャパシタなどに用いてもよい。また、各種電気化学素子に用いられる電極にも好適に用いることができる。電気化学素子の例としては、例えば充放電に伴う膨張収縮するような高分子ゲル電解質を電解質に用いることにより、高分子アクチュエーターを構成することができる。また、本発明の電極は充放電に伴い色が変化することから、導電性支持体として透明導電性ガラスを用い、かつ外装の一部にフィルムやガラスのような透明材を用いることにより、エレクトロクロミック表示素子を構成することができる。
 (第3の実施形態)
 以下、本発明による電極およびそれを用いた蓄電デバイスの第3の実施形態を説明する。
 本願発明者は、π電子共役雲を有する反応骨格を複数含む重合体化合物を電極活物質として用い、電活物質層中の電極活物質の比率を高めることにより、蓄電デバイスの高容量化を図ることを検討した。その結果、電極活物質の含有量が増大するすると、電極としての出力特性が低下し、設計通りの高容量かつ高出力な電極が得られなくなるという課題を確認した。
 この課題について、詳細な研究を行ったところ、集電体と活物質層との界面付近における電子伝導性およびイオン伝導性の低下が示唆された。これは、π電子共役雲を有する反応骨格を複数含む重合体化合物が有機物であり、導電助剤と比較して電子伝導性が低いため、集電体の表面が電子伝導性の低い電極活物質で覆われることにより、電極活物質と集電体との間における電子伝導が阻害されるためと考えられる。このような知見に基づき、本願発明者は蓄電デバイスにおいて、集電体と活物質層との間の電子伝導性を改善する構造を見出した。
 図9は、本実施形態の電極103の一実施形態の断面構造を模式的に示している。電極103は、導電性支持体11と導電性支持体11上に設けられた活物質層12とを備えている。
 導電性支持体11は電解エッチングアルミニウム層11aおよび導電層11bを含み、活物質層12は電解エッチングアルミニウム層11aと接している。電解エッチングアルミニウム層11aはアルミニウムからなり、微細孔が形成されることによって表面が粗面化されている。微細孔は電解エッチングにより形成された複数のエッチング孔であり、好ましくは、自己整合的に電解エッチングアルミニウム層11aの表面に配置されている。エッチング孔の孔径は、おおよそ0.05μm以上0.5μm以下であることが好ましい。また、電解エッチングアルミニウム層11aの厚さは、0.5μm以上5μm以下が好ましく、1μm以上3μm以下であることがより好ましい。エッチング孔の深さも電解エッチングアルミニウム層11aの厚さと同程度である。
 エッチング層の厚さが5μmよりも大きい場合、または、エッチング孔が0.5μmより大きい場合、電解エッチングアルミニウム層11aの強度が低下する。また、エッチング孔が0.5μmより大きい場合、エッチング孔内に電極活物質が入り込んでしまい、エッチング孔を埋めてしまう可能性が生じる。逆に、エッチング層の厚さが0.5μmより小さい場合、または、エッチング孔の孔径が0.05μmより小さい場合は、電解エッチングアルミニウム層11aの効果が十分には得られないことがある。また、エッチング孔が0.05μmより小さい場合、エッチング孔内に十分な電解液が含浸することが出来ず、本発明の効果が十分に得られなくなってしまう。
 導電層11bは導電性を有していれば、どのような材料によって形成されていてもよく、アルミニウムやステンレスのような複合材料から形成されていてもよいし、例えば他の金属によって形成されていてもよい。また、例えば樹脂フィルムの表面上にアルミニウムのような金属材料が蒸着されてなる材料でも構わない。アルミニウム箔の表面に電解エッチングを施すことによって電解エッチングアルミニウム層11aを形成し、エッチングされなかった部分を導電層11bとしてもよい。導電層11bの厚さは、導電性支持体11に要求される機械的強度や電気的特性を考慮して決定される。好ましくは、導電層11bと電解エッチングアルミニウム層11aとを合わせた導電性支持体11全体の厚さは、10μm以上30μm以下である。導電性支持体11全体の厚さが10μmよりも薄いと、電極強度が弱くなる。また、30μmよりも厚いと、蓄電デバイスにおいて、蓄電に寄与しない部分の体積が増え、容量密度が低下する。
 電解エッチングアルミニウム層11aを形成するための電解エッチング処理は、水溶液中でアルミニウム箔に、直流あるいは交流電流を通電することにより施すことができる。交流エッチングの場合は、例えば20℃~60℃の塩酸酸性水溶液中で、100~1000mA/cm2程度の電流を、5~50Hz程度の周波数で施すことにより行うことができる。
 活物質層12は、導電助剤14と電極活物質13とを含む。電極活物質13には第1の実施形態で説明した第1重合体化合物または第2重合体化合物、つまり、一般式(1)で表わされるテトラカルコゲノフルバレン骨格を主鎖、または、側鎖に含む重合体化合物が用いられる。活物質層12中の電極活物質13の重量比率は30wt%以上であることが好ましい。電極活物質13の重量比率が大きいほど電極103を用いた蓄電デバイスの充電容量は大きくなる。しかし、重量比率が大きくなりすぎると、導電助剤の割合が小さくなり、活物質層全体を均一に充放電することが困難になる。このため、物質層12中の活物質の重量比率は好ましくは、30wt%以上80wt%以下である。さらに好ましくは、50wt%以上70wt%以下である。
 導電助剤14には、電極の反応電位において、化学変化を起こさない種々の電子伝導性材料を用いることができる。例えば本発明の電極をリチウム二次電池の正極として用いる場合、導電助剤としてはカーボンブラック、グラファイト、アセチレンブラック等の炭素材料、ポリアニリン、ポリピロール、またはポリチオフェンなどの導電性高分子、炭素繊維、金属繊維などの導電性繊維類、金属粉末類、導電性ウィスカー類、導電性金属酸化物などを単独又はこれらの混合物として用いることができる。なかでも、カーボン材料が望ましい。
 活物質層12は、さらに結着剤15を含んでいてもよい。結着剤15は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。例えば、ポリエチレン、ポリプロピレンをはじめとするポリオレフィン樹脂、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン(HFP)をはじめとするフッ素系樹脂やそれらの共重合体樹脂、スチレンブタジエンゴム、ポリアクリル酸やその共重合体樹脂などを結着剤として用いることができる。
 上述の構成を有する電極103において、活物質層12中の電極活物質の含有比率が30%以上であれば、電極103はより高出力を達成し得る。また、電解エッチングアルミニウム層11aの表面は粗面化されている。このため、表面積が大きくなっており、導電性支持体11と活物質層12との界面において、導電性支持体11と活物質層12中の導電助剤14と電極活物質との接触確率が増大し、良好な電子伝導性が確保されると考えられる。
 また、電解エッチングアルミニウム層11aの表面は細孔を有している。細孔内には電極活物質13が浸入できないため、電極103を電解液に浸した場合、細孔内に電解液が侵入し、活物質層12と導電性支持体11との界面に層の界面に電解液が存在し得る。これにより充放電反応に必要なイオンの移動が円滑になる。特に、アニオンの移動性がスムーズになると考えられる。
 このようなことから、導電性支持体11は、電解エッチングアルミニウム層11aに替えて、電解エッチングアルミニウム層11aと同程度の粗さの凹凸を有する導電性の表面層を備えていてもよい。具体的には、ドライエッチングにより形成された凹凸を有する金属集電体や、蒸着や機械加工により形成された所定のパターンを有する金属集電体、あるいは、所定の凹凸を有する金属膜や所定の空隙を有する金属メッシュなどを金属箔上に形成した集電体を用いてもよい。この場合、集電体の材料として、上述したものを用いることができる。などを電解エッチングアルミニウム層11aの換わりに用いてもよい。
 電極103の作製法に特に制限はなく、蓄電デバイス用の電極を製造するための公知の方法を用いることができる。具体的には、まず、電解エッチングアルミニウム層11aおよび導電層11bを含む導電性支持体11を用意する。アルミニウム箔から導電性支持体11を作製する場合には、例えば、上述した手順にしたがう。
 電極活物質13が粒子の状態で活物質層12内で存在する場合には、粒子状の電極活物質13と導電助剤14とを適当な溶媒を用いて混合し、導電性支持体11の電解エッチングアルミニウム層11a上に塗布した後、溶媒を除去することによって電極103を作製することができる。
 また、電極活物質13を活物質層12内で均一に分散させるためには、電極活物質13が溶解した溶液を用いる。具体的には、電極活物質13を非プロトン性溶媒に溶解し、導電助剤と混合する。得られた混合体を導電性支持体11の電解エッチングアルミニウム層11a上に塗布した後、非プロトン性溶媒を除去することによって得られる。このような電極作製法を用いる場合、導電性支持体の表面が平滑面であれば、導電性支持体の表面を電極活物質13が覆ってしまい、導電性支持体と電極活物質との間の電子伝導性が極端に低下してしまう可能性がある。しかし、本実施形態によれば、導電性支持体11の表面には、電解エッチングアルミニウム層11aが設けられているため、電解エッチングアルミニウム層11aの細孔に電解液浸入し、活物質層12と導電性支持体11との間の電子伝導性が確保される。
 上記実施形態では、電極活物質13は活物質層12において、粒子を構成しているか、または、均一に分散していた。しかし、第1の実施形態および第2の実施形態で説明したように、電極活物質13は活物質層12において導電助剤14を被覆していてもよい。
 図10に示す電極103’において、導電性支持体11は電解エッチングアルミニウム層11aおよび導電層11bを含み、活物質層12’が電解エッチングアルミニウム層11aと接している。活物質層12’において、一般式(1)に示される構造を含む側鎖を有する重合体化合物である電極活物質13は、導電助剤13の表面の少なくとも一部を被覆している。図11は、活物質層12’の一部を拡大して示す模式図である。図10および図11に示すように、電極活物質13は、粒子を構成しておらず、導電助剤14の表面を被覆している。つまり、電極活物質13は導電助剤14を覆う被膜の状態で存在している。図10および図11では導電助剤14は楕円の断面で示されているが、導電助剤14の形状は楕円に限られず、電極材料の導電助剤として一般に用いられる導電助剤の種々の形状の一つであってよい。また、導電助剤14が構成する粒子形状を完全に電極活物質13が被覆していなくてもよく、導電助剤14の粒子同士が接触している部分があってもよい。
 導電助剤14のサイズに比べて、導電助剤14を被覆している電極活物質13の膜厚は小さい方が好ましい。つまり、導電助剤14の平均粒径をdとした場合、電極活物質13の膜厚tはt<dを満たすことが好ましい。より具体的には、導電助剤14の平均粒径は数十nm~数百nm程度であり、電極活物質13の膜厚tは、数nm~数百nm程度であることが好ましい。また、図10に示すように、活物質層12’は、導電助剤14を被覆する電極活物質13間に空隙12aを有していることが好ましい。電極活物質13の膜厚tが数nmより小さい場合、活物質層における電解物質13が占める割合が小さくなり、電極103の充電容量が小さくなってしまう。また、電極活物質13の膜厚tが数百nmを超えると、以下において説明するように、電極活物質内部におけるアニオンの移動距離も長くなるため、電極の抵抗成分が増加する。導電助剤14の平均粒径が数十nmより小さい場合、または数μmよりも大きい場合、上述した厚さtの電極活物質13を得ることが困難となることがある。
 活物質層12がこのような構造を備えている場合、上述した導電性支持体11の電解エッチングアルミニウム層11aの効果に加えて、第1の実施形態および第2の実施形態で説明したように、電極活物質13と導電助剤14との接触面積が増大し、導電助剤14と電極活物質13との間で酸化還元に伴う電子の移動が円滑に行われる。電極活物質13における酸化還元反応も均一に起こりやすくなる。
 また、電極活物質13が酸化還元反応を行う場合、電解液中のアニオンは、電極活物質13の電解液と接する表面から、電極活物質13内部の酸化還元部位である上述した一般式(1)に示される構造の側鎖の近傍にまで移動する必要がある。電極活物質13内は電解液中に比べてアニオンが移動しにくく、抵抗成分となる。したがって、アニオンの移動距離が短いほど酸化還元反応は速く進行する。
 図10に示す電極103’によれば、活物質層12’において、電極活物質13は薄膜の状態で存在するため、電極活物質13が電解液と接する表面から内部まで移動する距離は短い。さらに、好ましくは活物質層12’内に空隙12aが存在するため、この空隙12aに電解液が浸入することによって、電極活物質13の電解液と接触する面積も拡大する。このため、電極活物質13内部に存在する酸化還元部位である一般式(1)に示される構造の側鎖の近傍までアニオンが到達し易くなり、電極103における抵抗成分を低減することができる。
 このような構造を有する活物質層12は、一般式(1)に示される構造を含む重合体化合物である電極活物質13が特定の非プロトン性溶媒に対して高い親和性を有しているという特徴を利用することによって作製することができる。
 具体的には、一般式(1)に示される構造を含む側鎖を有する共重合体化合物を特定の非プロトン性溶媒に溶解させ溶液を形成し、この溶液とで導電助剤とを混合した混合体を作製し、非プロトン性溶媒を除去する工程を含む製造方法によって、導電助剤14の表面が薄い電極活物質13の膜で覆われた図10に示す構造の活物質層12’を形成することができる。
 図10の電極103’においても活物質層12’は結着剤を含んでいてもよい。結着剤には上述した材料を用いることができる。また、電極活物質を特定の有機溶媒に溶解させ、導電助剤に被覆させる場合、膜の均一性を向上させるためには、電極活物質と結着剤とが同じ有機溶媒に溶解していることが望ましく、フッ素系樹脂が好ましい。活物質層12’が結着剤を含む場合、結着剤は電極活物質13とともに導電助剤14の表面を被覆している。導電助剤14の表面において、電極活物質13と結着剤とは混合した混合体を構成している。
 電極103’の製造方法は、電極活物質が溶解した非プロトン性溶媒と導電助剤とを含む混合体を用意する工程と、塗布用混合体から非プロトン性溶媒を除去する工程とを含む。
 混合体の作製は、まず非プロトン性溶媒に電極活物質13を溶解させ、その非プロトン性溶媒と導電助剤14を混合しても良いし、非プロトン性溶媒と導電助剤を混合した混合体に電極活物質13を溶解させても良い。また、混合体は結着剤を含んでいてもよい。結着剤には、上述したものを用いることができる。導電助剤14および結着剤は非プロトン性溶媒に溶解しなくてもよい。また、混合体が結着剤を含んでいる場合、それぞれを混合する順番は任意である。電極活物質が非プロトン性溶媒に溶解し、均一分散していることが望ましい。そのため、まず非プロトン性溶媒に電極活物質を溶解させ、その後導電助剤および結着剤を混合させる順番が好ましい。
 混合体の作製には、電極活物質が非プロトン性溶媒に溶解していれば、この分野で常用されている混合方法を用いることができる。例えば、プラネタリーミキサーなどの混練機を用いて溶解を行うことができる。
 次に、得られた混合体から非プロトン性溶媒を除去する。非プロトン性溶媒の除去方法に特に制限はなく、この分野で常用されている手法を用いることができる。例えば、得られた混合体を導電性支持体などの基材上に塗布し、乾燥炉などを用いて高温乾燥による溶媒除去が挙げられる。作製した混合体を基材上に塗布し、溶媒を除去する場合、塗布方法はこの分野で常用されている手法を用いることができる。具体的には、スピンコートやスクリーン印刷法、コーターなどを用いて導電性支持体11上に混合体を塗布することができる。また、噴霧乾燥のように、得られた混合体を分散、高温乾燥することで、非プロトン性極性溶媒を除去する手法なども挙げられる。
 好ましくは、得られた混合体を導電性支持体上に塗布し、乾燥炉などを用いて高温乾燥によって溶媒を除去する。これにより、乾燥後に得られる導電性支持体と導電性支持体上に形成された電極活物質と導電剤を含む層は、蓄電デバイスの電極として用いることができる。
 基材として非導電性支持体を用いる場合には、乾燥により得られた電極活物質と導電剤を含む層を導電性支持体上支持させる。また、噴霧乾燥などにより溶媒除去を行った場合も同様に、導電性支持体上に支持させる。これにより、蓄電デバイス用の電極が得られる。
 このようにして、電極活物質13が粒子を構成しておらず、導電助剤14の表面を被覆している活物質層12が導電性支持体11上に形成された電極103が完成する。
 図10に示す電極103’によれば、電極活物質が導電助剤と被覆しているため、電極活物質と導電助剤との接触面積が大きく、電極活物質と導電助剤との間における電子の移動が円滑に行われる。また、電極活物質は導電助剤の表面で薄膜として存在しているため、電解液から電極活物質中における酸化還元反応部までの対イオンの移動距離が短くなり、対イオンの拡散による抵抗が低減できる。その結果、酸化還元反応時の電極における抵抗を低減することができる。このため、上述した効果が顕著に得られ、これにより、高出力な蓄電デバイス用電極が実現する。
 次に本発明の電極を正極として用いた蓄電デバイスについて詳細に記載する。図12は、本発明による蓄電デバイスの一実施形態であるコイン形リチウム二次電池203を模式的に示した断面図である。図12に示すコイン形リチウム二次電池は、正極31と、負極32と、セパレータ24とを備えている。正極31は、正極集電体22および正極活物質層23を含み、図9に示す電極103または図10に示す電極103’を用いることができる。負極32は負極活物質層26および負極集電体27を含み、負極活物質層26は負極集電体27に支持されている。
 負極活物質層26は、負極活物質を含む。負極活物質としては、リチウムを可逆的に吸蔵および放出する公知の負極活物質が用いられる。例えば天然黒鉛や人造黒鉛などの黒鉛材料、非晶質炭素材料、リチウム金属、リチウム含有複合窒化物、リチウム含有チタン酸化物、珪素、珪素を含む合金、珪素酸化物、錫、錫を含む合金、および錫酸化物、等のリチウムを可逆に吸蔵放出することのできる材料、もしくは、活性炭などの電気二重層容量を有する炭素材料、π電子共役雲を有する有機化合物材料などを用いることができる。これら負極材料は、それぞれ単独で用いてもよいし、複数の負極材料と混合して用いてもよい。負極集電体27には、例えば銅、ニッケル、ステンレスなど、リチウムイオン二次電池用負極の集電体として公知の材料を用いることができる。正極集電体22と同様、負極集電体27も金属箔やこれらの金属からなる導電性フィラーを含む樹脂フィルムなどが用いられる。
 負極活物質層26は、負極活物質のみを含んでいてもよいし、導電助剤および結着剤のいずれか一方、または、両方を含んでいてもよい。導電助剤には、上述したものを用いることができる。また、結着剤も、上述したものを用いることができる。
 正極31および負極32は正極活物質層23および負極活物質層26がセパレータ24と接するようにセパレータ24を挟んで対向し、電極群を構成している。セパレータ24は、電子伝導性を有しない樹脂によって構成された樹脂層であり、大きなイオン透過度を有し、所定の機械的強度および電気的絶縁性を備えた微多孔膜である。耐有機溶剤性および疎水性に優れるという観点から、ポリプロピレン、ポリエチレンなどを単独または組み合わせたポリオレフィン樹脂が好ましい。セパレータ24の代わりに、電解液を含んで膨潤し、ゲル電解質として機能する電子伝導性を有する樹脂層を設けてもよい。
 電極群はケース21の内部の空間に収納されている。また、ケース21の内部の空間には電解液29が注入され、正極31、負極32およびセパレータ24は電解液29に含浸されている。セパレータ24は、電解液29を保持する微細な空間を含んでいるため、微細な空間に電解液29が保持され、電解液29が正極31と負極32との間に配置された状態をとっている。ケース21の開口は、ガスケット28を用いて封口板25により封止されている。
 電解液29は、非水溶媒と、非水溶媒に溶解する支持塩とから構成される。非水溶媒としては、非水二次電池や非水系電気二重層キャパシタに用いることのできる公知の溶媒を使用可能である。具体的には、環状炭酸エステルを含んでいる溶媒を好適に用いることができる。なぜなら、環状炭酸エステルは、エチレンカーボネート、プロピレンカーボネートに代表されるように、非常に高い比誘電率を有しているからである。環状炭酸エステルの中でもプロピレンカーボネートが好適である。なぜなら、凝固点が-49℃とエチレンカーボネートよりも低く、蓄電デバイスを低温でも作動させることができるからである。
 また、環状エステルを含んでいる溶媒もまた好適に用いることができる。なぜなら、環状エステルは、γ-ブチロラクトンに代表されるように、非常に高い比誘電率を有していることから、これら溶媒を成分として含むことにより、電解液29の非水溶媒全体として非常に高い誘電率を有することができる。
 非水溶媒としてこれらの1つのみを用いてもよいし、複数の溶媒を混合して用いてもよい。その他の溶媒として用いることのできる溶媒としては、鎖状炭酸エステル、鎖状エステル、環状あるいは鎖状のエーテル等が挙げられる。具体的には、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド等の非水溶媒を用いることができる。電解液の非水溶媒が正極の正極活物質層23に浸入し、正極活物質層23が非水溶媒で膨潤した状態となることによって正極における酸化還元反応の反応抵抗を低減することができる。ただし、非水溶媒への正極活物質の溶解度が高すぎると正極活物質層23が溶出してしまう可能性がある。このため、非水溶媒は、正極活物質層23に用いる電極活物質13を溶出しないものであることが好ましい。
 支持塩としては、以下に挙げるカチオンとアニオンとからなる支持塩が挙げられる。カチオンとしては、たとえば、リチウム、ナトリウム、カリウムなどのアルカリ金属のカチオン、マグネシウムなどのアルカリ土類金属のカチオン、テトラエチルアンモニウム、1,3-エチルメチルイミダゾリウムなどの4級アンモニウムカチオンを使用できる。カチオンは1種を単独でまたは2種以上を組み合わせて使用できる。これらの中でも、リチウムのカチオン、4級アンモニウムカチオンなどが好ましい。
 アニオンとしては、たとえば、ハロゲン化物アニオン、過塩素酸アニオン、トリフルオロメタンスルホン酸アニオン、四ホウフッ化物アニオン、トリフルオロリン6フッ化物アニオン、トリフルオロメタンスルホン酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(パーフルオロエチルスルホニル)イミドアニオンなどが挙げられる。アニオンは1種を単独でまたは2種以上を組み合わせて使用できる。支持塩の具体例としては、例えば、フッ化リチウム、塩化リチウム、過塩素酸リチウム、トリフロロメタンスルホン酸リチウム、四ホウフッ化リチウム、ビストリフロロメチルスルホニルイミドリチウム、チオシアン酸リチウム、過塩素酸マグネシウム、トリフロロメタンスルホン酸マグネシウム、四ホウフッ化ナトリウムなどが挙げられる。
 本発明の電極を用いた蓄電デバイスは、高容量、サイクル特性に優れるだけでなく、高出力な蓄電デバイスである。そのため、本発明の電極を用いた蓄電デバイスは、ハイブリッド自動車などの車両や携帯型電子機器に好適に用いられる。本発明の蓄電デバイスを備えた車両および携帯型電子機器は、蓄電デバイスが軽量であり、また、出力が大きく、かつ、繰り返し特性に優れているという特徴を有する。このため、特に、重量の点で従来の無機化合物を用いた蓄電デバイスでは達成し難かった軽量化が可能となる。
 本実施形態では、本発明の電極および蓄電デバイスを、リチウム二次電池に用いた形態で説明した。しかし、本発明の電極および蓄電デバイスは、電気化学的な電荷の蓄積を利用する種々のエネルギー蓄積デバイスやセンサなどに用いることができる。具体的には、本発明の電極を正極とし、活性炭負極と組み合わせて電気二重層キャパシタを構成してもよい。また、リチウム吸蔵黒鉛などのリチウムを吸蔵放出可能な負極と組み合わせたリチウムイオンキャパシタなど、二次電池以外の電気化学キャパシタなどに用いてもよい。また、各種電気化学素子に用いられる電極にも好適に用いることができる。電気化学素子の例としては、例えば充放電に伴う膨張収縮するような高分子ゲル電解質を電解質に用いることにより、高分子アクチュエーターを構成することができる。また、本発明の電極は充放電に伴い色が変化することから、導電性支持体として透明導電性ガラスを用い、かつ外装の一部にフィルムやガラスのような透明材を用いることにより、エレクトロクロミック表示素子を構成することができる。
 以下、テトラカルコゲノフルバレン骨格を繰り返し単位に有する重合体を合成し、これを用いた電極および蓄電デバイスの作製を行い、蓄電デバイスの特性を評価した結果を詳細に説明する。
(I) 電極活物質および活物質層構造の評価
 まず、本発明の電極の効果を確認するため、構造の異なる電極活物質を用い、異なる電極製造方法を用いて電極およびそれを用いた蓄電デバイスを作製し、蓄電デバイスの特性を評価した結果を説明する。
1. 電極および蓄電デバイスの作製
(実施例1)
(1)正極の作製
 正極活物質として、下記式(39)で表される共重合体化合物(以下、共重合体化合物39と記載する。)を合成した。
Figure JPOXMLDOC01-appb-C000057
 化学式(39)で表される共合成する共重合体化合物を構成する第1ユニット(側鎖に酸化還元部位を有するユニット)のユニット数nに対する第2ユニット(側鎖に酸化還元部位を有していないユニット)のユニット数mの構成比率m/nはおよそ1である。共重合体化合物39は、側鎖に含まれるテトラチアフルバレン前駆体の合成、共重合体主鎖化合物の合成、および共重合体主鎖化合物へのテトラチアフルバレンのカップリングに分けて合成した。以下に順に説明する。
 テトラチアフルバレン前駆体の合成は、以下の式(R2)に示すルートで行った。コルベンに5gのテトラチアフルバレン2(Aldrich社製)を入れ、さらに80ccのテトラヒドロフラン(Aldrich社製)を加えた。これを-78℃に冷却した後、1モル濃度のリチウムジイソプロピルアミドのn‐ヘキサン‐テトラヒドロフラン溶液(関東化学社製)を10分で滴下した後、7.3gのパラホルムアルデヒド(関東化学社製)を加え、15時間攪拌することにより、反応を進行させた。このようにして得た溶液を900ccの水に注ぎ、1Lのジエチルエーテル(関東化学社製)で2回抽出し、500ccの飽和塩化アンモニウム水溶液および500ccの飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。乾燥剤除去後、減圧濃縮し、得られた粗体6.7gをシリカゲルカラム精製し、1.7gの精製物を得た。精製物がテトラチアフルバレン前駆体51であることをH-NMRおよびIRにより確認した。
Figure JPOXMLDOC01-appb-C000058
 共重合体主鎖化合物の合成は、以下の式(R3)に示すルートで行った。モノマー原料として、40gのメチルメタクリレート53(Aldrich社製)と21gのメタクリロニルクロライド52(Aldrich社製)を90gのトルエン(Aldrich社製)に混合し、重合開始剤として、4gのアゾイソブチロニトリル(Aldrich社製)を加えた。混合物を100℃で4時間攪拌することにより、反応を進行させた。このようにして得た溶液にヘキサンを添加することにより、再沈させ、57gの沈殿生成物を得た。生成物が式54で示される共重合体主鎖化合物であることを、H-NMR、IR、GPCにより確認した。H-NMR測定では、第1ユニットおよび第2ユニットの主鎖にそれぞれ1つずつ結合しているメチル基の水素に由来するピークと、第2ユニットの側鎖部に結合しているメチル基を異なったピークで観測することができる。そのため、得られたH-NMRスペクトルのそれぞれのピークの積分値の比率から、共重合体主鎖化合物における第2ユニットの割合が求められ、第1ユニットに対する第2ユニットの構成比率m/nを算出することができる。例えば、クロロホルム溶媒中でのH-NMR測定時において、本実施例で用いた共重合体主鎖化合物を測定した場合、第1ユニットおよび第2ユニットの主鎖にそれぞれ主鎖に結合しているメチル基に由来するピークは0.5~2.2ppm付近、第2ユニットの側鎖部に結合しているメチル基に由来するピークを3.6ppm付近に観測することができ、それらのH-NMRスペクトルのピークの積分値の比率から、合成した共重合体主鎖化合物の第1ユニットと第2ユニットの構成比率を算出することができる。また、IR測定では、第1ユニット側鎖部のカルボニル基(C=O)、Cl部、第2ユニット側鎖部のカルボニル基がそれぞれ異なったピークとして測定することができる。なお、合成した共重合体主鎖化合物の分子量は、GPCを用いて測定し、重合度が20を超えていることを確認した。
Figure JPOXMLDOC01-appb-C000059
 共重合体主鎖化合物54へのテトラチアフルバレン前駆体51のカップリングは、以下の式(R4)に示すルートで行った。Arガス気流下で、反応容器に1.0gのテトラチアフルバレン前駆体51と26ccのテトラヒドロフランとを入れ、室温で撹拌した。反応液に0.17gのNaH(60wt% in mineral oil)(Aldrich社製)を滴下し、40℃で1時間撹拌しながら、8.5ccのテトラヒドロフランに0.58gの共重合体主鎖化合物54を溶解させた溶液を混合した。混合液を70℃で一晩撹拌することにより、反応を進行させた。このようにして得た溶液にヘキサンを加え、再沈により、0.2gの沈殿生成物を得た。得られた生成物が共重合体化合物39であることを、H-NMR、IR、GPCにより確認した。また、H-NMR測定を用いて、共重合体主鎖化合物と同様に第1ユニットと第2ユニットの構成比率を求めることができる。例えば、酸化還元部位であるテトラチアフルバレンと主鎖を結合しているメチレン基の水素に由来するピークを4.8ppm付近、テトラチアフルバレンの主鎖との結合部以外の水素に由来するピークを6.8~7.0ppm付近に観測することができる。このため、これら第1ユニットによるピークの強度と、第2ユニット側鎖部のメチル基に由来するピークの強度との比から第1ユニットと第2ユニットの構成比率を求めることができる。なお、本実施例の構成比率は、TTF導入工程後の共重合体化合物39のH-NMR測定における、第1ユニットに由来するピークと、第2ユニット側鎖部に結合しているメチル基に由来するピークの積分値より算出した値を用いている。また、得られたH-NMRスペクトルの結果より、共重合体化合物39の第1ユニット(酸化還元部位であるテトラチアフルバレン部位を含むユニット)に対する第2ユニット(メタクリレート部位)の構成比率m/nは、およそ1であることを確認した。また、合成した共重合体化合物39の重量平均分子量はおよそ28000であった。すなわち、重合体内に含まれるTTFユニット数nは72、重合度(nとmの和)は144であり、4以上であることを確認した。合成した共重合体化合物39の硫黄元素分析の結果、硫黄含有量は30.2wt%であった。硫黄含有量から共重合体化合物39の理論容量を計算すると、125mAh/gとなる。
Figure JPOXMLDOC01-appb-C000060
 合成した共重合体化合物39を用いて、ガス精製装置を備えたアルゴン雰囲気のグローボックス内で正極の作製を行った。
 まず、共重合体化合物39を溶解した混合体を作製した。50mgの共重合体化合物39を乳鉢で粉砕し、非プロトン性溶媒としてNMP(和光純薬工業社製)を150mg加え、乳鉢内で混練することで、共重合体化合物39を非プロトン性極性溶媒へ溶解させた。NMP内の共重合体化合物39の粒度分布を島津製作所製SALD-7000を用い、レーザー回折/散乱法にて測定した。測定条件は、測定粒度範囲を0.015μm~500μm、測定間隔を2秒とし、付属の撹拌プレートを用いて溶媒内を撹拌しながら測定を行った。測定の結果、回折/散乱強度は観測されず、NMP中に0.015μm以上の粒がないことを確認した。また、紫外可視吸光スペクトル(UV-vis)測定を行い、300~320nm付近にTTF環に由来する吸収ピークを確認することで、NMP中に共重合体化合物39が存在していることを確認した。
 共重合体化合物39を溶解させたNMPに、導電助剤であるアセチレンブラック400mgと結着剤であるポリフッ化ビニリデン100mg、さらにNMP5.8gとを加え、混練し、混合体を作製した。
 次に、得られた混合体を集電体に塗布した。集電体として、厚さ20μmのアルミニウム箔を用いた。混合体のアルミニウム箔への塗布はコーターを用いて行った。塗布は、ギャップ幅を300μm、操引速度を7mm/secとして行った。
 次に非プロトン性溶媒であるNMPを除去した。アルミニウム箔上に塗布した混合体を恒温槽内に入れ、温度80℃で1時間乾燥することによって非プロトン性溶媒の除去を行った。さらに、直径13.5mmの円盤状に打ち抜き裁断して正極を作製した。
 図13(a)は作製した正極の集電体近傍の走査型電子顕微鏡(SEM)像を示している。作製した正極の正極活物質層の厚さは、SEM像から90μmであった。また、作製した正極断面を電子線マイクロアナライザー(EPMA、日本電子株式会社JXA-8900)にて電極活物質に由来する硫黄の分布を倍率1000倍で観察した。測定結果を図13(b)に示す。図13(b)において、硫黄が存在する領域がモノクロの諧調で表示されており、硫黄が多い部分は白く示され、硫黄が全く存在しない領域は、黒色で示される。測定結果から、1μm以上の活物質粒子は観測されず、硫黄は極板内に一様に分布していることがわかった。正極活物質の塗布重量は、極板面積あたり0.2mg/cm2であった。
 さらに詳細な正極の活物質層中における電極活物質の分布状態を把握するために、倍率40000倍で断面SEM観察およびオージェ電子分光法(AES、ULVAC-PHI,Inc.製Model670)による元素分析を行った。図14(a)は分析領域の断面SEM像を示し、図14(b)および(c)は、断面SEM像に対応する領域の炭素分布像および硫黄分布像を示している。
 図14(b)において、炭素が存在する領域はモノクロの諧調で表示されており、炭素が多い部分は白く示され、炭素が全く存在しない領域は、黒色で示される。図14(b)から、導電助剤に由来する粒子が確認できる。
 また、図14(c)において、硫黄が存在する領域はモノクロの諧調で表示されており、硫黄が多い部分は白く示され、硫黄が全く存在しない領域は、黒色で示される。図14(c)から、電極活物質ポリマーの分布が確認できる。図14(b)および(c)から、導電助剤粒子の分布とほぼ重なるように活物質が分布していることが確認できる。また、導電助剤粒子を被覆するように硫黄元素が分布していることが確認できる。
 この結果より、実施例1では活物質層中において、電極活物質が導電助剤を被覆していることがわかる。
(2)蓄電デバイスの作製
 負極、電解液を作製した。負極活物質である金属リチウム(厚み300μm)を直径15mmの円盤状に打ち抜き、同じく直径15mmの円盤状の集電板(ステンレス製)に貼り付けることによって、負極を作製した。
 炭酸エチレン(EC)と炭酸エチルメチル(EMC)を体積比1:3で混合した溶媒を用い、塩としてこれに1.25mol/L濃度となるように6フッ化りん酸リチウムを溶解し、電解液を作製した。なお、電解液は、正極、負極、多孔質ポリエチレンシート(厚み20μm)に含浸させて用いた。
 作製した正極、負極、電解液を図3に示すコイン形電池のケースに収納し、ガスケットを装着した封口板でケースの開口を挟み、プレス機にてかしめ封口し、コイン形蓄電デバイスを得た。
(実施例2)
(1)正極の作製
 正極活物質として、下記式(17)で表される重合体化合物(以下、重合体化合物17と記載する。)を合成した。
Figure JPOXMLDOC01-appb-C000061
 正極活物質として、化学式(17)で表される重合体を合成した。以下、化学式(17)で表される重合体を重合体化合物17と表す。
(i).ポリ-(4,4’-ジフェニルテトラチアフルバレン)-(1,3-ジエチニルベンゼン)共重合体(重合体化合物17)の合成
 一般式(11)において、XがSであり、R5およびR6がフェニル基であり、R10からR12およびR14が水素基である、ポリ-(2,6-ジフェニルテトラチアフルバレン)-(1,3-ジエチニルベンゼン)共重合体(重合体化合物17)を以下の式(R5)に示すように、前駆体化合物55の合成を行い、得られた化合物55と化合物56をカップリングすることにより合成した。以下合成法を順に示す。
Figure JPOXMLDOC01-appb-C000062
 化合物55(4,4’-ジヨード-5,5’-ジフェニルテトラチアフルバレン)の合成化合物55を以下の式(R6)に従って合成した。
Figure JPOXMLDOC01-appb-C000063
 窒素雰囲気下、50mlのシュレンク管に2.8mlのジイソプロピルアミンおよび15mlのTHFを入れ、-78℃に保持した。そこに13.7mlのブチルリチウムを加え、約1時間攪拌し、リチウムジイソプロピルアミド(LDA)を合成した。次に窒素ガス気流中下、-78℃において、100mlのシュレンク管に3.0gの4,4’-ジフェニルテトラチアフルバレン57(アルドリッチ社製)を加え、25mlのTHFに溶解させ-78℃に保持した。この溶液に、先に作製したLDAをゆっくり滴下し、30分攪拌した。その後、9.33gのパーフルオロヘキシルジヨード(4.5ml)を滴下し、1時間攪拌し、さらに室温にて1時間攪拌した。反応後、蒸留水を加え反応を停止させたのち、ろ過、洗浄、再結晶を行い、赤色針状結晶を得た。収率は52%であった。
 得られた化合物の構造は、H-NMR(CDCl3)、IR測定(KBr法)により同定した。H-NMRの結果、7.4-7.5ppm付近にフェニル基由来の化学シフトが観察された。IR測定の結果、3052cm-1付近にC-H伸縮振動由来のピークが観測された。元素分析の結果、理論値が炭素35.53、水素1.64、硫黄21.05、ヨウ素41.78重量%であるのに対し、実験値は炭素35.43、水素1.68、硫黄22.79、ヨウ素37.77重量%であった。以上の結果から、得られた粉末は化合物55であることを確認した。
(ii) 重合体化合物17の合成
 窒素雰囲気下、30mlのシュレンク管に合成した0.7g(1.15mmol)の化合物55をとり、30mlのTHFを加えた。これに、10.95mg(0.0575mmol)のヨウ化銅を加え、さらに66.4mg(0.0575mmol)のテトラキス(トリフェニルホスフィン)パラジウム(以下、Pd(PPh34)、1mlを加え撹拌した。この溶液に0.0145g(1.15mmol)の化合物56である1,3-ジエチニルベンゼンおよび1mlのトリエチルアミンを加え、60℃で24時間撹拌した。その後、ろ過し、1N塩酸水溶液およびエタノールで生成物を洗浄し、乾燥後赤褐色粉末の重合体を得た。収率は62%であった。
 得られた重合体の構造は、GPCによる分子量分析およびIR測定から同定した。得られた粉末のIR測定(KBr法)を行った結果、692、755、793、1031、1076、1442、1473、1595、2960cm-1付近にピークが観測された。800~650cm-1付近にTTF骨格由来のC-S伸縮振動が確認された。
 得られた粉末のGPC測定から、得られた生成物は3つの分子量分布を有することがわかった。それぞれのピーク分子量はポリスチレン換算で37670、1200、680であった。IR測定などの結果から、得られた生成物は重合体化合物17で示される単位構造を有しているが、モノマーやダイマーなどの低重合体が含まれていることが推察された。この低重合体を含んだ生成物を重合体化合物17’とした。
 重合体化合物17’から低重合体を除くために精製を行った。17mgの重合体化合物17’を7gのN-メチルピロリドンに溶解させ、これを100gのエタノール中に滴下することにより再沈殿を行った。得られた生成物の分子量分布を測定したところ、分子量2000以下のピークは見られず、分子量の分布は2000~10万程度であった。ピーク分子量は38000であった。この生成物を重合体化合物17とする。重合体化合物17の繰り返し単位の分子量は約500であるから、得られた重合体化合物17の重合度nは4以上であることがわかる。
 上述した合成方法と同様に合成した重合体化合物17を用いて、ガス精製装置を備えたアルゴン雰囲気のグローボックス内で正極の作製を行った。
 まず、重合体化合物17を溶解した非プロトン性溶媒と導電助剤を含む混合体を作製した。80mgの重合体化合物17を乳鉢で粉砕し、非プロトン性溶媒としてNMPを240mg加え、乳鉢内で混練することで、重合体化合物17を非プロトン性溶媒へ溶解させた。NMP内の重合体化合物17の粒度分布を島津製作所製SALD-7000を用い、レーザー回折/散乱法にて測定した。測定条件は、測定粒度範囲を0.015μm~500μm、測定間隔を2秒とし、付属の撹拌プレートを用いて溶媒内を撹拌しながら測定を行った。測定の結果、回折/散乱強度は観測されず、NMP中に0.015μm以上の粒子がないことを確認した。また、UV-vis測定を行い、300nm付近にテトラチアフルバレン骨格に由来する吸収ピークを確認することで、NMP中に共重合体が存在していることを確認した。
 重合体化合物17を溶解させたNMPに、導電助剤であるアセチレンブラック256mgと結着剤であるポリフッ化ビニリデン64mg、さらにNMP2.66gとを加え、混練し、混合体を作製した。
 次に、得られた混合体を集電体に塗布した。集電体として、厚さ20μmのアルミニウム箔を用いた。混合体のアルミニウム箔への塗布はコーターを用いて行った。塗布は、ギャップ幅を300μm、操引速度を7mm/secとして行った。
 次に非プロトン性溶媒を除去した。アルミニウム箔上に塗布した混合体を恒温槽内に入れ、温度80℃、の雰囲気下で1時間乾燥することによって非プロトン性溶媒の除去を行った。さらに、直径13.5mmの円盤状に打ち抜き裁断して正極を作製した。
 図15(a)は作製した正極の集電体近傍の走査型電子顕微鏡(SEM)像を示している。作製した正極の正極活物質層の厚さは、SEM)像から90μmであった。また、作製した正極断面を電子線マイクロアナライザー(EPMA、日本電子株式会社JXA-8900)にて電極活物質に由来する硫黄の分布を倍率1000倍で観察た。測定結果を図15(b)に示す。図15(b)において、硫黄が存在する領域がモノクロの諧調で表示されており、硫黄が多い部分は白く示され、硫黄が全く存在しない領域は、黒色で示される。測定結果から、1μm以上の活物質粒子は観測されず、1000倍程度の倍率では、硫黄は極板内に一様に分布していると観察されることがわかった。
 さらに詳細な正極の活物質層中における電極活物質の分布状態を把握するために、倍率40000倍で断面SEM観察およびオージェ電子分光法(AES、ULVAC-PHI,Inc.製Model670)による元素分析を行った。その結果、導電助剤粒子の分布とほぼ重なるように活物質が分布していることが確認でき、炭素を含む導電助剤と推定される粒子の表面に硫黄の存在を示す皮膜状の領域が確認できた。この領域は電極活物質であると考えられる。また、活物質層中、炭素が存在しない領域も確認された。これらの結果から、導電助剤の表面を電極活物質が被覆しており、電極活物質も導電助剤も存在しない空隙も形成されていると推定される。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例1と同様に蓄電デバイスを作製した。
(比較例1)
(1)正極の作製
 正極活物質として、共重合体化合物39を実施例1と同様に合成した。合成した共重合体化合物39を用いて、以下に記載する製造方法で正極を作製した。
 乳鉢で粉砕した50mgの共重合体化合物39にアセチレンブラック400mgを加え、均一に混合し、さらにポリテトラフルオロエチレン100mgを加えて混合することにより、正極活物質合剤を得た。この正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極を作製した。乳鉢で粉砕した共重合体化合物39の粒子径はおよそ5~20μm程度であった。作製した極板断面を電子顕微鏡および電子線マイクロアナライザー(EPMA)にて観察し、電極活物質に由来する硫黄の分布を測定した。図16(a)および(b)は、それぞれ比較例1の正極断面の電極活物質部分を拡大して示すSEM像およびEPMAによる硫黄の分布像を示している。図16(b)に示すように、EPMAにより、5μmから最大で20μm程度の粒状の硫黄分布が観測された。このことから、電極活物質が粒子状で存在していることが確認された。また、作製した正極の正極活物質層の厚みは、90μmであった。正極活物質の重量は極板単位面積あたり0.2mg/cm2であった。
(2)蓄電デバイスの作製
 正極として、上述の正極を用いたこと以外、実施例1と同様に蓄電デバイスを作製した。
(比較例2)
(1)正極の作製
 正極活物質として重合体化合物17を用い、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した重合体化合物80mgにアセチレンブラック256mgを加え、均一に混合し、さらにポリテトラフルオロエチレン64mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。乳鉢で粉砕した共重合体化合物の粒子径はおよそ10μm程度であり、作製した極板断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、10μm程度の活物質粒が観測された。また、作製した正極極板の正極活物質層の厚みは、90μmであった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例1と同様に蓄電デバイスを作製した。
(比較例3)
(1)正極の作製
 正極活物質として、式(40)で示される重合体化合物(以下、重合体化合物40と記載する)を合成した。重合体化合物40は、式(37)で示される共重合体化合物の第2ユニットを含まず、酸化還元部位を含む第1ユニットのみで構成される。重合体化合物40は、側鎖に含まれるテトラチアフルバレン前駆体の合成、重合体主鎖化合物の合成、および重合体主鎖化合物へのテトラチアフルバレンのカップリングに分けて合成した。以下、順に説明する。
Figure JPOXMLDOC01-appb-C000064
 テトラチアフルバレン前駆体51の合成は、実施例1と同様にして行った。重合体主鎖化合物の合成は、以下の式(R7)に示すルートで行った。モノマー原料として、50gのメタクリロニルクロライド52(Aldrich社製)を24gのトルエン(Aldrich社製)に混合し、重合開始剤として、0.5gのアゾイソブチロニトリル(Aldrich社製)を加えた。混合物を65℃で6時間撹拌することにより、反応を進行させた。生成物が式(58)で示される化合物(以下重合体主鎖化合物18と記載する)であることを、H-NMR、IR、GPCにより確認した。
Figure JPOXMLDOC01-appb-C000065
 重合体主鎖化合物18へのテトラチアフルバレン前駆体51のカップリングは、式(R8)に示すルートで行った。Arガス気流下で、反応容器に3.4gのテトラチアフルバレン前駆体51と88ccのテトラヒドロフランとを入れ、室温で撹拌した。反応液に0.574gのNaH(60wt% in mineral oil)(Aldrich社製)を20分かけて滴下し、40℃で1時間撹拌しながら、15ccのテトラヒドロフランに1.0gの重合体主鎖化合物58を溶解させた溶液を混合した。混合液を80℃で一晩撹拌することにより、反応を進行させた。このようにして得た溶液を濃縮し、得られた固体の中に50ccの水を入れて撹拌した後、ろ過して得られた固体を50ccのメタノールに入れて撹拌し、ろ過を行った。得られた固体をヘキサンで洗浄し、メタノールで洗浄した後、40℃5時間減圧乾燥させることで、2.2gの生成物を得た。得られた生成物が重合体化合物40であることを、H-NMR、IR、GPCにより確認した。また、合成した重合体化合物40の重量平均分子量はおよそ44000であった。合成した重合体化合物40の硫黄元素分析の結果、硫黄含有量は38.9wt%であった。硫黄含有量から重合体化合物40の理論容量を計算すると、168mAh/gである。
Figure JPOXMLDOC01-appb-C000066
 正極活物質として重合体化合物40を用いること以外、実施例1と同様に正極を作製した。非プロトン性溶媒であるNMPに重合体化合物40を加え、混練した後、NMP内の重合体化合物40の粒度分布を測定したところ、5~20μm程度の粒が存在していることが確認された。また、NMPに重合体化合物40が溶解していないことが目視により確認された。
 作製した正極断面を電子顕微鏡および電子線マイクロアナライザー(EPMA)にて観察し、電極活物質に由来する硫黄の分布を測定した。図17(a)および(b)は、それぞれ比較例2の正極断面の電極活物質部分を拡大して示すSEM像およびEPMAによる硫黄の分布像を示している。図17(b)に示すように、EPMAにより、最大で20μm程度の粒状の硫黄分布が観測された。このことから、活物質が粒子状で存在していることが確認された。また、作製した正極の正極活物質層の厚みは、90μmであった。正極活物質の重量は極板単位面積あたり0.2mg/cm2であった。
(2)蓄電デバイスの作製
 正極として、上記の正極を用いたこと以外、実施例1と同様に蓄電デバイスを作製した。
(比較例4)
(1)正極の作製
 正極活物質として、重合体化合物40を用いた以外、比較例1と同様に正極を作製した。
 作製した正極断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、5~20μm程度の活物質粒が観測された。また、正極の正極活物質層の厚みは、90μmであった。正極活物質の重量は極板単位面積あたり0.2mg/cm2であった。
(2)蓄電デバイスの作製
 正極として、上記の正極を用いたこと以外、実施例1と同様に蓄電デバイスを作製した。
(比較例5)
(1)正極の作製
 式(41)で示される重合体化合物(以下重合体化合物41と記載する)を合成した。重合体化合物41は第2ユニットを含まず、酸化還元部位を有する第1ユニットのみで構成される化合物である。
Figure JPOXMLDOC01-appb-C000067
 重合体化合物41は、ポリビニルアルコールとテトラチアフルバレンカルボキシル誘導体を脱水縮合により反応させて合成した。用いた重合体化合物13の重量平均分子量はおよそ50000であった。合成した重合体化合物41の硫黄元素分析の結果、硫黄含有量は45.3wt%であった。硫黄含有量から重合体化合物41の理論容量を計算すると、196mAh/gである。
 正極活物質として重合体化合物41を用いること以外、比較例1と同様に正極を作製した。
(2)蓄電デバイスの作製
 正極として、上記の正極を用いたこと以外、実施例1と同様に蓄電デバイスを作製した。
2. 蓄電デバイスの特性の評価
 実施例1および比較例1~4の蓄電デバイスの充放電容量評価および出力評価を行った。蓄電デバイスの充放電容量評価は、初回の充放電時の充放電容量を活物質重量で割った値、すなわち活物質単位重量あたりの充放電容量で評価した。充放電は、0.1mAの定電流充放電によって行った。充放電条件は、充電上限電圧を4.0V、放電下限電圧を3.0Vとした。充電終了後、放電を開始するまでの休止時間はゼロとした。
 出力評価は、抵抗値評価および大電流充放電容量評価により行った。抵抗値評価は、充放電を3回繰り返した後の放電状態において、1Hzでの交流インピーダンス測定の抵抗値を用いて評価を行った。交流インピーダンス測定の測定条件は、電圧振幅を10mVとした。充放電条件は、充電上限電圧を4.0V、放電下限電圧を3.0Vとした。充電終了後、放電を開始するまでの休止時間および放電終了後、充電を開始するまでの時間はゼロとし、0.1mAの定電流充放電とした。大電流充放電容量評価は、3mAの定電流放電時の放電容量を0.1mAの定電流放電時の放電容量で割った値、すなわち0.1mA定電流放電時に対する3mAの定電流放電時の容量維持率で評価した。充放電条件は、充電上限電圧を4.0V、放電下限電圧を3.0Vとし、充電は0.1mAの定電流充電とした。
 実施例1、2および比較例1~5の蓄電デバイスの充放電容量評価および出力特性評価結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1~5に比べて実施例1および実施例2では抵抗値が大きく減少している。実施例1、実施例2および比較例1~5は正極のみが異なるため、実施例1および実施例2における抵抗値の減少は正極の抵抗値の減少に起因する。
 実施例1と比較例1および実施例2と比較例2は、それぞれ共に同じ化合物を電極活物質として用いており、正極の製造方法および活物質の構造のみが異なる。具体的には、実施例1および実施例2では、電極活物質を溶媒に溶解させることによって、電極活物質である重合体化合物4および重合体化合物17が導電助剤の表面を被覆しており、活物質層内に分散して存在している。これに対し、比較例1および比較例2では、電極活物質が粒として存在する。このため、実施例1および実施例2のほうが活物質層内の共重合体化合物39や重合体化合物17全体が酸化反応を受けやすく、比較例1に比べて、活物質の反応抵抗が低減される結果、蓄電デバイスの抵抗が低下したと考えられる。
 比較例3および4に用いた正極活物質は、何れも重合体化合物40であるが、正極活物質層の形成方法が異なっている。比較例3では、実施例1と同様、重合体化合物40をNMPと混合し、混合体を正極集電体に塗布しているが、重合体化合物40の溶解性が低いため、重合体化合物40は溶解せず、正極活物質層中において、重合体化合物40は粒子として存在していた。比較例4は比較例1と同様、粒子の状態で正極活物質層に添加している。このように、製造方法は異なるが、いずれも正極活物質層内で重合体化合物40が粒子の形態で存在しているため、比較例1と同様、活物質の反応抵抗が高くなり、蓄電デバイスの抵抗が高い値になったと考えられる。
 また表1に示すように、実施例1では3mAでの定電流放電時においても63%、実施例2では3mAでの定電流放電時においても75%の容量を維持しているのに対し、比較例1~5では5%以下の放電容量であった。これは、蓄電デバイスの抵抗値が高いことに起因していると考えられる。比較例1~5では、大電流放電時の電圧降下が大きくなるため、還元電位が3.0V以下となり、放電容量が5%以下となるのに対し、実施例1および実施例2では電圧降下が小さく、還元電位が3.0V以上であるため、3mAでの放電時にも高い容量維持率であると考えられる。このように、本発明の電極を用いることで、高出力な蓄電デバイスが実現できることを確認した。
 共重合体化合物39の第1ユニット(酸化還元部位であるテトラチアフルバレン部位を含むユニット)に対する第2ユニット(メタクリレート部位)の構成比率m/nが5となる化合物についても合成し、化合物がNMP(非プロトン性極性溶媒)に可溶であり、また活物質層中において、電極活物質が導電助剤を被覆した構造の電極が得られることを確認した。また、その電極性能も、m/n=1の共重合体と同様の高出力性能が得られることを確認した。以上のことから、共重合体化合物の第1ユニットのユニット数nに対する第2ユニットのユニット数mの構成比率m/nが0より大きく、構成比率m/nが5以下である場合に、充電密度を高め、かつ、安定して繰り返し酸化還元反応を生じさせることができることを確認した。
(II)活物質層における電極活物質の配合比の評価
 次に、本発明の電極における活物質層内の電極活物質の配合比率の効果を確認するため、活物質比率の異なる電極およびそれを用いた蓄電デバイスを作製し、蓄電デバイスの特性を評価した結果について詳細に説明する。
1. 電極および蓄電デバイスの作製
(実施例3)
(1)正極の作製
 共重合体化合物39を電極活物質として用い、塗布時のギャップ幅を150μmとしたこと以外、実施例1と同じ方法で正極を作製した。正極集電体として、電解エッチング処理を施していないプレーンアルミニウム箔を用いた。ここで述べるプレーンアルミニウム箔とは、JIS B 0601-1994に定める平均粗さ(Ra)が0.5μm以下、最大高さ(Ry)が2.0μm以下、十点平均粗さ(Rz)が1.0μm以下である、表面凹凸の少ない平滑なアルミニウム箔を意味する。本比較例で用いたプレーンアルミニウム箔は、厚み20μm、平均粗さ(Ra)が0.1μm、最大高さ(Ry)が0.6μm、十点平均粗さ(Rz)が0.6μmであった。
 得られた正極の活物質層層の厚さは40μmであった。また、活物質層の配合比率は、電極活物質6wt%、導電助剤75wt%、結着剤19wt%であった。得られた正極は、直径13.5mmの円盤状に打ち抜き、裁断してから用いた。
(2)蓄電デバイスの作製
 図4に示す構造を有するコイン型電池201を作製した。上述した電極を正極集電体22および正極活物質層23からなる正極31とし、この正極を正極集電板22がケース21内面に接するようにケース21に配置し、その上に多孔質ポリエチレンシートからなるセパレータ24を設置した。次に、非水電解質をケース28内に注液した。非水溶媒電解質としては、エチレンカーボネートとエチルメチルカーボネートとの重量比1:3の混合溶媒に6フッ化リン酸リチウムを1モルの濃度で溶解させた電解液を用いた。一方、封口板25の内面に、負極集電体27および負極活物質層26をこの順番で圧着させた。正極31、負極32、電解液28を図4に示すコイン形電池のケースに収納し、ガスケットを装着した封口板でケースの開口を挟み、プレス機にてかしめ封口し、コイン形蓄電デバイスを得た。
 なお、負極活物質層26には、厚さ20μmの銅箔からなる負極集電体27の上に、塗布された厚さ40μmの黒鉛電極を用いた。黒鉛負極32は、直径13.5mmの円盤状に打ち抜き、裁断して用いた。
 なお、黒鉛電極は、Li金属対極を用いて、下限0V、上限1.5V(リチウム基準電位)の間で、0.4mA/cm2の電流値で3サイクル予備充放電を行い、単位面積当たり、1.6mAh/cm2の可逆容量を有し、可逆な充放電が可能であることを確認した。黒鉛電極は、可逆容量の70%まで充電したもの、すなわちリチウムをプレドープした状態のものを用いた。黒鉛電極の充放電の確認およびリチウムのプレドープには、蓄電デバイスで用いるのと同じ電解液、および多孔質ポリエチレンシートからなるセパレータを用いた。
(実施例4)
(1)正極の作製
 活物質層中の共重合体化合物39の配合比率が異なる以外、実施例3と同じ方法で正極を作製した。
 得られた正極の活物層の厚さは40μmであった。また、活物質層中の配合比率は、電極活物質20wt%、導電助剤64wt%、結着剤16wt%であった。得られた正極は、直径13.5mmの円盤状に打ち抜き、裁断してから用いた。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(実施例5)
(1)正極の作製
 活物質層中の共重合体化合物39の配合比率が異なる以外、実施例3と同じ方法で正極を作製した。
 得られた正極の活物層の厚さは40μmであった。また、活物質層中の配合比率は、活物質30wt%、導電助剤56wt%、結着剤14wt%であった。得られた正極は、直径13.5mmの円盤状に打ち抜き、裁断してから用いた。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(実施例6)
(1)正極の作製
 活物質層中の共重合体化合物39の配合比率が異なる以外、実施例3と同じ方法で正極を作製した。
 得られた正極の活物層の厚さは40μmであった。また、活物質層中の配合比率は、電極活物質50wt%、導電助剤40wt%、結着剤10wt%であった。得た正極は、直径13.5mmの円盤状に打ち抜き、裁断してから用いた。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(実施例7)
(1)正極の作製
 正極活物質として重合体化合物17を用い、以下に記載する製造方法で正極極板を作製した。
 まず、重合体化合物17を溶解した非プロトン性溶媒と導電助剤を含む混合体を作製した。40mgの重合体化合物17を乳鉢で粉砕し、非プロトン性溶媒としてNMPを120mg加え、乳鉢内で混練することで、重合体化合物17を非プロトン性溶媒へ溶解させた。NMP内の重合体化合物17の粒度分布を実施例1と同様に測定し、NMP中に0.015μm以上の粒子がないことを確認した。また、UV-vis測定を行い、300nm付近にテトラチアフルバレン骨格に由来する吸収ピークを確認することで、NMP中に共重合体が存在していることを確認した。
 重合体化合物17を溶解させたNMPに、導電助剤であるアセチレンブラック288mgと結着剤であるポリフッ化ビニリデン72mg、さらにNMP2.78gとを加え、混練し、混合体を作製した。
 得られた混合体を用い、実施例1と同様に集電体上に塗布、乾燥し、非プロトン性溶媒を除去し、さらに、直径13.5mmの円盤状に打ち抜き裁断して正極を作製した。得られた正極の活物質層の配合比率は、電極活物質10wt%、導電助剤72wt%、結着剤18wt%であった。
 作製した正極の正極活物質層の断面SEM観察およびAES分析を実施例1と同様に行った。図18(a)は分析領域の断面SEM像を示し、図18(b)および(c)は、オージェ電子分光法による、断面SEM像に対応する領域の炭素分布分像および硫黄分布像を示している。断面SEM観察より、活物質層の厚みは90μmであった。また、炭素分布分像および硫黄分布像から、活物質層中において、1μm以上の電極活物質の粒子が存在せず、電極活物質が導電助剤を被覆していることを確認した。
(2)蓄電デバイスの作製
 正極として、上述の正極を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(実施例8)
(1)正極の作製
 実施例8では、正極電極中の電極活物質と導電助剤と結着剤の配合比率のみ異なり、それ以外は実施例7と同じ正極極板を、以下のようにして作製した。
 まず、重合体化合物17を溶解した非プロトン性溶媒と導電助剤を含む混合体を作製した。80mgの重合体化合物17を乳鉢で粉砕し、非プロトン性溶媒としてNMPを240mg加え、乳鉢内で混練することで、重合体化合物17を非プロトン性溶媒へ溶解させた。NMP内の重合体化合物17の粒度分布を実施例1と同様に測定し、NMP中に0.015μm以上の粒子がないことを確認した。また、UV-vis測定を行い、300nm付近にテトラチアフルバレン骨格に由来する吸収ピークを確認することで、NMP中に共重合体が存在していることを確認した。
 重合体化合物17を溶解させたNMPに、導電助剤であるアセチレンブラック256mgと結着剤であるポリフッ化ビニリデン64mg、さらにNMP2.66gとを加え、混練し、混合体を作製した。
 得られた混合体を用い、実施例1と同様に集電体上に塗布、乾燥し、非プロトン性溶媒を除去し、さらに、直径13.5mmの円盤状に打ち抜き裁断して正極を作製した。得られた正極の活物質層の配合比率は、電極活物質20wt%、導電助剤64wt%、結着剤16wt%であった。
 作製した正極の正極活物質層の断面SEM観察およびAES分析を実施例1と同様に行った。断面SEM観察より、活物質層の厚みは90μmであった。また、活物質層中において、1μm以上の電極活物質の粒子が存在せず、電極活物質が導電助剤を被覆していることを確認した。
(2)蓄電デバイスの作製
 正極として、上述の正極を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(実施例9)
(1)正極の作製
 実施例9では、正極電極中の電極活物質と導電助剤と結着剤の配合比率のみ異なり、それ以外は実施例7と同じ正極極板を、以下のようにして作製した。
 まず、重合体化合物17を溶解した非プロトン性溶媒と導電助剤を含む混合体を作製した。120mgの重合体化合物17を乳鉢で粉砕し、非プロトン性溶媒としてNMPを360mg加え、乳鉢内で混練することで、重合体化合物17を非プロトン性溶媒へ溶解させた。NMP内の重合体化合物17の粒度分布を実施例1と同様に測定し、NMP中に0.015μm以上の粒子がないことを確認した。また、UV-vis測定を行い、300nm付近にテトラチアフルバレン骨格に由来する吸収ピークを確認することで、NMP中に共重合体が存在していることを確認した。
 重合体化合物17を溶解させたNMPに、導電助剤であるアセチレンブラック224mgと結着剤であるポリフッ化ビニリデン56mg、さらにNMP2.54gとを加え、混練し、混合体を作製した。
 得られた混合体を用い、実施例1と同様に集電体上に塗布、乾燥し、非プロトン性溶媒を除去し、さらに、直径13.5mmの円盤状に打ち抜き裁断して正極を作製した。得られた正極の活物質層の配合比率は、電極活物質30wt%、導電助剤56wt%、結着剤14wt%であった。
 作製した正極の正極活物質層の断面SEM観察およびAES分析を実施例1と同様に行った。断面SEM観察より、活物質層の厚みは90μmであった。また、活物質層中において、1μm以上の電極活物質の粒子が存在せず、電極活物質が導電助剤を被覆していることを確認した。
(2)蓄電デバイスの作製
 正極として、上述の正極を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(実施例10)
(1)正極の作製
 実施例10では、正極電極中の電極活物質と導電助剤と結着剤の配合比率のみ異なり、それ以外は実施例7と同じ正極極板を、以下のようにして作製した。
 まず、重合体化合物17を溶解した非プロトン性溶媒と導電助剤を含む混合体を作製した。200mgの重合体化合物17を乳鉢で粉砕し、非プロトン性溶媒としてNMPを600mg加え、乳鉢内で混練することで、重合体化合物17を非プロトン性溶媒へ溶解させた。NMP内の重合体化合物17の粒度分布を実施例1と同様に測定し、NMP中に0.015μm以上の粒子がないことを確認した。また、UV-vis測定を行い、300nm付近にテトラチアフルバレン骨格に由来する吸収ピークを確認することで、NMP中に共重合体が存在していることを確認した。
 重合体化合物17を溶解させたNMPに、導電助剤であるアセチレンブラック160mgと結着剤であるポリフッ化ビニリデン40mg、さらにNMP2.3gとを加え、混練し、混合体を作製した。
 得られた混合体を用い、実施例1と同様に集電体上に塗布、乾燥し、非プロトン性溶媒を除去し、さらに、直径13.5mmの円盤状に打ち抜き裁断して正極を作製した。得られた正極の活物質層の配合比率は、電極活物質50wt%、導電助剤40wt%、結着剤10wt%であった。
 作製した正極の正極活物質層の断面SEM観察およびAES分析を実施例1と同様に行った。断面SEM観察より、活物質層の厚みは90μmであった。また、活物質層中において、1μm以上の電極活物質の粒子が存在せず、電極活物質が導電助剤を被覆していることを確認した。
(2)蓄電デバイスの作製
 正極として、上述の正極を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(比較例6)
(1)正極の作製
 正極活物質として共重合体化合物39を用い、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した共重合体化合物24mgにアセチレンブラック300mgを加え、均一に混合し、さらにポリテトラフルオロエチレン76mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。乳鉢で粉砕した共重合体化合物の粒子径はおよそ10μm程度であり、作製した極板断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、10μm程度の活物質粒が観測された。また、作製した正極極板の正極活物質層の厚みは、40μmであった。得られた正極の活物質層の配合比率は、電極活物質6wt%、導電助剤75wt%、結着剤19wt%であった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(比較例7)
(1)正極の作製
 正極活物質として共重合体化合物39を用い、電極活物質と導電助剤と結着剤の配合比率が異なる以外、比較例6と同様に、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した共重合体化合物80mgにアセチレンブラック256mgを加え、均一に混合し、さらにポリテトラフルオロエチレン64mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。乳鉢で粉砕した共重合体化合物の粒子径はおよそ10μm程度であり、作製した極板断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、10μm程度の活物質粒が観測された。また、作製した正極極板の正極活物質層の厚みは、40μmであった。得られた正極の活物質層の配合比率は、電極活物質20wt%、導電助剤64wt%、結着剤16wt%であった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(比較例8)
(1)正極の作製
 正極活物質として共重合体化合物39を用い、電極活物質と導電助剤と結着剤の配合比率が異なる以外、比較例6と同様に、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した共重合体化合物120mgにアセチレンブラック224mgを加え、均一に混合し、さらにポリテトラフルオロエチレン56mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。乳鉢で粉砕した共重合体化合物の粒子径はおよそ10μm程度であり、作製した極板断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、10μm程度の活物質粒が観測された。また、作製した正極極板の正極活物質層の厚みは、40μmであった。得られた正極の活物質層の配合比率は、電極活物質30wt%、導電助剤56wt%、結着剤14wt%であった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(比較例9)
(1)正極の作製
 正極活物質として共重合体化合物39を用い、電極活物質と導電助剤と結着剤の配合比率が異なる以外、比較例6と同様に、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した共重合体化合物200mgにアセチレンブラック160mgを加え、均一に混合し、さらにポリテトラフルオロエチレン40mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。乳鉢で粉砕した共重合体化合物の粒子径はおよそ10μm程度であり、作製した極板断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、10μm程度の活物質粒が観測された。また、作製した正極極板の正極活物質層の厚みは、40μmであった。得られた正極の活物質層の配合比率は、電極活物質50wt%、導電助剤40wt%、結着剤10wt%であった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(比較例10)
(1)正極の作製
 正極活物質として重合体化合物17を用い、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した重合体化合物40mgにアセチレンブラック288mgを加え、均一に混合し、さらにポリテトラフルオロエチレン72mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。乳鉢で粉砕した共重合体化合物の粒子径はおよそ10μm程度であり、作製した極板断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、10μm程度の活物質粒が観測された。また、作製した正極極板の正極活物質層の厚みは、90μmであった。得られた正極の活物質層の配合比率は、電極活物質10wt%、導電助剤72wt%、結着剤18wt%であった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(比較例11)
(1)正極の作製
 正極活物質として重合体化合物17を用い、電極活物質と導電助剤と結着剤の配合比率が異なる以外、比較例10と同様に、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した重合体化合物80mgにアセチレンブラック256mgを加え、均一に混合し、さらにポリテトラフルオロエチレン64mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。乳鉢で粉砕した共重合体化合物の粒子径はおよそ10μm程度であり、作製した極板断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、10μm程度の活物質粒が観測された。また、作製した正極極板の正極活物質層の厚みは、90μmであった。得られた正極の活物質層の配合比率は、電極活物質20wt%、導電助剤64wt%、結着剤16wt%であった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(比較例12)
(1)正極の作製
 正極活物質として重合体化合物17を用い電極活物質と導電助剤と結着剤の配合比率が異なる以外、比較例10と同様に、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した重合体化合物120mgにアセチレンブラック224mgを加え、均一に混合し、さらにポリテトラフルオロエチレン56mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。乳鉢で粉砕した共重合体化合物の粒子径はおよそ10μm程度であり、作製した極板断面を電子線マイクロアナライザー(EPMA)にて電極活物質に由来する硫黄の分布を測定したところ、10μm程度の活物質粒が観測された。また、作製した正極極板の正極活物質層の厚みは、90μmであった。得られた正極の活物質層の配合比率は、電極活物質30wt%、導電助剤56wt%、結着剤14wt%であった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
(比較例13)
(1)正極の作製
 正極活物質として重合体化合物17を用い電極活物質と導電助剤と結着剤の配合比率が異なる以外、比較例10と同様に、以下に記載する製造方法で正極極板を作製した。
 乳鉢で粉砕した重合体化合物200mgにアセチレンブラック160mgを加え、均一に混合し、さらにポリテトラフルオロエチレン40mgを加えて混合することにより、正極活物質合剤を得た。さらにこの正極合剤をアルミニウム金網の上に圧着し、真空乾燥を行い、直径13.5mmの円盤状に打ち抜き裁断して正極極板を作製した。
 乳鉢で粉砕した重合体30の粒子径はおよそ5~20μm程度であった。作製した極板断面を電子顕微鏡および電子線マイクロアナライザー(EPMA)にて観察し、電極活物質に由来する硫黄の分布を測定した。図19(a)および(b)は、それぞれ比較例13の正極断面の電極活物質部分を拡大して示すSEM像およびEPMAによる硫黄の分布像を示している。図19(b)に示すように、EPMAにより、数μmから10μm程度の粒状の硫黄分布が観測された。このことから、電極活物質が粒子状で存在していることが確認された。作製した正極極板の正極活物質層の厚みは、90μmであった。得られた正極の活物質層の配合比率は、電極活物質50wt%、導電助剤40wt%、結着剤10wt%であった。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例3と同様に蓄電デバイスを作製した。
2. 蓄電デバイスの特性評価
 実施例3~10、比較例6~13の蓄電デバイスの充放電容量評価を行った。蓄電デバイスの充放電容量評価は、容量が安定する3サイクル目の充放電時の充放電容量を活物質重量で割った値、すなわち活物質単位重量あたりの充放電容量で評価した。充放電は、充放電時間率が等しくなるように、1時間率(1Cレート)となる電流値での定電流充放電によって行った。具体的には、実施例3および比較例6では0.015mA、実施例4および比較例7では0.06mA、実施例5および比較例8では0.09mA、実施例6および比較例9では0.15mA、実施例7および比較例10では0.03mA、実施例8および比較例11では0.12mA、実施例9および比較例12では0.18mA、実施例10および比較例13では0.3mAとした。充放電条件は、充電上限電圧を4.0V、放電下限電圧を2.5Vとした。充電終了後、放電を開始するまでの休止時間はゼロとした。
 実施例3~10、比較例6~13の蓄電デバイスの充放電容量評価結果を表2にまとめて示す。また、実施例3~6および比較例6~9の評価結果を図20に、実施例7~10および比較例10~13の評価結果を図21にそれぞれ示す。図20および図21において、縦軸は得られた容量を理論容量で割った値、すなわち充放電利用率を示している。
Figure JPOXMLDOC01-appb-T000002
 表2、図20および図21に示すように、正極活物質層内で電極活物質が粒子として存在している比較例6~13の電極では、電極活物質に関わらず、活物質層内における電極活物質の配合比率が30wt%以上になると充放電容量率が低下していくことが確認できる。このことより、テトラカルコゲノフルバレン骨格を繰り返し単位に有する重合体を電極活物質として用い、電極活物質が粒子として存在している電極では、電極活物質層内における電極活物質の配合比率が30wt%以上になると、充放電容量率が低下し、高容量化が困難であることが分かる。これは、比較例6~13の正極では、電極活物質が粒子として存在し、電極活物質と導電助剤との接触面積が小さく、酸化還元時の電子の移動経路の確保が十分ではないため、電気的に孤立し、充放電に寄与しない電極活物質が増加したと考えられる。
 一方、本発明の電極である実施例3~10では、活物質層内における電極活物質の配合比率が30wt%以上であっても高い充放電容量率を維持し得る。これは、本発明の電極では電極活物質と導電助剤の接触面積が大きく、活物質層内の導電性を確保できているためだと考えられる。このことは、本発明の電極は、電極の高容量化にも適していることを示している。
 実施例6、実施例10、比較例9、比較例13の出力特性評価を行った。出力特性評価は、大電流充放電容量評価により行なった。大電流充放電は、充放電時間率が等しくなるように、1/20時間率(20Cレート)となる電流値での定電流充放電によって行った。具体的には、実施例6および比較例9では3mA、実施例10および比較例13では6mAとした。また、充電上限電圧を4.0V、放電下限電圧を2.5Vとした。充電終了後、放電を開始するまでの休止時間はゼロとした。大電流充放電容量評価は、20Cレートでの放電時の容量を1Cレートでの放電時の容量で割った値、すなわち1Cレート放電時に対する20Cレート放電時の容量維持率で評価した。
 実施例6、実施例10、比較例9、比較例13の出力特性評価を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、比較例9および比較例13の蓄電デバイスに比べて、活物質比率が50wt%と高い実施例6および実施例10の蓄電デバイスは大電流充放電時でも高い容量維持率を示すことを確認した。このことより、本発明の電極を用いることによって、高容量かつ高出力な蓄電デバイスを実現できることを確認した。
(III)導電助剤の評価
 本発明の電極に用いる導電助剤の効果を確認するため、異なる導電助剤を用いた電極およびそれを用いた蓄電デバイスを作製し、蓄電デバイスの特性を評価した結果について説明する。
1. 電極および蓄電デバイスの作製
(実施例11)
 実施例1と同様の方法によって合成した共重合体化合物39を用いて、ガス精製装置を備えたアルゴン雰囲気のグローボックス内で正極の作製を行った。
 まず、共重合体化合物39を溶解した混合体を作製した。200mgの共重合体化合物39を乳鉢で粉砕し、非プロトン性溶媒としてNMP(和光純薬工業社製)を600mg加え、乳鉢内で混練することで、共重合体化合物39を非プロトン性極性溶媒へ溶解させた。NMP内の共重合体化合物39の粒度分布を島津製作所製SALD-7000を用い、レーザー回折/散乱法にて測定した。測定条件は、測定粒度範囲を0.015μm~500μm、測定間隔を2秒とし、付属の撹拌プレートを用いて溶媒内を撹拌しながら測定を行った。測定の結果、回折/散乱強度は観測されず、NMP中に0.015μm以上の粒がないことを確認した。また、UV-vis測定を行い、300nmから320nm付近にテトラチアフルバレン骨格に由来する吸収ピークを確認することで、NMP中に共重合体化合物39が存在していることを確認した。
 共重合体化合物39を溶解させたNMPに、導電助剤としてアセチレンブラック(電気化学工業社製、デンカブラック、BET比表面積:68m2/g)160mgと結着剤であるポリフッ化ビニリデン40mg、さらにNMP2.3gとを加え、混練し、混合体を作製した。
 次に、得られた混合体を集電体に塗布した。集電体として、厚さ20μmのアルミニウム箔を用いた。混合体のアルミニウム箔への塗布はコーターを用いて行った。塗布は、ギャップ幅を300μm、操引速度を7mm/secとして行った。
 次に非プロトン性溶媒であるNMPを除去した。アルミニウム箔上に塗布した混合体を恒温槽内に入れ、温度80℃、で1時間乾燥することによって非プロトン性溶媒の除去を行った。さらに、直径13.5mmの円盤状に打ち抜き裁断して正極を作製した。正極活物質の塗布重量は、極板面積あたり0.2mg/cm2であった。
 作製した正極の正極活物質層の厚みを走査型電子顕微鏡(SEM)で測定したところ、90μmであった。実施例1と同様、1μm以上の電極活物質の粒子は観測されず、電極活物質が導電助剤を被覆していることが確認された。
(2)蓄電デバイスの作製
 図8に示す構造を有するコイン型電池202を作製した。上述した電極を正極集電体22および正極活物質層23からなる正極31とし、この正極を正極集電板22がケース21内面に接するようにケース21に配置し、その上に多孔質ポリエチレンシートからなるセパレータ24を設置した。次に、非水電解質をケース28内に注液した。非水溶媒電解質としては、エチレンカーボネートとエチルメチルカーボネートとの重量比1:3の混合溶媒に6フッ化リン酸リチウムを1モルの濃度で溶解させた電解液を用いた。一方、封口板25の内面に、負極集電体27および負極活物質層26をこの順番で圧着させた。正極31、負極32、電解液28を図8に示すコイン形電池のケースに収納し、ガスケットを装着した封口板でケースの開口を挟み、プレス機にてかしめ封口し、コイン形蓄電デバイスを得た。
 なお、負極活物質層26には、厚さ20μmの銅箔からなる負極集電体27の上に、塗布された厚さ40μmの黒鉛電極を用いた。黒鉛負極32は、直径13.5mmの円盤状に打ち抜き、裁断して用いた。
 なお、黒鉛電極は、Li金属対極を用いて、下限0V、上限1.5V(リチウム基準電位)の間で、0.4mA/cm2の電流値で3サイクル予備充放電を行い、単位面積当たり、1.6mAh/cm2の可逆容量を有し、可逆な充放電が可能であることを確認した。黒鉛電極は、可逆容量の70%まで充電したもの、すなわちリチウムをプレドープした状態のものを用いた。黒鉛電極の充放電の確認およびリチウムのプレドープには、蓄電デバイスで用いるのと同じ電解液、および多孔質ポリエチレンシートからなるセパレータを用いた。
(実施例12)
(1)正極の作製
 導電助剤として大比表面積カーボンブラック(ライオン社製、ケッチェンブラックECP300J、BET比表面積:800m2/g)を用いたこと以外、実施例11と同様に正極を作製した。
 また、実施例11と同様に電極活物質の分布を測定したところ、実施例1と同様に電極活物質が導電助剤を被覆していることを確認した。
(2)蓄電デバイスの作製
 正極として、上述の正極を用いたこと以外、実施例11と同様に蓄電デバイスを作製した。
(実施例13)
(1)正極の作製
 導電剤として大比表面積カーボンブラック(ライオン社製、ケッチェンブラックECP300J、BET比表面積:800m2/g)を用いること以外、実施例10と同様に正極極板を作製した。
(2)蓄電デバイスの作製
 正極として、上記の正極極板を用いたこと以外、実施例11と同様に蓄電デバイスを作製した。
2. 蓄電デバイスの特性の評価
[蓄電デバイス特性の評価]
 活物質層における電極活物質の配合比の評価のために作製した実施例10~13の蓄電デバイスの充放電容量評価および出力評価を行った。蓄電デバイスの充放電容量評価は、下限電位2.5V、上限電位4.0Vの電圧範囲で、定電流で3サイクルの充放電を行った。充電終了後、放電を開始するまでの休止時間はゼロとした。充放電の電流値は、0.3mA/cm2とした。また、バラツキが少なく安定した容量の得られる3サイクル目の放電容量を蓄電デバイスの充放電容量として得た。
 蓄電デバイスの出力評価は、大電流で充放電した場合の放電容量により評価をした。蓄電デバイスの出力評価は、下限電位2.5V、上限電位4.0Vの電圧範囲で、定電流で3サイクルの充放電を行った。充電終了後、放電を開始するまでの休止時間はゼロとした。充放電の電流値は、10mA/cm2とした。また、バラツキが少なく安定した容量の得られる3サイクル目の放電容量から、10mA/cm2の電流値での放電時の容量を上記0.3mA/cm2の電流値での放電容量で割った値、すなわち小電流充放電容量に対する維持率で評価した。
 実施例10~13の充放電容量評価結果および出力特性評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、800m2/g以上の大比表面積カーボンブラックを用いることで出力特性が向上することを確認した。800m2/g以上の大比表面積カーボンブラックを用いることで、電極活物質が被覆する導電助剤の比表面積が大きくなり、被覆している電極活物質の厚みが十分に小さくなる。そのため、酸化還元反応時のアニオンの移動がより潤滑に行われ、本発明の効果を顕著に得ることができたと考えられる。
(IV) 集電体の評価
 本発明の電極に用いる集電体の効果を確認するため、異なる集電体を用いた電極およびそれを用いた蓄電デバイスを作製し、蓄電デバイスの特性を評価した結果について説明する。
1. 電極および蓄電デバイスの作製
(実施例14)
(1)正極の作製
 実施例1と同様の方法により、共重合体化合物39を合成した。合成した共重合体化合物39を用いて、ガス精製装置を備えたアルゴン雰囲気のグローボックス内で正極の作製を行った。
 まず、共重合体化合物39を溶解した混合体を作製した。50mgの共重合体化合物39を乳鉢で粉砕し、非プロトン性溶媒としてNMP(和光純薬工業社製)を500mg加え、乳鉢内で混練することで、共重合体化合物39を非プロトン性極性溶媒へ溶解させた。共重合体化合物39が溶解したNMP溶液の粒度分布測定を行い、0.015μm以上の粒子が検出されなかったこと、またNMP溶液のUV測定からTTF骨格由来の吸収を確認したことから、NMP中に共重合体化合物39が溶解したことを確認した。
 共重合体化合物39を溶解させたNMPに、導電助剤であるアセチレンブラック627mgと結着剤であるポリフッ化ビニリデン157mg、さらにNMP9900mgとを加え、混練し、混合体を作製した。
 次に、電解エッチングアルミニウム箔を用いて導電性支持体を作製した。純度99.9重量%以上の厚さ30μmのアルミニウム箔を用い、塩酸酸性水溶液中、温度45℃、電流密度0.4A/cm2の条件下で、アルミニウム箔を35Hzの交流電流でエッチングし、次いで、温度25℃、電流密度0.3A/cm2の条件下で、25Hzの交流電流でエッチングした。得られた導電性支持体の厚さは、29μmであった。電解エッチングアルミニウム層の厚さは2.5μmであり、エッチング孔の平均孔径は0.1μmであった。
 得られた混合体を導電性支持体の電解エッチングアルミニウム層上に塗布し、真空乾燥により非プロトン性極性溶媒を除去することによって、電極を得た。このようにして得た正極の活物質層の厚さは、40μmであった。また、活物質層中の配合比率は、活物質6wt%、導電助剤75wt%、結着剤19wt%であった。得たられた正極は、直径13.5mmの円盤状に打ち抜き、裁断してから用いた。
 図22に、得られた正極の断面SEM(電子顕微鏡)像を示す。導電性支持体の電解エッチングアルミニウム層の上に活物質層が形成されていることが確認された。また、電解エッチングアルミニウム層は、電解液が含浸する微細なエッチング孔(空孔)を有していることも確認された。
(2)蓄電デバイスの作製
 図12に示す構造を有するコイン型電池203を作製した。上述した電極を正極集電体22および正極活物質層23からなる正極31とし、この正極を正極集電板22がケース21内面に接するようにケース21に配置し、その上に多孔質ポリエチレンシートからなるセパレータ24を設置した。次に、非水電解質をケース28内に注液した。非水溶媒電解質としては、エチレンカーボネートとエチルメチルカーボネートとの重量比1:3の混合溶媒に6フッ化リン酸リチウムを1モルの濃度で溶解させた電解液を用いた。一方、封口板25の内面に、負極集電体27および負極活物質層26をこの順番で圧着させた。正極31、負極32、電解液28を図12に示すコイン形電池のケースに収納し、ガスケットを装着した封口板でケースの開口を挟み、プレス機にてかしめ封口し、コイン形蓄電デバイスを得た。
 なお、負極活物質層26には、厚さ20μmの銅箔からなる負極集電体27の上に、塗布された厚さ40μmの黒鉛電極を用いた。黒鉛負極32は、直径13.5mmの円盤状に打ち抜き、裁断して用いた。
 なお、黒鉛電極は、Li金属対極を用いて、下限0V、上限1.5V(リチウム基準電位)の間で、0.4mA/cm2の電流値で3サイクル予備充放電を行い、単位面積当たり、1.6mAh/cm2の可逆容量を有し、可逆な充放電が可能であることを確認した。黒鉛電極は、可逆容量の70%まで充電したもの、すなわちリチウムをプレドープした状態のものを用いた。黒鉛電極の充放電の確認およびリチウムのプレドープには、蓄電デバイスで用いるのと同じ電解液、および多孔質ポリエチレンシートからなるセパレータを用いた。
(実施例15)
 実施例15では、用いた正極電極中の電極活物質と導電剤と結着剤の配合比率のみ異なり、それ以外は実施例14と同じ蓄電デバイスを作製した。
(1)正極の作製
 正極電極は、以下のようにして作製した。まず、共重合体化合物39を溶解した混合体を作製した。50mgの共重合体化合物39を乳鉢で粉砕し、非プロトン性極性溶媒としてNMP(和光純薬工業社製)を500mg加え、乳鉢内で混練することで、共重合体化合物39を非プロトン性極性溶媒へ溶解させた。
 共重合体化合物39が溶解したNMP溶液の粒度分布測定を行い、0.015μm以上の粒子が検出されなかったこと、またNMP溶液のUV測定からTTF骨格由来の吸収を確認したことから、NMP中に共重合体化合物39が溶解したことを確認した。
 共重合体化合物39を溶解させたNMPに、導電助剤であるアセチレンブラック160mgと結着剤であるポリフッ化ビニリデン40mg、さらにNMP2600mgとを加え、混練し、混合体を作製した。
 集電体膜としで実施例14と同じ方法で作製した電解エッチングアルミニウム箔を用い、得た混合体を集電体膜上に塗布、真空乾燥し、非プロトン性極性溶媒を除去することによって、電極を得た。
 このようにして得た正極の合剤層厚みは、40μmであった。また、活物質層中の配合比率は、活物質20wt%、導電助剤64wt%、結着剤16wt%であった。得られた正極は、直径13.5mmの円盤状に打ち抜き、裁断してから用いた。
(2)蓄電デバイスの作製
 上記正極を用い、実施例14と同様に蓄電デバイスを作製した。
(実施例16)
 実施例16では、正極電極中の活物質と導電剤と結着剤の配合比率のみ異なり、それ以外は実施例14と同じ蓄電デバイスを構成した。正極電極は、以下のようにして作製した。
(1)正極の作製
 まず、共重合体化合物39を溶解した混合体を作製した。50mgの共重合体化合物39を乳鉢で粉砕し、非プロトン性極性溶媒としてNMP(和光純薬工業社製)を500mg加え、乳鉢内で混練することで、共重合体化合物39を非プロトン性極性溶媒へ溶解させた。
 共重合体化合物39が溶解したNMP溶液の粒度分布測定を行い、0.015μm以上の粒子が検出されなかったこと、またNMP溶液のUV測定からTTF骨格由来の吸収を確認したことから、NMP中に共重合体化合物39が溶解したことを確認した。
 共重合体化合物39を溶解させたNMPに、導電助剤であるアセチレンブラック93mgと結着剤であるポリフッ化ビニリデン23mg、さらにNMP1580mgとを加え、混練し、混合体を作製した。
 導電性支持体としで実施例14と同じ方法で作製した電解エッチングアルミニウム箔を用い、得た混合体を集電体膜上に塗布、真空乾燥し、非プロトン性極性溶媒を除去することによって、電極を得た。
 このようにして得た正極の合剤層厚みは、40μmであった。また、正極合剤中の配合比率は、活物質30wt%、導電助剤56wt%、結着剤14wt%であった。得た正極は、直径13.5mmの円盤状に打ち抜き、裁断してから用いた。
(2)蓄電デバイスの作製
 上記正極を用い、実施例14と同様に蓄電デバイスを作製した。
(実施例17)
 実施例17では、正極電極中の活物質と導電剤と結着剤の配合比率のみ異なり、それ以外は実施例14と同じ蓄電デバイスを構成した。正極電極は、以下のようにして作製した。
(1)正極の作製
 まず、共重合体化合物39を溶解した混合体を作製した。50mgの共重合体化合物39を乳鉢で粉砕し、非プロトン性極性溶媒としてNMP(和光純薬工業社製)を500mg加え、乳鉢内で混練することで、共重合体化合物39を非プロトン性極性溶媒へ溶解させた。
 共重合体化合物39が溶解したNMP溶液の粒度分布測定を行い、0.015μm以上の粒子が検出されなかったこと、またNMP溶液のUV測定からTTF骨格由来の吸収を確認したことから、NMP中に共重合体化合物39が溶解したことを確認した。
 共重合体化合物39を溶解させたNMPに、導電助剤であるアセチレンブラック40mgと結着剤であるポリフッ化ビニリデン10mg、さらにNMP750mgとを加え、混練し、混合体を作製した。
 導電性支持体としで実施例1と同じ方法で作製した電解エッチングアルミニウム箔を用い、得た混合体を集電体膜上に塗布、真空乾燥し、非プロトン性極性溶媒を除去することによって、電極を得た。
 このようにして得た正極の合剤層厚みは、40μmであった。また、正極合剤中の配合比率は、活物質50wt%、導電助剤46wt%、結着剤10wt%であった。得た正極は、直径13.5mmの円盤状に打ち抜き、裁断してから用いた。
(2)蓄電デバイスの作製
 上記正極を用い、実施例14と同様に蓄電デバイスを作製した。
(実施例18)
(1)正極の作製
 集電体として、電解エッチングアルミニウム箔を用いたこと以外、実施例10と同様に正極電極を作製した。
(2)蓄電デバイスの作製
 正極として、上述の正極極板を用いたこと以外、実施例10と同様に蓄電デバイスを作製した。
2. 蓄電デバイスの特性の評価
 実施例3~6、実施例10、実施例14~18の蓄電デバイスの充放電容量評価および出力特性評価を行なった。蓄電デバイスの充放電容量評価は、容量が安定する3サイクル目の充放電時の充放電容量で評価した。充放電は、充放電時間率が等しくなるように、1時間率(1Cレート)となる電流値での定電流充放電によって行った。具体的には、実施例3および実施例14では0.015mA、実施例4および実施例15では0.06mA、実施例5および実施例16では0.09mA、実施例6および実施例17では0.15mA、実施例10および実施例18では0.3mAとした。充放電条件は、充電上限電圧を4.0V、放電下限電圧を2.5Vとした。充電終了後、放電を開始するまでの休止時間はゼロとした。
 出力特性評価は、大電流充放電容量評価により行なった。充放電は、充放電時間率が等しくなるように、1/50時間率(50Cレート)となる電流値での定電流充放電によって行った。具体的には、実施例3および実施例14では0.75mA、実施例4および実施例15では3mA、実施例5および実施例16では4.5mA、実施例6および実施例17では7.5mA、実施例10および実施例18では15mAとした。充放電条件は、充電上限電圧を4.0V、放電下限電圧を2.5Vとした。充電終了後、放電を開始するまでの休止時間はゼロとした。大電流充放電容量評価は、50Cレートでの放電時の容量を1Cレートでの放電時の容量で割った値、すなわち1Cレート放電時に対する50Cレート放電時の容量維持率で評価した。
 実施例3~6、実施例10、実施例14~18の蓄電デバイスの充放電容量評価および出力特性評価を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、活物質比率が30wt%以上の電極において、集電体として電解エッチングアルミニウム箔を用いれば、出力特性を高く保つ効果が得られることが確認できる。
 以上の結果より、本発明の電極を用いることによって、可逆性に優れ、高容量かつ高出力な蓄電デバイスを実現できることを確認した。
(V) 電極活物質の溶解性の評価
(1)テトラカルコゲノフルバレン骨格を側鎖に含む共重合体化合物の溶解性の評価
 本発明の電極を実施するためには、テトラカルコゲノフルバレン骨格を繰り返し単位に有する重合体を非プロトン性溶媒に溶解させる必要がある。しかし上述の比較例3~5等から分かるように、テトラカルコゲノフルバレン骨格を側鎖に含む場合、第2ユニットを含まず、酸化還元部位を含む第1ユニットのみからなる重合体化合物は様々な溶媒に対して親溶媒性が低く、溶解させることが困難であることが分かる。
 テトラカルコゲノフルバレン骨格を側鎖に含む共重合体化合物の溶解性が第2ユニットによって高められることを確認するため、実施例1で用いた共重合体化合物39、比較例2および3で用いた重合体化合物40および、ポリメチルメタクリレート(PMMA)(Aldrich社製、Mw=120000)の溶媒に対する溶解性の評価を行った。PMMAは実施例1で用いた共重合体化合物39の第2ユニットのみで構成される高分子化合物である。
 溶媒溶解性評価は、20gの溶媒に10mgの化合物を投入し、5分間の超音波撹拌を行ったのち、溶媒内の粒度分布を測定することで評価した。粒度分布測定において、回折/散乱強度は観測されず、溶媒中に0.015μm以上の粒が存在しない場合は溶解したと判断し、0.015μm以上の粒が存在する場合には溶解しない(非溶解)と判断した。また、溶解した場合にはUV-vis測定を行うことによって溶媒中に化合物が存在することを確認した。
 溶媒としてNMP、テトラヒドロフラン(THF)(関東化学社製)、エタノール(関東化学社製)を用いたときの評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、PMMAが溶解したNMP、THFに共重合体化合物39も溶解するという結果が得られた。これは、共重合体化合物39の第2ユニットがPMMAの繰り返しユニットと同じであり、NMP、THFに対して高い親和性を有していることに起因している。つまり、溶媒に対して高い親和性を有している第2ユニットを第1ユニットと共重合させることで、共重合体化合物39全体の溶媒親和性が向上したことを意味している。この結果から、共重合体化合物39は、第1ユニットおよび第2ユニットのそれぞれの溶媒に対する親和性を備える化合物であり、共重合させる第2ユニットの構造および共重合比率を変更することによって、共重合体化合物39の溶媒親和性を制御することができると考えられる。
 さらに、第2ユニットとして使用可能な構造およびその構造と親和性の高い溶媒について検討を行った。第2ユニットのみで構成される高分子化合物として、側鎖にエステル基を有するポリメチルアクリレート(PMA)(Aldrich社製、Mw=40000)、ポリビニルアセテート(PVAc)(Aldrich社製、Mw=83000)、炭素からなる官能基を有するポリスチレン(PS)(Aldrich社製、Mw=290000)、窒素含有基であるニトリル基を有するポリアクリロニトリル(PAN)(Aldrich社製、Mw=150000)の溶媒に対する溶解性を評価した。溶媒として、NMP、THF、N,N-ジメチルホルムアミド(DMF)(和光純薬工業社製)、ジメチルスルホキシド(DMSO)(和光純薬工業社製)、トルエン(Aldrich社製)を用いた。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、PMAおよびPVAcはNMP、THF、DMSOに溶解した。同様に、PSは、NMP、トルエンによく溶解し、PANはDMF、DMSOに溶解した。これらの結果から、第2ユニットがPMA、PVAc、PS、PANの構成ユニットであれば、表7に示すよう溶媒を用いることによって共重合体化合物を溶解させることができると分かる。
 また、以上のことより、共重合体化合物の第2ユニットの側鎖部の構造としては、酸素含有官能基であるエステル基、エーテル基、カルボニル基、窒素含有官能基であるシアノ基、ニトロ基、ニトロキシル基、炭素からなる官能基であるアルキル基、フェニル基、硫黄含有官能基であるアルキルチオ基、スルホン基、スルホキシド基が適していることが分かる。
(2)テトラカルコゲノフルバレン骨格を主鎖に含む合体化合物の溶解性の評価
 テトラカルコゲノフルバレン骨格を主鎖に含む合体化合物による非プロトン性溶媒への親和性の差異を確認するため、実施例2で用いた重合体17、比較例2で用いた重合体41および化学式(5)、化学式(12)から化学式(16)および化学式(23)から化学式(28)に示す非プロトン性溶媒の溶解性評価を行った。以下、化学式(5)、化学式(12)から(17)、化学式(23)から(28)、化学式(41)で示される重合体をそれぞれ重合体5、重合体12から17から重合体23から28、重合体41と記載する。
 重合体5は、テトラカルコゲノフルバレン骨格同士が直接結合した重合体である。テトラカルコゲノフルバレン骨格同士が直接結合した化合物は、以下の反応式(R9)で示すように、テトラチアフルバレンのジヨウ素化体とNi(0)錯体を用いた脱ハロゲン化重縮合法を用いることによって合成することができる。ここで、式中、Xは硫黄または酸素原子を表し、codは1,5-シクロオクタジエン、bpyは2,2’-ビピリジンを表す。
Figure JPOXMLDOC01-appb-C000068
 重合体23から重合体28は、テトラカルコゲノフルバレン骨格同士が少なくともチオフェン骨格を介して結合した重合体である。これらの化合物は、以下の反応式(R10)で示すように、Pd触媒を用い、テトラチアフルバレンのトリメチルスタニル体とチオフェン骨格のヨウ素化体とから、スチルカップリング反応によって合成することができる。テトラチアフルバレンのヨウ素化体とチオフェン骨格のトリメチルスタニル体とを用いても、同様にスチルカップリング反応によって合成することができる。
Figure JPOXMLDOC01-appb-C000069
 重合体12から重合体17は、テトラカルコゲノフルバレン骨格同士が、三重結合/芳香族/三重結合を介して結合した重合体である。これらの化合物は、以下の反応式(R11)で示すように、テトラチアフルバレンのジヨード体と3重結合部位を有する化合物との薗頭反応を用いて合成することができる。反応式Cからわかるように、3重結合部位を有する化合物であれば特に制限なくテトラカルコゲノフルバレン骨格同士を結合させることができる。反応式Cにおいては、リンカー部位はチオフェン骨格を含んでいるが、リンカー部位は芳香族であればよく、例えばチオフェンの代わりにベンゼン環であっても同様の反応によって、テトラカルコゲノフルバレン骨格同士が、三重結合/芳香族/三重結合を介して結合した重合体を合成することができる。
Figure JPOXMLDOC01-appb-C000070
 溶媒溶解性評価は、20gの溶媒に10mgの重合体を投入し、5分間の超音波撹拌を行ったのち、溶媒内の粒度分布を測定することで評価した。粒度分布測定において、回折/散乱強度は観測されず、溶媒中に0.015μm以上の粒が存在しない場合は溶解したと判断し、0.015μm以上の粒が存在する場合には溶解しない(非溶解)と判断した。また、溶解した場合にはIR測定を行うことによって溶媒中に化合物が存在することを確認した。
 溶媒としてNMP、テトラヒドロフラン(THF)(関東化学社製)、クロロホルム(関東化学社製)を用いたときの評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、重合体の分子構造により、非プロトン性溶媒への溶解性は変わる。重合体5、重合体12から重合体17、重合体23から28は、NMP、THF、CHCl3のいずれかに対して溶解することがわかる。重合体が非プロトン性溶媒に溶解すれば、実施例1と同様の電極構造を実現することが可能であり、実施例2と同様の効果を得ることができる。
 本発明の電極は、軽量であり、安定して高エネルギー密度で可逆的な酸化還元反応を行うことができる。また、電極の抵抗が小さく、高出力が可能な蓄電デバイスを提供することができる。このため、所望とされる特性に応じた蓄電デバイスが実現する。このような蓄電デバイスは、高出力、高容量かつ、繰り返し特性に優れる。このため、各種携帯機器、輸送機器、無停電電源などに好適に用いられる。また、高分子アクチュエーターやエレクトロクロミック表示素子をはじめ種々の電気化学素子に好適に用いられる。
 21 コイン形ケース
 22 正極集電体
 23 正極活物質層
 24 セパレータ
 25 封口板
 26 負極活物質層
 27 負極集電体
 28 ガスケット
 29 電解液
 31 正極
 32 負極
 101、102、103 電極
 201、202、203 蓄電デバイス

Claims (18)

  1.  導電性支持体と、
     電極活物質および導電助剤を含み、前記導電性支持体上に設けられた活物質層と
    を備えた電極であって、
     前記電極活物質が、テトラカルコゲノフルバレン骨格を主鎖の繰り返し単位に有する第1重合体化合物、および、前記テトラカルコゲノフルバレン骨格を側鎖に有する第1ユニットと前記テトラカルコゲノフルバレン骨格を側鎖に有さない第2ユニットとの共重合体である第2重合体化合物の少なくとも一方を含み、
     前記活物質層において、前記電極活物質は粒子を構成せず、前記導電助剤の表面の少なくとも一部を被覆している電極。
  2.  前記カルコゲノフルバレン骨格が、下記一般式(A)で表され、
     一般式(A)中、4つのXは独立して、酸素原子、硫黄原子、セレン原子またはテルル原子であり、R1からR4のうちから選ばれる1つまたは2つは、前記第1重合体化合物または前記第2重合体化合物の主鎖または隣接する繰り返し単位との結合手を表し、他の3つまたは2つはそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子、リン原子およびホウ素原子よりなる群から選ばれる少なくとも1種を含む請求項1に記載の電極。
    Figure JPOXMLDOC01-appb-C000071
  3.  前記活物質層において、前記活物質層含まれる前記電極活物質の重量比率が30wt%以上である請求項1に記載の電極。
  4.  前記導電助剤がカーボンブラックである請求項1に記載の電極。
  5.  前記導電助剤の比表面積が800m2/g以上である請求項4に記載の電極。
  6.  前記導電性支持体は、前記活物質層と接触している表面を有する表面層を有し、
     前記表面層の表面は凹凸を有する請求項3に記載の電極。
  7.  前記表面層は電解エッチングアルミニウム層である請求項6に記載の電極。
  8.  前記第1重合体化合物および前記第2重合体化合物の重合度がそれぞれ4以上である請求項1から7のいずれかに記載の電極。
  9.  前記第1重合体化合物が、
     下記一般式(B)で表わされ、一般式(B)中、Xは酸素原子、硫黄原子、セレン原子またはテルル原子であり、R5およびR6はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、
     前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含み、
     R9は、鎖状不飽和炭化水素基または環状不飽和炭化水素基であり、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含むか、または、
    Figure JPOXMLDOC01-appb-C000072
     下記一般式(C-1)および(C-2)で表わされる繰り返し単位を含む共重合体であって、
     一般式(C-1)および(C-2)中、Xは酸素原子、硫黄原子、セレン原子またはテルル原子であり、R5からR8はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含み、R5およびR6の組み合わせはR7およびR8の組み合わせと異なっているか、または
    Figure JPOXMLDOC01-appb-C000073
    Figure JPOXMLDOC01-appb-C000074
     下記一般式(D)で表わされ、
     一般式(D)中、Xは酸素原子、硫黄原子、セレン原子またはテルル原子であり、R5からR8はそれぞれ独立した鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基、環状不飽和炭化水素基、フェニル基、水素原子、ヒドロキシル基、シアノ基、アミノ基、ニトロ基、ニトロソ基またはアルキルチオ基よりなる群から選ばれる少なくとも1種であり、前記鎖状飽和炭化水素基、鎖状不飽和炭化水素基、環状飽和炭化水素基および環状不飽和炭化水素基は、それぞれ、炭素原子、酸素原子、窒素原子、硫黄原子、ケイ素原子よりなる群から選ばれる少なくとも1種を含み、
     R11、R12はそれぞれ独立に、アセチレン骨格およびチオフェン骨格の少なくともいずれかを含む鎖状不飽和炭化水素基または環状不飽和炭化水素基であり、炭素原子、酸素原子、窒素原子、硫黄原子およびケイ素原子よりなる群から選ばれる少なくとも1種を含む、請求項1から8のいずれかに記載の電極。
    Figure JPOXMLDOC01-appb-C000075
  10.  前記R9がアセチレン骨格およびチオフェン骨格の少なくとも一方を含む、請求項9に記載の電極。
  11.  前記Xが硫黄元素であり、前記R5およびR6は、それぞれ、CH3、SC613、C1021またはC65である、請求項10に記載の電極。
  12.  前記第2重合体化合物は、テトラカルコゲノフルバレン骨格を側鎖に有さない第2ユニットにエステル基、エーテル基、カルボニル基、シアノ基、ニトロ基、ニトロキシル基、アルキル基、フェニル基、アルキルチオ基、スルホン基またはスルホキシド基から選ばれる少なくとも一つを含む、請求項1から8のいずれかに記載の電極。
  13.  前記第2重合体化合物は、下記一般式(E)で表わされる構造を有し、
     一般式(E)中、R31およびR32は前記第2重合体化合物の主鎖を構成し、R31およびR32は3価残基であって、互いに独立に、炭素原子、酸素原子、窒素原子および硫黄原子からなる群から選ばれる少なくとも1つと、炭素数1から10の飽和脂肪族基および不飽和脂肪族基からなる群から選ばれる少なくとも1つの置換基、または、少なくとも1つの水素原子とを含み、
     L1はR31と結合したエステル基、エーテル基、カルボニル基、シアノ基、ニトロ基、ニトロキシル基、アルキル基、フェニル基、アルキルチオ基、スルホン基またはスルホキシド基であり、
     R33は、R32およびM1と結合した炭素数1から4の置換もしくは非置換のアルキレン、アルケニレン、アリーレン、エステル、アミドおよびエーテルからなる群から選ばれる少なくとも1つを含む2価残基であり、
     M1は一般式(A)であり、前記結合手によってR33と結合しており、nおよびmはモノマー単位の繰り返し数を表わす整数であり、
     前記第2重合体化合物を構成する前記第1ユニットのユニット数nに対する前記第2ユニットのユニット数mの構成比率m/nが、0より大きく、5以下である、請求項1から8のいずれかに記載の電極。
    Figure JPOXMLDOC01-appb-C000076
  14.  前記L1がエステル基、エーテル基およびカルボニル基から選ばれる少なくとも1種を含む請求項13に記載の電極。
  15.  前記活物質層は、前記電極活物質が溶解した非プロトン性溶媒と前記導電助剤とを含む混合体を前記導電性支持体上に塗布し、前記非プロトン性溶媒を除去することによって形成されている請求項1から14のいずれかに記載の電極。
  16.  前記非プロトン性溶媒が、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、トルエン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフランまたはクロロホルムである請求項15に記載の電極。
  17.  請求項1から16のいずれかに記載の電極からなる正極と、
     リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、
     前記リチウムイオンとアニオンとの塩を含み、前記正極および前記負極の間に満たされた電解液と、
    を備えた蓄電デバイス。
  18.  請求項1から14のいずれかに記載の電極の製造方法であって、
     前記電極活物質が溶解した非プロトン性溶媒と前記導電助剤とを含む混合体を用意する工程と、
     前記混合体から前記非プロトン性溶媒を除去する工程と、
    を包含する電極の製造方法。
PCT/JP2010/007527 2009-12-24 2010-12-24 電極および蓄電デバイス WO2011077754A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10838992.5A EP2518797B1 (en) 2009-12-24 2010-12-24 Electrode, method for electrode fabrication and electricity storage device
JP2011547333A JP5389946B2 (ja) 2009-12-24 2010-12-24 電極および蓄電デバイス
US13/516,162 US9640335B2 (en) 2009-12-24 2010-12-24 Electrode and electricity storage device
CN201080056752.XA CN102687315B (zh) 2009-12-24 2010-12-24 电极和蓄电装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009292973 2009-12-24
JP2009-292972 2009-12-24
JP2009292974 2009-12-24
JP2009-292973 2009-12-24
JP2009292972 2009-12-24
JP2009-292974 2009-12-24
JP2010-018965 2010-01-29
JP2010018965 2010-01-29
JP2010-248210 2010-11-05
JP2010248210 2010-11-05

Publications (1)

Publication Number Publication Date
WO2011077754A1 true WO2011077754A1 (ja) 2011-06-30

Family

ID=44195307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007527 WO2011077754A1 (ja) 2009-12-24 2010-12-24 電極および蓄電デバイス

Country Status (5)

Country Link
US (1) US9640335B2 (ja)
EP (1) EP2518797B1 (ja)
JP (1) JP5389946B2 (ja)
CN (1) CN102687315B (ja)
WO (1) WO2011077754A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032781A (ja) * 2012-08-01 2014-02-20 Nec Corp 電解液およびこれを含むリチウム二次電池
WO2014034933A1 (ja) * 2012-09-03 2014-03-06 日本ケミコン株式会社 リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097329B1 (ko) * 2013-09-12 2020-04-06 삼성전기주식회사 적층 세라믹 커패시터, 그 제조방법 및 적층 세라믹 커패시터 실장 기판
KR102296816B1 (ko) * 2014-02-03 2021-08-31 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US10340526B2 (en) * 2016-01-22 2019-07-02 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
WO2017158701A1 (ja) * 2016-03-14 2017-09-21 株式会社村田製作所 蓄電デバイス
US11171362B2 (en) * 2017-09-12 2021-11-09 Sila Nanotechnologies, Inc. Electrolyte for a metal-ion battery cell with high-capacity, micron-scale, volume-changing anode particles
CN110767469B (zh) * 2019-07-31 2021-09-24 东莞理工学院 用于有机电极材料的聚合物、其制备方法及应用
KR20210071496A (ko) * 2019-12-06 2021-06-16 삼성전기주식회사 적층 세라믹 전자부품
US11498446B2 (en) * 2020-01-06 2022-11-15 Ford Global Technologies, Llc Plug-in charge current management for battery model-based online learning
CN112242517B (zh) * 2020-10-27 2021-11-30 福州大学 一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014762A (ja) 1983-07-05 1985-01-25 Kao Corp 電池
JPH06150909A (ja) 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd ポリマー電極の製造法
JP2002117852A (ja) 2000-10-05 2002-04-19 Nec Corp 二次電池およびその製造方法
JP2004047487A (ja) * 1995-01-25 2004-02-12 Ricoh Co Ltd リチウム二次電池用負極および該負極を用いたリチウム二次電池
JP2004111374A (ja) 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd 電気化学素子
JP2007305461A (ja) 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd 蓄電デバイスの充放電制御方法
WO2008099557A1 (ja) 2007-02-15 2008-08-21 Nec Corporation 電極形成用スラリー、および電池
JP2009163918A (ja) * 2007-12-28 2009-07-23 Showa Denko Kk 共重合体と炭素材料との複合物およびその製造方法
JP2009295397A (ja) * 2008-06-04 2009-12-17 Denso Corp 有機ラジカル二次電池、有機ラジカル二次電池の充放電制御方法及び有機ラジカル二次電池の充放電制御装置
WO2010013491A1 (ja) * 2008-07-31 2010-02-04 パナソニック株式会社 蓄電材料および蓄電デバイス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900336A (en) 1995-01-25 1999-05-04 Ricoh Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
KR20040081186A (ko) * 2002-02-07 2004-09-20 후지 주코교 카부시키카이샤 레독스 활성 가역 전극 및 이를 사용한 신규한 전지
US7282298B2 (en) 2002-08-29 2007-10-16 Matsushita Electric Industrial Co., Ltd. Electrochemical device
US20060147802A1 (en) 2005-01-05 2006-07-06 Kiyotaka Yasuda Anode for nonaqueous secondary battery, process of producing the anode, and nonaqueous secondary battery
JP2007265712A (ja) 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd 電極およびそれを用いた蓄電素子
WO2007116926A1 (ja) 2006-04-05 2007-10-18 Panasonic Corporation 二次電池の製造方法および二次電池用正極活物質の調製方法
WO2007132786A1 (ja) * 2006-05-12 2007-11-22 Panasonic Corporation 蓄電デバイス
WO2009157206A1 (ja) 2008-06-25 2009-12-30 パナソニック株式会社 蓄電材料および蓄電デバイス
WO2012001988A1 (ja) * 2010-07-01 2012-01-05 パナソニック株式会社 非水電解質二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014762A (ja) 1983-07-05 1985-01-25 Kao Corp 電池
JPH06150909A (ja) 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd ポリマー電極の製造法
JP2004047487A (ja) * 1995-01-25 2004-02-12 Ricoh Co Ltd リチウム二次電池用負極および該負極を用いたリチウム二次電池
JP2002117852A (ja) 2000-10-05 2002-04-19 Nec Corp 二次電池およびその製造方法
JP2004111374A (ja) 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd 電気化学素子
JP2007305461A (ja) 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd 蓄電デバイスの充放電制御方法
WO2008099557A1 (ja) 2007-02-15 2008-08-21 Nec Corporation 電極形成用スラリー、および電池
JP2009163918A (ja) * 2007-12-28 2009-07-23 Showa Denko Kk 共重合体と炭素材料との複合物およびその製造方法
JP2009295397A (ja) * 2008-06-04 2009-12-17 Denso Corp 有機ラジカル二次電池、有機ラジカル二次電池の充放電制御方法及び有機ラジカル二次電池の充放電制御装置
WO2010013491A1 (ja) * 2008-07-31 2010-02-04 パナソニック株式会社 蓄電材料および蓄電デバイス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"TTF Chemistry, Fundamentals and Applications of Tetrathiafulvalene", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 97, no. 10, 1975, pages 2921 - 2922
CHEMICAL COMMUNICATION, 1997, pages 1925 - 1926

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032781A (ja) * 2012-08-01 2014-02-20 Nec Corp 電解液およびこれを含むリチウム二次電池
WO2014034933A1 (ja) * 2012-09-03 2014-03-06 日本ケミコン株式会社 リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
JPWO2014034933A1 (ja) * 2012-09-03 2016-08-08 日本ケミコン株式会社 リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
US10374222B2 (en) 2012-09-03 2019-08-06 Nippon Chemi-Con Corporation Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
EP2518797A4 (en) 2016-04-27
CN102687315A (zh) 2012-09-19
CN102687315B (zh) 2016-02-10
US20120328944A1 (en) 2012-12-27
EP2518797B1 (en) 2021-06-23
JPWO2011077754A1 (ja) 2013-05-02
EP2518797A1 (en) 2012-10-31
JP5389946B2 (ja) 2014-01-15
US9640335B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
JP5389946B2 (ja) 電極および蓄電デバイス
JP4633864B2 (ja) 蓄電材料および蓄電デバイス
JP4633863B2 (ja) 蓄電材料および蓄電デバイス
WO2011111401A1 (ja) 蓄電デバイス用電極活物質およびそれを用いた蓄電デバイス
AU2002325514A1 (en) Redox active reversible electrode and novel cell using it
JP4558835B2 (ja) 重合体、半導体膜、電極、電極活物質、電気化学素子および蓄電デバイス
JP2016534521A (ja) 非水電解質二次電池用ハイブリッド電極
JP5380910B2 (ja) 有機ラジカル二次電池
Yang et al. Zinc storage mechanism in polypyrrole electrodeposited from aqueous, organic, and ionic liquid electrolytes: an in situ raman spectroelectrochemical study
JP2013020786A (ja) 電極および蓄電デバイス
JP2005285376A (ja) 有機・無機ハイブリッド電極およびそれを用いた二次電池
JP5333887B2 (ja) 電極活物質及びこれを用いた電極
JP2013239305A (ja) 蓄電デバイス、それに用いる正極並びに多孔質シート、およびドープ率向上方法
JP2014013702A (ja) 蓄電デバイス用電極、それを用いた蓄電デバイスおよびその製法
JP2011029136A (ja) 二次電池用電極、二次電池、及び二次電池用電極の製造方法
WO2013172223A1 (ja) デュアルモード型蓄電デバイス
JP6447050B2 (ja) 蓄電デバイスの製造方法
JP2014116278A (ja) 蓄電デバイス、およびそれに用いる電極並びに多孔質シート
JP6332634B2 (ja) コポリマー、電極用活物質、及び二次電池
JP2013077392A (ja) 蓄電材料及び蓄電デバイス
JP4343819B2 (ja) 酸化還元活性重合体、それを用いる電極及び非水溶液系電池
JP2013012330A (ja) 非水電解質二次電池
WO2014065198A1 (ja) カチオン移動型蓄電デバイス、それに用いる電極並びに多孔質シート、およびドープ率向上方法
JP2012015377A (ja) 蓄電デバイス
JP2013012331A (ja) 非水電解質二次電池およびその正極の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056752.X

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547333

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010838992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5243/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13516162

Country of ref document: US