CN112242517B - 一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法 - Google Patents

一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法 Download PDF

Info

Publication number
CN112242517B
CN112242517B CN202011161872.8A CN202011161872A CN112242517B CN 112242517 B CN112242517 B CN 112242517B CN 202011161872 A CN202011161872 A CN 202011161872A CN 112242517 B CN112242517 B CN 112242517B
Authority
CN
China
Prior art keywords
tetrathiafulvalene
lithium
dicarboxylate
ion battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011161872.8A
Other languages
English (en)
Other versions
CN112242517A (zh
Inventor
陈栋阳
胡伟康
林梅金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202011161872.8A priority Critical patent/CN112242517B/zh
Publication of CN112242517A publication Critical patent/CN112242517A/zh
Application granted granted Critical
Publication of CN112242517B publication Critical patent/CN112242517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂离子电池材料技术领域,具体涉及一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法。本发明首先以二硫化碳和丙炔酸甲酯为原料,在三丁基膦催化下合成四硫代富瓦烯二羧酸甲酯,再经过水解、酸化和锂化得到四硫代富瓦烯二羧酸锂。将制备的四硫代富瓦烯二羧酸锂、导电剂和粘结剂混合分散在N‑甲基吡咯烷酮中,然后涂布在铜箔上,烘干并切片得到四硫代富瓦烯二羧酸锂负极。所得负极具有放电比容量高和循环稳定性好等优点。

Description

一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备 方法
技术领域
本发明公开一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法,属于锂离子电池材料技术领域。
背景技术
锂离子电池技术被认为是目前最理想的能源存储与转换技术之一。锂离子电池具有能量密度高、重量轻、循环寿命长等优点,广泛应用于手机、笔记本电脑和数码相机等设备中。随着电子设备以及电动汽车的发展,锂离子电池市场对安全、环保和可持续等方面提出更高的要求。开发新型电极材料对锂离子电池的发展具有重要意义。
有机电极材料是一类新型电化学储能材料,具有原料来源广泛、可加工性、绿色环保、结构多样性等优点,有望成为新一代“绿色锂离子电池”的电极材料。有机电极材料的理论比容量与其自身分子量和电子转移数密切相关。增加有机分子结构中的活性基团密度可提高有机电极材料的理论比容量。常见的有机电极材料有有机小分子和有机高分子。有机小分子的理论比容量大但其往往易在电解液中溶解。例如,苯醌以及多羰基苯小分子作为有机电极材料具有较高的理论比容量,然而实际测试中由于其在电解液中的溶解导致其循环比容量不断下降。通过在有机电极材料中引入强极性的离子基团,如磺酸锂和羧酸锂等,可使其在有机电解液中的溶解度下降。Walker等人将4,4-二苯乙炔二羧酸锂用作锂离子电池负极,该负极具有200 mAh/g可逆比容量,但是该材料制备过程复杂(Journal ofMaterials Chemistry, 2011, 21, 1615-1620.)。
四硫代富瓦烯及其衍生物由于具有优异的给电子性能和良好的平面共轭性,在分子传感器、分子开关、非线性光学和导电材料等方面受到人们的广泛关注。将四硫代富瓦烯二羧酸锂应用到有机电极中,有望实现高比容量和良好稳定循环性能,对有机锂离子电池的发展具有重要意义。
发明内容
本发明的目的是克服现有技术的不足,提供一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法。所述的基于四硫代富瓦烯二羧酸锂的锂离子电池负极具有电化学稳定性好,放电比容量高和循环性能稳定等优点,在锂离子电池负极领域具有较大的应用前景。
为实现上述目的,本发明采用包括以下技术方案:
一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极,该负极由四硫代富瓦烯二羧酸锂、导电剂、粘结剂和铜箔组成。所述四硫代富瓦烯二羧酸锂的化学结构式如下所示:
Figure DEST_PATH_IMAGE001
一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,包括以下步骤:
(1)将二硫化碳和丙炔酸甲酯加入无水四氢呋喃中,再加入催化剂三丁基膦,氩气保护,在-100 ℃~-10 ℃温度下反应2~8小时,抽滤后40 ℃~110 ℃真空干燥4~12小时,粗产品用环己烷与二氯甲烷混合溶剂(体积比为2:1)的层析过柱得到四硫代富瓦烯二羧酸甲酯。
(2)将步骤(1)得到的四硫代富瓦烯二羧酸甲酯和氢氧化钠加入到四氢呋喃与水的混合溶剂中,在40 ℃~110 ℃下反应2~8小时,冷却至室温,旋蒸除去四氢呋喃,加入1mol/L的盐酸水溶液调节pH至1~6,过滤收集沉淀,在80 ℃~130 ℃下真空干燥10~48小时得到四硫代富瓦烯二羧酸。
(3)将步骤(2)得到的四硫代富瓦烯二羧酸加入到10~40 mL的去离子水中,再加入氢氧化锂,室温搅拌1~3小时,然后-50 ℃下冻干10~40小时,得到四硫代富瓦烯二羧酸锂。
(4)将步骤(3)中得到的四硫代富瓦烯二羧酸锂、导电剂和粘结剂按一定比例混合,将混合物加入N-甲基吡咯烷酮(NMP)中制成浆料,超声分散1~4小时,将其均匀涂在铜箔表面,在60 ℃~100 ℃下鼓风干燥0.5~3小时,切成直径为10~17 mm的圆形电极;再将其置于80 ℃~130 ℃下真空干燥10~48小时,得到基于四硫代富瓦烯二羧酸锂的锂离子电池负极。
步骤(1)所述的二硫化碳、丙炔酸甲酯和三丁基膦用量摩尔比为1~5:1~3:1~3,无水四氢呋喃用量为每毫升二硫化碳加入10~30 mL。
步骤(2)所述的氢氧化钠用量为每摩尔四硫代富瓦烯二羧酸甲酯加入1~3摩尔,四氢呋喃与水混合溶剂用量为每克四硫代富瓦烯二羧酸甲酯10~30 mL,四氢呋喃与水混合溶剂的体积比1~3:1~3。
步骤(3)所述的氢氧化锂的用量为每摩尔四硫代富瓦烯二羧酸加入1~3摩尔。
步骤(4)所述的导电剂为乙炔黑、碳黑或石墨中的一种或几种。
步骤(4)所述的粘结剂为聚偏氟乙烯(PVDF)、羧甲基纤维素钠(CMC-Na)或聚乙烯醇(PVA)中的一种或几种。
步骤(4)所述的四硫代富瓦烯二羧酸锂、导电剂和粘结剂的质量比为2~8:1~7:1;NMP用量为每克四硫代富瓦烯二羧酸锂、导电剂和粘结剂混合物加入20~30 mL。
步骤(4)所述的铜箔上所负载的固体(干燥后)总质量为1~10 mg/cm-2
本发明以四硫代富瓦烯二羧酸锂作为负极活性材料,为了便于理解,将其氧化还原机理示意如下:
Figure 802303DEST_PATH_IMAGE002
本发明的有益效果是:
1、四硫代富瓦烯二羧酸锂制备过程简单,绿色环保,其电极易于回收利用。
2、四硫代富瓦烯二羧酸锂基于羧基的氧化还原所得到的理论质量比容量高,为176.21 mAh/g。
3、四硫代富瓦烯二羧酸锂中的四硫代富瓦烯单元共轭大、导电性好,有利于四硫代富瓦烯二羧酸锂中羧基的可逆氧化还原。
4、四硫代富瓦烯二羧酸锂在电解液中几乎不溶,因此基于四硫代富瓦烯二羧酸锂的锂离子电池负极可在电解液中稳定存在,具有优异的循环稳定性。
5、所得基于四硫代富瓦烯二羧酸锂的锂离子电池负极具有较高的放电比容量和稳定的循环性能。
附图说明:
图1为实施例3所制备的四硫代富瓦烯二羧酸锂的红外光谱;
图2为实施例8所制备的基于四硫代富瓦烯二羧酸锂的锂离子电池负极的扫描电镜图;
图3为实施例8所制备的基于四硫代富瓦烯二羧酸锂的锂离子电池负极的电镜能谱图(亮点表示硫元素);
图4为实施例16所制备的锂离子电池的充放电曲线;
图5为实施例16 所制备的锂离子电池的循环性能;
图6为实施例16所制备的锂离子电池的交流阻抗曲线。
具体实施方案
下面结合实施例对本发明进一步描述。
实施例1四硫代富瓦烯二羧酸甲酯的制备
将10 mL(0.165 mol)二硫化碳和8.4 g(0.1 mol)丙炔酸甲酯为原料添加到80 mL无水四氢呋喃中,再加入催化剂三丁基膦20.2 g(0.1 mol),氩气保护,在-76 ℃温度反应4小时,抽滤后80 ℃真空干燥6小时,粗产品用体积比为2:1的环己烷与二氯甲烷混合溶剂层析过柱,得到四硫代富瓦烯二羧酸甲酯2.1 g。
实施例2四硫代富瓦烯二羧酸的制备
将0.64 g(2 mmol)四硫代富瓦烯二羧酸甲酯和0.2 g(5 mmol)氢氧化钠加入到的40 mL等体积四氢呋喃与水混合溶剂中,在90 ℃下反应4小时,冷却至室温,旋蒸除去四氢呋喃,加入盐酸水溶液调节pH至5,过滤收集沉淀,在100 ℃下真空干燥24小时,得到四硫代富瓦烯二羧酸0.54 g。
实施例3四硫代富瓦烯二羧酸锂的制备
将0.05 g(2.1 mmol)氢氧化锂加入20 mL的去离子水中,再将0.29 g(1 mmol)的四硫代富瓦烯二羧酸加入氢氧化锂水溶液中,室温搅拌2小时,接着将溶液冻干24小时,得到四硫代富瓦烯二羧酸锂0.28 g。
实施例4~11基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备
称取四硫代富瓦烯二羧酸锂和导电剂于玛瑙研钵中研磨混合30分钟,倒入小烧杯中并加入粘结剂,滴加N-甲基吡咯烷酮(NMP),搅拌均匀,其中NMP用量为每克四硫代富瓦烯二羧酸锂、导电剂和粘结剂的混合物加入25 mL;再超声1个小时得到均匀的浆料,然后将浆料用200微米不锈钢刮刀涂在铜箔上,80 ℃鼓风干燥2小时后切成直径为14 mm的电极片,再120 ℃真空干燥24小时。各实施例所采用的配方如表1所示。
表1 基于四硫代富瓦烯二羧酸锂的锂离子电池负极的配方
Figure DEST_PATH_IMAGE003
应用例1-8锂离子电池的制备
采用CR2025扣式电池,以金属锂片作为对电极,Celgard 2400作为隔膜,隔膜直径为17 mm。电解液采用溶解于等体积比的碳酸乙烯酯和碳酸二甲酯混合溶液的1.0 M LiPF6电解液。电池组装过程如下:在电池底壳内,先放入金属锂片,在其上滴加25 μL电解液,然后铺上隔膜,再滴加30 μL电解液,之后放置实施例4~11所制备的基于四硫代富瓦烯二羧酸锂的锂离子电池负极,最后依次放入垫片、弹片和电池上盖,冲压成型。所制备的锂离子电池先搁置12小时,然后以0.5C(1C = 176.21 mAh/g)放电至0.1 V活化,再依次进行恒流充放电,充放电电流密度为0.5C,充电截止电压3 V,放电截止电压0.1 V。放电比容量为活化后的第1次放电的比容量。所制备的锂离子电池的循环测试所采用的电流密度为0.5C,循环圈数为120圈,以循环放电比容量保持率评价其循环稳定性。循环放电比容量保持率=第120圈的放电比容量/第1圈的放电比容量×100%。各实施例所采用的负极和所得到的电池性能如表2所示。
表2 基于四硫代富瓦烯二羧酸锂的锂离子电池负极的电池性能
Figure 329231DEST_PATH_IMAGE004
图1说明了四硫代富瓦烯二羧酸锂的红外光谱图在峰值为1612和1375 cm-1附近出现两个强峰,对应于C=O反对称和对称伸缩振动吸收,表明产物为四硫代富瓦烯二羧酸锂。
图2说明了基于四硫代富瓦烯二羧酸锂的锂离子电池负极的扫描电镜图中颗粒大小均一,表明四硫代富瓦烯二羧酸锂分散均匀。
图3说明了基于四硫代富瓦烯二羧酸锂的锂离子电池负极的电镜能谱图,其中亮点为硫元素分布,可见四硫代富瓦烯二羧酸锂的锂离子电池负极中硫元素分布均匀,同样表明四硫代富瓦烯二羧酸锂分散均匀。
图4说明了基于四硫代富瓦烯二羧酸锂的锂离子电池的充放电曲线,显示充放电区间为0.01 V-3 V,充放电比容量均在250 mAh/g以上,充放电无明显的电压平台。
图5说明了基于四硫代富瓦烯二羧酸锂的锂离子电池在0.5 C电流密度下进行了120次循环充放电,比容量无明显下降,放电比容量保持率为91.27%,并且库伦效率保持在100%左右,表明电池具有优异的循环稳定性。
图6说明了基于四硫代富瓦烯二羧酸锂的锂离子电池在交流阻抗测试中,低频区半圆直径较小,即电荷转移电阻较小。

Claims (9)

1.一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于,所述锂离子电池负极由四硫代富瓦烯二羧酸锂、导电剂、粘结剂和铜箔组成;所述四硫代富瓦烯二羧酸锂的化学结构式如下所示:
Figure DEST_PATH_IMAGE002
所述锂离子电池负极的制备方法包括以下步骤:
(1)将二硫化碳和丙炔酸甲酯加入无水四氢呋喃中,再加入催化剂三丁基膦,氩气保护,在-100 ℃~-10 ℃温度下反应2~8小时,抽滤后40 ℃~110 ℃真空干燥4~12小时,粗产品用体积比为2:1环己烷与二氯甲烷混合溶剂层析过柱得到四硫代富瓦烯二羧酸甲酯;
(2)将步骤(1)得到的四硫代富瓦烯二羧酸甲酯和氢氧化钠加入到四氢呋喃与水的混合溶剂中,在40 ℃~110 ℃下反应2~8小时,冷却至室温,旋蒸除去四氢呋喃,调节pH,过滤收集沉淀,在80 ℃~130 ℃下真空干燥10~48小时得到四硫代富瓦烯二羧酸;
(3)将步骤(2)得到的四硫代富瓦烯二羧酸加入到10~40 mL的去离子水中,再加入氢氧化锂,室温搅拌1~3小时,然后-50 ℃下冻干10~40小时,得到四硫代富瓦烯二羧酸锂;
(4)将步骤(3)中得到的四硫代富瓦烯二羧酸锂、导电剂和粘结剂按一定比例混合,将混合物加入N-甲基吡咯烷酮NMP中制成浆料,超声分散1~4小时,将其均匀涂在铜箔表面,在60 ℃~100 ℃下鼓风干燥0.5~3小时,切成直径为10~17 mm的圆形电极;再将其置于80 ℃~130 ℃下真空干燥10~48小时,得到基于四硫代富瓦烯二羧酸锂的锂离子电池负极。
2.根据权利要求1所述的一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于,步骤(1)所述的二硫化碳、丙炔酸甲酯和三丁基膦用量摩尔比为1~5:1~3:1~3,无水四氢呋喃用量为每毫升二硫化碳加入10~30 mL。
3.根据权利要求1所述的一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于,步骤(2)所述的氢氧化钠用量为每摩尔四硫代富瓦烯二羧酸甲酯加入1~3摩尔,四氢呋喃与水混合溶剂用量为每克四硫代富瓦烯二羧酸甲酯10~30 mL,四氢呋喃与水混合溶剂的体积比1~3:1~3。
4.根据权利要求1所述的一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于,步骤(2)所述调节pH具体为:加入1 mol/L的盐酸水溶液调节pH至1~6。
5.根据权利要求1所述的一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于,步骤(3)所述的氢氧化锂的用量为每摩尔四硫代富瓦烯二羧酸加入1~3摩尔。
6.根据权利要求1所述的一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于,步骤(4)所述的导电剂为碳黑或石墨中的一种或几种。
7.根据权利要求1所述的一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于,步骤(4)所述的粘结剂为聚偏氟乙烯PVDF、羧甲基纤维素钠CMC-Na或聚乙烯醇PVA中的一种或几种。
8.根据权利要求1所述的一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于步骤(4)所述的四硫代富瓦烯二羧酸锂、导电剂和粘结剂的质量比为2~8:1~7:1;NMP用量为每克四硫代富瓦烯二羧酸锂、导电剂和粘结剂混合物加入20~30 mL。
9.根据权利要求1所述的一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极的制备方法,其特征在于,步骤(4)所述的铜箔上所负载的固体干燥后总质量为1~10 mg/cm2
CN202011161872.8A 2020-10-27 2020-10-27 一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法 Active CN112242517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011161872.8A CN112242517B (zh) 2020-10-27 2020-10-27 一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011161872.8A CN112242517B (zh) 2020-10-27 2020-10-27 一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法

Publications (2)

Publication Number Publication Date
CN112242517A CN112242517A (zh) 2021-01-19
CN112242517B true CN112242517B (zh) 2021-11-30

Family

ID=74169941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011161872.8A Active CN112242517B (zh) 2020-10-27 2020-10-27 一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法

Country Status (1)

Country Link
CN (1) CN112242517B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812096B (zh) * 2021-02-01 2021-10-29 福州大学 一种四硫代富瓦烯二元醇化合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110851A (zh) * 2009-12-24 2011-06-29 上海空间电源研究所 一种锂离子二次电池
CN102687315A (zh) * 2009-12-24 2012-09-19 松下电器产业株式会社 电极和蓄电装置
CN110048121A (zh) * 2019-03-27 2019-07-23 广东萱嘉医品健康科技有限公司 一种含有偶氮有机锂盐的负极材料、负极极片、锂电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306562B1 (en) * 2008-07-31 2020-06-17 Panasonic Corporation Accumulator material and accumulator device
JP2010135167A (ja) * 2008-12-04 2010-06-17 Panasonic Corp 電極活物質および蓄電デバイス
CN102780000B (zh) * 2012-07-10 2014-10-08 长安大学 锂离子电池负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110851A (zh) * 2009-12-24 2011-06-29 上海空间电源研究所 一种锂离子二次电池
CN102687315A (zh) * 2009-12-24 2012-09-19 松下电器产业株式会社 电极和蓄电装置
CN110048121A (zh) * 2019-03-27 2019-07-23 广东萱嘉医品健康科技有限公司 一种含有偶氮有机锂盐的负极材料、负极极片、锂电池及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Laterally Extended Perylene Hexacarboxylate via Diels-Alder Reaction for High-Performance Organic Lithium-Ion Batteries;Lei Li,et al.;《Electrochimica Acta》;20170922;255-261 *
Electrochemical characterization of lithium 4,40-tolane-dicarboxylate for use as a negative electrode in Li-ion batteries;Wesley Walker,et al.;《Journal of Materials Chemistry》;20101214;1615-1620 *
Sulfur-rich Graphdiyne-Containing Electrochemical Active Tetrathiafulvalene for Highly Efficient Lithium Storage Application;Qingyan Pan,et al.;《ACS APPLIED MATERIALS & INTERFACES》;20191112;46070-46076 *

Also Published As

Publication number Publication date
CN112242517A (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
Yao et al. 5, 7, 12, 14-Pentacenetetrone as a high-capacity organic positive-electrode material for use in rechargeable lithium batteries
Oubaha et al. Carbonyl‐based π‐conjugated materials: from synthesis to applications in lithium‐ion batteries
Komaba et al. Fast redox of composite electrode of nitroxide radical polymer and carbon with polyacrylate binder
EP1128453A2 (en) Secondary battery using a radical compound as active electrode material
CN109004229B (zh) 一种锂离子电池正极材料添加剂及其正极材料和锂离子二次电池
CN110350193B (zh) 一种双离子嵌入型交联网状三苯胺聚合物锂离子电池正极材料及其制备方法
CN108461752B (zh) 一种侧链带有共轭羰基化合物的三苯胺聚合物及制备与应用
CN106207182A (zh) 一种应用于锂电池的微介孔聚三苯胺衍生物及其制备方法
CN101595580A (zh) 聚自由基化合物-导电材料的复合体、及其制备方法和使用其的电池
CN112409364B (zh) 六氮杂萘衍生物及其制备方法和应用
CN112242517B (zh) 一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法
CN108695509B (zh) 高储能效率复合型锂电池正极及其制备方法和锂电池
CN112271314B (zh) 一种基于四硫代富瓦烯二羧酸乙酯的液流电池正极电解液及其制备方法
JPH0837025A (ja) 非水電解液
CN110556537B (zh) 一种改善阴离子嵌入型电极材料电化学性能的方法
CN110590789B (zh) 富氮三苯胺衍生物共轭聚合物材料及其单体的制备和应用
Zhu et al. p-Dopable Poly (4-nitro) triphenylamine as Cathode Material with High Discharge Voltage for Lithium Ion Batteries
CN111211327B (zh) 一种用于锂离子电池正极材料的化合物及制备方法和应用
CN114573484A (zh) 一种有机电极材料及其中间体、正极片和电池
CN112635768A (zh) 一种应用于锂电池负极的聚苯胺包覆Ti2Nb10O29复合微球材料的制备方法
CN108807921B (zh) 一种锂电池负极材料及其制备方法
CN115057862B (zh) 一种吡嗪-喹喔啉有机电极材料及其在锂离子电池中的应用
CN114920929B (zh) 锂离子电池正极材料、锂离子电池正极、锂离子电池及其制备方法和应用
CN110277558B (zh) 一种锂离子电池负极材料及其制备方法
CN110767469B (zh) 用于有机电极材料的聚合物、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant