WO2011077708A1 - 熱延鋼板および冷延鋼板ならびにそれらの製造方法 - Google Patents

熱延鋼板および冷延鋼板ならびにそれらの製造方法 Download PDF

Info

Publication number
WO2011077708A1
WO2011077708A1 PCT/JP2010/007407 JP2010007407W WO2011077708A1 WO 2011077708 A1 WO2011077708 A1 WO 2011077708A1 JP 2010007407 W JP2010007407 W JP 2010007407W WO 2011077708 A1 WO2011077708 A1 WO 2011077708A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
hot
cold
less
Prior art date
Application number
PCT/JP2010/007407
Other languages
English (en)
French (fr)
Inventor
英子 安原
文吾 舘野
孝将 川井
純一 舘野
誠 山田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020127019447A priority Critical patent/KR101446486B1/ko
Priority to CN2010800589853A priority patent/CN102666901A/zh
Publication of WO2011077708A1 publication Critical patent/WO2011077708A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a hot-rolled steel sheet and a cold-rolled steel sheet which are used for building materials, home appliances, etc. and have excellent edge properties even when cold-rolled, and methods for producing them.
  • Patent Document 1 As a method for controlling edge buildup, for example, in Patent Document 1, as “a method for preventing edge buildup of an electroplated steel sheet”, after the steel sheet is electroplated, the thick plated portion of the steel sheet edge is crushed with a masher roll However, a method for removing plating deposits protruding from the edge end surface by mechanical means is disclosed.
  • Patent Document 2 as a “method for preventing edge cracks in a cold rolling line of a steel strip”, the shearing portion is previously set at 450 to 900 ° C. when the edge portion is trimmed with a hot rolled steel plate and then cold rolled. A method of heating is disclosed.
  • Patent Document 3 discloses a trimming method in two stages as a method of side trimming of the ear portion in the pre-cold rolling process as “a method and apparatus for preventing the cracking in the cold rolling of the strip”.
  • Patent Document 4 discloses a “method for producing grain-oriented electrical steel sheets without ear cracks”. According to this, in order to prevent ear cracking during hot rolling and maintain good magnetic properties, the time within 10 mm from the surface of the slab during casting is defined as the time during which it stays in the temperature range from the solidification temperature to 1300 ° C. By doing so, it is disclosed that it is possible to achieve both ear cracks and magnetic properties.
  • Patent Documents 1 to 4 it is necessary to introduce new equipment. In addition, detailed adjustment according to the steel type is necessary, and for that purpose, a lot of know-how needs to be accumulated.
  • Patent Document 5 A technique for suppressing such an ear crack is disclosed in Patent Document 5.
  • Patent Document 5 in order to suppress the ear cracking, it is important to lower the recrystallization temperature and to extend the temperature difference width between the Ar 3 transformation point and the recrystallization end temperature.
  • optimization of B, Ti, N, etc. is disclosed.
  • the present invention is directed to a cold-rolled steel sheet that has been cold-rolled and does not require trimming after cold-rolling.
  • An object of the present invention is to provide a cold-rolled steel sheet having a thickness of 0.2 mm or less and having no ear cracks, and a method for producing them.
  • the inventors have found the following.
  • the trimmed cross section is work-hardened, and a fracture surface, a sheared surface, a burr and the like are generated. Therefore, when the relationship between the structure after trimming and the occurrence of ear cracks after cold rolling was examined in detail, by controlling the hot-rolled steel sheet structure before trimming, ear cracks were observed even at a high cold rolling rate. It was found that the occurrence can be suppressed.
  • Component composition is mass%, C: 0.001 to 0.10%, Si: 0.005 to 0.80%, Mn: 0.01 to 2.0%, P: 0.001 to 0.40%, S: 0.10% or less, Al: 0.001 to 0.10 %, N: 0.020% or less, consisting of remaining Fe and inevitable impurities, the main phase structure is ferrite, the average crystal grain size of the ferrite is 10 to 25 ⁇ m, and the aspect ratio Nx / Ny of the ferrite crystal grains is A hot-rolled steel sheet characterized by being 0.70 to 1.00.
  • Nx is the number of trapped crystal grains per 1 mm in the rolling longitudinal direction defined by JISG0551: 2005
  • Ny is the number of trapped crystal grains per 1 mm in the rolling perpendicular direction defined by JISG0551: 2005.
  • the composition further includes 0.001 to 1.0% in total of any one or more of Mo, Co, and W by mass%. Hot rolled steel sheet.
  • a cold rolled steel sheet having a thickness of 0.2 mm or less obtained by cold rolling the hot rolled steel sheet according to any one of [1] to [7] in any one of [1] to [7].
  • the cast slab having the component composition according to any one of [1] to [5] is cast or once cooled, and then heated to 1100 ° C. to 1270 ° C., so that the reduction rate at the final stand is 10
  • Hot rolling is performed at a hot rolling finishing temperature of 850 ° C. to 1000 ° C., wound at 600 ° C. to 700 ° C. to form a hot rolled steel sheet, and then both ends of the hot rolled steel sheet exceed 2 mm.
  • [10] A method for producing a cold-rolled steel sheet having a thickness of 0.2 mm or less, further cold-rolling the hot-rolled steel sheet according to [9] at a cold reduction ratio of 85% or more.
  • a cold-rolled steel sheet having a thickness of 0.2 mm or less and having no ear cracks can be obtained.
  • the cold-rolled steel sheet obtained by the present invention is excellent in edge properties. Furthermore, since trimming is not performed after cold rolling, shape defects during coil winding called edge build-up are prevented, and excessive plating is applied to the edges when customers perform electroplating or hot dipping. As a result, the yield does not decrease and the unit price does not increase due to excessive plating. Therefore, it is suitably used as a material for building materials, home appliances and the like.
  • FIG. 1 It is a figure which shows the relationship between a hole expansion rate and the amount of edge cracks (edge crack depth) of a cold-rolled steel plate. It is a schematic diagram which shows the cross section after trimming the edge part of a hot-rolled steel plate. Figure showing the relationship between the ratio of the maximum hardness value Hv-max and minimum hardness value Hv-min (Hv-max / Hv-min) and the amount of edge cracks (edge crack depth) of cold-rolled steel sheets with a thickness of 0.2 mm or less It is.
  • C 0.001 to 0.10% C has the effect of increasing the strength of the material by dissolving in steel.
  • the C content exceeds 0.10%, carbides are formed, the load during cold rolling becomes extremely large, and it becomes difficult to obtain a cold-rolled steel sheet having a sheet thickness of 0.2 mm or less. Therefore, in the present invention, the upper limit of the C amount is set to 0.10% from the viewpoint of cold rollability.
  • it is desirable to reduce the amount of C from the point of cold rolling property remarkable reduction leads to the strength reduction of a steel plate.
  • the lower limit of the C amount is 0.001% from the viewpoint of securing strength and cost.
  • the C content is preferably 0.005 to 0.07%.
  • Si 0.005-0.80% Since Si is effective as an element for increasing the strength of steel, it is contained in an amount of 0.005% or more. However, if a large amount of Si is contained, not only cold rolling properties but also surface treatment properties, chemical conversion properties, and corrosion resistances are lowered. Therefore, from these viewpoints, the Si content is set to 0.80% or less.
  • Mn 0.01-2.0% Mn functions to suppress hot cracking due to S. In order to acquire this effect, it contains 0.01% or more, Preferably it is 0.02% or more. On the other hand, the addition of a large amount of Mn hardens the steel sheet material and decreases the cold rolling property. In addition, the weldability and plating properties are reduced. Therefore, the upper limit of Mn is set to 2.0%. In addition, when a better shape and corrosion resistance are required, the Mn content is preferably 1.5% or less.
  • P 0.001 to 0.40%
  • P has an effect of increasing the strength of the steel sheet material, so 0.001% or more is contained.
  • the addition of a large amount of P decreases the cold rolling property.
  • P has a strong tendency to segregate in steel and causes embrittlement of the weld.
  • the upper limit of the P content is 0.40%, preferably 0.30% or less.
  • S 0.10% or less S is present as an inclusion in steel and lowers corrosion resistance, so it is desirable to reduce it as much as possible, but up to 0.10% is acceptable.
  • the upper limit of S content shall be 0.10%, More preferably, it is 0.05% or less.
  • the lower limit of the S content is preferably about 0.001%.
  • Al 0.001 to 0.10%
  • Al is added as a deoxidizer and is an element that improves the cleanliness of steel, so it is actively added.
  • the Al content is 0.001% or more. If the Al content is less than 0.001%, the effect of deoxidation is small, and inclusions remain to lower the moldability. On the other hand, if the Al content exceeds 0.10%, the manufacturing cost increases, so the upper limit of the Al content is 0.10%. From the viewpoint of material stability, the Al content is preferably 0.005 to 0.08%.
  • N 0.020% or less N is dissolved in the steel sheet, and if the N content exceeds 0.020%, the steel sheet is remarkably hardened. Note that the lower limit of the N content is preferably about 0.001% in consideration of steelmaking ability and cost.
  • the component composition of the hot-rolled steel sheet of the present invention is Fe and inevitable impurities in the balance other than the components described above.
  • the above-described component composition is a basic composition. If necessary, one or more of Cr, Cu, Ni, and Sn are added in a total amount of 0.001 to 0.1%, Ti, V, Contains one or more of Nb in a total of 0.001 to 1.0%, one or more of Mo, Co, and W in a total of 0.001 to 1.0%, and B contains 0.0001 to 0.005% be able to.
  • One or more of Cr, Cu, Ni, Sn or more, 0.001 to 0.1% in total Cr, Cu, Ni and Sn can contain 0.001% or more in total of any one or two or more kinds for the purpose of solid solution strengthening.
  • the steel sheet becomes extremely hard and impairs the cold workability, so when containing Cr, Cu, Ni, Sn, Cr, Cu, The upper limit for the Ni and Sn contents is 0.1% in total.
  • Ti, V and Nb in total 0.001 to 1.0% are elements that mainly increase the strength of the steel sheet by forming carbides and nitrides. In order to obtain this effect, one or more of Ti, V, and Nb is added as required in a total amount of 0.001% or more. On the other hand, if Ti, V, and Nb are added in a total amount of more than 1.0%, the steel sheet becomes extremely hard and cold workability is impaired, so the contents of Ti, V, and Nb when Ti, V, and Nb are contained The upper limit is 1.0% in total.
  • Mo, Co and W in total 0.001 to 1.0% Mo, Co, and W can contain 0.001% or more in total of any one or two or more kinds as reinforcing elements.
  • Mo, Co, and W are added in a larger amount than 1.0% in total, the steel sheet becomes extremely hard and the cold workability is impaired. Therefore, when Mo, Co, and W are contained, The upper limit of the amount is 1.0% in total.
  • B is 0.0001-0.005%
  • B is a component effective for grain boundary strengthening, and the effect is manifested when the B content is 0.0001% or more.
  • the B content is added in a larger amount than 0.005%, the steel sheet becomes extremely hard and the cold workability is impaired, so the upper limit of the B content when B is contained is set to 0.005%.
  • the main phase structure of the hot-rolled steel sheet that is, the phase with the largest area ratio
  • the area ratio of ferrite is 80% or more.
  • Other structures may include one or more of cementite, carbide, martensite, bainite, and retained austenite as long as they are 20% or less.
  • the area ratio is determined by observing about 20 to 50 fields of view at 200 to 1000 times at a thickness of 1/4 to 3/4 of a sample etched with nital using an optical microscope. Use the value obtained by analysis.
  • the hot rolled steel sheet of the present invention has an average crystal grain size of 10 to 25 ⁇ m.
  • the average crystal grain size is smaller than 10 ⁇ m, the steel sheet becomes extremely hard and the cold workability is impaired, so the lower limit is made 10 ⁇ m.
  • the average crystal grain size is larger than 25 ⁇ m, rough skin occurs during cold rolling, the shape is lowered, and a shape called belly stretch or ear stretch tends to be formed. Therefore, the upper limit of the average crystal grain size is 25 ⁇ m.
  • the average crystal grain size is determined according to JISG 0551: 2005 “Steel—Microscopic test method for crystal grain size” from the structure observed by the above method.
  • the ferrite crystal grains have an aspect ratio Nx / Ny of 0.70 to 1.00.
  • the aspect ratio is smaller than 0.70, the structure is remarkably extended in the rolling direction. In such a structure, the steel plate is remarkably hardened during cold rolling, and the cold workability is impaired.
  • the number of grains per unit length in the direction perpendicular to the rolling direction is smaller than the number of grains per unit length in the rolling (longitudinal) direction, that is, the aspect ratio is larger than 1.0. There is no.
  • the hole expansion test is known as an index for evaluating the stretch flangeability of a steel sheet.
  • Hot rolled steel sheets with thickness of 2mm to 3mm manufactured under various conditions C: 0.003-0.25%, Si: 0.012%, Mn: 0.01-2.5%, P: 0.01%, S: 0.014%, Al: 0.044%, N : 0.003%
  • the measurement method and the calculation of the hole expansion ratio were performed in accordance with Japan Iron and Steel Federation standard JFS T1001-1996.
  • Various hot-rolled steel sheets were cold-rolled to 0.2 mm, and the amount of edge cracks (edge crack depth) was measured.
  • the amount of ear cracks is magnified 50 to 100 times with an optical microscope, etc., and the depth of cut (edge crack depth) is measured with calipers. If the measured edge crack depth is less than 0.100 mm, Since there is no problem as a practical final product, in the present invention, when the edge crack depth is less than 0.100 mm, it was judged as “no ear cracks”.
  • the result of examining the relationship between the hole expansion ratio and the amount of ear cracks in the cold-rolled steel sheet is shown in FIG. From FIG. 1, it can be seen that if the hole expansion ratio is 80% or more, the ear cracks hardly occur. For this reason, the hole expansion rate is preferably 80% or more.
  • the ratio of the maximum value Hv-max and the minimum value Hv-min is preferably 1.10 or less in the section hardness Hv after the trimming process.
  • the schematic diagram of the cross section after trimming the both ends of a hot-rolled steel sheet is shown in FIG.
  • a shear surface, a fracture surface, and an upper portion of the shear surface are bent, and a burr is generated at the lower portion of the fracture surface.
  • the hardness Hv of this cross section was measured.
  • Hot rolled steel sheets with thickness of 2mm to 3mm manufactured under various conditions C: 0.003-0.25%, Si: 0.012%, Mn: 0.01-2.5%, P: 0.01%, S: 0.014%, Al: 0.044%, N : 0.003%
  • the hardness was measured according to JIS Z 2244 Vickers hardness test.
  • the amount of edge cracks (edge crack depth) was measured by the same method as in FIG. Fig.
  • Hv-max / Hv-min the ratio of maximum hardness value Hv-max and minimum value Hv-min (Hv-max / Hv-min) and the amount of edge cracks (edge crack depth) of cold-rolled steel sheets with a thickness of 0.2 mm or less. Indicates. As can be seen from FIG. 3, when the hardness ratio (Hv-max / Hv-min) is 1.10 or less, a cold-rolled steel sheet without an ear crack is obtained.
  • the cast slab adjusted to the above chemical composition range is cast as it is or once cooled, then heated to 1100 ° C to 1270 ° C, the rolling reduction at the final stand is 10 to 20%, and the hot rolling finish temperature is 850 ° C Hot rolled at 1000 ° C., wound at 600 ° C. to 700 ° C. to obtain a hot rolled steel sheet, and then trimmed at both ends of the hot rolled steel sheet with a length of more than 2 mm and less than 30 mm. A hot-rolled steel sheet without cracks is produced.
  • the hot-rolled steel sheet is further cold-rolled at a cold reduction rate of 85% or more, so that a cold without an edge crack having a thickness of 0.2 mm or less.
  • a rolled steel sheet is produced.
  • the cast slab is cast or once cooled and then heated to 1100 ° C. to 1270 ° C.
  • the heating temperature is 1100 ° C. or lower
  • the rolling load during hot rolling becomes high, resulting in poor shape or difficulty in manufacturing at a predetermined finishing temperature. Therefore, the heating temperature is 1100 ° C. or higher.
  • the heating temperature is higher than 1270 ° C.
  • a thick oxide scale is formed on the entire surface of the slab, which deteriorates the surface properties as a bite scale and causes a decrease in yield. Therefore, the upper limit is 1270 ° C.
  • hot rolling is performed with a rolling reduction at the final stand of 10 to 20% and a hot rolling finishing temperature of 850 ° C. to 1000 ° C.
  • Hot rolling finishing temperature 850 °C ⁇ 1000 °C If the finishing temperature during hot rolling is less than 850 ° C, a non-recrystallized structure is formed on the surface layer of the hot-rolled steel sheet, or a coarse structure is formed, resulting in a defective shape of the surface layer during cold rolling. It becomes easy. For this reason, finishing temperature shall be 850 degreeC or more. On the other hand, if the finishing temperature is too high, the structure of the hot-rolled steel sheet becomes coarse, resulting in a defective shape of the surface after cold rolling. For this reason, an upper limit shall be 1000 degreeC.
  • Rolling ratio at the final stand 10-20%
  • the rolling reduction at the final stand of hot rolling is less than 10%
  • the thickness accuracy of the hot-rolled steel sheet is lowered, or the shape is poor.
  • the rolling reduction of the final stand is 10% or more.
  • the rolling reduction exceeds 20% an unrecrystallized structure is formed in the hot-rolled steel sheet, resulting in shape defects and surface texture defects during cold rolling. For this reason, the upper limit is 20%.
  • hot rolling is performed under the above conditions, and winding is performed at 600 ° C to 700 ° C.
  • Winding temperature 600 °C ⁇ 700 °C
  • the coiling temperature is set to 600 ° C or higher in order to homogenize the crystal grains of the hot rolled steel sheet.
  • the coiling temperature is increased, a thick oxide scale is formed, and the surface property is deteriorated as a biting scale.
  • the second phase is greatly generated and is likely to cause surface defects during cold rolling. Therefore, the upper limit is 700 ° C.
  • each of both end portions of the hot-rolled steel sheet is trimmed with a length of more than 2 mm and less than 30 mm to produce a hot-rolled steel sheet without an ear crack according to the present invention.
  • Trimming of both ends of a hot-rolled steel sheet is a process that must be performed to strictly adjust the sheet width in the final product.
  • a large amount of trimming reduces the yield, so it is less than 30 mm.
  • the trimming width exceeds 2 mm.
  • the means for performing the trimming process is not particularly limited as long as the plate width in the final product can be adjusted, and examples thereof include a mechanical shearing method.
  • the manufacturing method of the cold-rolled steel sheet of the present invention cold-rolls the hot-rolled steel sheet manufactured by the above method at a cold reduction rate of 85% or more.
  • the cold rolling reduction ratio should be 85% or more so that the final product thickness is 0.2 mm or less.
  • the cold rolling reduction can be reduced by reducing the plate thickness in hot rolling, it becomes difficult to make the finishing temperature 850 ° C. or more if the plate thickness in hot rolling is made too thin. Moreover, it is easy to become a shape defect. Therefore, the cold reduction rate is 85% or more.
  • a cold-rolled steel sheet having a thickness of 0.2 mm or less and having no cracks is manufactured.
  • “no cracking of the ear” means that there is no cracking of the edge.
  • the edge crack depth when the edge portion is observed 50 to 100 times with an optical microscope is 0.100. If it is less than mm, there is no problem as a substantially final product. Therefore, in the present invention, when the edge crack depth is less than 0.100 mm, it was determined that there is no “ear crack”.
  • Vickers hardness (hardness ratio) Measurement was performed in accordance with JIS Z 2244.
  • the test force was 2.94 N (0.3 kgf).
  • the maximum value Hv-max and the minimum value Hv-min were obtained by measuring the thickness section after trimming at a pitch of 80 ⁇ m, and setting the maximum value Hv-max and the minimum value Hv-min.
  • Edge cracks were measured by magnifying the sample 50 to 100 times with an optical microscope, etc., and measuring the depth of cut (edge crack depth) with calipers, etc. If the crack depth is less than 0.100 mm, there is no problem as an actual final product. Therefore, in the present invention, when the edge crack depth is less than 0.100 mm, it was determined that there is no “ear crack”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 熱延鋼板および板厚0.2mm以下の耳割れの無い冷延鋼板ならびにそれらの製造方法を提供する。 本発明の熱延鋼板は、質量%で、C:0.001~0.10%、Si:0.005~0.80%、Mn:0.01~2.0%、P:0.001~0.40%、S:0.10%以下、Al:0.001~0.10%、N:0.020%以下を含有し、残部Fe及び不可避的不純物からなり、主相組織をフェライトとし、該フェライトの平均結晶粒径が10~25μm、前記フェライト結晶粒のアスペクト比Nx/Nyが0.70~1.00である。本発明の冷延鋼板は、上記熱延鋼板を冷間圧延して得られ、板厚が0.2mm以下である。

Description

熱延鋼板および冷延鋼板ならびにそれらの製造方法
 本発明は、建材、家電用等に使用され、冷間圧延した場合であってもエッジ性状に優れた耳割れのない熱延鋼板および冷延鋼板ならびにそれらの製造方法に関するものである。
 鋳造スラブから熱間圧延、冷間圧延を経て最終製品を製造するに際し、顧客注文のサイズに合わせて板幅を調整するために、熱延鋼板に対して鋼板の両端をトリマーで剪断する処理(以下、トリミング処理と称す)が行われる。そして、これら剪断された鋼板を冷間圧延機で圧延すると、剪断面に耳割れと呼ばれる、微少なクラックが発生することはよく知られている。耳割れは鋼板両端の形状が鋸歯状になったもので、耳割れが発生したコイルは冷間圧延の途中で破断したり、あるいは製品となった後も形状が悪く、不合格品となり、製品とするには再度トリミング処理で鋼板両端を切断する、いわゆる再切りする必要がある。しかし、再切りを行うと指定サイズより寸法が短くなるため、再度のトリミング処理は実質不可能である。このため、このような場合には、再度製造しなければならない。また、冷間圧延後の再切りを見越して、熱延鋼板でのトリミング代を減少させ、冷間圧延後にトリミング処理にて製品幅を調整する方法もある。しかし、トリミング処理を行うと、その後、電気メッキ処理や溶融メッキ処理が施された際に、エッジビルドアップと呼ばれるコイル巻取り時の形状不良が発生し易くなる。さらに、顧客で電気メッキ処理や溶融メッキ処理を施す場合には、エッジに過剰なメッキが施され、メッキ過剰による歩留まり低下、原単価アップとなる。
 エッジビルドアップを制御する方法として、例えば、特許文献1には、「電気メッキ鋼板のエッジビルドアップ防止法」として、鋼板に電気メッキをした後、鋼板エッジ部の厚メッキ部をマッシャーロールで圧潰し、エッジ端面からはみ出たメッキ付着物を機械的手段により除去する方法が開示されている。
 また、特許文献2には、「帯鋼板の冷間圧延ラインにおける耳割れ防止法」として、熱延鋼板でエッジ部をトリミングした後、冷間圧延する際に、剪断部を予め450~900℃に加熱する方法が開示されている。
 また、特許文献3には、「帯鋼板の冷間圧延における耳割れ防止方法および装置」として、冷間圧延前工程での耳部のサイドトリミング方法として2段階でのトリミング方法が開示されている。
 一方、電磁鋼板の耳割れ防止法として、特許文献4には、「耳割れのない方向性電磁鋼板の製造方法」が開示されている。これによれば、熱間圧延時の耳割れを防止し、かつ磁気特性を良好に保つため、鋳造時にスラブ表面から10mm以内の部分が、凝固温度から1300℃の温度域に滞在する時間を規定することで、耳割れと磁気特性の両立を図ることが可能であることが開示されている。
 しかしながら、特許文献1~4では、新規設備の導入が必要である。また、鋼種に合わせた詳細な調整が必要であり、そのためには多くのノウハウの蓄積が必要である。
 このように、冷間圧延後にトリミング処理を行った場合のエッジビルドアップの問題は充分に解決されていない。
 そのため、このような事情を受けて、顧客からは冷間圧延後にエッジトリミングをしないことが規定される場合がある。しかしながら、前述したように、剪断された鋼板を冷間圧延機で圧延すると、剪断面に耳割れと呼ばれる、微少なクラックが発生する。
 このような耳割れを抑制する技術が特許文献5に開示されている。特許文献5によれば、耳割れを抑制するためには、再結晶温度の低温化とAr3変態点と再結晶終了温度の間の温度差幅拡張が重要であり、その方法として、鋼成分としてB、Ti、Nなどの適正化が開示されている。
 しかしながら、添加元素の増加は最終製品のコストアップになる。また、製品幅を厳格に調整するためには、熱延鋼板を耳切りする方が工程生産においては効率的である。さらに、家電、建材用途として使用される薄鋼板は極力薄い(板厚0.2mm以下)ことが要求されており、板厚0.2mm以下での冷延鋼板の耳割れを抑制することは開示されていない。
特公平01-18160号公報 特公昭51-47423号公報 特開昭51-94188号公報 特許第3849310号公報 特開2000-212689号公報
 以上のように、冷間圧延後にトリミング処理を行うと、その後、電気メッキ処理や溶融メッキ処理が施された際に、エッジビルドアップの問題が起こる。
一方、エッジビルドアップの問題を避けるため、冷間圧延後にトリミングを不要とすると耳割れが発生する問題がある。特に、トリミング処理を行うことなく、板厚0.2mm以下の耳割れのない冷延鋼板は得られていない。
 本発明は、かかる事情に鑑み、冷間圧延後にトリミング処理を不要とする冷間圧延したままの冷延鋼板を対象とし、冷間圧延をした場合であっても耳割れのない熱延鋼板および板厚0.2mm以下の耳割れの無い冷延鋼板ならびにそれらの製造方法を提供することを目的とする。
 発明者らは、上記問題点を解決するため、種々検討を行った結果、以下を知見した。トリミング処理後の熱延鋼板には、トリミング処理断面が加工硬化し、破断面、剪断面、バリ等が発生する。そこで、これらのトリミング処理後の組織と冷間圧延後の耳割れ発生の関係を詳細に検討したところ、トリミング処理前の熱延鋼板組織を制御することによって、高い冷間圧下率でも耳割れの発生を抑制することが可能であることを見出した。
 そして、熱延鋼板の組織として、フェライトの平均結晶粒径およびフェライト結晶粒のアスペクト比を制御することで、両端部のトリミング処理、次いで、冷間圧下率85%以上の冷間圧延を行い得られる板厚0.2mm以下の冷延鋼板は、トリミング条件によらず、耳割れが無いことを知見した。
 本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。[1]成分組成は、質量%で、C:0.001~0.10%、Si:0.005~0.80%、Mn:0.01~2.0%、P:0.001~0.40%、S:0.10%以下、Al:0.001~0.10%、N:0.020%以下を含有し、残部Fe及び不可避的不純物からなり、主相組織をフェライトとし、該フェライトの平均結晶粒径が10~25μm、前記フェライト結晶粒のアスペクト比Nx/Nyが0.70~1.00であることを特徴とする熱延鋼板。ただし、NxはJISG0551:2005で規定される圧延長手方向1mmあたりの捕そく結晶粒数であり、NyはJISG0551:2005で規定される圧延直角方向1mmあたりの捕そく結晶粒数である。
[2]前記[1]において、質量%で、さらに、Cr、Cu、Ni、Snのいずれか1種または2種以上を合計で0.001~0.1%含有することを特徴とする熱延鋼板。
[3]前記[1]または[2]において、質量%で、さらに、Ti、V、Nbのいずれか1種または2種以上を合計で0.001~1.0%含有することを特徴とする熱延鋼板。
[4]前記[1]~[3]のいずれかにおいて、質量%で、さらに、Mo、Co、Wのいずれか1種または2種以上を合計で0.001~1.0%含有することを特徴とする熱延鋼板。
[5]前記[1]~[4]のいずれかにおいて、質量%で、さらに、Bを0.0001~0.005%を含有することを特徴とする熱延鋼板。
[6]前記[1]~[5]のいずれかにおいて、80%以上の穴広げ率を有することを特徴とする熱延鋼板。
[7]前記[1]~[6]のいずれかにおいて、トリミング処理後の断面硬さHvにおける、
最大値Hv-maxと最小値Hv-minの比が1.10以下であることを特徴とする熱延鋼板。
[8]前記[1]~[7]のいずれかにおいて、 請求項1~7のいずれか一項に記載の熱延鋼板を冷間圧延して得られる板厚0.2mm以下の冷延鋼板。
[9]前記[1]~[5]のいずれかに記載の成分組成からなる鋳造スラブを、鋳造まま又は一旦冷却し、次いで1100℃~1270℃に加熱し、最終スタンドでの圧下率を10~20%、熱間圧延仕上げ温度を850℃~1000℃として熱間圧延を行い、600℃~700℃で巻取り、熱延鋼板とし、次いで、該熱延鋼板の両端部のそれぞれを2mm超え30mm未満でトリミング処理を行うことを特徴とする熱延鋼板の製造方法。
[10]前記[9]に記載の熱延鋼板に対して、さらに、85%以上の冷間圧下率で冷間圧延することを特徴とする板厚0.2mm以下の冷延鋼板の製造方法。
 本発明によれば、板厚0.2mm以下の耳割れの無い冷延鋼板が得られる。本発明により得られる冷延鋼板は、エッジ性状に優れている。さらに、冷間圧延後にトリミング処理を行っていないためエッジビルドアップと呼ばれるコイル巻取り時の形状不良を防止し、顧客で電気メッキ処理や溶融メッキ処理を施す場合には、エッジに過剰なメッキが施されてメッキ過剰による歩留まり低下や原単価アップとなることがない。そのため建材、家電用等の素材として好適に使用される。
穴広げ率と冷延鋼板の耳割れ量(エッジクラック深さ)との関係を示す図である。 熱延鋼板の端部をトリミング処理した後の断面を示す模式図である。 硬度の最大値Hv-maxと最小値Hv-minの比(Hv-max/Hv-min)と板厚0.2mm以下の冷延鋼板の耳割れ量(エッジクラック深さ)との関係を示す図である。
 以下、本発明を詳細に説明する。なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
 C:0.001~0.10%
 Cは、鋼に固溶して素材の強度を上昇させる効果がある。しかし、C含有量が0.10%を超えると炭化物を形成し、冷間圧延時の負荷が極めて大きくなり、板厚:0.2mm以下の冷延鋼板を得ることが難しくなる。そこで、本発明では、冷間圧延性の観点からC量の上限は0.10%とする。また、C量は、冷間圧延性の点からは低減することが望ましいが、著しい低減は鋼板の強度低下につながる。また、製鋼時にC低減のためコストを増大させ、素材を安価に提供することが難しくなる。そこで、強度確保およびコストの面からC量の下限は0.001%とする。なお、冷間圧延性とコストの双方を重視する場合には、C含有量は0.005~0.07%とすることが好適である。
 Si:0.005~0.80%
 Siは、鋼の強度を上昇させる元素として有効であるので、0.005%以上含有する。しかし、多量のSi含有は冷間圧延性のみならず、表面処理性、化成処理性、耐食性を低下させることになる。よって、これらの観点からSi含有量は0.80%以下とする。
 Mn:0.01~2.0%
 Mnは、Sによる熱間割れを抑制する働きがある。この効果を得るために0.01%以上含有し、好ましくは0.02%以上である。一方、Mnの多量添加は鋼板素材を硬質化させ、冷間圧延性を低下させる。さらに、溶接性およびメッキ性を低下させる。よって、Mnの上限は2.0%とする。なお、より良好な形状および耐食性が要求される場合には、Mn量は1.5%以下とすることが好ましい。
 P:0.001~0.40%
 Pは、鋼板素材の強度を上昇させる効果があるので、0.001%以上含有する。しかしながら、Pの多量添加は冷間圧延性を低下させる。また、Pは、鋼中で偏析する傾向が強く、溶接部の脆化を招く。このため、P含有量の上限は0.40%とし、好ましくは0.30%以下である。
 S: 0.10%以下
 Sは、鋼中で主として介在物として存在し耐食性を低下させるため、極力低減することが望ましいが、0.10%までであれば許容できる。このため、本発明では、S含有量の上限は0.10%とし、より好ましくは0.05%以下である。なお、S含有量を0.001%未満まで低減するためには、製造コストが上昇する。また、製鋼能力の点からも難しい。よって、S含有量の下限は0.001%程度とすることが好ましい。
 Al:0.001~0.10%
 Alは、脱酸剤として添加され、鋼の清浄度を向上させる元素であるので、積極的に添加する。この効果を得るためには、Al量は0.001%以上とする。Al含有量が0.001%未満では脱酸の効果が小さく、介在物が残存して成形性を低下させる。一方、Al含有量が0.10%を超えると製造コストが上昇するので、Al含有量の上限は0.10%とする。なお、材質安定性の観点からは、Al含有量は0.005~0.08%とすることが好ましい。
 N: 0.020%以下
 Nは、鋼板に固溶し、N含有量が0.020%を超えると鋼板を著しく硬質化させるため、0.020%以下とする。なお、N含有量の下限は、製鋼能力やコストを考慮し0.001%程度とすることが好ましい。
 本発明の熱延鋼板の成分組成は、上記した成分以外、残部はFeおよび不可避的不純物である。
 また、本発明では、上記した成分組成を基本組成とするが、必要に応じて、Cr、Cu、Ni、Snのいずれか1種または2種以上を合計で0.001~0.1%、Ti、V、Nbのいずれか1種または2種以上を合計で0.001~1.0%、Mo、Co、Wのいずれか1種または2種以上を合計で0.001~1.0%、そして、Bを0.0001~0.005%含有することができる。
 Cr、Cu、Ni、Snのいずれか1種または2種以上を合計で0.001~0.1%
 Cr、Cu、Ni、Snは、固溶強化を目的として、いずれか1種または2種以上を合計で0.001%以上を含有することができる。一方、Cr、Cu、Ni、Snを合計で0.1%よりも多く添加すると、鋼板が著しく硬質化し、冷間加工性を損なうため、Cr、Cu、Ni、Snを含有する場合、Cr、Cu、Ni、Snの含有量の上限は合計で0.1%とする。
 Ti、V、Nbのいずれか1種または2種以上を合計で0.001~1.0%
 Ti、V、Nbは、主として炭化物や窒化物を形成して鋼板の強度を上昇させる元素である。この効果を得るために、Ti、V、Nbのいずれか1種または2種以上を合計で0.001%以上を必要に応じて添加する。一方、Ti、V、Nbを合計で1.0%よりも多く添加すると、鋼板が著しく硬質化し、冷間加工性を損なうため、Ti、V、Nbを含有する場合のTi、V、Nbの含有量の上限は合計で1.0%とする。
 Mo、Co、Wのいずれか1種または2種以上を合計で0.001~1.0%
 Mo、Co、Wは主として強化元素として、いずれか1種または2種以上を合計で0.001%以上含有することができる。一方、Mo、Co、Wを合計で1.0%よりも多量に添加すると、鋼板が著しく硬質化し、冷間加工性を損なうため、Mo、Co、Wを含有する場合のMo、Co、Wの含有量の上限は合計で1.0%とする。
 Bを0.0001~0.005%
 Bは、粒界強化に効果のある成分であり、B含有量が0.0001%以上である場合にその効果が発現する。一方、B含有量が0.005%よりも多量に添加すると、鋼板が著しく硬質化し、冷間加工性を損なうため、Bを含有する場合のB含有量の上限は0.005%とする。
 次に、熱延鋼板の組織について説明する。
 本発明では、熱延鋼板の両端部をトリミング処理し、冷間圧延を実施した後の冷延鋼板の耳割れを抑制するため、熱延鋼板の主相組織すなわち面積率が最大の相をフェライトとする。なお、具体的にはフェライトの面積率は80%以上である。その他の組織として、セメンタイト、カーバイド、マルテンサイト、ベイナイト、残留オーステナイトの1種又は2種以上を20%以下であれば含んでも良い。
 なお、本発明において、面積率は、ナイタールでエッチングした試料の板厚1/4~3/4の位置を光学顕微鏡を用いて200~1000倍で20~50視野程度観察し、切断法や画像解析などにより求めた値とする。
 本発明の熱延鋼板は、フェライトの平均結晶粒径が10~25μmである。
 平均結晶粒径が10μmより小さい場合は、鋼板が著しく硬質化し、冷間加工性を損なうため下限は10μmとする。一方、平均結晶粒径が25μmより大きい場合には、冷間圧延時に肌荒れが生じ、形状が低下し、腹伸びや耳伸びと呼ばれる形状となり易いため、平均結晶粒径の上限は25μmとする。
 なお、平均結晶粒径は前記方法で観察した組織からJISG0551:2005「鋼-結晶粒度の顕微鏡試験方法」に準拠し、求めるものとする。
 本発明の熱延鋼板は、フェライト結晶粒のアスペクト比Nx/Nyが0.70~1.00である。
 アスペクト比が0.70より小さいと、圧延方向に著しく伸展した組織となる。このような組織では冷間圧延時に著しく鋼板が硬質化し、冷間加工性を損なう。一方、圧延(長手)方向での単位長さ当たりの粒の数よりも圧延直角方向での単位長さ当たりの粒の数が少なくなる、すなわちアスペクト比が1.0より大きくなることは通常の圧延においては無い。なお、アスペクト比は前記方法で観察した組織からJISG0551:2005「鋼-結晶粒度の顕微鏡試験方法」に準拠し、前記JIS「4.記号」に記載のNx=圧延長手方向1mmあたりの捕そく数、Ny=圧延直角方向1mmあたりの捕そく数とした場合のNxとNyの比(Nx/Ny)で算出される。
 さらに、熱延鋼板に対して穴広げ試験を行った場合、80%以上の穴広げ率を有することが好ましい。
 穴広げ試験は、鋼板の伸びフランジ性を評価する指標として知られている。種々条件により製造した板厚2mm~3mmの熱延鋼板(C:0.003~0.25%、Si:0.012%、Mn:0.01~2.5%、P:0.01%、S:0.014%、Al:0.044%、N:0.003%)を用い、穴広げ試験を実施した。測定方法および穴広げ率の算出は、日本鉄鋼連盟規格JFS T1001-1996に準拠して行った。また、各種熱延鋼板を0.2mmまで冷間圧延し、耳割れ量(エッジクラック深さ)を測定した。耳割れ量は、試料を光学顕微鏡などにより50倍~100倍に拡大し、切れ込み量(エッジクラック深さ)をノギス等で測定し、この測定したエッジクラック深さが0.100mm未満であれば、実質最終製品として問題がないため、本発明では、エッジクラック深さが0.100mm未満である場合を、「耳割れのない」と判断することした。穴広げ率と冷延鋼板の耳割れ量の関係を検討した結果を図1に示す。図1より、穴広げ率が80%以上であれば、耳割れがほとんど発生しないことがわかる。このため、穴広げ率は80%以上にすることが好ましい。
 また、本発明の熱延鋼板は、トリミング処理後の断面硬さHvにおける、最大値Hv-maxと最小値Hv-minの比が1.10以下であることが好ましい。熱延鋼板の両端部をトリミング処理した後の断面の模式図を図2に示す。図2に示すように、トリミング処理した後の断面には、剪断面と破断面、および剪断面の上部にだれ、破断面の下部にかえり(バリとも言う)が発生する。この断面の硬度Hvを測定した。種々条件により製造した板厚2mm~3mmの熱延鋼板(C:0.003~0.25%、Si:0.012%、Mn:0.01~2.5%、P:0.01%、S:0.014%、Al:0.044%、N:0.003%)を用い、種々のトリミング条件(クリアランス、ラップ代)でトリミング処理した後、断面硬度を測定した。硬度の測定方法はJIS Z 2244ビッカース硬さ試験に準拠して行った。耳割れ量(エッジクラック深さ)の測定は図1と同様の方法で行った。図3に硬度の最大値Hv-maxと最小値Hv-minの比(Hv-max/Hv-min)と板厚0.2mm以下の冷延鋼板の耳割れ量(エッジクラック深さ)との関係を示す。図3により、前記硬度比(Hv-max/Hv-min)が1.10以下であれば、耳割れのない冷延鋼板が得られていることがわかる。
 次に本発明の熱延鋼板の製造方法について説明する。
 上記化学成分範囲に調整された鋳造スラブを、鋳造まま又は一旦冷却し、次いで1100℃~1270℃に加熱し、最終スタンドでの圧下率を10~20%、熱間圧延仕上げ温度を850℃~1000℃として熱間圧延を行い、600℃~700℃で巻取り、熱延鋼板とし、次いで、該熱延鋼板の両端部を片側端部2mm超え30mm未満でトリミング処理を行い、本発明の耳割れのない熱延鋼板を製造する。
 また、本発明の冷延鋼板の製造方法では、上記熱延鋼板に対して、さらに、85%以上の冷間圧下率で冷間圧延することにより、板厚0.2mm以下の耳割れのない冷延鋼板が製造される。
 まず、本発明の熱延鋼板の製造方法は、前記鋳造スラブを、鋳造まま又は一旦冷却し、次いで1100℃~1270℃に加熱する。加熱温度が1100℃以下であると、熱間圧延時の圧延荷重が高くなり、形状不良となったり所定の仕上げ温度で製造することが困難となる。よって加熱温度は1100℃以上とする。一方、加熱温度が1270℃よりも高くなると、スラブ全面に酸化スケールが厚く生成し、噛み込みスケールとして表面性状を劣化させたり、歩留まり低下の原因となる。よって、上限は1270℃とする。
 次に、本発明の熱延鋼板の製造方法は、最終スタンドでの圧下率を10~20%、熱間圧延仕上げ温度を850℃~1000℃として熱間圧延を行う。
 熱間圧延仕上げ温度:850℃~1000℃
 熱間圧延時の仕上げ温度を850℃未満とすると、熱延鋼板の表層に未再結晶組織が形成されたり、粗大な組織が形成され、冷間圧延をした際に表層の形状不良が発生し易くなる。このため、仕上げ温度は850℃以上とする。一方、仕上温度が高すぎると熱延鋼板での組織が粗大となり、冷間圧延後の表面の形状不良が生じる。このため、上限は1000℃とする。
 最終スタンドでの圧下率:10~20%
 熱間圧延の最終スタンドでの圧下率が10%未満では、熱延鋼板での板厚精度が低下したり、形状不良が生じる。このため、最終スタンドの圧下率は10%以上とする。一方、圧下率が20%を超えると、熱延鋼板で未再結晶組織が形成され、冷間圧延時の形状不良や表面性状不良が生じる。このため、上限は20%とする。
 さらに、本発明の熱延鋼板の製造方法は、上記条件下で熱間圧延を行い、600℃~700℃で巻き取る。
 巻取温度:600℃~700℃
 巻取温度は熱延鋼板の結晶粒均質化のため、600℃以上とする。一方、巻取温度を高くすると、酸化スケールが厚く生成し、噛み込みスケールとして表面性状を劣化させる。また、第2相が大きく生成し、冷間圧延時に表面欠陥となり易い。そのため上限は700℃とする。
 次いで、該熱延鋼板の両端部のそれぞれを2mm超え30mm未満でトリミング処理を行い、本発明の耳割れのない熱延鋼板を製造する。
 熱延鋼板の両端部のトリミングは、最終製品での板幅を厳格に調整するために必ず実施される工程である。しかしながら、大幅なトリミング量は歩留まりを低下させるため、30mm未満とする。一方、トリミング幅が少なすぎると、製品幅の厳格な調整が困難であり、最終製品で再度、トリミング処理が必要となったりする。そのため、トリミング幅は2mm超えとする。なお、トリミング処理を行う手段としては、最終製品での板幅を調整することが可能であれば特に限定されず、例えば機械的に剪断する方法等が挙げられる。
 また、本発明の冷延鋼板の製造方法は、上記方法で製造した熱延鋼板に対して、85%以上の冷間圧下率で冷間圧延する。
 冷間圧下率は、最終製品の板厚:0.2mm以下にするため85%以上とする。熱間圧延での板厚を薄くすることで冷間圧下率を下げることができるが、熱間圧延での板厚をあまり薄くすると仕上げ温度を850℃以上とすることが困難となる。また、形状不良となり易い。よって、冷間圧下率は85%以上とする。
 以上により、板厚0.2mm以下の耳割れのない冷延鋼板が製造される。なお、本発明において「耳割れのない」とは、エッジの割れがないことであり、具体的には、光学顕微鏡でエッジ部を50倍~100倍で観察した時のエッジクラック深さが0.100mm未満であれば、実質最終製品として問題がないため、本発明では、エッジクラック深さが0.100mm未満である場合を、「耳割れのない」と判断することした。
 表1に示す組成からなる鋼A~Jを溶製し、スラブとした。次いで、得られたスラブを表2に示す製造条件で製造し板厚2.0mmの熱延鋼板を得た。その後、酸洗し、両端部をそれぞれ10mmずつトリミング処理を行った。以上により得られた熱延鋼板の一部を取り出し、組織、フェライト面積率(%)、フェライトの平均結晶粒径(μm)、フェライト結晶粒のアスペクト比、穴広げ率(%)、断面硬度比を測定した。引き続き、板厚0.15mmまで冷間圧延し、冷延鋼板を得た。以上により得られた冷延鋼板に対して、エッジ割れの有無を調査した。
 各調査方法の詳細は下記の通りである。
 熱延鋼板の組織観察
 熱延鋼板から試験片を採取し、圧延方向に平行な板厚断面(L断面)をナイタールエッチングし、走査型電子顕微鏡(SEM)を用い、1000倍で3視野以上撮像し、画像解析などの手法により測定した。また、フェライトの平均結晶粒径は、JISG0551「鋼-結晶粒度の顕微鏡試験方法」に準拠して求めた。
 アスペクト比
 JISG0551「鋼-結晶粒度の顕微鏡試験方法」に準拠し、「4.記号」に記載のNx=圧延長手方向1mmあたりの捕そく数、Ny=圧延直角方向1mmあたりの捕そく数とした場合のNxとNyの比(Nx/Ny)で算出した。
 穴広げ率
日本鉄鋼連盟規格JFS T1001-1996に準拠して求めた。
 ビッカース硬さ(硬度比)
JIS Z 2244の規定に準拠して測定した。なお、試験力は2.94N(0.3kgf)とした。また、最大値Hv-maxと最小値Hv-minはトリミング処理後の板厚断面を80μmピッチで測定を行い、硬度の最大値Hv-max、最小値Hv-minとした。
 耳割れ(エッジ割れ)の有無
 耳割れ(エッジ割れ)は、試料を光学顕微鏡などにより50倍~100倍に拡大し、切れ込み量(エッジクラック深さ)をノギス等で測定し、この測定したエッジクラック深さが0.100mm未満であれば、実質最終製品として問題がないため、本発明では、エッジクラック深さが0.100mm未満である場合を、「耳割れのない」と判断することした。
 以上により得られた結果を条件と併せて表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3より、発明例A~Eはいずれも耳割れ(エッジ割れ)の発生がなかった。一方、比較例のF~Jはいずれも耳割れの発生が認められた。

Claims (10)

  1.  成分組成は、質量%で、C:0.001~0.10%、Si:0.005~0.80%、Mn:0.01~2.0%、P:0.001~0.40%、S:0.10%以下、Al:0.001~0.10%、N:0.020%以下を含有し、残部Fe及び不可避的不純物からなり、主相組織をフェライトとし、該フェライトの平均結晶粒径が10~25μm、前記フェライト結晶粒のアスペクト比(Nx/Ny)が0.70~1.00であることを特徴とす熱延鋼板。
     ただし、NxはJISG0551:2005で規定される圧延長手方向1mmあたりの捕そく結晶粒数であり、NyはJISG0551:2005で規定される圧延直角方向1mmあたりの捕そく結晶粒数である。
  2.  質量%で、さらに、Cr、Cu、Ni、Snのいずれか1種または2種以上を合計で0.001~0.1%含有することを特徴とする請求項1に記載の熱延鋼板。
  3.  質量%で、さらに、Ti、V、Nbのいずれか1種または2種以上を合計で0.001~1.0%含有することを特徴とする請求項1又は2に記載の熱延鋼板。
  4.  質量%で、さらに、Mo、Co、Wのいずれか1種または2種以上を合計で0.001~1.0%含有することを特徴とする請求項1~3のいずれか一項に記載の熱延鋼板。
  5.  質量%で、さらに、Bを0.0001~0.005%を含有することを特徴とする請求項1~4のいずれか一項に記載の熱延鋼板。
  6.  80%以上の穴広げ率を有することを特徴とする請求項1~5のいずれか一項に記載の熱延鋼板。
  7.  トリミング処理後の断面硬さHvにおける、最大値Hv-maxと最小値Hv-minの比が1.10以下であることを特徴とする請求項1~6のいずれか一項に記載の熱延鋼板。
  8.  請求項1~7のいずれか一項に記載の熱延鋼板を冷間圧延して得られる板厚0.2mm以下の冷延鋼板。
  9.  請求項1~5のいずれか一項に記載の成分組成からなる鋳造スラブを、鋳造まま又は一旦冷却し、次いで1100℃~1270℃に加熱し、最終スタンドでの圧下率を10~20%、熱間圧延仕上げ温度を850℃~1000℃として熱間圧延を行い、600℃~700℃で巻取り、熱延鋼板とし、次いで、該熱延鋼板の両端部のそれぞれを2mm超え30mm未満でトリミング処理を行うことを特徴とする耳割れのない熱延鋼板の製造方法。
  10.  請求項9に記載の熱延鋼板に対して、さらに、85%以上の冷間圧下率で冷間圧延することを特徴とする板厚0.2mm以下の耳割れのない冷延鋼板の製造方法。
PCT/JP2010/007407 2009-12-25 2010-12-21 熱延鋼板および冷延鋼板ならびにそれらの製造方法 WO2011077708A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127019447A KR101446486B1 (ko) 2009-12-25 2010-12-21 열연강판 및 냉연강판의 제조 방법
CN2010800589853A CN102666901A (zh) 2009-12-25 2010-12-21 热轧钢板和冷轧钢板以及它们的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009293918A JP5515732B2 (ja) 2009-12-25 2009-12-25 耳割れのない熱延鋼板の製造方法および耳割れのない冷延鋼板の製造方法
JP2009-293918 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077708A1 true WO2011077708A1 (ja) 2011-06-30

Family

ID=44195262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007407 WO2011077708A1 (ja) 2009-12-25 2010-12-21 熱延鋼板および冷延鋼板ならびにそれらの製造方法

Country Status (5)

Country Link
JP (1) JP5515732B2 (ja)
KR (1) KR101446486B1 (ja)
CN (1) CN102666901A (ja)
TW (1) TWI475111B (ja)
WO (1) WO2011077708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164291A (ja) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 冷間加工用鋼

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870678A (zh) * 2012-10-11 2015-08-26 杰富意钢铁株式会社 形状冻结性优异的冷轧钢板及其制造方法
TWI504760B (zh) * 2012-11-07 2015-10-21 Jfe Steel Corp 三件式罐用鋼板及其製造方法
JP5633594B2 (ja) * 2013-04-02 2014-12-03 Jfeスチール株式会社 打ち抜き性および耐熱ひずみ特性に優れた冷延鋼板およびその製造方法
JP6119478B2 (ja) * 2013-07-19 2017-04-26 新日鐵住金株式会社 バッチ焼鈍用熱延鋼板
CN104726770B (zh) * 2013-12-20 2017-04-12 Posco公司 扩孔性优异的析出强化型钢板及其制造方法
CN106661689B (zh) * 2014-07-14 2018-09-04 新日铁住金株式会社 热轧钢板
CN107709593B (zh) * 2015-05-29 2020-01-14 杰富意钢铁株式会社 热轧钢板、全硬冷轧钢板和热轧钢板的制造方法
CN107916369A (zh) * 2017-11-08 2018-04-17 河钢股份有限公司 一种q590级高强韧性热轧钢带及其制备方法
JP2019111571A (ja) * 2017-12-26 2019-07-11 Jfeスチール株式会社 フェライト系ステンレス鋼帯の冷間圧延方法
KR20210079460A (ko) * 2019-12-19 2021-06-30 주식회사 포스코 경도와 가공성이 우수한 구조부용 냉연강판 및 그 제조방법
JP7444018B2 (ja) * 2020-10-13 2024-03-06 Jfeスチール株式会社 鋼板及びその製造方法、並びに、部材
CN112893463A (zh) * 2021-02-08 2021-06-04 新疆八一钢铁股份有限公司 一种消除冷轧带钢边裂缺陷的轧制工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212689A (ja) * 1999-01-26 2000-08-02 Kawasaki Steel Corp 冷間圧延性に優れた熱延鋼板
JP2003293083A (ja) * 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033706A1 (fr) * 1996-03-15 1997-09-18 Kawasaki Steel Corporation Feuille d'acier ultrafine et procede pour la fabriquer
JP2002212689A (ja) 2001-01-22 2002-07-31 Nkk Corp 電磁鋼板
TWI290177B (en) * 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
JP5194858B2 (ja) * 2008-02-08 2013-05-08 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212689A (ja) * 1999-01-26 2000-08-02 Kawasaki Steel Corp 冷間圧延性に優れた熱延鋼板
JP2003293083A (ja) * 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164291A (ja) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 冷間加工用鋼

Also Published As

Publication number Publication date
CN102666901A (zh) 2012-09-12
KR20120098924A (ko) 2012-09-05
JP5515732B2 (ja) 2014-06-11
TW201125988A (en) 2011-08-01
KR101446486B1 (ko) 2014-10-06
JP2011132575A (ja) 2011-07-07
TWI475111B (zh) 2015-03-01

Similar Documents

Publication Publication Date Title
JP5515732B2 (ja) 耳割れのない熱延鋼板の製造方法および耳割れのない冷延鋼板の製造方法
KR101749948B1 (ko) 고강도 열연 강판 및 그의 제조 방법
JP6324512B2 (ja) 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法
EP2224028B1 (en) Steel plate for line pipes and steel pipes
KR101896852B1 (ko) 열연 강판
KR101528084B1 (ko) 타발 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
EP3282029B1 (en) Steel sheet for heat treatment
KR101897932B1 (ko) 열연 강판
EP3018230B1 (en) Cold-rolled steel sheet, galvanized cold-rolled steel sheet, and method for manufacturing the same
KR20160041850A (ko) 고강도 열연 강판 및 그의 제조 방법
EP2180070A1 (en) Process for manufacturing high-strength hot-rolled steel sheet
JP2009068104A (ja) 打抜き加工性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2009280900A (ja) 780MPa以上の引張強度を有する高強度熱延鋼板の製造方法
JP5892147B2 (ja) 高強度熱延鋼板およびその製造方法
JP5915412B2 (ja) 曲げ性に優れた高強度熱延鋼板およびその製造方法
JP5630002B2 (ja) 引張強さが1500MPa以上の高強度鋼板およびその製造方法
EP3543367B1 (en) High-strength cold-rolled steel sheet and method for producing the same
KR102658079B1 (ko) 배기관 플랜지 부품용 Ti 함유 페라이트계 스테인리스 강판 및 제조 방법 및 플랜지 부품
KR101850231B1 (ko) 페라이트계 스테인리스강 및 그 제조 방법
JP5630004B2 (ja) 引張強さが1500MPa以上の高強度鋼板およびその製造方法
JP4367091B2 (ja) 耐疲労特性に優れ、かつ強度−延性バランスに優れた高強度熱延鋼板およびその製造方法
EP2604716A1 (en) High-strength hot-rolled steel sheet having excellent workability, and a method for producing same
JP2010138489A (ja) 引張強さが1500MPa以上の高強度鋼板およびその製造方法
EP3425080B2 (en) Steel h-shape for low temperature service and manufacturing method therefor
JP2007177293A (ja) 超高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058985.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1585/MUMNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019447

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10838947

Country of ref document: EP

Kind code of ref document: A1