WO2011074338A1 - 半導体装置、アクティブマトリクス基板、及び表示装置 - Google Patents

半導体装置、アクティブマトリクス基板、及び表示装置 Download PDF

Info

Publication number
WO2011074338A1
WO2011074338A1 PCT/JP2010/069462 JP2010069462W WO2011074338A1 WO 2011074338 A1 WO2011074338 A1 WO 2011074338A1 JP 2010069462 W JP2010069462 W JP 2010069462W WO 2011074338 A1 WO2011074338 A1 WO 2011074338A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate electrode
region
bottom gate
semiconductor device
switching element
Prior art date
Application number
PCT/JP2010/069462
Other languages
English (en)
French (fr)
Inventor
金子誠二
北角英人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/515,921 priority Critical patent/US8648397B2/en
Publication of WO2011074338A1 publication Critical patent/WO2011074338A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present invention relates to a semiconductor device including a transistor, an active matrix substrate using the same, and a display device.
  • liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes.
  • a plurality of data wirings (source wirings) and a plurality of scanning wirings (gate wirings) are wired in a matrix, and a thin film transistor (TFT: Thin) is provided near the intersection of the data wirings and the scanning wirings.
  • TFT thin film transistor
  • a liquid crystal panel as a display panel uses an active matrix substrate in which pixels having a switching element such as a film-transistor (hereinafter abbreviated as “TFT”) and pixel electrodes connected to the switching element are arranged in a matrix. What was there is known.
  • TFT film-transistor
  • a thin film transistor for a peripheral circuit is integrally provided in addition to the thin film transistor for driving a pixel as the above-described switching element.
  • the active matrix substrate when used in a liquid crystal display device with a touch panel or a liquid crystal display device with an illuminance sensor (ambient sensor), the active matrix substrate includes a thin film transistor for the pixel driving and peripheral circuits.
  • a photodiode thin film diode; TFD
  • a semiconductor device including a plurality of thin film transistors and photodiodes is used for the active matrix substrate.
  • a thin film transistor (transistor) is used in order to meet the demand for low power consumption, for example, in a liquid crystal panel incorporating the above-described optical sensor or a liquid crystal panel incorporating a pixel memory. Reduction of leakage current has been demanded.
  • a first light shielding film is provided below the thin film transistor, and a second light shielding film is provided between the thin film transistor and the first light shielding film. It has been proposed.
  • the second light shielding film is formed by using the conductive material to form the second light shielding film and electrically connecting the gate wiring to the second light shielding film. It was possible to construct a dual-type thin film transistor that used as a bottom gate electrode to increase the on-current.
  • the conventional semiconductor device as described above has a problem that when the on-current is increased, the leakage current cannot be reduced.
  • the on-current is increased by using the second light shielding film as the bottom gate electrode.
  • the second light-shielding film includes a channel region, a lightly doped impurity region (LDD (Lightly Doped Drain) region), a part of the source region, and a portion of the semiconductor layer provided in the thin film transistor. It was provided so as to overlap a part of the drain region. Therefore, in this conventional semiconductor device, when the same voltage is applied to the second light shielding film as the (top) gate electrode, the entire low concentration impurity region overlaps the second light shielding film (bottom gate electrode). A thin film transistor having a GOLD (Gate-overlapped-LDD) structure was formed.
  • GOLD Gate-overlapped-LDD
  • an object of the present invention is to provide a semiconductor device capable of reducing leakage current even when an on-current is increased, an active matrix substrate using the semiconductor device, and a display device.
  • a semiconductor device is a semiconductor device including a transistor having a top gate electrode and a bottom gate electrode, A semiconductor layer provided between the top gate electrode and the bottom gate electrode and having a source region, a drain region, a channel region, and a low-concentration impurity region;
  • the bottom gate electrode is provided so as to overlap the channel region, a part of the low concentration impurity region adjacent to the source region, and a part of the low concentration impurity region adjacent to the drain region,
  • the bottom gate electrode is controlled to have a predetermined potential.
  • a semiconductor layer having a source region, a drain region, a channel region, and a low-concentration impurity region is provided between the top gate electrode and the bottom gate electrode. Further, the bottom gate electrode is provided so as to overlap with the channel region, a part of the low concentration impurity region adjacent to the source region, and a part of the low concentration impurity region adjacent to the drain region. Further, the bottom gate electrode is controlled so that its potential becomes a predetermined potential. Thereby, unlike the conventional example, the leakage current can be reduced even when the on-current is increased.
  • the low-concentration impurity region may be formed in the semiconductor layer so as to sandwich the channel region and to have an offset structure with respect to the top gate electrode.
  • the electric field can be relaxed in the semiconductor layer, and the leakage current can be further reduced.
  • a plurality of types of low concentration impurity regions having different impurity concentrations may be provided in the low concentration impurity region.
  • the electric field can be relaxed in the semiconductor layer, and the leakage current can be further reduced.
  • the potential of the bottom gate electrode when the transistor is in an off state, the potential of the bottom gate electrode is controlled so that the channel region is accumulated, and When the transistor is on, the potential of the bottom gate electrode is preferably controlled so that the channel region is inverted from depletion.
  • the semiconductor device may further include a light shielding film provided below the bottom gate electrode.
  • a reflective electrode may be provided above the top gate electrode.
  • a semiconductor device corresponding to the reflective display device can be easily configured.
  • the potential of the top gate electrode is controlled by a gate signal from the first signal wiring connected to the top gate electrode.
  • the potential of the bottom gate electrode may be controlled by capacitive coupling with the top gate electrode.
  • the potential of the top gate electrode is controlled by a gate signal from the first signal wiring connected to the top gate electrode.
  • the bottom gate electrode may be controlled by a bottom gate signal from a second signal wiring to which the potential is connected.
  • the potential of the bottom gate electrode is controlled by the bottom gate signal from the connected second signal wiring, the potential of the bottom gate electrode can be controlled with a higher degree of freedom. It becomes possible to easily increase the current and reduce the leakage current.
  • the active matrix substrate of the present invention is characterized by using any of the semiconductor devices described above.
  • the active matrix substrate configured as described above a semiconductor device that can reduce the leakage current even when the on-current is increased is used, so that it has high performance and low power consumption.
  • An active matrix substrate can be easily configured.
  • the display device of the present invention is characterized by using any one of the above semiconductor devices.
  • the display device configured as described above uses a semiconductor device capable of reducing leakage current even when the on-current is increased, so that a display with high performance and low power consumption is used.
  • the apparatus can be easily configured.
  • the present invention it is possible to provide a semiconductor device capable of reducing leakage current, an active matrix substrate using the same, and a display device even when an on-current is increased.
  • FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a plan view showing a main configuration of the switching element shown in FIG.
  • FIG. 4 is a cross-sectional view showing a specific configuration of the switching element.
  • FIG. 5 is a diagram illustrating the manufacturing process of the switching element, and FIGS. 5A to 5C illustrate a series of main manufacturing processes.
  • FIG. 6 is a diagram for explaining a manufacturing process of the switching element.
  • FIGS. 6A to 6C are a series of main manufacturing processes performed after the process shown in FIG. 5C is completed. The process is explained.
  • FIG. 6 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a plan view showing a main configuration of the
  • FIG. 7 is a diagram for explaining a manufacturing process of the switching element.
  • FIGS. 7A to 7B are a series of main manufacturing processes performed after the process shown in FIG. 6C is completed. The process is explained.
  • FIG. 8A is a graph showing the switching characteristics of the product of the present embodiment, the conventional product, and the comparative product
  • FIG. 8B is the on-characteristic of the product of the present embodiment, the conventional product, and the comparative product. It is a graph which shows.
  • FIG. 9 is a graph showing the relationship between the illuminance and the leakage current in the product of this embodiment and the comparative product.
  • FIG. 10 is a cross-sectional view showing a specific configuration of the switching element according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a specific configuration of the switching element according to the second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a manufacturing process of the switching element shown in FIG. 10, and FIGS. 11A to 11B illustrate a series of main manufacturing processes.
  • FIG. 12 is a cross-sectional view showing a specific configuration of the switching element according to the third embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a manufacturing process of the switching element shown in FIG. 12, and FIGS. 13 (a) to 13 (b) describe a series of main manufacturing processes.
  • FIG. 14 is a diagram illustrating a manufacturing process of the switching element shown in FIG. 12, and FIG. 14 illustrates a main manufacturing process performed after the process shown in FIG. 13B is completed.
  • FIG. 12 is a cross-sectional view showing a specific configuration of the switching element according to the third embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a manufacturing process of the switching element shown in FIG. 12, and FIGS. 13 (a) to 13 (b) describe a series of main manufacturing processes.
  • FIG. 14 is a diagram
  • FIG. 15A is a graph showing a specific impurity concentration profile of the low-concentration impurity region in the switching element shown in FIG. 12, and FIG. 15B is a graph showing the low impurity concentration profile in the switching element shown in FIG. It is a graph which shows another specific impurity concentration profile of a concentration impurity area
  • FIG. 16 is sectional drawing which shows the specific structure of the switching element concerning the 4th Embodiment of this invention.
  • FIG. 17 is a plan view showing the main configuration of a switching element according to the fifth embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 in which the upper side in FIG. 1 is installed as a viewing side (display surface side), and a non-display surface side (lower side in FIG. 1) of the liquid crystal panel 2 And a backlight device 3 that generates illumination light for illuminating the liquid crystal panel 2.
  • the liquid crystal panel 2 includes a color filter substrate 4 and an active matrix substrate 5 constituting a pair of substrates, and polarizing plates 6 and 7 provided on the outer surfaces of the color filter substrate 4 and the active matrix substrate 5, respectively. .
  • a liquid crystal layer (not shown) is sandwiched between the color filter substrate 4 and the active matrix substrate 5.
  • the color filter substrate 4 and the active matrix substrate 5 are made of a transparent transparent resin such as a flat transparent glass material or an acrylic resin.
  • Resin films such as TAC (triacetyl cellulose) or PVA (polyvinyl alcohol) are used for the polarizing plates 6 and 7 and correspond to cover at least the effective display area of the display surface provided in the liquid crystal panel 2. It is bonded to the color filter substrate 4 or the active matrix substrate 5.
  • the active matrix substrate 5 constitutes one of the pair of substrates.
  • pixel electrodes and thin film transistors thin film transistors (in accordance with a plurality of pixels included in the display surface of the liquid crystal panel 2) are provided.
  • a TFT (Thin Film Transistor) or the like is formed between the liquid crystal layer (details will be described later).
  • the switching element (semiconductor device) of the present invention including the thin film transistor is provided for each pixel.
  • the color filter substrate 4 constitutes the other of the pair of substrates, and the color filter substrate 4 is formed with a color filter, a counter electrode, and the like between the liquid crystal layer (not shown). )
  • the liquid crystal panel 2 is provided with an FPC (Flexible Printed Circuit) 8 connected to a control device (not shown) for controlling the drive of the liquid crystal panel 2 and operates the liquid crystal layer in units of pixels.
  • FPC Flexible Printed Circuit
  • the display surface is driven in units of pixels and a desired image is displayed on the display surface.
  • the liquid crystal mode and pixel structure of the liquid crystal panel 2 are arbitrary. Moreover, the drive mode of the liquid crystal panel 2 is also arbitrary. That is, as the liquid crystal panel 2, any liquid crystal panel that can display information can be used. Therefore, the detailed structure of the liquid crystal panel 2 is not shown in FIG.
  • the backlight device 3 includes a light emitting diode 9 as a light source, and a light guide plate 10 disposed to face the light emitting diode 9. Further, in the backlight device 3, the light emitting diode 9 and the light guide plate 10 are sandwiched by the bezel 14 having an L-shaped cross section in a state where the liquid crystal panel 2 is installed above the light guide plate 10. A case 11 is placed on the color filter substrate 4. Thus, the backlight device 3 is assembled to the liquid crystal panel 2 and is integrated as a transmissive liquid crystal display device 1 in which illumination light from the backlight device 3 is incident on the liquid crystal panel 2.
  • the light guide plate 10 for example, a synthetic resin such as a transparent acrylic resin is used, and light from the light emitting diode 9 enters.
  • a reflection sheet 12 is installed on the opposite side (opposite surface side) of the light guide plate 10 to the liquid crystal panel 2.
  • an optical sheet 13 such as a lens sheet or a diffusion sheet is provided on the liquid crystal panel 2 side (light emitting surface side) of the light guide plate 10, and the inside of the light guide plate 10 has a predetermined light guide direction (left side in FIG. 1). The light from the light emitting diode 9 guided in the direction from the right side to the right side is changed to the planar illumination light having uniform luminance and applied to the liquid crystal panel 2.
  • the present embodiment is not limited to this, and a direct type backlight device is used. May be.
  • a backlight device having other light sources such as a cold cathode fluorescent tube and a hot cathode fluorescent tube other than the light emitting diode can also be used.
  • liquid crystal panel 2 of the present embodiment will be specifically described with reference to FIG.
  • FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG.
  • the liquid crystal display device 1 (FIG. 1) includes a panel control unit 15 that performs drive control of the liquid crystal panel 2 (FIG. 1) as the display unit that displays information such as characters and images, and the panel control.
  • a source driver 16 and a gate driver 17 that operate based on an instruction signal from the unit 15 are provided.
  • the panel control unit 15 is provided in the control device, and receives a video signal from the outside of the liquid crystal display device 1. Further, the panel control unit 15 performs predetermined image processing on the input video signal to generate each instruction signal to the source driver 16 and the gate driver 17, and the input video signal. A frame buffer 15b capable of storing display data for one frame included. Then, the panel control unit 15 performs drive control of the source driver 16 and the gate driver 17 according to the input video signal, so that information according to the video signal is displayed on the liquid crystal panel 2.
  • the source driver 16 and the gate driver 17 are installed on the active matrix substrate 5. Specifically, the source driver 16 is installed on the surface of the active matrix substrate 5 along the lateral direction of the liquid crystal panel 2 in the outer region of the effective display area A of the liquid crystal panel 2 as a display panel. . Further, the gate driver 17 is installed on the surface of the active matrix substrate 5 so as to be along the vertical direction of the liquid crystal panel 2 in the outer region of the effective display region A.
  • the source driver 16 and the gate driver 17 are drive circuits that drive a plurality of pixels P provided on the liquid crystal panel 2 side by pixel.
  • the source driver 16 and the gate driver 17 include a plurality of source lines S1 to S1.
  • SM is an integer of 2 or more, hereinafter collectively referred to as “S”
  • G gate wirings G1 to GN
  • S and G constitute a data wiring and a scanning wiring, respectively, on a transparent glass material or a transparent synthetic resin substrate (not shown) included in the active matrix substrate 5.
  • These source wiring S and gate wiring G constitute a data wiring and a scanning wiring, respectively, on a transparent glass material or a transparent synthetic resin substrate (not shown) included in the active matrix substrate 5.
  • the source wiring S is provided on the substrate so as to be parallel to the matrix-like column direction (vertical direction of the liquid crystal panel 2), and the gate wiring G is arranged in the matrix-like row direction (horizontal of the liquid crystal panel 2). Is provided on the substrate so as to be parallel to (direction).
  • the gate wiring G constitutes a first signal wiring, and is supplied with a gate signal to control a potential of a top gate electrode (to be described later) of the switching element.
  • the common electrode 20 is configured to face the pixel electrode 19 with the liquid crystal layer provided on the liquid crystal panel 2 interposed therebetween. That is, in the active matrix substrate 5, the switching element 18, the pixel electrode 19, and the common electrode 20 are provided for each pixel.
  • regions of a plurality of pixels P are formed in each region partitioned in a matrix by the source wiring S and the gate wiring G.
  • the plurality of pixels P include red (R), green (G), and blue (B) pixels. These RGB pixels are sequentially arranged in this order, for example, in parallel with the gate wirings G1 to GN. Further, these RGB pixels can display corresponding colors by a color filter layer (not shown) provided on the color filter substrate 4 side.
  • the gate driver 17 turns on the gate electrode and the top gate electrode of the corresponding switching element 18 for the gate wirings G1 to GN based on the instruction signal from the image processing unit 15a.
  • the scanning signal (gate signal) to be output is sequentially output.
  • the source driver 16 supplies a data signal (voltage signal (gradation voltage)) corresponding to the luminance (gradation) of the display image to the corresponding source wirings S1 to SM based on the instruction signal from the image processing unit 15a. Output.
  • FIG. 3 is a plan view showing a main configuration of the switching element shown in FIG.
  • FIG. 4 is a cross-sectional view showing a specific configuration of the switching element.
  • the switching element 18 includes a top gate electrode 21 having a convex shape, a silicon layer SL as a semiconductor layer provided below the top gate electrode 21, and a lower portion of the silicon layer SL.
  • the top gate electrode 21 and the bottom gate electrode 23 are provided so as to overlap each other in the vertical direction (thickness direction of the active matrix substrate 5).
  • the top gate electrode 21 and the bottom gate electrode 23 is capacitively coupled.
  • the potential of the top gate electrode 21 is controlled by applying a voltage to the gate wiring G in each of the on state and the off state, the potential of the bottom gate electrode 23 is the top gate electrode. 21 is set to an optimum predetermined potential by capacitive coupling with the capacitor 21 (details will be described later).
  • the bottom gate electrode 23 overlaps with a depletion layer region formed in a channel region and a low concentration impurity region (LDD (Lightly (Doped Drain) region) included in the silicon layer SL. Is provided.
  • LDD Lightly (Doped Drain) region
  • the light shielding film 31 is provided below the bottom gate electrode 23 so as to cover at least the entire silicon layer SL.
  • the light shielding film 31 shields light from below the switching element 18, for example, illumination light from the backlight device 3.
  • switching elements 18 are provided on a substrate body 5a made of, for example, a glass substrate for each pixel. That is, in the switching element 18, the light shielding film 31 is formed on the substrate body 5 a, and further, an interlayer insulating film 35 is formed so as to cover the light shielding film 31. In the switching element 18, the bottom gate electrode 23 is formed on the interlayer insulating film 35, and further, a base coat film 36 is formed so as to cover the bottom gate electrode 23.
  • the substrate body 5a can be configured using a quartz substrate or a plastic substrate.
  • the silicon layer SL is formed on the base coat film 36, and a gate insulating film 37 is formed so as to cover the silicon layer SL.
  • a source region 24, a (first) low-concentration impurity region 25, a channel region 26, a (second) low-concentration impurity region 27, and a drain region 28 are provided along the horizontal direction of FIG. Is formed.
  • an N-type transistor is used for the switching element 18. Therefore, in the silicon layer SL, the source region 24 and the drain region 28 are configured by a high concentration region (shown by a cross hatch in FIG. 4) in which an N-type impurity such as phosphorus is implanted at a high concentration.
  • the concentration impurity regions 25 and 27 are regions (indicated by dots in FIG. 4) into which N-type impurities are implanted at a low concentration.
  • the channel region 26 is configured by a region into which a P-type impurity such as boron is implanted.
  • the switching element 18 may be configured using a P-type transistor.
  • the source region 24, the low-concentration impurity regions 25 and 27, and the drain region 28 are configured by regions into which P-type impurities are implanted, and the channel region 26 is Is constituted by a region into which an N-type impurity is implanted.
  • the low-concentration impurity regions 25 and 27 may be P-type regions having the same concentration as the channel region 26. That is, the low-concentration impurity regions 25 and 27 and the channel region 26 may be offset regions doped with P-type impurities.
  • the bottom gate electrode 23 is formed in the depletion layer region formed in the channel region 26 and the low concentration impurity regions 25 and 27 in the silicon layer SL, that is, in the source region 24. It is provided so as to overlap a part of the adjacent low concentration impurity region 25 and a part of the low concentration impurity region 27 adjacent to the drain region 28. More specifically, in the bottom gate electrode 23 having a convex shape, one end of the convex portion is provided below a part of the low-concentration impurity region 25 adjacent to the source region 24, and the other end of the convex portion. The portion is provided below a part of the low-concentration impurity region 27 adjacent to the drain region 28.
  • the top gate electrode 21 is formed on the gate insulating film 37 at a position directly above the channel region 26, and an interlayer insulating film 38 is formed so as to cover the top gate electrode 21. . Further, in the switching element 18, the top gate electrode 21 is connected to the gate wiring G (FIG. 3) via the contact hole 22 and the gate electrode 32 formed on the interlayer insulating film 38.
  • the source region 24 is connected to the source electrode 33 through the contact hole 29, and the drain region 28 is connected to the drain electrode 34 through the contact hole 30.
  • the source electrode 33 and the drain electrode 34 are connected to the source line S (FIG. 2) and the pixel electrode 19 (FIG. 2), respectively.
  • the same conductive layer as the top gate electrode 21 may be directly used as the gate wiring G without providing the gate electrode 32.
  • the potential of the top gate electrode 21 is controlled by a gate signal from the gate wiring G, and the potential of the bottom gate electrode 23 is controlled by capacitive coupling with the top gate electrode 21. .
  • the switching element (transistor) 18 when the switching element (transistor) 18 is in the OFF state, the potential of the bottom gate electrode 23 is controlled so that the channel region 26 is accumulated. Thereby, in the switching element 18, a leak current can be reduced reliably.
  • the switching element 18 when the switching element 18 is in the on state, the potential of the bottom gate electrode 23 is controlled so that the channel region 26 is inverted from depletion. As a result, the switching element 18 can reliably increase the on-current.
  • the optimum predetermined potential set for the bottom gate electrode 23 is the impurity concentration of the channel region 26 and the impurity concentration of the low concentration impurity regions 25 and 27.
  • Concentration, potential at the drain electrode 34, potential at the top gate electrode 21 (voltage applied to the gate wiring G), film quality and thickness of the base coat film 36, and / or the relationship between the top gate electrode 21 and the bottom gate electrode 23 It is appropriately determined based on the capacitive coupling ratio in the capacitively coupled portion.
  • FIG. 5 is a diagram illustrating the manufacturing process of the switching element
  • FIGS. 5A to 5C illustrate a series of main manufacturing processes.
  • FIG. 6 is a diagram for explaining a manufacturing process of the switching element.
  • FIGS. 6A to 6C are a series of main manufacturing processes performed after the process shown in FIG. 5C is completed. The process is explained.
  • FIG. 7 is a diagram for explaining a manufacturing process of the switching element.
  • FIGS. 7A to 7B are a series of main manufacturing processes performed after the process shown in FIG. 6C is completed. The process is explained.
  • a light shielding film 31 is first formed on the substrate body 5a.
  • the light shielding film 31 is provided so as to cover the entire silicon layer SL of the channel region 26, the source region 24, and the drain region 28, which will be formed in a later step.
  • a conductive film in which a TaN film and a W film are stacked is used.
  • the light shielding film 31 is formed of an element selected from Ta, W, Ti, Mo, Al, Cu, Cr, Nd, or the like, or an alloy material or a compound material containing the above element as a main component. May be. Further, the light shielding film 31 may be formed by doping a semiconductor film typified by polycrystalline silicon or the like with an impurity such as phosphorus or boron.
  • the shape of the light shielding film 31 it is necessary to flatten the silicon layer SL formed in the subsequent process as much as possible, so that the end portion thereof has a forward taper as illustrated in FIG. 5A. It is preferable.
  • an interlayer insulating film 35 is formed so as to cover the entire surface of the light shielding film 31 and the substrate body 5a.
  • the interlayer insulating film 35 a film made of an insulating inorganic material such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film, or a laminated film appropriately combining them can be used. In the switching element 18, a silicon oxide film was used.
  • the interlayer insulating film 35 can be formed by being deposited by LPCVD, plasma CVD, sputtering, or the like.
  • the film thickness of the interlayer insulating film 35 needs to be an optimum film thickness considering that the silicon layer SL needs to be planarized as much as possible, and is specifically set to about 100 to 500 nm.
  • the bottom gate electrode 23 is formed on the interlayer insulating film 35.
  • the bottom gate electrode 23 is formed in a channel region 26 of a silicon layer SL formed in a later process, a part of the low concentration impurity region 25 adjacent to the source region 24, and one part of the low concentration impurity region 27 adjacent to the drain region 28. It is provided so as to cover the part.
  • a conductive film in which a TaN film and a W film are stacked is used for the bottom gate electrode 23, for example.
  • the bottom gate electrode 23 is made of an element selected from Ta, W, Ti, Mo, Al, Cu, Cr, Nd, or the like, or an alloy material or compound material containing the above element as a main component. It may be formed. Alternatively, the bottom gate electrode 23 may be formed by doping a semiconductor film typified by polycrystalline silicon or the like with an impurity such as phosphorus or boron.
  • the end thereof has a forward taper as illustrated in FIG. 5B. It is preferable to become.
  • the process variation is considered due to the need to eliminate or minimize the overlap region between the bottom gate electrode 23 and the high concentration impurity region of the source region 24 and the drain region 28. It is necessary to specify the measured dimensions. Specifically, for example, when a 1.5 ⁇ m rule process is applied, the overlap design amount (that is, the overlap design amount of the bottom gate electrode 23 with respect to the top gate electrode 21) to the low concentration impurity regions 25 and 27 is 0. .75 to 2.5 ⁇ m is optimum. However, the value needs to be optimized by the width of the low-concentration impurity regions 25 and 27, the impurity concentration, the film quality / film thickness of the base coat film 36, the application process, and the like.
  • a base coat film 36 is formed so as to cover the entire surface of the bottom gate electrode 23 and the substrate body 5a.
  • a film made of an insulating inorganic material such as a silicon oxide film, a silicon nitride film, or a silicon nitride oxide film, or a laminated film appropriately combining them can be used.
  • a silicon oxide film is used.
  • the base coat film 36 can be formed by being deposited by LPCVD, plasma CVD, sputtering, or the like.
  • the thickness of the base coat film 36 needs to be an optimum thickness considering that the silicon layer SL needs to be planarized as much as possible and that the electric field effect of the bottom gate electrode 23 can be obtained. Is set to about 100 to 500 nm.
  • a non-single crystal semiconductor thin film 39 is formed so as to cover the entire surface of the base coat film 36.
  • the non-single-crystal semiconductor thin film 39 is formed by LPCVD, plasma CVD, sputtering, or the like, and includes amorphous silicon, polycrystalline silicon, amorphous germanium, polycrystalline germanium, amorphous silicon / germanium, Polycrystalline silicon / germanium, amorphous silicon / carbide, or polycrystalline silicon / carbide can be used.
  • amorphous silicon is used for the non-single crystal semiconductor thin film 39.
  • the film thickness of the non-single-crystal semiconductor thin film 39 is related to switching element (thin film transistor) characteristics, and is set to about 30 to 80 nm, for example.
  • the non-single crystal semiconductor thin film 39 is crystallized to obtain a polycrystalline semiconductor thin film.
  • the polycrystalline semiconductor thin film 40 is patterned by photolithography according to the formation region of the bottom gate electrode 23.
  • a gate insulating film 37 is formed so as to cover the entire surface of the polycrystalline semiconductor thin film 40 and the base coat film 36.
  • the gate insulating film 37 is composed of an inorganic insulating film such as a silicon oxide film or a silicon nitride film, or a laminated film thereof.
  • the film thickness of the gate insulating film 37 is set to about 30 to 80 nm, for example.
  • a P-type channel region 41 is formed by doping a P-type impurity such as boron from above the gate insulating film 37.
  • the top gate electrode 21 is formed on the gate insulating film 37.
  • the top gate electrode 21 for example, a conductive film in which a TaN film and a W film are stacked is used.
  • the top gate electrode 21 is formed into a gate insulating film by patterning by etching using a resist pattern formed by photolithography as a mask. 37 is formed.
  • the thickness of the top gate electrode 21 is set to about 200 to 600 nm, for example.
  • the top gate electrode 21 is made of an element selected from Ta, W, Ti, Mo, Al, Cu, Cr, Nd, or the like, or an alloy material or compound material containing the element as a main component. It may be formed. Alternatively, the top gate electrode 21 may be formed by doping a semiconductor film typified by polycrystalline silicon or the like with an impurity such as phosphorus or boron.
  • N-type impurities such as phosphorus or arsenic are doped at a relatively low concentration from above the gate insulating film 37 so that the top gate electrode 21 is self-aligned.
  • N-type low concentration impurity regions 42 and 43 are formed so as to sandwich the P-type channel region 26.
  • an N-type impurity such as phosphorus or arsenic is doped from above the gate insulating film 37, thereby forming a source.
  • Region 24, low-concentration impurity regions 25 and 27, and drain region 28 are formed.
  • the optimum design width of the low-concentration impurity regions 25 and 27 is about 1.0 to 4.0 ⁇ m.
  • P + or As + ions are implanted at a dose of 0.1 to 4.0 ⁇ 10 13 / cm 2 .
  • the value needs to be optimized depending on the required characteristics of the switching element 18 and the process conditions.
  • an interlayer insulating film 38 is formed so as to cover the entire surface of the top gate electrode 21 and the gate insulating film 37.
  • the interlayer insulating film 38 is composed of an inorganic insulating film such as a silicon oxide film or a silicon nitride film, or a laminated film thereof.
  • the film thickness of the interlayer insulating film 38 is set to about 500 to 1500 nm, for example.
  • contact holes 29 and 30 penetrating the gate insulating film 37 and the interlayer insulating film 38 are formed on the source region 24 and the drain region 28, respectively.
  • a contact hole 22 that penetrates the interlayer insulating film 37 is formed on the top gate electrode 21.
  • a conductive film is formed on the interlayer insulating film 38 by sputtering or the like.
  • a conductive film made of aluminum or the like can be used, but the conductive film is not limited to this, and is selected from Ta, W, Ti, Mo, Al, Cu, Cr, Nd, and the like.
  • An element, or an alloy material or a compound material containing the element as a main component may be used, and if necessary, a laminated structure may be formed by appropriately combining them.
  • aluminum is used.
  • the conductive film is subjected to patterning into a desired shape by etching using a photolithography method, whereby a gate electrode 32, a source electrode 33, and a drain electrode are formed. 34 is formed on the interlayer insulating film 38.
  • the film thicknesses of the gate electrode 32, the source electrode 33, and the drain electrode 34 are set to about 250 to 800 nm, for example.
  • the source region 24, the drain region 28, the channel region 26, and the low concentration impurity are disposed between the top gate electrode 21 and the bottom gate electrode 23.
  • a silicon layer (semiconductor layer) SL having regions 25 and 27 is provided.
  • the bottom gate electrode 23 has a channel region 26, a part of the low concentration impurity region 25 adjacent to the source region 24, and one of the low concentration impurity regions 27 adjacent to the drain region 28. It is provided to overlap the part.
  • control is performed so that the potential of the bottom gate electrode 23 becomes a predetermined potential.
  • FIG. 8A is a graph showing the switching characteristics of the product of the present embodiment, the conventional product, and the comparative product
  • FIG. 8B is the on-characteristic of the product of the present embodiment, the conventional product, and the comparative product. It is a graph which shows.
  • FIG. 9 is a graph showing the relationship between the illuminance and the leakage current in the product of this embodiment and the comparative product.
  • the inventor of the present invention prepared the present embodiment product and a conventional product corresponding to the conventional example, and measured the on-current and the leakage current. .
  • An example of the result of the verification test is shown in FIGS. 8 (a) and 8 (b).
  • a switching element without a bottom gate electrode is prepared as a comparative product, and the on-current and leakage current in the comparative product are also measured.
  • the leakage current can be reduced by relaxing the electric field in the vertical direction (thickness direction of the active matrix substrate 5) compared to the conventional product in which the bottom gate electrode has a GOLD structure. It was confirmed. Further, it was confirmed that the leakage current was reduced in the product of this embodiment as compared with the comparative product shown by the dotted line 82 in FIG.
  • the drain current that is, the on-current
  • the on-current is approximately the same as that of the conventional product indicated by the thick line 84 in FIG. 8B. It was confirmed. Furthermore, it was demonstrated that the on-current is significantly increased in the product of this embodiment as compared with the comparative product indicated by the dotted line 85 in FIG.
  • the inventor of the present invention prepares the product of the present embodiment and the above-described comparative product to verify the effect of the bottom gate electrode 23 in the switching element 18 of the present embodiment.
  • the relationship between the illuminance and the (off) leakage current was obtained.
  • An example of the result of the verification test is shown in FIG.
  • the potential of the top gate electrode 21 is controlled by the gate signal from the connected gate wiring (first signal wiring) G, and the potential of the bottom gate electrode 23 is capacitively coupled to the top gate electrode 21. Is controlled by.
  • installation of the signal wiring etc. for applying a predetermined electric potential to the bottom gate electrode 23 can be omitted, and the switching element 18 having a simple structure can be easily configured.
  • the switching element 18 when the switching element 18 is in the OFF state, the potential of the bottom gate electrode 23 is controlled so that the channel region 26 is accumulated, and the switching is performed.
  • the element 18 When the element 18 is on, the potential of the bottom gate electrode 23 is controlled so that the channel region 26 is inverted from depletion.
  • the switching element (semiconductor device) 18 capable of reducing the leakage current is used even when the on-current is increased, high performance and low power consumption are achieved.
  • the active matrix substrate 5 and the liquid crystal display device (display device) 1 can be easily configured.
  • FIG. 10 is a cross-sectional view showing a specific configuration of the switching element according to the second embodiment of the present invention.
  • the main difference between this embodiment and the first embodiment is that the silicon layer has a low concentration so as to sandwich the channel region and to have an offset structure with respect to the top gate electrode.
  • the impurity region is formed.
  • symbol is attached
  • the switching element 18 of the present embodiment in the silicon layer (semiconductor layer) SL, the low-concentration impurity regions 25 and 27 sandwich the channel region 45 and are connected to the top gate electrode 21.
  • the top gate electrode 21 On the other hand, it is formed to have an offset structure. Specifically, as indicated by “W” in FIG. 10, an offset structure is formed in a portion other than just below the top gate electrode 21.
  • the manufacturing method of the switching element 18 of this embodiment is demonstrated concretely.
  • processes different from those in the first embodiment will be mainly described in order to simplify the description. Specifically, only the impurity profiles of the channel region, the source region, and the drain region are different from those of the first embodiment.
  • FIG. 11 is a diagram illustrating a manufacturing process of the switching element shown in FIG. 10, and FIGS. 11A to 11B illustrate a series of main manufacturing processes.
  • the top gate electrode 21 is formed on the gate insulating film 37 as in the case shown in FIG.
  • a conductive film in which a TaN film and a W film are stacked is used for the top gate electrode 21 .
  • the top gate electrode 21 is formed into a gate insulating film by patterning by etching using a resist pattern formed by photolithography as a mask. 37 is formed.
  • the thickness of the top gate electrode 21 is set to about 200 to 600 nm, for example.
  • the top gate electrode 21 is made of an element selected from Ta, W, Ti, Mo, Al, Cu, Cr, Nd, or the like, or an alloy material or compound material containing the element as a main component. It may be formed. Alternatively, the top gate electrode 21 may be formed by doping a semiconductor film typified by polycrystalline silicon or the like with an impurity such as phosphorus or boron.
  • N-type impurities such as phosphorus or arsenic are doped at a relatively low concentration from above the gate insulating film 37.
  • N-type low-concentration impurity regions 46 and 47 are formed so as to sandwich the P-type channel region 45 and have an offset structure with respect to the top gate electrode 21.
  • a photoresist 49 is formed on the gate insulating film 37 so as to leave the N-type low-concentration impurity regions 25 and 27, and then phosphorus is applied from above the gate insulating film 37.
  • the source region 24 and the drain region 28 are formed by doping an N-type impurity such as arsenic.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the silicon layer (semiconductor layer) SL the low concentration impurity regions 25 and 27 are formed so as to sandwich the channel region 45 and have an offset structure with respect to the top gate electrode 21.
  • electric field relaxation electric field relaxation in the horizontal direction (left and right direction in FIG. 10)
  • leakage current can be further reduced.
  • FIG. 12 is a cross-sectional view showing a specific configuration of the switching element according to the third embodiment of the present invention.
  • the main difference between this embodiment and the first embodiment is that a plurality of types of low concentration impurity regions having different impurity concentrations are provided in the low concentration impurity region.
  • symbol is attached
  • the impurity concentration is different in the (first) low-concentration impurity region provided between the source region 24 and the channel region 26 (first).
  • Third and fourth) low-concentration impurity regions 50 and 51 are provided in the (second) low-concentration impurity region provided between the drain region 28 and the channel region 26 (third and fourth) low-concentration impurity regions 52 and 53 having different impurity concentrations. It has been. Further, the low concentration impurity region 50 and the low concentration impurity region 53 have the same impurity concentration, and the low concentration impurity region 51 and the low concentration impurity region 52 have the same impurity concentration.
  • the manufacturing method of the switching element 18 of this embodiment is demonstrated concretely.
  • processes different from those in the first embodiment will be mainly described in order to simplify the description. Specifically, only the impurity profiles of the channel region, the source region, and the drain region are different from those of the first embodiment.
  • FIG. 13 is a diagram for explaining a manufacturing process of the switching element shown in FIG. 12, and FIGS. 13 (a) to 13 (b) illustrate a series of main manufacturing processes.
  • FIG. 14 is a diagram illustrating a manufacturing process of the switching element shown in FIG. 12, and FIG. 14 illustrates a main manufacturing process performed after the process shown in FIG. 13B is completed.
  • the top gate electrode 21 is formed on the gate insulating film 37 as in the case shown in FIG. 6C.
  • the top gate electrode 21 for example, a conductive film in which a TaN film and a W film are stacked is used.
  • the top gate electrode 21 is formed into a gate insulating film by patterning by etching using a resist pattern formed by photolithography as a mask. 37 is formed.
  • the thickness of the top gate electrode 21 is set to about 200 to 600 nm, for example.
  • the top gate electrode 21 is made of an element selected from Ta, W, Ti, Mo, Al, Cu, Cr, Nd, or the like, or an alloy material or compound material containing the element as a main component. It may be formed. Alternatively, the top gate electrode 21 may be formed by doping a semiconductor film typified by polycrystalline silicon or the like with an impurity such as phosphorus or boron.
  • the top gate electrode 21 is doped with N-type impurities such as phosphorus or arsenic at a relatively low concentration from above the gate insulating film 37 so as to be self-aligned.
  • N-type low-concentration impurity regions 54 and 55 are formed so as to sandwich the P-type channel region 26.
  • N-type impurity such as phosphorus or arsenic is doped at a relatively low concentration from above the gate insulating film 37.
  • N-type low-concentration impurity regions 56 and 59 are formed so as to sandwich the P-type channel region 26.
  • low-concentration impurity regions 57 and 58 having the same impurity concentration as the low-concentration impurity regions 54 and 55 shown in FIG.
  • the concentration of the N-type impurity is set lower than that in the low-concentration impurity regions 56 and 59.
  • a photoresist 61 is formed on the gate insulating film 37 so as to leave the N-type two-stage low-concentration impurity regions 50 to 53, and then phosphorus or phosphorus is formed from above the gate insulating film 37.
  • the source region 24 and the drain region 28 are formed by doping an N-type impurity such as arsenic.
  • FIG. 15A is a graph showing a specific impurity concentration profile of the low-concentration impurity region in the switching element shown in FIG. 12, and FIG. 15B is a graph showing the low impurity concentration profile in the switching element shown in FIG. It is a graph which shows another specific impurity concentration profile of a concentration impurity area
  • the N-type impurity concentration of the low-concentration impurity regions 51 and 52 is set to A.
  • the N-type impurity concentration of the low-concentration impurity regions 50 and 53 is set to B, and the N-type impurity concentration of the source region 24 and the drain region 28 is set to C.
  • specific values from A to B are, for example, 5 ⁇ 10 16 to 1 ⁇ 10 18 ions / cm 3 .
  • a specific value of C is, for example, 5 ⁇ 10 19 to 1 ⁇ 10 21 ions / cm 3 .
  • the N-type impurity concentration of the low-concentration impurity regions 51 and 52 is set to E, and the low-concentration impurity regions 50 and 53
  • the N-type impurity concentration may be set to D, and the N-type impurity concentration of the source region 24 and the drain region 28 may be set to F. That is, the impurity concentration of the low concentration impurity region adjacent to the channel region 26 may be higher than the impurity concentration of the low concentration impurity region adjacent to the source region 24 or the drain region 28.
  • three or more low-concentration impurity regions having different impurity concentrations may be provided between the source region 24 and the channel region 26 and between the drain region 28 and the channel region 26.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the present embodiment since a plurality of types of low-concentration impurity regions 50 to 53 having different impurity concentrations are provided, electric field relaxation in the silicon layer SL (horizontal field relaxation in the horizontal direction in FIG. 12). The leakage current can be further reduced.
  • FIG. 16 is sectional drawing which shows the specific structure of the switching element concerning the 4th Embodiment of this invention.
  • the main difference between the present embodiment and the first embodiment is that a reflective electrode is provided above the top gate electrode, corresponding to a reflective liquid crystal display device.
  • symbol is attached
  • the reflective electrode 62 is provided above the top gate electrode 21 and further above the gate electrode 32, the source electrode 33, and the drain electrode 34. Yes.
  • An organic planarization film 63 is provided between the reflective electrode 62 and the gate electrode 32, the source electrode 33, and the drain electrode 34.
  • the reflective electrode 62 is a contact hole that penetrates the organic planarization film 63. Only the drain electrode 34 is electrically connected through 62 '.
  • the reflective electrode 62 constitutes a reflective liquid crystal display device.
  • the backlight device 3 is not provided below the substrate body 5a.
  • the switching element 18 of this embodiment the installation of the light shielding film on the substrate body 5a is omitted.
  • the bottom gate electrode 23 is adjacent to the channel region 26, a part of the low-concentration impurity region 25 adjacent to the source region 24, and the drain region 28, as in the above embodiment. It is provided so as to overlap with a part of the low-concentration impurity region 27.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the reflective electrode 62 is provided above the top gate electrode 21, the switching element 18 corresponding to the reflective liquid crystal display device can be easily configured.
  • FIG. 17 is a plan view showing the main configuration of a switching element according to the fifth embodiment of the present invention.
  • the main difference between this embodiment and the first embodiment is that the bottom gate wiring (second signal wiring) is connected to the bottom gate electrode, and the bottom gate signal from the bottom gate wiring This is the point where the potential of the gate electrode is controlled.
  • symbol is attached
  • the bottom gate electrode 65 configured in a convex shape is opposed to the top gate electrode 21 configured in a convex shape in the vertical direction of FIG. Is provided.
  • the bottom gate electrode 65 is provided so as not to overlap with the top gate electrode 21 in the vertical direction (thickness direction of the active matrix substrate 5) as much as possible.
  • the electrode 65 and the top gate electrode 21 are configured so as not to cause capacitive coupling.
  • the bottom gate electrode 65 is connected to a bottom gate wiring G ′ as a second signal wiring through a contact hole 66.
  • the bottom gate line G ′ is provided so as to be parallel to the gate line G, and is connected to the gate driver 17 in the same manner as the gate line G.
  • the bottom gate electrode 65 has an optimal predetermined potential in the on state and the off state, as in the first embodiment.
  • the bottom gate signal (applied voltage) to the bottom gate wiring G ′ is controlled.
  • the same conductive layer as the top gate electrode 21 is directly used as the gate wiring G without providing the gate wiring G and the bottom gate wiring G ′, and the same conductive layer as the bottom gate electrode 65 is directly used as the bottom.
  • a configuration used as the gate wiring G ′ may also be used.
  • a light shielding film 67 is provided below the bottom gate electrode 65. Similar to the first embodiment, the light shielding film 67 is provided below the bottom gate electrode 65 so as to cover at least the entire silicon layer SL, and the light shielding film 67 is provided below the switching element 18. Light from the side, for example, illumination light from the backlight device 3 is shielded.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the potential of the bottom gate electrode 65 is controlled by the bottom gate signal from the connected bottom gate wiring (second signal wiring) G ′, Control with a higher degree of freedom can be performed, and an increase in on-current and a reduction in leakage current can be achieved more easily.
  • the semiconductor device of the present invention is provided between the top gate electrode and the bottom gate electrode, and includes a semiconductor layer having a source region, a drain region, a channel region, and a low-concentration impurity region. It is provided so as to overlap with a part of the low concentration impurity region adjacent to the channel region, the source region, and a part of the low concentration impurity region adjacent to the drain region. As long as it is controlled, there is no limitation.
  • various display devices such as transflective or reflective liquid crystal panels or organic EL (Electronic Luminescence) elements, inorganic EL elements, field emission displays, and active matrix substrates used therefor Etc.
  • the semiconductor device of the present invention can be applied to a switching element used in a peripheral circuit such as a driver circuit.
  • the present invention is not limited to this, and even if it is a transmission type Even in the case of being used in the liquid crystal panel, it is possible to omit the installation of the light shielding film. Specifically, the impurity concentration in the channel region is adjusted, the impurity concentration in the low concentration impurity region is adjusted, or the thickness of the base coat film between the silicon layer (semiconductor layer) and the bottom gate electrode is reduced. By doing so, it becomes possible to give the bottom gate electrode itself a function and effect as a light shielding film, and the installation of the light shielding film can be omitted.
  • the light shielding film is provided below the bottom gate electrode as in the first to third and fifth embodiments, the light incident from the lower side of the bottom gate electrode by the light shielding film. This is preferable in that it can be easily prevented and leakage current can be reduced more reliably.
  • the present invention is not limited to this, and a plurality of (thin film) transistors are connected in series. A thing can also be used, for example as a switching part for the said pixel electrodes.
  • the present invention is useful for a semiconductor device capable of reducing leakage current, an active matrix substrate using the same, and a display device even when an on-current is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

 トップゲート電極(21)及びボトムゲート電極(23)を有するスイッチング素子(半導体装置)(18)において、トップゲート電極(21)とボトムゲート電極(遮光膜)(23)との間に設けられるとともに、ソース領域(24)、ドレイン領域(28)、チャネル領域(26)、及び低濃度不純物領域(25、27)を有するシリコン層(半導体層)(SL)を備えている。また、ボトムゲート電極(23)は、チャネル領域(26)、ソース領域(24)に隣接する低濃度不純物領域(25)の一部、及びドレイン領域(18)に隣接する低濃度不純物領域(27)の一部とオーバーラップするように設けられ、ボトムゲート電極(23)では、その電位が所定の電位となるように、制御されている。

Description

半導体装置、アクティブマトリクス基板、及び表示装置
 本発明は、トランジスタを備えた半導体装置、及びこれを用いたアクティブマトリクス基板、並びに表示装置に関する。
 近年、例えば液晶表示装置は、在来のブラウン管に比べて薄型、軽量などの特長を有するフラットパネルディスプレイとして、液晶テレビ、モニター、携帯電話などに幅広く利用されている。このような液晶表示装置では、複数のデータ配線(ソース配線)及び複数の走査配線(ゲート配線)をマトリクス状に配線するとともに、データ配線と走査配線との交差部の近傍に薄膜トランジスタ(TFT:Thin Film Transistor、以下、“TFT”と略称する。)などのスイッチング素子と、このスイッチング素子に接続された画素電極を有する画素をマトリクス状に配置したアクティブマトリクス基板を、表示パネルとしての液晶パネルに用いたものが知られている。
 また、上記のようなアクティブマトリクス基板では、一般的に、上述のスイッチング素子としての画素駆動用の薄膜トランジスタ以外に、周辺回路用の薄膜トランジスタが一体的に設けられている。さらに、アクティブマトリクス基板には、当該アクティブマトリクス基板がタッチパネル付きの液晶表示装置や照度センサー(アンビニエントセンサー)付きの液晶表示装置などに用いられる場合、上記画素駆動用及び周辺回路用の薄膜トランジスタに加えて、光センサーとしてのフォトダイオード(薄膜ダイオード;TFD)を一体的に設けることが提案されている。このように、アクティブマトリクス基板には、複数の薄膜トランジスタやフォトダイオードを備えた半導体装置が用いられている。
 また、上記のような半導体装置では、近年、例えば上述の光センサーを内蔵した液晶パネルや画素メモリーを内蔵した液晶パネルなどにおいて、その低消費電力化の要求に対応するために、薄膜トランジスタ(トランジスタ)のリーク電流の低減が求められてきている。
 そこで、従来の半導体装置には、例えば下記特許文献1に記載されているように、薄膜トランジスタの下方に第1遮光膜を設けるとともに、薄膜トランジスタと第1遮光膜との間に第2遮光膜を設けることが提案されている。そして、この従来の半導体装置では、アクティブマトリクス基板の裏面側から入射した光がブラックマトリクス膜やデータ配線、あるいは第1遮光膜で反射されても、第2遮光膜によってそれらの反射光を遮光することにより、リーク電流を低減することが可能とされていた。また、この従来の半導体装置では、導電性を有する材料を使用して、第2遮光膜を構成するとともに、この第2遮光膜にゲート配線を電気的に接続することにより、当該第2遮光膜をボトムゲート電極として用いた、デュアル型の薄膜トランジスタを構成して、オン電流の増加を図ることが可能とされていた。
特開2003-131261号公報
 しかしながら、上記のような従来の半導体装置では、オン電流の増加を図ったときに、リーク電流の低減を図れないという問題点が発生した。
 具体的にいえば、上記従来の半導体装置では、上述のように、第2遮光膜をボトムゲート電極として用いることにより、オン電流の増加を図っていた。ところが、この従来の半導体装置では、第2遮光膜は薄膜トランジスタに設けられた半導体層のうち、チャネル領域、低濃度不純物領域(LDD(Lightly Doped Drain)領域)の全体、ソース領域の一部、及びドレイン領域の一部と重なるように設けられていた。このため、この従来の半導体装置では、第2遮光膜に対し、(トップ)ゲート電極と同じ電圧印加が行われると、低濃度不純物領域の全体が第2遮光膜(ボトムゲート電極)にオーバーラップされたGOLD(Gate Overlapped LDD)構造の薄膜トランジスタが構成された。これにより、この従来の半導体装置では、薄膜トランジスタのオフ時において、ソース領域及びドレイン領域の高濃度不純物領域と第2遮光膜(ボトムゲート電極)のオーバーラップ領域における縦方向の電界が影響して、(オフ)リーク電流が増加した。この結果、この従来の半導体装置では、オン電流の増加を図ったときに、リーク電流の低減を図ることができなかった。
 上記の課題を鑑み、本発明は、オン電流の増加を図ったときでも、リーク電流の低減を図ることができる半導体装置、及びこれを用いたアクティブマトリクス基板、並びに表示装置を提供することを目的とする。
 上記の目的を達成するために、本発明にかかる半導体装置は、トップゲート電極及びボトムゲート電極を有するトランジスタを備えた半導体装置であって、
 前記トップゲート電極と前記ボトムゲート電極との間に設けられるとともに、ソース領域、ドレイン領域、チャネル領域、及び低濃度不純物領域を有する半導体層を備え、
 前記ボトムゲート電極は、前記チャネル領域、前記ソース領域に隣接する前記低濃度不純物領域の一部、及び前記ドレイン領域に隣接する前記低濃度不純物領域の一部とオーバーラップするように設けられ、
 前記ボトムゲート電極では、その電位が所定の電位となるように、制御されていることを特徴とするものである。
 上記のように構成された半導体装置では、トップゲート電極とボトムゲート電極との間に、ソース領域、ドレイン領域、チャネル領域、及び低濃度不純物領域を有する半導体層が設けられている。また、ボトムゲート電極が、チャネル領域、ソース領域に隣接する低濃度不純物領域の一部、及びドレイン領域に隣接する低濃度不純物領域の一部とオーバーラップするように設けられている。さらに、ボトムゲート電極では、その電位が所定の電位となるように、制御されている。これにより、上記従来例と異なり、オン電流の増加を図ったときでも、リーク電流の低減を図ることができる。
 また、上記半導体装置において、前記半導体層では、前記チャネル領域を挟むように、かつ、前記トップゲート電極に対して、オフセット構造となるように、前記低濃度不純物領域が形成されてもよい。
 この場合、半導体層での電界緩和を行うことができ、リーク電流の低減をより図ることができる。
 また、上記半導体装置において、前記低濃度不純物領域には、不純物の濃度が異なる複数種類の低濃度不純物領域が設けられてもよい。
 この場合、半導体層での電界緩和を行うことができ、リーク電流の低減をより図ることができる。
 また、上記半導体装置において、前記ボトムゲート電極では、前記トランジスタがオフ状態である場合には、前記チャネル領域が蓄積化されるように、当該ボトムゲート電極の電位が制御され、かつ、
 前記トランジスタがオン状態である場合には、前記チャネル領域が空乏化から反転されるように、当該ボトムゲート電極の電位が制御されていることが好ましい。
 この場合、オン電流の増加を確実に図ることができるとともに、リーク電流の低減を確実に図ることができる。
 また、上記半導体装置において、前記ボトムゲート電極の下方に設けられた遮光膜を備えてもよい。
 この場合、遮光膜によってボトムゲート電極の下側からの光の入射を阻止することを容易に行うことができ、リーク電流の低減をより確実に図ることができる。
 また、上記半導体装置において、前記トップゲート電極の上方には、反射電極が設けられてもよい。
 この場合、反射型の表示装置に対応した半導体装置を容易に構成することができる。
 また、上記半導体装置において、前記トップゲート電極では、その電位が接続された第1の信号配線からのゲート信号によって制御され、
 前記ボトムゲート電極では、その電位が前記トップゲート電極との容量結合によって制御されてもよい。
 この場合、ボトムゲート電極の電位がトップゲート電極との容量結合によって制御されているので、ボトムゲート電極に所定の電位を印加するための信号配線などの設置を省略することができ、構造簡単な半導体装置を容易に構成することができる。
 また、上記半導体装置において、前記トップゲート電極では、その電位が接続された第1の信号配線からのゲート信号によって制御され、
 前記ボトムゲート電極では、その電位が接続された第2の信号配線からのボトムゲート信号によって制御されてもよい。
 この場合、ボトムゲート電極の電位が接続された第2の信号配線からのボトムゲート信号によって制御されているので、当該ボトムゲート電極の電位に関して、より自由度の高い制御を行うことができ、オン電流の増加、及びリーク電流の低減をより容易に図ることが可能となる。
 また、本発明のアクティブマトリクス基板は、上記いずれかの半導体装置を用いたことを特徴とするものである。
 上記のように構成されたアクティブマトリクス基板では、オン電流の増加を図ったときでも、リーク電流の低減を図ることができる半導体装置が用いられているので、高性能で、低消費電力化されたアクティブマトリクス基板を容易に構成することができる。
 また、本発明の表示装置は、上記いずれかの半導体装置を用いたことを特徴とするものである。
 上記のように構成された表示装置では、オン電流の増加を図ったときでも、リーク電流の低減を図ることができる半導体装置が用いられているので、高性能で、低消費電力化された表示装置を容易に構成することができる。
 本発明によれば、オン電流の増加を図ったときでも、リーク電流の低減を図ることができる半導体装置、及びこれを用いたアクティブマトリクス基板、並びに表示装置を提供することが可能となる。
図1は、本発明の第1の実施形態にかかる液晶表示装置を説明する図である。 図2は、図1に示した液晶パネルの構成を説明する図である。 図3は、図2に示したスイッチング素子の要部構成を示す平面図である。 図4は、上記スイッチング素子の具体的な構成を示す断面図である。 図5は、上記スイッチング素子の製造工程を説明する図であり、図5(a)~図5(c)は、一連の主な製造工程を説明している。 図6は、上記スイッチング素子の製造工程を説明する図であり、図6(a)~図6(c)は、図5(c)に示した工程の終了後に行われる、一連の主な製造工程を説明している。 図7は、上記スイッチング素子の製造工程を説明する図であり、図7(a)~図7(b)は、図6(c)に示した工程の終了後に行われる、一連の主な製造工程を説明している。 図8(a)は、本実施形態品、従来品、及び比較品でのスイッチング特性を示すグラフであり、図8(b)は、本実施形態品、従来品、及び比較品でのオン特性を示すグラフである。 図9は、本実施形態品及び比較品での照度とリーク電流との関係を示すグラフである。 図10は、本発明の第2の実施形態にかかるスイッチング素子の具体的な構成を示す断面図である。 図11は、図10に示したスイッチング素子の製造工程を説明する図であり、図11(a)~図11(b)は、一連の主な製造工程を説明している。 図12は、本発明の第3の実施形態にかかるスイッチング素子の具体的な構成を示す断面図である。 図13は、図12に示したスイッチング素子の製造工程を説明する図であり、図13(a)~図13(b)は、一連の主な製造工程を説明している。 図14は、図12に示したスイッチング素子の製造工程を説明する図であり、図14は、図13(b)に示した工程の終了後に行われる、主な製造工程を説明している。 図15(a)は、図12に示したスイッチング素子での低濃度不純物領域の具体的な不純物濃度プロファイルを示すグラフであり、図15(b)は、図12に示したスイッチング素子での低濃度不純物領域の別の具体的な不純物濃度プロファイルを示すグラフである。 図16は、本発明の第4の実施形態にかかるスイッチング素子の具体的な構成を示す断面図である。 図17は、本発明の第5の実施形態にかかるスイッチング素子の要部構成を示す平面図である。
 以下、本発明の半導体装置、アクティブマトリクス基板、及び表示装置の好ましい実施形態について、図面を参照しながら説明する。尚、以下の説明では、本発明を、アクティブマトリクス基板に用いられる画素電極用のスイッチング素子に適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる液晶表示装置を説明する図である。図1において、本実施形態の液晶表示装置1は、図1の上側が視認側(表示面側)として設置される液晶パネル2と、液晶パネル2の非表示面側(図1の下側)に配置されて、当該液晶パネル2を照明する照明光を発生するバックライト装置3とが設けられている。
 液晶パネル2は、一対の基板を構成するカラーフィルタ基板4及びアクティブマトリクス基板5と、カラーフィルタ基板4及びアクティブマトリクス基板5の各外側表面にそれぞれ設けられた偏光板6、7とを備えている。カラーフィルタ基板4とアクティブマトリクス基板5との間には、図示を省略した液晶層が狭持されている。また、カラーフィルタ基板4及びアクティブマトリクス基板5には、平板状の透明なガラス材またはアクリル樹脂などの透明な合成樹脂が使用されている。偏光板6、7には、TAC(トリアセチルセルロース)またはPVA(ポリビニルアルコール)などの樹脂フィルムが使用されており、液晶パネル2に設けられた表示面の有効表示領域を少なくとも覆うように対応するカラーフィルタ基板4またはアクティブマトリクス基板5に貼り合わせられている。
 また、アクティブマトリクス基板5は、上記一対の基板の一方の基板を構成するものであり、アクティブマトリクス基板5では、液晶パネル2の表示面に含まれる複数の画素に応じて、画素電極や薄膜トランジスタ(TFT:Thin Film Transistor)などが上記液晶層との間に形成されている(詳細は後述。)。また、このアクティブマトリクス基板5では、後に詳述するように、上記薄膜トランジスタを含んだ本発明のスイッチング素子(半導体装置)が、画素単位に設けられている。一方、カラーフィルタ基板4は、一対の基板の他方の基板を構成するものであり、カラーフィルタ基板4には、カラーフィルタや対向電極などが上記液晶層との間に形成されている(図示せず)。
 また、液晶パネル2では、当該液晶パネル2の駆動制御を行う制御装置(図示せず)に接続されたFPC(Flexible Printed Circuit)8が設けられており、上記液晶層を画素単位に動作することで表示面を画素単位に駆動して、当該表示面上に所望画像を表示するようになっている。
 尚、液晶パネル2の液晶モードや画素構造は任意である。また、液晶パネル2の駆動モードも任意である。すなわち、液晶パネル2としては、情報を表示できる任意の液晶パネルを用いることができる。それ故、図1においては液晶パネル2の詳細な構造を図示せず、その説明も省略する。
 バックライト装置3は、光源としての発光ダイオード9と、発光ダイオード9に対向して配置された導光板10とを備えている。また、バックライト装置3では、断面L字状のベゼル14により、導光板10の上方に液晶パネル2が設置された状態で、発光ダイオード9及び導光板10が狭持されている。また、カラーフィルタ基板4には、ケース11が載置されている。これにより、バックライト装置3は、液晶パネル2に組み付けられて、当該バックライト装置3からの照明光が液晶パネル2に入射される透過型の液晶表示装置1として一体化されている。
 導光板10には、例えば透明なアクリル樹脂などの合成樹脂が用いられており、発光ダイオード9からの光が入光される。導光板10の液晶パネル2と反対側(対向面側)には、反射シート12が設置されている。また、導光板10の液晶パネル2側(発光面側)には、レンズシートや拡散シートなどの光学シート13が設けられており、導光板10の内部を所定の導光方向(図1の左側から右側への方向)に導かれた発光ダイオード9からの光が均一な輝度をもつ平面状の上記照明光に変えられて液晶パネル2に与えられる。
 尚、上記の説明では、導光板10を有するエッジライト型のバックライト装置3を用いた構成について説明したが、本実施形態はこれに限定されるものではなく、直下型のバックライト装置を用いてもよい。また、発光ダイオード以外の冷陰極蛍光管や熱陰極蛍光管などの他の光源を有するバックライト装置も用いることができる。
 次に、図2も参照して、本実施形態の液晶パネル2について具体的に説明する。
 図2は、図1に示した液晶パネルの構成を説明する図である。
 図2において、液晶表示装置1(図1)には、文字や画像等の情報を表示する上記表示部としての液晶パネル2(図1)の駆動制御を行うパネル制御部15と、このパネル制御部15からの指示信号を基に動作するソースドライバ16及びゲートドライバ17が設けられている。
 パネル制御部15は、上記制御装置内に設けられたものであり、液晶表示装置1の外部からの映像信号が入力されるようになっている。また、パネル制御部15は、入力された映像信号に対して所定の画像処理を行ってソースドライバ16及びゲートドライバ17への各指示信号を生成する画像処理部15aと、入力された映像信号に含まれた1フレーム分の表示データを記憶可能なフレームバッファ15bとを備えている。そして、パネル制御部15が、入力された映像信号に応じて、ソースドライバ16及びゲートドライバ17の駆動制御を行うことにより、その映像信号に応じた情報が液晶パネル2に表示される。
 ソースドライバ16及びゲートドライバ17は、アクティブマトリクス基板5上に設置されている。具体的には、ソースドライバ16は、アクティブマトリクス基板5の表面上において、表示パネルとしての液晶パネル2の有効表示領域Aの外側領域で当該液晶パネル2の横方向に沿うように設置されている。また、ゲートドライバ17は、アクティブマトリクス基板5の表面上において、上記有効表示領域Aの外側領域で当該液晶パネル2の縦方向に沿うように設置されている。
 また、ソースドライバ16及びゲートドライバ17は、液晶パネル2側に設けられた複数の画素Pを画素単位に駆動する駆動回路であり、ソースドライバ16及びゲートドライバ17には、複数のソース配線S1~SM(Mは、2以上の整数、以下、“S”にて総称する。)及び複数のゲート配線G1~GN(Nは、2以上の整数、以下、“G”にて総称する。)がそれぞれ接続されている。これらのソース配線S及びゲート配線Gは、それぞれデータ配線及び走査配線を構成しており、アクティブマトリクス基板5に含まれた透明なガラス材または透明な合成樹脂製の基材(図示せず)上で互いに交差するように、マトリクス状に配列されている。すなわち、ソース配線Sは、マトリクス状の列方向(液晶パネル2の縦方向)に平行となるように上記基材上に設けられ、ゲート配線Gは、マトリクス状の行方向(液晶パネル2の横方向)に平行となるように上記基材上に設けられている。
 また、このゲート配線Gは、第1の信号配線を構成するものであり、ゲート信号が供給されることにより、上記スイッチング素子の後述のトップゲート電極の電位を制御するようになっている。
 また、これらのソース配線Sと、ゲート配線Gとの交差部の近傍には、本発明の半導体装置を用いた画素電極用のスイッチング素子18と、スイッチング素子18に接続された画素電極19を有する上記画素Pが設けられている。また、各画素Pでは、共通電極20が液晶パネル2に設けられた上記液晶層を間に挟んだ状態で画素電極19に対向するよう構成されている。すなわち、アクティブマトリクス基板5では、スイッチング素子18、画素電極19、及び共通電極20が画素単位に設けられている。
 また、アクティブマトリクス基板5では、ソース配線Sと、ゲート配線Gとによってマトリクス状に区画された各領域に、複数の各画素Pの領域が形成されている。これら複数の画素Pには、赤色(R)、緑色(G)、及び青色(B)の画素が含まれている。また、これらのRGBの画素は、例えばこの順番で、各ゲート配線G1~GNに平行に順次配設されている。さらに、これらのRGBの画素は、カラーフィルタ基板4側に設けられたカラーフィルタ層(図示せず)により、対応する色の表示を行えるようになっている。
 また、アクティブマトリクス基板5では、ゲートドライバ17は、画像処理部15aからの指示信号に基づいて、ゲート配線G1~GNに対して、対応するスイッチング素子18のゲート電極及びトップゲート電極をオン状態にする走査信号(ゲート信号)を順次出力する。また、ソースドライバ16は、画像処理部15aからの指示信号に基づいて、表示画像の輝度(階調)に応じたデータ信号(電圧信号(階調電圧))を対応するソース配線S1~SMに出力する。
 次に、図3及び図4も参照して、本実施形態のスイッチング素子18について具体的に説明する。
 図3は、図2に示したスイッチング素子の要部構成を示す平面図である。図4は、上記スイッチング素子の具体的な構成を示す断面図である。
 図3に例示するように、スイッチング素子18は、凸状に構成されたトップゲート電極21と、このトップゲート電極21の下方に設けられた半導体層としてのシリコン層SLと、シリコン層SLの下方に設けられるとともに、凸状に構成されたボトムゲート電極23と、このボトムゲート電極23の下方に設けられた遮光膜31を備えている。すなわち、スイッチング素子18は、トップゲート電極21及びボトムゲート電極23を有するダブルゲート構造の薄膜トランジスタによって構成されている。
 また、スイッチング素子18では、トップゲート電極21とボトムゲート電極23とが上下方向(アクティブマトリクス基板5の厚さ方向)で互いに重なり合うように設けられており、これらのトップゲート電極21とボトムゲート電極23とは容量結合されている。そして、スイッチング素子18では、そのオン状態及びオフ状態の各々の状態において、ゲート配線Gへの電圧印加によってトップゲート電極21の電位が制御されたときに、ボトムゲート電極23の電位はトップゲート電極21との容量結合によって最適な所定の電位に設定されるようになっている(詳細は後述。)。
 また、ボトムゲート電極23には、金属材料が用いられている。また、ボトムゲート電極23は、後に詳述するように、シリコン層SLに含まれたチャネル領域及び低濃度不純物領域(LDD(Lightly Doped Drain)領域)に形成される空乏層領域とオーバーラップするように、設けられている。そして、ボトムゲート電極23は、オン状態で最適な電位に制御された場合に、スイッチング素子18のオン電流(電流駆動力)を増加させ、かつ、オフ状態で最適な電位に制御された場合に、スイッチング素子18の(オフ)リーク電流を低減させるようになっている。
 また、遮光膜31は、少なくともシリコン層SL全体をカバーするように、ボトムゲート電極23の下方に設けられている。そして、遮光膜31は、スイッチング素子18の下側からの光、例えばバックライト装置3からの照明光を遮光するようになっている。
 また、図4に示すように、アクティブマトリクス基板5では、例えばガラス基板からなる基板本体5a上にスイッチング素子18が画素単位に設けられている。つまり、スイッチング素子18では、上記遮光膜31が基板本体5a上に形成されており、さらにはこの遮光膜31を覆うように層間絶縁膜35が形成されている。そして、スイッチング素子18では、上記ボトムゲート電極23が層間絶縁膜35上に形成されており、さらにはこのボトムゲート電極23を覆うようにベースコート膜36が形成されている。尚、上記の説明以外に、石英基板やプラスチック基板を用いて、基板本体5aを構成することもできる。
 また、スイッチング素子18では、上記シリコン層SLがベースコート膜36上に形成され、さらにはこのシリコン層SLを覆うようにゲート絶縁膜37が形成されている。シリコン層SLには、図4の左右方向に沿って、ソース領域24、(第1の)低濃度不純物領域25、チャネル領域26、(第2の)低濃度不純物領域27、及びドレイン領域28が形成されている。また、このスイッチング素子18には、例えばN型のトランジスタが用いられている。それ故、シリコン層SLでは、ソース領域24及びドレイン領域28は、例えばリンなどのN型の不純物が高濃度で注入された高濃度領域(図4にクロスハッチにて図示)で構成され、低濃度不純物領域25、27は、N型の不純物が低濃度で注入された領域(図4にドットにて図示)で構成されている。また、チャネル領域26は、例えばボロンなどのP型の不純物が注入された領域)で構成されている。
 尚、上記の説明以外に、P型のトランジスタを使用してスイッチング素子18を構成してもよい。このようにP型のトランジスタを用いた場合には、ソース領域24、低濃度不純物領域25、27、及びドレイン領域28には、P型の不純物が注入された領域で構成され、チャネル領域26には、N型の不純物が注入された領域で構成される。
 また、上記の説明以外に、低濃度不純物領域25、27を、チャネル領域26と同じ濃度のP型の領域としてもよい。すなわち、低濃度不純物領域25、27及びチャネル領域26を、P型の不純物がドーピングされたオフセット領域としてもよい。
 また、スイッチング素子18では、図4に示すように、ボトムゲート電極23は、シリコン層SLのうち、チャネル領域26及び低濃度不純物領域25、27に形成される空乏層領域、つまりソース領域24に隣接する低濃度不純物領域25の一部、及びドレイン領域28に隣接する低濃度不純物領域27の一部とオーバーラップするように設けられている。詳細にいえば、凸状に構成されたボトムゲート電極23において、凸状部分の一端部がソース領域24に隣接する低濃度不純物領域25の一部の下方に設けられ、凸状部分の他端部がドレイン領域28に隣接する低濃度不純物領域27の一部の下方に設けられている。
 また、スイッチング素子18では、上記トップゲート電極21がチャネル領域26の真上の位置でゲート絶縁膜37上に形成され、さらにはトップゲート電極21を覆うように層間絶縁膜38が形成されている。さらに、スイッチング素子18では、トップゲート電極21はコンタクトホール22及び層間絶縁膜38上に形成されたゲート電極32を介してゲート配線G(図3)に接続されている。また、ソース領域24はコンタクトホール29を介してソース電極33に接続され、ドレイン領域28はコンタクトホール30を介してドレイン電極34に接続されている。これらのソース電極33及びドレイン電極34は、それぞれソース配線S(図2)及び画素電極19(図2)に接続されている。
 尚、上記の説明以外に、ゲート電極32を設けることなく、トップゲート電極21と同じ導電層を直接ゲート配線Gとして用いる構成でもよい。
 また、スイッチング素子18では、上述したように、トップゲート電極21の電位はゲート配線Gからのゲート信号によって制御され、ボトムゲート電極23の電位はトップゲート電極21との容量結合によって制御されている。
 また、ボトムゲート電極23では、スイッチング素子(トランジスタ)18がオフ状態である場合には、チャネル領域26が蓄積化されるように、当該ボトムゲート電極23の電位が制御されている。これにより、スイッチング素子18では、リーク電流を確実に低減することができる。
 また、ボトムゲート電極23では、スイッチング素子18がオン状態である場合には、チャネル領域26が空乏化から反転されるように、当該ボトムゲート電極23の電位が制御されている。これにより、スイッチング素子18では、オン電流を確実に増加することができる。
 また、スイッチング素子18がオン状態及びオフ状態の各々の状態において、ボトムゲート電極23に設定される最適な所定の電位は、チャネル領域26の不純物の濃度、低濃度不純物領域25、27の不純物の濃度、ドレイン電極34での電位、トップゲート電極21での電位(ゲート配線Gへの印加電圧)、ベースコート膜36の膜質及びその膜厚、及び/またはトップゲート電極21とボトムゲート電極23との容量結合している部分での容量結合比などに基づいて、適切に定められている。
 ここで、図5乃至図7を参照して、本実施形態のスイッチング素子18の製造方法について、具体的に説明する。
 図5は、上記スイッチング素子の製造工程を説明する図であり、図5(a)~図5(c)は、一連の主な製造工程を説明している。図6は、上記スイッチング素子の製造工程を説明する図であり、図6(a)~図6(c)は、図5(c)に示した工程の終了後に行われる、一連の主な製造工程を説明している。図7は、上記スイッチング素子の製造工程を説明する図であり、図7(a)~図7(b)は、図6(c)に示した工程の終了後に行われる、一連の主な製造工程を説明している。
 図5(a)に示すように、スイッチング素子18では、まず基板本体5a上に、遮光膜31が形成される。この遮光膜31は、後工程で形成されるチャネル領域26、ソース領域24、及びドレイン領域28のシリコン層SL全体をカバーするように設けられている。また、遮光膜31には、例えばTaN膜とW膜とを積層した導電膜が用いられている。
 尚、上記の説明以外に、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは上記元素を主成分とする合金材料もしくは化合物材料により、遮光膜31を形成してもよい。また、多結晶シリコンなどに代表される半導体膜にリン、ボロンなどの不純物をドーピングしたものにより、遮光膜31を形成してもよい。
 また、遮光膜31の形状としては、後工程で形成されるシリコン層SLをできるだけ平坦化する必要がある為、その端部においては、図5(a)に例示するように、順テーパーとなることが好ましい。
 次に、図5(a)に示すように、遮光膜31と基板本体5aの全面を覆うように層間絶縁膜35を形成する。この層間絶縁膜35には、シリコン酸化膜、シリコン窒化膜、またはシリコン窒化酸化膜などの絶縁性無機物質からなる膜、あるいはこれらを適宜組み合わせた積層膜を用いることが可能であり、本実施形態のスイッチング素子18においては、シリコン酸化膜を用いた。また、層間絶縁膜35は、LPCVD法、プラズマCVD法、スパッタ法等により堆積させて形成することができる。さらに、層間絶縁膜35の膜厚としては、シリコン層SLをできるだけ平坦化する必要があることを考慮した最適膜厚が必要であり、具体的には100~500nm程度に設定されている。
 続いて、図5(b)に示すように、ボトムゲート電極23が、層間絶縁膜35上に形成される。このボトムゲート電極23は、後工程で形成されるシリコン層SLのチャネル領域26、ソース領域24に隣接する低濃度不純物領域25の一部、及びドレイン領域28に隣接する低濃度不純物領域27の一部をカバーするように設けられている。また、ボトムゲート電極23には、例えばTaN膜とW膜とを積層した導電膜が用いられている。
 尚、上記の説明以外に、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは上記元素を主成分とする合金材料もしくは化合物材料により、ボトムゲート電極23を形成してもよい。また、多結晶シリコンなどに代表される半導体膜にリン、ボロンなどの不純物をドーピングしたものにより、ボトムゲート電極23を形成してもよい。
 また、ボトムゲート電極23の形状としては、後工程で形成されるシリコン層SLをできるだけ平坦化する必要がある為、その端部においては、図5(b)に例示するように、順テーパーとなることが好ましい。
 また、ボトムゲート電極23の配置に関する最適設計寸法としては、チャネル領域26によるオン電流の増加を確実に得るために、P型のチャネル領域26の裏面全面をコントロールする必要性がある。さらには、オフリーク電流の低減のために、ボトムゲート電極23と、ソース領域24及びドレイン領域28の高濃度不純物領域とのオーバーラップ領域を無くすか、若しくは最小化する必要性により、プロセスバラツキを考慮した寸法を規定する必要がある。具体的には、例えば1.5μmルールプロセスを適用する場合、低濃度不純物領域25、27へのオーバーラップ設計量(すなわち、ボトムゲート電極23のトップゲート電極21に対するオーバーラップ設計量)は、0.75~2.5μmが最適となる。但し、その値は、低濃度不純物領域25、27の幅、不純物濃度やベースコート膜36の膜質・膜厚、適用プロセス等により最適化される必要がある。
 その後、図5(b)に示すように、ボトムゲート電極23と基板本体5aの全面を覆うようにベースコート膜36を形成する。このベースコート膜36には、シリコン酸化膜、シリコン窒化膜、またはシリコン窒化酸化膜などの絶縁性無機物質からなる膜、あるいはこれらを適宜組み合わせた積層膜を用いることが可能であり、本実施形態のスイッチング素子18においては、シリコン酸化膜を用いた。また、ベースコート膜36は、LPCVD法、プラズマCVD法、スパッタ法等により堆積させて形成することができる。さらに、ベースコート膜36の膜厚としては、シリコン層SLをできるだけ平坦化する必要があること及び、ボトムゲート電極23の電界効果が得られることを考慮した最適膜厚が必要であり、具体的には100~500nm程度に設定されている。
 次に、図5(c)に示すように、非単結晶半導体薄膜39が、ベースコート膜36の全面を覆うように形成される。この非単結晶半導体薄膜39は、LPCVD法、プラズマCVD法、スパッタ法等によって形成されており、非晶質シリコン、多結晶シリコン、非晶質ゲルマニウム、多結晶ゲルマニウム、非晶質シリコン・ゲルマニウム、多結晶シリコン・ゲルマニウム、非晶質シリコン・カーバイド、あるいは多結晶シリコン・カーバイドなどを用いることができる。本実施形態のスイッチング素子18では、非単結晶半導体薄膜39には、非晶質シリコンを用いている。また、この非単結晶半導体薄膜39の膜厚は、スイッチング素子(薄膜トランジスタ)特性に関係しており、例えば30~80nm程度に設定されている。
 その後、非単結晶半導体薄膜39に対して、レーザビーム、電子ビームなどを照射することにより、当該非単結晶半導体薄膜39を結晶化して多結晶半導体薄膜を得る。
 続いて、図6(a)に示すように、多結晶半導体薄膜40に対して、ボトムゲート電極23の形成領域に応じて、フォトリソグラフィ法によりパターニングを行う。
 次に、図6(b)に示すように、ゲート絶縁膜37が、多結晶半導体薄膜40及びベースコート膜36の全面を覆うように形成される。このゲート絶縁膜37は、シリコン酸化膜、シリコン窒化膜等の無機絶縁膜、またはそれらの積層膜により構成されている。また、ゲート絶縁膜37の膜厚は、例えば30~80nm程度に設定されている。その後、ゲート絶縁膜37の上方からボロンなどのP型の不純物をドーピングすることにより、P型のチャネル領域41を形成する。
 続いて、図6(c)に示すように、トップゲート電極21が、ゲート絶縁膜37上に形成される。このトップゲート電極21には、例えばTaN膜とW膜とを積層した導電膜が用いられている。具体的には、ゲート絶縁膜37上に対して、上記導電膜を形成した後、フォトリソグラフィ法により形成したレジストパターンをマスクにしてエッチングすることによってパターニングして、トップゲート電極21をゲート絶縁膜37上に形成する。このトップゲート電極21の膜厚は、例えば200~600nm程度に設定されている。
 尚、上記の説明以外に、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは上記元素を主成分とする合金材料もしくは化合物材料により、トップゲート電極21を形成してもよい。また、多結晶シリコンなどに代表される半導体膜にリン、ボロンなどの不純物をドーピングしたものにより、トップゲート電極21を形成してもよい。
 その後、図6(c)において、トップゲート電極21に対して、セルフアラインとなるように、ゲート絶縁膜37の上方からリンもしくは砒素などのN型の不純物を比較的低濃度でドーピングすることにより、P型のチャネル領域26を挟むように、N型の低濃度不純物領域42、43が形成される。
 次に、図7(a)に示すように、フォトレジスト44をゲート絶縁膜37上に形成した後、ゲート絶縁膜37の上方からリンもしくは砒素などのN型の不純物をドーピングすることにより、ソース領域24、低濃度不純物領域25、27、及びドレイン領域28が形成される。
 また、低濃度不純物領域25、27では、その設計幅において、アライメント(フォトレジスト44)におけるプロセスバラツキを考慮し、さらには上述したボトムゲート電極23の配置に対するプロセスバラツキの両方を考慮する必要がある。具体的には、例えば1.5μmルールプロセス適用の場合、低濃度不純物領域25、27の各設計幅は1.0~4.0μm程度が最適となる。また、その時の低濃度不純物領域25、27形成用不純物イオン注入においては、P+もしくはAs+イオンを0.1~4.0×1013/cm2のドーズ量で打ち込む。但し、スイッチング素子18への要求特性や、プロセス条件により、その値は最適化される必要がある。
 続いて、図7(b)に示すように、層間絶縁膜38が、トップゲート電極21及びゲート絶縁膜37の全面を覆うように形成される。この層間絶縁膜38は、シリコン酸化膜、シリコン窒化膜等の無機絶縁膜、またはそれらの積層膜により構成されている。また、層間絶縁膜38の膜厚は、例えば500~1500nm程度に設定されている。
 その後、図7(b)に示すように、ゲート絶縁膜37と層間絶縁膜38とを貫通するコンタクトホール29及び30が、ソース領域24及びドレイン領域28上にそれぞれ形成される。また、層間絶縁膜37を貫通するコンタクトホール22が、トップゲート電極21上に形成される。そして、層間絶縁膜38上に、スパッタ法などにより、導電膜が形成される。この導電膜としては、例えば、アルミニウム等からなる導電膜を用いることができるが、これに限定されることはなく、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは前記元素を主成分とする合金材料もしくは化合物材料を用い、必要に応じてこれらの適宜組合せによる積層構造として形成してもよい。本実施形態のスイッチング素子18では、アルミニウムを用いている。
 最後に、図7(b)に示すように、上記導電膜に対して、フォトリソグラフィ法にてエッチングすることによって所望の形状にパターニングを施すことにより、ゲート電極32、ソース電極33、及びドレイン電極34を層間絶縁膜38上に形成する。また、ゲート電極32、ソース電極33、及びドレイン電極34の各膜厚は、例えば250~800nm程度に設定されている。
 以上のように構成された本実施形態のスイッチング素子(半導体装置)18では、トップゲート電極21とボトムゲート電極23との間に、ソース領域24、ドレイン領域28、チャネル領域26、及び低濃度不純物領域25、27を有するシリコン層(半導体層)SLが設けられている。また、本実施形態のスイッチング素子18では、ボトムゲート電極23が、チャネル領域26、ソース領域24に隣接する低濃度不純物領域25の一部、及びドレイン領域28に隣接する低濃度不純物領域27の一部とオーバーラップするように設けられている。さらに、本実施形態のスイッチング素子18では、ボトムゲート電極23の電位が所定の電位となるように、制御されている。これにより、本実施形態のスイッチング素子18では、上記従来例と異なり、オン電流の増加を図ったときでも、リーク電流の低減を図ることができる。
 ここで、図8及び図9を用いて、本実施形態のスイッチング素子18での上記効果について具体的に説明する。
 図8(a)は、本実施形態品、従来品、及び比較品でのスイッチング特性を示すグラフであり、図8(b)は、本実施形態品、従来品、及び比較品でのオン特性を示すグラフである。図9は、本実施形態品及び比較品での照度とリーク電流との関係を示すグラフである。
 本願発明の発明者は、本実施形態のスイッチング素子18での上記効果を検証するために、本実施形態品と上記従来例に相当した従来品を用意して、オン電流及びリーク電流を実測した。その検証試験の結果の一例を図8(a)及び図8(b)に示す。尚、図8(a)及び図8(b)では、比較品として、ボトムゲート電極が設けられていないスイッチング素子を用意して、その比較品でのオン電流及びリーク電流も実測した。
 本実施形態品では、トップゲート電圧が0V以下である場合、つまりスイッチング素子18がオフ状態である場合、ボトムゲート電極23の電位は、上述したように、トップゲート電極21との容量結合によって当該オフ状態であるときの最適な電位とされている。それ故、本実施形態品では、図8(a)に細線80にて示すように、図8(a)に太線81にて示した従来品よりも、ドレイン電流、すなわちリーク電流が低減されていることが実証された。言い換えれば、本実施形態品では、ボトムゲート電極がGOLD構造を構成していた従来品よりも、縦方向(アクティブマトリクス基板5の厚さ方向)の電界を緩和して、リーク電流を低減できることが確かめられた。また、本実施形態品では、図8(a)に点線82にて示した比較品よりも、リーク電流が低減されていることも確かめられた。
 また、本実施形態品では、トップゲート電圧が0Vよりも大きい場合、つまりスイッチング素子18がオン状態である場合、ボトムゲート電極23の電位は、上述したように、トップゲート電極21との容量結合によって当該オン状態であるときの最適な電位とされている。それ故、本実施形態品では、図8(b)に細線83にて示すように、図8(b)に太線84にて示した従来品と、ドレイン電流、すなわちオン電流が同程度であることが確かめられた。さらに、本実施形態品では、図8(b)に点線85にて示した比較品に比べて、オン電流が大幅に増加されていることが実証された。
 また、本願発明の発明者は、本実施形態のスイッチング素子18でのボトムゲート電極23の効果を検証するために、本実施形態品と上記比較品を用意して、アクティブマトリクス基板5の裏面光の照度と(オフ)リーク電流との関係を求めた。その検証試験の結果の一例を図9に示す。
 本実施形態品では、図9に点線86にて示すように、上記裏面光の照度が大きくなっても、スイッチング素子18がオフ状態である場合において、リーク電流が殆ど流れていないことが確かめられた。一方、比較品では、図9に実線87にて示すように、リーク電流は、上記裏面光の照度に応じて、増加することが実証された。
 また、本実施形態では、トップゲート電極21の電位が接続されたゲート配線(第1の信号配線)Gからのゲート信号によって制御され、ボトムゲート電極23の電位がトップゲート電極21との容量結合によって制御されている。これにより、本実施形態では、ボトムゲート電極23に所定の電位を印加するための信号配線などの設置を省略することができ、構造簡単なスイッチング素子18を容易に構成することができる。
 また、本実施形態では、ボトムゲート電極23では、スイッチング素子18がオフ状態である場合には、チャネル領域26が蓄積化されるように、当該ボトムゲート電極23の電位が制御され、かつ、スイッチング素子18がオン状態である場合には、チャネル領域26が空乏化から反転されるように、当該ボトムゲート電極23の電位が制御されている。これにより、本実施形態のスイッチング素子18では、オン電流の増加を確実に図ることができるとともに、リーク電流の低減を確実に図ることができる。
 また、本実施形態では、オン電流の増加を図ったときでも、リーク電流の低減を図ることができるスイッチング素子(半導体装置)18が用いられているので、高性能で、低消費電力化されたアクティブマトリクス基板5及び液晶表示装置(表示装置)1を容易に構成することができる。
 [第2の実施形態]
 図10は、本発明の第2の実施形態にかかるスイッチング素子の具体的な構成を示す断面図である。図において、本実施形態と上記第1の実施形態との主な相違点は、シリコン層において、チャネル領域を挟むように、かつ、トップゲート電極に対して、オフセット構造となるように、低濃度不純物領域を形成した点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図10に示すように、本実施形態のスイッチング素子18では、シリコン層(半導体層)SLにおいて、低濃度不純物領域25、27はチャネル領域45を挟むように、かつ、トップゲート電極21に対して、オフセット構造となるように、形成されている。具体的には、図10に“W”にて示すように、トップゲート電極21の真下以外の部分に、オフセット構造が形成されている。
 ここで、図11を参照して、本実施形態のスイッチング素子18の製造方法について、具体的に説明する。尚、以下の説明では、説明の簡略化のために、第1の実施形態のものと異なる工程について主に説明する。具体的には、チャネル領域、ソース領域、及びドレイン領域の不純物プロファイルのみが、第1の実施形態のものと異なる。
 図11は、図10に示したスイッチング素子の製造工程を説明する図であり、図11(a)~図11(b)は、一連の主な製造工程を説明している。
 図11(a)に示すように、本実施形態のスイッチング部18では、図6(c)に示した場合と同様に、トップゲート電極21が、ゲート絶縁膜37上に形成される。このトップゲート電極21には、例えばTaN膜とW膜とを積層した導電膜が用いられている。具体的には、ゲート絶縁膜37上に対して、上記導電膜を形成した後、フォトリソグラフィ法により形成したレジストパターンをマスクにしてエッチングすることによってパターニングして、トップゲート電極21をゲート絶縁膜37上に形成する。このトップゲート電極21の膜厚は、例えば200~600nm程度に設定されている。
 尚、上記の説明以外に、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは上記元素を主成分とする合金材料もしくは化合物材料により、トップゲート電極21を形成してもよい。また、多結晶シリコンなどに代表される半導体膜にリン、ボロンなどの不純物をドーピングしたものにより、トップゲート電極21を形成してもよい。
 その後、図11(a)において、フォトレジスト48をトップゲート電極21上に形成した後、ゲート絶縁膜37の上方からリンもしくは砒素などのN型の不純物を比較的低濃度でドーピングすることにより、P型のチャネル領域45を挟むように、かつ、トップゲート電極21に対しては、オフセット構造となる様に、N型の低濃度不純物領域46、47が形成される。
 次に、図11(b)に示すように、N型の低濃度不純物領域25、27を残すように、フォトレジスト49をゲート絶縁膜37上に形成した後、ゲート絶縁膜37の上方からリンもしくは砒素などのN型の不純物をドーピングすることにより、ソース領域24及びドレイン領域28が形成される。
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、シリコン層(半導体層)SLにおいて、低濃度不純物領域25、27はチャネル領域45を挟むように、かつ、トップゲート電極21に対して、オフセット構造となるように、形成されている。これにより、本実施形態では、シリコン層SLでの電界緩和(横方向(図10の左右方向)での電界緩和)を行うことができ、リーク電流の低減をより図ることができる。
 [第3の実施形態]
 図12は、本発明の第3の実施形態にかかるスイッチング素子の具体的な構成を示す断面図である。図において、本実施形態と上記第1の実施形態との主な相違点は、低濃度不純物領域において、不純物の濃度が異なる複数種類の低濃度不純物領域を設けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図12に示すように、本実施形態のスイッチング素子18では、ソース領域24とチャネル領域26との間に設けられた(第1の)低濃度不純物領域において、不純物の濃度が異なる(第3及び第4の)低濃度不純物領域50、51が設けられている。同様に、ドレイン領域28とチャネル領域26との間に設けられた(第2の)低濃度不純物領域において、不純物の濃度が異なる(第3及び第4の)低濃度不純物領域52、53が設けられている。また、低濃度不純物領域50と低濃度不純物領域53とでは、不純物の濃度が互いに等しく設定され、低濃度不純物領域51と低濃度不純物領域52とでは、不純物の濃度が互いに等しく設定されている。
 ここで、図13及び図14を参照して、本実施形態のスイッチング素子18の製造方法について、具体的に説明する。尚、以下の説明では、説明の簡略化のために、第1の実施形態のものと異なる工程について主に説明する。具体的には、チャネル領域、ソース領域、及びドレイン領域の不純物プロファイルのみが、第1の実施形態のものと異なる。
 図13は、図12に示したスイッチング素子の製造工程を説明する図であり、図13(a)~図13(b)は、一連の主な製造工程を説明している。図14は、図12に示したスイッチング素子の製造工程を説明する図であり、図14は、図13(b)に示した工程の終了後に行われる、主な製造工程を説明している。
 図13(a)に示すように、本実施形態のスイッチング部18では、図6(c)に示した場合と同様に、トップゲート電極21が、ゲート絶縁膜37上に形成される。このトップゲート電極21には、例えばTaN膜とW膜とを積層した導電膜が用いられている。具体的には、ゲート絶縁膜37上に対して、上記導電膜を形成した後、フォトリソグラフィ法により形成したレジストパターンをマスクにしてエッチングすることによってパターニングして、トップゲート電極21をゲート絶縁膜37上に形成する。このトップゲート電極21の膜厚は、例えば200~600nm程度に設定されている。
 尚、上記の説明以外に、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは上記元素を主成分とする合金材料もしくは化合物材料により、トップゲート電極21を形成してもよい。また、多結晶シリコンなどに代表される半導体膜にリン、ボロンなどの不純物をドーピングしたものにより、トップゲート電極21を形成してもよい。
 その後、図13(a)において、トップゲート電極21に対して、セルフアラインとなるように、ゲート絶縁膜37の上方からリンもしくは砒素などのN型の不純物を比較的低濃度でドーピングすることにより、P型のチャネル領域26を挟むように、N型の低濃度不純物領域54、55が形成される。
 続いて、図13(b)に示すように、フォトレジスト60をトップゲート電極21上に形成した後、ゲート絶縁膜37の上方からリンもしくは砒素などのN型の不純物を比較的低濃度でドーピングすることにより、P型のチャネル領域26を挟むように、N型の低濃度不純物領域56、59が形成される。また、フォトレジスト60の下方には、図13(a)に示した低濃度不純物領域54、55と同じ不純物の濃度を有する低濃度不純物領域57、58が形成される。また、低濃度不純物領域57、58では、そのN型の不純物の濃度は、低濃度不純物領域56、59のものよりも低く設定されている。
 その後、図14に示すように、N型の2段階の低濃度不純物領域50~53を残すように、フォトレジスト61をゲート絶縁膜37上に形成した後、ゲート絶縁膜37の上方からリンもしくは砒素などのN型の不純物をドーピングすることにより、ソース領域24及びドレイン領域28が形成される。
 以下、図15を参照して、本実施形態のスイッチング部18のソース領域24、低濃度不純物領域50~53、及びドレイン領域28の具体的な不純物濃度プロファイルを説明する。
 図15(a)は、図12に示したスイッチング素子での低濃度不純物領域の具体的な不純物濃度プロファイルを示すグラフであり、図15(b)は、図12に示したスイッチング素子での低濃度不純物領域の別の具体的な不純物濃度プロファイルを示すグラフである。
 図15(a)に実線88にて示すように、低濃度不純物領域51、52のN型の不純物濃度はAに設定されている。また、低濃度不純物領域50、53のN型の不純物濃度はBに設定され、ソース領域24及びドレイン領域28のN型の不純物濃度はCに設定されている。ここで、AからBの具体的な値は、例えば5×1016~1×1018ions/cm3である。また、Cの具体的な値は、例えば5×1019~1×1021ions/cm3である。
 尚、上記の説明以外に、例えば図15(b)に実線89にて示すように、低濃度不純物領域51、52のN型の不純物濃度はEに設定され、低濃度不純物領域50、53のN型の不純物濃度はDに設定され、ソース領域24及びドレイン領域28のN型の不純物濃度はFに設定されてもよい。つまり、チャネル領域26に隣接する低濃度不純物領域の不純物濃度を、ソース領域24またはドレイン領域28に隣接する低濃度不純物領域の不純物濃度より、高くしてもよい。さらに、ソース領域24とチャネル領域26との間、及びドレイン領域28とチャネル領域26との間において、不純物濃度が異なる3段階以上の低濃度不純物領域を設けてもよい。
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、不純物の濃度が異なる複数種類の低濃度不純物領域50~53が設けられているので、シリコン層SLでの電界緩和(横方向(図12の左右方向)での電界緩和)を行うことができ、リーク電流の低減をより図ることができる。
 尚、上記の説明以外に、第2の実施形態と第3の実施形態とを組み合わせたものを構成することもできる。
 [第4の実施形態]
 図16は、本発明の第4の実施形態にかかるスイッチング素子の具体的な構成を示す断面図である。図において、本実施形態と上記第1の実施形態との主な相違点は、トップゲート電極の上方に反射電極を設け、反射型の液晶表示装置に対応した点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図16に示すように、本実施形態のスイッチング素子18では、反射電極62がトップゲート電極21の上方で、さらにはゲート電極32、ソース電極33、及びドレイン電極34の上方に設けられている。また、反射電極62と、ゲート電極32、ソース電極33、及びドレイン電極34との間には、有機平坦化膜63が設けられており、反射電極62は有機平坦化膜63を貫通したコンタクトホール62’を介してドレイン電極34とのみ導通している。この反射電極62によって、本実施形態では、反射型の液晶表示装置が構成されている。
 また、本実施形態では、上記実施形態のものと異なり、基板本体5aの下側に、バックライト装置3が設けられていない。このため、本実施形態のスイッチング素子18では、基板本体5a上に遮光膜の設置が省略されている。但し、本実施形態のスイッチング素子18では、上記実施形態のものと同様に、ボトムゲート電極23がチャネル領域26、ソース領域24に隣接する低濃度不純物領域25の一部、及びドレイン領域28に隣接する低濃度不純物領域27の一部とオーバーラップするように設けられている。
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、トップゲート電極21の上方に、反射電極62が設けられているので、反射型の液晶表示装置に対応したスイッチング素子18を容易に構成することができる。
 [第5の実施形態]
 図17は、本発明の第5の実施形態にかかるスイッチング素子の要部構成を示す平面図である。図において、本実施形態と上記第1の実施形態との主な相違点は、ボトムゲート電極にボトムゲート配線(第2の信号配線)を接続するとともに、ボトムゲート配線からのボトムゲート信号によってボトムゲート電極の電位を制御した点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図17に示すように、本実施形態のスイッチング素子18では、凸状に構成されたボトムゲート電極65が凸状に構成されたトップゲート電極21と図17の上下方向で互いに対向するように設けられている。このボトムゲート電極65は、第1の実施形態のものと異なり、トップゲート電極21と上下方向(アクティブマトリクス基板5の厚さ方向)で極力互いに重なり合わないように設けられており、これらボトムゲート電極65とトップゲート電極21とは容量結合を生じないように構成されている。
 また、ボトムゲート電極65には、コンタクトホール66を介して第2の信号配線としてのボトムゲート配線G’が接続されている。このボトムゲート配線G’は、ゲート配線Gと平行となるように設けられたものであり、ゲート配線Gと同様に、ゲートドライバ17に接続されている。そして、本実施形態のスイッチング素子18では、そのオン状態及びオフ状態の各々の状態において、第1の実施形態のものと同様に、ボトムゲート電極65の電位が最適な所定の電位となるように、ボトムゲート配線G’へのボトムゲート信号(印加電圧)が制御されている。
 尚、上記の説明以外に、ゲート配線G及びボトムゲート配線G’を設けることなく、トップゲート電極21と同じ導電層を直接ゲート配線Gとして用い、さらにボトムゲート電極65と同じ導電層を直接ボトムゲート配線G’として用いる構成でもよい。
 さらに、本実施形態のスイッチング素子18では、ボトムゲート電極65の下方に遮光膜67が設けられている。この遮光膜67は、第1の実施形態のものと同様に、少なくともシリコン層SL全体をカバーするように、ボトムゲート電極65の下方に設けられており、遮光膜67は、スイッチング素子18の下側からの光、例えばバックライト装置3からの照明光を遮光するようになっている。
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、ボトムゲート電極65の電位が接続されたボトムゲート配線(第2の信号配線)G’からのボトムゲート信号によって制御されているので、当該ボトムゲート電極65の電位に関して、より自由度の高い制御を行うことができ、オン電流の増加、及びリーク電流の低減をより容易に図ることが可能となる。
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。
 例えば、上記の説明では、本発明を、液晶表示装置のアクティブマトリクス基板に用いられる画素電極用のスイッチング素子に適用した場合を例示して説明した。しかしながら、本発明の半導体装置は、トップゲート電極とボトムゲート電極との間に設けられるとともに、ソース領域、ドレイン領域、チャネル領域、及び低濃度不純物領域を有する半導体層を備え、ボトムゲート電極は、チャネル領域、ソース領域に隣接する低濃度不純物領域の一部、及びドレイン領域に隣接する低濃度不純物領域の一部とオーバーラップするように設けられ、ボトムゲート電極では、その電位が所定の電位となるように、制御されているものであれば何等限定されない。具体的にいえば、例えば半透過型や反射型の液晶パネルあるいは有機EL(Electronic Luminescence)素子、無機EL素子、電界放出ディスプレイ(Field Emission Display)などの各種表示装置や、それに用いられるアクティブマトリクス基板などに適用することができる。また、画素電極用のスイッチング素子以外に、ドライバー回路などの周辺回路に用いられるスイッチング素子などに本発明の半導体装置を適用することができる。
 また、上記第1~第3、及び第5の実施形態の説明では、ボトムゲート電極の下方に遮光膜を設けた構成について説明したが、本発明はこれに限定するものではなく、たとえ透過型の液晶パネルに用いられる場合でも、遮光膜の設置を省略することも可能である。具体的には、チャネル領域の不純物濃度を調整したり、低濃度不純物領域の不純物濃度を調整したり、シリコン層(半導体層)とボトムゲート電極との間のベースコート膜の厚さを薄くしたりすることにより、ボトムゲート電極自体に遮光膜としての機能・効果を持たせることが可能となり、遮光膜の設置を省略することもできる。
 但し、上記第1~第3、及び第5の各実施形態のように、遮光膜をボトムゲート電極の下方に設けた場合の方が、遮光膜によってボトムゲート電極の下側からの光の入射を阻止することを容易に行うことができ、リーク電流の低減をより確実に図ることができる点で好ましい。
 また、上記の説明では、画素電極用のスイッチング素子として1個の薄膜トランジスタを用いた場合について説明したが、本発明はこれに限定されるものではなく、複数の(薄膜)トランジスタを直列に接続したものを、例えば上記画素電極用のスイッチング部として使用することもできる。
 本発明は、オン電流の増加を図ったときでも、リーク電流の低減を図ることができる半導体装置、及びこれを用いたアクティブマトリクス基板、並びに表示装置に対して有用である。
 1 液晶表示装置(表示装置)
 5 アクティブマトリクス基板
 18 スイッチング素子(半導体装置)
 21 トップゲート電極
 23、65 ボトムゲート電極
 24 ソース領域
 25、27、50、51、52、53 低濃度不純物領域
 26、45 チャネル領域
 28 ドレイン領域
 31、67 遮光膜
 62 反射電極
 SL シリコン層(半導体層)
 G、G1~GN ゲート配線(第1の信号配線)
 G’ ボトムゲート配線(第2の信号配線)

Claims (10)

  1. トップゲート電極及びボトムゲート電極を有するトランジスタを備えた半導体装置であって、
     前記トップゲート電極と前記ボトムゲート電極との間に設けられるとともに、ソース領域、ドレイン領域、チャネル領域、及び低濃度不純物領域を有する半導体層を備え、
     前記ボトムゲート電極は、前記チャネル領域、前記ソース領域に隣接する前記低濃度不純物領域の一部、及び前記ドレイン領域に隣接する前記低濃度不純物領域の一部とオーバーラップするように設けられ、
     前記ボトムゲート電極では、その電位が所定の電位となるように、制御されている、
     ことを特徴とする半導体装置。
  2. 前記半導体層では、前記チャネル領域を挟むように、かつ、前記トップゲート電極に対して、オフセット構造となるように、前記低濃度不純物領域が形成されている請求項1に記載の半導体装置。
  3. 前記低濃度不純物領域には、不純物の濃度が異なる複数種類の低濃度不純物領域が設けられている請求項1または2に記載の半導体装置。
  4. 前記ボトムゲート電極では、前記トランジスタがオフ状態である場合には、前記チャネル領域が蓄積化されるように、当該ボトムゲート電極の電位が制御され、かつ、
     前記トランジスタがオン状態である場合には、前記チャネル領域が空乏化から反転されるように、当該ボトムゲート電極の電位が制御されている請求項1~3のいずれか1項に記載の半導体装置。
  5. 前記ボトムゲート電極の下方に設けられた遮光膜を備えている請求項1~4のいずれか1項に記載の半導体装置。
  6. 前記トップゲート電極の上方には、反射電極が設けられている請求項1~4のいずれか1項に記載の半導体装置。
  7. 前記トップゲート電極では、その電位が接続された第1の信号配線からのゲート信号によって制御され、
     前記ボトムゲート電極では、その電位が前記トップゲート電極との容量結合によって制御されている請求項1~6のいずれか1項に記載の半導体装置。
  8. 前記トップゲート電極では、その電位が接続された第1の信号配線からのゲート信号によって制御され、
     前記ボトムゲート電極では、その電位が接続された第2の信号配線からのボトムゲート信号によって制御されている請求項1~6のいずれか1項に記載の半導体装置。
  9. 請求項1~8のいずれか1項に記載の半導体装置を用いたことを特徴とするアクティブマトリクス基板。
  10. 請求項1~8のいずれか1項に記載の半導体装置を用いたことを特徴とする表示装置。
PCT/JP2010/069462 2009-12-17 2010-11-02 半導体装置、アクティブマトリクス基板、及び表示装置 WO2011074338A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/515,921 US8648397B2 (en) 2009-12-17 2010-11-02 Semiconductor device, active matrix substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-286440 2009-12-17
JP2009286440 2009-12-17

Publications (1)

Publication Number Publication Date
WO2011074338A1 true WO2011074338A1 (ja) 2011-06-23

Family

ID=44167103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069462 WO2011074338A1 (ja) 2009-12-17 2010-11-02 半導体装置、アクティブマトリクス基板、及び表示装置

Country Status (2)

Country Link
US (1) US8648397B2 (ja)
WO (1) WO2011074338A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840010A (zh) * 2012-11-21 2014-06-04 元太科技工业股份有限公司 薄膜晶体管与其制造方法及具有其的阵列基板和显示装置
JP2015041629A (ja) * 2013-08-20 2015-03-02 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
JP2018518839A (ja) * 2015-06-04 2018-07-12 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. 薄膜トランジスタ及びその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8624239B2 (en) * 2010-05-20 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102093192B1 (ko) * 2012-12-03 2020-03-25 엘지디스플레이 주식회사 박막 트랜지스터와 디스플레이 장치 및 그들의 제조방법
US10199507B2 (en) * 2012-12-03 2019-02-05 Lg Display Co., Ltd. Thin film transistor, display device and method of manufacturing the same
TWI624936B (zh) * 2013-06-05 2018-05-21 半導體能源研究所股份有限公司 顯示裝置
KR102287013B1 (ko) * 2014-11-25 2021-08-06 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 유기 발광 표시 장치 및 그 제조 방법
KR102397799B1 (ko) 2015-06-30 2022-05-16 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 이를 포함하는 표시장치
US9935127B2 (en) * 2015-07-29 2018-04-03 Wuhan China Star Optoelectronics Technology Co., Ltd. Control circuit of thin film transistor
US10088727B2 (en) * 2015-10-29 2018-10-02 Seiko Epson Corporation Liquid crystal device and electronic apparatus
KR102402599B1 (ko) * 2015-12-16 2022-05-26 삼성디스플레이 주식회사 트랜지스터 표시판 및 그 제조 방법
KR102514412B1 (ko) * 2016-05-02 2023-03-28 삼성디스플레이 주식회사 반도체소자 및 이를 채용하는 표시장치
KR102586938B1 (ko) * 2016-09-05 2023-10-10 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
CN108666218A (zh) * 2017-03-29 2018-10-16 京东方科技集团股份有限公司 薄膜晶体管和显示基板及其制作方法、显示装置
CN110426906B (zh) * 2018-08-10 2022-03-04 友达光电股份有限公司 像素阵列基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070277A (ja) * 1996-08-26 1998-03-10 Nec Corp 薄膜トランジスタ
JP2001051292A (ja) * 1998-06-12 2001-02-23 Semiconductor Energy Lab Co Ltd 半導体装置および半導体表示装置
JP2003131261A (ja) * 2001-08-03 2003-05-08 Nec Corp 薄膜トランジスタ・アレイ基板およびアクティブマトリックス型液晶表示装置
JP2003243659A (ja) * 2002-02-12 2003-08-29 Seiko Epson Corp 薄膜半導体装置、電気光学装置、電子機器、薄膜半導体装置の製造方法、電気光学装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027109B2 (en) 2001-08-03 2006-04-11 Nec Corporation TFT array substrate and active-matrix addressing liquid-crystal display device
JP4420032B2 (ja) * 2007-01-31 2010-02-24 ソニー株式会社 薄膜半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070277A (ja) * 1996-08-26 1998-03-10 Nec Corp 薄膜トランジスタ
JP2001051292A (ja) * 1998-06-12 2001-02-23 Semiconductor Energy Lab Co Ltd 半導体装置および半導体表示装置
JP2003131261A (ja) * 2001-08-03 2003-05-08 Nec Corp 薄膜トランジスタ・アレイ基板およびアクティブマトリックス型液晶表示装置
JP2003243659A (ja) * 2002-02-12 2003-08-29 Seiko Epson Corp 薄膜半導体装置、電気光学装置、電子機器、薄膜半導体装置の製造方法、電気光学装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840010A (zh) * 2012-11-21 2014-06-04 元太科技工业股份有限公司 薄膜晶体管与其制造方法及具有其的阵列基板和显示装置
JP2015041629A (ja) * 2013-08-20 2015-03-02 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
JP2018518839A (ja) * 2015-06-04 2018-07-12 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. 薄膜トランジスタ及びその製造方法

Also Published As

Publication number Publication date
US8648397B2 (en) 2014-02-11
US20120256184A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
WO2011074338A1 (ja) 半導体装置、アクティブマトリクス基板、及び表示装置
WO2011027705A1 (ja) 半導体装置、アクティブマトリクス基板、及び表示装置
JP7223890B2 (ja) 半導体装置
JP5468612B2 (ja) 半導体装置、アクティブマトリクス基板、及び表示装置
US9059294B2 (en) Semiconductor device, active matrix substrate, and display device
US7759757B2 (en) Electro-optical device and electronic apparatus
WO2012102158A1 (ja) 液晶表示パネル用基板及び液晶表示装置
US7888150B2 (en) Display and method of manufacturing the same
US8779430B2 (en) Semiconductor device, active matrix substrate, and display device
US9318513B2 (en) Semiconductor device, active matrix board, and display device
JP5220918B2 (ja) 表示装置
US20040119075A1 (en) Electro-optical device, method of manufacturing the same, and electronic apparatus
JP6734441B2 (ja) 表示パネル及び表示装置
KR20070084997A (ko) 반투과 액정 디스플레이, 평판 패널 디스플레이 장치 및,전자 장치
WO2011074336A1 (ja) アクティブマトリクス基板、及び製造方法
WO2011024911A1 (ja) 半導体装置、アクティブマトリクス基板、及び表示装置
JP2008009425A (ja) 液晶表示装置及び電子機器
WO2011065204A1 (ja) アクティブマトリクス基板、製造方法、及び表示装置
US8466020B2 (en) Method of producing semiconductor device
JP2013250319A (ja) アクティブマトリクス基板、製造方法、及び表示装置
KR20060120900A (ko) 반사 투과형 액정 표시 장치의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837368

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13515921

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP