WO2011071191A1 - p型AlGaN層およびその製造方法ならびにIII族窒化物半導体発光素子 - Google Patents
p型AlGaN層およびその製造方法ならびにIII族窒化物半導体発光素子 Download PDFInfo
- Publication number
- WO2011071191A1 WO2011071191A1 PCT/JP2010/072728 JP2010072728W WO2011071191A1 WO 2011071191 A1 WO2011071191 A1 WO 2011071191A1 JP 2010072728 W JP2010072728 W JP 2010072728W WO 2011071191 A1 WO2011071191 A1 WO 2011071191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow rate
- layer
- group iii
- source gas
- type
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 22
- 239000011777 magnesium Substances 0.000 claims abstract description 107
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 76
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 65
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 29
- 239000013078 crystal Substances 0.000 claims description 28
- 229910052782 aluminium Inorganic materials 0.000 claims description 24
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 23
- 239000002994 raw material Substances 0.000 claims description 11
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 3
- 239000007789 gas Substances 0.000 description 184
- 230000000052 comparative effect Effects 0.000 description 23
- 239000000758 substrate Substances 0.000 description 20
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 15
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 13
- 239000012159 carrier gas Substances 0.000 description 11
- 239000013256 coordination polymer Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- QBJCZLXULXFYCK-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene Chemical compound [Mg+2].C1C=CC=[C-]1.C1C=CC=[C-]1 QBJCZLXULXFYCK-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- -1 or the like Substances 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
- H01L33/325—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
Definitions
- the present invention relates to a p-type AlGaN layer, and more particularly to a p-type AlGaN layer having a constant aluminum composition ratio doped with magnesium, a manufacturing method thereof, and a group III nitride semiconductor light-emitting device.
- ultraviolet LEDs using Group III nitride semiconductor elements are expected to be used for liquid crystal backlights, sterilization, excitation light sources for white LEDs for illumination, and medical applications. Has been done.
- the conductivity type of a semiconductor is determined by the type of added impurity.
- the type of added impurity As an example, when an AlGaN material is made p-type, magnesium is usually used as an impurity. At this time, the added magnesium works as an acceptor, and the AlGaN material uses holes as carriers.
- magnesium to be supplied to the semiconductor layer adheres to the growth apparatus, the inner wall of the piping, etc., and is not sufficiently supplied to the semiconductor layer.
- Patent Document 1 discloses a technique that saturates the amount of adhesion and prevents doping delay by supplying a magnesium-containing gas into the growth apparatus prior to the formation of the semiconductor layer. .
- the doping delay occurs after the initial growth stage of the semiconductor layer.
- Atoms generated when a part of the generated gas is taken into the crystal hydrogen bonds with the nitrogen atom in the crystal to release electrons, and p-type is arranged at the lattice position where gallium atoms should be originally arranged Since magnesium atoms as impurities are combined with holes emitted and compensated electrically, the result is that magnesium added for p-type is prevented from functioning as an acceptor. This leads to a decrease in carrier concentration in the semiconductor layer.
- An object of the present invention is to provide a p-type AlGaN layer, a method for manufacturing the same, and a group III nitride semiconductor light-emitting device that solve the above problems and improve the carrier concentration and the light emission output.
- the gist of the present invention is as follows. (1) In forming one p-type Al x Ga 1-x N layer (0 ⁇ x ⁇ 1) doped with magnesium using the MOCVD method, the group III source gas is used as the group III source gas flow rate A 1 ( 0 ⁇ A 1 ), V group source gas is supplied at V group source gas flow rate B 1 (0 ⁇ B 1 ), and magnesium-containing gas is supplied at Mg containing gas flow rate C 1 (0 ⁇ C 1 ).
- a first step of supplying a group III source gas at a group III source gas flow rate A 2 (0 ⁇ A 2 ), a group V source gas at a group V source gas flow rate B 2 (0 ⁇ B 2 ), and A p-type Al x Ga 1-x N layer is formed by repeating the second step of supplying a gas containing magnesium at a Mg-containing gas flow rate C 2 (0 ⁇ C 2 ) a plurality of times, and a group III source gas flow rate A 1 is a flow rate at which no layer is grown, and A 1 ⁇ 0.5 A 2 A method for manufacturing a p-type AlGaN layer.
- the group III source gas is used as the group III source gas flow rate A 3 ( While supplying at 0 ⁇ A 3 ), supplying a group V source gas at a group V source gas flow rate B 1 (0 ⁇ B 1 ) and a gas containing magnesium at an Mg-containing gas flow rate C 1 (0 ⁇ C 1 )
- a p-type Al x Ga 1-x N layer is formed by performing the second step of supplying a gas containing magnesium at a Mg-containing gas flow rate C 2 (0 ⁇ C 2 ), and the group III source gas flow rate A 3 is a flow rate for only the growing initial core, a 3 Method for producing a p-type
- the group III source gas is used as the group III source gas flow rate A 3 ( While supplying at 0 ⁇ A 3 ), supplying a group V source gas at a group V source gas flow rate B 1 (0 ⁇ B 1 ) and a gas containing magnesium at an Mg-containing gas flow rate C 1 (0 ⁇ C 1 )
- a p-type Al x Ga 1-x N layer is formed by repeating the second step of supplying a gas containing magnesium at a Mg-containing gas flow rate C 2 (0 ⁇ C 2 ) a plurality of times, and a group III source gas flow rate A 3 a at a flow rate of growing only initial nuclei
- V group material gas flow rate B 1 in the first step is equal to the group V raw material gas flow rate B 2 in the second step, and / or Mg-containing gas flow rate C 1 in the first step, Mg in the second step containing gas flow rate C 2 equal to the (1), (2) or (3) p-type AlGaN layer manufacturing method according to.
- the group III source gas flow rate in the first step is p-type Al corresponding to the flow rate.
- a group III nitride semiconductor light-emitting device comprising a p-type Al x Ga 1-x N layer produced by the method according to any one of (1) to (6) above.
- a p-type Al x Ga 1-x N layer doped with magnesium wherein the aluminum composition ratio x is in the range of 0.2 or more and less than 0.3, and the carrier concentration is 5 ⁇ 10 17 / cm 3.
- the p-type AlGaN layer as described above.
- a p-type Al x Ga 1-x N layer doped with magnesium wherein the aluminum composition ratio x is in the range of 0.3 or more and less than 0.4, and the carrier concentration is 3.5 ⁇ 10 17 / A p-type AlGaN layer that is cm 3 or more.
- a p-type Al x Ga 1-x N layer doped with magnesium wherein the aluminum composition ratio x is in the range of 0.4 or more and less than 0.5, and the carrier concentration is 2.5 ⁇ 10 17 / A p-type AlGaN layer that is cm 3 or more.
- a group III nitride semiconductor light-emitting device comprising the p-type Al x Ga 1-x N layer according to any one of (8) to (10) above.
- the flow rate of the group III source gas supplied in the first step is set to 0 or III supplied in the second step.
- a p-type AlGaN layer with improved carrier concentration and light emission output, a manufacturing method thereof, and a group III nitride semiconductor light emitting device can be provided by setting the flow rate of the group source gas to half or less.
- the present invention provides a p-type AlGaN layer, a method for manufacturing the same, and a group III nitride semiconductor light emitting device in which the carrier concentration and the light emission output are improved by repeating the first step and the second step a plurality of times. be able to.
- FIG. 1 shows a schematic diagram of an example of an MOCVD apparatus for producing a p-type AlGaN layer according to the present invention.
- FIG. 2 shows a schematic cross-sectional view of an example of a growth furnace of an MOCVD apparatus for producing a p-type AlGaN layer according to the present invention.
- FIG. 3 shows XRD diffraction images of a p-type Al 0.23 Ga 0.77 N layer according to the method of the present invention and the conventional method.
- 4A and 4B show TEM observation images of the p-type Al 0.23 Ga 0.77 N layer by the method of the present invention and the conventional method, respectively.
- FIG. 5A and 5B show differential interference micrographs of the outermost layer of the p-type Al 0.23 Ga 0.77 N layer according to the method of the present invention and the conventional method, respectively.
- FIG. 6 is a schematic cross-sectional view of a group III nitride semiconductor light-emitting device according to the present invention.
- FIG. 7 shows a SIMS profile of the p-type Al 0.36 Ga 0.64 N layer of the light-emitting element of Example 9.
- FIG. 8 shows a SIMS profile of the p-type Al 0.36 Ga 0.64 N layer of the light emitting device of Comparative Example 6.
- FIG. 9 shows a graph summarizing the carrier concentration calculated from the specific resistance value of the p-type Al x Ga 1-x N layer according to the method of the present invention and the conventional method.
- FIG. 1 is a schematic cross-sectional view showing an example of an MOCVD apparatus for manufacturing a p-type AlGaN layer according to the present invention.
- the MOCVD apparatus 100 includes a reaction furnace 103 having a first gas supply port 101 and a second gas supply port 102. From the first gas supply port 101, a carrier gas such as hydrogen gas 104 or nitrogen gas 105, and a group III source gas such as TMA (trimethylaluminum) 106 and TMG (trimethylgallium) 107 and / or an impurity source gas are used.
- a carrier gas such as hydrogen gas 104 or nitrogen gas 105
- a group III source gas such as TMA (trimethylaluminum) 106 and TMG (trimethylgallium) 107 and / or an impurity source gas are used.
- TMA trimethylaluminum
- TMG trimethylgallium
- a magnesium-containing gas 108 or the like is supplied to the reaction furnace 103.
- a carrier gas such as hydrogen gas 104 and nitrogen gas 105 and a group V source gas 109 such as ammonia are supplied to the reaction furnace 103 from the second gas supply port 102.
- the method for producing a p-type AlGaN layer according to the present invention uses the MOCVD apparatus 100 as described above, and p-type Al x Ga 1-x N (0 ⁇ x ⁇ 1) having a constant aluminum composition ratio x doped with magnesium.
- a group III source gas is supplied at a group III source gas flow rate A 1 (0 ⁇ A 1 )
- a group V source gas is supplied at a group V source gas flow rate B 1 (0 ⁇ B 1 )
- a group V p by repeating a plurality of times and a second step of supplying a source gas V group material gas flow rate B 2 (0 ⁇ B 2) , and a gas containing magnesium Mg-containing gas flow rate C 2 (0 ⁇ C 2) type Al x G 1-x N layer is formed
- the group III material gas flow rate A 1 is a flow not to the layer growth of the p-type Al x Ga 1-x N layer, and characterized in that the A 1 ⁇ 0.5A 2
- Such a group III source gas flow rate A 1 satisfies a relationship of at least 0 ⁇ A 1 ⁇ 0.5 A 2 .
- the first step means maintaining a state in which the layer does not grow for an intended period.
- the group V source gas flow rate B 1 and the Mg-containing gas flow rate C 1 are preferably flow rates at which the layer grows or higher as long as the group III source gas is supplied. That is, it is preferable that B 1 ⁇ B 2 and C 1 ⁇ C 2 . This is to prevent nitrogen loss and supply a large amount of Mg into the system while the layer growth stops.
- group III raw material gas flow rate A 1 is as representative of the total amount of these gases To do.
- the said aluminum composition ratio being constant means that the aluminum composition ratio x of the layer part grown by the 2nd process of each time does not change irrespective of the repetition frequency of a 1st process and a 2nd process. That is, each time the gas flow rate A 1 of repetition is intended to mean that it is the same flow rate.
- the composition ratio varies in the depth direction due to the analysis principle. Further, there may be fluctuations in the aluminum composition ratio in the layer generated by the apparatus during epitaxial growth, in-plane distribution, and the like. This is because they also occur in the conventional method.
- the aluminum composition in the present invention is a value at the center of the substrate.
- FIG. 3 shows a p-type Al 0.23 Ga 0.77 N layer (modulated supply of group III source gas: form of the present invention) and p-type Al 0.23 Ga 0. 77 shows an X-ray diffraction (XRD) image of N layer (no modulation supply of group III source gas: conventional form), and Table 1 shows Miller indices [002] and [102, which are indicators of crystal quality. ] Are representative values. The former indicates the “tilt” with respect to the growth axis direction of the initial nucleus, and the latter indicates the degree of “twist” with respect to the growth in-plane direction.
- FIGS. 4A and 4B show transmission electron microscope (TEM) observation images of the p-type Al 0.23 Ga 0.77 N layer by the method of the present invention and the conventional method, respectively.
- FIGS. 5A and 5B show electron beam diffraction patterns of the outermost layer of the p-type Al 0.23 Ga 0.77 N layer according to the method of the present invention and the conventional method, respectively.
- the method of the present invention is equivalent to the conventional method. From the microscopic TEM image and the electron diffraction pattern, the period on the crystal growth is shown. No disruption was observed. Therefore, it can be seen that both are grown as a single single crystal layer.
- the XRD spectrum of FIG. 3 there were two peaks originating from the different axis component, which were found near 75 ° in the conventional form, but these disappeared in the method of the present invention. From the fact that the representative value in the Miller index [002] shown in Table 1 is reduced, it can be seen that the present invention also contributes to the improvement of crystallinity.
- the base substrate 111 is placed on the susceptor 110 in the reaction furnace 103.
- the base substrate 111 for example, a GaN substrate, a sapphire substrate, an AlN template substrate in which an AlN layer is provided on a sapphire substrate, or the like, or a semiconductor layer laminated on these substrates may be used.
- a carrier gas such as hydrogen gas 104 and nitrogen gas 105 and a group V source gas 109 such as ammonia are supplied from the second gas supply port 102 to the first gas supply port 101.
- the group III source gas is supplied at a flow rate that does not cause layer growth or a flow rate that causes only initial nuclear growth.
- a gas 108 containing magnesium is supplied together with these source gases.
- the group V source gas 109 is supplied to suppress a decrease in the nitrogen partial pressure in the reaction furnace 103 and protect the outermost surface on which crystal growth occurs.
- the magnesium-containing gas 108 CP 2 Mg (biscyclopentadienyl magnesium) or the like can be used.
- the group III source gas is supplied from the first gas supply port 101 at a flow rate for layer growth.
- a gas 108 containing magnesium is supplied together with the raw material gas.
- the group V source gas 109 is supplied from the second gas supply port 102 at a flow rate for layer growth.
- the “predetermined time” for maintaining the first step is preferably about 5 seconds to 60 seconds. If the predetermined time is too short, the effects of the present invention cannot be sufficiently obtained. If the predetermined time is too long, Mg is excessively taken in, and Mg becomes a defect starting point during subsequent crystal growth, resulting in poor crystallinity. This is because the carrier concentration may decrease.
- the method for producing a p-type AlGaN layer according to the present invention uses a MOCVD method to form one p-type AlGaN layer doped with magnesium (0 ⁇ x ⁇ 1). While supplying at A 3 (0 ⁇ A 3 ), the group V source gas is supplied at the group V source gas flow rate B 1 (0 ⁇ B 1 ), and the gas containing magnesium is supplied at the Mg-containing gas flow rate C 1 (0 ⁇ C 1). ) And a group III source gas at a group III source gas flow rate A 2 (0 ⁇ A 2 ), and a group V source gas at a group V source gas flow rate B 2 (0 ⁇ B 2 ).
- the flow rate for growing only the initial nuclei means a flow rate at which, for example, island-like initial crystal nuclei are formed, but the thickness does not substantially increase as a layer.
- Such a group III source gas flow rate A 3 satisfies a relationship of at least 0 ⁇ A 3 ⁇ 0.5A 2 .
- only the initial nuclei are growing because the island-shaped initial nuclei dispersed on the substrate surface by observing the surface of the substrate, which has been grown up to the first step, with a metal microscope or SEM. Can be confirmed.
- group III material gas for example, when supplying TMA (trimethylaluminum) and TMG 2 kinds of gas (trimethylgallium) or the like, group III raw material gas flow rate and A 3, and represents the total amount of these gases To do.
- TMA trimethylaluminum
- TMG 2 kinds of gas trimethylgallium
- V group material gas flow rate B 1 represents the first step, the second equal to the group V raw material gas flow rate B 2 in step, and / or Mg-containing gas flow rate C 1 in the first step, the second step preferably equal to the Mg-containing gas flow rate C 2.
- the group V source gas flow rate remains constant, and the group III source gas flow rate A 1 or A 3 in the first step and the group III source gas flow rate A 2 in the second step are different. preferable.
- the concentration of magnesium in the AlGaN layer is improved by the forced uptake of magnesium due to physical adhesion and the increase in the uptake frequency of magnesium due to a decrease in growth rate.
- the magnesium concentration in the AlGaN layer can be stably maintained at a high concentration by repeating the first step and the second step described above a plurality of times.
- the p-type AlGaN layer manufacturing method uses the MOCVD apparatus 100 as described above to initially set the flow rate of the group III source gas when forming one p-type AlGaN layer doped with magnesium.
- the group III source gas flow rate in the first step is the group III source material in the second step. or less half of the gas flow a 2. More preferably, it is set to 1/4 or less.
- the relationship between the flow rate of the group III atomic gas and the crystal growth rate is obtained from the layer growth thickness per unit time (ie, the crystal growth rate) within a range where crystal growth can be confirmed (for example, the group III atomic gas flow rate of 10 ⁇
- the group III atomic gas flow rate for example, the group III atomic gas flow rate of 10 ⁇
- a flow rate at which the crystal growth rate of the p-type Al x Ga 1-x N layer corresponding to the flow rate (A 1 or A 3 ) in the process is 0.03 nm / s or less is preferable, and 0.01 to 0.03 nm / s.
- the flow rate is as follows. It should be noted that the breakdown of the group III source gas flow rate (Ga and Al ratio) in the first step and the second step does not necessarily have a proportional double relationship. That is, the Al composition of the initial nucleus generated in the first step and the Al composition generated in the second step need not be the same. This is to maximize the effect of the invention, to include Mg to the maximum in the initial nucleus formed in the first step, and to improve the crystallinity of the crystal film formed in the second step. is there. Even if they are not the same, the initial nucleus formed in the first step can be ignored as the film thickness compared with the crystal film formed in the second step. It can be regarded as constant as the Al composition.
- the existence probability of the group III raw material on the substrate surface is small, and for example, only island-like initial nuclei are generated. Even in time, the thickness does not increase substantially as a layer.
- the flow rate of the Group III source gas in the first step is a flow rate that is less than 0.01 nm / s in calculation, the latter is dominant in the growth and decomposition of the initial nucleus, and the growth of p-type AlGaN does not occur. .
- the flow rate of the group III source gas which only causes initial nuclear growth, varies depending on the shape of the MOCVD apparatus, the temperature, and the flow rate of the group V source gas. Therefore, it cannot be generally specified, but the group III source gas flow rate (A 1 or A 3 ) is preferably 1 to 10 sccm with respect to the group III source gas flow rate A 2 in the second step of 20 to 50 sccm, for example.
- the V group source gas flow rates B 1 and B 2 in the first step and the second step can be set to, for example, 5 to 50 slm (Standard Liter Per Minutes).
- the Mg-containing gas flow rates C 1 and C 2 in the first step and the second step can be set to 20 to 200 sccm, for example.
- a p-type AlGaN layer having a high magnesium concentration and improved crystallinity can be produced.
- the aluminum composition ratio of the p-type AlGaN layer can be set to 0 to 0.8.
- the aluminum composition ratio x is measured by measuring the emission wavelength in photoluminescence. et al, J. et al. Appl. Phys. 92, 4837 (2002).
- a group III nitride semiconductor light emitting device 200 includes a superlattice strain buffer layer 203, an n-type AlGaN layer 204, a light emitting layer 205, a p-type on an AlN template substrate having an AlN strain buffer layer 202 on a sapphire substrate 201.
- An AlGaN block layer 206, a p-type AlGaN guide layer 207, a p-type AlGaN cladding layer 208, and a p-type GaN contact layer 209 can be provided.
- These p-type AlGaN layers can be grown according to the method of manufacturing a p-type AlGaN layer according to the present invention described above.
- the aluminum composition ratio x is 0.2 or more and 0.00 as the p-type Al x Ga 1-x N layer having a constant aluminum composition ratio doped with magnesium.
- a p-type AlGaN layer having a carrier concentration of 5 ⁇ 10 17 / cm 3 or more, preferably 1 ⁇ 10 18 / cm 3 or less can be obtained.
- the aluminum composition ratio x is 0.3 or more and less than 0.4, a p-type AlGaN layer having a carrier concentration of 3.5 ⁇ 10 17 / cm 3 or more, preferably 5 ⁇ 10 17 / cm 3 or less is obtained. be able to.
- the p-type AlGaN layer having a carrier concentration of 2.5 ⁇ 10 17 / cm 3 or more, preferably 3.5 ⁇ 10 17 / cm 3 or less. can be obtained.
- Example 1 In Example 1, an AlN template substrate having a strain buffer layer is placed in the growth reactor shown in FIGS. 1 and 2, and after raising the temperature to 1050 ° C. under 10 kPa, a Group III source gas (TMG flow rate: 4 sccm) is used as the first step.
- TMG flow rate: 4 sccm Group III source gas
- TMA flow rate 5 sccm
- carrier gas mixed of N 2 and H 2 , flow rate: 50 slm
- group V source gas NH 3 , flow rate: 15 slm
- CP 2 Mg gas flow rate: 50 sccm
- Supply time t 1 the flow rate of the group III source gas in the second step
- the TMG flow rate is 20 sccm
- the TMA flow rate is 25 sccm
- the group III source gas, carrier gas, V group source gas, and CP 2 Mg gas supply supply time t 2
- by repeating 120 times are alternately thickness 1080nm to form a p-type Al 0.23 Ga 0.77 N layer
- sccm in units of flow rate, 1 atm (atmospheric pressure: 1013 hPa), the amount of gas flowing per 1 minute at 0 ° C.
- Example 2 a p-type Al 0.23 Ga 0.77 N layer having a thickness of 1080 nm was formed by the same method as in Example 1 except that the supply time t 2 was 30 seconds and the number of repetitions was 240 times. Formed.
- Example 3 a p-type Al 0.23 Ga 0.77 N layer having a thickness of 1080 nm was formed by the same method as in Example 1 except that the supply time t 2 was 45 seconds and the number of repetitions was 180 times. Formed.
- Example 4 a p-type Al 0.23 Ga 0.77 N layer having a thickness of 1080 nm was formed by the same method as in Example 1 except that the supply time t 2 was 120 seconds and the number of repetitions was 60. Formed.
- Example 5 a p-type Al 0.23 Ga 0.77 N layer having a thickness of 1080 nm is formed by the same method as in Example 1 except that the supply time t 2 is 7200 seconds and the number of repetitions is one. did.
- a p-type Al 0.23 Ga 0.77 N having a thickness of 1080 nm was formed in the same manner as in Example 5 except that the Group III source gas was not flown as the first step and the initial nuclei were not grown. A layer was formed.
- Comparative Example 1 In Comparative Example 1, p-type Al having a thickness of 1080 nm was formed in the same manner as in Example 1 except that the supply time t 1 was 0 seconds, the supply time t 2 was 7200 seconds, and the number of repetitions was one . A 23 Ga 0.77 N layer was formed.
- Examples 1 to 5 according to the present invention have an effect of increasing the carrier concentration as compared with Comparative Example 1, as can be confirmed from the fact that the specific resistance is reduced as compared with Comparative Example 1. I understand.
- Example 6 In Example 6, an AlN template substrate having a strain buffer layer was placed in the growth reactor shown in FIGS. 1 and 2, and after raising the temperature to 1050 ° C. under 10 kPa, a Group III source gas (TMG flow rate: 5 sccm) was used as the first step. ), A carrier gas (mixing of N 2 and H 2 , flow rate: 50 slm), a group V source gas (NH 3 , flow rate: 15 slm) and CP 2 Mg gas (flow rate: 50 sccm) are supplied for 15 seconds (supply time t).
- TMG flow rate Group III source gas
- Example 7 In Example 7, an AlN template substrate having a strain buffer layer was placed in the growth reactor shown in FIGS. 1 and 2, and after raising the temperature to 1050 ° C. under 10 kPa, a Group III source gas (TMG flow rate: 2 sccm) was used as the first step.
- TMG flow rate: 2 sccm a Group III source gas
- TMA flow rate 5 sccm
- carrier gas mixed of N 2 and H 2 , flow rate: 50 slm
- group V source gas NH 3 , flow rate: 15 slm
- CP 2 Mg gas flow rate: 50 sccm
- Supply time t 1 the flow rate of the Group III source gas
- supply time t 2 2 Mg gas supply
- initial nuclei grew, but no layer growth occurred, and the crystal growth rate in the second step was 0.15 nm / s.
- the calculated growth rate corresponding to the Group III source gas flow rate in the first step was 0.02 nm / s.
- Example 8 In Example 8, as a first step, a group III source gas (TMG flow rate: 2 sccm, TMA flow rate: 6 sccm) was passed while a carrier gas (mixture of N 2 and H 2 , flow rate: 50 slm), a group V source gas (NH 3 , flow rate: 15 slm), and CP 2 Mg gas (flow rate: 50 sccm) is supplied for 15 seconds (supply time t 1 ), and then only the flow rate of the group III source gas is changed as the second step, and the TMG flow rate is set to 20 sccm, The same as Example 7 except that the TMA flow rate was 65 sccm and the group III source gas, carrier gas, group V source gas, and CP 2 Mg gas were supplied for 60 seconds (supply time t 2 ), and these were alternately repeated.
- TMG flow rate 2 sccm
- TMA flow rate 6 sccm
- a p-type Al 0.43 Ga 0.57 N layer having a thickness of 1080 nm was formed by the method described above.
- initial nuclei grew, but no layer growth occurred, and the crystal growth rate in the second step was 0.15 nm / s.
- the calculated growth rate corresponding to the Group III source gas flow rate in the first step was 0.02 nm / s.
- Comparative Example 2 In Comparative Example 2, a p-type GaN layer having a thickness of 1080 nm was formed by the same method as in Example 6 except that the supply time t 1 was 0 second, the supply time t 2 was 7200 seconds, and the number of repetitions was one. Formed.
- Comparative Example 3 In Comparative Example 3, p-type Al having a thickness of 1080 nm was formed in the same manner as in Example 1 except that the supply time t 1 was 0 seconds, the supply time t 2 was 7200 seconds, and the number of repetitions was 1 . A 23 Ga 0.77 N layer was formed.
- Comparative Example 4 is a p-type Al 0.100 nm thick by a method similar to that of Example 7 except that the supply time t 1 is 0 second, the supply time t 2 is 7200 seconds, and the number of repetitions is one . 36 A Ga 0.64 N layer was formed.
- Comparative Example 5 p-type Al having a thickness of 1080 nm was formed in the same manner as in Example 8 except that the supply time t 1 was 0 seconds, the supply time t 2 was 7200 seconds, and the number of repetitions was 1 . 43 A Ga 0.57 N layer was formed.
- Example 9 As shown in FIG. 6, a superlattice strain buffer layer (AlN / GaN, layer thickness: 600 nm), n-type Al 0.23 Ga 0.77 on an AlN template substrate having an AlN strain buffer layer on a sapphire substrate.
- N layer layer thickness: 1300 nm
- light emitting layer AllnGaN, layer thickness: 150 nm
- p-type Al 0.36 Ga 0.64 N block layer layer thickness: 20 nm
- p-type Al 0.23 Ga 0.77 An N-clad layer (layer thickness: 180 nm) and a p-type GaN contact layer (layer thickness: 20 nm) were grown by MOCVD to form a group III nitride semiconductor light-emitting device.
- the p-type Al 0.36 Ga 0.64 N block layer has the same structure as that of Example 7 except that the supply time t 1 is 15 seconds, the supply time t 2 is 45 seconds, and the number of repetitions is 3. It formed by the same method.
- Example 10 has an AlN strain buffer layer on a sapphire substrate, a superlattice strain buffer layer (AlN / GaN, layer thickness: 600 nm), n-type Al 0. 23 Ga 0.77 N layer (layer thickness: 1300 nm), light emitting layer (AllnGaN, layer thickness: 150 nm), p-type Al 0.43 Ga 0.57 N block layer (layer thickness: 20 nm), p-type Al 0. A 23 Ga 0.77 N clad layer (layer thickness: 180 nm) and a p-type GaN contact layer (layer thickness: 20 nm) were grown by MOCVD to form a group III nitride semiconductor light emitting device.
- the p-type Al 0.43 Ga 0.57 N block layer is similar to Example 8 except that the supply time t 1 is 10 seconds, the supply time t 2 is 45 seconds, and the number of repetitions is 3. It formed by the same method.
- Comparative Example 6 p-type Al 0.36 Ga 0 .0 was produced in the same manner as in Example 9 except that the supply time t 1 was 0 seconds, the supply time t 2 was 135 seconds, and the number of repetitions was 1 .
- a group III nitride semiconductor light-emitting device having a 44 N block layer was formed.
- Comparative Example 7 p-type Al 0.43 Ga 0 was prepared in the same manner as in Example 10 except that the supply time t 1 was 0 second, the supply time t 2 was 135 seconds, and the number of repetitions was 1. .57 A group III nitride semiconductor light emitting device having an N block layer was formed.
- Example 9 has a significantly improved EL output as compared with Comparative Example 6.
- Example 10 which has a higher Al composition ratio, the effect of improving the output can be confirmed as compared with Comparative Example 7.
- these results are considered to be due to the improvement of the energization state with the increase of the effective carrier concentration.
- the flow rate of the group III source gas supplied in the first step is set to 0 or in the second step.
- the present invention provides a p-type AlGaN layer, a method for manufacturing the same, and a group III nitride semiconductor light emitting device in which the carrier concentration and the light emission output are improved by repeating the first step and the second step a plurality of times. be able to.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Led Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
(1)MOCVD法を用いて、マグネシウムをドープした一つのp型AlxGa1−xN層(0≦x<1)を形成するにあたり、III族原料ガスをIII族原料ガス流量A1(0≦A1)で供給するとともに、V族原料ガスをV族原料ガス流量B1(0<B1)で、かつマグネシウムを含むガスをMg含有ガス流量C1(0<C1)で供給する第1工程と、III族原料ガスをIII族原料ガス流量A2(0<A2)で供給するとともに、V族原料ガスをV族原料ガス流量B2(0<B2)で、かつマグネシウムを含むガスをMg含有ガス流量C2(0<C2)で供給する第2工程とを複数回繰り返すことによりp型AlxGa1−xN層を形成し、III族原料ガス流量A1は層成長させない流量であって、A1≦0.5A2であることを特徴とするp型AlGaN層の製造方法。
実施例1は、図1および図2に示す成長炉内に歪緩衝層を有するAlNテンプレート基板を配置し、10kPa下1050℃へ昇温後、第1工程としてIII族原料ガス(TMG流量:4sccm、TMA流量:5sccm)を流しながら、キャリアガス(N2とH2の混合、流量:50slm)、V族原料ガス(NH3,流量:15slm)、およびCP2Mgガス(流量:50sccm)を15秒間(供給時間t1)供給し、その後、第2工程としてIII族原料ガスの流量のみを変えて、TMG流量を20sccm、TMA流量を25sccmとし、60秒間III族原料ガス、キャリアガス、V族原料ガス、およびCP2Mgガスを供給(供給時間t2)し、これらを交互に120回繰り返すことにより、厚さ1080nmのp型Al0.23Ga0.77N層を形成した(なお、上記流量の単位の「sccm」は、1atm(大気圧:1013hPa)、0℃で1分間当たりに流れるガスの量(cm3)を表わしたものである。)。なお、第1工程では初期核は成長するものの層成長はせず、第2工程における結晶成長速度は0.15nm/sであった。また、第1工程のIII族原料ガス流量に対応する、計算上の成長速度は、0.03nm/sであった。
実施例2は、供給時間t2を30秒とし、繰り返し回数を240回としたこと以外は、実施例1と同様の方法により厚さ1080nmのp型Al0.23Ga0.77N層を形成した。
実施例3は、供給時間t2を45秒とし、繰り返し回数を180回としたこと以外は、実施例1と同様の方法により厚さ1080nmのp型Al0.23Ga0.77N層を形成した。
実施例4は、供給時間t2を120秒とし、繰り返し回数を60回としたこと以外は、実施例1と同様の方法により厚さ1080nmのp型Al0.23Ga0.77N層を形成した。
実施例5は、供給時間t2を7200秒、繰り返し回数を1回としたこと以外は、実施例1と同様の方法により厚さ1080nmのp型Al0.23Ga0.77N層を形成した。
参考例は、第1工程としてIII族原料ガスを流さず、初期核も成長しないようにした以外は、実施例5と同様の方法により厚さ1080nmのp型Al0.23Ga0.77N層を形成した。
比較例1は、供給時間t1を0秒、供給時間t2を7200秒とし、繰り返し回数を1回としたこと以外は、実施例1と同様の方法により厚さ1080nmのp型Al0.23Ga0.77N層を形成した。
これら実施例1~5、参考例および比較例1について、ランプアニール炉を用いて、窒素雰囲気下中、800℃にて5分間アニールを実施した後、渦電流式シート抵抗測定装置(MODEL1318,LEHIGHTON社製)を用いて、p型AlGaN層の面内比抵抗を測定した。これらの値から活性化深さを0.5μm、易動度を5として、計算されるキャリア濃度を見積もった結果を表2に示す。
実施例6は、図1および図2に示す成長炉内に歪緩衝層を有するAlNテンプレート基板を配置し、10kPa下1050℃へ昇温後、第1工程としてIII族原料ガス(TMG流量:5sccm)を流しながら、キャリアガス(N2とH2の混合、流量:50slm)、V族原料ガス(NH3,流量:15slm)およびCP2Mgガス(流量:50sccm)を15秒間(供給時間t1)供給し、その後、第2工程としてIII族原料ガスの流量のみを変え、TMG流量を20sccmとして60秒間III族原料ガス、キャリアガス、V族原料ガス、およびCP2Mgガスを供給(供給時間t2)し、これらを交互に120回繰り返すことにより、厚さ1080nmのp型GaN層を形成した。なお、第1工程では初期核は成長するものの層成長はせず、第2工程における結晶成長速度は0.15nm/sであった。また、第1工程のIII族原料ガス流量に対応する、計算上の成長速度は、0.02nm/sであった。
実施例7は、図1および図2に示す成長炉内に歪緩衝層を有するAlNテンプレート基板を配置し、10kPa下1050℃へ昇温後、第1工程としてIII族原料ガス(TMG流量:2sccm、TMA流量:5sccm)を流しながら、キャリアガス(N2とH2の混合、流量:50slm)、V族原料ガス(NH3,流量:15slm)、およびCP2Mgガス(流量:50sccm)を15秒間(供給時間t1)供給し、その後、第2工程としてIII族原料ガスの流量のみを変え、TMG流量を20sccm、TMA流量を45sccmとして60秒間III族原料ガス、キャリアガス、V族原料ガス、およびCP2Mgガスを供給(供給時間t2)し、これらを交互に120回繰り返すことにより、厚さ1080nmのp型Al0.36Ga0.64N層を形成した。なお、第1工程では初期核は成長するものの層成長はせず、第2工程における結晶成長速度は0.15nm/sであった。また、第1工程のIII族原料ガス流量に対応する、計算上の成長速度は、0.02nm/sであった。
実施例8は、第1工程としてIII族原料ガス(TMG流量:2sccm、TMA流量:6sccm)を流しながら、キャリアガス(N2とH2の混合、流量:50slm)、V族原料ガス(NH3,流量:15slm)、およびCP2Mgガス(流量:50sccm)を15秒間(供給時間t1)供給し、その後、第2工程としてIII族原料ガスの流量のみを変え、TMG流量を20sccm、TMA流量を65sccmとして60秒間III族原料ガス、キャリアガス、V族原料ガス、およびCP2Mgガスを供給(供給時間t2)し、これらを交互に繰り返したこと以外は、実施例7と同様の方法により厚さ1080nmのp型Al0.43Ga0.57N層を形成した。なお、第1工程では初期核は成長するものの層成長はせず、第2工程における結晶成長速度は0.15nm/sであった。また、第1工程のIII族原料ガス流量に対応する、計算上の成長速度は、0.02nm/sであった。
比較例2は、供給時間t1を0秒、供給時間t2を7200秒とし、繰り返し回数を1回としたこと以外は、実施例6と同様の方法により厚さ1080nmのp型GaN層を形成した。
比較例3は、供給時間t1を0秒、供給時間t2を7200秒とし、繰り返し回数を1回としたこと以外は、実施例1と同様の方法により厚さ1080nmのp型Al0.23Ga0.77N層を形成した。
比較例4は、供給時間t1を0秒、供給時間t2を7200秒とし、繰り返し回数を1回としたこと以外は、実施例7と同様の方法により厚さ1080nmのp型Al0.36
Ga0.64N層を形成した。
比較例5は、供給時間t1を0秒、供給時間t2を7200秒とし、繰り返し回数を1回としたこと以外は、実施例8と同様の方法により厚さ1080nmのp型Al0.43
Ga0.57N層を形成した。
図6に示すように、サファイア基板上にAlN歪緩衝層を有する、AlNテンプレート基板上に、超格子歪緩衝層(AlN/GaN,層厚:600nm)、n型Al0.23Ga0.77N層(層厚:1300nm)、発光層(AllnGaN,層厚:150nm)、p型Al0.36Ga0.64Nブロック層(層厚:20nm)、p型Al0.23Ga0.77Nクラッド層(層厚:180nm)、p型GaNコンタクト層(層厚:20nm)をMOCVD法により成長させ、III族窒化物半導体発光素子を形成した。
ここで、p型Al0.36Ga0.64Nブロック層は、供給時間t1を15秒、供給時間t2を45秒とし、繰り返し回数を3回としたこと以外は、実施例7と同様の方法により形成した。
実施例10は、図6に示すように、サファイア基板上にAlN歪緩衝層を有する、AlNテンプレート基板上に、超格子歪緩衝層(AlN/GaN,層厚:600nm)、n型Al0.23Ga0.77N層(層厚:1300nm)、発光層(AllnGaN,層厚:150nm)、p型Al0.43Ga0.57Nブロック層(層厚:20nm)、p型Al0.23Ga0.77Nクラッド層(層厚:180nm)、p型GaNコンタクト層(層厚:20nm)をMOCVD法により成長させ、III族窒化物半導体発光素子を形成した。
ここで、p型Al0.43Ga0.57Nブロック層は、供給時間t1を10秒、供給時間t2を45秒とし、繰り返し回数を3回としたこと以外は、実施例8と同様の方法により形成した。
比較例6は、供給時間t1を0秒、供給時間t2を135秒とし、繰り返し回数を1回としたこと以外は、実施例9と同様の方法によりp型Al0.36Ga0.44Nブロック層を有するIII族窒化物半導体発光素子を形成した。
比較例7は、供給時間t1を0秒とし、供給時間t2を135秒とし、繰り返し回数を1回としたこと以外は、実施例10と同様の方法によりp型Al0.43Ga0.57Nブロック層を有するIII族窒化物半導体発光素子を形成した。
実施例9および比較例6について、SIMS(二次イオン質量分析計)を用いて、発光素子中のp型AlGaNブロック層中のマグネシウム濃度を測定した結果をそれぞれ図7および図8に示す。
さらに、これら実施例9、10および比較例6、7について、マルチチャネル型分光器(C10082CAH,浜松ホトニクス社製)を用いて、裏面出射のEL出力測定を実施した。これらの結果を表4に示す。
101 第1ガス供給口
102 第2ガス供給口
103 成長炉
104 水素ガス
105 窒素ガス
106 TMA
107 TMG
108 CP2Mg
109 アンモニア
110 サセプタ
111 下地基板
112 AlGaN層
200 III族窒化物半導体発光素子
201 下地基板
202 AlN歪緩衝層
203 超格子歪緩衝層
204 n型窒化物半導体層
205 発光層
206 p型AlGaNブロック層
207 p型AlGaNガイド層
208 p型AlGaNクラッド層
209 p型GaNコンタクト層
Claims (11)
- MOCVD法を用いて、マグネシウムをドープした一つのp型AlxGa1−xN層(0≦x<1)を形成するにあたり、
III族原料ガスをIII族原料ガス流量A1(0≦A1)で供給するとともに、
V族原料ガスをV族原料ガス流量B1(0<B1)で、かつマグネシウムを含むガスをMg含有ガス流量C1(0<C1)で供給する第1工程と、
III族原料ガスをIII族原料ガス流量A2(0<A2)で供給するとともに、
V族原料ガスをV族原料ガス流量B2(0<B2)で、かつマグネシウムを含むガスをMg含有ガス流量C2(0<C2)で供給する第2工程と
を複数回繰り返すことにより前記p型AlxGa1−xN層を形成し、
前記III族原料ガス流量A1は前記p型AlxGa1−xN層を層成長させない流量であって、A1≦0.5A2であることを特徴とするp型AlGaN層の製造方法。 - MOCVD法を用いて、マグネシウムをドープした一つのp型AlxGa1−xN層(0≦x<1)を形成するにあたり、
III族原料ガスをIII族原料ガス流量A3(0<A3)で供給するとともに、
V族原料ガスをV族原料ガス流量B1(0<B1)で、かつマグネシウムを含むガスをMg含有ガス流量C1(0<C1)で供給する第1工程と、
III族原料ガスをIII族原料ガス流量A2(0<A2)で供給するとともに、
V族原料ガスをV族原料ガス流量B2(0<B2)で、かつマグネシウムを含むガスをMg含有ガス流量C2(0<C2)で供給する第2工程と
を行うことにより前記p型AlxGa1−xN層を形成し、
前記III族原料ガス流量A3は前記p型AlxGa1−xN層の初期核のみを成長させる流量であって、A3≦0.5A2であることを特徴とするp型AlGaN層の製造方法。 - MOCVD法を用いて、マグネシウムをドープした一つのp型AlxGa1−xN層(0≦x<1)を形成するにあたり、
III族原料ガスをIII族原料ガス流量A3(0<A3)で供給するとともに、
V族原料ガスをV族原料ガス流量B1(0<B1)で、かつマグネシウムを含むガスをMg含有ガス流量C1(0<C1)で供給する第1工程と、
III族原料ガスをIII族原料ガス流量A2(0<A2)で供給するとともに、
V族原料ガスをV族原料ガス流量B2(0<B2)で、かつマグネシウムを含むガスをMg含有ガス流量C2(0<C2)で供給する第2工程と
を複数回繰り返すことにより前記p型AlxGa1−xN層を形成し、
前記III族原料ガス流量A3は前記p型AlxGa1−xN層の初期核のみを成長させる流量であって、A3≦0.5A2であることを特徴とするp型AlGaN層の製造方法。 - 前記第1工程におけるV族原料ガス流量B1は、前記第2工程におけるV族原料ガス流量B2と等しく、および/または
前記第1工程におけるMg含有ガス流量C1は、前記第2工程におけるMg含有ガス流量C2と等しい請求項1、2または3に記載のp型AlGaN層の製造方法。 - 前記第2工程における結晶成長速度から、III族原料ガス流量と結晶成長速度との関係を求めたとき、前記第1工程におけるIII族原料ガス流量は、該流量に対応するp型AlxGa1−xN層の成長速度が0.03nm/s以下となる流量である請求項1、2、3または4に記載のp型AlGaN層の製造方法。
- 前記p型AlxGa1−xN層のアルミニウム組成比xは、0~0.8の範囲である請求項1~5のいずれか一項に記載のp型AlGaN層の製造方法。
- 請求項1~6のいずれか一項に記載の方法により製造されたp型AlxGa1−xN層を含むIII族窒化物半導体発光素子。
- マグネシウムをドープしたp型AlxGa1−xN層であって、アルミニウム組成比xが0.2以上0.3未満の範囲であり、かつキャリア濃度が5×1017/cm3以上であるp型AlGaN層。
- マグネシウムをドープしたp型AlxGa1−xN層であって、アルミニウム組成比xが0.3以上0.4未満の範囲であり、かつキャリア濃度が3.5×1017/cm3以上であるp型AlGaN層。
- マグネシウムをドープしたp型AlxGa1−xN層であって、アルミニウム組成比xが0.4以上0.5未満の範囲であり、かつキャリア濃度が2.5×1017/cm3以上であるp型AlGaN層。
- 請求項8~10のいずれか一項に記載のp型AlxGa1−xN層を含むIII族窒化物半導体発光素子。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10836105.6A EP2511947A4 (en) | 2009-12-10 | 2010-12-10 | P-TYPE ALGAN LAYER, MANUFACTURING METHOD THEREOF, AND GROUP III NITRIDE SEMICONDUCTOR LIGHT EMITTING ELEMENT |
KR1020127017084A KR101454980B1 (ko) | 2009-12-10 | 2010-12-10 | p형 AlGaN층 및 그 제조 방법 및 Ⅲ족 질화물 반도체 발광소자 |
CN201080063667.6A CN102782808B (zh) | 2009-12-10 | 2010-12-10 | p型AlGaN层及其制造方法和Ⅲ族氮化物半导体发光元件 |
US13/512,747 US8765222B2 (en) | 2009-12-10 | 2010-12-10 | Method of manufacturing a p-AlGaN layer |
KR20147021037A KR20150044419A (ko) | 2009-12-10 | 2010-12-10 | p형 AlGaN층 및 그 제조 방법 및 Ⅲ족 질화물 반도체 발광소자 |
US14/185,132 US20140166943A1 (en) | 2009-12-10 | 2014-02-20 | P-AlGAN LAYER AND GROUP III NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-280963 | 2009-12-10 | ||
JP2009280963 | 2009-12-10 | ||
JP2010-275128 | 2010-12-09 | ||
JP2010275128A JP4769905B2 (ja) | 2009-12-10 | 2010-12-09 | p型AlGaN層の製造方法およびIII族窒化物半導体発光素子 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/512,747 A-371-Of-International US8765222B2 (en) | 2009-12-10 | 2010-12-10 | Method of manufacturing a p-AlGaN layer |
US14/185,132 Division US20140166943A1 (en) | 2009-12-10 | 2014-02-20 | P-AlGAN LAYER AND GROUP III NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011071191A1 true WO2011071191A1 (ja) | 2011-06-16 |
Family
ID=44145727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072728 WO2011071191A1 (ja) | 2009-12-10 | 2010-12-10 | p型AlGaN層およびその製造方法ならびにIII族窒化物半導体発光素子 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8765222B2 (ja) |
EP (1) | EP2511947A4 (ja) |
JP (1) | JP4769905B2 (ja) |
KR (2) | KR20150044419A (ja) |
CN (1) | CN102782808B (ja) |
TW (1) | TWI474512B (ja) |
WO (1) | WO2011071191A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5458037B2 (ja) * | 2011-02-18 | 2014-04-02 | 日本電信電話株式会社 | 窒化物半導体薄膜の成長方法 |
JP5934575B2 (ja) * | 2012-05-16 | 2016-06-15 | サンケン電気株式会社 | 窒化物半導体装置の製造方法 |
JP5765861B2 (ja) * | 2012-08-27 | 2015-08-19 | コバレントマテリアル株式会社 | 窒化物半導体層の分析方法及びこれを用いた窒化物半導体基板の製造方法 |
CN104134732B (zh) * | 2014-07-24 | 2017-09-19 | 映瑞光电科技(上海)有限公司 | 一种改善GaN基LED效率下降的外延结构 |
JP5889981B2 (ja) * | 2014-09-09 | 2016-03-22 | 株式会社東芝 | 半導体発光素子 |
KR101777807B1 (ko) * | 2015-03-12 | 2017-09-12 | 주식회사 디지털스케치 | 수화 번역기, 시스템 및 방법 |
JPWO2020217735A1 (ja) * | 2019-04-25 | 2020-10-29 | ||
CN113451451B (zh) * | 2020-08-20 | 2022-09-13 | 重庆康佳光电技术研究院有限公司 | Led外延层及其电流扩展层的生长方法、led芯片 |
WO2023007837A1 (ja) * | 2021-07-27 | 2023-02-02 | ソニーグループ株式会社 | 窒化物半導体発光素子 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006005331A (ja) * | 2004-05-18 | 2006-01-05 | Sumitomo Electric Ind Ltd | Iii族窒化物半導体結晶およびその製造方法、iii族窒化物半導体デバイスおよびその製造方法ならびに発光機器 |
JP2008021717A (ja) * | 2006-07-11 | 2008-01-31 | Sharp Corp | 半導体製造方法および半導体レーザ素子製造方法 |
JP2008078186A (ja) * | 2006-09-19 | 2008-04-03 | Mitsubishi Chemicals Corp | 窒化物系化合物半導体の結晶成長方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693963A (en) * | 1994-09-19 | 1997-12-02 | Kabushiki Kaisha Toshiba | Compound semiconductor device with nitride |
JPH0964477A (ja) * | 1995-08-25 | 1997-03-07 | Toshiba Corp | 半導体発光素子及びその製造方法 |
US5903017A (en) * | 1996-02-26 | 1999-05-11 | Kabushiki Kaisha Toshiba | Compound semiconductor device formed of nitrogen-containing gallium compound such as GaN, AlGaN or InGaN |
US5888886A (en) * | 1997-06-30 | 1999-03-30 | Sdl, Inc. | Method of doping gan layers p-type for device fabrication |
US6608330B1 (en) * | 1998-09-21 | 2003-08-19 | Nichia Corporation | Light emitting device |
US7056755B1 (en) * | 1999-10-15 | 2006-06-06 | Matsushita Electric Industrial Co., Ltd. | P-type nitride semiconductor and method of manufacturing the same |
JP3946427B2 (ja) * | 2000-03-29 | 2007-07-18 | 株式会社東芝 | エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法 |
JP2001352098A (ja) * | 2000-06-07 | 2001-12-21 | Sanyo Electric Co Ltd | 半導体発光素子およびその製造方法 |
US6586762B2 (en) * | 2000-07-07 | 2003-07-01 | Nichia Corporation | Nitride semiconductor device with improved lifetime and high output power |
US6489636B1 (en) * | 2001-03-29 | 2002-12-03 | Lumileds Lighting U.S., Llc | Indium gallium nitride smoothing structures for III-nitride devices |
US6526083B1 (en) * | 2001-10-09 | 2003-02-25 | Xerox Corporation | Two section blue laser diode with reduced output power droop |
TWI271877B (en) * | 2002-06-04 | 2007-01-21 | Nitride Semiconductors Co Ltd | Gallium nitride compound semiconductor device and manufacturing method |
JP4110222B2 (ja) * | 2003-08-20 | 2008-07-02 | 住友電気工業株式会社 | 発光ダイオード |
TWI245440B (en) * | 2004-12-30 | 2005-12-11 | Ind Tech Res Inst | Light emitting diode |
JP4916671B2 (ja) * | 2005-03-31 | 2012-04-18 | 住友電工デバイス・イノベーション株式会社 | 半導体装置 |
TW200711171A (en) * | 2005-04-05 | 2007-03-16 | Toshiba Kk | Gallium nitride based semiconductor device and method of manufacturing same |
JP4806993B2 (ja) | 2005-08-03 | 2011-11-02 | 住友電気工業株式会社 | Iii−v族化合物半導体膜の形成方法 |
US7462884B2 (en) * | 2005-10-31 | 2008-12-09 | Nichia Corporation | Nitride semiconductor device |
KR100829562B1 (ko) * | 2006-08-25 | 2008-05-14 | 삼성전자주식회사 | 기판 접합 구조를 갖는 반도체 레이저 다이오드 및 그제조방법 |
JP2008235606A (ja) * | 2007-03-20 | 2008-10-02 | Sony Corp | 半導体発光素子、半導体発光素子の製造方法、バックライト、表示装置、電子機器および発光装置 |
JP5274785B2 (ja) * | 2007-03-29 | 2013-08-28 | 日本碍子株式会社 | AlGaN結晶層の形成方法 |
JP5580965B2 (ja) * | 2007-04-06 | 2014-08-27 | 日本オクラロ株式会社 | 窒化物半導体レーザ装置 |
KR101012515B1 (ko) * | 2007-08-20 | 2011-02-08 | 렌슬러 폴리테크닉 인스티튜트 | 질화물 반도체 발광소자 |
JP2010205835A (ja) * | 2009-03-02 | 2010-09-16 | Sumitomo Electric Ind Ltd | 窒化ガリウム系半導体光素子、窒化ガリウム系半導体光素子を製造する方法、及びエピタキシャルウエハ |
-
2010
- 2010-12-09 JP JP2010275128A patent/JP4769905B2/ja active Active
- 2010-12-10 US US13/512,747 patent/US8765222B2/en active Active
- 2010-12-10 EP EP10836105.6A patent/EP2511947A4/en not_active Withdrawn
- 2010-12-10 KR KR20147021037A patent/KR20150044419A/ko not_active Application Discontinuation
- 2010-12-10 KR KR1020127017084A patent/KR101454980B1/ko not_active IP Right Cessation
- 2010-12-10 WO PCT/JP2010/072728 patent/WO2011071191A1/ja active Application Filing
- 2010-12-10 TW TW99143190A patent/TWI474512B/zh not_active IP Right Cessation
- 2010-12-10 CN CN201080063667.6A patent/CN102782808B/zh active Active
-
2014
- 2014-02-20 US US14/185,132 patent/US20140166943A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006005331A (ja) * | 2004-05-18 | 2006-01-05 | Sumitomo Electric Ind Ltd | Iii族窒化物半導体結晶およびその製造方法、iii族窒化物半導体デバイスおよびその製造方法ならびに発光機器 |
JP2008021717A (ja) * | 2006-07-11 | 2008-01-31 | Sharp Corp | 半導体製造方法および半導体レーザ素子製造方法 |
JP2008078186A (ja) * | 2006-09-19 | 2008-04-03 | Mitsubishi Chemicals Corp | 窒化物系化合物半導体の結晶成長方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2511947A4 |
YUN F. ET AL., J. APPL. PHYS., vol. 92, 2002, pages 4837 |
Also Published As
Publication number | Publication date |
---|---|
TW201128804A (en) | 2011-08-16 |
US8765222B2 (en) | 2014-07-01 |
JP4769905B2 (ja) | 2011-09-07 |
KR20150044419A (ko) | 2015-04-24 |
KR20120099110A (ko) | 2012-09-06 |
KR101454980B1 (ko) | 2014-10-27 |
US20120248387A1 (en) | 2012-10-04 |
US20140166943A1 (en) | 2014-06-19 |
CN102782808A (zh) | 2012-11-14 |
EP2511947A1 (en) | 2012-10-17 |
TWI474512B (zh) | 2015-02-21 |
EP2511947A4 (en) | 2015-02-25 |
JP2011142317A (ja) | 2011-07-21 |
CN102782808B (zh) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4769905B2 (ja) | p型AlGaN層の製造方法およびIII族窒化物半導体発光素子 | |
JP6179624B2 (ja) | 結晶成長方法および発光素子の製造方法 | |
US8829489B2 (en) | Nitride semiconductor template and light-emitting diode | |
US7662488B2 (en) | Nitride-based semiconductor substrate and method of making the same | |
US7951617B2 (en) | Group III nitride semiconductor stacked structure and production method thereof | |
JP2007103774A (ja) | Iii族窒化物半導体積層構造体およびその製造方法 | |
TW202023066A (zh) | Iii族氮化物半導體發光元件及其製造方法 | |
CN115881865A (zh) | 发光二极管外延片及其制备方法、发光二极管 | |
WO2002017369A1 (en) | Method of fabricating group-iii nitride semiconductor crystal, metho of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device | |
US12002903B2 (en) | Group-III nitride laminated substrate and semiconductor element | |
JP2012204540A (ja) | 半導体装置およびその製造方法 | |
WO2016020990A1 (ja) | 窒化物半導体テンプレート及び発光素子 | |
US20150221502A1 (en) | Epitaxial wafer and method for producing same | |
JP2011151422A (ja) | p型AlGaN層およびIII族窒化物半導体発光素子 | |
JP2006128653A (ja) | 3−5族化合物半導体、その製造方法及びその用途 | |
JP2010258375A (ja) | Iii族窒化物半導体の製造方法 | |
JP7133786B2 (ja) | Iii族窒化物半導体およびその製造方法 | |
JP5366080B2 (ja) | 発光素子形成用複合基板、発光ダイオード素子、その製造方法 | |
JP4425871B2 (ja) | Iii族窒化物膜の製造用下地膜の製造方法 | |
JP2010016191A (ja) | Iii族窒化物系発光素子を作製する方法、及びエピタキシャルウエハを作製する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080063667.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10836105 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010836105 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13512747 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127017084 Country of ref document: KR Kind code of ref document: A |