WO2011070609A1 - 推進制御装置 - Google Patents

推進制御装置 Download PDF

Info

Publication number
WO2011070609A1
WO2011070609A1 PCT/JP2009/006692 JP2009006692W WO2011070609A1 WO 2011070609 A1 WO2011070609 A1 WO 2011070609A1 JP 2009006692 W JP2009006692 W JP 2009006692W WO 2011070609 A1 WO2011070609 A1 WO 2011070609A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
intermediate link
vehicle speed
voltage
auxiliary power
Prior art date
Application number
PCT/JP2009/006692
Other languages
English (en)
French (fr)
Inventor
松本武郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN200980162779.4A priority Critical patent/CN102639354B/zh
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011544976A priority patent/JP4973813B2/ja
Priority to EP09852007.5A priority patent/EP2511123B1/en
Priority to RU2012128453/11A priority patent/RU2502614C1/ru
Priority to CA2783782A priority patent/CA2783782C/en
Priority to US13/511,705 priority patent/US8738208B2/en
Priority to AU2009356390A priority patent/AU2009356390B9/en
Priority to MX2012006479A priority patent/MX2012006479A/es
Priority to PCT/JP2009/006692 priority patent/WO2011070609A1/ja
Priority to KR1020127010542A priority patent/KR101387092B1/ko
Priority to ES09852007.5T priority patent/ES2573334T3/es
Publication of WO2011070609A1 publication Critical patent/WO2011070609A1/ja
Priority to ZA2012/02643A priority patent/ZA201202643B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • B60L9/28Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines polyphase motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0086Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed
    • H02P23/009Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a propulsion control device for an AC electric vehicle.
  • An electric vehicle is generally provided with an auxiliary power supply device for supplying power to lighting, air conditioning, and the like in the electric vehicle.
  • a load (such as lighting and air conditioning) on the auxiliary power supply generates heat (loss) in the main circuit element of the auxiliary power supply regardless of the vehicle speed. Therefore, the main circuit element needs to be cooled, but the cooling method of the main circuit element of the auxiliary power supply device includes a self-venting type using traveling air and a forced air cooling type using a fan.
  • the cooling capacity decreases as the vehicle speed decreases because the strength of the traveling wind depends on the vehicle speed, and becomes the lowest when the traveling wind cannot be expected. Therefore, in order to guarantee the cooling capacity under the worst condition, the cooling design of the main circuit element of the auxiliary power supply apparatus is performed using the no-wind state when the vehicle is stopped as a design condition.
  • the input voltage of the auxiliary power supply is the intermediate link of the main converter.
  • Voltage Normally, the voltage depends on the main motor (vehicle drive motor) that is the load of the main converter, so it is set to a high voltage, and the generated loss of the main circuit elements is larger than the configuration that obtains power directly from the main transformer. Tend to be.
  • JP 2006-121816 A (page 3-4, FIG. 4)
  • the generated loss of the main circuit element of the auxiliary power supply device is large because the intermediate link voltage is set to a high voltage. Become.
  • the input voltage control of the inverter simply using the above-mentioned conventional technology cannot be performed due to the convenience of the auxiliary power supply device, and in order to improve the cooling capacity There was a problem that the cooler had to be enlarged.
  • the present invention has been made to solve the above-described problems.
  • the auxiliary power supply is connected to the intermediate link connection portion of the main converter, the loss generated in the main circuit element of the auxiliary power supply is reduced.
  • An object is to provide a reduced propulsion control device.
  • the converter control for lowering the voltage of the intermediate link connection portion when the vehicle speed is equal to or lower than the VVVF terminal speed is set up a section.
  • the present invention it is possible to provide a propulsion control device that reduces the generation loss of the main circuit element of the auxiliary power supply device 7 when the auxiliary power supply device is connected to the intermediate link connection portion of the main converter.
  • FIG. 1 is a diagram showing an example of the configuration of a power conversion system according to Embodiment 1 of the present invention.
  • the power conversion system is mounted on an AC electric vehicle, and an AC current sent from a power plant through an overhead line is input from the pantograph 1.
  • the main transformer 2 converts the output voltage of the pantograph 1 and outputs it.
  • Converter 3 converts the output of the main transformer 2 from AC to DC.
  • the output voltage of the converter 3 is an intermediate link voltage.
  • the inverter 4 converts the output of the converter 3 from direct current to three-phase alternating current.
  • the filter capacitor 5 is provided on the DC output side of the converter 3 and removes noise from the output of the converter 3 to smooth the intermediate link voltage.
  • the main motor 6 receives a three-phase alternating current from the inverter 4 and drives the electric vehicle.
  • the auxiliary power supply device 7 is connected to the intermediate DC circuit and is a power source that supplies power to lighting, air conditioning, and the like.
  • the inverter 4 outputs power corresponding to the speed of the electric vehicle regardless of the intermediate link voltage.
  • the intermediate link voltage command generator 8 generates an intermediate link voltage command Vd * according to the rotor frequency FM (corresponding to the vehicle speed) of the main motor 6.
  • the converter control unit 9 is a converter control unit that generates a gate pulse signal that actually drives the main circuit element of the converter 3 according to the voltage command Vd *.
  • the inverter control unit 10 receives the rotor frequency FM of the main motor 6 and controls the inverter 4.
  • the propulsion control device includes a converter 3, an inverter 4, a filter capacitor 5, a voltage command generation table 8, a converter control unit 9, and an inverter control unit 10.
  • the converter controller 9 receives the voltage command Vd * from the intermediate link voltage command generator 8 and operates as follows, for example. First, converter control unit 9 calculates a converter voltage command value such that the intermediate link voltage matches voltage command Vd * received from intermediate link voltage command generation unit 8.
  • the converter control unit 9 generates a gate pulse signal for driving the main circuit element of the converter 3 based on the voltage command value, and controls the converter 3 by sending the gate pulse signal to the converter 3. Thereby, the output of converter 3 is controlled so that intermediate link voltage Vd matches voltage command Vd *.
  • a converter control unit of a conventional power conversion system for an AC electric vehicle normally controls the converter 3 so as to keep the intermediate link voltage constant.
  • the converter control unit 9 of the power conversion system according to Embodiment 1 of the present invention generates a gate pulse signal corresponding to the voltage command Vd * because it changes depending on the vehicle speed, as will be described later.
  • Converter 3 is controlled to change intermediate link voltage Vd according to the vehicle speed.
  • the cooling method of the auxiliary power supply device 7 in Embodiment 1 of the present invention is a self-ventilation method.
  • the main circuit element of the auxiliary power supply device 7 is provided on the heat conducting plate, and a heat radiating fin is connected to the heat conducting plate. Heat generated in the main circuit element is transferred from the heat conducting plate to the heat radiating fins, and is radiated from the heat radiating fins to the atmosphere, thereby cooling.
  • the cooling capacity of this cooler is the lowest when the vehicle is stopped when the traveling wind cannot be expected because the strength of the traveling wind depends on the vehicle speed, so that the cooling speed decreases. Therefore, in order to guarantee the cooling capacity under the worst condition, the cooling design of the main circuit element of the auxiliary power supply device 7 is performed using the no-wind state when the vehicle is stopped as a design condition.
  • As a method for improving the cooling capacity it is conceivable to increase the size of the entire cooling device. However, as the size increases, the weight of the cooling device increases, and a larger space needs to be secured. Also, the cost of the cooler increases.
  • FIG. 2 is a graph showing an example of the relationship between the input voltage of the auxiliary power supply device 7 and the inverter loss in the main circuit element of the auxiliary power supply device 7.
  • the horizontal axis represents the input voltage of the auxiliary power supply device 7
  • the vertical axis represents the inverter loss in the main circuit element of the auxiliary power supply device 7.
  • the input voltage of the auxiliary power supply 7 when the input voltage of the auxiliary power supply 7 is lowered, the inverter loss in the main circuit element can be reduced.
  • the input voltage of the auxiliary power supply device 7 cannot be simply reduced, and the generated loss cannot be reduced.
  • the generation loss of the main circuit element of the auxiliary power supply device 7 is reduced by changing the intermediate link voltage according to the vehicle speed.
  • FIG. 3 is a graph showing the relationship between the vehicle speed, the output tensile force (a), and the output voltage (b) in a general main converter including the main converter according to the first embodiment.
  • the horizontal axis represents the vehicle speed
  • the curve (a) represents the output tensile force of the main motor 6
  • the curve (b) represents the output voltage of the inverter 4 of the main converter.
  • the high speed side from the point A is a CVVF (Constant Voltage Variable Frequency) region
  • VVVF Very Voltage Variable Frequency
  • the vehicle speed at point A is called the VVVF end speed.
  • the CVVF region is a region where the inverter 4 is operated at the maximum modulation rate so that the main motor 6 outputs a predetermined performance, and the output voltage of the inverter 4 is constant regardless of the vehicle speed. Changing the intermediate link voltage in this region is equivalent to changing the output voltage of the inverter 4 and is not acceptable.
  • the VVVF region region where the vehicle speed is equal to or lower than the VVVF terminal velocity
  • the modulation rate of the inverter 4 is made variable to control the output voltage of the inverter 4, and the output voltage of the inverter 4 according to the vehicle speed. Changes. Since the intermediate link voltage can be changed in this region, there is room for changing the intermediate link voltage.
  • FIG. 4 is a graph showing the relationship between the vehicle speed and the intermediate link voltage.
  • the horizontal axis is the vehicle speed, and the vertical axis is the intermediate link voltage.
  • 21 indicates an asynchronous mode of inverter modulation
  • 22 indicates a synchronous mode.
  • VVVF region there is room for changing the intermediate link voltage, but how to change it is determined under the following conditions.
  • the output modulation rate of the inverter 4 in the VVVF region has an upper limit determined according to the modulation mode (pulse mode) (for example, 0.8 to 0.9 in the asynchronous mode and 0.98 to 0.99 in the synchronous mode).
  • the intermediate link voltage has a lower limit for outputting the output voltage (b) shown in FIG. An example of this lower limit is shown by a curve (b) in FIG.
  • the intermediate link voltage can be controlled in the region 20 as shown by the oblique lines in FIG.
  • FIG. 5 is a configuration diagram showing the configuration of the inverter control unit 10.
  • the frequency FM is input from the main motor 6 to the output voltage calculation unit 11 shown in FIG. In the VVVF region, the output voltage calculation unit 11 to which the rotor frequency FM is input calculates the output voltage of the inverter 4 along the proportional straight line in FIG. 3, and outputs the output voltage.
  • the correction amount calculation unit 12 calculates the correction amount based on the output current command and the output current feedback, and outputs the correction amount.
  • the adder 13 adds the output voltage from the output voltage calculator 11 and the correction amount from the correction amount calculator 12 and outputs the added value to the quotient unit 14.
  • the commercial calculation unit 14 divides the addition value from the addition unit 13 by the actual detection value of the intermediate link voltage Vd to calculate the output modulation rate, and controls the output voltage of the inverter 4 so as to be the output modulation rate. .
  • FIG. 6 is a graph showing the relationship between the vehicle speed and the converter input current in a general main converter including the main converter according to the first embodiment.
  • the horizontal axis represents the vehicle speed, and the curve represents the converter input current.
  • the product of the intermediate link voltage Vd and the converter output current Id is a constant value.
  • each part such as a conductor or a terminal is designed on the assumption that the converter output current Id in the constant power region 23 is the maximum value of the converter output current Id. Can not. Therefore, in general, the intermediate link voltage Vd cannot be lowered in the constant power region 23.
  • FIG. 7 shows an example of the intermediate link voltage command generation unit 8 according to the first embodiment of the present invention.
  • the horizontal axis is the vehicle speed
  • the vertical axis is the intermediate link voltage.
  • the intermediate link voltage command generation unit 8 is set so that the intermediate link voltage becomes low at a low speed / stop.
  • FIG. 8 is a graph showing an example of generation loss and temperature rise of the main circuit element of the auxiliary power supply device 7.
  • the horizontal axis is the inverter loss of the main circuit element of the auxiliary power supply device 7, and the vertical axis is the temperature rise value.
  • the straight line (a) does not increase the size of the cooler and the vehicle speed is low
  • the straight line (b) does not increase the size of the cooler and the vehicle speed is high
  • the straight line (c) increases the size of the cooler and the vehicle.
  • the straight line (d) is the same size as the straight line (c)
  • the vehicle speed is the same speed (high speed) as the straight line (b). The operation of each is shown.
  • the broken line (e) shows the inverter loss line at the operating point B in FIG. 2, and the broken line (f) shows the inverter loss line at the operating point A in FIG.
  • a dotted line (g) indicates a limit line of the temperature rise of the main circuit element.
  • the temperature rise value is higher for the same inverter loss at low speed than at high speed.
  • the temperature rise value cannot satisfy the limit line (g) at a low speed with a small cooler as indicated by the straight line (a).
  • the size of the cooler was increased, and the operation as indicated by the straight line (c) had to be performed.
  • the operating point A in FIG. 2 is controlled by the main converter so as to become the operating point B in FIG.
  • the speed is low, it can be made below the limit line (g) by a small cooler, and it is not necessary to enlarge the cooler.
  • the propulsion control device is a cooling system for the main circuit semiconductor of the auxiliary power supply device 7 in the power conversion system configured to connect the auxiliary power supply device 7 to the intermediate link connection portion of the main conversion device.
  • the generation loss of the main circuit element of the auxiliary power supply device 7 can be reduced.
  • the temperature rise in the case of the auxiliary power supply device 7 can be reduced, and the reliability of the parts can be improved and the life can be extended.
  • the rotor frequency FM of the main motor 6 is used as the vehicle speed information, but other information corresponding to the vehicle speed may be used instead. For example, you may use the axle rotation speed used with the security device of a T trolley

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

課題 補助電源装置が主変換装置の中間リンク回路に接続されている構成では、補助電源装置の入力電圧である中間リンク電圧が、主機である主変換装置に依存し、高電圧に設定され、補助電源装置の主回路素子の発生損失が大きくなるため、冷却器を大型化しなければならないという問題があった。 解決手段 主変換装置は低速・停車時を車両速度を監視することで認識し、車両速度に応じて中間リンク電圧を変化させることで、冷却能力の低下する低速・停車時における補助電源装置の主回路素子の発生損失を低下させ、冷却器の小型・軽量化を図るものである。

Description

推進制御装置
 この発明は交流電気車の推進制御装置に関するものである。
 電気車には、一般に、電気車内の照明や空調などに電力を供給するための補助電源装置が備えられている。補助電源装置に対する負荷(照明や空調など)は車両速度に関係なく補助電源装置の主回路素子に熱(損失)を発生させる。そこで主回路素子の冷却が必要になるが、補助電源装置の主回路素子の冷却方式には、走行風を用いる自己通風式と、ファンを用いる強制風冷式がある。
 自己通風式を採用している場合の冷却能力は、走行風の強さが車両速度に依存するため、車両速度が遅くなるとともに低下し、走行風が期待できない停車時に最も低くなる。そこで、最悪の条件下での冷却能力を保障するためには、停車時の無風状態を設計条件として補助電源装置の主回路素子の冷却設計を行う。
 一方、交流電気車の電力変換システムの構成において、主変換装置(Converter-Inverter)の中間リンク接続部に補助電源装置を接続する構成の場合、補助電源装置の入力電圧は主変換装置の中間リンク電圧となる。通常当該電圧は主変換装置の負荷である主電動機(車両駆動用モータ)に依存するため、高電圧に設定され、主変圧器より直接電力を得る構成に比べて主回路素子の発生損失が大きくなる傾向がある。
 従来から、電力変換システムにおける主回路素子の発生損失を低減する一つの方策として、特許文献1に示すように直流-交流変換手段(インバータ)や交流-直流変換手段(コンバータ)を負荷電力や入力電力等に応じて制御する方法、一例としてインバータの入力電圧を上下変更する方法が知られている(例えば、特許文献1参照)。
特開2006-121816号公報(第3-4頁、第4図)
 しかし、上記のような中間リンク接続部に補助電源装置を接続する構成の電力変換システムの場合、中間リンク電圧が高電圧に設定されることから、補助電源装置の主回路素子の発生損失が大きくなる。また、同電圧が主機である主変換装置に依存するため、補助電源装置の都合で上記従来技術を単純に用いたインバータの入力電圧制御を行うこともできず、冷却能力を向上させるためには冷却器を大型化しなければならないという問題があった。
 この発明は、上記のような問題を解決するためになされたもので、主変換装置の中間リンク接続部に補助電源装置を接続する構成の場合に、補助電源装置の主回路素子の発生損失を低減した推進制御装置を提供することを目的とする。
 この発明における、中間リンク接続部に自己通風方式により冷却が行われる補助電源装置を備えた推進制御装置においては、車両速度がVVVF終端速度以下のときに前記中間リンク接続部の電圧を下げるコンバータ制御部を設けた。
 この発明によれば、主変換装置の中間リンク接続部に補助電源装置を接続する構成の場合に、補助電源装置7の主回路素子の発生損失を低減した推進制御装置を提供することができる。
この発明に係る実施の形態1に係る電力変換システムの構成の例を示す図である。 この発明の実施の形態1に係る補助電源装置の入力電圧と補助電源装置の主回路素子におけるインバータ損失の関係の一例を示すグラフである。 一般的な主変換装置における車両速度と出力引張力(a)及び出力電圧(b)との関係を示すグラフである。 中間リンク電圧の制御可能な領域を示すグラフである。 この発明の実施の形態1におけるインバータ制御部の構成図である。 一般的な主変換装置における車両速度とコンバータ入力電流の関係を示すグラフである。 この発明の実施の形態1における中間リンク電圧指令生成部の例である。 補助電源装置の主回路素子の発生損失と温度上昇の例を示したグラフである。
実施の形態1.
 図1はこの発明の実施の形態1に係る電力変換システムの構成の例を示す図である。図1において、電力変換システムは交流電気車に搭載され、発電所から架線を伝って送られてくる交流電流がパンタグラフ1から入力される。主変圧器2はパンタグラフ1の出力の電圧を変換して出力する。
 コンバータ3は主変圧器2の出力を交流から直流に変換する。コンバータ3の出力電圧が中間リンク電圧である。インバータ4はコンバータ3の出力を直流から3相交流に変換する。フィルタコンデンサ5はコンバータ3の直流出力側に設けられ、コンバータ3の出力のノイズを除去し中間リンク電圧を平滑化する。主電動機6は、インバータ4から3相交流を入力され、電気車を駆動する。補助電源装置7は中間直流回路に接続されており、照明や空調などに電力を供給する電源である。なお、インバータ4は、中間リンク電圧に依らず、電気車の速度に応じた電力を出力する。
 中間リンク電圧指令生成部8は主電動機6のロータ周波数FM(車両速度に相当)に応じて、中間リンク電圧指令Vd*を生成する。コンバータ制御部9は電圧指令Vd*により実際にコンバータ3の主回路素子を駆動するゲートパルス信号を生成するコンバータ制御部である。インバータ制御部10は主電動機6のロータ周波数FMを入力され、インバータ4を制御する。
 図1において、推進制御装置は、コンバータ3と、インバータ4と、フィルタコンデンサ5と、電圧指令生成テーブル8と、コンバータ制御部9と、インバータ制御部10とで構成される。
 コンバータ制御部9は、中間リンク電圧指令生成部8から電圧指令Vd*受け、例えば、次のように動作する。まず、コンバータ制御部9は、中間リンク電圧が中間リンク電圧指令生成部8から受けた電圧指令Vd*に一致するようなコンバータ電圧指令値を演算する。
 さらに、コンバータ制御部9は、この電圧指令値に基いて、コンバータ3の主回路素子を駆動するゲートパルス信号を生成し、このゲートパルス信号をコンバータ3へ送ることでコンバータ3を制御する。これにより、コンバータ3の出力は、中間リンク電圧Vdが電圧指令Vd*に一致するように制御される。
 従来の交流電気車用の電力変換システムのコンバータ制御部は、通常、中間リンク電圧を一定に保つようにコンバータ3を制御する。それに対し、この発明の実施の形態1に係る電力変換システムのコンバータ制御部9は、後述するように、電圧指令Vd*が車両速度によって変化するため、それに対応してゲートパルス信号を生成し、中間リンク電圧Vdを車両速度によって変化させるようにコンバータ3を制御する。
 この発明の実施の形態1における補助電源装置7の冷却方式は自己通風方式である。補助電源装置7の主回路素子は、導熱板上に設けられ、導熱板には放熱フィンが接続している。主回路素子で発生した熱は導熱板から放熱フィンへ伝わり、放熱フィンから大気中に放熱されることで、冷却が行われる。
 この冷却器の冷却能力は、走行風の強さが車両速度に依存するため、車両速度が遅くなるとともに低下し、走行風が期待できない停車時に最も低くなる。そこで、最悪の条件下での冷却能力を保障するためには、停車時の無風状態を設計条件として補助電源装置7の主回路素子の冷却設計を行う。冷却能力を向上させる方法として、冷却装置全体を大型化することが考えられるが、大型化に伴い冷却装置の重量が増し、より大きなスペースの確保が必要になる。また、冷却器のコストも増大する。
 図2は補助電源装置7の入力電圧と補助電源装置7の主回路素子におけるインバータ損失の関係の一例を示すグラフである。図2において、横軸は補助電源装置7の入力電圧であり、縦軸は補助電源装置7の主回路素子におけるインバータ損失である。図2中の矢印が示すように、補助電源装置7の入力電圧を低下させると主回路素子におけるインバータ損失を低減させることができる。しかし、中間リンク電圧を補助電源装置7の入力電圧とするこの実施の形態1の構成では、補助電源装置7の入力電圧を単純に低下させることはできず、発生損失を低減することはできない。
 そこで、この発明の実施の形態1における推進制御装置においては、車両速度に応じて中間リンク電圧を変化させることで、補助電源装置7の主回路素子の発生損失を低下させる。以下、この点について詳細に説明する。
 図3はこの実施の形態1に係る主変換装置を含む一般的な主変換装置における、車両速度と出力引張力(a)及び出力電圧(b)との関係を示すグラフである。横軸は車両速度であり、曲線(a)は主電動機6の出力引張力、曲線(b)は主変換装置のインバータ4の出力電圧を示している。図3において、A点より高速側はCVVF(Constant Voltage Variable Frequency)領域であり、A点より低速側はVVVF(Variable Voltage Variable Frequency)領域である。A点における車両速度をVVVF終端速度という。
 CVVF領域は、主電動機6が所定の性能を出力するために、インバータ4を最大変調率で運転している領域であり、車両速度によらずインバータ4の出力電圧が一定である。この領域で中間リンク電圧を変化させることはインバータ4の出力電圧を変化させることと等価になり、受け入れられない。
 一方、VVVF領域(車両速度がVVVF終端速度以下の領域)は、インバータ4の変調率を可変にしてインバータ4の出力電圧を制御している領域であり、車両速度に応じてインバータ4の出力電圧が変化する。この領域では中間リンク電圧を変化させることができるため、中間リンク電圧を変化させる余地がある。
 図4は、車両速度と中間リンク電圧の関係を示すグラフである。横軸が車両速度であり、縦軸が中間リンク電圧である。図中、21はインバータ変調の非同期モード、22は同期モードを示す。VVVF領域では中間リンク電圧を変化させる余地があるが、その変化のさせ方は以下のような条件下で決定する。
 まず、コンバータ3が制御可能な中間リンク電圧の値には下限があり、中間リンク電圧がこの値を下回らないようにしなければならない。この下限の例を図4中に直線(a)で示した。この制約により、中間リンク電圧は、図4中において直線(a)より上でなければならない。
 一方、VVVF領域におけるインバータ4の出力変調率は変調モード(パルスモード)に応じて上限が決まっており(例えば、非同期モードで0.8~0.9、同期モードで0.98~0.99程度)、中間リンク電圧には図3に示された(b)の出力電圧を出力するための下限が存在する。この下限の例を図4中に曲線(b)で示した。
 これらの条件下では、中間リンク電圧は、図4中に斜線で示すような領域20で制御できることになる。
 なお、インバータ制御部10における出力変調率は以下に説明するように計算され、インバータ4が制御されている。図5は、インバータ制御部10の構成を示す構成図である。図5に示す出力電圧演算部11には、主電動機6から周波数FMが入力される。VVVF領域において、ロータ周波数FMを入力された出力電圧演算部11は、インバータ4の出力電圧を図3の比例直線に沿うように演算して、その出力電圧を出力する。
 補正量演算部12は、出力電流指令と出力電流フィードバックにより補正量を演算し、その補正量を出力する。加算部13では、出力電圧演算部11からの出力電圧と補正量演算部12からの補正量を加算し、加算値を商算部14に出力する。商算部14では、加算部13からの加算値を、中間リンク電圧Vdの実際の検出値で割って出力変調率を計算し、その出力変調率となるようにインバータ4の出力電圧を制御する。
 また、コンバータ3に入力される電流は中間リンク電圧Vdを変えても変わらず、コンバータ出力電流(直流電流)Idが変わる。図6は、この実施の形態1に係る主変換装置を含む一般的な主変換装置における車両速度とコンバータ入力電流の関係を示すグラフである。横軸は車両速度であり、曲線はコンバータ入力電流を示している。図6に示したコンバータ入力電流が一定の領域である定パワー域23においては、中間リンク電圧Vdとコンバータ出力電流Idの積は一定値である。また、一般に、導体や端子など各部は、定パワー域23におけるコンバータ出力電流Idがコンバータ出力電流Idの最大値であるとして設計を行うため、定パワー域23においてIdをこれ以上上げることは一般にはできない。したがって、定パワー域23では中間リンク電圧Vdを下げることは一般にはできない。
 一方、図6に示した定トルク域24においては、中間リンク電圧Vdとコンバータ出力電流Idの積は車両速度の減少とともに減少する。したがって、定トルク域24においては、コンバータ出力電流Idが最大値(定パワー域23におけるコンバータ出力電流Idの値)を超えない範囲で中間リンク電圧Vdを下げる余地がある。
 以上より、図3でVVVF領域において中間リンク電圧を変化させることは可能であり、例えば図2に示した通り、中間リンク電圧を動作点Aから動作点Bに段階的に変化させることが可能である。図7はこの発明の実施の形態1における中間リンク電圧指令生成部8の例である。横軸が車両速度であり、縦軸が中間リンク電圧である。中間リンク電圧指令生成部8は低速・停止時に中間リンク電圧が低くなるように設定されている。図7に示したようなテーブルを図1の中間リンク電圧指令生成部8に設定することで、コンバータ3によって、低速・停止時に中間リンク電圧が低く制御され、補助電源装置7で発生する損失を低減することができる。
 ここで、図7に示したテーブルにおいては、図4中に斜線で示すような領域20でのみ中間リンク電圧を下げて制御している。
 図8は補助電源装置7の主回路素子の発生損失と温度上昇の例を示したグラフである。横軸は補助電源装置7の主回路素子のインバータ損失であり、縦軸は温度上昇値である。直線(a)は冷却器を大型化しないで車両速度が低速の場合、直線(b)は冷却器を大型化しないで車両速度が高速の場合、直線(c)は冷却器を大型化して車両速度が直線(a)と同じ速度(低速)の場合、直線(d)は冷却器を直線(c)と同様に大型化して車両速度が直線(b)と同じ速度(高速)の場合、での動作をそれぞれ示している。破線(e)は図2の動作点Bでのインバータ損失線、破線(f)は図2の動作点Aでのインバータ損失線をそれぞれ示している。また、点線(g)は主回路素子の温度上昇の限界線を示している。
 図8において、走行風が期待できる自己通風方式の冷却器の場合、高速時に比べ、低速時は同一インバータ損失に対して温度上昇値が高くなる。例えば、破線(f)が示す動作点Aで動作する場合は、直線(a)が示すように小型の冷却器では低速時に温度上昇値が限界線(g)を満足できないので、図2中の矢印(h)が示すように冷却器を大型化し、直線(c)が示すような動作をするようにせざるを得なかった。それに対し本発明においては、矢印(i)が示すように図2における動作点Aを図2における動作点Bとなるように主変換装置にて制御してインバータ損失を低減することにより、図8において低速でも小型の冷却器によって限界線(g)以下にすることができ、冷却器を大型化する必要が無くなる。
 以上、この発明の実施の形態1に係る推進制御装置は、主変換装置の中間リンク接続部に補助電源装置7を接続する構成の電力変換システムにおいて、補助電源装置7の主回路半導体の冷却方式に自己通風式を採用している場合に、補助電源装置7の主回路素子の発生損失を低減することができる。
 また、不必要に冷却器を大型化させる必要が無く、小型・軽量化を図ることができる。
 また、補助電源装置7のケース内の温度上昇を低減することができ、部品の信頼性向上や寿命延伸を図ることができる。
 なお、実施の形態1においては、車両速度情報として主電動機6のロータ周波数FMを用いたが、代わりに、車両速度に相当する他の情報を用いてもよい。例えば、T台車の保安装置で使用する車軸回転数を用いてもよい。
 1 パンタグラフ、2 主変圧器、3 コンバータ、4 インバータ、5 フィルタコンデンサ、6 主電動機、7 補助電源装置、8 中間リンク電圧指令生成部、9 コンバータ制御部、10 インバータ制御部、11 出力電圧演算部、12 補正量演算部、13 加算部、14 商算部。

Claims (6)

  1.  交流を直流に変換して出力するコンバータと、
    前記コンバータにより出力された直流を交流に変換して電動機に供給するインバータと、
    前記コンバータと前記インバータとの間の中間リンク接続部に設けられたフィルタコンデンサと、
    前記中間リンク接続部に接続される自己通風方式により冷却が行われる補助電源装置と、を備えた推進制御装置において、
    車両速度の情報が入力され、その情報に基づき、車両速度の情報が示す車両速度がVVVF終端速度以下のときに前記中間リンク接続部の電圧を下げるコンバータ制御部を備えたことを特徴とする推進制御装置。
  2.  前記コンバータ制御部は、前記コンバータ入力電流の大きさが定パワー域における電流の大きさ以下のときに、前記中間リンク接続部の電圧を下げることを特徴とする請求項1に記載の推進制御装置。
  3.  前記車両速度の情報は、前記電動機のロータ周波数であることを特徴とする請求項1に記載の推進制御装置。
  4.  前記車両速度の情報は、前記電動機のロータ周波数であることを特徴とする請求項2に記載の推進制御装置。
  5.  前記車両速度の情報は、車軸回転数であることを特徴とする請求項1に記載の推進制御装置。
  6.  前記車両速度の情報は、車軸回転数であることを特徴とする請求項2に記載の推進制御装置。
PCT/JP2009/006692 2009-12-08 2009-12-08 推進制御装置 WO2011070609A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US13/511,705 US8738208B2 (en) 2009-12-08 2009-12-08 Propulsion control apparatus
JP2011544976A JP4973813B2 (ja) 2009-12-08 2009-12-08 推進制御装置
EP09852007.5A EP2511123B1 (en) 2009-12-08 2009-12-08 Propulsion control device
RU2012128453/11A RU2502614C1 (ru) 2009-12-08 2009-12-08 Устройство управления силовой установкой
CA2783782A CA2783782C (en) 2009-12-08 2009-12-08 Propulsion control apparatus
CN200980162779.4A CN102639354B (zh) 2009-12-08 2009-12-08 推进控制装置
AU2009356390A AU2009356390B9 (en) 2009-12-08 2009-12-08 Propulsion control device
KR1020127010542A KR101387092B1 (ko) 2009-12-08 2009-12-08 추진 제어 장치
PCT/JP2009/006692 WO2011070609A1 (ja) 2009-12-08 2009-12-08 推進制御装置
MX2012006479A MX2012006479A (es) 2009-12-08 2009-12-08 Aparato de control de propulsion.
ES09852007.5T ES2573334T3 (es) 2009-12-08 2009-12-08 Aparato de control de propulsión
ZA2012/02643A ZA201202643B (en) 2009-12-08 2012-04-12 Propulsion control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006692 WO2011070609A1 (ja) 2009-12-08 2009-12-08 推進制御装置

Publications (1)

Publication Number Publication Date
WO2011070609A1 true WO2011070609A1 (ja) 2011-06-16

Family

ID=44145184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006692 WO2011070609A1 (ja) 2009-12-08 2009-12-08 推進制御装置

Country Status (12)

Country Link
US (1) US8738208B2 (ja)
EP (1) EP2511123B1 (ja)
JP (1) JP4973813B2 (ja)
KR (1) KR101387092B1 (ja)
CN (1) CN102639354B (ja)
AU (1) AU2009356390B9 (ja)
CA (1) CA2783782C (ja)
ES (1) ES2573334T3 (ja)
MX (1) MX2012006479A (ja)
RU (1) RU2502614C1 (ja)
WO (1) WO2011070609A1 (ja)
ZA (1) ZA201202643B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136220A1 (ja) * 2013-03-06 2014-09-12 三菱電機株式会社 電気車用主変換装置
WO2015060000A1 (ja) * 2013-10-25 2015-04-30 株式会社東芝 電気機関車の電力変換装置
JP2015159646A (ja) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 モータ制御システム
WO2017056515A1 (ja) * 2015-10-02 2017-04-06 株式会社東芝 鉄道用電力変換装置
JP2021170922A (ja) * 2020-04-13 2021-10-28 トランスポーテーション アイピー ホールディングス,エルエルシー 電力供給のシステムおよび方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2868514B1 (en) * 2012-06-28 2017-08-23 Mitsubishi Electric Corporation Control device for alternating current electric vehicle
JP2016010306A (ja) * 2014-06-26 2016-01-18 株式会社東芝 電力変換装置および車両用制御装置
JP6672017B2 (ja) * 2016-03-03 2020-03-25 株式会社東芝 電気車制御装置
JP2019118245A (ja) * 2017-12-27 2019-07-18 日本電産トーソク株式会社 モータ制御装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150903A (en) * 1980-04-24 1981-11-21 Toyo Electric Mfg Co Ltd Operation system of electric car
JPS61285078A (ja) * 1985-06-10 1986-12-15 Hitachi Ltd 電気車用電力変換器の制御装置
JPH03103008A (ja) * 1989-09-12 1991-04-30 Toshiba Corp 自動列車制御装置
JPH06237502A (ja) * 1993-02-09 1994-08-23 Hitachi Ltd 誘導電動機の制御方法及びその装置
JPH0739010A (ja) * 1993-07-16 1995-02-07 Mitsubishi Electric Corp 交流電気車の制御装置
JPH07123501A (ja) * 1993-10-28 1995-05-12 Toshiba Corp 電気車制御装置
JPH09271101A (ja) * 1996-03-29 1997-10-14 Toyo Electric Mfg Co Ltd 交流電気車の制御装置
JP2002271901A (ja) * 2001-03-13 2002-09-20 Toshiba Transport Eng Inc 電力変換装置
JP2006121816A (ja) 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd インバータ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2381350A1 (fr) * 1977-02-16 1978-09-15 Citroen Sa Dispositif de regulation de temperatur e pour systeme de refroidissement, notamment d'un moteur a combustion interne de vehicule
JPH0746918B2 (ja) * 1987-06-03 1995-05-17 株式会社日立製作所 電力変換装置
JP3056898B2 (ja) * 1992-10-23 2000-06-26 株式会社東芝 電気車制御装置
US6354096B1 (en) * 2000-10-20 2002-03-12 Nicholas R. Siler Vehicular cooling system
RU2251779C2 (ru) * 2003-05-27 2005-05-10 Российский государственный открытый технический университет путей сообщения Министерства путей сообщения Российской Федерации (РГОТУПС) Регулятор температуры обмоток тяговых электрических машин транспортного средства
JP4665809B2 (ja) * 2006-03-24 2011-04-06 トヨタ自動車株式会社 電動機駆動制御システム
JP4853289B2 (ja) 2007-01-04 2012-01-11 トヨタ自動車株式会社 電源装置およびそれを備える車両
JP4486654B2 (ja) 2007-01-29 2010-06-23 株式会社日立製作所 電動機制御システム、シリーズハイブリッド車両、電動機制御装置、及び電動機制御方法
JP4670833B2 (ja) 2007-05-09 2011-04-13 株式会社デンソー 車両用モータドライブ装置
KR100823671B1 (ko) 2007-08-16 2008-04-18 주식회사 우진산전 궤도 차량의 원격기동회로

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150903A (en) * 1980-04-24 1981-11-21 Toyo Electric Mfg Co Ltd Operation system of electric car
JPS61285078A (ja) * 1985-06-10 1986-12-15 Hitachi Ltd 電気車用電力変換器の制御装置
JPH03103008A (ja) * 1989-09-12 1991-04-30 Toshiba Corp 自動列車制御装置
JPH06237502A (ja) * 1993-02-09 1994-08-23 Hitachi Ltd 誘導電動機の制御方法及びその装置
JPH0739010A (ja) * 1993-07-16 1995-02-07 Mitsubishi Electric Corp 交流電気車の制御装置
JPH07123501A (ja) * 1993-10-28 1995-05-12 Toshiba Corp 電気車制御装置
JPH09271101A (ja) * 1996-03-29 1997-10-14 Toyo Electric Mfg Co Ltd 交流電気車の制御装置
JP2002271901A (ja) * 2001-03-13 2002-09-20 Toshiba Transport Eng Inc 電力変換装置
JP2006121816A (ja) 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd インバータ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511123A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136220A1 (ja) * 2013-03-06 2014-09-12 三菱電機株式会社 電気車用主変換装置
JP5968518B2 (ja) * 2013-03-06 2016-08-10 三菱電機株式会社 電気車用主変換装置
US9764647B2 (en) 2013-03-06 2017-09-19 Mitsubishi Electric Corporation Main conversion device for electric vehicle
WO2015060000A1 (ja) * 2013-10-25 2015-04-30 株式会社東芝 電気機関車の電力変換装置
JP2015084621A (ja) * 2013-10-25 2015-04-30 株式会社東芝 電気機関車の電力変換装置
US10141858B2 (en) 2013-10-25 2018-11-27 Kabushiki Kaisha Toshiba Power converter for electric locomotive
JP2015159646A (ja) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 モータ制御システム
WO2017056515A1 (ja) * 2015-10-02 2017-04-06 株式会社東芝 鉄道用電力変換装置
JP2017070169A (ja) * 2015-10-02 2017-04-06 株式会社東芝 鉄道用電力変換装置
JP2021170922A (ja) * 2020-04-13 2021-10-28 トランスポーテーション アイピー ホールディングス,エルエルシー 電力供給のシステムおよび方法
JP7337116B2 (ja) 2020-04-13 2023-09-01 トランスポーテーション アイピー ホールディングス,エルエルシー 電力供給のシステムおよび方法

Also Published As

Publication number Publication date
US20120296507A1 (en) 2012-11-22
JP4973813B2 (ja) 2012-07-11
ZA201202643B (en) 2013-06-26
KR101387092B1 (ko) 2014-04-18
KR20120060898A (ko) 2012-06-12
AU2009356390A1 (en) 2012-07-26
CA2783782C (en) 2015-03-31
JPWO2011070609A1 (ja) 2013-04-22
CN102639354A (zh) 2012-08-15
CN102639354B (zh) 2014-10-15
EP2511123B1 (en) 2016-04-27
EP2511123A4 (en) 2013-05-29
ES2573334T3 (es) 2016-06-07
AU2009356390B2 (en) 2013-08-15
MX2012006479A (es) 2012-07-30
RU2502614C1 (ru) 2013-12-27
CA2783782A1 (en) 2011-06-16
US8738208B2 (en) 2014-05-27
EP2511123A1 (en) 2012-10-17
AU2009356390B9 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP4973813B2 (ja) 推進制御装置
CA2642262C (en) Control apparatus for electric train
JP4297971B2 (ja) 電動機制御装置
JP2003505002A (ja) 電力駆動システムを制御する方法
JP2009516630A (ja) 規格外の電源に対して許容性のあるエレベータモータドライブ
TWI770019B (zh) 電車用電力轉換控制裝置
US20200238835A1 (en) Power conversion controller
CN102835024B (zh) 电梯的调整装置和电力驱动器
JP6203036B2 (ja) 電気車制御装置
EP2843826A2 (en) Method and apparatus for controlling induction motor of train
JP2016086488A (ja) 鉄道車両の駆動装置
JP5364605B2 (ja) 鉄道車両の駆動装置
JP6751683B2 (ja) 電力変換装置および電力変換方法
CN101267183B (zh) 线性感应电动机驱动系统
JP5294946B2 (ja) 電気車制御装置および抑速ブレーキ制御方法
JP2007252084A (ja) 電気車制御装置
JPH0739010A (ja) 交流電気車の制御装置
JP2023109080A (ja) 電動機制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162779.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011544976

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127010542

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009852007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13511705

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/006479

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 5004/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2783782

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009356390

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2012128453

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2009356390

Country of ref document: AU

Date of ref document: 20091208

Kind code of ref document: A