WO2011069328A1 - 高温稳定的具有大磁熵变的la(fe,si)13基多间隙原子氢化物磁制冷材料及其制备方法 - Google Patents

高温稳定的具有大磁熵变的la(fe,si)13基多间隙原子氢化物磁制冷材料及其制备方法 Download PDF

Info

Publication number
WO2011069328A1
WO2011069328A1 PCT/CN2010/001936 CN2010001936W WO2011069328A1 WO 2011069328 A1 WO2011069328 A1 WO 2011069328A1 CN 2010001936 W CN2010001936 W CN 2010001936W WO 2011069328 A1 WO2011069328 A1 WO 2011069328A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
hydrogen
temperature
gap
entropy change
Prior art date
Application number
PCT/CN2010/001936
Other languages
English (en)
French (fr)
Inventor
赵金良
沈保根
胡凤霞
沈俊
李养贤
孙继荣
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to US13/514,960 priority Critical patent/US20130200293A1/en
Publication of WO2011069328A1 publication Critical patent/WO2011069328A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/24Hydrides containing at least two metals; Addition complexes thereof
    • C01B6/246Hydrides containing at least two metals; Addition complexes thereof also containing non-metals other than hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material

Definitions

  • the invention relates to a magnetic material, in particular to a high temperature stable La(Fe,Si), 3-based multi-gap atomic hydride magnetic refrigeration material with high magnetic entropy change, and the invention also relates to the preparation of the above magnetic refrigeration material method.
  • Magnetic refrigeration is a green and environmentally friendly refrigeration technology. Compared with the traditional refrigeration technology that relies on gas compression and expansion, magnetic refrigeration uses magnetic material as the refrigerant, has no destructive effect on the atmospheric ozone layer, has no greenhouse effect, and the magnetic entropy density of the magnetic medium is larger than that of the gas, so the refrigeration The device can be made more compact. Magnetic refrigeration requires only the electromagnet or superconductor and permanent magnet to provide the required magnetic field, no compressor, no wear of moving parts, so mechanical vibration and noise are small, reliability is high, and life is long. In terms of thermal efficiency, magnetic refrigeration can reach 30% to 60% of the Carnot cycle, while the refrigeration cycle relying on gas compression expansion can only reach 5% to 10%. Therefore, magnetic refrigeration technology has a good application prospect and is known. For high-tech green refrigeration technology. Magnetic refrigeration technology, especially room temperature magnetic refrigeration technology, has received great attention from domestic and foreign research institutions and industry departments due to its huge potential application market in industries such as household refrigerators, home air conditioners, central air conditioners, and supermarket video refrigeration systems.
  • the magnetocaloric properties of magnetic refrigerants mainly include magnetic entropy change, adiabatic temperature change, specific heat, thermal conductivity and the like.
  • the change of magnetic entropy and adiabatic temperature is the characterization of the magnetocaloric effect of magnetic refrigeration materials. Because the magnetic entropy changes easily compared with the adiabatic temperature, people are more accustomed to using magnetic entropy to characterize the magnetocaloric effect of magnetic refrigeration materials.
  • the magnetocaloric effect of magnetic refrigeration materials (magnetic entropy change, adiabatic temperature change) is one of the key factors restricting the refrigeration efficiency of magnetic refrigerators. Therefore, the magnetic refrigeration materials with large magnetic entropy change in the temperature range of Curie point have become domestic and foreign. The focus of research.
  • the rare earth transition group intermetallic compound having a NaZn 13 type cubic structure has the highest 3d metal content among the known rare earth intermetallic compounds, and the high symmetry of the structure makes it have superior soft magnetic properties and high saturation magnetization.
  • RFen does not exist due to the positive heat of formation between the rare earth and iron, and it is necessary to add an element such as Al or Si to lower the formation of yttrium to obtain a stable phase.
  • CN1450190A discloses a NaZn 13 type rare earth-iron silicon (R-Fe-Si) based intermetallic compound, and prepares a low C content metal interstitial compound by direct smelting and annealing treatment, by changing the C atom in the alloy.
  • the content can adjust the Curie temperature within a certain range, but as the C atom increases, more and more ⁇ -Fe appears in the alloy, resulting in a decrease in magnetic entropy and a decrease in refrigeration capacity.
  • the present invention firstly prepares a La(Fe,Si) l 3 -based gap master alloy La 1-a R a Fe 13 _ b Si b X c and then to a gap mother alloy La i _ a R a Fe 13 -b Si b X c re-introducing interstitial hydrogen atoms to solve the problem that it is difficult to maintain hydrogen in the alloy under high temperature conditions, while satisfying a wide range of Curie points, continuously adjustable, maintaining large magnetic entropy change, and reducing magnetic hysteresis loss This problem, resulting in a performance (structural) stability, Curie point is widely adjustable near room temperature, magnetic hysteresis loss is small, magnetic entropy is better than Gd La (Fe, Si) with large magnetic entropy change 13
  • the high temperature stable La(Fe,Si) 13 -based multi-gap atomic hydride magnetic refrigeration material with high magnetic entropy can stably exist in the gap at 0 to 350 ° C.
  • the magnetic entropy change under the 0-5T magnetic field change is 5-50J/kgK, and the phase change temperature range is 180-360K.
  • the present invention provides a method for preparing the high temperature stable rare earth-iron based multi-gap atomic compound magnetic refrigeration material having a large magnetic entropy change, the method comprising the steps of:
  • step ii) The alloy ingot smelted in step ii) is vacuum annealed at 1050 ⁇ 1350 °C, then taken out and rapidly quenched into liquid nitrogen or ice water to cool, thereby preparing 2 ⁇ 3 type La R a Fe 13 . b Si b X c gap mother alloy single phase sample; and
  • the melting temperature in the step ii) is 1000-2500 ° C
  • the degree of vacuum is less than 2 x 10 -5 Pa
  • the purity of the argon is greater than 99%.
  • the present invention first prepares a La(Fe,Si) 13 -based gap master alloy by first preparing Then, a gap hydrogen atom is reintroduced into the gap master alloy L ai _ a R a Fe 1 M) Si b X c to prepare a high temperature stable La(Fe,Si) 13-based multi-gap atom with large magnetic entropy change.
  • a compound magnetic refrigeration material that is, a compound of La a R a Fe 13 . b Si b X c H d .
  • 1 is a room temperature X-ray diffraction (XRD) line of ProjLa ⁇ Fen.sSi ⁇ C prepared in Example 1 of the present invention, wherein the abscissa is a diffraction angle and the ordinate is a diffraction intensity;
  • MT 2 magnetization-temperature (MT) curve of Pr 3 Lao. 7 F e
  • Example 3 is a magnetization curve of Pr ⁇ Lao.Fe ⁇ Si ⁇ Cz prepared in Example 1 of the present invention, wherein the abscissa is magnetic induction intensity, and the ordinate is magnetization, wherein the curve is:
  • represents the isothermal magnetization curve of the ProjLa ⁇ Fen.sSi ⁇ Qn ascending process
  • ⁇ . ⁇ represents the isothermal magnetization curve of the ProjLaojFeM.sSi ⁇ Qn falling field process
  • FIG. 4 is a graph showing the relationship between the magnetic entropy change of ProjLat Fe ⁇ Si ⁇ Q ⁇ prepared according to Example 1 of the present invention under a magnetic field of 1T, 2 ⁇ , 3 ⁇ , 4 ⁇ , 5 ⁇ , wherein the abscissa is temperature and the ordinate is magnetic entropy. Change, where the curve:
  • ⁇ - stands for Isothermal magnetic entropy change-temperature curve under 1T magnetic field
  • ⁇ ⁇ — represents the isothermal magnetic entropy change-temperature curve of Pr ⁇ LaojFen.sSi Co.z under 2T magnetic field;
  • ⁇ - stands for the isothermal magnetic entropy change-temperature curve of ProjLaojFen.sSi ⁇ Qu under 3T magnetic field;
  • stands for isothermal magnetic entropy change-temperature curve of ProjLainFeu.sSi ⁇ Qn under 4T magnetic field;
  • stands for ProjLat ⁇ Fen.sSi ⁇ Q hysteresis loss-temperature curve under 5T magnetic field
  • stands for ProjLaojFen.sSi Q ⁇ hydrogen pressure during the hydrogen absorption process at 350 °C - the hydrogen mass percentage relationship in the sample;
  • stands for P r 3 Lao. 7 F ei Si, . 5 hydrogen pressure during the hydrogen absorption process at 350 ° C - the hydrogen mass percentage relationship in the sample;
  • One Piece represents the relationship between hydrogen pressure and hydrogen mass percentage in the sample during the hydrogen evolution process of Pro.3Lao.7Feu.5S 5 at 350 Torr;
  • Figure ⁇ is the MT curve of ProjLa ⁇ Fen.sS sQnHo.s prepared in Example 2 of the present invention under a magnetic field of 100 Oe, wherein the abscissa is temperature and the ordinate is magnetization, wherein the curve:
  • Figure 8 is a magnetization curve of P r o. 3 Lao. 7 F en . 5 Si 15 Co. 2 H 6 prepared in Example 2 of the present invention, wherein the abscissa is the magnetic induction intensity, and the ordinate is the magnetization, wherein the curve:
  • Figure 9 is a graph showing the relationship between the magnetic entropy change of Pr0.3La0.7Fen.5Sij.5C0.2H 6 prepared in Example 2 of the present invention under a magnetic field of 1T 2 ⁇ 3 ⁇ 4 ⁇ 5 ⁇ , wherein the abscissa is temperature and the ordinate is magnetic Entropy change, where the curve:
  • Figure 10 is the M-T curve of PrcnLaojFeu.sSi sCcuHu prepared in Example 2 of the present invention under a magnetic field of 100 Oe, wherein The abscissa is temperature, the ordinate is magnetization, and the curve is:
  • thermomagnetic curve of the heating process of Pro.3Lao.7Fen.5SiuCo.2HL2;
  • thermomagnetic curve representing the cooling process of Pr0.3Lao.7Feu.5SiL5C0.2HL2;
  • Figure 11 is a magnetization curve of Pro.3Lao.7Feu.5SiL5Co.2Hu prepared in Example 2 of the present invention, wherein the abscissa is magnetic induction and the ordinate is magnetization, wherein the curve is:
  • O— is an isothermal magnetization curve representing the descending process of Pro.3La 7Fen.5Si 5Co.2Hi 2;
  • Figure 12 is a graph showing the relationship between the magnetic entropy change of ProjLainFeu.sSiuQ ⁇ H ⁇ in the magnetic field of 1T, 2 ⁇ , 3 ⁇ , 4 ⁇ , 5 ⁇ according to Example 2 of the present invention, wherein the abscissa is temperature and the ordinate is magnetic entropy change. , where the curve:
  • a gap master alloy having a chemical formula of PrMLa ⁇ Feu.sSi Q ⁇ is prepared, and the specific process is:
  • step i) Put the raw material prepared in step i) into the electric arc furnace, evacuate it to 2x l0_ 5 Pa or more, and wash it 1 ⁇ 2 times with the usual high-purity argon cleaning method, using the usual method at 1 atmosphere. Repeatedly smelting 3 to 6 times under pure argon protection, melting temperature to melt;
  • the room temperature X-ray (XRD) diffraction line of the sample was measured by a Cu target X-ray diffractometer (manufactured by Rigaku Co., Ltd., model: RINT 2400), and the results showed that the sample was a Na n n n3 cubic crystal structure, and Fig. 1 shows a gap master alloy ProjLa.
  • the room temperature XRD line of ⁇ Fe Si ⁇ Q ⁇ has a good single phase.
  • the magnetic curve (MT) is shown in Fig. 2. From the MT curve, it can be determined that the Curie point T c is 208K.
  • the magnetic entropy change-temperature (-AS-T) curve of the gap master alloy ProjLaojFen.sSi Q prepared in this example near the Curie temperature is shown in Fig. 4.
  • a very large magnetic entropy change occurs at T c , at 0 ⁇ 5T Under the change of the magnetic field, the magnetic entropy becomes 30.1 J/kg :.
  • Figure 5 shows the hysteresis loss of the gap master alloy P ⁇ La ⁇ Fen ⁇ i Q versus temperature. It is found that there is still a large hysteresis loss. Comparative Example 1: Rare earth metal Gd
  • a typical room temperature magnetic refrigeration material Gd (purity of 99.9% by weight, manufacturer name: Hunan Shenghua Rare Earth Metal Materials Co., Ltd.) was selected as a comparative example.
  • a superconducting quantum magnetometer (SQUID, trade name: superconducting quantum interference magnetometer, manufacturer name: Quantum Design, USA, product model: MPMS-7)
  • the Curie temperature is 293K measured under a magnetic field of 100 Oe. Under the 0-5T magnetic field change, the magnetic entropy at the Curie temperature is 9.8 J/kg K.
  • Comparative Example 2 Preparation of Pffl.3Lao.7Fen.sgk alloy
  • step i) Put the raw material prepared in step i) into the electric arc furnace, evacuate it to 2x l (T 5 Pa or more, and wash it 1 ⁇ 2 times with the usual high-purity argon cleaning method, then use the usual method at 1 atmosphere Under the protection of high purity argon gas, the smelting is repeated 3 to 6 times, and the melting temperature is melted;
  • the gap H atom is further introduced into the gap master alloy Pro.3Lao.7Fej , , 5 Si, . 5 C 0 . 2 to prepare a compound of the formula: Pro.3Lao.7Fen .5Sir5Co.2H 6 and ProjLaojFe ⁇ Si Q Hu,
  • the specific process is:
  • the fresh PrcnLa ⁇ Fe ⁇ Si ⁇ Q ⁇ gap mother alloy prepared in Example 1 was crushed into granules, placed in a high-pressure vessel, and evacuated to 2x l (T 5 Pa or more, at 35 CTC, high pressure was introduced into the high-pressure vessel. Pure H 2 , gas pressure of 1.0 and 1.5 atmospheres, respectively, keeping the inspiratory time for 5 hours and 2 hours; then placing the high pressure vessel in room temperature (20 ° C) water, while pumping the high pressure vessel with a mechanical pump The remaining hydrogen gas was cooled to room temperature.
  • PCT manufactured by the PCT (manufacturer name: Beijing Nonferrous Metals Research Institute) experimental analyzer analysis and balance weighing calculation, gap compounds with H contents of about 0.6 and 1.2 were obtained.
  • the isothermal magnetization curve of the interstitial compound near the Curie temperature was determined on SQUID as shown in Figs.
  • the hysteresis loss is proportional to the area enclosed by the rising magnetic field curve and the falling magnetic field curve at the same temperature.
  • the hydrogen absorption before the alloy .sSi ⁇ Q At the same temperature, the area surrounded by the rising magnetic field curve and the falling magnetic field curve is large, that is, there is a large hysteresis loss, as shown in Fig. 5.
  • Fig. 8 and Fig. 11 that after the hydrogen absorption, the alloys Pr0.3La0.7Fen.5Sii.5C0.2H 6 and Pr0.3La0.7Feu.5SiL5C0.2H 2 are surrounded by the rising magnetic field curve and the falling magnetic field curve at the same temperature. The area is close to zero, therefore, compared to the gap master alloy ProjLaojFen.sSij.sQu, the compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

高温稳定的具有大磁熵变的 La(Fe,Si)13基多间隙原子氢化物磁制冷材料
及其制备方法 技术领域
本发明涉及一种磁性材料, 特别是涉及一种高温稳定的具有大磁熵变的 La(Fe,Si),3基多间隙原子氢化物磁制冷材料, 本发明还涉及上述磁制冷材料的制备方 法。 技术背景
磁制冷是一项绿色环保的制冷技术。 与传统的依靠气体压缩与膨胀的制冷技术相 比, 磁制冷是采用磁性物质作为制冷工质, 对大气臭氧层无破坏作用, 无温室效应, 而且磁性工质的磁熵密度比气体大, 因此制冷装置可以做得更紧凑。 磁制冷只要用电 磁体或超导体以及永磁体提供所需的磁场, 无需压缩机, 没有运动部件的磨损问题, 因此机械振动及噪声较小, 可靠性高, 寿命长。 在热效率方面, 磁制冷可以达到卡诺 循环的 30% ~ 60%,而依靠气体的压缩膨胀的制冷循环一般只能达到 5%〜 10%,因此, 磁制冷技术具有良好的应用前景,被誉为高新绿色制冷技术。 磁制冷技术, 尤其是室温 磁制冷技术, 因在家用冰箱、 家用空调、 中央空调、 超市视频冷冻系统等产业方面具 有巨大的潜在应用市场而受到国内外研究机构及产业部门的极大关注。
磁制冷工质的磁热性能主要包括磁熵变、 绝热温度变化、 比热、 热导率等等。 其 中, 磁熵变和绝热温度变化是磁制冷材料磁热效应的表征, 因磁熵变较绝热温度变化 易于准确测定, 因而人们更习惯采用磁熵变来表征磁制冷材料的磁热效应。 磁制冷材 料的磁热效应 (磁熵变、 绝热温度变化)是制约磁制冷机制冷效率的关键因素之一, 因 此, 寻找居里点在室温温区具有大磁熵变的磁制冷材料成为国内外的研究重点。
1997年, 美国 Ames实验室的 Gschneidner, Pecharsky发现 Gd5(SixGel -x)4合金 (US5743095)具有巨磁热效应, 在室温附近磁熵变达到 Gd的 2倍左右, 该材料的大磁 熵变的来源为一级磁相变。 与二级磁相变相比, 发生一级相变的材料的磁熵变往往集 中在相变点附近更窄的温区, 根据麦克斯韦关系, 从而呈现'出更高的磁熵变值。 然而, 由于该材料对稀土等原料纯度的要求很高, 价格昂贵, 且存在很大的磁滞损耗, 这些 缺点限制了其在实际中的应用。 因此, 在探索新型磁制冷材料的过程中, 寻找滞后小 的具有大磁熵变的一级相变材料有重要的现实意义。
具有 NaZn13型立方结构的稀土过渡族金属间化合物在已知的稀土金属间化合物中 具有最高的 3d金属含量,加之其结构的高对称性使之具有优越的软磁性能和高饱和磁 化强度。 对于稀土 -铁基 NaZn13型立方结构化合物, 由于稀土与铁之间正的形成热, RFen不存在, 需要添加 Al、 Si等元素降低形成焓来获得稳定相。
CN1450190A专利公开了一种 NaZn13型稀土 -铁硅 (R-Fe-Si)基金属间化合物, 并通 过直接熔炼、 退火处理, 制备低 C含量的金属间隙化合物, 通过改变 C原子在合金中 的含量, 可以在一定范围内调节居里温度, 但随着间隙 C原子的增加, 合金中出现越 来越多的 α-Fe, 导致磁熵变降低, 制冷能力下降; 将不含 C的母合金进行吸、 脱气处 理得到的间隙化合物, 能够大范围的调节居里温度, 且磁熵变仅有很小的降低, 但当 温度超过 15(TC时, 间隙氢原子会从合金中析出, 导致材料性能的降低, 且利用该母 合金制备的间隙氢化物的均匀性难以得到保障。 此外按照该专利公布的制备方法, 吸 气温度需在 0-800Ό范围内,压力在 0.5-10个大气压范围内,吸气时间在 0-100小时内, 对吸氢设备和周围环境的变化提出了更高的要求; 先吸氢, 再脱氢的办法, 一方面使 得工艺流程更加复杂, 另一方面也会造成杂质相 α-Fe的出现。
综上所述, 现有材料均很难同时满足材料性能稳定, 居里点在室温附近通过成份 变化大范围可调、 保持大的磁熵变、 滞后损耗小这些实用化磁制冷材料的要求。 发明内容
本发明的一个目的在于提供一种性能稳定的具有大磁熵变的 La(Fe,Si)13基多间隙 原子氢化物磁制冷材料。
本发明的又一个目的在于提供制备上述多间隙原子氢化物磁制冷材料的方法。 为实现上述目的,本发明通过首先制备 La(Fe,Si)l 3基间隙母合金 La1-aRaFe13_bSibXc, 然后向间隙母合金 Lai_aRaFe13-bSibXc中再引入间隙氢原子, 来解决高温条件下难以保 持氢在合金中稳定存在、 同时满足居里点大范围连续可调、 保持大的磁熵变, 并且降 低磁滞后损耗这一难题, 从而得到一种性能 (结构)稳定, 居里点在室温附近大范围可 调,磁滞后损耗小,磁熵变优于 Gd的具有大磁熵变的 La(Fe,Si)13基多间隙原子氢化物 磁制冷材料, 通过在制备过程中严格控制氢气压力和吸气时间, 能够准确控制最终间 隙合金 La^RaFe mSibXcHd中间隙氢原子的含量。 本发明的目的是通过如下的技术方案实现的:
一方面, 本发明提供一种高温稳定的具有大磁熵变的 1^(?£,81)13基多间隙原子氢 化物磁制冷材料, 其化学通式为: La RaFe^bSibXeHd, 具有立方 NaZn13结构, 其中: R为一种或一种以上满足 a范围的下述稀土元素的任意组合: Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu、 Y、 Sc,
a的范围如下:
当 R为 Ce元素时, 0<a≤0.9;
当 R为 Pr、 Nd时, 0<a<0.7;
当 R为 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu、 Y、 Sc时, a为 0~0.5 ; b的范围为: 0<b≤3.0;
X为一种或一种以上满足 c范围的下述元素的任意组合: C、 B、 Li、 Be, c的范围为: 0<c≤0.5;
d的范围为: 0<d≤3.0。
优选地, 本发明所述的高温稳定的具有大磁熵变 La(Fe,Si)13基多间隙原子氢化物 磁制冷材料在 0~350°C条件下, 氢仍能稳定存在于间隙之中, 在 0-5T磁场变化下的磁 熵变值为 5-50J/kgK, 相变温区位于 180-360K。 另一方面, 本发明提供一种用于制备所述高温稳定的具有大磁熵变的稀土-铁基多 间隙原子化合物磁制冷材料的方法, 所述方法包括下述步骤:
i) 按!^^!^^^^ ^^的化学式配料, 其中 R、 X、 a、 b和 c如上述所定义; ii) 将步骤 i)配制好的原料放入电弧炉中, 抽真空, 用高纯氩气清洗炉腔并充入氩 气至 0.5~1.5个大气压, 电弧起弧, 每个合金锭反复翻转熔炼 1~6次;
Hi) 经步骤 ii)熔炼好的合金锭在 1050~1350°C条件下真空退火,之后取出并快速淬 入液氮或冰水中冷却, 从而制备出 2^3型 La RaFe13.bSibXc间隙母合金单相样品; 和
iv) 将步骤 iii)制备的 La|.aRaFe1 W)SibXc母合金碎成颗粒或制成粉末, 放入氢气中 退火, 从而制备出 Lai.aRaFe^bSibXeHd多间隙原子氢化物; 其间通过调节氢气压力、 退火温度和时间来控制合金中的氢含量 d, d的范围如上述所定义。
优选地, 在根据本发明所述的方法中, 用于制备 La aRaFe1 W)SibXeHd的母合金 1^1^ ;^13.1^^¾为新鲜母合金。 优选地, 根据本发明所述的方法, 所述步骤 i)中所使用的原料 La、 R、 Fe、 Si和 X的纯度大于 99重量%, 优选大于 99.9重量%, 更优选大于 99.99重量%, 其中 La、 R、 Fe、 Si和 X如上述所定义。 其中 Fe、 X可以以单质或 Fe-X中间合金的形式加入。
优选地, 根据本发明所述的方法, 所述步骤 ii)中的熔炼温度为 1000-2500°C, 真空 度小于 2x10— 5Pa, 所述氩气纯度大于 99%。
优选地, 根据本发明所述的方法, 所述步骤 Hi)的真空退火操作中的真空度小于 l xlO—3Pa, 退火时间为 1天至 30天。
优选地, 根据本发明所述的方法, 所述步骤 )中的氢气压力为大于 0个大气压且 小于或等于 5个大气压, 在氢气中的退火温度为 0~350°C, 退火时间为 1分钟至 1天。
优选地, 根据本发明所述的方法, 在所述步骤 iv)中利用 PCT (压力-浓度-温度)实 验分析仪得到多间隙原子氢化物中间隙氢原子的含量。
优选地, 根据本发明所述的方法, 在所述步骤 )中一次性吸氢至所需含量。 优选地,所述步骤 iv)中所述单相样品制成的粉末为粒径小于 2毫米的不规则粉末, 并且所述氢气退火中氢气纯度大于 99%。 与现有技术相比, 本发明的优势在于:
1) 本发明通过首先制备 La(Fe,Si)13基间隙母合金
Figure imgf000006_0001
然后向间隙 母合金 Lai_aRaFe1 M)SibXc中再引入间隙氢原子, 制备了一种高温稳定的具有大磁熵变 的 La(Fe,Si)13基多间隙原子化合物磁制冷材料, 即 La aRaFe13.bSibXcHd化合物。该化合 物与以往直接吸氢所得的间隙化合物相比, 在室温〜 350°C、 常压的条件下仍能保持稳 定的性能,即氢原子仍能稳定存在于间隙之中,且居里点通过成份变化可在 180K〜360K 区间内大范围连续调节, 在室温附近可获得高于金属 Gd的 2倍以上的大磁熵变, 是 一种非常理想的室温磁制冷材料。
2) 本发明提供的制备具有大磁熵变的 La(Fe,Si)13基多间隙原子化合物磁制冷材料 的方法, 能够更加准确的控制并测定间隙原子 (N、 H等)在母合金中的含量, 吸气温度 更低, 压力更小, 步骤更加简单, 所得到得间隙化合物更加均匀, 因所使用的原料含 有大量相对廉价的 Fe等, 具有原料丰富、 成本低廉等显著优点, 另外, 本发明还具有 制备工艺简单、 适于磁制冷材料的工业化生产等优点。 附图说明: 图 1为本发明实施例 1制备的 ProjLa^Fen.sSi^C 的室温 X射线衍射 (XRD)谱线, 其中, 横坐标为衍射角, 纵坐标为衍射强度;
图 2为本发明实施例 1制备的 Pr 3Lao.7Fe | 1.5Si1 5Co.2在 100 Oe磁场下的磁化强度- 温度 (M-T)曲线, 其中横坐标为温度, 纵坐标为磁化强度, 其中的曲线:
一 "代表 ProjLaojFen.sSiuQu升温过程的热磁曲线;
"一。一 "代表 ProjLa^Feu.sSi^Q 降温过程的热磁曲线;
图 3为本发明实施例 1制备的 Pr^Lao. Fe^Si^C z的磁化曲线, 其中横坐标为磁 感应强度, 纵坐标为磁化强度, 其中的曲线:
"一 *一 "代表 ProjLa^Fen.sSi^Qn升场过程的等温磁化曲线;
"一。一"代表 ProjLaojFeM.sSi^Qn降场过程的等温磁化曲线;
图 4为本发明实施例 1制备的 ProjLat Fe^Si^Q^在 1T、 2Τ、 3Τ、 4Τ、 5Τ磁场 下的磁熵变随温度的变化曲线, 其中横坐标为温度, 纵坐标为磁熵变, 其中的曲线:
"一■—"代表
Figure imgf000007_0001
在 1T磁场下等温磁熵变 -温度曲线;
"― ·— "代表 Pr^LaojFen.sSi Co.z在 2T磁场下等温磁熵变 -温度曲线;
"一▲—"代表 ProjLaojFen.sSi^Qu在 3T磁场下等温磁熵变 -温度曲线;
"一 "代表 ProjLainFeu.sSi^Qn在 4T磁场下等温磁熵变 -温度曲线;
"一令一 "代表 Pr^LaojFen.sSi Co. 在 5T磁场下等温磁熵变 -温度曲线; 图 5为本发明实施例 1制备的 Prt La^Fen sSi^Qn在 5T磁场下的磁滞后损耗随 温度的变化关系曲线, 其中横坐标为温度, 纵坐标为磁滞后损耗, 其中的曲线:
"一 *一 "代表 ProjLat^Fen.sSi^Q 在 5T磁场下磁滞损耗 -温度曲线;
图 6 为本发明实施例 1 制备的 Pr^LatnFen.sSiuQn和对比实施例 2 制备的 ProjLaojFen.sSi 在 350°C下的吸放氢曲线, 其中的曲线:
"一 *一"代表 ProjLaojFen.sSi Q^在 350°C下吸氢过程中氢气压力-样品中氢质量 百分含量关系曲线;
"一 o— "代表 Pro.3Lao.7Feu.5Si ,.50) 2在 350°C下放氢过程中氢气压力-样品中氢质量 百分含量关系曲线;
"一隱一 "代表 Pr 3Lao.7Fe i Si, .5在 350'C下吸氢过程中氢气压力-样品中氢质量百分 含量关系曲线;
"一口一 "代表 Pro.3Lao.7Feu.5S 5在 350Ό下放氢过程中氢气压力-样品中氢质量百 分含量关系曲线; 图 Ί为本发明实施例 2制备的 ProjLa^Fen.sS sQnHo.s在 100 Oe磁场下的 M-T 曲线, 其中横坐标为温度, 纵坐标为磁化强度, 其中的曲线:
一 "代表 Pro.3Lao.7Fen.5Si15Co.2 .6升温过程的热磁曲线;
o—"代表
Figure imgf000008_0001
H06降温过程的热磁曲线;
图 8为本发明实施例 2制备的 Pro.3Lao.7Fen.5Si15Co.2H 6的磁化曲线, 其中横坐标 为磁感应强度, 纵坐标为磁化强度, 其中的曲线:
一"代表 H06升场过程的等温磁化曲线;
o— "代表
Figure imgf000008_0002
H06降场过程的等温磁化曲线;
图 9为本发明实施例 2制备的 Pr0.3La0.7Fen.5Sij.5C0.2H 6在 1T 2Τ 3Τ 4Τ 5Τ 磁场下的磁熵变随温度的变化曲线, 其中橫坐标为温度, 纵坐标为磁熵变, 其中的曲 线:
"代表 ProjLa^Fen.sSi Q H^在 1T磁场下等温磁熵变 -温度曲线; 一 "代表 PrcnLaojFen.sSi Q H^在 2T磁场下等温磁熵变 -温度曲线; "代表 Pr0.3Lao.7Fen.5S 5C0.2H 6在 3T磁场下等温磁熵变 -温度曲线; "一 T一"代表 ProjLa^Feu.sSi^Q^Ho.s在 4T磁场下等温磁熵变 -温度曲线;
令一 "代表 ProjLao.7Fen.5SiL5Co.2H 6在 5T磁场下等温磁熵变 -温度曲线; 图 10为本发明实施例 2制备的 PrcnLaojFeu.sSi sCcuHu在 100 Oe磁场下的 M- T 曲线, 其中横坐标为温度, 纵坐标为磁化强度, 其中的曲线:
"代表 Pro.3Lao.7Fen.5SiuCo.2HL2升温过程的热磁曲线; .
"代表 Pr0.3Lao.7Feu.5SiL5C0.2HL2降温过程的热磁曲线;
图 11为本发明实施例 2制备的 Pro.3Lao.7Feu.5SiL5Co.2Hu的磁化曲线, 其中横坐标 为磁感应强度, 纵坐标为磁化强度, 其中的曲线:
一"代表 Pro.3Lao.7Fe, , 5Si , .sQ H, .2升场过程的等温磁化曲线;
o— "代表 Pro.3La 7Fen.5Si 5Co.2Hi 2降场过程的等温磁化曲线;
图 12为本发明实施例 2制备的 ProjLainFeu.sSiuQ^H^在 1T、 2Τ、 3Τ、 4Τ、 5Τ 磁场下的磁熵变随温度的变化曲线, 其中横坐标为温度, 纵坐标为磁熵变, 其中的曲 线:
"代表 Pr0.3La0.7Fen.5Si 5C0.2HL2在 1T磁场下等温磁熵变 -温度曲线; 一"代表 Pro.3Lao.7Fen.5SiL5Co.2H 2在 2Τ磁场下等温磁熵变 -温度曲线; "一 "代表 Pro.3Lao.7Feu.5SiL5Co.2HL2在 3Τ磁场下等温磁熵变 -温度曲线; "一 "代表 PrQ.3La 7Fen.5SiL5C0.2HL2在 4T磁场下等温磁熵变 -温度曲线; "一♦—"代表 Pr 3Lao.7Fen.5S .5C0.2HL2在 5Τ磁场下等温磁熵变 -温度曲线。 具体实施方式 以下参照具体的实施例来说明本发明。 本领域技术人员能够理解, 这些实施例仅 用于说明本发明的目的, 其不以任何方式限制本发明的范围。
实施例 1 制备 Prj Laj^EgmSi^C^间隙母合金
制备化学式为 PrMLa^Feu.sSi Q^的间隙母合金, 具体工艺为:
i) 按化学式 ProjLaojFeu.sSi Q 称料, 将纯度高于 99.9重量%的市售稀土金 属 La、 Pr (厂家名称: 湖南升华稀土金属材料有限责任公司) 及 Fe、 Fe-C 中间合金
(碳含量为 4.03重量%)、 和 Si原料混合; 其中, 稀土金属 La及 Pr过量添加 5% (原 子百分比) 来补偿熔炼过程中的挥发和烧损;
ii) 将步骤 i)配制好的原料放入电弧炉中, 抽真空至 2x l0_5 Pa以上, 用通常的 高纯氩气清洗方法清洗 1~2次后, 采用通常的方法在 1大气压的高纯氩气保护下反复 翻转熔炼 3~6次, 熔炼温度以熔化为止;
Hi) 在铜坩埚中冷却获得铸态合金, 将铸态合金用钼片包好, 密封在真空石英 管内, 在 112(TC退火两周后淬入液氮中, 获得该系化合物样品。
利用 Cu靶 X射线衍射仪 (Rigaku公司生产, 型号: RINT2400) 测定了样品的室 温 X射线 (XRD)衍射谱线, 结果表明样品为 NaZnl3立方晶体结构, 图 1示出间隙母合 金 ProjLa^Fe Si^Q^的室温 XRD谱线, 具有很好的单相性。
在超导量子磁强计 (SQUID , 商品名: 超导量子干涉磁强计, 厂商名: Quantum Design, USA, 商品型号: MPMS-7)上测定的本实施例化合物 PrcnLa^FeujSi Q^的 热磁曲线 (M-T)如图 2所示, 从 M-T曲线上可以确定居里点 Tc为 208K。
在 SQUID上测定该间隙化合物在居里温度附近的等温磁化曲线如图 3所示。 根据 Maxwell关系 (^^) = (dM(T' H))H , 可从等温磁化曲线计算磁熵变。
dH oT
本实施例制备的间隙母合金 ProjLaojFen.sSi Q 在居里温度附近的磁熵变 -温度 (-AS-T) 曲线如图 4所示。 从图中可以看出, 在 Tc处出现了非常大的磁熵变, 在 0〜5T 磁场变化下, 磁熵变达到 30.1 J/kg :。 图 5给出了间隙母合金 P^La^Fen^i Q 磁 滞损耗与温度的关系曲线, 发现仍有较大的磁滞损耗存在。 对比实施例 1 : 稀土金属 Gd
选用典型的室温磁制冷材料 Gd (纯度为 99.9重量%, 厂家名称: 湖南升华稀土金 属材料有限责任公司) 作为比较例。 在超导量子磁强计 (SQUID , 商品名: 超导量子干 涉磁强计, 厂商名: Quantum Design, USA, 商品型号: MPMS-7)上面测得 100 Oe磁 场下, 其居里温度为 293K, 在 0-5T磁场变化下, 测得居里温度处磁熵变为 9.8J/kg K。 对比实施例 2: 制备 Pffl.3Lao.7Fen.sgk 合金
制备化学式为 Pr0.3Lao.7Fei l.5Si1 5的合金, 具体工艺为:
i) 按化学式 ProjLa^Feu.sSi 称料, 将纯度高于 99.9重量%的市售稀土金属 La、 Pr (厂家名称: 湖南升华稀土金属材料有限责任公司) 及 Fe、 和 Si原料混合; 其中, 稀土金属 La及 Pr过量添加 5% (原子百分比) 来补偿熔炼过程中的挥发和烧损;
ii) 将步骤 i)配制好的原料放入电弧炉中, 抽真空至 2x l (T5 Pa以上, 用通常的高纯 氩气清洗方法清洗 1〜2次后, 采用通常的方法在 1大气压的高纯氩气保护下反复翻转 熔炼 3~6次, 熔炼温度以熔化为止;
iii) 在铜坩埚中冷却获得铸态合金,将铸态合金用钼片包好,密封在真空石英管内, 在 1120°C退火两周后淬入液氮中, 获得该系化合物 ProjLaojFeu sSi^样品。 实施例 2: 制备?1"( 1^(1.^£| 1.^1.;01.2 .(;和 Pro.sLa^ggn.sgks o.zHu
向间隙母合金 Pro.3Lao.7Fej , ,5Si, .5C0.2 中再引入间隙 H 原子, 以制备化学式为 Pro.3Lao.7Fen .5Sir5Co.2H 6和 ProjLaojFe^Si Q Hu的化合物, 具体工艺为:
将实施例 1制备的新鲜 PrcnLa^Fe^Si^Q^间隙母合金碎成颗粒, 置于高压容器 中, 抽真空至 2x l (T5 Pa以上, 在 35CTC下, 向高压容器中通入高纯 H2, 气体压力分别 为 1.0和 1.5个大气压,保持吸气时间为 5小时和 2小时;然后将高压容器放入室温 (20 °C)水中, 与此同时, 用机械泵抽去高压容器中剩余的氢气, 冷却至室温, 根据 PCT (厂 商名: 北京有色金属研究总院)实验分析仪分析和天平称重计算, 获得了 H含量分别约 为 0.6禾卩 1.2的间隙化合物。
其中, 吸放氢过程样品中氢含量与氢气压力的关系曲线如图 6所示, 由图中可以 看出, 碳的加入明显提高了常压下氢的含量, 由 0.098重量%提高到 0.153重量%, 又 因为吸氢是在 350°C条件下进行的, 这就确保了 PrQ.3Lao.7Fen.5SiL5Co.2Hx能在室温附近 较大范围内保持稳定的性能。
在超导量子磁强计 (SQUID, 商品名: 超导量子干涉磁强计, 厂商名: Quantum Design, USA, 商品型号: MPMS-7)上测定的本实施例化合物 ProjLaojFen.sSirsQnHo.s 和 Pro.3Lao.7Fen.5Si1.5Co.2Hu的热磁曲线 (M-T), 如图 7和 10所示, 从 M-T曲线上可以 确定居里点 Tc分别为 270K和 321K, 较间隙母合金 PrcuLa^Fe^Si^Q 向高温分别 移动了 62K和 113K。
在 SQUID上测定该间隙化合物在居里温度附近的等温磁化曲线如图 8和 11所示。 本实施例制备的合金 Prc LaojFeu.sSi Co.zHo.s和 Pr0.3Lao.7Fen sSi Q^Hu在居里 温度附近的磁熵变 -温度 (-AS-T)曲线如图 9和 12所示。 从图中可以看出, 在 Tc处出现 了非常大的磁熵变, 在 0~5T磁场变化下, 磁熵变分别达到 24.7J/kgK和 22.U/kgK, 均高于稀土金属 Gd 的两倍以上。 此外, 磁滞损耗与同一温度下升磁场曲线和降磁场 曲线所包围的面积成正比。 由图 3可以看出, 吸氢前合金
Figure imgf000011_0001
.sSi^Q 在同一 温度下升磁场曲线和降磁场曲线包围的面积较大, 即存在很大的磁滞损耗, 如图 5所 示。 由图 8 和图 11 可以看出, 吸氢后合金 Pr0.3La0.7Fen.5Sii.5C0.2H 6 和 Pr0.3La0.7Feu.5SiL5C0.2H 2在同一温度下升磁场曲线和降磁场曲线所包围的面积接近于 零, 因此, 与间隙母合金 ProjLaojFen.sSij.sQu相比, 化合物
Figure imgf000011_0002
和 Pr0.3La0.7Fen.5SiL5C0.2HL2磁滞损耗几乎消失, 这非常有利于它们在实际中的应用。 由于样品是在 350°C、 近常压下进行的吸氢处理, 所以, 样品能在较大的温度范围内 保持稳定的性能, 如图 6所示, 当放气至常压条件时, PrtnLa^Fen.sSi QuP i品中 仍有大量氢存在, 且较 Pr 3Lao.7Fe .5S .5Hx明显增加。
以上己经参照具体的实施方式详细地描述了本发明, 对本领域技术人员而言, 应 当理解的是, 上述具体实施方式不应该被理解为限定本发明的范围。 因此, 在不脱离 本发明精神和范围的情况下, 可以对本发明的实施方案作出各种改变和改进。

Claims

权 利 要 求
1、 一种高温稳定的具有大磁熵变的 La(Fe,Si)13基多间隙原子氢化物磁制冷材料, 其特征是化学通式为:
Figure imgf000012_0001
具有立方 NaZnl 3结构, 其中:
R为一种或一种以上满足 a范围的下述稀土元素的任意组合: Ce、 Pr、 Nd、 Sm、
Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu、 Y、 Sc,
a的范围如下:
当 R为 Ce元素时, 0<a 0.9;
当 R为 Pr、 Nd时, 0<a 0.7;
当 R为 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu、 Y、 Sc时, 0<a
0.5;
b的范围为: 0<b^3.0;
X为一种或一种以上满足 c范围的下述元素的任意组合: C、 B、 Li、 Be, c的范围为: 0<c 0.5 ;
d的范围为: 0<d 3.0。
2、如权利要求 1所述的高温稳定的具有大磁熵变的 La(Fe,Si)13基多间隙原子氢化 物磁制冷材料, 其特征在于, 所述材料在 0~350°C条件下, 氢能稳定存在于伺隙之中。
3、 如权利要求 1或 2所述的高温稳定的具有大磁熵变的 La(Fe,Si)u基多间隙原子 氢化物磁制冷材料, 其特征在于, 在 0-5T磁场变化下的磁熵变值为 5-50J/kgK, 相变 温区位于 180-360K。
4、 一种用于制备权利要求 1所述的高温稳定的具有大磁熵变的 La(Fe,Si)13基多间 隙原子氢化物磁制冷材料的方法, 所述方法包括下述步骤:
i) 按 L^aRaFemSibXc的化学式配料, 其中 R、 X、 a、 b和 c如权利要求 1中 所定义;
ii) 将步骤 i)配制好的原料放入电弧炉中, 抽真空, 用高纯氩气清洗炉腔并充入 氩气至 0.5~1.5个大气压, 电弧起弧, 每个合金锭反复翻转熔炼 1~6次;
iii) 经步骤 ii)熔炼好的合金锭在 1050〜1350'C条件下, 真空退火, 之后取出并 快速淬入液氮或冰水中冷却, 从而制备出 NaZn13型 LaLaRaFen-bSibXc间隙母合金单相 样品;
iv) 将步骤 Hi)中制备的 La aRaFe13.bSibXe母合金碎成颗粒或制成敉末, 放入氢 气中退火, 从而制备出 La^RaFen.bSibXcHd多间隙原子氢化物; 其间通过调节氢气压 力、 退火温度和时间来控制合金中的氢含量 d, d的范围如权利要求 1中所定义。
5、 按权利要求 4所述的方法, 其特征在于:
所述步骤 ii)中所述的真空度小于 2 X 10_5Pa, 所述氩气纯度大于 99%; 和 /或 所述步骤 Hi)真空退火操作中的真空度小于 1 X 10-3Pa; 和 /或
所述步骤 iv)所述单相样品制成的粉末为粒径小于 2毫米的不规则粉末, 并且退火 用氢气的纯度大于 99%。
6、 按权利要求 4所述的方法, 其特征在于所述步骤 i)所使用的原料 La、 R、 Fe、 Si和 X的纯度大于 99重量%, 优选大于 99.9重量%, 更优选大于 99.99重量。 /。, 其中 La、 R、 Fe、 Si和 X如权利要求 1所定义。
7、 按权利要求 4或 6所述的方法, 其特征在于 Fe、 X以单质或 Fe-X中间合金的 形式加入。
8、 按权利要求 4 所述的方法, 其特征在于, 所述步骤 iv)中用于制备
La1-aRaFe13-bSibXcHd的母合金 La1-aRaFe13-bSibXe为新鲜母合金。
9、 按权利要求 4所述的方法, 其特征在于一次性吸氢至所需含量。
π
PCT/CN2010/001936 2009-12-11 2010-12-01 高温稳定的具有大磁熵变的la(fe,si)13基多间隙原子氢化物磁制冷材料及其制备方法 WO2011069328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/514,960 US20130200293A1 (en) 2009-12-11 2010-12-01 La(fe,si)13-based multi-interstitial atom hydride magnetic refrigeration material with high temperature stability and large magnetic entropy change and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910242322.6A CN102093850B (zh) 2009-12-11 2009-12-11 高温稳定的具有大磁熵变的La(Fe,Si)13基多间隙原子氢化物磁制冷材料及其制备方法
CN200910242322.6 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011069328A1 true WO2011069328A1 (zh) 2011-06-16

Family

ID=44127119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001936 WO2011069328A1 (zh) 2009-12-11 2010-12-01 高温稳定的具有大磁熵变的la(fe,si)13基多间隙原子氢化物磁制冷材料及其制备方法

Country Status (3)

Country Link
US (1) US20130200293A1 (zh)
CN (1) CN102093850B (zh)
WO (1) WO2011069328A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140166159A1 (en) * 2011-07-14 2014-06-19 Hubei Quanyang Magnetic Materials Manufacturing Co., Ltd La(fe,si)13-based magnetic refrigeration material prepared from industrial-pure mischmetal as the raw material and preparation and use thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134348A1 (en) * 2011-11-24 2013-05-30 General Electric Company Magnetic Materials and Systems
CN103540835B (zh) * 2012-07-09 2017-07-21 中国科学院物理研究所 公斤级La(Fe, Si)13基磁制冷材料及其制备方法和用途
JP5737270B2 (ja) * 2012-11-07 2015-06-17 株式会社デンソー 磁気冷凍材料の製造方法
CN105314598B (zh) * 2015-11-24 2017-05-03 沈阳理工大学 一种具有高效室温磁制冷性能的片状La(Fe, Si)13基氢化物块体的高气压合成方法
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
CN110914613B (zh) 2017-06-16 2022-12-13 开利公司 通过共轭场的施加的铁性响应
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
CN109378148B (zh) * 2018-07-25 2020-12-15 中国科学院宁波材料技术与工程研究所 一种镧铁硅基磁制冷材料及其制备方法
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
CN112885549B (zh) * 2021-01-08 2022-09-20 哈尔滨工业大学 一种磁制冷机回热器的磁相变材料的制备方法以及磁制冷循环系统
CN113444966A (zh) * 2021-05-17 2021-09-28 上海大学 一种混合稀土铁硼磁制冷材料及其制备方法
CN114058798B (zh) * 2021-11-26 2023-07-14 上海大学 一种La-Fe-Si系合金的闪速退火工艺和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450190A (zh) * 2002-03-26 2003-10-22 中国科学院物理研究所 具有大磁熵变的稀土-铁基化合物磁致冷材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312706C (zh) * 2004-07-21 2007-04-25 华南理工大学 一种稀土-铁基室温磁制冷材料及其制备方法
JP4237730B2 (ja) * 2005-05-13 2009-03-11 株式会社東芝 磁性材料の製造方法
CN101477864B (zh) * 2008-10-15 2011-11-23 瑞科稀土冶金及功能材料国家工程研究中心有限公司 具有大磁热效应的稀土磁制冷材料及其制备工艺

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450190A (zh) * 2002-03-26 2003-10-22 中国科学院物理研究所 具有大磁熵变的稀土-铁基化合物磁致冷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITA ET AL.: "Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides", PHYSICAL REVIEW B, vol. 67, 20 March 2003 (2003-03-20), pages 104416, XP001159876 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140166159A1 (en) * 2011-07-14 2014-06-19 Hubei Quanyang Magnetic Materials Manufacturing Co., Ltd La(fe,si)13-based magnetic refrigeration material prepared from industrial-pure mischmetal as the raw material and preparation and use thereof

Also Published As

Publication number Publication date
US20130200293A1 (en) 2013-08-08
CN102093850B (zh) 2015-03-25
CN102093850A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
WO2011069328A1 (zh) 高温稳定的具有大磁熵变的la(fe,si)13基多间隙原子氢化物磁制冷材料及其制备方法
WO2013075468A1 (zh) 粘结La(Fe,Si)13基磁热效应材料及其制备方法和用途
CN104694813B (zh) LaFeSi基磁制冷材料及其制备方法与应用
CN103502497B (zh) 磁制冷材料
CN110534279A (zh) 一种纯高丰度稀土Ce,La,Y基多元纳米晶永磁合金及制备
CN102383018B (zh) 一种稀土-铬-硅基磁制冷材料的制备方法
CN102453466A (zh) 用于磁制冷的稀土-铜-铝材料及其制备方法
CN102881394B (zh) 稀土提纯中间产物制备的La(Fe,Si)13基磁性材料、制备方法和用途
CN103668008B (zh) 铥基金属玻璃、制备方法及应用
CN106978576B (zh) 一种Er基非晶低温磁制冷材料及其制备方法
CN102691020B (zh) 兼具大非晶形成能力与高磁热效应的Gd基块体非晶合金及其制备方法
CN104357727A (zh) 一种Mn-Fe-P-Si磁制冷材料及其制备方法
CN106929775A (zh) 大非晶形成能力高磁热效应钆基块体非晶合金及制备方法
Bin et al. Effect of praseodymium and cobalt substitution on magnetic properties and structures in La (Fe1-xSix) 13 compounds
CN103649352B (zh) 磁制冷材料和磁制冷装置
CN105671396A (zh) 用于室温磁制冷的铽-锗-锑材料及其制备方法
CN105986177B (zh) 高导热的室温磁制冷内生复合材料、其制备方法及应用
CN102465225A (zh) 一种磁制冷材料及其制备方法和用途
CN102703037A (zh) 用于磁制冷的稀土-铁-硅材料及其制备方法和用途
CN105220082A (zh) 高居里温度和高制冷能力的Gd基非晶纳米晶复合材料及其制备方法
CN102978422B (zh) 具有大磁热效应的稀土-镍-硅材料的制备方法和用途
CN102513536A (zh) 一种磁制冷材料的制备工艺
CN105861860A (zh) 一种铽-锗-铋材料、制备方法及其应用
CN103540835B (zh) 公斤级La(Fe, Si)13基磁制冷材料及其制备方法和用途
CN102087899A (zh) La(Fe,Al)13基氢化物磁制冷材料及制法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13514960

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10835365

Country of ref document: EP

Kind code of ref document: A1