WO2011068216A1 - 高エネルギー密度ビームを用いた突合せ溶接継手 - Google Patents

高エネルギー密度ビームを用いた突合せ溶接継手 Download PDF

Info

Publication number
WO2011068216A1
WO2011068216A1 PCT/JP2010/071721 JP2010071721W WO2011068216A1 WO 2011068216 A1 WO2011068216 A1 WO 2011068216A1 JP 2010071721 W JP2010071721 W JP 2010071721W WO 2011068216 A1 WO2011068216 A1 WO 2011068216A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
weld metal
weld
welded joint
welding
Prior art date
Application number
PCT/JP2010/071721
Other languages
English (en)
French (fr)
Inventor
石川 忠
竜一 本間
市川 和利
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to DK10834666.9T priority Critical patent/DK2508291T3/en
Priority to US13/512,732 priority patent/US9352424B2/en
Priority to CN201080054320.5A priority patent/CN102639277B/zh
Priority to JP2011518622A priority patent/JP4970620B2/ja
Priority to KR1020127014118A priority patent/KR101218961B1/ko
Priority to ES10834666.9T priority patent/ES2631979T3/es
Priority to EP10834666.9A priority patent/EP2508291B1/en
Publication of WO2011068216A1 publication Critical patent/WO2011068216A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/006Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/0073Seam welding with interposition of particular material to facilitate connecting the parts, e.g. using a filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/06Electron-beam welding or cutting within a vacuum chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/211Bonding by welding with interposition of special material to facilitate connection of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05B2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a welded joint that is butt welded by irradiating a pair of steel materials with a high energy density beam.
  • the present invention relates to a welded joint having excellent fatigue characteristics in a vibration environment in the gigacycle range.
  • a tube having a large cross section with a plate thickness of 50 mm or more, for example, about 100 mm, and a diameter of about 4 m is provided at the foundation of the wind power generation tower.
  • the structure is adopted, and the total height of the tower is 80 m or more. It is required to weld and assemble such a huge structure easily and efficiently on the coast near the construction site.
  • high energy density beam welding such as electron beam welding and laser beam welding is a welding method capable of efficient welding.
  • electron beam welding since it is necessary to perform welding while maintaining a high vacuum state in a vacuum chamber, conventionally, the size of the steel plate that can be welded is limited.
  • RPEBW Reduced Pressured Electron Beam Welding
  • a molten metal portion (hereinafter referred to as a weld metal) that is melted by an electron beam and then solidified in order to perform welding in a state where the degree of vacuum is lowered as compared with a method of welding in a vacuum chamber.
  • a weld metal a molten metal portion that is melted by an electron beam and then solidified in order to perform welding in a state where the degree of vacuum is lowered as compared with a method of welding in a vacuum chamber.
  • a weld metal is used in which the Ni content of the weld metal is 0.1 to 4.5% by mass by attaching a plate-like insert metal such as Ni to the weld surface and performing electron beam welding.
  • a method for improving toughness such as Charpy impact value is proposed in Patent Document 6 and Patent Document 7.
  • the offshore wind power generation tower is constantly exposed to vibrations caused by strong wind as described above, the structure of the foundation is constantly subjected to repeated loads, and the welds are constantly subjected to repeated stresses. For this reason, the welded portion of the above structure is required to have fatigue resistance against vibrations in the gigacycle region (10 9 to 10 ) whose order is different from the normal fatigue cycle (10 6 to 7 ).
  • the weld metal in the weld zone shrinks near room temperature in the final stage of welding, so that tensile residual stress is induced.
  • the fatigue strength may be significantly reduced due to the stress ratio effect. Therefore, there is a concern that fatigue cracks may occur due to tensile residual stress with respect to vibration in the gigacycle region.
  • An object of the present invention is to provide a welded joint having fatigue characteristics that can withstand vibrations in the gigacycle range and sufficient fracture toughness.
  • a weld joint according to an aspect of the present invention includes a pair of steel materials; and a weld metal formed by welding with a high energy density beam at a butt weld between the steel materials.
  • the transformation start temperature Ms calculated by the following mathematical formula (a) using the composition by mass% is 250 ° C. or lower.
  • Ms (° C.) 371-353C-22Si-24.3Mn—7.7Cu-17.3Ni-17.7Cr-25.8Mo (a)
  • the composition of the weld metal preferably includes Ni: 0.5 to 4.0% by mass and Cr: 0.5 to 6.0% by mass. .
  • the composition of the weld metal is one or two of Mo: 0.1 to 2.0% by mass and Cu: 0.1 to 5.0% by mass. It is preferable to contain seeds; Ni, Cr, Mo, and Cu in a total amount of 1.1 to 10.0% by mass; (4)
  • the composition of the weld metal preferably contains Ni: 4.0 to 6.0% by mass.
  • the composition of the weld metal is Cr: 0.1 to 6.0 mass%, Mo: 0.1 to 2.0 mass%, and Cu: 0.00. It is preferable to contain 1 to 5.0% by mass of one or more; and to contain Ni, Cr, Mo and Cu in a total of 4.1 to 10.0% by mass; (6)
  • hardenability index D I of the weld metal is calculated by the following equation (b) using a mass% of the composition of the weld metal, 0.1 or higher It is preferable that it is 3.0 or less.
  • the composition of the steel material is C: 0.01 to 0.08 mass%, Si: 0.05 to 0.80 mass%, Mn: 0.8 to 2.5% by mass, P ⁇ 0.03% by mass, S ⁇ 0.02% by mass, Al ⁇ 0.008% by mass, Ti: 0.005 to 0.030% by mass; balance Preferably iron and unavoidable impurities;
  • the composition of the steel material is Cu: 0.1 to 1.0 mass%, Ni: 0.1 to 6.0 mass%, Cr: 0.1 to 1.0% by mass, Mo: 0.1-0.5% by mass, Nb: 0.01-0.08% by mass, V: 0.01-0.10% by mass, B: 0.0005-0.
  • the thickness of the steel material is preferably 30 mm or more and 200 mm or less.
  • the high energy density beam is preferably an electron beam.
  • the transformation start temperature of the weld metal as a welding condition that causes compressive residual stress instead of tensile residual stress in a welded portion in welding using a high energy density beam such as an electron beam.
  • a high energy density beam such as an electron beam.
  • a high-strength steel sheet particularly a steel sheet having a thickness of 30 mm or more
  • a high energy density beam is irradiated with a high energy density beam and welded into a butt weld joint
  • it has fatigue resistance in a vibration environment in the gigacycle range, and A weld joint having a sufficiently high fracture toughness value can be formed.
  • a high energy density beam welded joint (hereinafter referred to as a welded joint) 10 will be described with reference to FIG. 1B.
  • the welded joint 10 is welded using a high energy density beam, and an electron beam is used as the high energy density beam in this embodiment.
  • an electron beam is used as the high energy density beam in this embodiment.
  • RPEBW Reduced Pressure Electron Beam Welding
  • the welded joint 10 includes a pair of steel materials (welding base metal) 1 and a weld metal 4 formed by welding to the butt weld 6 between the steel materials 1 by an electron beam.
  • the martensitic transformation start temperature Ms (° C.) calculated by the following formula (a) using (mass%) is 250 ° C. or less.
  • Ms 371-353C-22Si-24.3Mn-7.7Cu-17.3Ni-17.7Cr-25.8Mo (a)
  • the inventors have found that the transformation start temperature is overestimated in a generally known equation for estimating the martensite transformation start temperature because the cooling rate of the welded portion 6 in the welded joint 10 is large. Therefore, the formula for estimating the general transformation start temperature was corrected, and the formula (a) was derived.
  • the martensitic transformation end temperature (Mf (° C.)) is preferably room temperature. In general, the transformation that starts transformation at 250 ° C.
  • the temperature calculated by the numerical value (a) may simply be 250 ° C. or less.
  • Ms is simply referred to as a transformation start temperature.
  • FIG. 1A shows a conceptual diagram of a high energy density beam welding method.
  • an insert metal 3 is inserted between a groove 2 between a pair of steel materials 1, and the insert metal 3 and the surface of the groove 2 of the pair of steel materials 1 are welded by a high energy density beam. To do.
  • the transformation of the weld metal 4 starts at a relatively low temperature, that is, 250 ° C. or lower, in the process of cooling the weld metal 4 to room temperature. . Due to the transformation expansion of the weld metal 4, the compressive stress 5 generated in the welded portion 6 is maintained up to room temperature. Thereby, the fatigue strength of the welded joint 10 can be improved.
  • the components of the insert metal 3 and the steel material are adjusted so that the transformation start temperature Ms of the weld metal 4 formed in the welded portion 6 of the weld joint 10 is 250 ° C. or less. .
  • the width of the weld metal can be predicted in advance from the welding conditions, etc., the component of the weld metal 3 and the component and size of the steel material 1 are adjusted to the target component of the weld metal. That is, it is easy to adjust the transformation start temperature Ms of the weld metal 4.
  • the weld joint 10 has a transformation start temperature of 250 ° C. or lower, so the weld metal 4 undergoes martensitic transformation in a state of being restrained from the steel material 1. At this time, since the weld metal 4 is going to expand, the compressive residual stress is applied from the steel material 1. As a result, the fatigue characteristics of the welded joint 10 are improved to fatigue resistance that can withstand even in a vibration environment in the gigacycle range. Furthermore, since the hardenability of the weld metal is improved, the weld joint 10 having a fine structure and sufficient fracture toughness can be provided.
  • the steel material 1 used for the welded joint 10 of the present embodiment is not particularly limited, it is preferable to use a steel material having a plate thickness of 30 mm or more or 50 mm or more, in which the above-described problem becomes significant. Moreover, it is preferable that the upper limit of plate
  • the steel material 1 to be used is not particularly limited, but is preferably a steel material in which C is limited to 0.2% by mass or less, and the yield strength is 355 MPa or more.
  • the tensile strength may be limited to 690 MPa or less or 780 MPa or less.
  • Such a high-strength steel plate may be a steel plate manufactured from a structural steel for welding having a known component composition.
  • the composition of the steel material 1 is not particularly limited. For example, in mass%, C: 0.01 to 0.08%, Si: 0.05 to 0.80%, Mn: 0.8 to 2.5 %, P: 0.03% or less, S: 0.02% or less, Al: 0.008% or less, Ti: 0.005 to 0.030%; balance iron and steel composition which is an inevitable impurity Is preferred. And, with this composition as a basic component, Cr, Mo, Ni, Cu, W, Co, V, Nb, Ti, Zr depending on required properties such as improvement of the strength of the base material (steel material 1) and joint toughness.
  • Ta, Hf, REM, Y, Ca, Mg, Te, Se, and steel containing one or more of them in a total of 8% or less can be used.
  • Specific examples include, by mass, Cu: 0.1 to 1.0%, Ni: 0.1 to 6.0%, Cr: 0.1 to 1.0%, Mo: 0.1 to 0 .6%, Nb: 0.01 to 0.08%, V: 0.01 to 0.10%, B: 0.0005 to 0.0050% of one or more steel compositions It is preferable.
  • these alloy components are contained in the steel material 1, the steel material price becomes very expensive. In practice, a much cheaper welded joint can be obtained by welding using an insert material containing an expensive alloy component. For this reason, you may restrict
  • steel containing 4% or less, 2% or less, or 1% or less in total of one or more of Ni, Cr, Mo, and Cu may be used.
  • one or more of Cr, Mo, Ni, Cu, W, Co, V, Nb, Ti, Zr, Ta, Hf, REM, Y, Ca, Mg, Te, Se, and B are totaled.
  • Steels containing up to 4% or 2% may be used.
  • the amount of C contained in the steel material 1 is preferably set to 0.01% or more. If necessary, the amount of C contained in the steel material 1 may be limited to 0.02% or more or 0.03% or more. In order to prevent a decrease in toughness due to abnormal hardening of the weld metal 4, the C content may be limited to 0.12% or less. If necessary, the amount of C contained in the steel material 1 may be limited to 0.08% or less or 0.06% or less. In order to obtain good toughness with the weld metal 4, the amount of Si contained in the steel material 1 is preferably 0.80% or less.
  • the amount of Si contained in the steel material 1 may be limited to 0.50% or less, 0.30% or less, or 0.15% or less.
  • the lower limit of the Si content is not particularly required, but is preferably 0.05% or more for appropriate deoxidation treatment. If necessary, the Si content may be limited to 0.08% or more.
  • Mn is an inexpensive element that has a great effect of optimizing the microstructure. In order to ensure the strength and toughness required for structural steel, it is preferable to add 0.8 to 2.5% of Mn to the steel material 1. In order to prevent abnormal hardening of the weld metal 4, the upper limit of the amount of Mn contained in the steel material 1 may be limited to 2.3%, 2.0%, or 1.9%.
  • P and S are inevitable impurities, but are preferably limited to 0.03% or less and 0.02% or less, respectively, in order to deteriorate toughness and the like.
  • the upper limit of the amount of P contained in the steel material 1 is limited to 0.02%, 0.015% or 0.010%, and the upper limit of the amount of S is 0. It may be limited to .015%, 0.010% or 0.006%.
  • the Al content of the steel material 1 is desirably 0.008% or less.
  • the upper limit of the Al content may be limited to 0.006%, 0.005%, or 0.003%.
  • the amount of Ti contained in the steel material 1 is desirably 0.005 to 0.030%. If necessary, the upper limit of the Ti content may be limited to 0.025%, 0.020%, or 0.015%. Further, the lower limit of the Ti content may be limited to 0.007% or 0.009%.
  • Cu is an element that improves the strength and toughness of the steel material 1 and may be added as necessary. In order to improve strength and toughness, 0.1% or more or 0.3% or more of Cu may be added.
  • the upper limit of the Cu content is preferably set to 1.0% in order to prevent wrinkling of the steel material 1 due to the addition of a large amount of Cu. You may restrict
  • Ni is an element useful for improving the toughness of the steel material 1 and the weld metal 4, and the amount of Ni may be added to the steel material 1 by 0.1% or more. On the other hand, since Ni is expensive, it is desirable to make it 6.0% or less. In order to reduce the price of the steel material 1, the upper limit of the Ni content may be limited to 2.0%, 1.0%, or 0.5%.
  • Mo is an element effective for improving the strength. If necessary, the amount of Mo may be added to the steel material 1 by 0.1% or more.
  • the weld metal 4 is abnormally hardened and the toughness is lowered. If necessary, the amount of Mo contained in the steel material 1 may be limited to 0.2% or less or 0.15% or less.
  • Nb is an element effective for improving the strength and toughness of the steel material 1, and if necessary, the amount of Nb may be added to the steel material 1 by 0.01% or more. If added in a large amount, the toughness of the weld metal 4 decreases, so the Nb content is preferably 0.08% or less. If necessary, the Nb content may be limited to 0.05% or less or 0.03% or less.
  • V is an element effective for improving the strength of the steel material 1, and 0.01% or more may be added as necessary.
  • the V content is preferably 0.10% or less. If necessary, the V content may be limited to 0.07% or less or 0.04% or less.
  • B is an element effective for improving the strength of the steel material 1. If necessary, the amount of B may be added to the steel material 1 by 0.0005% or more. If added in a large amount, the toughness of the weld metal 4 decreases, so the B content is preferably 0.0050% or less. If necessary, the B content may be limited to 0.0020% or less or 0.0015% or less.
  • Ca and REM are effective elements for improving lamellar tear resistance, and 0.0005% or more of Ca and REM may be added to the steel material 1 as necessary.
  • Mg is effective in improving the toughness of the weld heat affected zone of the steel material 1 and may be added by 0.0003% or more.
  • the toughness of the steel material decreases, so the Mg content is preferably 0.0050% or less.
  • the composition of the weld metal 4 preferably contains, for example, Ni: 0.5 to 4.0% and Cr: 0.5 to 6.0%. Thereby, it becomes easy to make the transformation start temperature Ms 250 degrees C or less. In addition, by suppressing the expensive Ni content, the welded joint 10 with improved fatigue strength can be obtained at low cost. In this case, it further contains one or two of Mo: 0.1 to 2.0% and Cu: 0.1 to 5.0% by mass; Ni, Cr, Mo and Cu in total Preferably, the steel composition contains 1.1 to 10.0%. Thus, by including one or two of Mo and Cu, the fatigue strength can be improved and sufficient fracture toughness can be obtained. Alternatively, the composition of the weld metal 4 may contain, for example, Ni: 4.0 to 6.0% in addition to the above.
  • Ni is an effective element for lowering the transformation start temperature Ms of the weld metal 4 and improving the fatigue strength of the welded joint 10. Further, it is an element that improves joint characteristics such as strength and toughness.
  • the lower limit of the Ni content is preferably set to 0.5% as a minimum at which the effect of improving fatigue strength can be sufficiently expected. In order to surely improve the fatigue strength, it is more desirable to set the lower limit of the Ni content to 1.0% or 2.0%.
  • the Ni content of the weld metal exceeds 6.0%, the weld metal 4 may not be transformed into bainite or martensite that transforms at a low temperature, and cooling may be completed as austenite, improving fatigue strength. Cannot be expected. Thereby, it is preferable to make the upper limit of Ni content 6.0%.
  • Cr and Mo are elements that reduce the transformation start temperature Ms of the weld metal 4, improve the strength, and ensure hardenability.
  • Cr and Mo are more effective in improving the strength of the weld metal 4 and ensuring hardenability than Ni.
  • the content of Cr and Mo is 0.1% or more. It is preferable that On the other hand, since Cr and Mo are less effective in improving the toughness of the weld metal 4 than Ni, if excessively contained, the toughness of the weld metal 4 may be lowered.
  • the upper limit of the Cr content is 6 0.0% and the upper limit of the Mo content is preferably 2.0%.
  • the lower limit of the Cr content is limited to 1.5% or 2%, and when the Ni content is 1.0% or less, the lower limit of the Cr content is It may be limited to 2.0% or 2.5%.
  • the lower limit of the Cr content may be limited to 4.0% or 3.0%.
  • the lower limit of the Mo content may be limited to 1%, 0.5%, or 0.2%. If necessary, even when the Ni content exceeds 4.0%, the lower limit of the Cr content may be limited to 0.5%.
  • Cu is an element that has the effect of reducing the transformation start temperature Ms of the weld metal 4, improving the strength, and ensuring hardenability.
  • Cu preferably has a Cu content lower limit of 0.1%.
  • the upper limit of the Cu content is preferably 5.0%. More preferably, the upper limit of the Cu content is 0.3%.
  • the weld metal 4 of the present invention can further contain component elements in the following content ranges for the following purposes.
  • B is an element that dramatically improves the hardenability, and ensures the hardenability of the weld metal 4 and makes the microstructure of the weld metal 4 stronger. In addition, it has the effect of suppressing the formation of a structure that starts transformation at a high temperature and making it a microstructure that transforms at a lower temperature.
  • B since the weld metal 4 has a higher oxygen content than the steel material 1, B may be combined with oxygen and deprived of the above-described effects.
  • the amount of oxygen and nitrogen are extremely small, so even to improve the above-described hardenability by B in the weld metal and the tensile strength and fatigue strength by microstructure control.
  • the lower limit of the B content is 0.0003%.
  • the upper limit of the B addition amount is preferably 0.005% because the effect obtained by adding B does not increase much even if an amount exceeding 0.0003% is added.
  • Nb, V, and Ti are all elements that have the function of forming carbides in the weld metal 4 to increase the strength, and contain a small amount of one or more of Nb, V, and Ti in the weld metal 4.
  • the joint strength can be improved. If the lower limit of the total content of one or more of Nb, V, and Ti is less than 0.005%, improvement in joint strength cannot be expected so much, so the lower limit of the total content is 0.005%. Is preferable. On the other hand, if the total content exceeds 0.3%, the strength of the weld metal 4 becomes excessive, and problems occur in the joint characteristics. Therefore, the total content upper limit is preferably set to 0.3%.
  • the lower limit of the Ti content is preferably 0.003%. Is desirable.
  • the lower limit of the Al content may be limited to 0.003%, 0.005%, or 0.008%.
  • the component of the insert metal 3 and the thickness thereof may be selected so as to be the target component of the weld metal 4.
  • the insert metal 3 pure Ni or Ni: 1 to 10%, Cr: 0.1 to 2.0%, Mo: 0.1 to 2.0%, and Cu: 0.1 to 5.
  • a metal foil containing 0.5% to 10.0% in total of 1% or 2% of 0% can be used.
  • the hardness of the weld metal 4 is preferably within 140% of the hardness of the steel material 1 as the base material.
  • the weld metal 4 is preferably martensitic in order to lower the transformation start temperature Ms so that the expansion amount during transformation of the weld metal 4 can be utilized at room temperature.
  • the structure of the weld metal 4 is too hard, it causes a decrease in the fracture toughness value ⁇ c due to an increase in local stress. Therefore, it is preferably suppressed to 140% or less.
  • the composition of the weld metal 4 is Ni: 0.5-6.0%, Cr: 0.1-6.0%, Mo: 0.1-2.0%, and Cu: 0.1-5.0%
  • the steel material 1 and the insert metal that satisfy the condition of containing 0.5 to 10.0%, preferably 1.1 to 10.0% in total, of one or more of It is preferable to appropriately adjust the balance between components with the weld metal 4 formed using 3 and to adjust the cooling rate after welding. Thereby, since the hardness of the weld metal 4 can be prevented from becoming too high, the hardness difference between the weld metal 4 and the steel material 1 (the hardness of the weld metal 4 is within 140% of the hardness of the steel material 1). Can be adjusted.
  • the total content of Ni, Cr, Mo and Cu in the weld metal 4 is 0.5% or more, 1.0%, 2. You may restrict
  • the hardenability index D of the weld metal 4 calculated by the following mathematical formula (b) using the composition of the weld metal 4 is used. I is preferably 0.1 or more and 3.0 or less.
  • hardenability index D I 0.36 ⁇ C (1 + 0.7Si) (1 + 3.33Mn) (1 + 0.35Cu) (1 + 0.36Ni) (1 + 2.16Cr) (1 + 3Mo) (b)
  • hardenability index D I is preferably 3.0 or less. If necessary, it may limit the upper limit of D I value 1.2,0.9 or 0.7.
  • the hardenability index D I value is too low, and since they are not a martensite structure, it is preferable that the D I value of 0.1 or more.
  • D I value lower limit of 0.2 or more may be limited to 0.25 or more, or 0.3 or more.
  • the welding conditions using a high energy density beam are not particularly limited.
  • the voltage is 175 V
  • the current is 120 mA
  • the welding speed is about 125 mm / min. Done on condition.
  • Electron beam welding is usually performed under a high vacuum of 10 to 3 mbar or less, but is a welded joint welded under a low vacuum such as the RPEBW method described above, for example, under a vacuum of about 1 mbar. Also, this embodiment can be applied.
  • the electron beam irradiation area becomes large during electron beam welding, the amount of heat input to the steel material 1 becomes excessive, and the structure of the FL part (Fusion Line, the boundary part between the steel material 1 and the weld metal 4) becomes coarse. It is not preferable for stably securing the fracture toughness value ⁇ c of the FL portion.
  • the width of the weld metal tends to increase compared to a welded joint produced by electron beam welding (EBW welding) in a high vacuum state in a vacuum chamber. .
  • EBW welding electron beam welding
  • the width w of the weld metal 4 shown in FIG. It is preferable to make it 20% or less or 10% or less of the plate thickness t of 1.
  • the electron beam is used as the high energy density beam because it is suitable for the local rapid heating and rapid cooling of the welded portion 6, the present invention is not limited to this.
  • the present invention will be described based on examples, but the conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is an example of this one condition. It is not limited to. That is, the present invention can employ various conditions or combinations of conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • a fatigue test was performed at an axial force, a stress ratio of 0.1, and a repetition rate of 5 Hz, and a fatigue strength of 2 ⁇ 10 6 times was obtained. Furthermore, the ultrasonic test piece 24 was sampled in the welded joint of FIG. 2, and 2 ⁇ 10 6 fatigue strengths and 2 ⁇ 10 9 gigacycle fatigue strengths were obtained, and the reduction ratio was determined. The fatigue strength (estimated value) under the gigacycle was evaluated by multiplying the fatigue strength of 2 ⁇ 10 6 times obtained in the joint fatigue test by the reduction ratio. The results are shown in Tables 4 and 5 together with the welding conditions.
  • the fracture toughness value ⁇ c (mm) is a value obtained at a test temperature of ⁇ 10 ° C. in a CTOD (Crack Tip Opening Displacement) test.
  • the CTOD test is one of tests for evaluating the fracture toughness of a structure in which a defect exists. In this example, the average value of three welded joints was obtained.
  • Joint tensile strength is the result of the joint tensile test conducted by preparing the U.S. Maritime Association (NK) Steel Ship Rules / Inspection Guidelines (K knitted material) No. 1 test piece. Yes, it shows the strength at which it breaks.
  • joint no. In 2, 6, 8, 10 and 12 since the transformation start temperature exceeds 250 ° C., there is a tensile residual stress in the weld in the weld metal 4 and the fatigue strength is 2 ⁇ 10 6 times under the gigacycle. It can be seen that the joint fatigue strength at is significantly reduced.
  • the joint No. In 1, 3, 4, 5, 7, 9, 11, 13 to 20 the welded portion undergoes transformation at a temperature of 250 ° C. or less, and the compressive residual stress is acting. Therefore, fatigue strength of 2 ⁇ 10 6 times All are over 260 MPa, and the joint fatigue strength under the gigacycle is over 200 MPa. Therefore, the joint No. In 1, 3, 4, 5, 7, 9, 11, 13 to 20, it can be seen that the joint fatigue strength under the gigacycle is not greatly reduced.
  • a high-strength steel plate when welded with a high energy density beam to form a welded structure, it has a fatigue resistance property in a vibration environment in the gigacycle region and has a sufficiently high fracture toughness value ⁇ c.
  • a joint can be formed, and industrial applicability is high as a base member of an offshore wind power generation tower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

 この溶接継手は、一対の鋼材と;前記一対の鋼材間の突合せ溶接部に、高エネルギー密度ビームにより溶接されて形成された溶接金属と;を備え、前記溶接金属の質量%の組成を用いた下記数式(a)により算出される変態開始温度Msが、250℃以下である。 Ms(℃)=371-353C-22Si-24.3Mn-7.7Cu-17.3Ni-17.7Cr-25.8Mo・・・(a)

Description

高エネルギー密度ビームを用いた突合せ溶接継手
 本発明は、高エネルギー密度ビームを一対の鋼材に照射して突合せ溶接した溶接継手に関する。特に、本発明は、ギガサイクル域の振動環境における疲労特性に優れた溶接継手に関する。
 本願は、2009年12月04日に、日本に出願された特願2009-277035号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境の温暖化の一因とされるCOガスの削減や、石油等の化石燃料の将来的な枯渇に対処するため、再生可能な自然エネルギーを利用することが積極的に試みられている。風力発電も、その一つであり、大規模な風力発電が世界的に普及しつつある。風力発電に最も適している地域は、絶えず強風を期待できる地域であり、そのため、洋上風力発電も世界的規模で計画及び実現されている(特許文献1~4参照)。
 洋上に風力発電塔を建設するためには、海底の地盤に塔の基礎部分を打ち込む必要があり、基礎部分も打設される水深以上の十分な長さが必要である。また、風力発電塔全体の固有周期を狭い範囲で最適化する必要があるため、風力発電塔の基礎部分では、板厚が50mm以上、例えば、100mm程度、直径が4m程度の大断面を有する管構造が採用され、塔の全体高さは80m以上にもなる。そのような巨大構造物を建設現場近くの海岸において、簡易に、しかも高能率で溶接組み立てすることが求められている。
 そこで、上記のように、板厚100mmにもおよぶ極厚鋼板を高能率で、しかもオンサイトで溶接するという、従来にないニーズが生じてきた。
 一般に、電子ビーム溶接、レーザービーム溶接などの高エネルギー密度ビーム溶接は、効率的に溶接できる溶接方法である。しかし、特に電子ビーム溶接では、真空チャンバー内で高真空状態を維持して溶接する必要があるので、従来は、溶接できる鋼板の大きさが限られていた。これに対して、近年、板厚100mm程度の極厚鋼板を効率よく現地溶接できる溶接方法として、低真空下で施工が可能な溶接方法(RPEBW:Reduced Pressured Electron Beam Welding:減圧電子ビーム溶接)が英国の溶接研究所で開発され、提案されている(特許文献5)。
 このRPEBW法を用いることにより、風力発電塔のような大型構造物を溶接する場合にも、溶接する部分だけを局所的に真空にして、効率的に溶接ができることが期待される。
 しかし、一方で、このRPEBW法では、真空チャンバー内で溶接する方法に比べて、真空度が低下した状態で溶接するために、電子ビームで溶融され、その後凝固する溶融金属部分(以下、溶接金属部ともいう)の靭性確保が困難となるという、新たな課題が浮かび上がってきた。
 このような課題に対し、従来、板状のNiなどのインサートメタルを溶接面に貼付けて電子ビーム溶接することにより、溶接金属のNi含有量を0.1~4.5質量%として、溶接金属のシャルピー衝撃値などの靭性を改善する方法などが、特許文献6および特許文献7において提案されている。
 洋上の風力発電塔は、上記のように絶えず強風による振動にさらされるため、基礎部の構造体は絶え間なく繰り返し荷重を受け、溶接部には絶え間なく繰り返し応力が負荷される。このため、上記構造体の溶接部は、通常の疲労サイクル(106~7)とはオーダーが異なるギガサイクル域(109~10)の振動に対する耐疲労特性が要求されている。
特開2008-111406号公報 特開2007-092406号公報 特開2007-322400号公報 特開2006-037397号公報 国際公開99/16101号パンフレット 特開平3-248783号公報 国際公開第08/041372号パンフレット
 従来の高エネルギー密度溶接では、溶接部の溶接金属は溶接の最終段階の室温付近で収縮するため、引張残留応力が誘起される。その応力比効果で疲労強度が著しく低下することがあった。そのため、ギガサイクル域の振動に対しては、引張残留応力により疲労亀裂が発生する懸念があった。
 本発明は、ギガサイクル域の振動に対しても耐えることが可能な疲労特性を有し、かつ十分な破壊靱性を有する溶接継手の提供を目的とする。
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
 すなわち、
(1)本発明の一態様に係る溶接継手では、一対の鋼材と;前記鋼材間の突合せ溶接部に、高エネルギー密度ビームにより溶接されて形成された溶接金属と;を備え、前記溶接金属の質量%の組成を用いた下記数式(a)により算出される変態開始温度Msが、250℃以下である。
Ms(℃)=371-353C-22Si-24.3Mn-7.7Cu-17.3Ni-17.7Cr-25.8Mo・・・(a)
(2)上記(1)に記載の溶接継手では、前記溶接金属の組成が、Ni:0.5~4.0質量%およびCr:0.5~6.0質量%を含有することが好ましい。
(3)上記(2)に記載の溶接継手では、前記溶接金属の組成が、Mo:0.1~2.0質量%、およびCu:0.1~5.0質量%の1種または2種を含有し;Ni,Cr,Mo,Cuを合計で1.1~10.0質量%を含有する;ことが好ましい。
(4)上記(1)に記載の溶接継手では、前記溶接金属の組成が、Ni:4.0~6.0質量%を含有することが好ましい。
(5)上記(4)に記載の溶接継手では、前記溶接金属の組成が、Cr:0.1~6.0質量%、Mo:0.1~2.0質量%、およびCu:0.1~5.0質量%の1種または2種以上を含有し;Ni,Cr,Mo,Cuを合計で4.1~10.0質量%を含有する;ことが好ましい。
(6)上記(5)に記載の溶接継手では、前記溶接金属の質量%の組成を用いた下記数式(b)により算出される前記溶接金属の焼入性指数Dが、0.1以上3.0以下であることが好ましい。
I =0.36√C(1+0.7Si)(1+3.33Mn)(1+0.35Cu)(1+0.36Ni)(1+2.16Cr)(1+3Mo)・・・(b)
(7)上記(1)~(5)に記載の溶接継手では、前記鋼材の組成が、C:0.01~0.08質量%、Si:0.05~0.80質量%、Mn:0.8~2.5質量%、P≦0.03質量%、S≦0.02質量%、Al≦0.008質量%、Ti:0.005~0.030質量%を含有し;残部鉄および不可避的不純物である;ことが好ましい。
(8)上記(7)に記載の溶接継手では、前記鋼材の組成が、Cu:0.1~1.0質量%、Ni:0.1~6.0質量%、Cr:0.1~1.0質量%、Mo:0.1~0.5質量%、Nb:0.01~0.08質量%、V:0.01~0.10質量%、B:0.0005~0.0050質量%の1種または2種以上を含有することが好ましい。
(9)上記(1)~(5)に記載の溶接継手では、前記鋼材の厚みが30mm以上200mm以下であることが好ましい。
(10)上記(1)~(5)に記載の溶接継手では、前記高エネルギー密度ビームが電子ビームであることが好ましい。
 上記した溶接継手によれば、電子ビームなどの高エネルギー密度ビームを用いた溶接における溶接部において、引張残留応力ではなく圧縮残留応力を生じさせる溶接条件として、溶接金属の変態開始温度を下げることができる条件を選択する。これにより、低温で溶接金属を膨張させ、溶接後に溶接部に圧縮残留応力を付与することができるため、疲労特性を向上させることが可能となる。
 さらには、高強度鋼板、特に板厚が30mm以上の鋼板に高エネルギー密度ビームを照射し、溶接して突合せ溶接継手とする際、ギガサイクル域の振動環境における耐疲労特性を有し、かつ、破壊靱性値が十分に高い溶接継手を形成することができる。
本発明の一実施形態に係る突合せ溶接継手の溶接前の状態を示す厚み方向の断面図である。 同溶接継手の溶接後の状態を示す厚み方向の断面図である。 同溶接継手の疲労試験片の採取位置を示す。
 本発明の一実施形態の高エネルギー密度ビーム溶接継手(以下、溶接継手と称す。)10について図1Bを参照して説明する。溶接継手10は、高エネルギー密度ビームを用いて溶接されており、高エネルギー密度ビームとしては、本実施形態では電子ビームを用いた。電子ビームの他には、低真空下で施工が可能な溶接方法(RPEBW:Reduced Pressured Electron Beam Welding:減圧電子ビーム溶接)やレーザービーム溶接を用いることも可能である。
 溶接継手10は、一対の鋼材(溶接母材)1と、鋼材1間の突合せ溶接部6に、電子ビームにより溶接され形成された溶接金属4と、を備えており、溶接金属4の組成(質量%)を用いた下記数式(a)により算出されるマルテンサイト変態開始温度Ms(℃)が、250℃以下である。
Ms=371-353C-22Si-24.3Mn-7.7Cu-17.3Ni-17.7Cr-25.8Mo・・・(a)
 発明者らは、溶接継手10における溶接部6の冷却速度が大きいため、一般に知られているマルテンサイト変態開始温度を推定する式では、変態開始温度を過大評価してしまうことをつきとめた。そこで、一般の変態開始温度を推定する式を補正し、数式(a)を導いた。
 また、マルテンサイト変態終了温度(Mf(℃))は室温であることが望ましい。
 なお、一般的に250℃以下で変態開始する変態は、マルテンサイト変態である。しかし、本発明においては厳密に250℃以下でマルテンサイト変態が開始することを確認する必要はなく、250℃以下で体積膨張する変態を開始すればよい。そこで、本発明においては、数値(a)で算出された温度が単に250℃以下であればよい。また、以下では、Msを単に変態開始温度と記す。
 次に、溶接継手10で用いられる高エネルギー密度ビーム溶接方法について図1Aを用いて説明する。
 図1Aには、高エネルギー密度ビームの溶接方法の概念図が示されている。図1Aに示されるように、一対の鋼材1間の開先2の間にインサートメタル3を装入し、高エネルギー密度ビームによりインサートメタル3と一対の鋼材1の開先2の表面とを溶接する。
 図1Bに示すように、溶接部6に形成された溶接金属4が凝固した後、溶接金属4が室温まで冷却する過程において比較的低温、すなわち、250℃以下で溶接金属4の変態が開始する。この溶接金属4の変態膨張により、溶接部6に発生した圧縮応力5を保持した状態で室温まで維持させる。これにより、溶接継手10の疲労強度を向上させることができる。
 ここで、変態開始温度が高い場合、溶接金属の変態膨張時に、溶接金属の体積膨張が溶接部の周囲の鋼板から十分に拘束されていないので、溶接部に発生する圧縮応力は小さくなる。この場合、溶接金属が変態膨張した後、溶接金属が室温まで冷却する過程で熱収縮により引張応力が発生する。この熱収縮により、変態膨張は相殺され、その結果、溶接部に形成された溶接金属は引張残留応力状態となり、疲労強度は低下する。
 この様な理由から、本実施形態では、一対の鋼材1を溶接する際、一対の鋼材1の突合せ部である開先2にインサートメタル3を配置して、電子ビーム(高エネルギー密度ビーム)を用いた溶接により、インサートメタル3と母材である一対の鋼材1とを溶融させて溶接継手10を形成する。溶接継手10の疲労強度向上を十分に達成するためには、溶接金属4の周囲の鋼材1からの十分な拘束力を確保する必要がある。このために、本実施形態では、溶接継手10の溶接部6に形成される溶接金属4の変態開始温度Msが250℃以下となるように、インサートメタル3と鋼材との成分が調整されている。一般的には溶接条件などから溶接金属の幅を事前に予測できるため、インサートメタル3の成分と寸法と、鋼材1の成分と寸法とから、溶接金属の成分を目標の成分に調整すること、つまり溶接金属4の変態開始温度Msを調整することは、容易である。
 以上、本実施形態に係る溶接継手10は、変態開始温度が250℃以下であるため、溶接金属4は、鋼材1から拘束された状態でマルテンサイト変態する。このとき、溶接金属4は、膨張しようとしているため、鋼材1から圧縮残留応力が付与された状態である。この結果、溶接継手10の疲労特性が、ギガサイクル域の振動環境においても耐え得る耐疲強度まで向上する。さらには、溶接金属の焼入れ性が向上するため、微細な組織となり十分な破壊靱性を有する溶接継手10を提供することができる。
 本実施形態の溶接継手10に用いられる鋼材1は、特に限定されないが、上記の課題が顕著化する、板厚が30mm以上又は50mm以上の鋼材を用いることが好ましい。また、板厚の上限値は120mm又は200mmであることが好ましい。一対の鋼材としているが、一対の鋼材は必ずしも同一の板厚・成分などでなくてもよい。
 また、本実施形態の溶接継手10に用いられる鋼板1の組成は、使用するインサートメタル3の組成との組み合わせによって、形成される溶接金属4の変態開始温度が250℃以下となるように調整されている。使用する鋼材1は、特に限定されないが、好ましくはCを0.2質量%以下に制限された鋼材であり、降伏強度が355MPa以上である。引張強さを690MPa以下又は780MPa以下に制限してもよい。このような高強度鋼板としては、公知の成分組成の溶接用構造用鋼から製造した鋼板でよい。
 また、鋼材1の組成は、特に限定されないが、例えば、質量%で、C:0.01~0.08%、Si:0.05~0.80%、Mn:0.8~2.5%、P:0.03%以下、S:0.02%以下、Al:0.008%以下、Ti:0.005~0.030%を含有し;残部鉄および不可避的不純物である鋼組成である;ことが好ましい。そして、この組成を基本成分とし、母材(鋼材1)強度や継手靭性の向上等、要求される性質に応じて、Cr、Mo、Ni,Cu、W、Co、V、Nb、Ti、Zr、Ta、Hf、REM、Y,Ca、Mg、Te、Se、Bの内の1種又は2種以上を合計8%以下で含有する鋼を使用することができる。具体的な例としては、質量で、Cu:0.1~1.0%、Ni:0.1~6.0%、Cr:0.1~1.0%、Mo:0.1~0.6%、Nb:0.01~0.08%、V:0.01~0.10%、B:0.0005~0.0050%の1種または2種以上を含有する鋼組成であることが好ましい。一方、鋼材1にこれらの合金成分を含有した場合鋼材価格が非常に高価になる。実用上は、高価な合金成分を含有したインサート材を使用して溶接した方が、はるかに安価な溶接継手を得ることができる。このため、これらの合金成分を制限してもよい。例えば、Ni,Cr,Mo,Cuの内の1種又は2種以上を合計で4%以下、2%以下または1%以下を含有する鋼を使用してもよい。また、Cr、Mo、Ni,Cu、W、Co、V、Nb、Ti、Zr、Ta、Hf、REM、Y,Ca、Mg、Te、Se、Bの内の1種又は2種以上を合計4%以下又は2%で含有する鋼を使用してもよい。
 以下、鋼材1としての成分限定の必要性について述べる。また、以下の記載において%とは質量%を示す。
 構造用の鋼として十分な強度を得るためには、鋼材1に含有されるCの量は0.01%以上とすることが好ましい。必要に応じて、鋼材1に含有されるCの量を0.02%以上または0.03%以上に制限してもよい。溶接金属4の異常な硬化による靭性低下を防止するために、Cの含有量を0.12%以下に制限してもよい。必要に応じて、鋼材1に含有されるCの量を0.08%以下または0.06%以下に制限してもよい。
 溶接金属4で良好な靭性を得るためには、鋼材1に含有されるSiの量を0.80%以下とすることが好ましい。必要に応じて、鋼材1に含有されるSiの量を0.50%以下、0.30%以下または0.15%以下に制限してもよい。Siの含有量の下限は特に定める必要はないが、適切な脱酸処理のために0.05%以上とすることが望ましい。必要に応じて、Siの含有量を0.08%以上に制限してもよい。
 Mnはミクロ組織を適正化する効果が大きい安価な元素である。構造用の鋼として必要な強度と靭性を確保するために、鋼材1にMnの量を0.8~2.5%添加することが好ましい。溶接金属4の異常硬化を防止するために、鋼材1に含有させるMnの量の上限を2.3%、2.0%または1.9%に制限してもよい。
 PおよびSは不可避的不純物であるが、靭性等を劣化させるため、それぞれ0.03%以下および0.02%以下に制限することが好ましい。靭性を改善するためには、低い方が望ましく、鋼材1に含有されるPの量の上限を0.02%、0.015%または0.010%に制限し、Sの量の上限を0.015%、0.010%または0.006%に制限してもよい。
 溶接金属4の靭性を高めるため、鋼材1のAlの含有量は0.008%以下とすることが望ましい。靭性の向上のために、Alの含有量の上限を0.006%、0.005%または0.003%に制限してもよい。
 溶接金属4の靭性を高めるため、適切な量のTi酸化物を生成させることが好ましい。このために、鋼材1に含有されるTiの量は0.005~0.030%とすることが望ましい。必要に応じて、Tiの含有量の上限を0.025%、0.020%または0.015%に制限してもよい。また、Tiの含有量の下限を0.007%または0.009%に制限してもよい。
 Cuは、鋼材1の強度や靭性を向上させる元素であり、必要に応じて添加してよい。強度や靭性を向上させるためには、0.1%以上または0.3%以上のCuを添加してもよい。一方、多量のCu添加による鋼材1の疵等を防止するために、Cu含有量の上限は、1.0%とすることが好ましい。必要に応じて、Cu含有量の上限を0.7%又は0.5%に制限してもよい。
 Niは鋼材1および溶接金属4の靭性を向上させるのに有用な元素であり、鋼材1にNiの量を0.1%以上添加してよい。一方、Niは高価であるため、6.0%以下とすることが望ましい。鋼材1の価格を低減させるために、Niの含有量の上限を、2.0%、1.0%または0.5%に制限してもよい。
 Moは、強度を向上させるのに有効な元素であり、必要に応じて、鋼材1にMoの量を0.1%以上添加してよい。多量に添加すると溶接金属4が異常に硬化し、靭性が低下するため、0.6%以下とすることが好ましい。必要に応じて、鋼材1に含有されるMoの量を0.2%以下または0.15%以下に制限してもよい。
 Nbは、鋼材1の強度や靭性向上に有効な元素であり、必要に応じて、鋼材1にNbの量を0.01%以上添加してよい。多量に添加すると溶接金属4の靭性が低下するため、Nbの含有量は0.08%以下とすることが好ましい。必要に応じて、Nbの含有量を0.05%以下または0.03%以下に制限してもよい。
 Vは、鋼材1の強度の向上に有効な元素であり、必要に応じて、0.01%以上を添加してよい。多量に添加すると溶接金属4の靭性が低下するため、Vの含有量は0.10%以下とすることが好ましい。必要に応じて、Vの含有量を0.07%以下または0.04%以下に制限してもよい。
 Bは、鋼材1の強度の向上に有効な元素であり、必要に応じて、鋼材1にBの量を0.0005%以上添加してよい。多量に添加すると溶接金属4の靭性が低下するため、Bの含有量は0.0050%以下とすることが好ましい。必要に応じて、Bの含有量を0.0020%以下または0.0015%以下に制限してもよい。
 CaおよびREMは、耐ラメラテア特性向上に有効な元素であり、必要に応じて、鋼材1にCaおよびREMの量を0.0005%以上添加してよい。多量に添加すると鋼材1の靭性が低下するため、これらの含有量は0.0050%以下とすることが好ましい。
 Mgは、鋼材1の溶接熱影響部の靭性向上に有効であり、0.0003%以上添加してよい。多量に添加すると鋼材の靭性が低下するため、Mgの含有量は0.0050%以下とすることが好ましい。
 溶接金属4の組成は、例えば、Ni:0.5~4.0%およびCr:0.5~6.0%を含有することが好ましい。これにより、変態開始温度Msを250℃以下にし易くなる。また、高価なNiの含有量を抑えることにより、低コストで疲労強度を向上させた溶接継手10を得ることができる。この場合、さらに、質量で、Mo:0.1~2.0%、およびCu:0.1~5.0%の1種または2種を含有し;Ni,Cr,Mo,Cuを合計で1.1~10.0%を含有する鋼組成である;ことが好ましい。このように、Mo,Cuの1種または2種を含有させることにより、疲労強度を向上させ、十分な破壊靱性を得ることが可能となる。
 または、溶接金属4の組成を、上記の他に、例えば、Ni:4.0~6.0%を含有するようにしても良い。この場合、Niの含有量を多くすることにより、靱性を向上させることが可能となる。この場合、さらに、質量で、Cr:0.1~6.0%、Mo:0.1~2.0%、およびCu:0.1~5.0%の1種または2種以上を含有し;Ni,Cr,Mo,Cu合計で4.1~10.0%を含有する鋼組成である;ことが好ましい。このように、Mo,Cuの1種または2種を含有させることにより、疲労強度を向上させ、十分な破壊靱性を得ることが可能となる。
 Niは、溶接金属4の変態開始温度Msを低くし、溶接継手10の疲労強度向上のために有効な元素である。さらに、強度や靭性などの継手特性を向上させる元素でもある。溶接金属にNiを含有させる場合のNi含有量の下限は、疲労強度の向上効果が十分に期待できる最低限として0.5%とするのが好ましい。確実に疲労強度を向上させるためには、Ni含有量の下限を1.0%または2.0%とすることが、より望ましい。また、溶接金属のNi含有量が6.0%を上回る場合では、溶接金属4が低温で変態するベイナイトやマルテンサイトに変態せずオーステナイトのままで冷却が終了する可能性があり、疲労強度向上が期待できなくなる。これにより、Ni含有量の上限を6.0%とすることが好ましい。
 CrおよびMoは、溶接金属4の変態開始温度Msを低減させ、強度を向上させ、焼入性を確保させる元素である。特に、CrとMoは、Niよりも、溶接金属4の強度向上および焼入性確保の効果が高い。この効果を利用し、溶接金属4をマルテンサイトなどの変態温度が低い組織に変態させ、溶接継手10の疲労強度をより向上させるためには、Cr、Moの含有量は、0.1%以上とすることが好ましい。一方、CrとMoは、Niに比べて溶接金属4の靭性向上の効果は低いため、過度に含有させると、溶接金属4の靭性が低下する恐れが生じるため、Crの含有量の上限は6.0%、Moの含有量の上限は2.0%とすることが好ましい。
 なお、Niの含有量が4.0%以下の場合、溶接金属4の変態開始温度Msを確実に250℃以下とするために、0.5%以上のCrの含有が必要である。Niの含有量が2.0%以下の場合にCrの含有量の下限を1.5%または2%に制限し、Niの含有量が1.0%以下の場合にCr含有量の下限を2.0%または2.5%に制限してもよい。溶接金属4の靭性低下をさけるために、Cr含有量の下限を4.0%または3.0%に制限してもよい。同様な理由により、Moの含有量の下限を1%、0.5%または0.2%に制限してもよい。必要に応じて、Niの含有量が4.0%を超える場合でも、Crの含有量の下限を0.5%に制限してもよい。
 Cuも、CrとMo同様に、溶接金属4の変態開始温度Msの低減、強度向上および焼入性確保の効果がある元素である。Cuは、変態開始温度Msの低減、強度向上および焼入性確保の効果を得るために、Cu含有量の下限を0.1%とするのが好ましい。しかし、Cuは溶接金属中に過度に添加しすぎると溶接金属にCu割れを発生させるおそれがあるため、Cu含有量の上限値は5.0%とするのが好ましい。より好ましくは、Cuの含有量の上限値が0.3%である。
 本発明の溶接金属4は、さらに、以下の目的で成分元素を以下の含有範囲で含有することができる。
 Bは焼入性を飛躍的に向上させる元素であり、溶接金属4の焼入性を確保し、溶接金属4のミクロ組織をより高強度にする。また、高温で変態開始する組織の生成を抑え、より低い温度で変態するミクロ組織にする作用がある。一般的に、鋼材1に比べ溶接金属4は酸素含有量が高いため、Bは酸素と結合し上記した効果を奪われてしまう恐れがある。しかしながら、本実施形態の対象であるRPEB溶接では、酸素量や窒素量が極めて少なくなっているため、溶接金属中のBによる上記焼入れ性およびミクロ組織制御による引張り強度および疲労強度を改善するためでも、B含有量の下限は0.0003%で十分である。一方、B添加量の上限は、0.0003%を上回る量を添加してもB添加で得られる効果があまり増加しないので、0.005%とすることが好ましい。
 Nb、V,Tiはいずれも溶接金属4中で炭化物を形成し強度を増加させる働きをもつ元素であり、Nb、V、Tiの1種または2種以上を溶接金属4中に少ない量含有することで継手強度の向上が図れる。Nb、V、Tiの1種または2種以上の合計含有量の下限は、0.005%を下回ると、継手強度の向上があまり期待できなくなるため、その合計含有量の下限を0.005%とするのが好ましい。一方、上記合計含有量が0.3%を上回ると、溶接金属4の強度が過大になり、継手特性上、問題が生じるため、上記合計含有量上限を0.3%とするのが好ましい。なお、Tiに関しては、溶接金属4の強度向上効果に加えて、溶接アークを安定させる働きがあるため、Tiを含有させる場合には、好ましくはTi含有量の下限を0.003%とすることが望ましい。また、溶接金属4の靭性向上のために、Alの含有量の下限を0.003%、0.005%または0.008%に制限してもよい。
 溶接金属4の組成を上記のようにするためには、インサートメタル3を用いて電子ビーム溶接などを行う。溶接条件からビード幅すなわち溶接金属4の幅が精度よく推定できるので、目標とする溶接金属4の成分となるように、インサートメタル3の成分及びその厚さを選定するとよい。例えば、インサートメタル3として、純Ni、または、Ni:1~10%、Cr:0.1~2.0%、Mo:0.1~2.0%、およびCu:0.1~5.0%の1種または2種以上を合計で0.5~10.0%含有するメタル箔を使用することができる。
 本実施形態では、溶接金属4の硬さは、母材である鋼材1の硬さの140%以内であることが好ましい。溶接金属4は、変態開始温度Msを低温化させ、溶接金属4の変態時の膨張量を室温で活用できるようにするため、マルテンサイト組織化することが望ましい。しかしながら、溶接金属4の組織が硬すぎると局所的な応力の増大による破壊靱性値δcの低下をまねくので、140%以下に抑制することが好ましい。
 溶接金属4の組成がNi:0.5~6.0%、Cr:0.1~6.0%、Mo:0.1~2.0%、およびCu:0.1~5.0%の1種または2種以上を合計で0.5~10.0%、好ましくは、1.1~10.0%を含有するような条件を満たし、さらに、母材となる鋼材1とインサートメタル3を使用して形成した溶接金属4との成分間のバランスを適切に調整することや溶接後の冷却速度を調整することが好ましい。これにより、溶接金属4の硬度が高くなり過ぎないようにすることができるので、溶接金属4と鋼材1との硬度差(溶接金属4の硬さが、鋼材1の硬さの140%以内)を調整することができる。
 また、溶接金属4の変態開始温度Msを確実に低減させるためにも、溶接金属4におけるNi、Cr,MoおよびCuの含有量の合計を、0.5%以上、1.0%、2.0%または3.0%以上に制限してもよい。
 また、溶接金属4の異常な硬化を防止して溶接金属4の靭性を向上させるために、溶接金属4の組成を用いた下記数式(b)により算出される溶接金属4の焼入性指数Dが、0.1以上3.0以下であることが好ましい。
I =0.36√C(1+0.7Si)(1+3.33Mn)(1+0.35Cu)(1+0.36Ni)(1+2.16Cr)(1+3Mo)・・・(b)
 溶接金属4の焼入性指数Dが3.0を超えると、溶接金属の硬さが高くなり靭性が低下するため、焼入性指数Dは3.0以下が好ましい。必要に応じて、D値の上限を1.2、0.9または0.7に制限してもよい。一方、焼入性指数D値が低過ぎると、マルテンサイト組織とならないため、D値を0.1以上とすることが望ましい。確実にマルテンサイト組織とするために、D値の下限を0.2以上、0.25以上または0.3以上に制限してもよい。
 本実施形態では、高エネルギー密度ビームを用いた溶接の条件を特に限定しないが、例えば、電子ビーム溶接の場合、板厚80mmを使用したとき、電圧175V,電流120mA,溶接速度125mm/分程度の条件で行われる。また、電子ビーム溶接は、通常、10~3mbar以下の高真空下で溶接が行われるが、上述のRPEBW法のような低真空度、例えば、1mbar程度の真空下で溶接した溶接継手であっても、本実施形態を適用することができる。
 また、電子ビーム溶接時に電子ビームの照射領域が大きくなると、鋼材1に与える入熱量が過大となり、FL部(Fusion Line、鋼材1と溶接金属4との境界部)の組織が粗大化してしまい、安定してFL部の破壊靭性値δcを確保する上で好ましくない。
 また、RPEBW溶接を用いて溶接継手10を作製する場合は、真空チャンバー内で、高真空状態で電子ビーム溶接(EBW溶接)により作製した溶接継手に比べ、溶接金属の幅が増大する傾向にある。
 このため、本実施形態では、RPEBW溶接を用いた場合でも、溶接継手10の破壊靭性値δcを安定して確保するために、図1Bに示す溶接金属4の幅wを、母材である鋼材1の板厚tの20%以下又は10%以下とすることが好ましい。
 本実施形態において、溶接部6の局部的な急速加熱及び急速冷却に適しているため、高エネルギー密度ビームとして電子ビームを用いたが、これに限るものではない。
 次に、本発明を実施例に基づいて説明するが、実施例における条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。すなわち、本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件ないし条件の組み合わせを採用し得る。
 表1に示す化学成分を有する鋼材1~20を使用して表2に示す成分を有するインサートメタルを挿入して、表3に示す溶接条件により電子ビーム溶接及びレーザービーム溶接によって突合せ溶接して溶接継手を形成した。
 表中の変態開始温度Ms(℃)は、上述したように、Ms=371-353C-22Si-24.3Mn-7.7Cu-17.3Ni-17.7Cr-25.8Moの数式を用いて求めた。
 図2に示される溶接継手内において、継手疲労試験片23を採取し、継手疲労試験片23の裏面23aを機械研削して試験片の表面側から疲労亀裂が発生するように工夫した。軸力、応力比0.1、繰り返し速度5Hzにて疲労試験を行い、2×10回の疲労強度を求めた。さらに、図2の溶接継手内において超音波試験片24を採取し、2×10回の疲労強度、および2×10回までのギガサイクルでの疲労強度を求め、その低下比率をもとめ、継手疲労試験で求めた2×10回の疲労強度にその低下比率をかけて、ギガサイクル下での継手疲労強度(推定値)を評価した。その結果を溶接条件とともに表4、表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 溶接継手の性能に関し、破壊靱性値δc(mm)は、CTOD(Crack Tip Opening Displacement:亀裂先端開口変位)試験において、-10℃の試験温度で求めた値である。CTOD試験とは、欠陥が存在する構造物の破壊靱性を評価する試験の一つであり、本実施例では、3本の溶接継手の平均値を求めた。
 継手引張強度(MPa)は、(財)日本海事協会(NK:Nippon Kaiji Kyokai)鋼船規則・同検査要領(K編 材料)U1号試験片を作製して、継手引張試験を行った結果であり、破断した強度を示すものである。
 表4、表5を参照すると、継手No.2、6、8、10および12では、変態開始温度が、250℃を超えているため、溶接金属4において溶接部に引張り残留応力が存在し、2×10回の疲労強度、ギガサイクル下での継手疲労強度が大幅に低下していることがわかる。これに対して、継手No.1,3、4、5、7、9、11、13~20では、溶接部が250℃以下の温度で変態が生じ、圧縮残留応力が働いているため、2×10回の疲労強度がいずれも260MPaを超えており、かつ、ギガサイクル下での継手疲労強度がいずれも200MPaを超えている。したがって、継手No.1,3、4、5、7、9、11、13~20では、ギガサイクル下での継手疲労強度が大きく低下していないことがわかる。
 本発明によれば、高強度鋼板を高エネルギー密度ビームによる溶接して溶接構造体とする際、ギガサイクル域の振動環境における耐疲労特性を有し、かつ、破壊靱性値δcが十分に高い溶接継手を形成することができ、洋上風力発電塔の基礎部材として産業上の利用可能性が高い。
 1  鋼材
 2  開先
 3  インサートメタル
 4  溶接金属
 5  圧縮応力
 6  溶接部
 21  鋼板
 22  溶接ビード
 23  継手疲労試験片
 24  超音波疲労試験片

Claims (10)

  1.  一対の鋼材と;
     前記一対の鋼材間の突合せ溶接部に、高エネルギー密度ビームにより溶接されて形成された溶接金属と;を備え、
     前記溶接金属の質量%の組成を用いた下記数式(a)により算出される変態開始温度Msが、250℃以下であることを特徴とする溶接継手。
    Ms(℃)=371-353C-22Si-24.3Mn-7.7Cu-17.3Ni-17.7Cr-25.8Mo・・・(a)
  2.  前記溶接金属の組成が、Ni:0.5~4.0質量%およびCr:0.5~6.0質量%を含有することを特徴とする請求項1に記載の溶接継手。
  3.  前記溶接金属の組成が、Mo:0.1~2.0質量%、およびCu:0.1~5.0質量%の1種または2種を含有し;
     Ni,Cr,Mo,Cuを合計で1.1~10.0質量%を含有する;
    ことを特徴とする請求項2に記載の溶接継手。
  4.  前記溶接金属の組成が、Ni:4.0~6.0質量%を含有することを特徴とする請求項1に記載の溶接継手。
  5.  前記溶接金属の組成が、Cr:0.1~6.0質量%、Mo:0.1~2.0質量%、およびCu:0.1~5.0質量%の1種または2種以上を含有し;
     Ni,Cr,Mo,Cuを合計で4.1~10.0質量%を含有する;
    ことを特徴とする請求項4に記載の溶接継手。
  6.  前記溶接金属の質量%組成を用いた下記数式(b)により算出される前記溶接金属の焼入性指数Dが、0.1以上3.0以下であることを特徴とする請求項1から請求項5のいずれか1項に記載の溶接継手。
    I =0.36√C(1+0.7Si)(1+3.33Mn)(1+0.35Cu)(1+0.36Ni)(1+2.16Cr)(1+3Mo)・・・(b)
  7.  前記鋼材の組成が、C:0.01~0.08質量%、Si:0.05~0.80質量%、Mn:0.8~2.5質量%、P≦0.03質量%、S≦0.02質量%、Al≦0.008質量%、Ti:0.005~0.030質量%を含有し;
     残部鉄および不可避的不純物である;
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の溶接継手。
  8.  前記鋼材の組成が、Cu:0.1~1.0質量%、Ni:0.1~6.0質量%、Cr:0.1~1.0質量%、Mo:0.1~0.5質量%、Nb:0.01~0.08質量%、V:0.01~0.10質量%、B:0.0005~0.0050質量%の1種または2種以上を含有することを特徴とする請求項7に記載の溶接継手。
  9.  前記鋼材の厚みが30mm以上200mm以下であることを特徴とする請求項1から請求項5のいずれか1項に記載の溶接継手。
  10.  前記高エネルギー密度ビームが電子ビームであることを特徴とする請求項1から請求項5のいずれか1項に記載の溶接継手。
PCT/JP2010/071721 2009-12-04 2010-12-03 高エネルギー密度ビームを用いた突合せ溶接継手 WO2011068216A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK10834666.9T DK2508291T3 (en) 2009-12-04 2010-12-03 STUMPS WELDED COLLECTION USED BY AN ELECTRIC RADIATION
US13/512,732 US9352424B2 (en) 2009-12-04 2010-12-03 Butt welding joint using high-energy density beam
CN201080054320.5A CN102639277B (zh) 2009-12-04 2010-12-03 使用了高能密度束的对接焊接接头
JP2011518622A JP4970620B2 (ja) 2009-12-04 2010-12-03 高エネルギー密度ビームを用いた突合せ溶接継手
KR1020127014118A KR101218961B1 (ko) 2009-12-04 2010-12-03 고에너지 밀도 빔을 사용한 맞댐 용접 조인트
ES10834666.9T ES2631979T3 (es) 2009-12-04 2010-12-03 Junta de soldadura a tope formada usando un haz de electrones
EP10834666.9A EP2508291B1 (en) 2009-12-04 2010-12-03 Butt-welded joint formed using electron beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-277035 2009-12-04
JP2009277035 2009-12-04

Publications (1)

Publication Number Publication Date
WO2011068216A1 true WO2011068216A1 (ja) 2011-06-09

Family

ID=44115061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071721 WO2011068216A1 (ja) 2009-12-04 2010-12-03 高エネルギー密度ビームを用いた突合せ溶接継手

Country Status (9)

Country Link
US (1) US9352424B2 (ja)
EP (1) EP2508291B1 (ja)
JP (2) JP4970620B2 (ja)
KR (1) KR101218961B1 (ja)
CN (1) CN102639277B (ja)
DK (1) DK2508291T3 (ja)
ES (1) ES2631979T3 (ja)
MY (1) MY160917A (ja)
WO (1) WO2011068216A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170354B1 (ja) * 2012-05-31 2013-03-27 新日鐵住金株式会社 ビーム溶接継手およびビーム溶接方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177254B1 (ko) * 2009-12-04 2012-08-24 신닛뽄세이테쯔 카부시키카이샤 용접 구조체의 맞댐 용접 조인트 및 그 제조 방법
WO2014082400A1 (zh) * 2012-11-29 2014-06-05 北京理工大学 定值残余应力试块及其制作和保存方法
JP6377424B2 (ja) * 2014-06-18 2018-08-22 Ntn株式会社 外側継手部材の製造方法および外側継手部材
CN104959725B (zh) * 2015-06-08 2017-05-31 航天材料及工艺研究所 一种大型变厚度构件电子束焊接变形控制方法
WO2017190042A1 (en) * 2016-04-29 2017-11-02 Nuburu, Inc Visible laser welding of electronic packaging, automotive electrics, battery and other components
WO2018164277A1 (ja) 2017-03-09 2018-09-13 アイシン・エィ・ダブリュ株式会社 回転電機用部材の製造方法
DE102020216163A1 (de) * 2019-12-20 2021-06-24 Sms Group Gmbh Stumpfstoßlasertiefschweißverfahren
CN112548395A (zh) * 2020-11-27 2021-03-26 无锡朗贤轻量化科技股份有限公司 一种激光填丝焊接用焊丝及制备方法和拼焊板制造工艺
GB2610493A (en) * 2021-06-30 2023-03-08 Morphpackers Ltd Improvements in or relating to metal packers
CN115156749B (zh) * 2022-07-06 2023-11-10 陕西斯瑞新材料股份有限公司 一种铜钨与钢的焊接方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126683A (ja) * 1986-11-14 1988-05-30 Nippon Steel Corp 溶接金属の靭性に優れた鋼の溶接方法
JPH03248783A (ja) * 1990-02-23 1991-11-06 Nippon Steel Corp 鋼板の電子ビーム溶接方法
JPH05148582A (ja) * 1991-11-28 1993-06-15 Nippon Steel Corp 電子ビーム溶接用高張力鋼板
JPH0716763A (ja) * 1993-06-29 1995-01-20 Nippon Steel Corp 鋼板の電子ビーム溶接方法
JP2002003984A (ja) * 2000-06-19 2002-01-09 Nippon Steel Corp 疲労強度特性に優れたレーザーまたは電子ビーム溶接継ぎ手を備えた構造物及びそれらの製造法
JP2007118025A (ja) * 2005-10-26 2007-05-17 Sumitomo Metal Ind Ltd Bを含有するステンレス鋼材およびその製造方法
JP2008088504A (ja) * 2006-10-02 2008-04-17 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2008087034A (ja) * 2006-10-02 2008-04-17 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201233A (en) * 1962-06-13 1965-08-17 Westinghouse Electric Corp Crack resistant stainless steel alloys
US4086463A (en) * 1972-11-13 1978-04-25 Tsukishima Kikai Co., Ltd. Flux-cored wire
JPS5921711B2 (ja) * 1978-07-11 1984-05-22 株式会社日立製作所 ステンレス鋼材の溶接方法
CA1216158A (en) * 1981-11-09 1987-01-06 Akio Hara Composite compact component and a process for the production of the same
JPS5886996A (ja) * 1981-11-18 1983-05-24 Mitsubishi Heavy Ind Ltd 高強度・高靭性溶接材料
US4683014A (en) * 1986-03-28 1987-07-28 O'donnell & Associates, Inc. Mechanical stress improvement process
IT1190581B (it) * 1986-05-29 1988-02-16 Fiat Auto Spa Procedimento per saldare di testa con l impiego di un fascio laser due pezzi di materiali metallici dissimili in particolare pezzi di acciaio a medio od elevato tenore di carbonic
US4805795A (en) * 1986-12-27 1989-02-21 Toyo Seikan Kaisha Ltd. Butt-welded cans and process for manufacturing the same
DE3920825C2 (de) * 1989-06-24 1995-06-01 Oxytechnik Ges Systemtech Vorrichtung zum Beschneiden und Stumpfschweißen von Band- oder Blechrändern mit einer Lasereinrichtung
EP0451303B1 (de) * 1990-04-06 1993-09-01 Thyssen Industrie Ag Maschinenbau Verfahren zum Aneinanderschweissen von unterschiedlich dicken oder gleich dicken Blechbahnen - auch von dünnen Blechen - durch Laserstrahlschweissen, im Durchlaufverfahren
EP0482223B1 (de) * 1990-10-20 1994-01-12 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Bandschweissmaschine
US5201458A (en) * 1990-10-31 1993-04-13 Seagate Technology, Inc. Method of welding a head suspension assembly
JPH05123878A (ja) * 1991-11-06 1993-05-21 Kawasaki Steel Corp 突合せレーザ溶接方法
DE69422028T2 (de) * 1993-12-28 2000-03-30 Nippon Steel Corp Martensitischer wärmebeständiger stahl mit hervorragender erweichungsbeständigkeit und verfahren zu dessen herstellung
JP3031169B2 (ja) * 1994-06-15 2000-04-10 株式会社日立製作所 炭素鋼とオーステナイト系ステンレス鋼との溶接方法及び電力送配電用ガス遮断器の溶接方法
JP3231191B2 (ja) * 1994-08-22 2001-11-19 本田技研工業株式会社 高密度エネルギビームによる突合せ溶接方法
JP3336573B2 (ja) * 1994-11-04 2002-10-21 新日本製鐵株式会社 高強度フェライト系耐熱鋼およびその製造方法
US5744782A (en) * 1996-03-07 1998-04-28 Concurrent Technologies Corporation Advanced consumable electrodes for gas metal arc (GMA) welding of high strength low alloy (HSLA) steels
JPH10146691A (ja) * 1996-11-18 1998-06-02 Nippon Steel Corp 高Cr鋼の溶接方法
US5879480A (en) * 1997-07-25 1999-03-09 The Timken Company Process for imparting residual compressive stresses to steel machine components
GB9720350D0 (en) 1997-09-24 1997-11-26 Welding Inst Improvements relating to charged particle beams
US6220306B1 (en) * 1998-11-30 2001-04-24 Sumitomo Metal Ind Low carbon martensite stainless steel plate
JP3582461B2 (ja) * 1999-07-01 2004-10-27 住友金属工業株式会社 高強度溶接鋼管
WO2001010591A1 (fr) * 1999-08-06 2001-02-15 Sumitomo Metal Industries, Ltd. Conduite en acier inoxydable soude de martensite
DE60024761T2 (de) * 1999-12-17 2006-07-06 Jfe Steel Corp. Schweisszusatzwerkstoff und Verfahren zum Herstellen einer Schweissverbindung
JP4633959B2 (ja) * 2001-05-08 2011-02-16 三菱重工業株式会社 高強度耐熱鋼の溶接継手部及びその溶接方法
US7618503B2 (en) * 2001-06-29 2009-11-17 Mccrink Edward J Method for improving the performance of seam-welded joints using post-weld heat treatment
WO2003006699A1 (fr) * 2001-07-13 2003-01-23 Nkk Corporation Tube d'acier a resistance elevee, superieure a celle de la norme api x6
JP2003251493A (ja) * 2002-03-01 2003-09-09 National Institute For Materials Science 溶接継手強度を向上させる溶接材料
JP4189201B2 (ja) * 2002-10-30 2008-12-03 新日本製鐵株式会社 鋼材の溶接継手における熱影響部の靭性向上方法
AU2003900883A0 (en) * 2003-02-26 2003-03-13 Bradken Resources Pty Limited A steel member and a method of hard-facing thereof
US6866730B2 (en) * 2003-03-21 2005-03-15 General Motors Corporation Metallic-based adhesion materials
US7531766B2 (en) * 2003-04-07 2009-05-12 Gm Global Technology Operations, Inc. Sheet metal assembly and method to reduce weight
US7154064B2 (en) * 2003-12-08 2006-12-26 General Motors Corporation Method of improving weld quality
JP2005288504A (ja) 2004-03-31 2005-10-20 Nippon Steel Corp 疲労強度に優れた溶接継手およびその溶接方法
JP4575061B2 (ja) 2004-07-23 2010-11-04 第一建設機工株式会社 洋上風力発電施設の施工方法
US8710405B2 (en) * 2005-04-15 2014-04-29 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic stainless steel welding wire and welding structure
US7588837B2 (en) * 2005-04-29 2009-09-15 The Timken Company Welding together low and high carbon steels
US7992759B2 (en) * 2005-06-10 2011-08-09 Megastir Technologies, LLC Two spiral stepped friction stir welding tool
US20070017906A1 (en) * 2005-06-30 2007-01-25 General Electric Company Shimmed laser beam welding process for joining superalloys for gas turbine applications
US7683288B2 (en) * 2005-08-12 2010-03-23 Thermatool Corp. System and method of computing the operating parameters of a forge welding machine
JP2007092406A (ja) 2005-09-29 2007-04-12 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd 水上構造物の基礎構造
US8141768B2 (en) * 2006-01-27 2012-03-27 Exxonmobil Research And Engineering Company Application of high integrity welding and repair of metal components in oil and gas exploration, production and refining
JP4939098B2 (ja) * 2006-04-05 2012-05-23 三菱重工業株式会社 管体の残留応力改善方法及び残留応力改善装置
US8330070B2 (en) * 2006-05-11 2012-12-11 Kabushiki Kaisha Toshiba Laser shock hardening method and apparatus
WO2007138752A1 (ja) * 2006-06-01 2007-12-06 Honda Motor Co., Ltd. 高強度鋼板およびその製造方法
JP2007322400A (ja) 2006-06-05 2007-12-13 Nsk Ltd カプセル破壊量測定方法
US20080032152A1 (en) * 2006-08-04 2008-02-07 Vaughn Glen A Use of laser shock processing in oil & gas and petrochemical applications
EP1887096A1 (de) * 2006-08-09 2008-02-13 Rovalma, S.A. Warmarbeitsstahl
EP2422913B1 (en) 2006-10-02 2013-12-25 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint excellent in brittle fracture resistance
JP2008087030A (ja) * 2006-10-02 2008-04-17 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2008111406A (ja) 2006-10-31 2008-05-15 Shimizu Corp 洋上風力発電施設およびその施工方法
US8101029B2 (en) * 2007-02-19 2012-01-24 Kobe Steel, Ltd. Weld metal of high-strength Cr-Mo steel
US20080302539A1 (en) * 2007-06-11 2008-12-11 Frank's International, Inc. Method and apparatus for lengthening a pipe string and installing a pipe string in a borehole
US20090139969A1 (en) * 2007-11-29 2009-06-04 Global Nuclear Fuel - Americas Llc Laser welding of castings to minimize distortion
FR2929871B1 (fr) * 2008-04-09 2010-11-12 Airbus France Procede de soudage par faisceau a haute densite d'energie
JP5011204B2 (ja) * 2008-05-16 2012-08-29 日東電工株式会社 シート部材の接合方法及びシート接合体
US20100136369A1 (en) * 2008-11-18 2010-06-03 Raghavan Ayer High strength and toughness steel structures by friction stir welding
KR101177254B1 (ko) * 2009-12-04 2012-08-24 신닛뽄세이테쯔 카부시키카이샤 용접 구조체의 맞댐 용접 조인트 및 그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126683A (ja) * 1986-11-14 1988-05-30 Nippon Steel Corp 溶接金属の靭性に優れた鋼の溶接方法
JPH03248783A (ja) * 1990-02-23 1991-11-06 Nippon Steel Corp 鋼板の電子ビーム溶接方法
JPH05148582A (ja) * 1991-11-28 1993-06-15 Nippon Steel Corp 電子ビーム溶接用高張力鋼板
JPH0716763A (ja) * 1993-06-29 1995-01-20 Nippon Steel Corp 鋼板の電子ビーム溶接方法
JP2002003984A (ja) * 2000-06-19 2002-01-09 Nippon Steel Corp 疲労強度特性に優れたレーザーまたは電子ビーム溶接継ぎ手を備えた構造物及びそれらの製造法
JP2007118025A (ja) * 2005-10-26 2007-05-17 Sumitomo Metal Ind Ltd Bを含有するステンレス鋼材およびその製造方法
JP2008088504A (ja) * 2006-10-02 2008-04-17 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2008087034A (ja) * 2006-10-02 2008-04-17 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170354B1 (ja) * 2012-05-31 2013-03-27 新日鐵住金株式会社 ビーム溶接継手およびビーム溶接方法
WO2013179461A1 (ja) * 2012-05-31 2013-12-05 新日鐵住金株式会社 ビーム溶接継手およびビーム溶接方法

Also Published As

Publication number Publication date
EP2508291A1 (en) 2012-10-10
MY160917A (en) 2017-03-31
JPWO2011068216A1 (ja) 2013-04-18
JP4970620B2 (ja) 2012-07-11
CN102639277A (zh) 2012-08-15
JP2012102405A (ja) 2012-05-31
KR101218961B1 (ko) 2013-01-04
ES2631979T3 (es) 2017-09-07
EP2508291A4 (en) 2013-04-10
CN102639277B (zh) 2015-08-19
KR20120088798A (ko) 2012-08-08
US20120241420A1 (en) 2012-09-27
US9352424B2 (en) 2016-05-31
DK2508291T3 (en) 2017-07-24
JP5000784B2 (ja) 2012-08-15
EP2508291B1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
JP5000784B2 (ja) 高エネルギー密度ビームを用いた突合せ溶接継手
JP4995348B2 (ja) 突合せ溶接継手及びその製造方法
JP5169532B2 (ja) フェライト系耐熱鋼材
JP5171007B2 (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP5098139B2 (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
US10500817B2 (en) Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same
JP2011246805A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP2011246806A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
EP2594657B1 (en) Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644732B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644731B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644733B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP4719118B2 (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP5472342B2 (ja) 耐脆性破壊発生特性に優れた電子ビーム溶接継手
EP2644730B1 (en) Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
JP4822733B2 (ja) 鋼構造物用溶接継手
JP2011246808A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP2011246803A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP2011246807A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054320.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011518622

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13512732

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127014118

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010834666

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010834666

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE