WO2014082400A1 - 定值残余应力试块及其制作和保存方法 - Google Patents

定值残余应力试块及其制作和保存方法 Download PDF

Info

Publication number
WO2014082400A1
WO2014082400A1 PCT/CN2013/072495 CN2013072495W WO2014082400A1 WO 2014082400 A1 WO2014082400 A1 WO 2014082400A1 CN 2013072495 W CN2013072495 W CN 2013072495W WO 2014082400 A1 WO2014082400 A1 WO 2014082400A1
Authority
WO
WIPO (PCT)
Prior art keywords
welded
block
residual stress
test block
main body
Prior art date
Application number
PCT/CN2013/072495
Other languages
English (en)
French (fr)
Inventor
徐春广
徐浪
潘勤学
肖定国
李骁
宋文涛
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210498787XA external-priority patent/CN103439049A/zh
Priority claimed from CN2012105002678A external-priority patent/CN103017955A/zh
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to US14/647,813 priority Critical patent/US9989496B2/en
Priority to JP2015544310A priority patent/JP5972480B2/ja
Publication of WO2014082400A1 publication Critical patent/WO2014082400A1/zh
Priority to US15/951,119 priority patent/US10712316B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0296Welds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Definitions

  • the invention relates to a fixed-value residual stress test block and a method for fabricating and maintaining the same, and the fixed-value residual stress test block is suitable for calibration of a residual stress ultrasonic non-destructive testing system.
  • the non-destructive testing of residual stress has been paid more and more attention.
  • the non-destructive method with promising prospects is the ultrasonic residual stress detection.
  • the ultrasonic method mainly uses the ultrasonic critical refracting longitudinal wave to realize the residual stress detection.
  • the theory of ultrasonic stress detection is very mature, but according to the principle, this method detects the relative residual stress value.
  • the research on the standard residual stress standard test block is mainly for the X-ray diffraction method.
  • the metal powder of the material to be tested is die-cast into a test piece of a certain size, and the residual stress is performed according to the change of the crystal lattice of the die-cast test block. Calibration.
  • British researchers bent the steel into a bow shape and made a residual stress test block by bending.
  • the structure of these test blocks is quite special, and the manufacturing method is complicated and difficult to implement. For this reason, it is desired to obtain a constant-value residual stress standard test block which is simple in structure, accurate and reliable, and is desired to be obtained by a simple method.
  • the object of the present invention is to provide a fixed-value residual stress test block and a method for fabricating and maintaining the same, and the residual stress ultrasonic non-destructive testing system is calibrated to realize the detection of the absolute value of the residual stress, and the detection result is accurate and reliable.
  • the fixed-value residual stress test block includes a main body and two welded blocks, the main body and the welded block are each a metal block having a rectangular parallelepiped shape, and the welded block is welded on opposite sides of the main body, and the main body is subjected to The pressure in the up and down direction is deformed and generates residual stress.
  • the fixed value residual stress test block of the invention is simple, accurate and reliable.
  • the invention also provides a method for manufacturing a constant value residual stress test block, which is prepared in the following steps: preparing a main body of the test block and two solder joints; applying a pressure in the up and down direction to the main body of the test block, so that the main body The deformation produces residual stress; the welded block is welded to the opposite sides of the body; the applied upward and downward pressure is removed.
  • the above method is simple, and the obtained fixed-value residual stress test block is accurate and reliable.
  • the invention also provides a method for preserving a fixed-value residual stress test block, wherein the test block is stored in a constant temperature environment at a temperature ranging from 2 to 8 ° C, and the test block is prevented from being subjected to shock and vibration.
  • This preservation method enables the residual stress test block to maintain a stable residual stress.
  • Figure 1 is a side view of a fixed value residual stress test block.
  • FIG. 2 is a perspective view of a fixed value residual stress test block.
  • Fig. 3 is an exploded view showing the positional relationship of each component of the constant-value residual stress test block.
  • Fig. 4 is a perspective view showing the positions at which the components of the fixed-value residual stress test block are placed.
  • Fig. 5 is a view showing a welding process of a constant value residual stress test block.
  • the present invention utilizes a method of welding to produce a fixed-value residual stress test block.
  • the invention mainly welds two welded blocks to a symmetrical position on the extruded body, and generates tensile stress on the welded welded block by the rebound effect of the main body, and different deformation amounts correspond to different stress values. According to the theory, By controlling the amount of deformation of the test block, a test piece requiring a stress value can be obtained.
  • the size of the main body 1 is: 30 mm ⁇ 30 mm ⁇ 130 mm, and the size of the welded block 2 is 30 mm ⁇ 5 mm ⁇ 70 mm.
  • the two sides of the main body 1 of the fixed-value residual stress test block are welded with two welded blocks 2, and the welded block 2 is in the middle position of the main body 1, and the welded block 2 is welded on the main body 1 under the state of being pressed by the pressure testing machine, the main body
  • the rebound action of 1 causes a certain amount of residual stress between the welded block 2 and the main body 1.
  • the residual stress value of the test block can be known, and different shape variables correspond to different fixed values. Residual stress test block.
  • the main body 1 of the extruded test piece In the elastic limit range, the main body 1 of the extruded test piece generates a compressive stress in a single direction, and the main body 1 rebounds after the pressing force is cancelled, and the welded block 2 and the main body 1 before the rebound are welded by the welding technique. Together, they are mutually bound and interact, and tensile or compressive stress is generated between the two.
  • a constant residual stress test block can be obtained by extrusion and welding and controlling the deformation of the body 1 and the welded block 2.
  • the weld bead 3 is welded as a whole.
  • the preservation technique of the test block is also very important.
  • the size of the main body 1 is: 30 mm ⁇ 30 mm ⁇ 130 mm
  • the size of the welded block 2 is 30 mm ⁇ 5 mm ⁇ 70 mm.
  • the surface roughness of the main body 1 and the welded block 2 is ⁇ Ra6.4.
  • the main body 1 and the welded block 2 are tempered to eliminate the processing stress of the test piece, and the test piece is in a state of zero stress.
  • the magnitude of the pressure applied by the pressure tester to the end face of the body 1, that is, the applied load, is calculated based on the cross-sectional area of the body 1 and the welded block 2 and the stress value of the test piece to be obtained.
  • the two welded blocks 2 are closely attached to the main body 1 by a tightening method.
  • the main body 1 is placed between the upper pressing head 4 and the lower pressing head 5 of the pressure testing machine, and the pressing body 1 is pressed according to the pre-calculated load size, and the hollow arrow in the figure is extruded.
  • the surface of the main body 1 of 30 mm ⁇ 30 mm is a pressure receiving surface.
  • the solder bump 2 is welded to the body 1 without unloading. During the welding process, it is best to ensure that the main body 1 and the welded block 2 are not significantly deformed.
  • the welded cut end faces of the main body 1 and the welded block 2 should be entirely covered by the weld bead.
  • the welded block 2 After the welded block 2 is welded, it is air-cooled without unloading. After the test block is cooled, the pressure test machine is unloaded, the test block is completed, and the stress value of the fixed test block is measured and recorded, compared with the theoretical value. .
  • the detecting sensor is placed on the soldering block 2 in the direction in which the main body 1 is pressed, so that the coupling between the detecting sensor and the test block is good, and the detection and calibration are started after being stabilized.
  • the fixed value measurement area 6 of the fixed value residual stress test block is on the outer surface of the two solder joints 2, and the two measurement areas are currently only suitable for the ultrasonic critical refracting longitudinal wave and the surface wave detecting method. .
  • the methods of residual stress elimination at home and abroad mainly include tempering treatment, vibration aging, ultrasonic impact and natural aging. These methods mainly cause the welded members to recombine under the action of alternating temperature and vibration, impact and other alternating loads, so that the residual stress is released.
  • a stable constant temperature environment can reduce the thermal expansion and contraction of the test piece and the occurrence of tissue remodeling, so that the residual stress can be maintained for a long time.
  • the test block in order to maintain a stable residual stress in the fixed-value residual stress test block, after the constant-value residual stress test block is completed, after measuring the residual stress value, the test block should be stored in a constant temperature environment such as an incubator at a temperature of 2 ⁇ 8 ° C, thereby eliminating the alternating temperature changes, causing the test block to undergo thermal expansion and contraction, so that the residual stress is continuously relaxed. In addition, during the storage of the test block, the impact and vibration should be avoided as much as possible to release the residual stress. During the preservation of the test block, the residual stress changes of the test block are regularly monitored and recorded. Each time the residual stress ultrasonic testing system is calibrated, the test block is returned to the incubator in time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种定值残余应力试块,包括一个主体(1)和两个焊接块(2),所述主体(1)和焊接块(2)均为长方体形的金属块,所述焊接块(2)焊接在所述主体(1)的相对的两个侧面上,所述主体(1)受到上下方向的压力的作用而变形并产生有残余应力。所述定值残余应力试块结构简单。

Description

定值残余应力试块及其制作和保存方法
技术领域
本发明涉及一种定值残余应力试块及其制作和保持方法,所述定值残余应力试块适用于残余应力超声无损检测系统的校准。
背景技术
残余应力的无损检测受到越来越广泛的重视,而现阶段比较有发展前景的无损方法是超声法残余应力检测,超声法主要是运用超声临界折射纵波实现残余应力检测。超声应力检测理论已经很成熟,但是根据原理,这种方法检测的是相对残余应力值,要想实现对绝对残余应力值的检测,需要研制量值化的残余应力标准试块对检测结果以及检测系统予以校准。
目前定值残余应力标准试块方面的研究,主要是针对X射线衍射法,是将待测材料的金属粉末压铸成一定尺寸的试块,根据压铸好的试块晶格的变化来进行残余应力标定。另外,英国研究人员将钢材弯曲成弓的形状,通过弯曲的方法制造了残余应力试块。这些试块的结构较为特殊,制造方法较为复杂,不易实现。为此,人们希望能获得一种结构简单且准确可靠的定值残余应力标准试块,且希望通过一种简单的方法获得。
发明内容
本发明的目的是提供一种定值残余应力试块及其制作和保持方法,对残余应力超声无损检测系统予以校准,实现对残余应力绝对值的检测,并使检测结果准确可靠。
定值残余应力试块包括一个主体和两个焊接块,所述主体和焊接块均为长方体形的金属块,所述焊接块焊接在所述主体的相对的两个侧面上,所述主体受到上下方向的压力的作用而变形并产生有残余应力。
本发明的定值残余应力试块结构简单且准确可靠。
本发明还提供了一种定值残余应力试块的制作方法,其制作顺序为,制作试块的主体和两个焊接块;对所述试块的主体施加上下方向的压力,使所述主体变形产生残余应力;将焊接块焊接在所述主体的相对的两个侧面上;撤销施加的上下方向的压力。
上述方法简单,获得的定值残余应力试块准确可靠。
本发明还提供了一种定值残余应力试块的保存方法,试块储存在恒定温度环境下,温度范围为2~8℃,并且要防止试块受到冲击和振动。
该保存方法能使残余应力试块保持稳定的残余应力。
附图说明
图1是定值残余应力试块的侧视图。
图2是定值残余应力试块的立体图。
图3是表示定值残余应力试块的各部件的位置关系的分解图。
图4是表示定值残余应力试块各部件摆放位置的立体图。
图5是表示定值残余应力试块焊接过程的图。
符号说明
1-主体 2-焊接块 3-焊缝4-压力试验机上压头5-压力试验机下压头 6-测量区域
具体实施方式
本发明利用焊接的方法制造定值残余应力试块。本发明主要将两个焊接块焊接在受挤压的主体上的对称位置,通过主体的回弹效应,对焊接的焊接块产生拉应力,不同的变形量对应不同的应力值,根据理论计,控制试块的变形量,即可得到需要应力值大小的试块。
下面结合附图对本发明的具体实施方式进行详细说明:
以45#钢为例,如图1所示,主体1的尺寸为:30mm×30mm×130mm,焊接块2的尺寸为30mm×5mm×70mm。
定值残余应力试块的主体1的两侧焊接有两个焊接块2,焊接块2处于主体1的中间位置,焊接块2是在主体1受压力试验机挤压状态下焊接上的,主体1的回弹作用使焊接块2与主体1之间产生一定大小的残余应力,根据主体1和焊接块2的变形量,可以得知试块的残余应力值大小,不同形变量对应不同定值的残余应力试块。
在弹性极限范围内,通过挤压试块的主体1产生单一方向的压应力,主体1在挤压力撤销之后会发生回弹,利用焊接技术将焊接块2和回弹前的主体1焊接在一起,相互束缚,相互作用,两者之间产生拉应力或压应力,利用此原理,通过挤压和焊接以及控制主体1和焊接块2的形变即可获得定值的残余应力试块。焊缝3整体被焊接。
试块制作过程中,准确控制主体1和焊接块2的形变量十分关键,解决这一难题才能精确控制试块的残余应力值大小;而在试块使用过程中,试块的保存技术同样十分重要。
定值残余应力试块的制作工艺:
以45#钢为例,作为试块的制作材料,如图1所示,制作大小两种试块,主体1的尺寸为:30mm×30mm×130mm,焊接块2的尺寸为30mm×5mm×70mm,主体1和焊接块2的表面粗糙度≤Ra6.4。
将主体1和焊接块2进行回火处理,消除试块的加工应力,使试块处于零应力状态。
根据胡克定律,依据主体1和焊接块2的横截面积以及所要得到的试块的应力值计算出压力试验机施加在主体1端面的压力大小,即所施加载荷大小。
如图2所示,采用束紧方法将两个焊接块2与主体1紧密贴在一起。
如图3所示,将主体1放在压力试验机的上压头4和下压头5中间,按照预先计算好的载荷大小设定压力试验机挤压主体1,图中空心箭头为挤压方向,主体1的30mm×30mm的面为受压面。待达到计算载荷之后,稳定一段时间后,在不卸载的情况下,将焊接块2焊接在主体1上。焊接过程中,尽量保证主体1和焊接块2不发生明显的变形。主体1和焊接块2的焊接切口端面应整体被焊道覆盖。
待焊接块2焊接好之后,在不卸载的情况下空冷,待试块冷却之后,将压力试验机卸载,试块制作完成,并测量并记录定值试块的应力值大小,与理论值比较。
如果要获取不同大小残余应力值的焊接试块,只需对主体1施加不同的挤压力,按照上述相同的步骤进行操作。
定值残余应力试块在使用过程中,将检测传感器沿着主体1受压的方向放置在焊接块2上,使检测传感器与试块之间耦合良好,待稳定之后开始检测和校准。如图3和图5所示,定值残余应力试块的定值测量区域6处在两个焊接块2的外表面,而且目前这两个测量区域只适合超声临界折射纵波和表面波检测方法。
目前,国内外残余应力消除的方法主要有回火处理、振动时效、超声冲击以及自然时效法。这些方法主要是使焊接构件在温度交替变化和振动、冲击等交替载荷的作用下,局部的织构发生重组,从而使残余应力释放。稳定的恒温环境能降低试块的热胀冷缩和组织重构的发生,使残余应力能维持一个较长的时间。因此,为了使定值残余应力试块保持稳定的残余应力,在定值残余应力试块制作完成后,在测量残余应力值后,应将试块保存在恒温箱等恒定温度环境下,温度为2~8℃,从而消除温度的交替变化使试块发生热胀冷缩,使残余应力不断松弛。另外,在试块保存过程中,应尽量避免发生冲击和振动而使残余应力释放。试块的保存过程中,定期的监测并记录试块残余应力变化。每次校准完残余应力超声检测系统,及时将试块放回到恒温箱中。

Claims (12)

  1. 一种定值残余应力试块,其特征在于:包括一个主体和两个焊接块,所述主体和焊接块均为长方体形的金属块,所述焊接块焊接在所述主体的相对的两个侧面上,所述主体受到上下方向的压力的作用而变形并产生有残余应力。
  2. 根据权利要求1所述的定值残余应力试块,其特征在于:所述焊接块与其所焊接的所述主体的侧面的宽度相同,所述焊接块的长度小于所述主体的长度,所述焊接块焊接在所述主体的侧面的中间对称位置。
  3. 根据权利要求1所述的定值残余应力试块,其特征在于:焊接的切口端面整体被焊道覆盖。
  4. 根据权利要求1所述的定值残余应力试块,其特征在于:所述主体和焊接块的材质为45#钢、Q235或Q345中的任意一种或几种。
  5. 根据权利要求1所述的定值残余应力试块,其特征在于:所述主体和焊接块的表面粗糙度≤Ra6.4。
  6. 根据权利要求1所述的定值残余应力试块,其特征在于:所述应力的大小根据所述主体和焊接块的形变量和胡克定律计算得到。
  7. 根据权利要求1所述的定值残余应力试块,其特征在于:其定值测量区域处于两个焊接块的外表面,且这两个测量区域只适合超声临界折射纵波和表面波检测方法。
  8. 一种定值残余应力试块的制作方法,其特征在于:制作试块的主体和两个焊接块;对所述试块的主体施加上下方向的压力,使所述主体变形产生残余应力;将焊接块焊接在所述主体的相对的两个侧面上;撤销施加的上下方向的压力。
  9. 根据权利要求8所述的制作方法,其特征在于:制作试块的主体和两个焊接块时,在加工完试块的主体和焊接块后,对其进行回火处理,以消除试块在加工时产生的应力。
  10. 根据权利要求8所述的制作方法,其特征在于:在焊接所述主体和焊接块之前,对所述主体和焊接块的贴近表面进行光滑平整处理,之后将所述主体和焊接块紧密贴在一起。
  11. 根据权利要求8所述的制作方法,其特征在于:在焊接块的焊接完成之后,在撤销施加的上下方向的压力之前,使所述试块空冷。
  12. 一种定值残余应力试块的保存方法,其特征在于:所述试块储存在恒定温度环境下,温度范围为2~8℃,并且要防止试块受到冲击和振动。
PCT/CN2013/072495 2012-11-29 2013-03-12 定值残余应力试块及其制作和保存方法 WO2014082400A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/647,813 US9989496B2 (en) 2012-11-29 2013-03-12 Fixed value residual stress test block and manufacturing and preservation method thereof
JP2015544310A JP5972480B2 (ja) 2012-11-29 2013-03-12 標準値残留応力校正試料及びその製造と保存方法
US15/951,119 US10712316B2 (en) 2012-11-29 2018-04-11 Fixed value residual stress test block and manufacturing and preservation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210498787XA CN103439049A (zh) 2012-11-29 2012-11-29 定值残余应力焊接试块
CN201210498787.X 2012-11-29
CN201210500267.8 2012-11-29
CN2012105002678A CN103017955A (zh) 2012-11-29 2012-11-29 定值残余应力焊接试块的制作工艺和保护方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/647,813 A-371-Of-International US9989496B2 (en) 2012-11-29 2013-03-12 Fixed value residual stress test block and manufacturing and preservation method thereof
US15/951,119 Division US10712316B2 (en) 2012-11-29 2018-04-11 Fixed value residual stress test block and manufacturing and preservation method thereof

Publications (1)

Publication Number Publication Date
WO2014082400A1 true WO2014082400A1 (zh) 2014-06-05

Family

ID=50827132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072495 WO2014082400A1 (zh) 2012-11-29 2013-03-12 定值残余应力试块及其制作和保存方法

Country Status (3)

Country Link
US (2) US9989496B2 (zh)
JP (1) JP5972480B2 (zh)
WO (1) WO2014082400A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972480B2 (ja) * 2012-11-29 2016-08-17 北京理工大学 標準値残留応力校正試料及びその製造と保存方法
CN109039832B (zh) * 2018-09-29 2022-04-15 安徽众家云物联网科技有限公司 一种智能家电通信可靠性测试方法
CN112355451B (zh) * 2020-09-21 2022-07-29 江阴兴澄特种钢铁有限公司 一种矿用圆环链的焊接方法
CN114280089B (zh) * 2021-12-29 2023-11-10 福建省锅炉压力容器检验研究院 一种基于x射线的火力发电关键部位焊缝应力测试装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240516A (ja) * 1995-03-06 1996-09-17 Nippon Steel Corp 一様な残留応力を有する試験片およびその製造方法
JPH11200076A (ja) * 1998-01-16 1999-07-27 Ishikawajima Harima Heavy Ind Co Ltd 応力腐食割れ導入方法
CN1645091A (zh) * 2005-01-13 2005-07-27 上海交通大学 X射线应力测量标定试样的制备方法
CN101576450A (zh) * 2009-06-11 2009-11-11 西安交通大学 一种无损探伤用表面裂纹缺陷试块的制作方法
CN102053024A (zh) * 2009-10-30 2011-05-11 中国石化集团第十建设公司 焊材熔敷金属氢致开裂hic和硫化物应力开裂ssc试件的制备方法
KR20110109187A (ko) * 2010-03-30 2011-10-06 현대제철 주식회사 잔류응력 검증용 시편 및 잔류응력 검증용 시편제조방법
CN102519866A (zh) * 2011-12-02 2012-06-27 无锡透平叶片有限公司 一种量化检测透平叶片残余应力的方法
CN102706708A (zh) * 2012-06-06 2012-10-03 沈阳飞机工业(集团)有限公司 X射线残余应力测试系统校准试块制作方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147495A (en) * 1979-05-09 1980-11-17 Hitachi Ltd Butt welding method
JPS5947418A (ja) * 1982-09-07 1984-03-17 Chisso Corp 熱収縮性改良フラツトヤ−ン
JP2856043B2 (ja) * 1993-09-28 1999-02-10 株式会社日立製作所 応力評価方法およびその装置
JPH1064967A (ja) * 1996-08-20 1998-03-06 Matsushita Electron Corp 薄膜の評価方法及び評価装置
US6032851A (en) * 1996-10-21 2000-03-07 Premiere, Inc. Vertical pipe column assembly method
DE69724569T2 (de) * 1996-12-27 2004-07-08 Kawasaki Steel Corp., Kobe Schweissverfahren
JPH11304677A (ja) * 1998-04-24 1999-11-05 Toray Ind Inc 接合品強度の解析方法および解析装置
US6336583B1 (en) * 1999-03-23 2002-01-08 Exxonmobil Upstream Research Company Welding process and welded joints
KR100520371B1 (ko) * 1999-12-17 2005-10-11 제이에프이 스틸 가부시키가이샤 용접재료 및 용접조인트의 제조방법과 이 제조방법에 의한 용접조인트
JP4537649B2 (ja) * 2002-10-08 2010-09-01 新日本製鐵株式会社 回し溶接継手、回し溶接継手の製造方法、および、溶接構造物
US6993948B2 (en) * 2003-06-13 2006-02-07 General Electric Company Methods for altering residual stresses using mechanically induced liquid cavitation
US7301123B2 (en) * 2004-04-29 2007-11-27 U.I.T., L.L.C. Method for modifying or producing materials and joints with specific properties by generating and applying adaptive impulses a normalizing energy thereof and pauses therebetween
US20070000328A1 (en) * 2005-01-06 2007-01-04 Jonathan Buttram Ultrasonic method for the accurate measurement of crack height in dissimilar metal welds using phased array
US20060191878A1 (en) * 2005-02-28 2006-08-31 Israel Stol Control of cracking in heat affected zones of fusion welded structures
CA2610476A1 (en) * 2005-06-07 2006-12-14 Lawrence D. Reaveley Methods and systems for mitigating residual tensile stresses
JP4328349B2 (ja) * 2006-11-29 2009-09-09 株式会社日立製作所 残留応力測定方法及び装置
CN101489711B (zh) * 2007-03-12 2012-05-09 三菱重工业株式会社 阀装置
JP4987816B2 (ja) * 2008-07-28 2012-07-25 新日本製鐵株式会社 溶接継手の疲労特性を改善する自動打撃処理方法及び自動打撃処理装置
ES2631979T3 (es) * 2009-12-04 2017-09-07 Nippon Steel & Sumitomo Metal Corporation Junta de soldadura a tope formada usando un haz de electrones
ES2617438T3 (es) * 2009-12-04 2017-06-19 Nippon Steel & Sumitomo Metal Corporation Junta soldada a tope y método para fabricarla
CN102639284A (zh) * 2009-12-04 2012-08-15 新日本制铁株式会社 焊接构造体的对焊接头及其制造方法
JP6366937B2 (ja) * 2010-10-18 2018-08-01 ヴェロシス インコーポレイテッド ラミネートされたリーク防止化学処理機、作製方法及び操作方法
JP5972480B2 (ja) * 2012-11-29 2016-08-17 北京理工大学 標準値残留応力校正試料及びその製造と保存方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240516A (ja) * 1995-03-06 1996-09-17 Nippon Steel Corp 一様な残留応力を有する試験片およびその製造方法
JPH11200076A (ja) * 1998-01-16 1999-07-27 Ishikawajima Harima Heavy Ind Co Ltd 応力腐食割れ導入方法
CN1645091A (zh) * 2005-01-13 2005-07-27 上海交通大学 X射线应力测量标定试样的制备方法
CN101576450A (zh) * 2009-06-11 2009-11-11 西安交通大学 一种无损探伤用表面裂纹缺陷试块的制作方法
CN102053024A (zh) * 2009-10-30 2011-05-11 中国石化集团第十建设公司 焊材熔敷金属氢致开裂hic和硫化物应力开裂ssc试件的制备方法
KR20110109187A (ko) * 2010-03-30 2011-10-06 현대제철 주식회사 잔류응력 검증용 시편 및 잔류응력 검증용 시편제조방법
CN102519866A (zh) * 2011-12-02 2012-06-27 无锡透平叶片有限公司 一种量化检测透平叶片残余应力的方法
CN102706708A (zh) * 2012-06-06 2012-10-03 沈阳飞机工业(集团)有限公司 X射线残余应力测试系统校准试块制作方法

Also Published As

Publication number Publication date
JP5972480B2 (ja) 2016-08-17
US9989496B2 (en) 2018-06-05
JP2016505817A (ja) 2016-02-25
US20160033452A1 (en) 2016-02-04
US10712316B2 (en) 2020-07-14
US20180231499A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2014082400A1 (zh) 定值残余应力试块及其制作和保存方法
Challita et al. Experimental investigation of the shear dynamic behavior of double-lap adhesively bonded joints on a wide range of strain rates
EP3531107B1 (en) Jig assembly comprising bending jig and apparatus and method for measurng bending tensile strenght using the same
JP2014025773A (ja) トーションビームの残留応力診断方法及び装置並びに製造方法
Yung et al. Predicting the fatigue life of welds under combined bending and torsion
WO2010007454A3 (en) Method for in-situ determining the compactness of grainy material layers and device for performing the process
CN103017955A (zh) 定值残余应力焊接试块的制作工艺和保护方法
EP2533067B1 (en) Electromagnetic performance detection method for oriented silicon steel
CN114770599B (zh) 测量鳍条结构柔性机械手承载力和夹取力的实验装置
CN101975631A (zh) 集成式五维微力/力矩传感器
CN204043996U (zh) 混凝土单轴抗拉试验机
Lee et al. Effects of cell size and orientation on compressive strength of WBK
Chipperfield A summary and comparison of J estimation procedures
Chen et al. Residual stresses in welded jumbo box columns
CN109270171A (zh) 一种探头夹紧装置及其应用
CN114839009B (zh) 一种用于层状单晶样品退孪晶的装置及方法
CN109580988B (zh) 一种加速度传感器
Lagace et al. The sandwich column as a compressive characterization specimen for thin laminates
CN109580989B (zh) 一种加速度传感器弹性体
Hasegawa et al. Acoustoelastic birefringence effect in wood II: influence of texture anisotropy on the polarization direction of shear wave in wood
Włóka et al. Impact of high temperature creep on the buckling of axially compressed steel members
Karabegović et al. Making arrangements as a supplement existing measuring equipment for determining mechanical features of plywood
CN206430682U (zh) 一种钢轨扭转测量尺
Taggart et al. Plastic-strain distribution at the root of a sharp notch: Experimental technique employing a pattern of microhardness indentations is used to measure accurately the plastic-strain distribution at the root of a mechanically introduced notch
CN110455624A (zh) 一种测试金属材料本构关系的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14647813

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13858111

Country of ref document: EP

Kind code of ref document: A1