WO2011065275A1 - 難燃性熱可塑性樹脂組成物およびその成形品 - Google Patents

難燃性熱可塑性樹脂組成物およびその成形品 Download PDF

Info

Publication number
WO2011065275A1
WO2011065275A1 PCT/JP2010/070551 JP2010070551W WO2011065275A1 WO 2011065275 A1 WO2011065275 A1 WO 2011065275A1 JP 2010070551 W JP2010070551 W JP 2010070551W WO 2011065275 A1 WO2011065275 A1 WO 2011065275A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
vinyl
copolymer
compound
resin composition
Prior art date
Application number
PCT/JP2010/070551
Other languages
English (en)
French (fr)
Inventor
吉孝 内藤
茂樹 浜本
弘俊 斉藤
谷川 寛
丈一 渡辺
手塚 康一
正仁 中本
Original Assignee
ユーエムジー・エービーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーエムジー・エービーエス株式会社 filed Critical ユーエムジー・エービーエス株式会社
Priority to CN201080052848.9A priority Critical patent/CN102666719B/zh
Priority to EP10833121.6A priority patent/EP2505608B1/en
Priority to US13/510,820 priority patent/US8609754B2/en
Publication of WO2011065275A1 publication Critical patent/WO2011065275A1/ja
Priority to HK13100882.6A priority patent/HK1173740A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a flame retardant thermoplastic resin composition, and more specifically, by incorporating a phosphorus flame retardant without using a halogen flame retardant, flame retardancy complying with US UL standard 94V-2 is achieved.
  • the present invention relates to a flame retardant thermoplastic resin composition that has a combustion behavior with higher safety and excellent drip properties at the time of combustion, and excellent physical property balance.
  • the present invention also relates to a molded article formed by molding the flame retardant thermoplastic resin composition.
  • Styrenic resins such as HIPS (high impact resistant polystyrene) and ABS (acrylonitrile butadiene styrene) resins are excellent in moldability, dimensional stability, impact resistance, and rigidity. Widely used as a constituent material for building materials. These styrenic resins are required to have flame retardancy because of their use.
  • halogen-containing compounds such as decabromodiphenyl ester as a flame retardant and an antimony compound as a flame retardant aid in order to impart flame retardancy to a styrene resin.
  • halogen-containing compounds have environmental problems because they decompose during combustion and generate harmful gases.
  • Japanese Patent Publication No. 57-1547 proposes a technique of blending a composite metal hydroxide with a styrene resin.
  • the effect of improving the flame retardancy is low when blended in a large amount.
  • Japanese Patent Application Laid-Open No. 10-130454 proposes a technique for blending melamine cyanurate and / or melamine polyphosphate.
  • a phosphoric acid ester compound that causes deterioration in various mechanical properties and heat resistance is proposed. Is required.
  • a technique using a phosphorus-based flame retardant such as a phosphate ester is also proposed in Japanese Patent Laid-Open No. 10-120853.
  • Phosphorus flame retardants such as phosphate esters are known to form a carbonized layer during combustion and impart flame retardancy, and the greater the phosphorus content of the material, the greater the effect of imparting flame retardancy. It is believed that.
  • the phosphorus-based flame retardant acts as a plasticizer for the resin, there is a problem that various mechanical properties and heat resistance are deteriorated even if the flame retardancy is enhanced by blending the phosphorus-based flame retardant.
  • the present invention has been made in view of the above-described conventional situation, and has excellent flame retardancy conforming to US UL standard 94V-2 using a phosphorus-based flame retardant without using a halogen-based flame retardant.
  • it is a highly safe flame retardant thermoplastic resin composition that has good drip property at the time of combustion and can suppress fire spread by quickly extinguishing fire, and it has functional physical properties due to the incorporation of a phosphorus flame retardant
  • the present inventor has found that the content of acetone-insoluble vinyl cyanide units and the acetone-soluble vinyl cyanide comprising a specific graft copolymer and vinyl copolymer. It has been found that the above problem can be solved by blending a specific amount of a phosphorus-based flame retardant into a copolymer mixture having a small difference from the unit content.
  • the present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
  • a copolymer mixture comprising a vinyl copolymer (B) having a weight average molecular weight of 90,000 to 160,000, which is obtained by copolymerizing a vinyl compound and a copolymerizable vinyl compound, and the copolymer mixture
  • a thermoplastic resin composition comprising 5 to 20 parts by mass of a phosphorus-based flame retardant (C) per 100 parts by mass, the content of vinyl cyanide units in an acetone-insoluble portion of the copolymer mixture CB 1 is 22.0 to 32.0% by mass, the content of vinyl cyanide units of acetone-soluble matter CB 2 is 22.0 to 34.0% by mass, and the absolute value of these differences
  • the graft copolymer (A) is a rubber-like polymer of 20 to 75 parts by mass, a vinyl cyanide compound of 23 to 35% by mass, and a vinyl compound copolymerizable with the vinyl cyanide compound of 65 to 77 parts by mass. 25 to 80 parts by mass of a vinyl monomer mixture containing 25% by weight, and the vinyl copolymer (B) contains 23 to 35% by mass of a vinyl cyanide compound and a vinyl cyanide compound.
  • the flame retardant thermoplastic resin composition according to [1] which is obtained by copolymerizing a vinyl monomer mixture containing 65 to 77% by mass of a polymerizable vinyl compound.
  • [3] content CB A acetone-soluble fraction of the vinyl cyanide units after methanol washing of the graft copolymer (A) is 22.0 to 34.0 wt%
  • the vinyl copolymer (B) The content CB B of acetone-soluble vinyl cyanide units after methanol washing is 22.0 to 32.0% by mass, and the absolute value of these differences
  • the vinyl compound copolymerizable with the vinyl cyanide compound in the graft copolymer (A) and / or the vinyl copolymer (B) is 58 to 100% by mass of the aromatic vinyl compound and other than the aromatic vinyl compound.
  • the flame-retardant thermoplastic resin composition according to any one of [1] to [3], comprising 0 to 42% by mass of a vinyl compound not containing nitrogen.
  • the flame retardant thermoplastic resin composition of the present invention using a phosphorus flame retardant without using a halogen flame retardant, the flame retardant conforms to US UL standard 94V-2, and When a drip is generated in a short time during combustion, a molded product having high safety for quickly suppressing the spread of flame and having excellent balance of physical properties such as impact resistance, heat resistance and molding processability is provided.
  • the flame-retardant thermoplastic resin composition of the present invention may be referred to as a rubbery polymer and a vinyl cyanide compound and a vinyl compound copolymerizable with the vinyl cyanide compound (hereinafter referred to as “copolymerizable vinyl compound”).
  • thermoplastic resin composition comprising 5 to 20 parts by mass of a phosphorus-based flame retardant (C) per 100 parts by mass of a copolymer mixture comprising a combination (B).
  • the content CB 1 of vinyl cyanide units in the acetone-insoluble portion of the copolymer mixture is 22.0 to 32.0% by mass
  • the content CB 2 of vinyl cyanide units in the acetone-soluble portion is 22.2. 0 to 34.0% by mass Ri
  • is 0-3.0 It is characterized by mass%.
  • the graft copolymer (A) according to the present invention is obtained by graft polymerizing a rubbery polymer with a vinyl cyanide compound and a copolymerizable vinyl compound.
  • the rubbery polymer one or more of polybutadiene, styrene-butadiene rubber, acrylonitrile-butadiene rubber, acrylic rubber, ethylene-propylene-nonconjugated diene copolymer rubber (EPDM) and the like can be used. .
  • Non-conjugated diene components contained in EPDM include dicyclopentadiene, 1,4-hexadiene, 1,4-heptadiene, 1,5-cyclooctadiene, 6-methyl-1,5-heptadiene, 11- Diolefins such as ethyl-1,11-tridecadiene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 2,5-norbornadiene, 2-methyl-2,5-norbornadiene, methyltetrahydroindene, limonene, etc. 1 type or 2 types or more are mentioned.
  • examples of the vinyl cyanide compound include acrylonitrile, methacrylonitrile and the like, and one or more of these can be used.
  • Examples of the copolymerizable vinyl compound include aromatic vinyl compounds and vinyl compounds containing no nitrogen element other than aromatic vinyl compounds.
  • aromatic vinyl compounds include styrene, ⁇ -methylstyrene, o -, M- or p-methyl styrene, vinyl xylene, p-tert-butyl styrene, ethyl styrene and the like, preferably styrene and ⁇ -methyl styrene.
  • aromatic vinyl compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • vinyl compounds containing no nitrogen element other than aromatic vinyl compounds include ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid and methacrylic acid; methyl (meth) acrylate (note that “(meth) acrylate” is “acrylate or Methacrylate) ”, ⁇ , ⁇ -unsaturated carboxylic acids such as ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc. Acid esters; ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides such as maleic anhydride and itaconic anhydride. These may be used alone or in combination of two or more.
  • graft copolymer (A) examples include ABS (polybutadiene-styrene-acrylonitrile) resin, ASA (acrylic rubber-styrene-acrylonitrile) resin, AES (ethylene-propylene-nonconjugated diene rubber). -Styrene-acrylonitrile) resin.
  • the graft copolymer (A) according to the present invention comprises, in particular, 20 to 75 parts by mass, preferably 40 to 70 parts by mass of a rubbery polymer, 23 to 35% by mass of a vinyl cyanide compound and 65 to 65% of a copolymerizable vinyl compound.
  • a polymer obtained by graft polymerization of 25 to 80 parts by mass, preferably 30 to 60 parts by mass of a vinyl monomer mixture containing 77% by mass is preferable.
  • the graft copolymer (A) if the ratio of the rubbery polymer is not less than the above lower limit, the resulting flame-retardant thermoplastic resin composition has good impact resistance, and if it is not more than the above upper limit, the copolymer. Compatibility with (B) is improved.
  • the vinyl monomer mixture used for producing the graft copolymer (A) is preferably 23 to 35% by mass of the vinyl cyanide compound, preferably 100% by mass of the total vinyl monomer mixture, and the copolymerizable vinyl. 65 to 77% by mass of the compound, more preferably 24 to 34% by mass of the vinyl cyanide compound and 66 to 76% by mass of the copolymerizable vinyl compound, and further preferably 26 to 32% by mass of the vinyl cyanide compound and 68 of the copolymerizable vinyl compound. It is composed of ⁇ 74% by mass.
  • the resulting flame-retardant thermoplastic resin composition will have any molding processability, impact resistance and heat resistance. It is easy to obtain a flame retardant thermoplastic resin composition having an excellent balance of physical properties.
  • Examples of the copolymerizable vinyl compound include an aromatic vinyl compound and a vinyl compound containing no nitrogen element other than the aromatic vinyl compound, as described above. 100% by mass, preferably 58-100% by mass of an aromatic vinyl compound, 0-42% by mass of a vinyl compound containing no nitrogen element other than the aromatic vinyl compound, more preferably 65-100% by mass of an aromatic vinyl compound, 0 to 35% by weight of a vinyl compound containing no nitrogen element other than the aromatic vinyl compound, more preferably 80 to 100% by weight of an aromatic vinyl compound, and 0 to 20% by weight of a vinyl compound containing no nitrogen element other than the aromatic vinyl compound. is there. If the amount of the vinyl compound containing no nitrogen element other than the aromatic vinyl compound is less than or equal to the above upper limit, the moldability is improved.
  • the graft polymerization method for producing the graft copolymer (A) in the present invention is not particularly limited, and general polymerization methods such as bulk polymerization, solution polymerization, bulk suspension polymerization, suspension polymerization and emulsion polymerization are used. Either can be adopted.
  • graft polymerization for example, first, a rubbery polymer produced by emulsion polymerization is charged into a reactor equipped with a stirring blade jacket, and then all or part of the vinyl monomer mixture to be graft polymerized is divided into several times. It can be carried out by dropping the solution in a batch or continuously, leaving it at 40 to 70 ° C. with stirring for 5 to 60 minutes, and then adding an initiator. The vinyl monomer mixture thus added is impregnated into the rubbery polymer, becomes a polymer in the rubbery polymer, and the graft copolymer (A) is obtained.
  • Content CB A acetone-soluble fraction of the vinyl cyanide units after methanol washing of the graft copolymer (A) in the present invention from 22.0 to 34.0% by weight, in particular 25.0 to 30.0 mass % Is preferred. If the content CB A of the vinyl cyanide units is within the above range, moldability of the flame retardant thermoplastic resin composition obtained, both the impact resistance and heat resistance is improved, an excellent balance of physical properties It is easy to obtain a flame retardant thermoplastic resin composition.
  • the content CB A acetone-soluble fraction of the vinyl cyanide units after methanol washing of the graft copolymer (A), the graft copolymer (A) is dissolved in acetone washed with methanol, After concentrating the acetone-soluble component, it is reprecipitated with methanol, and after collecting the precipitate by filtration, the precipitate is subjected to elemental analysis and can be determined by converting into nitrogen atoms.
  • the vinyl copolymer (B) according to the present invention has a mass average molecular weight of 90,000 to 160,000, which is obtained by copolymerizing a vinyl cyanide compound and a copolymerizable vinyl compound.
  • the vinyl cyanide compound and the copolymerizable vinyl compound used for producing the vinyl copolymer (B) cyan which can be used for producing the aforementioned graft copolymer (A), respectively.
  • examples thereof include those exemplified as the vinyl chloride compound and the copolymerizable vinyl compound, and each may be used alone or in combination of two or more.
  • the vinyl copolymer (B) is produced by copolymerizing a vinyl monomer mixture containing a vinyl cyanide compound and a copolymerizable vinyl compound, and the vinyl cyanide in the vinyl monomer mixture is produced.
  • the ratio of the compound to the copolymerizable vinyl compound is preferably 23 to 35% by mass of the vinyl cyanide compound, 65 to 77% by mass of the copolymerizable vinyl compound, more preferably 100% by mass of the entire vinyl monomer mixture. It comprises 24 to 34% by mass of vinyl cyanide compound, 66 to 76% by mass of copolymerizable vinyl compound, more preferably 26 to 32% by mass of vinyl cyanide compound and 68 to 74% by mass of copolymerizable vinyl compound.
  • the resulting flame-retardant thermoplastic resin composition will have any molding processability, impact resistance and heat resistance. It is easy to obtain a flame retardant thermoplastic resin composition having an excellent balance of physical properties.
  • Examples of the copolymerizable vinyl compound include an aromatic vinyl compound and a vinyl compound containing no nitrogen element other than the aromatic vinyl compound, as described above. 100% by mass, preferably 58-100% by mass of an aromatic vinyl compound, 0-42% by mass of a vinyl compound containing no nitrogen element other than the aromatic vinyl compound, more preferably 65-100% by mass of an aromatic vinyl compound, 0 to 35% by weight of a vinyl compound containing no nitrogen element other than the aromatic vinyl compound, more preferably 80 to 100% by weight of an aromatic vinyl compound, and 0 to 20% by weight of a vinyl compound containing no nitrogen element other than the aromatic vinyl compound. is there. If the amount of the vinyl compound containing no nitrogen element other than the aromatic vinyl compound is less than or equal to the above upper limit, the moldability is improved.
  • the vinyl copolymer (B) can be produced from such a vinyl monomer mixture by a copolymerization reaction comprising emulsion polymerization, suspension polymerization, bulk polymerization, or a combination thereof according to a conventional method.
  • the content CB B of acetone-soluble vinyl cyanide units after methanol washing of the vinyl copolymer (B) in the present invention is 22.0 to 32.0% by mass, particularly 25.0 to 30.0% by mass. % Is preferred.
  • the content CB B of the vinyl cyanide units is within the above range, moldability of the flame retardant thermoplastic resin composition obtained, both the impact resistance and heat resistance is improved, an excellent balance of physical properties It is easy to obtain a flame retardant thermoplastic resin composition.
  • the content CB B of the vinyl cyanide unit in the acetone-soluble portion of the vinyl copolymer (B) after washing with methanol is obtained by dissolving the vinyl copolymer (B) in acetone after washing with methanol. After concentrating the acetone-soluble component, it is reprecipitated with methanol, and after collecting the precipitate by filtration, the precipitate is subjected to elemental analysis and can be determined by converting into nitrogen atoms.
  • the mass average molecular weight of the vinyl copolymer (B) is 90,000 to 160,000, preferably 90,000 to 125,000, more preferably 90,000 in terms of polystyrene measured using GPC. ⁇ 115,000.
  • the copolymer mixture according to the present invention is composed of the graft copolymer (A) and the vinyl copolymer (B), and in the total amount of 100 parts by mass, respectively, in the following proportions: It is preferable to contain.
  • rubber in the copolymer mixture The content is preferably 5 to 20% by mass, more preferably 6 to 16% by mass, and still more preferably 8 to 14% by mass. When the rubber content is within this range, the combustibility tends to be excellent.
  • the blending amount of the graft copolymer (A) is at least the above lower limit, the resulting resin composition has good impact resistance, and when it is at most the above upper limit, the heat resistance is good. Moreover, the fluidity
  • the content of CB A acetone-soluble fraction of the vinyl cyanide units after methanol washing of the graft copolymer of the copolymer mixture (A), vinyl copolymerization The absolute value
  • is not more than the above upper limit, the resulting flame-retardant thermoplastic resin composition has good combustibility and drip properties.
  • a graft copolymer (A) and a vinyl copolymer (B) may each be used individually by 1 type, and 2 or more types may be mixed and used for them. When two or more of these are used, in any combination of the graft copolymer (A) and the vinyl copolymer (B) in the copolymer mixture,
  • the dissolution of the vinyl cyanide compound in the distilled water at the time of polymerization and the monomer conversion rate In view of the influence, the cyanation of the resulting copolymer mixture was performed with respect to the content of the vinyl cyanide compound in the vinyl monomer mixture used for the polymerization of the graft copolymer (A) and the vinyl copolymer (B).
  • the content of vinyl units varies.
  • the content CB 1 of vinyl cyanide units in the acetone-insoluble portion of the copolymer mixture is 22.0 to 32.0% by mass, preferably 25.0 to 30.0% by mass. This is because if CB 1 is more than the above upper limit, molding processability tends to be inferior, and if it is less than the lower limit, impact resistance and heat resistance tend to be inferior.
  • the content CB 2 of vinyl cyanide units in the acetone-soluble portion of the copolymer mixture in the present invention is 22.0 to 34.0% by mass, preferably 25.0 to 30.0% by mass.
  • CB 2 is tend to be inferior in the moldability more than the above upper limit, less than said lower limit and impact resistance, there is a tendency that poor heat resistance.
  • the absolute value of the difference between the content CB 1 of the vinyl cyanide unit in the acetone-insoluble portion and the content CB 2 of the vinyl cyanide unit in the acetone-soluble portion of the copolymer mixture according to the present invention
  • is 0 to 3.0% by mass a flame-retardant thermoplastic resin composition excellent in flame retardancy and drip properties can be obtained.
  • the content CB 1 of the vinyl cyanide unit in the acetone-insoluble portion of the copolymer mixture in the present invention can be obtained from the conversion of nitrogen atoms by elemental analysis of the obtained component after ozonolysis of this acetone-insoluble portion. After the acetone insoluble matter after the methanol washing of the graft copolymer (A) in the copolymer mixture is subjected to ozonolysis, it can also be obtained from nitrogen atom conversion by elemental analysis of the obtained component.
  • the content CB 2 of the acetone-soluble vinyl cyanide unit in the copolymer mixture can be determined by nitrogen atom conversion by elemental analysis of the acetone-soluble component.
  • the content CB 2 units, the content CB a and a vinyl copolymer acetone-soluble fraction of the vinyl cyanide units after methanol washing of the graft copolymer in the copolymer mixture of the aforementioned (a) (B) using acetone-soluble fraction of the vinyl cyanide units after methanol washing of the content CB B it can also be determined from the following equation.
  • CB 2 (G ⁇ S A ⁇ CB A + S B ⁇ CB B ) / (G ⁇ S A + S B )
  • G Gram amount of acetone-soluble component in 1 g of graft copolymer
  • S A Blending amount of graft copolymer (A) in copolymer mixture
  • S B Vinyl copolymer weight in copolymer mixture
  • Blending amount of union B
  • CB A Content of acetone-soluble vinyl cyanide unit after washing of graft copolymer (A) with methanol
  • CB B Acetone after washing of methanol of vinyl copolymer
  • the content of the vinyl cyanide unit of the acetone-soluble and acetone-insoluble components in the copolymer mixture according to the present invention can also be determined from the produced flame-retardant thermoplastic resin composition.
  • 1 g of the flame retardant thermoplastic resin composition is dissolved in 20 ml of chloroform, and then dropped into 400 ml of methanol to precipitate the polymer component again, and the precipitated solid (polymer component) is taken out by filtration or the like.
  • the taken-out solid content corresponds to the copolymer mixture in the flame-retardant thermoplastic resin composition, it is separated into an acetone-soluble component and an acetone-insoluble component by centrifugation. Thereafter, in the same manner as in the analysis of the content CB 1 of vinyl cyanide units in the acetone-insoluble portion of the copolymer mixture, this acetone-insoluble portion was subjected to ozonolysis, and then nitrogen was obtained by elemental analysis of the obtained component. From the atomic conversion, the content CB 1 of the vinyl cyanide unit insoluble in acetone can be determined. Further, the content CB 2 of the vinyl cyanide unit soluble in acetone can be determined by nitrogen atom conversion by elemental analysis of this acetone soluble component in the same manner as described above.
  • the flame-retardant thermoplastic resin composition of the present invention comprises 5 to 20 parts by mass, preferably 6 to 12 parts by mass of the phosphorus-based flame retardant (C) with respect to 100 parts by mass of the above-mentioned copolymer mixture. It will be. If the blending amount of the phosphorus flame retardant (C) is less than the lower limit, sufficient flame retardancy cannot be obtained, and if it exceeds the upper limit, the heat resistance tends to deteriorate.
  • the phosphorus-based flame retardant (C) used in the present invention is not particularly limited, and generally used phosphorus-based flame retardants can be used. Typically, phosphate esters, polyphosphates, phosphazene compounds, etc. Organic phosphorus compounds and red phosphorus.
  • phosphoric acid esters in the above organic phosphorus compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl Phosphate, tris (isopropylphenyl) phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl Phosphate, 2-acryloyloxyethyl acid phosphate, 2-methacryloyloxyethyl Cid phosphate, di
  • condensed phosphates include, for example, PX-200 (resorcinol bisdixylenyl phosphate), PX-201 (hydroquinone bisdixylenyl phosphate), CR-733S (resorcinol bisdiphenyl phosphate), CR, manufactured by Daihachi Chemical Co., Ltd. -741 (bisphenol A bisdiphenyl phosphate).
  • These phosphorus flame retardants (C) may be used alone or in combination of two or more.
  • the flame-retardant thermoplastic resin composition of the present invention in addition to the above-described components, is not limited to the physical properties of the resin composition at the time of production (mixing) and molding. Additives such as lubricants, pigments, dyes, fillers (carbon black, silica, titanium oxide, etc.), heat resistance agents, oxidative degradation inhibitors, weathering agents, mold release agents, plasticizers, antistatic agents, etc. it can.
  • the graft copolymer (A) and the vinyl copolymer (B) are within a range of 10 parts by mass or less with respect to 100 parts by mass of the copolymer mixture so as not to impair the object of the present invention. Resins other than these and rubber or elastomer may be included.
  • ⁇ Manufacturing method> There is no particular limitation on the method for producing the flame-retardant thermoplastic resin composition of the present invention, and the flame-retardant thermoplastic resin composition of the present invention is produced using a conventional method and apparatus. Can do. A generally used method is a melt mixing method, and examples of the apparatus used at that time include a single screw extruder, a twin screw extruder, a Banbury mixer, a roller, and a kneader.
  • the flame-retardant thermoplastic resin composition may be produced either batchwise or continuously, and there is no particular limitation on the mixing order of the components, and all the components are mixed sufficiently uniformly. That's fine.
  • the molded article of the present invention is formed by molding the above-mentioned flame-retardant thermoplastic resin composition of the present invention.
  • the molding method includes injection molding, sheet extrusion molding, vacuum molding, pressure molding, and profile extrusion. Any general-purpose molding method can be applied to the thermoplastic resin composition, such as molding, foam molding, and blow molding.
  • the graft copolymer (A-1) After the graft copolymer (A-1) was washed with methanol and dissolved in acetone, the acetone-soluble component was concentrated, reprecipitated with methanol, and the precipitate was collected by filtration. After the precipitate was dried, MT-6 manufactured by Yanaco was used as an elemental analyzer, and the content of vinyl cyanide units in terms of nitrogen atoms was determined using the vinyl cyanide of the graft copolymer (A-1). The content of the unit.
  • the graft copolymer (A-1) had a content of vinyl cyanide units soluble in acetone after washing with methanol of 24.3% by mass.
  • ⁇ Production Example 2 Production of Graft Copolymer (A-2)> In 170 parts by weight of distilled water, 65 parts by weight of the same diene rubber as used in Production Example 1, 35 parts by weight of a vinyl monomer mixture of 70% by weight of styrene and 30% by weight of acrylonitrile, and disproportionated rosin acid 1 part by weight of potassium, 0.01 part by weight of sodium hydroxide, 0.45 part by weight of sodium pyrophosphate, 0.01 part by weight of ferrous sulfate, 0.57 part by weight of dextrose, 0.07 part by weight of t-dodecyl mercaptan Then, 1.0 part by mass of cumene hydroperoxide was charged, the reaction was started from 60 ° C., the temperature was raised to 75 ° C.
  • the latex of the reaction product was coagulated with an aqueous sulfuric acid solution, washed with water, and then dried to obtain a graft copolymer (A-2).
  • the monomer conversion was 97% and the rubber content was 66.1% by mass.
  • the content of vinyl cyanide units of acetone-soluble components after methanol washing of the graft copolymer (A-2) obtained in the same manner as in Production Example 1 was 26.7% by mass.
  • ⁇ Production Example 3 Production of Graft Copolymer (A-3)> Manufactured except that 50 parts by mass of the same diene rubber as used in Production Example 1 and 50 parts by mass of a vinyl monomer mixture of 67% by mass of styrene and 33% by mass of acrylonitrile were used for 170 parts by mass of distilled water. The reaction was conducted under the same conditions as in Method 1 to obtain a graft copolymer (A-3). The monomer conversion was 96% and the rubber content was 51.9% by mass. Further, the content of the vinyl cyanide unit of the acetone-soluble component after the methanol washing of the graft copolymer (A-3) obtained in the same manner as in Production Example 1 was 29.2% by mass.
  • ⁇ Production Example 4 Production of Graft Copolymer (A-4)> Manufactured except that 50 parts by mass of the same diene rubber as used in Production Example 1 and 50 parts by weight of a vinyl monomer mixture of 78% by weight of styrene and 22% by weight of acrylonitrile were used in 170 parts by weight of distilled water. The reaction was conducted under the same conditions as in Method 1 to obtain a graft copolymer (A-4). The monomer conversion was 96% and the rubber content was 52.2% by mass. In addition, the content of the vinyl cyanide unit of the acetone-soluble component after the methanol washing of the graft copolymer (A-4) obtained in the same manner as in Production Example 1 was 21.2% by mass.
  • ⁇ Production Example 5 Production of vinyl copolymer (B-1)> In 120 parts by weight of distilled water, 0.003 part by weight of sodium alkylbenzenesulfonate, 100 parts by weight of a vinyl monomer mixture of 76.0% by weight of styrene and 24.0% by weight of acrylonitrile, and 0.35 parts by weight of t-dodecyl mercaptan And 0.15 parts by mass of benzoyl peroxide and 0.5 parts by mass of calcium phosphate were added, and suspension polymerization was carried out at 110 ° C. for 10 hours to obtain a vinyl copolymer (B-1).
  • the vinyl copolymer (B-1) had a mass average molecular weight Mw of 141,000 and a monomer conversion rate of 98%.
  • the vinyl copolymer (B-1) was washed with methanol and then dissolved in acetone. Then, the acetone-soluble component was concentrated, reprecipitated with methanol, and the precipitate was collected by filtration. After this precipitate was dried, MT-6 manufactured by Yanaco was used as an elemental analyzer, and the content of vinyl cyanide unit in terms of nitrogen atom was determined using the vinyl cyanide of vinyl copolymer (B-1). The content of the unit.
  • the vinyl copolymer (B-1) had a content of vinyl cyanide units soluble in acetone after washing with methanol of 22.5% by mass.
  • ⁇ Production Example 6 Production of vinyl copolymer (B-2)> As a vinyl monomer mixture, a vinyl monomer mixture of 73.0% by mass of styrene and 27.0% by mass of acrylonitrile was used, and the amount of t-dodecyl mercaptan was changed to 0.4 parts by mass. Suspension polymerization was performed under the conditions to obtain a vinyl copolymer (B-2).
  • the vinyl copolymer (B-2) had a mass average molecular weight Mw of 115,000 and a monomer conversion of 97%.
  • the acetone-soluble component after methanol washing was obtained in the same manner as in Production Example 5.
  • the content of vinyl cyanide unit was 25.7% by mass.
  • ⁇ Production Example 7 Production of vinyl copolymer (B-3)>
  • a vinyl monomer mixture a vinyl monomer mixture of 72.0% by mass of styrene and 28.0% by mass of acrylonitrile was used, and the amount of t-dodecyl mercaptan was changed to 0.5 parts by mass.
  • Suspension polymerization was performed under the conditions to obtain a vinyl copolymer (B-3).
  • the vinyl copolymer (B-3) had a mass average molecular weight Mw of 105,000 and a monomer conversion of 98%.
  • the acetone-soluble component after methanol washing was obtained in the same manner as in Production Example 5.
  • the content of vinyl cyanide unit was 27.0% by mass.
  • ⁇ Production Example 8 Production of vinyl copolymer (B-4)> As a vinyl monomer mixture, a vinyl monomer mixture of 72.0% by mass of styrene and 28.0% by mass of acrylonitrile was used, and the amount of t-dodecyl mercaptan was changed to 0.3 part by mass. Suspension polymerization was performed under the conditions to obtain a vinyl copolymer (B-4).
  • the vinyl copolymer (B-4) had a mass average molecular weight Mw of 165,000 and a monomer conversion of 97%.
  • the acetone-soluble component after methanol washing was obtained in the same manner as in Production Example 5.
  • the content of vinyl cyanide unit was 27.0% by mass.
  • ⁇ Production Example 9 Production of vinyl copolymer (B-5)>
  • a vinyl monomer mixture a vinyl monomer mixture of 70.0% by mass of styrene and 30.0% by mass of acrylonitrile was used, and the amount of t-dodecyl mercaptan was changed to 0.5 parts by mass.
  • Suspension polymerization was performed under the conditions to obtain a vinyl copolymer (B-5).
  • This vinyl copolymer (B-5) has a mass average molecular weight Mw of 91,000 and a monomer conversion of 97%.
  • the acetone-soluble content after methanol washing determined in the same manner as in Production Example 5
  • the content of vinyl cyanide unit was 29.0% by mass.
  • ⁇ Production Example 10 Production of vinyl copolymer (B-6)>
  • a vinyl monomer mixture a vinyl monomer mixture of 70.0% by mass of styrene and 30.0% by mass of acrylonitrile was used, and the amount of t-dodecyl mercaptan was changed to 0.4 parts by mass.
  • Suspension polymerization was performed under the conditions to obtain a vinyl copolymer (B-6).
  • This vinyl copolymer (B-6) has a mass average molecular weight Mw of 123,000, a monomer conversion of 97%, and the acetone-soluble content after methanol washing determined in the same manner as in Production Example 5.
  • the content of vinyl cyanide unit was 29.2% by mass.
  • ⁇ Production Example 11 Production of vinyl copolymer (B-7)>
  • a vinyl monomer mixture a vinyl monomer mixture of 70.0% by mass of styrene and 30.0% by mass of acrylonitrile was used, and the amount of t-dodecyl mercaptan was changed to 0.3 parts by mass.
  • Suspension polymerization was performed under the conditions to obtain a vinyl copolymer (B-7).
  • the vinyl copolymer (B-7) had a mass average molecular weight Mw of 155,000 and a monomer conversion of 98%.
  • the acetone-soluble component after methanol washing was obtained in the same manner as in Production Example 5.
  • the content of vinyl cyanide unit was 29.3% by mass.
  • ⁇ Production Example 12 Production of vinyl copolymer (B-8)>
  • a vinyl monomer mixture a vinyl monomer mixture of styrene 69.0% by mass and acrylonitrile 31.0% by mass was used, and the amount of t-dodecyl mercaptan was changed to 0.4 parts by mass.
  • Suspension polymerization was performed under the conditions to obtain a vinyl copolymer (B-8).
  • This vinyl copolymer (B-8) has a mass average molecular weight Mw of 113,000, a monomer conversion of 98%, and the acetone-soluble content after methanol washing determined in the same manner as in Production Example 5.
  • the content of vinyl cyanide unit was 30.0% by mass.
  • ⁇ Phosphorus flame retardant (C)> The following products manufactured by Daihachi Chemical Co., Ltd. were used as the phosphorus flame retardant (C).
  • C-2) CR-741 bisphenol A bisdiphenyl phosphate
  • Examples 1 to 10 Comparative Examples 1 to 4
  • a phosphorus-based flame retardant were blended in the ratios shown in Tables 1 and 2, mixed with a Henschel mixer, and then kneaded with an extruder to be pelletized.
  • the content CB 1 of vinyl cyanide units of acetone-insoluble components and the content CB 2 of vinyl cyanide units of acetone-soluble components of each copolymer mixture were determined by the following methods, and these results were used.
  • Tables 1 and 2 show the content CB B of acetone-soluble vinyl cyanide units after methanol washing, together with
  • the rubber content of each copolymer mixture is also shown.
  • ⁇ CB 1, CB 2> 1 g of the resulting resin composition pellets was put into 80 ml of acetone and allowed to stand at 23 ° C. for 12 hours, then subjected to an ultrasonic cleaner for 15 minutes, and then centrifuged at 12,000 rpm for 90 minutes using a centrifuge. To obtain an acetone-soluble component (supernatant liquid). The acetone-soluble component was concentrated, reprecipitated with methanol, and the precipitate was collected by filtration. The precipitate was put in a vacuum dryer at 60 ° C. and dried for 12 hours or more, and then subjected to elemental analysis to obtain a content CB 2 of acetone-soluble vinyl cyanide unit in terms of nitrogen atom.
  • thermoplastic resin composition of the present invention by adding a phosphorus-based flame retardant without using a halogen-based flame retardant, US UL standard 94V-2 It has suitable flame retardancy, has a short initial dripping time, can quickly suppress the spread of flame, has a safer combustion behavior, and has impact resistance, heat resistance, molding processing A flame retardant thermoplastic resin composition having an excellent balance of various physical properties is provided.
  • Comparative Examples 1 and 2 the absolute value
  • the weight average molecular weight Mw of the vinyl copolymer (B) exceeds the range of the present invention, not only is the flame retardance insufficient, but the drip property is poor, and the initial dropping time is long. Safety is also low.
  • Comparative Example 4 the content CB 1 of vinyl cyanide compound in the acetone-insoluble fraction of the co-polymer mixture is less than the scope of the present invention, inferior in impact resistance and heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 ハロゲン系難燃剤を使用することなくリン系難燃剤を用いて、米国UL規格94V-2に適合する優れた難燃性を有すると共に、燃焼時のドリップ性が良好で、物性バランスにも優れた難燃性熱可塑性樹脂組成物を提供する。ゴム質重合体にシアン化ビニル化合物と共重合性ビニル化合物をグラフト重合してなるグラフト共重合体(A)と、シアン化ビニル化合物と共重合性ビニル化合物を共重合してなる質量平均分子量90,000~160,000のビニル共重合体(B)とからなる共重合体混合物100質量部に、5~20質量部のリン系難燃剤(C)を配合してなる難燃性熱可塑性樹脂組成物。該共重合体混合物のアセトン不溶分のシアン化ビニル単位量CBが22.0~32.0質量%、アセトン可溶分のシアン化ビニル単位量CBが22.0~34.0質量%、|CB-CB|が0~3.0質量%。

Description

難燃性熱可塑性樹脂組成物およびその成形品
 本発明は難燃性熱可塑性樹脂組成物に関り、詳しくは、ハロゲン系難燃剤を使用することなくリン系難燃剤を配合することにより、米国UL規格94V-2に適合する難燃性を有すると共に、燃焼時のドリップ性に優れたより安全性が高い燃焼挙動を示し、しかも、物性バランスに優れた難燃性熱可塑性樹脂組成物に関する。
 本発明はまた、この難燃性熱可塑性樹脂組成物の成形してなる成形品に関する。
 HIPS(高耐衝撃性ポリスチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂などのスチレン系樹脂は、成形性、寸法安定性、耐衝撃性、剛性に優れているため、電気機器部品、自動車部品、建材等の構成材料として広く利用されている。これらのスチレン系樹脂には、その用途から、難燃性が要求されている。
 また、米国UL規格94V-2に適合する材料の多くは、成形体から燃焼部分がドリップすることにより、燃焼部分の炎を小さくする、または、消火に至ることから、より高い安全性を確保するために、着火後にできるだけ短時間でドリップすること、即ち、ドリップ性に優れることが望まれる。
 従来、スチレン系樹脂に難燃性を付与するために、難燃剤としてデカブロモジフェニルエステル等のハロゲン含有化合物を、また、難燃助剤としてアンチモン化合物を配合する技術がある。しかし、ハロゲン含有化合物は、燃焼時に分解して、人体に有害なガスを発生することから、環境上問題があった。
 そこで、ノンハロゲン難燃剤を用いた技術として、次のようなものが提案されている。
 例えば、特公昭57-1547号公報には、スチレン系樹脂に複合金属水酸化物を配合する技術が提案されている。しかし、複合金属水酸化物では、その実施例から明らかなとおり、多量配合するわりには難燃性の改善効果が低い。
 また、特開平10-130454号公報には、メラミンシアヌレートおよび/またはポリリン酸メラミンを配合する技術が提案されているが、この技術では、各種機械物性や耐熱性の低下を引き起こすリン酸エステル化合物の併用が必須である。
 リン酸エステルなどのリン系難燃剤を用いる技術は、その他、特開平10-120853号公報にも提案されている。
 リン酸エステル等のリン系難燃剤は、燃焼時に炭化層を形成して難燃性を付与することが知られており、材料のリン含有量が多いほど、その難燃性付与効果が高められると考えられている。
 しかしながら、リン系難燃剤は樹脂の可塑剤として作用することから、リン系難燃剤の配合で難燃性が高められても、反面各種機械物性や耐熱性が低下するなどの問題がある。
特公昭57-1547号公報 特開平10-130454号公報 特開平10-120853号公報
 本発明は上記従来の実状に鑑みてなされたものであって、ハロゲン系難燃剤を使用することなくリン系難燃剤を用いて、米国UL規格94V-2に適合する優れた難燃性を有すると共に、燃焼時のドリップ性が良好ですばやく消火することで延焼を抑止することができる安全性の高い難燃性熱可塑性樹脂組成物であって、リン系難燃剤を配合したことによる機能物性や耐熱性の低下の問題がなく、物性バランスにも優れた難燃性熱可塑性樹脂組成物およびその成形品を提供することを課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、特定のグラフト共重合体とビニル共重合体からなる、アセトン不溶分のシアン化ビニル単位の含有量とアセトン可溶分のシアン化ビニル単位の含有量との差が小さい共重合体混合物に、特定量のリン系難燃剤を配合することにより、上記課題を解決することができることを見出した。
 本発明はこのような知見に基いて達せされたものであり、以下を要旨とする。
[1] ゴム質重合体に、シアン化ビニル化合物と、シアン化ビニル化合物と共重合可能なビニル化合物とをグラフト重合してなるグラフト共重合体(A)と、シアン化ビニル化合物と、シアン化ビニル化合物と共重合可能なビニル化合物とを共重合してなる質量平均分子量が90,000~160,000であるビニル共重合体(B)とからなる共重合体混合物に、該共重合体混合物100質量部に対して5~20質量部のリン系難燃剤(C)を配合してなる熱可塑性樹脂組成物であって、該共重合体混合物のアセトン不溶分のシアン化ビニル単位の含有量CBが22.0~32.0質量%であり、アセトン可溶分のシアン化ビニル単位の含有量CBが22.0~34.0質量%であり、これらの差の絶対値|CB-CB|が0~3.0質量%であることを特徴とする難燃性熱可塑性樹脂組成物。
[2] 前記グラフト共重合体(A)が、ゴム質重合体20~75質量部に、シアン化ビニル化合物23~35質量%と、シアン化ビニル化合物と共重合可能なビニル化合物65~77質量%とを含むビニル単量体混合物25~80質量部をグラフト重合してなり、かつ、前記ビニル共重合体(B)が、シアン化ビニル化合物23~35質量%と、シアン化ビニル化合物と共重合可能なビニル化合物65~77質量%とを含むビニル単量体混合物を共重合してなることを特徴とする[1]に記載の難燃性熱可塑性樹脂組成物。
[3] グラフト共重合体(A)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBが22.0~34.0質量%であり、ビニル共重合体(B)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBが22.0~32.0質量%であり、これらの差の絶対値|CB-CB|が0~1.5質量%であることを特徴とする[1]または[2]に記載の難燃性熱可塑性樹脂組成物。
[4] グラフト共重合体(A)および/またはビニル共重合体(B)におけるシアン化ビニル化合物と共重合可能なビニル化合物が、芳香族ビニル化合物58~100質量%と、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物0~42質量%とを含むことを特徴とする[1]ないし[3]のいずれかに記載の難燃性熱可塑性樹脂組成物。
[5] [1]ないし[4]のいずれかに記載の難燃性熱可塑性樹脂組成物を成形してなる成形品。
 本発明の難燃性熱可塑性樹脂組成物によれば、ハロゲン系難燃剤を使用することなくリン系難燃剤を用いて、米国UL規格94V-2に適合する難燃性を有し、かつ、燃焼時に短時間でドリップが生じることで、炎の延焼をすばやく抑止する高い安全性を示し、しかも、耐衝撃性や耐熱性、成形加工性といった物性バランスにも優れた成形品が提供される。
 以下に本発明の実施の形態を詳細に説明する。
[難燃性熱可塑性樹脂組成物]
 本発明の難燃性熱可塑性樹脂組成物は、ゴム質重合体に、シアン化ビニル化合物と、シアン化ビニル化合物と共重合可能なビニル化合物(以下「共重合性ビニル化合物」と称す場合がある。)とをグラフト重合してなるグラフト共重合体(A)と、シアン化ビニル化合物と共重合性ビニル化合物とを共重合してなる、質量平均分子量90,000~160,000のビニル共重合体(B)とからなる共重合体混合物に、該共重合体混合物100質量部に対して5~20質量部のリン系難燃剤(C)を配合してなる熱可塑性樹脂組成物であって、該共重合体混合物のアセトン不溶分のシアン化ビニル単位の含有量CBが22.0~32.0質量%であり、アセトン可溶分のシアン化ビニル単位の含有量CBが22.0~34.0質量%であり、該アセトン不溶分のシアン化ビニル単位の含有量CBと該アセトン可溶分のシアン化ビニル単位の含有量CBの差の絶対値|CB-CB|が0~3.0質量%であることを特徴とする。
<グラフト共重合体(A)>
 本発明に係るグラフト共重合体(A)は、ゴム質重合体に、シアン化ビニル化合物および共重合性ビニル化合物をグラフト重合してなるものである。
 該ゴム質重合体としては、ポリブタジエン、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、アクリルゴム、エチレン-プロピレン-非共役ジエン共重合体ゴム(EPDM)等の1種または2種以上を用いることができる。なお、EPDMに含有される非共役ジエン成分としては、ジシクロペンタジエン、1,4-ヘキサジエン、1,4-ヘプタジエン、1,5-シクロオクタジエン、6-メチル-1,5-ヘプタジエン、11-エチル-1,11-トリデカジエン、5-メチレン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、2,5-ノルボルナジエン、2-メチル-2,5-ノルボルナジエン、メチルテトラヒドロインデン、リモネン等のジオレフィンの1種または2種以上が挙げられる。
 また、シアン化ビニル化合物としては、例えばアクリロニトリル、メタクリロニトリル等を挙げることができ、これらの1種または2種以上を使用することができる。
 共重合性ビニル化合物としては、芳香族ビニル化合物、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物が挙げられ、このうち、芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-,m-もしくはp-メチルスチレン、ビニルキシレン、p-tert-ブチルスチレン、エチルスチレン等、好ましくはスチレン、α-メチルスチレンを挙げることができる。これらの芳香族ビニル化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物としては、アクリル酸、メタクリル酸等のα,β-不飽和カルボン酸;メチル(メタ)アクリレート(なお、「(メタ)アクリレート」は「アクリレートまたはメタクリレート」を意味する。)、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等のα,β-不飽和カルボン酸エステル類;無水マレイン酸、無水イタコン酸等のα,β-不飽和ジカルボン酸無水物類等を挙げることができる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 本発明に係るグラフト共重合体(A)としては、具体的にはABS(ポリブタジエン-スチレン-アクリロニトリル)樹脂、ASA(アクリルゴム-スチレン-アクリロニトリル)樹脂、AES(エチレン-プロピレン-非共役ジエン系ゴム-スチレン-アクリロニトリル)樹脂が挙げられる。
 本発明に係るグラフト共重合体(A)は、特にゴム質重合体20~75質量部、好ましくは40~70質量部に、シアン化ビニル化合物23~35質量%および共重合性ビニル化合物65~77質量%を含むビニル単量体混合物25~80質量部、好ましくは30~60質量部をグラフト重合したものが好ましい。
 グラフト共重合体(A)において、ゴム質重合体の割合が上記下限以上であると、得られる難燃性熱可塑性樹脂組成物の耐衝撃性が良好となり、上記上限以下であると共重合体(B)との相溶性が良好となる。
 また、グラフト共重合体(A)を製造する際に用いるビニル単量体混合物は、ビニル単量体混合物全体を100質量%として、好ましくはシアン化ビニル化合物23~35質量%、共重合性ビニル化合物65~77質量%、より好ましくはシアン化ビニル化合物24~34質量%と共重合性ビニル化合物66~76質量%、さらに好ましくはシアン化ビニル化合物26~32質量%と共重合性ビニル化合物68~74質量%とからなるものである。ビニル単量体混合物中のシアン化ビニル化合物および共重合性ビニル化合物の割合が上記範囲内であると、得られる難燃性熱可塑性樹脂組成物の成型加工性、耐衝撃性および耐熱性がいずれも良好となり、物性バランスの優れた難燃性熱可塑性樹脂組成物を得やすい。
 また、共重合性ビニル化合物としては、前述の如く、芳香族ビニル化合物と芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物とが挙げられるが、その使用割合は、共重合性ビニル化合物全体を100質量%として、好ましくは芳香族ビニル化合物58~100質量%、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物0~42質量%、より好ましくは芳香族ビニル化合物65~100質量%、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物0~35質量%、さらに好ましくは芳香族ビニル化合物80~100質量%、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物0~20質量%である。芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物の使用量を上記上限以下とすると成形加工性が良好となる。
 本発明におけるグラフト共重合体(A)を製造する際のグラフト重合方法については特に制限はなく、塊状重合、溶液重合、塊状懸濁重合、懸濁重合および乳化重合等の一般的な重合方法をいずれも採用することができる。
 上記グラフト重合は、例えば、先ず、乳化重合にて製造されたゴム質重合体を攪拌翼ジャケット付き反応器内に仕込み、次にグラフト重合させるビニル単量体混合物の全量または一部を数回に分けて、一括または連続して滴下し、攪拌しながら40~70℃にて、5~60分間放置した後、更に開始剤を添加することにより行うことができる。これにより添加したビニル単量体混合物は、ゴム質重合体に含浸し、ゴム質重合体内にて重合体となって、グラフト共重合体(A)が得られる。
 このようなグラフト重合反応時の蒸留水へのシアン化ビニル化合物の溶解や単量体転化率などの影響から、グラフト共重合体(A)の製造に用いたビニル単量体混合物中のシアン化ビニル化合物の含有量に対して、得られるグラフト共重合体(A)のシアン化ビニル単位の含有量は変化する。
 本発明におけるグラフト共重合体(A)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBは、22.0~34.0質量%、特に25.0~30.0質量%であることが好ましい。このシアン化ビニル単位の含有量CBが上記範囲内であると、得られる難燃性熱可塑性樹脂組成物の成型加工性、耐衝撃性および耐熱性がいずれも良好となり、物性バランスの優れた難燃性熱可塑性樹脂組成物を得やすい。
 なお、本発明において、グラフト共重合体(A)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBは、グラフト共重合体(A)をメタノール洗浄後にアセトンに溶解させ、アセトン可溶分を濃縮した後、メタノールで再沈殿させ、濾過により沈殿物を採取後、この沈殿物を元素分析にかけ、窒素原子換算することによる求めることができる。
<ビニル共重合体(B)>
 本発明に係るビニル共重合体(B)は、シアン化ビニル化合物と共重合性ビニル化合物とを共重合してなる、質量平均分子量が90,000~160,000のものである。
 本発明において、ビニル共重合体(B)を製造する際に用いるシアン化ビニル化合物、共重合性ビニル化合物としては、各々前述のグラフト共重合体(A)を製造する際に用いることができるシアン化ビニル化合物、共重合性ビニル化合物として例示したものが挙げられ、それぞれ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 このビニル共重合体(B)は、シアン化ビニル化合物と共重合性ビニル化合物とを含むビニル単量体混合物を共重合することにより製造されるが、このビニル単量体混合物中のシアン化ビニル化合物と共重合性ビニル化合物との割合は、ビニル単量体混合物全体を100質量%として、好ましくはシアン化ビニル化合物23~35質量%、共重合性ビニル化合物65~77質量%、より好ましくはシアン化ビニル化合物24~34質量%と共重合性ビニル化合物66~76質量%、さらに好ましくはシアン化ビニル化合物26~32質量%と共重合性ビニル化合物68~74質量%とからなる。ビニル単量体混合物中のシアン化ビニル化合物および共重合性ビニル化合物の割合が上記範囲内であると、得られる難燃性熱可塑性樹脂組成物の成型加工性、耐衝撃性および耐熱性がいずれも良好となり、物性バランスの優れた難燃性熱可塑性樹脂組成物を得やすい。
 また、共重合性ビニル化合物としては、前述の如く、芳香族ビニル化合物と芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物とが挙げられるが、その使用割合は、共重合性ビニル化合物全体を100質量%として、好ましくは芳香族ビニル化合物58~100質量%、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物0~42質量%、より好ましくは芳香族ビニル化合物65~100質量%、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物0~35質量%、さらに好ましくは芳香族ビニル化合物80~100質量%、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物0~20質量%である。芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物の使用量を上記上限以下とすると成形加工性が良好となる。
 ビニル共重合体(B)は、このようなビニル単量体混合物から、常法に従って、乳化重合、懸濁重合、塊状重合またはこれらの組み合わせからなる共重合反応によって製造することができる。
 このような共重合反応時の蒸留水へのシアン化ビニル化合物の溶解や単量体転化率などの影響から、ビニル共重合体(B)の製造に用いたビニル単量体混合物中のシアン化ビニル化合物の含有量に対して、得られるビニル共重合体(B)のシアン化ビニル単位の含有量は変化する。
 本発明におけるビニル共重合体(B)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBは、22.0~32.0質量%、特に25.0~30.0質量%であることが好ましい。このシアン化ビニル単位の含有量CBが上記範囲内であると、得られる難燃性熱可塑性樹脂組成物の成型加工性、耐衝撃性および耐熱性がいずれも良好となり、物性バランスの優れた難燃性熱可塑性樹脂組成物を得やすい。
 なお、本発明において、ビニル共重合体(B)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBは、ビニル共重合体(B)をメタノール洗浄後にアセトンに溶解させ、アセトン可溶分を濃縮した後、メタノールで再沈殿させ、濾過により沈殿物を採取後、この沈殿物を元素分析にかけ、窒素原子換算することによる求めることができる。
 また、ビニル共重合体(B)の質量平均分子量は、GPCを用いて測定したポリスチレン換算値で、90,000~160,000、好ましくは90,000~125,000、さらに好ましくは90,000~115,000である。
 ビニル共重合体(B)の質量平均分子量が、90,000未満であると耐衝撃性および/または耐熱性が劣る傾向となり、160,000を超えると成形加工性および難燃性が劣る傾向となるだけでなく、ドリップ性も悪くなり、安全性の高い、また物性バランスの良好な樹脂組成物が得ることが難しくなる。
<共重合体混合物>
 本発明に係る共重合体混合物は、グラフト共重合体(A)とビニル共重合体(B)とからなるものであるが、これらの合計量100質量部において、各々、次のような割合で含有されることが好ましい。
  グラフト共重合体(A):10~70質量部、特に15~40質量部
  ビニル共重合体(B):30~90質量部、特に60~85質量部
 さらに、該共重合体混合物中におけるゴム含有量は、好ましくは5~20質量%、より好ましくは6~16質量%、さらに好ましくは8~14質量%である。ゴム含有量がこの範囲であると、燃焼性に優れる傾向にある。
 グラフト共重合体(A)の配合量が上記下限以上であると、得られる樹脂組成物の耐衝撃性が良好となり、上記上限以下であると、耐熱性が良好となる。また、ビニル共重合体(B)の配合量が上記下限以上であると、得られる樹脂組成物の流動性、燃焼性が良好となり、上記上限以下であると耐衝撃性が良好となる。
 また、本発明に係る共重合体混合物において、この共重合体混合物中のグラフト共重合体(A)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBと、ビニル共重合体(B)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBとの差の絶対値|CB-CB|は0~1.5質量%、特に0~1.0質量%であることが好ましい。|CB-CB|が上記上限以下であると、得られる難燃性熱可塑性樹脂組成物の燃焼性とドリップ性が良好となる。
 なお、グラフト共重合体(A)、ビニル共重合体(B)はそれぞれ1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらを2種以上用いる場合、共重合体混合物中のグラフト共重合体(A)、ビニル共重合体(B)のいずれの組み合わせにおいても、|CB-CB|が上記上限以下となるようにすることが好ましい。
 本発明において、前述のようにグラフト共重合体(A)やビニル共重合体(B)を製造する際には、重合時の蒸留水へのシアン化ビニル化合物の溶解や単量体転化率の影響から、グラフト共重合体(A)およびビニル共重合体(B)の重合に用いたビニル単量体混合物中のシアン化ビニル化合物の含有量に対して、得られる共重合体混合物のシアン化ビニル単位の含有量は変化する。
 本発明における共重合体混合物のアセトン不溶分のシアン化ビニル単位の含有量CBは、22.0~32.0質量%、好ましくは25.0~30.0質量%である。CBが上記上限よりも多いと成形加工性に劣る傾向にあり、上記下限よりも少ないと耐衝撃性、耐熱性に劣る傾向にあるためである。
 また、本発明における共重合体混合物のアセトン可溶分のシアン化ビニル単位の含有量CBは、22.0~34.0質量%、好ましくは25.0~30.0質量%である。CBが上記上限よりも多いと成形加工性に劣る傾向にあり、上記下限よりも少ないと耐衝撃性、耐熱性に劣る傾向にあるためである。
 また、本発明における共重合体混合物のアセトン不溶分のシアン化ビニル単位の含有量CBとアセトン可溶分のシアン化ビニル単位の含有量CBの差の絶対値|CB-CB|は0~3.0質量%である。|CB-CB|が0~3.0質量%であることにより、難燃性とドリップ性に優れた難燃性熱可塑性樹脂組成物が得られる。|CB-CB|は好ましくは0.1~2.5質量%であり、さらに好ましくは0.3~2.5質量%である。|CB-CB|がこの範囲にあれば、得られる樹脂組成物の耐衝撃性と燃焼性のバランスが一層向上する傾向にある。
 本発明における共重合体混合物のアセトン不溶分のシアン化ビニル単位の含有量CBは、このアセトン不溶分をオゾン分解した後、得られた成分の元素分析による窒素原子換算から求めることができるが、共重合体混合物中のグラフト共重合体(A)のメタノール洗浄後のアセトン不溶分をオゾン分解した後、得られた成分の元素分析による窒素原子換算から求めることもできる。
 また、本発明における、共重合体混合物のアセトン可溶分のシアン化ビニル単位の含有量CBは、このアセトン可溶分の元素分析による窒素原子換算により求めることができるが、このシアン化ビニル単位の含有量CBは、前述の共重合体混合物中のグラフト共重合体(A)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBとビニル共重合体(B)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBを用いて、下記計算式より求めることもできる。
 CB=(G・S・CB+S・CB)/(G・S+S
  G:グラフト共重合体(A)1g中のアセトン可溶分のグラム量
  S:共重合体混合物中のグラフト共重合体(A)の配合量
  S:共重合体混合物中のビニル共重合体(B)の配合量
  CB:グラフト共重合体(A)のメタノール洗浄後のアセトン可溶分の
     シアン化ビニル単位の含有量
  CB:ビニル共重合体(B)のメタノール洗浄後のアセトン可溶分の
     シアン化ビニル単位の含有量
<難燃性熱可塑性樹脂組成物の分析>
 本発明に係る共重合体混合物中のアセトン可溶分およびアセトン不溶分のシアン化ビニル単位の含有量は、製造された難燃性熱可塑性樹脂組成物からも求めることができる。
 この場合、まず、難燃性熱可塑性樹脂組成物1gをクロロホルム20mlに溶解し、その後、メタノール400ml中に滴下してポリマー成分を再度析出させ、析出した固形分(ポリマー成分)を濾過などにより取り出す。取り出した固形分が、難燃性熱可塑性樹脂組成物中の共重合体混合物に該当するので、これをアセトン可溶分とアセトン不溶分とに遠心分離により分離する。その後は、前述の共重合体混合物のアセトン不溶分のシアン化ビニル単位の含有量CBの分析の場合と同様に、このアセトン不溶分をオゾン分解した後、得られた成分の元素分析による窒素原子換算から、アセトン不溶分のシアン化ビニル単位の含有量CBを求めることができる。また、アセトン可溶分のシアン化ビニル単位の含有量CBは、上記と同様にこのアセトン可溶分の元素分析による窒素原子換算により求めることができる。
<リン系難燃剤(C)>
 本発明の難燃性熱可塑性樹脂組成物は、上述の共重合体混合物100質量部に対し、リン系難燃剤(C)を5~20質量部、好ましくは6~12質量部を配合してなるものである。このリン系難燃剤(C)の配合量が上記下限未満では十分な難燃性を得ることができず、上記上限を超えると耐熱性が悪くなる傾向にある。
 本発明で用いられるリン系難燃剤(C)は特に限定されることはなく、通常一般に用いられるリン系難燃剤を用いることができ、代表的にはリン酸エステル、ポリリン酸塩、ホスファゼン化合物などの有機リン系化合物や、赤リンが挙げられる。
 上記の有機リン系化合物におけるリン酸エステルの具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチル、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェートならびにこれらの縮合物などの縮合リン酸エステルを挙げることができる。市販の縮合リン酸エステルとしては、例えば大八化学社製PX-200(レゾルシノールビスジキシレニルホスフェート)、PX-201(ハイドロキノンビスジキシレニルホスフェート)、CR-733S(レゾルシノールビスジフェニルホスフェート)、CR-741(ビスフェノールAビスジフェニルホスフェート)などを挙げることができる。
 これらのリン系難燃剤(C)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<他の添加剤>
 本発明の難燃性熱可塑性樹脂組成物には、更に上記の諸成分の他に、その物性を損なわない範囲において、樹脂組成物の製造時(混合時)、成形時に用いられる通常の他の添加剤、例えば滑剤、顔料、染料、充填剤(カーボンブラック、シリカ、酸化チタン等)、耐熱剤、酸化劣化防止剤、耐候剤、離型剤、可塑剤、帯電防止剤等を配合することができる。
 また、本発明の目的を損なわない程度に、例えば前記共重合体混合物100質量部に対して10質量部以下の範囲であれば、前記グラフト共重合体(A)およびビニル共重合体(B)以外の樹脂およびゴムやエラストマー等が含まれていてもよい。
<製造方法>
 本発明の難燃性熱可塑性樹脂組成物を製造する方法には特に制限はなく、本発明の難燃性熱可塑性樹脂組成物は、通常行われている方法および装置を使用して製造することができる。一般的に使用されている方法は、溶融混合法であり、その際に用いる装置の例としては、一軸押出機、二軸押出機、バンバリーミキサー、ローラー、ニーダー等を挙げることができる。難燃性熱可塑性樹脂組成物の製造は、回分式または連続式のいずれで行ってもよく、また、各成分の混合順序にも特に制限はなく、全ての成分が十分に均一に混合されればよい。
[成形品]
 本発明の成形品は、上述した本発明の難燃性熱可塑性樹脂組成物を成形してなるものであり、その成形方法としては、射出成形、シート押出成形、真空成形、圧空成形、異形押出成形、発泡成形、ブロー成形など、熱可塑性樹脂組成物に汎用の成形方法をいずれも適用することができる。
 本発明の難燃性熱可塑性樹脂組成物を成形して得られる成形品の用途としては特に制限はないが、その優れた難燃性と物性バランスにより、OA・家電分野、電気・電子分野、自動車分野、建材分野等の各種用途に有用である。
 以下、製造例、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 以下において、得られた樹脂組成物の各種物性ないし特性の評価方法は次の通りである。
(1)難燃性:UL94規格の試験方法に従って、厚み0.75mmおよび3.0mmでそれぞれ試験を実施し、下記UL94V-2に適合するか否かで評価した。表1,2において、UL94V-2に適合するものをV-2とし、適合しない物をOUTと表記した。
 <UL94V-2>
  接炎を中止した後の各回の有炎燃焼時間(秒):30秒以下
  試験片5個への合計10回の接炎による有炎燃焼時間(秒):250秒以下
  有炎滴下物による脱脂綿の着火:あり
(2)初期滴下時間(秒):UL94規格の試験方法に従って、厚み3.0mmで試験を実施する際、はじめの有炎滴下物を生じる時間を測定し、試験片5個の平均時間を初期滴下時間とした。この時間が短いものほど、炎が小さくなる、または消火するのが速く、炎の延焼をすばやく抑制することができることから、安全性が高い。
(3)耐衝撃性:ISO試験法179に準拠し、23℃、4mm、Vノッチ付きシャルピー衝撃強さ(KJ/m)を測定した。
(4)成形加工性:ISO試験法1133に準拠し、220℃でのメルトボリュームレート(cm/10min)を測定した。
(5)耐熱性:ISO試験法75に準拠し、1.83MPa、4mm、フラットワイズ法で荷重たわみ温度(℃)を測定した。
<製造例1:グラフト共重合体(A-1)の製造>
 蒸留水170質量部に、ジエン系ゴム(ポリブタジエン、ゲル含有量:95%、平均粒子径:3000Å)50質量部と、スチレン74質量%およびアクリロニトリル26質量%のビニル単量体混合物50質量部と、不均化ロジン酸カリウム1質量部、水酸化ナトリウム0.01質量部、ピロリン酸ナトリウム0.45質量部、硫酸第1鉄0.01質量部、デキストローズ0.57質量部、t-ドデシルメルカプタン0.08質量部およびクメンハイドロパーオキサイド1.0質量部とを仕込み、60℃から反応を開始し、途中で75℃まで昇温し、2時間半後に乳化グラフト重合を完結させた。
 反応生成物のラテックスを硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(A-1)を得た。なお、単量体転化率は96%、ゴム含有量は50.9質量%であった。
 グラフト共重合体(A-1)をメタノールで洗浄後、アセトンに溶解させた後、このアセトン可溶分を濃縮し、メタノールで再沈殿させ、濾過により沈殿物を採取した。この沈殿物を乾燥させた後、元素分析装置として、Yanaco製MT-6を使用して、窒素原子換算によるシアン化ビニル単位の含有量を、グラフト共重合体(A-1)のシアン化ビニル単位の含有量とした。
 このグラフト共重合体(A-1)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は24.3質量%であった。
<製造例2:グラフト共重合体(A-2)の製造>
 蒸留水170質量部に、製造例1で用いたものと同様のジエン系ゴム65質量部と、スチレン70質量%およびアクリロニトリル30質量%のビニル単量体混合物35質量部と、不均化ロジン酸カリウム1質量部、水酸化ナトリウム0.01質量部、ピロリン酸ナトリウム0.45質量部、硫酸第1鉄0.01質量部、デキストローズ0.57質量部、t-ドデシルメルカプタン0.07質量部およびクメンハイドロパーオキサイド1.0質量部とを仕込み、60℃から反応を開始し、途中で75℃まで昇温し、2時間半後に乳化グラフト重合を完結させた。
 反応生成物のラテックスを硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(A-2)を得た。なお、単量体転化率は97%であり、ゴム含有量は66.1質量%であった。また、製造例1と同様にして求めたグラフト共重合体(A-2)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は26.7質量%であった。
<製造例3:グラフト共重合体(A-3)の製造>
 蒸留水170質量部に、製造例1で用いたものと同様のジエン系ゴム50質量部と、スチレン67質量%およびアクリロニトリル33質量%のビニル単量体混合物50質量部を用いたこと以外は製造法1と同条件で反応を行い、グラフト共重合体(A-3)を得た。なお、単量体転化率は96%であり、ゴム含有量は51.9質量%であった。また、製造例1と同様にして求めたグラフト共重合体(A-3)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は29.2質量%であった。
<製造例4:グラフト共重合体(A-4)の製造>
 蒸留水170質量部に、製造例1に用いたものと同様のジエン系ゴム50質量部と、スチレン78重量%およびアクリロニトリル22重量%のビニル単量体混合物50重量部を用いたこと以外は製造法1と同条件で反応を行い、グラフト共重合体(A-4)を得た。なお、単量体転化率は96%であり、ゴム含有量は52.2質量%であった。また、製造例1と同様にして求めたグラフト共重合体(A-4)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は21.2質量%であった。
<製造例5:ビニル共重合体(B-1)の製造>
 蒸留水120質量部に、アルキルベンゼンスルホン酸ナトリウム0.003質量部と、スチレン76.0質量%およびアクリロニトリル24.0質量%のビニル単量体混合物100質量部と、t-ドデシルメルカプタン0.35質量部、過酸化ベンゾイル0.15質量部およびリン酸カルシウム0.5質量部とを添加して、110℃で10時間懸濁重合し、ビニル共重合体(B-1)を得た。
 このビニル共重合体(B-1)の質量平均分子量Mwは141,000であり、単量体転化率は98%であった。
 ビニル共重合体(B-1)をメタノールで洗浄後、アセトンに溶解した後、このアセトン可溶分を濃縮し、メタノールで再沈殿させ、濾過により沈殿物を採取した。この沈殿物を乾燥させた後、元素分析装置として、Yanaco製MT-6を使用して、窒素原子換算によるシアン化ビニル単位の含有量を、ビニル共重合体(B-1)のシアン化ビニル単位の含有量とした。
 このビニル共重合体(B-1)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は22.5質量%であった。
<製造例6:ビニル共重合体(B-2)の製造>
 ビニル単量体混合物として、スチレン73.0質量%とアクリロニトリル27.0質量%のビニル単量体混合物を用い、t-ドデシルメルカプタンの量を0.4質量部とした以外は製造例5と同条件で懸濁重合を行い、ビニル共重合体(B-2)を得た。
 このビニル共重合体(B-2)の質量平均分子量Mwは115,000であり、単量体転化率は97%であり、製造例5と同様にして求めたメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は25.7質量%であった。
<製造例7:ビニル共重合体(B-3)の製造>
 ビニル単量体混合物として、スチレン72.0質量%とアクリロニトリル28.0質量%のビニル単量体混合物を用い、t-ドデシルメルカプタンの量を0.5質量部とした以外は製造例5と同条件で懸濁重合を行い、ビニル共重合体(B-3)を得た。
 このビニル共重合体(B-3)の質量平均分子量Mwは105,000であり、単量体転化率は98%であり、製造例5と同様にして求めたメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は27.0質量%であった。
<製造例8:ビニル共重合体(B-4)の製造>
 ビニル単量体混合物として、スチレン72.0質量%とアクリロニトリル28.0質量%のビニル単量体混合物を用い、t-ドデシルメルカプタンの量を0.3質量部とした以外は製造例5と同条件で懸濁重合を行い、ビニル共重合体(B-4)を得た。
 このビニル共重合体(B-4)の質量平均分子量Mwは165,000であり、単量体転化率は97%であり、製造例5と同様にして求めたメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は27.0質量%であった。
<製造例9:ビニル共重合体(B-5)の製造>
 ビニル単量体混合物として、スチレン70.0質量%とアクリロニトリル30.0質量%のビニル単量体混合物を用い、t-ドデシルメルカプタンの量を0.5質量部とした以外は製造例5と同条件で懸濁重合を行い、ビニル共重合体(B-5)を得た。
 このビニル共重合体(B-5)の質量平均分子量Mwは99,000であり、単量体転化率は97%であり、製造例5と同様にして求めたメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は29.0質量%であった。
<製造例10:ビニル共重合体(B-6)の製造>
 ビニル単量体混合物として、スチレン70.0質量%とアクリロニトリル30.0質量%のビニル単量体混合物を用い、t-ドデシルメルカプタンの量を0.4質量部とした以外は製造例5と同条件で懸濁重合を行い、ビニル共重合体(B-6)を得た。
 このビニル共重合体(B-6)の質量平均分子量Mwは123,000であり、単量体転化率は97%であり、製造例5と同様にして求めたメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は29.2質量%であった。
<製造例11:ビニル共重合体(B-7)の製造>
 ビニル単量体混合物として、スチレン70.0質量%とアクリロニトリル30.0質量%のビニル単量体混合物を用い、t-ドデシルメルカプタンの量を0.3質量部とした以外は製造例5と同条件で懸濁重合を行い、ビニル共重合体(B-7)を得た。
 このビニル共重合体(B-7)の質量平均分子量Mwは155,000であり、単量体転化率は98%であり、製造例5と同様にして求めたメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は29.3質量%であった。
<製造例12:ビニル共重合体(B-8)の製造>
 ビニル単量体混合物として、スチレン69.0質量%とアクリロニトリル31.0質量%のビニル単量体混合物を用い、t-ドデシルメルカプタンの量を0.4質量部とした以外は製造例5と同条件で懸濁重合を行い、ビニル共重合体(B-8)を得た。
 このビニル共重合体(B-8)の質量平均分子量Mwは113,000であり、単量体転化率は98%であり、製造例5と同様にして求めたメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量は30.0質量%であった。
<リン系難燃剤(C)>
 リン系難燃剤(C)として大八化学社製の下記製品を用いた。
 (c-1)PX-200(レゾルシノールビスジキシレニルホスフェート)
 (c-2)CR-741(ビスフェノールAビスジフェニルホスフェート)
[実施例1~10、比較例1~4]
 上記各製造例で得られた各重合体とリン系難燃剤とを表1,2に示す割合で配合し、ヘンシェルミキサーで混合した後、押出機で混練してペレット化した。
 得られた樹脂組成物のペレットを用いて、前述の各評価(1)~(5)を行い、結果を表1,2に示した。
 また、以下の方法で、各共重合体混合物のアセトン不溶分のシアン化ビニル単位の含有量CBとアセトン可溶分のシアン化ビニル単位の含有量CBを求め、この結果を、用いたビニル共重合体(B)の質量平均分子量Mwと、グラフト共重合体(A)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CB、およびビニル共重合体(B)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBと、|CB-CB|および|CB-CB|と共に、表1,2に示した。なお、表1,2には、各共重合体混合物のゴム含有量を併記した。
<CB,CB
 得られた樹脂組成物のペレット1gをアセトン80ml中に投入して23℃で12時間放置した後、15分間超音波洗浄器にかけ、その後、遠心分離機を用いて12,000rpmで90分間遠心分離を行ってアセトン可溶分(上澄み液)を得た。このアセトン可溶分を濃縮し、メタノールで再沈殿させ、濾過により沈殿物を採取した。この沈殿物を60℃の真空乾燥機に入れて12時間以上乾燥した後、元素分析にかけ、窒素原子換算によりアセトン可溶分のシアン化ビニル単位の含有量CBとした。
 なお、元素分析には、Yanaco製MT-6を使用した。
 一方、遠心分離機により、上澄み液を取り除いた後の固形分をアセトン不溶分として採取し、このアセトン不溶分をクロロホルム中に分散させ、オゾン分解した後、アセトン可溶分と同様の手法でアセトン不溶分のシアン化ビニル単位の含有量CBを求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<考察>
 実施例1~10のように、本発明の難燃性熱可塑性樹脂組成物によれば、ハロゲン系難燃剤を使用することなくリン系難燃剤を配合することにより、米国UL規格94V-2に適合する難燃性を有し、さらに、初期滴下時間が短く、炎の延焼をすばやく抑制することができる、より安全性が高い燃焼挙動を有し、しかも、耐衝撃性、耐熱性、成形加工性の各種物性のバランスが優れた難燃性熱可塑性樹脂組成物が提供される。
 一方、比較例1~2は、共重合体混合物のシアン化ビニル単位の含有量の差の絶対値|CB-CB|が本発明の範囲を超えており、難燃性が不十分であるだけでなく、初期滴下時間も長く、安全性も低い。比較例3はビニル共重合体(B)の質量平均分子量Mwが本発明の範囲を超えており、難燃性が不十分であるだけでなく、ドリップ性が悪く、初期滴下時間が長くなり、安全性も低い。比較例4は、共重合体混合物のアセトン不溶分のシアン化ビニル化合物の含有量CBが本発明の範囲未満であり、耐衝撃性および耐熱性に劣る。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2009年11月27日付で出願された日本特許出願(特願2009-270270)に基づいており、その全体が引用により援用される。

Claims (7)

  1.  ゴム質重合体に、シアン化ビニル化合物と、シアン化ビニル化合物と共重合可能なビニル化合物とをグラフト重合してなるグラフト共重合体(A)と、シアン化ビニル化合物と、シアン化ビニル化合物と共重合可能なビニル化合物とを共重合してなる、質量平均分子量が90,000~160,000であるビニル共重合体(B)とからなる共重合体混合物に、該共重合体混合物100質量部に対して5~20質量部のリン系難燃剤(C)を配合してなる熱可塑性樹脂組成物であって、
     該共重合体混合物のアセトン不溶分のシアン化ビニル単位の含有量CBが22.0~32.0質量%であり、アセトン可溶分のシアン化ビニル単位の含有量CBが22.0~34.0質量%であり、これらの差の絶対値|CB-CB|が0~3.0質量%であることを特徴とする難燃性熱可塑性樹脂組成物。
  2.  前記グラフト共重合体(A)が、ゴム質重合体20~75質量部に、シアン化ビニル化合物23~35質量%と、シアン化ビニル化合物と共重合可能なビニル化合物65~77質量%とを含むビニル単量体混合物25~80質量部をグラフト重合してなり、かつ、
     前記ビニル共重合体(B)が、シアン化ビニル化合物23~35質量%と、シアン化ビニル化合物と共重合可能なビニル化合物65~77質量%とを含むビニル単量体混合物を共重合してなることを特徴とする請求項1に記載の難燃性熱可塑性樹脂組成物。
  3.  グラフト共重合体(A)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBが22.0~34.0質量%であり、ビニル共重合体(B)のメタノール洗浄後のアセトン可溶分のシアン化ビニル単位の含有量CBが22.0~32.0質量%であり、これらの差の絶対値|CB-CB|が0~1.5質量%であることを特徴とする請求項1に記載の難燃性熱可塑性樹脂組成物。
  4.  グラフト共重合体(A)および/またはビニル共重合体(B)におけるシアン化ビニル化合物と共重合可能なビニル化合物が、芳香族ビニル化合物58~100質量%と、芳香族ビニル化合物以外の窒素元素を含有しないビニル化合物0~42質量%とを含むことを特徴とする請求項1に記載の難燃性熱可塑性樹脂組成物。
  5.  前記共重合体混合物100質量部において、グラフト共重合体(A)10~70質量部とビニル共重合体(B)30~90質量部が含まれていることを特徴とする請求項1に記載の難燃性熱可塑性樹脂組成物。
  6.  前記共重合体混合物中のゴム含有量が5~20質量%であることを特徴とする請求項1に記載の難燃性熱可塑性樹脂組成物。
  7.  請求項1ないし6のいずれか1項に記載の難燃性熱可塑性樹脂組成物を成形してなる成形品。
PCT/JP2010/070551 2009-11-27 2010-11-18 難燃性熱可塑性樹脂組成物およびその成形品 WO2011065275A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080052848.9A CN102666719B (zh) 2009-11-27 2010-11-18 阻燃性热塑性树脂组合物及其成型品
EP10833121.6A EP2505608B1 (en) 2009-11-27 2010-11-18 Flame-retardant thermoplastic resin composition and molded articles thereof
US13/510,820 US8609754B2 (en) 2009-11-27 2010-11-18 Flame-retardant thermoplastic resin composition and molded article thereof
HK13100882.6A HK1173740A1 (en) 2009-11-27 2013-01-21 Flame-retardant thermoplastic resin composition and molded articles thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-270270 2009-11-27
JP2009270270A JP5640359B2 (ja) 2009-11-27 2009-11-27 難燃性熱可塑性樹脂組成物およびその成形品

Publications (1)

Publication Number Publication Date
WO2011065275A1 true WO2011065275A1 (ja) 2011-06-03

Family

ID=44066379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070551 WO2011065275A1 (ja) 2009-11-27 2010-11-18 難燃性熱可塑性樹脂組成物およびその成形品

Country Status (6)

Country Link
US (1) US8609754B2 (ja)
EP (1) EP2505608B1 (ja)
JP (1) JP5640359B2 (ja)
CN (1) CN102666719B (ja)
HK (1) HK1173740A1 (ja)
WO (1) WO2011065275A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149038A (ja) * 2016-02-25 2017-08-31 マーベリックパートナーズ株式会社 押出積層による3次元造形物作成用樹脂フィラメント及びその造形品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910201B2 (ja) * 2012-03-15 2016-04-27 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物およびその成形品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571547A (en) 1980-06-04 1982-01-06 Hitachi Ltd Rotary ring-one side belt type continuous casting device
JPH10120853A (ja) 1996-10-24 1998-05-12 Ube Cycon Ltd 難燃性熱可塑性樹脂組成物
JPH10130454A (ja) 1996-10-28 1998-05-19 Techno Polymer Kk 難燃性熱可塑性樹脂組成物
JPH11181228A (ja) * 1997-12-22 1999-07-06 Sumika Abs Latex Kk 難燃性熱可塑性樹脂組成物
JP2001151974A (ja) * 1999-11-29 2001-06-05 Denki Kagaku Kogyo Kk 難燃性樹脂組成物
JP2001316543A (ja) * 2000-05-11 2001-11-16 Toray Ind Inc 難燃性樹脂組成物およびそれからなる成形品
JP2002146148A (ja) * 2000-11-07 2002-05-22 Techno Polymer Co Ltd 難燃性熱可塑性樹脂組成物
JP2002146147A (ja) * 2000-11-07 2002-05-22 Techno Polymer Co Ltd 難燃性熱可塑性樹脂組成物
JP2002146146A (ja) * 2000-11-07 2002-05-22 Techno Polymer Co Ltd 難燃性熱可塑性樹脂組成物
JP2009270270A (ja) 2008-04-30 2009-11-19 Caterpillar Japan Ltd スイッチ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571547A (en) 1980-06-04 1982-01-06 Hitachi Ltd Rotary ring-one side belt type continuous casting device
JPH10120853A (ja) 1996-10-24 1998-05-12 Ube Cycon Ltd 難燃性熱可塑性樹脂組成物
JPH10130454A (ja) 1996-10-28 1998-05-19 Techno Polymer Kk 難燃性熱可塑性樹脂組成物
JPH11181228A (ja) * 1997-12-22 1999-07-06 Sumika Abs Latex Kk 難燃性熱可塑性樹脂組成物
JP2001151974A (ja) * 1999-11-29 2001-06-05 Denki Kagaku Kogyo Kk 難燃性樹脂組成物
JP2001316543A (ja) * 2000-05-11 2001-11-16 Toray Ind Inc 難燃性樹脂組成物およびそれからなる成形品
JP2002146148A (ja) * 2000-11-07 2002-05-22 Techno Polymer Co Ltd 難燃性熱可塑性樹脂組成物
JP2002146147A (ja) * 2000-11-07 2002-05-22 Techno Polymer Co Ltd 難燃性熱可塑性樹脂組成物
JP2002146146A (ja) * 2000-11-07 2002-05-22 Techno Polymer Co Ltd 難燃性熱可塑性樹脂組成物
JP2009270270A (ja) 2008-04-30 2009-11-19 Caterpillar Japan Ltd スイッチ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2505608A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149038A (ja) * 2016-02-25 2017-08-31 マーベリックパートナーズ株式会社 押出積層による3次元造形物作成用樹脂フィラメント及びその造形品

Also Published As

Publication number Publication date
JP5640359B2 (ja) 2014-12-17
US8609754B2 (en) 2013-12-17
EP2505608A1 (en) 2012-10-03
EP2505608A4 (en) 2014-01-22
US20120245261A1 (en) 2012-09-27
CN102666719B (zh) 2014-03-12
CN102666719A (zh) 2012-09-12
EP2505608B1 (en) 2015-01-21
JP2011111555A (ja) 2011-06-09
HK1173740A1 (en) 2013-05-24

Similar Documents

Publication Publication Date Title
KR101150816B1 (ko) 난연 및 충격 개선제, 그 제조방법 및 이를 포함하는 열가소성 수지 조성물
JP6623494B2 (ja) 熱可塑性樹脂組成物及びその製造方法並びに成形品
JP4961138B2 (ja) 難燃性熱可塑性樹脂組成物
JP5640359B2 (ja) 難燃性熱可塑性樹脂組成物およびその成形品
KR100552999B1 (ko) 난연성 열가소성 수지 조성물
JP6092978B2 (ja) 熱可塑性樹脂組成物及びそれから製造された成形品
JP6678689B2 (ja) 熱可塑性樹脂組成物及びその製造方法 並びに成形品
EP1756217B1 (en) Flameproof thermoplastic resin composition
JP2012167228A (ja) 難燃性熱可塑性樹脂組成物およびその成形品
KR100519118B1 (ko) 난연성 열가소성 수지 조성물
KR100505280B1 (ko) 난연성 열가소성 수지 조성물
KR102066800B1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR101986913B1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
JP5530380B2 (ja) 難燃性熱可塑性樹脂組成物
JP3523355B2 (ja) 難燃性スチレン系樹脂組成物
EP1756216A1 (en) Flameproof thermoplastic resin composition
JP5910201B2 (ja) 熱可塑性樹脂組成物およびその成形品
KR20190134116A (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
JPH11279394A (ja) 難燃性熱可塑性樹脂組成物
JPH111622A (ja) 難燃性樹脂組成物
JPH11349759A (ja) 難燃性熱可塑性樹脂組成物
KR20110078521A (ko) 난연성이 우수한 폴리카보네이트 수지 조성물
JP2001234012A (ja) 難燃性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052848.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13510820

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010833121

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE