WO2011062149A1 - 回路接続材料、それを用いた接続構造体及び仮圧着方法 - Google Patents

回路接続材料、それを用いた接続構造体及び仮圧着方法 Download PDF

Info

Publication number
WO2011062149A1
WO2011062149A1 PCT/JP2010/070335 JP2010070335W WO2011062149A1 WO 2011062149 A1 WO2011062149 A1 WO 2011062149A1 JP 2010070335 W JP2010070335 W JP 2010070335W WO 2011062149 A1 WO2011062149 A1 WO 2011062149A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
substrate
parts
connection material
mass
Prior art date
Application number
PCT/JP2010/070335
Other languages
English (en)
French (fr)
Inventor
孝 中澤
小林 宏治
隆伸 小林
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to BR112012011798-0A priority Critical patent/BR112012011798B1/pt
Priority to KR1020127013955A priority patent/KR101374927B1/ko
Priority to JP2010548314A priority patent/JP5944102B2/ja
Priority to CN2010800517785A priority patent/CN102686690A/zh
Publication of WO2011062149A1 publication Critical patent/WO2011062149A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a circuit connection material, a connection structure using the same, and a temporary crimping method.
  • thermosetting resin such as an epoxy resin having excellent adhesiveness and high reliability is used (for example, see Patent Document 1).
  • a curing agent such as an epoxy resin, a phenol resin having reactivity with the epoxy resin, and a thermal latent catalyst for promoting the reaction between the epoxy resin and the curing agent are generally used.
  • the heat latent catalyst is an important factor for determining the curing temperature and curing rate of the adhesive, and various compounds are used from the viewpoint of storage stability at room temperature and curing rate during heating.
  • a radical curable adhesive composed of a radical polymerizable compound such as an acrylate derivative or a methacrylate derivative and a peroxide which is a radical polymerization initiator has attracted attention (for example, see Patent Document 2).
  • the radical curable adhesive can be cured at a low temperature in a short time, the adhesiveness tends to depend on the surface state of the connecting member.
  • a cationic polymerization type adhesive using an epoxy resin has been developed and put into practical use (for example, see Patent Document 3).
  • adhesives using conventional epoxy resins tend to be inferior in temporary crimping properties when temporarily bonded to connecting members as compared to radical curing adhesives, and in particular, improve temporary crimping properties at low temperatures and in a short time. Is desired.
  • an object of the present invention is to provide a circuit connection material that is sufficiently excellent in temporary bonding performance to a connection member at a low temperature in a short time, a connection structure using the circuit connection material, and a temporary bonding method.
  • the present invention is a circuit connection material for electrically connecting opposing circuit electrodes, and includes (a) an epoxy resin, (b) a latent curing agent, (c) a film forming material, and (d) a carvone.
  • a circuit connecting material containing a thermoplastic polymer containing an acid vinyl ester as a monomer unit.
  • the circuit connecting material according to the present invention has the above-described configuration, and thus is sufficiently excellent in the temporary press bonding property to the connecting member at a low temperature and in a short time.
  • temporary press bonding refers to a step of transferring an adhesive layer made of a circuit connecting material formed on a support film to a circuit member that is an adherend.
  • the support film is peeled off and the adhesive layer is transferred onto the circuit member.
  • curing may proceed due to heat at the time of temporary pressure bonding, and thus the heating temperature is limited.
  • the circuit connection material is required to have both adhesion to the adherend and releasability from the support film. Therefore, the circuit connection material of the present invention contains the latent curing agent as the component (b) together with the epoxy resin as the component (a), so that the curing of the epoxy resin does not proceed at the time of temporary pressing, and the subsequent main connection Good connectivity can be exhibited.
  • the resin component since it is necessary to melt the resin component to some extent by heating and temporarily bond it to the circuit member, it is temporarily crimped by containing a thermoplastic polymer containing carboxylic acid vinyl ester as a monomer unit as component (d). The component (d) can be melted and temporarily bonded to the circuit member at the heating temperature.
  • the carboxylic acid vinyl ester is preferably vinyl acetate.
  • the circuit connection material can further improve the temporary press-bonding property to the connection member at a low temperature in a short time.
  • the latent curing agent is preferably a cationic polymerization type latent curing agent because the process at the time of this connection can be reduced in temperature and time, and the cationic polymerization type latent curing agent is preferable. Is more preferably an aromatic sulfonium salt.
  • the circuit connection material of the present invention preferably further contains organic fine particles.
  • the present invention also provides a first circuit member having a first substrate and a first circuit electrode formed on the main surface of the substrate, a second substrate and a first circuit member formed on the main surface of the substrate. Two circuit electrodes, the second circuit electrode and the first circuit electrode are arranged to face each other, and the second circuit electrode is electrically connected to the first circuit electrode.
  • a connection structure including a second circuit member and a connection portion interposed between the first circuit member and the second circuit member, wherein the connection portion is a cured product of the circuit connection material of the present invention. To do.
  • connection structure is a connection structure having a stable quality because the connection portion is formed using a circuit connection material that is excellent in low-temperature and short-time temporary bonding properties.
  • the present invention further forms a film adhesive on a substrate and the main surface of the substrate, comprising a support film and an adhesive layer provided on one surface of the support film and made of the circuit connection material of the present invention.
  • Provisional crimping method comprising a step of temporarily adhering to a circuit member having a circuit electrode formed at 80 ° C. or less, and a step of peeling a support film and transferring an adhesive layer to a main surface of a substrate after temporary adhesion To do.
  • the adhesive layer can be transferred to the circuit member at a low temperature and in a short time, a connection structure having a stable adhesive force can be produced with high work efficiency.
  • connection material that is sufficiently excellent in low-temperature and short-time temporary bonding properties to a connection member, a connection structure using the same, and a temporary bonding method.
  • FIG. 1 is a cross-sectional view showing an embodiment of a circuit connecting material.
  • a circuit connecting material 1 shown in FIG. 1 is composed of a resin layer 3 and a plurality of conductive particles 5 dispersed in the resin layer 3 and has a film shape.
  • the resin layer 3 contains (a) an epoxy resin, (b) a latent curing agent, (c) a film forming material, and (d) a thermoplastic polymer containing a carboxylic acid vinyl ester as a monomer unit.
  • the circuit connecting material 1 includes (a) an epoxy resin, (b) a latent curing agent, (c) a film-forming material, and (d) a thermoplastic polymer containing a carboxylic acid vinyl ester as a monomer unit, And conductive particles 5.
  • a crosslinked structure is formed in the resin layer 3 by crosslinking of the epoxy resin, and a cured product of the circuit connection material 1 is formed.
  • Epoxy resin is typically a bisphenol type epoxy resin that is a glycidyl ether of bisphenol such as bisphenol A, F, or AD, and an epoxy novolac resin derived from phenol novolac or cresol novolac. It is.
  • Other examples include naphthalene type epoxy resins having a naphthalene skeleton, glycidylamine type epoxy resins, glycidyl ester type epoxy resins, alicyclic epoxy resins and heterocyclic epoxy resins. These are used individually or in mixture of 2 or more types.
  • bisphenol type epoxy resins are preferred because they are widely available in grades with different molecular weights, and adhesiveness and reactivity can be arbitrarily set.
  • bisphenol type epoxy resins bisphenol F type epoxy resins are particularly preferable.
  • the viscosity of the bisphenol F type epoxy resin is low, and the fluidity of the circuit connecting material can be easily set in a wide range by using it in combination with the phenoxy resin.
  • the bisphenol F type epoxy resin has an advantage that it is easy to impart good adhesiveness to the circuit connecting material.
  • an epoxy resin having an impurity ion (Na + , Cl ⁇ etc.) concentration or hydrolyzable chlorine of 300 ppm or less to prevent electron migration.
  • Latent curing agent (b) Any latent curing agent may be used as long as it can cure the epoxy resin.
  • the latent curing agent may be a compound that reacts with the epoxy resin and is incorporated into the crosslinked structure, or may be a catalytic curing agent that accelerates the curing reaction of the epoxy resin. Both can be used in combination.
  • catalytic curing agent examples include an anionic polymerization latent curing agent that promotes anionic polymerization of an epoxy resin and a cationic polymerization latent curing agent that promotes cationic polymerization of an epoxy resin.
  • anionic polymerization type latent curing agent examples include imidazole series, hydrazide series, trifluoroboron-amine complex, amine imide, polyamine salt, dicyandiamide, and modified products thereof.
  • the imidazole-based anionic polymerization latent curing agent is formed, for example, by adding imidazole or a derivative thereof to an epoxy resin.
  • a photosensitive onium salt an aromatic diazonium salt, an aromatic sulfonium salt or the like is mainly used
  • an aromatic diazonium salt an aromatic sulfonium salt or the like is mainly used
  • an aromatic sulfonium salt that is activated by heating to cure the epoxy resin.
  • This type of curing agent is preferable because it has a feature of fast curing.
  • the compounding amount of the anionic polymerization type latent curing agent is preferably 30 to 60 parts by mass, more preferably 40 to 55 parts by mass with respect to 100 parts by mass of (a) epoxy resin. If it is less than 30 parts by mass, the clamping force on the adherend due to the curing shrinkage of the circuit connecting material is reduced. As a result, the contact between the conductive particles 5 and the circuit electrode is not maintained, and the connection resistance after the reliability test tends to increase. If it exceeds 60 parts by mass, the tightening force becomes too strong, so that the internal stress in the cured product of the circuit connecting material tends to increase, and the adhesive strength tends to decrease.
  • the blending amount of the cationic polymerization type latent curing agent is preferably 3 to 15 parts by mass and more preferably 5 to 10 parts by mass with respect to 100 parts by mass of (a) epoxy resin. If it is less than 3 parts by mass, the clamping force on the adherend due to the curing shrinkage of the circuit connecting material is reduced. As a result, the contact between the conductive particles 5 and the circuit electrode is not maintained, and the connection resistance after the reliability test tends to increase. If it exceeds 15 parts by mass, the tightening force becomes too strong, so that the internal stress in the cured product of the circuit connecting material tends to increase, and the adhesive strength tends to decrease.
  • Film-forming material means that when a liquid is solidified and the constituent composition is made into a film shape, the film is easy to handle and mechanical properties that do not easily tear, break, or stick. Etc., and can be handled as a film in a normal state (normal temperature and normal pressure).
  • Examples of the film forming material include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, and polyurethane resin.
  • a phenoxy resin is preferable because of excellent adhesiveness, compatibility, heat resistance, and mechanical strength.
  • the phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin until they are polymerized, or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol.
  • the phenoxy resin contains 1 mol of a bifunctional phenol and 0.985 to 1.015 mol of epihalohydrin in the presence of a catalyst such as an alkali metal hydroxide at a temperature of 40 to 120 ° C. in a non-reactive solvent. It can be obtained by reacting.
  • a catalyst such as an alkali metal compound, an organophosphorus compound, or a cyclic amine compound, an amide, ether, ketone, lactone, alcohol, or the like having a boiling point of 120 ° C. or higher.
  • a product obtained by polyaddition reaction by heating to 50 to 200 ° C. in an organic solvent under a reaction solid content of 50% by mass or less is preferable.
  • Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin can be used as the bifunctional epoxy resin.
  • Bifunctional phenols have two phenolic hydroxyl groups, and examples thereof include bisphenol compounds such as hydroquinones, bisphenol A, bisphenol F, bisphenol AD, and bisphenol S.
  • the phenoxy resin may be modified with a radical polymerizable functional group.
  • a phenoxy resin can be used individually by 1 type or in mixture of 2 or more types.
  • the weight average molecular weight of the component (c) is preferably 10,000 or more from the viewpoint of film forming properties. However, when the weight average molecular weight of the thermoplastic resin is 1000000 or more, mixing with other components tends to be difficult.
  • regulated by this application means the value determined based on the calibration curve by a standard polystyrene by the gel permeation chromatography method (GPC) of the following conditions.
  • the compounding amount of the component (c) is preferably 50 to 140 parts by mass, more preferably 70 to 120 parts by mass with respect to a total of 100 parts by mass of the components (a) and (b).
  • thermoplastic polymer as the component (d) is not particularly limited as long as it contains carboxylic acid vinyl ester as a monomer unit.
  • the circuit connecting material of the present invention exhibits tackiness by melting (or softening) the component (d) at a predetermined heating temperature in the temporary press-bonding step, and can be easily temporarily bonded to the adherend.
  • organic fine particles to be described later are added to the circuit connecting material for the purpose of improving adhesion, the tackiness may be slightly lowered and the temporary press bonding property may be lowered.
  • the component (d) can function effectively in order to achieve both the tackiness and adhesiveness of the circuit connecting material.
  • Examples of the vinyl carboxylate include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl myristate, vinyl valmitate, vinyl stearate, vinyl cyclohexylcarboxylate, and pivalic acid.
  • Examples include vinyl, vinyl octylate and vinyl benzoate.
  • vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate and vinyl laurate are preferable, and vinyl acetate is more preferable.
  • thermoplastic polymer further effectively and reliably provides the effect of the present invention in that it has excellent temporary press-bonding properties by including, as a monomer unit, an olefin that is a nonpolar monomer unit together with a carboxylic acid vinyl ester that is a polar monomer unit. Can be expressed.
  • olefins include ethylene and propylene.
  • the thermoplastic polymer may contain a monomer copolymerizable with a carboxylic acid vinyl ester as long as it does not deviate from the effect of the present invention excellent in temporary press bonding at low temperatures.
  • monomers include carboxylic acid allyl esters and (meth) acrylic acid alkyl esters, and specific examples include allyl acetate, methyl (meth) acrylate, and ethyl (meth) acrylate. .
  • the proportion of the carboxylic acid vinyl ester is preferably 20% by mass or more and less than 60% by mass, and preferably 25% by mass or more and less than 55% by mass, based on 100% by mass of all monomers constituting the component (d). More preferably, it is more preferably 30% by mass or more and less than 50% by mass.
  • the amount is 60% by mass or more, the resin exhibits adhesiveness at room temperature, and when forming a wound body of the circuit connection material, the resin is transferred to the back surface of the support film, and the workability tends to be inferior. If it is less than 20% by mass, the melting point of the resin itself increases, and the resin does not melt sufficiently in the temporary press-bonding step, and the effect of improving the adhesive strength tends to be difficult to obtain.
  • the thermoplastic polymer contains an olefin-carboxylic acid vinyl ester copolymer as the thermoplastic polymer because it has excellent adhesion to the adherend during temporary pressure bonding and excellent support film releasability. From the viewpoint of compatibility with other resin components constituting the material, it is more preferable to include an ethylene-vinyl acetate ester copolymer.
  • the component (d) has a weight average molecular weight (hereinafter referred to as “Mw”) of preferably 40000 to 150,000, more preferably 60000 to 130,000, and still more preferably 70000 to 120,000. If it exceeds 150,000, the solubility in general-purpose solvents such as toluene, ethyl acetate, or methyl ethyl ketone tends to decrease, and if it is less than 40000, the cohesive force of the resin layer 3 tends to decrease and the adhesive strength tends to decrease.
  • Mw weight average molecular weight
  • the component (d) preferably has a melting point of 30 ° C. or higher and lower than 80 ° C., more preferably 30 to 70 ° C. If the melting point is less than 30 ° C., it is easy to induce resin seepage during temporary pressure bonding, and workability tends to be reduced. On the other hand, when the melting point is 80 ° C. or higher, it is difficult to achieve the effect of the present invention that is excellent in temporary press bonding at low temperatures.
  • the amount of component (d) is preferably 0.5 to 5 parts by mass, more preferably 1 to 3 parts by mass with respect to 100 parts by mass in total of components (a) and (c). . If the blending amount of the component (d) is less than 0.5 parts by mass, it tends to be difficult to achieve the effect of the present invention, which is excellent at the time of temporary pressure bonding at a low temperature. There is a tendency.
  • Organic fine particles may be blended in the circuit connecting material according to the present invention as necessary.
  • the organic fine particles have a function as an impact relaxation agent having stress relaxation properties.
  • the organic fine particles By including the organic fine particles as the component (E) in the circuit connection material, it is possible to further improve the adhesion with various connection members in the main connection after the temporary pressure bonding.
  • the adhesive strength to the adherend tends to be slightly inferior to the case where an anion polymerization type latent curing agent is used, (E) Adhesiveness can be improved by adding a component.
  • organic fine particles examples include an acrylic resin, silicone resin, butadiene rubber, polyester, polyurethane, polyvinyl butyral, polyarylate, polymethyl methacrylate, acrylic rubber, polystyrene, NBR, SBR, a silicone-modified resin as a component. Is mentioned.
  • organic fine particles include (meth) acrylic acid alkyl-butadiene-styrene copolymer, (meth) acrylic acid alkyl-silicone copolymer, silicone- (meth) acrylic copolymer, silicone and ( It is preferable to use a complex of (meth) acrylic acid, a complex of alkyl (meth) acrylate-butadiene-styrene and silicone, and a complex of alkyl (meth) acrylate and silicone.
  • organic fine particles having a core-shell structure and having different compositions in the core layer and the shell layer can also be used.
  • Specific examples of the core-shell type organic fine particles include particles obtained by grafting an acrylic resin with a silicone-acrylic rubber core, and particles obtained by grafting an acrylic resin on an acrylic copolymer.
  • the blending amount is preferably 20 to 50 parts by mass, and more preferably 30 to 40 parts by mass with respect to 100 parts by mass of the component (a).
  • the circuit connecting material 1 (resin layer 3) is composed of a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, and isocyanates. Can also be contained.
  • a filler it is preferable because connection reliability and the like can be improved. If the maximum diameter of the filler is less than the particle diameter of the conductive particles 5, it can be used, and the blending amount is preferably in the range of 5 to 60% by volume. If it exceeds 60% by volume, the effect of improving reliability is saturated.
  • the coupling agent a compound having a vinyl group, an acrylic group, an amino group, an epoxy group or an isocyanate group is preferable from the viewpoint of improving the adhesiveness.
  • the conductive particles 5 include metal particles including metals such as Au, Ag, Ni, Cu, and solder, and carbon particles.
  • the conductive particles 5 preferably have a surface layer made of Au, Ag, platinum group noble metals, more preferably Au. When the surface layer of the conductive particles 5 is made of these metals, a sufficient pot life can be obtained.
  • the conductive particles 5 may be those in which the surface of a transition metal such as Ni is coated with a noble metal such as Au.
  • the conductive layer described above may be formed by coating or the like on non-conductive glass, ceramic, plastic, or the like, and the outermost layer may be a noble metal.
  • coated particles in which the outermost layer is a precious metal and the core is plastic or a hot-melt metal it is preferable because it has deformability by heating and pressurization, which increases the contact area with the electrode during connection and improves the reliability.
  • the blending amount of the conductive particles is appropriately set depending on the application, but is usually in the range of 0.1 to 30 parts by volume with respect to 100 parts by volume of the component excluding the conductive particles in the circuit connecting material. In order to prevent an adjacent circuit from being short-circuited by excessive conductive particles, the amount is more preferably 0.1 to 10 parts by volume.
  • the circuit connection material according to the present invention is not limited to the configuration shown in FIG.
  • the circuit connection material may have a laminated structure composed of two or more layers having different compositions.
  • the latent curing agent and the conductive particles may be included in separate layers. Thereby, the storage stability (pot life) of the circuit connecting material is improved.
  • the circuit connecting material may not contain conductive particles.
  • circuit connection material for example, chip components such as a semiconductor chip, a resistor chip, a capacitor chip, and circuit members having one or more circuit electrodes (connection terminals) such as a printed circuit board are connected. It is preferably used to form a connected structure.
  • FIG. 2 is a cross-sectional view showing an embodiment of a connection structure.
  • the connection structure 100 shown in FIG. 2 includes a first circuit member 10 having a first substrate 11 and a first circuit electrode 13 formed on the main surface of the first substrate 11, a second substrate 21, and a main body thereof.
  • a second circuit member 20 having a second circuit electrode 23 formed on the surface and disposed so that the second circuit electrode 23 and the first circuit electrode 13 face each other; And a connecting portion 1a interposed between the member 10 and the second circuit member 20.
  • the first circuit electrode 13 and the second circuit electrode 23 facing each other are electrically connected.
  • connection part 1a is a cured product formed by curing the circuit connection material 1, and is composed of a cured resin layer 3a and conductive particles 5.
  • the connection portion 1a bonds the first circuit member 10 and the second circuit member 20 so that the first circuit electrode 13 and the second circuit electrode 23 facing each other are electrically connected. .
  • the opposing first circuit electrode 13 and second circuit electrode 23 are electrically connected via the conductive particles 5.
  • the connection part does not contain conductive particles, the first circuit electrode 13 and the second circuit electrode 23 are directly bonded to each other so that electrical connection is possible.
  • the first substrate 11 is a resin film containing at least one resin selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin and polyimide resin.
  • the first circuit electrode 13 is formed of a material having conductivity that can function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). Has been.
  • the second substrate 21 is a glass substrate.
  • the second circuit electrode is preferably formed from a transparent conductive material. Typically, ITO is used as the transparent conductive material.
  • the circuit member connection structure 100 includes, for example, the first circuit member 10, the above-described film-like circuit connection material 1, and the second circuit member 20, and the first circuit electrode 13 and the second circuit.
  • the first circuit member is configured so that the first circuit electrode 13 and the second circuit electrode 23 are electrically connected by heating and pressurizing the laminate laminated in this order so as to face the electrode 23. 10 and the second circuit member 20 are obtained.
  • the circuit-connecting material 1 formed on the support film is temporarily bonded to the second circuit member 20 by heating and pressurizing the circuit-connecting material 1 while being bonded together, After peeling off the support film, the first circuit member 10 can be placed while aligning the circuit electrodes to prepare a laminate.
  • produces by the heating in the case of a connection, it is preferable to heat-process a circuit member previously before a connection process.
  • FIG. 3 is a process diagram showing a schematic cross-sectional view of one embodiment of a temporary press-bonding method using a circuit connecting material.
  • a film-like adhesive 2 provided with a support film 7 and an adhesive layer 1b formed on one surface of the support film 7 and made of a film-like circuit connection material 1 is prepared (FIG. 3 (a)).
  • the adhesive layer 1b is placed with the side of the second circuit member 20 facing the surface on which the circuit electrode 23 is formed, and the adhesive layer 1b is heated and pressed in the bonded state to apply the second adhesive layer 1b.
  • the temperature for temporary bonding is 80 ° C. or lower, preferably 70 ° C. or lower, and more preferably 60 ° C. or lower.
  • the lower limit of the temporary bonding temperature is not particularly limited, but is about 50 ° C. from the viewpoint of productivity.
  • the temporary bonding time is appropriately adjusted depending on the bonding temperature, but it is preferably 0.1 to 5 seconds, more preferably 0.5 to 3 seconds.
  • the support film 7 is peeled off, and the adhesive layer 1b is transferred onto the main surface of the second substrate 21 (FIG. 3C).
  • the first circuit member 10 is directed to the first circuit electrode 13 toward the second circuit member 20.
  • the connection structure 100 is obtained by heating and pressurizing the laminate formed on the adhesive layer 1b.
  • the conditions for heating and pressurizing the laminate are appropriately adjusted according to the curability of the adhesive composition in the circuit connecting material so that the circuit connecting material is cured and sufficient adhesive strength is obtained.
  • the adhesive layer 1b By heating the adhesive layer 1b, the adhesive layer 1b is cured in a state where the distance between the first circuit electrode 13 and the second circuit electrode 23 is sufficiently small, and the first circuit member 10 and the first circuit electrode 10 The second circuit member 20 is firmly connected via the connecting portion 1a.
  • connection portion 1a is formed by curing the adhesive layer 1b, and a connection structure 100 as shown in FIG. 2 is obtained.
  • the connection conditions are appropriately selected depending on the intended use, circuit connection material, and circuit member.
  • the substrate included in the circuit member constituting the connection structure may be a semiconductor chip such as silicone and gallium / arsenic, and an insulating substrate such as glass, ceramics, glass / epoxy composite, and plastic.
  • Each component which comprises the circuit connection material in a present Example is as follows.
  • "EP-4010S” propylene oxide modified epoxy resin (epoxy equivalent 330-390, manufactured by ADEKA)
  • YL983U” Bisphenol F type epoxy resin (epoxy equivalents 165 to 175, manufactured by Japan Epoxy Resin)
  • BPA328 Acrylic fine particle dispersed epoxy resin (containing 17% by mass of acrylic fine particles, epoxy equivalent 220-240, manufactured by Nippon Shokubai)
  • EP-1032H60 Cresol novolak type epoxy resin (epoxy equivalents 163 to 175)
  • "HX3941HP” Anionic polymerization type latent curing agent-containing epoxy resin (Bisphenol F type and A type epoxy resin mixed type containing 35% by mass of imidazole microcapsule type curing agent, epoxy equivalent 160-190, manufactured by Asahi Kasei Chemicals)
  • ZX1356-2 Bisphenol A / F copolymerization type phenoxy resin (Mw 50000, manufactured by To
  • Example 3 A film-like circuit connection material was obtained in the same manner as in Example 1 except that “EV150” was used instead of “EV40W”.
  • PKHC 20 parts by weight in terms of nonvolatile content
  • acrylic rubber 200 parts by
  • PKHC 15 parts by weight in terms of nonvolatile content
  • Example 2 A film-like circuit connecting material was obtained in the same manner as in Example 2 except that “EV40W” was not added.
  • composition of the circuit connection material prepared in the examples is shown in Table 1 in terms of parts by mass (in terms of non-volatile content), and the composition of the circuit connection material prepared in the comparative example is shown in Table 2 in terms of parts by mass (in terms of non-volatile content).
  • the adhesive layer surface of the film-like circuit connecting material is formed on a 0.7 mm-thick glass plate having a thin layer of indium oxide (ITO) on the entire surface under conditions of 1 MPa at 60 ° C., 70 ° C. and 80 ° C., respectively. After temporarily bonding for 3 seconds or 3 seconds, the PET film was peeled off to evaluate the temporary press bonding property.
  • Table 3 shows the evaluation results of the examples, and Table 4 shows the evaluation results of the comparative examples.
  • the film-like circuit connecting material according to the present invention is sufficiently excellent in temporary press bonding properties even at a very low temperature and a short time of 60 ° C. for 1 second.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Adhesive Tapes (AREA)
  • Conductive Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Epoxy Resins (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、対向する回路電極同士を電気的に接続する回路接続材料であって、(a)エポキシ樹脂と、(b)潜在性硬化剤と、(c)フィルム形成材と、(d)カルボン酸ビニルエステルをモノマー単位として含む熱可塑性ポリマーとを含有する回路接続材料に関する。

Description

回路接続材料、それを用いた接続構造体及び仮圧着方法
 本発明は、回路接続材料、それを用いた接続構造体及び仮圧着方法に関する。
 半導体素子や液晶表示素子用の接着剤としては、接着性に優れ、かつ高い信頼性を示すエポキシ樹脂等の熱硬化性樹脂が用いられている(例えば、特許文献1参照)。上記接着剤の構成成分としては、エポキシ樹脂、エポキシ樹脂と反応性を有するフェノール樹脂等の硬化剤、エポキシ樹脂と硬化剤との反応を促進する熱潜在性触媒が一般に用いられている。熱潜在性触媒は、接着剤の硬化温度及び硬化速度を決定する重要な因子となっており、室温での貯蔵安定性及び加熱時の硬化速度の観点から種々の化合物が用いられている。
 また、最近では、アクリレート誘導体やメタクリレート誘導体等のラジカル重合性化合物とラジカル重合開始剤である過酸化物とから構成されるラジカル硬化型接着剤が注目されている(例えば、特許文献2参照)。ラジカル硬化型接着剤は、低温かつ短時間での硬化が可能であるものの、接着性が接続部材の表面状態に左右される傾向がある。一方、比較的低温かつ短時間で接着可能な回路接続材料として、エポキシ樹脂を用いたカチオン重合系の接着剤が開発され実用化されている(例えば、特許文献3参照)。
特開平1-113480号公報 国際公開第98/044067号パンフレット 特開平7-90237号公報
 しかしながら、従来のエポキシ樹脂を用いた接着剤は、ラジカル硬化型接着剤に比べ、接続部材に仮接着する際の仮圧着性が劣る傾向があり、特に、低温かつ短時間における仮圧着性の向上が望まれている。
 そこで、本発明は、接続部材への低温かつ短時間での仮圧着性に十分に優れる回路接続材料、それを用いた接続構造体及び仮圧着方法を提供することを目的とする。
 本発明は、対向する回路電極同士を電気的に接続する回路接続材料であって、(a)エポキシ樹脂と、(b)潜在性硬化剤と、(c)フィルム形成材と、(d)カルボン酸ビニルエステルをモノマー単位として含む熱可塑性ポリマーとを含有する回路接続材料を提供する。
 本発明の回路接続材料は、上記構成を備えることにより、接続部材への低温かつ短時間での仮圧着性に十分に優れるものとなる。ここで、仮圧着とは、支持フィルム上に形成された回路接続材料からなる接着剤層を、被着体である回路部材に転写する工程をいう。上記工程では、通常、加熱及び加圧により接着剤層を構成する樹脂成分が溶融して回路部材に接着した後、支持フィルムを剥離して接着剤層を回路部材上に転写する。しかしながら、エポキシ樹脂系の回路接続材料の場合、仮圧着時の熱により硬化が進行してしまうことがあるため、加熱温度が制限される。したがって、回路接続材料には、被着体に対する接着性と支持フィルムからの剥離性との両立が求められる。そこで、本発明の回路接続材料は、(a)成分であるエポキシ樹脂と共に、(b)成分として潜在性硬化剤を含有することで仮圧着時にはエポキシ樹脂の硬化が進行せず、後の本接続において良好な接続性を示すことができる。その一方で、加熱することである程度樹脂成分を溶融させて回路部材に仮接着する必要があるため、(d)成分としてカルボン酸ビニルエステルをモノマー単位として含む熱可塑性ポリマーを含有することで仮圧着時の加熱温度で(d)成分が溶融して回路部材に仮接着することができる。
 上記カルボン酸ビニルエステルは、酢酸ビニルであることが好ましい。これにより、回路接続材料は、接続部材への低温かつ短時間での仮圧着性をより一層向上することができる。
 また、本発明の回路接続材料において、本接続時の工程を低温化・短時間化できることから、潜在性硬化剤がカチオン重合型潜在性硬化剤であることが好ましく、カチオン重合型潜在性硬化剤が芳香族スルホニウム塩であることがより好ましい。
 さらに、各種接続部材への接着性を向上する観点から、本発明の回路接続材料は、有機微粒子を更に含有することが好ましい。
 本発明はまた、第一の基板及び該基板の主面上に形成された第一の回路電極を有する第一の回路部材と、第二の基板及び該基板の主面上に形成された第二の回路電極を有し、該第二の回路電極と第一の回路電極とが対向するように配置され、該第二の回路電極が上記第一の回路電極と電気的に接続されている第二の回路部材と、第一の回路部材及び第二の回路部材の間に介在する接続部とを備え、接続部が、上記本発明の回路接続材料の硬化物である接続構造体を提供する。
 上記接続構造体は、低温かつ短時間での仮圧着性に優れる回路接続材料を用いて接続部が形成されていることにより、安定した品質を有する接続構造体となる。
 本発明はさらに、支持フィルムと、該支持フィルムの一方面上に設けられ、本発明の回路接続材料からなる接着剤層とを備えるフィルム状接着剤を、基板及び該基板の主面上に形成された回路電極を有する回路部材に、80℃以下で仮接着する工程と、仮接着後、支持フィルムを剥離して接着剤層を基板の主面に転写する工程とを備える仮圧着方法を提供する。
 上記仮圧着方法によれば、低温かつ短時間で接着剤層を回路部材へ転写することができるために、安定した接着力を有する接続構造体を作業効率よく作製することができる。
 本発明によれば、接続部材への低温かつ短時間での仮圧着性に十分に優れる回路接続材料、それを用いた接続構造体及び仮圧着方法を提供することができる。
回路接続材料の一実施形態を示す断面図である。 接続構造体の一実施形態を示す断面図である。 回路接続材料を用いた仮圧着方法の一実施形態を概略断面図により示す工程図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。また、本明細書における「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味する。
 本実施形態に係る回路接続材料は、回路電極同士を電気的に接続するために用いられる接着剤である。図1は、回路接続材料の一実施形態を示す断面図である。図1に示す回路接続材料1は、樹脂層3と、樹脂層3内に分散している複数の導電性粒子5とから構成され、フィルム状の形状を有する。樹脂層3は、(a)エポキシ樹脂と、(b)潜在性硬化剤と、(c)フィルム形成材と、(d)カルボン酸ビニルエステルをモノマー単位として含む熱可塑性ポリマーとを含有する。言い換えると、回路接続材料1は、(a)エポキシ樹脂と、(b)潜在性硬化剤と、(c)フィルム形成材と、(d)カルボン酸ビニルエステルをモノマー単位として含む熱可塑性ポリマーと、導電性粒子5とを含有する。回路接続材料1が加熱されたときにエポキシ樹脂の架橋により樹脂層3において架橋構造が形成され、回路接続材料1の硬化物が形成される。
 以下、回路接続材料1の各構成材料について説明する。
(a)エポキシ樹脂
 (a)エポキシ樹脂としては、ビスフェノールA、F、AD等のビスフェノールのグリシジルエーテルであるビスフェノール型エポキシ樹脂及びフェノールノボラック又はクレゾールノボラックから誘導されるエポキシノボラック樹脂が代表的なエポキシ樹脂である。その他の例として、ナフタレン骨格を有するナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂及び複素環式エポキシ樹脂が挙げられる。これらは単独又は2種以上混合して用いられる。
 上記エポキシ樹脂の中でも、ビスフェノール型エポキシ樹脂が分子量の異なるグレードが広く入手可能で、接着性や反応性等を任意に設定できることから好ましい。ビスフェノール型エポキシ樹脂の中でも、ビスフェノールF型エポキシ樹脂が特に好ましい。ビスフェノールF型エポキシ樹脂の粘度は低く、フェノキシ樹脂との組み合わせて用いることにより、回路接続材料の流動性を容易に広範囲に設定できる。また、ビスフェノールF型エポキシ樹脂は、回路接続材料に良好な粘着性を付与し易いという利点も有する。
 不純物イオン(Na、Cl等)濃度又は加水分解性塩素が300ppm以下であるエポキシ樹脂を用いることが、エレクトロンマイグレーション防止のために好ましい。
(b)潜在性硬化剤
 (b)潜在性硬化剤としては、エポキシ樹脂を硬化させることができるものであればよい。また、潜在性硬化剤は、エポキシ樹脂と反応して架橋構造中に取り込まれる化合物であってもよいし、エポキシ樹脂の硬化反応を促進する触媒型硬化剤であってもよい。両者を併用することも可能である。
 触媒型硬化剤としては、例えば、エポキシ樹脂のアニオン重合を促進するアニオン重合型潜在性硬化剤、及びエポキシ樹脂のカチオン重合を促進するカチオン重合型潜在性硬化剤が挙げられる。
 アニオン重合型潜在性硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ素ホウ素-アミン錯体、アミンイミド、ポリアミンの塩、ジシアンジアミド及びこれらの変性物が挙げられる。イミダゾール系のアニオン重合型潜在性硬化剤は、例えば、イミダゾール又はその誘導体をエポキシ樹脂に付加して形成される。
 カチオン重合型潜在性硬化剤としては、例えば、エネルギー線照射によりエポキシ樹脂を硬化させる感光性オニウム塩(芳香族ジアゾニウム塩、芳香族スルホニウム塩等が主として用いられる)が好ましい。また、エネルギー線照射以外に加熱によって活性化しエポキシ樹脂を硬化させるものとして、脂肪族スルホニウム塩がある。この種の硬化剤は、速硬化性という特徴を有することから好ましい。
 これらの潜在性硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質、ニッケル、銅等の金属薄膜及びケイ酸カルシウム等の無機物で被覆してマイクロカプセル化したものは、可使時間が延長できるため好ましい。
 アニオン重合型潜在性硬化剤の配合量は、(a)エポキシ樹脂100質量部に対して30~60質量部であることが好ましく、40~55質量部であることがより好ましい。30質量部未満であると回路接続材料の硬化収縮による被着体に対する締め付け力が低下する。その結果、導電性粒子5と回路電極との接触が保持されず、信頼性試験後の接続抵抗が上昇しやすくなる傾向がある。60質量部を超えると締め付け力が強くなりすぎるため、回路接続材料の硬化物における内部応力が大きくなり、接着強度の低下を招き易くなる傾向がある。
 カチオン重合型潜在性硬化剤の配合量は、(a)エポキシ樹脂100質量部に対して3~15質量部であることが好ましく、5~10質量部であることがより好ましい。3質量部未満であると回路接続材料の硬化収縮による被着体に対する締め付け力が低下する。その結果、導電性粒子5と回路電極との接触が保持されず、信頼性試験後の接続抵抗が上昇しやすくなる傾向がある。15質量部を超えると締め付け力が強くなりすぎるため、回路接続材料の硬化物における内部応力が大きくなり、接着強度の低下を招き易くなる傾向がある。
(c)フィルム形成材
 フィルム形成材とは、液状物を固形化し構成組成物をフィルム形状とした場合に、そのフィルムの取扱いを容易とし、容易に裂けたり、割れたり、べたついたりしない機械的特性等を付与するものであり、通常の状態(常温常圧)でフィルムとしての取扱いができるものである。
 (c)フィルム形成材としては、例えば、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂及びポリウレタン樹脂が挙げられる。これらの中でも、接着性、相溶性、耐熱性及び機械的強度に優れることからフェノキシ樹脂が好ましい。
 フェノキシ樹脂は、2官能性フェノール類とエピハロヒドリンとを高分子化するまで反応させるか、又は2官能性エポキシ樹脂と2官能性フェノール類とを重付加させることにより得られる樹脂である。フェノキシ樹脂は、例えば、2官能性フェノール類1モルとエピハロヒドリン0.985~1.015モルとをアルカリ金属水酸化物等の触媒の存在下、非反応性溶媒中で40~120℃の温度で反応させることにより得ることができる。
 また、フェノキシ樹脂としては、樹脂の機械的特性や熱的特性の観点からは、特に2官能性エポキシ樹脂と2官能性フェノール類との配合当量比をエポキシ基/フェノール水酸基=1/0.9~1/1.1とし、アルカリ金属化合物、有機リン系化合物、環状アミン系化合物等の触媒の存在下、沸点が120℃以上のアミド系、エーテル系、ケトン系、ラクトン系、アルコール系等の有機溶剤中で、反応固形分が50質量%以下の条件で50~200℃に加熱して重付加反応させて得たものが好ましい。
 2官能性エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂を用いることができる。2官能性フェノール類は2個のフェノール性水酸基を有するものであり、例えば、ハイドロキノン類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS等のビスフェノール化合物が挙げられる。
 フェノキシ樹脂は、ラジカル重合性の官能基により変性されていてもよい。フェノキシ樹脂は、1種を単独で又は2種以上を混合して用いることができる。
 上記(c)成分の重量平均分子量は10000以上であることが、製膜性などの観点から好ましい。ただし、熱可塑性樹脂の重量平均分子量が1000000以上になると他の成分との混合が困難になる傾向がある。なお、本願で規定する重量平均分子量とは、以下の条件のゲルパーミエイションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線に基づいて決定される値をいう。
GPC条件
使用機器:日立L-6000 型((株)日立製作所)
カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R
440(計3本)(日立化成工業(株)製商品名)
溶離液:テトラヒドロフラン
測定温度:40℃
流量:1.75mL/分
検出器:L-3300RI((株)日立製作所)
 (c)成分の配合量は、(a)及び(b)成分の合計100質量部に対して50~140質量部であることが好ましく、70~120質量部であることがより好ましい。
(d)カルボン酸ビニルエステルをモノマー単位として含む熱可塑性ポリマー
 (d)成分である熱可塑性ポリマーとしては、カルボン酸ビニルエステルをモノマー単位として含むものであれば特に限定されない。本発明の回路接続材料は、仮圧着工程における所定の加熱温度において(d)成分が溶融(又は軟化)することで粘着性を示し、被着体へ容易に仮接着することができる。また、後述する(e)有機微粒子を接着性向上の目的で回路接続材料に添加する場合、粘着性がやや低下して仮圧着性が低下することがある。特にこの場合、(d)成分は、回路接続材料の粘着性と接着性とを両立するために有効に機能することができる。
 カルボン酸ビニルエステルとしては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、バルミチン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル及び安息香酸ビニルが挙げられる。中でも、他のモノマーとの共重合性の観点から、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル及びラウリン酸ビニルが好ましく、酢酸ビニルがより好ましい。
 (d)熱可塑性ポリマーは、極性モノマー単位であるカルボン酸ビニルエステルと共に、非極性モノマー単位であるオレフィンをモノマー単位として含むことで仮圧着性に優れるという本発明の効果をより一層有効かつ確実に発現することができる。オレフィンとしては、エチレン及びプロピレンが例示される。
 また、上記熱可塑性ポリマーは、本発明の低温での仮圧着性に優れるという効果を逸脱しない範囲で、カルボン酸ビニルエステルと共重合可能なモノマーをモノマー単位として含んでいてもよい。このようなモノマーとしては、例えば、カルボン酸アリルエステル、(メタ)アクリル酸アルキルエステルが挙げられ、具体的には、酢酸アリル、(メタ)アクリル酸メチル及び(メタ)アクリル酸エチルが例示される。
 カルボン酸ビニルエステルの割合は、(d)成分を構成する全モノマー100質量%を基準として、20質量%以上60質量%未満であることが好ましく、25質量%以上55質量%未満であることがより好ましく、30質量%以上50質量%未満であることがさらに好ましい。60質量%以上では、室温において樹脂が粘着性を発現し、回路接続材料の巻重体を形成する際に、支持フィルムの背面へ転写してしまい、作業性が劣る傾向がある。20質量%未満では、樹脂自体の融点が上昇し、仮圧着工程において十分に溶融せず、粘着力向上の効果が得られ難い傾向がある。
 仮圧着時の被着体への接着性に優れると共に、支持フィルムの剥離性に優れることから、(d)熱可塑性ポリマーとして、オレフィン-カルボン酸ビニルエステル共重合体を含むことが好ましく、回路接続材料を構成する他の樹脂成分との相溶性の観点から、エチレン-酢酸ビニルエステル共重合体を含むことがより好ましい。
 (d)成分は、重量平均分子量(以下、「Mw」という)が40000~150000であることが好ましく、60000~130000であることがより好ましく、70000~120000であることがさらに好ましい。150000を超えると、汎用溶剤であるトルエン、酢酸エチル又はメチルエチルケトン等への溶解性が低下する傾向があり、40000未満では、樹脂層3の凝集力が低下して接着力が低下する傾向にある。
 (d)成分は、融点が30℃以上80℃未満であることが好ましく、30~70℃であることがより好ましい。融点が30℃未満では、仮圧着時に樹脂染み出しを誘発しやすくなるため、作業性が低下する傾向がある。一方、融点が80℃以上では、低温での仮圧着性に優れるという本発明の効果を奏し難くなる。
 (d)成分の配合量は、(a)及び(c)成分の合計100質量部に対して、0.5~5質量部であることが好ましく、1~3質量部であることがより好ましい。(d)成分の配合量が0.5質量部未満では低温での仮圧着時に優れるという本発明の効果を奏し難くなる傾向にあり、5質量部を超えると接続信頼性や接続外観が低下する傾向にある。
(e)有機微粒子
 本発明に係る回路接続材料には、必要に応じ有機微粒子を配合してもよい。有機微粒子は、応力緩和性を有する耐衝撃緩和剤としての機能を有するものである。回路接続材料が(E)成分として有機微粒子を含むことで、仮圧着後の本接続における各種接続部材との接着性をより一層向上することができる。特に、(b)成分としてカチオン重合型潜在性硬化剤を用いた回路接続材料の場合、被着体に対する接着強度がアニオン重合型潜在性硬化剤を用いた場合よりもやや劣る傾向があるため、(e)成分を添加することで接着性を改善することができる。
 有機微粒子としては、例えば、アクリル樹脂、シリコーン樹脂、ブタジエンゴム、ポリエステル、ポリウレタン、ポリビニルブチラール、ポリアリレート、ポリメチルメタクリレート、アクリルゴム、ポリスチレン、NBR、SBR、シリコーン変性樹脂等を成分として含む共重合体が挙げられる。接着性向上の観点から、有機微粒子として、(メタ)アクリル酸アルキル-ブタジエン-スチレン共重合体、(メタ)アクリル酸アルキル-シリコーン共重合体、シリコーン-(メタ)アクリル共重合体、シリコーンと(メタ)アクリル酸との複合体、(メタ)アクリル酸アルキル-ブタジエン-スチレンとシリコーンとの複合体及び(メタ)アクリル酸アルキルとシリコーンとの複合体を用いることが好ましい。また、(E)成分として、コアシェル型の構造を有し、コア層とシェル層で組成が異なる有機微粒子を用いることもできる。コアシェル型の有機微粒子として、具体的には、シリコーン-アクリルゴムをコアとてアクリル樹脂をグラフトした粒子、アクリル共重合体にアクリル樹脂をグラフトとした粒子が挙げられる。
 (e)成分を配合する場合、その配合量は、(a)成分100質量部に対して、20~50質量部であることが好ましく、30~40質量部であることがより好ましい。(e)成分の配合量を上記範囲とすることで、樹脂層3の被着体に対する接着性と支持フィルムの剥離性とのバランスを調整しやすい傾向にある。
 さらに、回路接続材料1(樹脂層3)は、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂及びイソシアネート類を含有することもできる。充填材を含有した場合、接続信頼性等の向上が得られるので好ましい。充填材の最大径が導電性粒子5の粒径未満であれば使用でき、配合量は、5~60体積%の範囲が好ましい。60体積%を超すと信頼性向上の効果が飽和する。カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基又はイソシアネート基を有する化合物が、接着性の向上の点から好ましい。
 導電性粒子5としては、Au、Ag、Ni、Cu、はんだ等の金属を含む金属粒子、並びにカーボン粒子が挙げられる。導電性粒子5は、好ましくはAu、Ag、白金族の貴金属類、より好ましくはAuからその表層が構成されていることがより好ましい。導電性粒子5の表層がこれらの金属から構成されていることにより、十分なポットライフを得ることができる。導電性粒子5は、Ni等の遷移金属類の表面をAu等の貴金属類で被覆したものでもよい。あるいは、非導電性のガラス、セラミック、プラスチック等に前記した導通層を被覆等により形成し、最外層を貴金属類としたものでもよい。最外層を貴金属類、核体をプラスチック又は熱溶融金属とした被覆粒子の場合、加熱加圧により変形性を有するので接続時に電極との接触面積が増加し信頼性が向上するので好ましい。
 導電性粒子の配合量は用途により適宜設定するが、通常は、回路接続材料のうち導電性粒子を除いた成分100体積部に対して0.1~30体積部の範囲である。過剰な導電性粒子による隣接回路の短絡等を防止するためには0.1~10体積部とするのがより好ましい。
 本発明に係る回路接続材料は、図1に示される構成に限定されるものではない。例えば、回路接続材料が、組成の異なる2層以上の層から構成された積層構造を有していてもよい。この場合、潜在性硬化剤と導電性粒子とがそれぞれ別の層に含まれていてもよい。これにより回路接続材料の保存安定性(ポットライフ)が向上する。また、回路接続材料は導電性粒子を含んでいなくてもよい。
 本発明に係る回路接続材料は、例えば、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、並びにプリント基板のような、1又は2以上の回路電極(接続端子)を有する回路部材同士が接続された接続構造体を形成するために好適に用いられる。
 図2は、接続構造体の一実施形態を示す断面図である。図2に示す接続構造体100は、第一の基板11及びこれの主面上に形成された第一の回路電極13を有する第一の回路部材10と、第二の基板21及びこれの主面上に形成された第二の回路電極23を有し、第二の回路電極23と第一の回路電極13とが対向するように配置された第二の回路部材20と、第一の回路部材10及び第二の回路部材20の間に介在する接続部1aとを備える。対向する第一の回路電極13と第二の回路電極23とは、電気的に接続されている。
 接続部1aは、回路接続材料1が硬化して形成された硬化物であり、硬化した樹脂層3aと導電性粒子5とから構成されている。接続部1aは、対向する第一の回路電極13と第二の回路電極23とが電気的に接続されるように、第一の回路部材10と第二の回路部材20とを接着している。対向する第一の回路電極13と第二の回路電極23とは、導電性粒子5を介して電気的に接続されている。なお、接続部が導電性粒子を含有していない場合、第一の回路電極13と第二の回路電極23とが直接接着することにより電気的な接続が可能である。
 第一の基板11は、ポリエステルテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、アクリル樹脂及びポリイミド樹脂からなる群より選ばれる少なくとも1種の樹脂を含む樹脂フィルムである。第一の回路電極13は、電極として機能し得る程度の導電性を有する材料(好ましくは金、銀、錫、白金族の金属及びインジウム-錫酸化物からなる群より選ばれる少なくとも一種)から形成されている。
 第二の基板21はガラス基板である。第二の回路電極は、好ましくは透明導電性材料から形成される。透明導電性材料としては典型的にはITOが用いられる。
 回路部材の接続構造体100は、例えば、第一の回路部材10と、上述のフィルム状の回路接続材料1と、第二の回路部材20とを、第一の回路電極13と第二の回路電極23とが対峙するようにこの順に積層した積層体を加熱及び加圧することにより、第一の回路電極13と第二の回路電極23とが電気的に接続されるように第一の回路部材10と第二の回路部材20とを接続する方法によって、得られる。
 この方法においては、まず、支持フィルム上に形成されているフィルム状の回路接続材料1を第二の回路部材20上に貼り合わせた状態で加熱及び加圧して回路接続材料1を仮接着し、支持フィルムを剥離してから、第一の回路部材10を回路電極を位置合わせしながら載せて、積層体を準備することができる。なお、接続の際の加熱によって発生する揮発成分による接続への影響を防止するために、接続工程の前に回路部材を予め加熱処理しておくことが好ましい。
 図3は、回路接続材料を用いた仮圧着方法の一実施形態を概略断面図により示す工程図である。
 本実施形態では、まず、支持フィルム7と、該支持フィルム7の一方面上に設けられ、フィルム状の回路接続材料1からなる接着剤層1bとを備えるフィルム状接着剤2を用意する(図3(a))。
 次に、接着剤層1bの側を第二の回路部材20の回路電極23が形成されている面に向けるようにして載せ、貼り合わせた状態で加熱及び加圧して接着剤層1bを第二の回路部材20に仮接着する(図3(b))。仮接着の温度は、80℃以下であり、70℃以下であることが好ましく、60℃以下であることがさらに好ましい。仮接着温度の下限値は特に限定されないが、生産性の観点から50℃程度である。仮接着の時間は接着温度により適宜調整されるが、0.1~5秒間で行うことが好ましく、0.5~3秒間がより好ましい。
 次いで、支持フィルム7を剥離して、接着剤層1bを第二の基板21の主面上に転写する(図3(c))。
 このようにして、接着剤層1bが第二の回路部材20上に仮圧着された後、第一の回路部材10を、第一の回路電極13を第二の回路部材20の側に向けるようにして接着剤層1b上に載せて形成される積層体を加熱及び加圧することで接続構造体100が得られる。
 上記積層体を加熱及び加圧する条件は、回路接続材料中の接着剤組成物の硬化性等に応じて、回路接続材料が硬化して十分な接着強度が得られるように、適宜調整される。
 接着剤層1bの加熱により、第一の回路電極13と第二の回路電極23との間の距離を十分に小さくした状態で接着剤層1bが硬化して、第一の回路部材10と第二の回路部材20とが接続部1aを介して強固に接続される。
 接着剤層1bの硬化により接続部1aが形成されて、図2に示すような接続構造体100が得られる。なお、接続の条件は、使用する用途、回路接続材料、回路部材によって適宜選択される。
 本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、接続構造体を構成する回路部材が有する基板は、シリコーン及びガリウム/ヒ素等の半導体チップ、並びに、ガラス、セラミックス、ガラス/エポキシ複合体、及びプラスチック等の絶縁基板であってもよい。
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
 本実施例における回路接続材料を構成する各成分は、以下の通りである。
「EP-4010S」:プロピレンオキサイド変成エポキシ樹脂(エポキシ当量330~390、ADEKA製)
「YL983U」:ビスフェノールF型エポキシ樹脂(エポキシ当量165~175、ジャパンエポキシレジン製)
「BPA328」:アクリル微粒子分散型エポキシ樹脂(アクリル微粒子を17質量%含有、エポキシ当量220~240、日本触媒製)
「EP-1032H60」:クレゾールノボラック型エポキシ樹脂(エポキシ当量163~175)
「HX3941HP」:アニオン重合型潜在性硬化剤含有エポキシ樹脂(イミダゾール系マイクロカプセル型硬化剤を35質量%含有ビスフェノールF型及びA型エポキシ樹脂混合タイプ、エポキシ当量160~190、旭化成ケミカルズ製)
「ZX1356-2」:ビスフェノールA・F共重合型フェノキシ樹脂(Mw50000、東都化成製)
「PKHC」:ビスフェノールA型フェノキシ樹脂(Mw45000、インケム・コーポレーション製)
「アクリルゴムA」:ブチルアクリレート40質量部-エチルアクリレート30質量部―アクリロニトリル30質量部―グリシジルメタクリレート3質量部の共重合体(Mw約85万)
「EXL-2655」:有機微粒子(ブタジエン-スチレン-メタクリレート共重合体から形成されたコアシェルポリマー、ローム・アンド・ハース社製)
「EV40W」:エチレン-酢酸ビニル共重合体(酢酸ビニル含有率41%、Mw80000、融点40℃、メルトフローレート65g/10分、三井・デュポンポリケミカル製)
「EV150」:エチレン-酢酸ビニル共重合体(酢酸ビニル含有率33%、融点61℃、メルトフローレート30g/10分、Mw120000、三井・デュポンポリケミカル製)
「AUL-704」:平均粒径4μmのポリスチレン球状粒子の表面に0.1μmのNi層及びAu層を設けた導電性粒子(積水化学製)
「SH6040」:シランカップリング剤(γ-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング・シリコーン(株)製)
「SI-60LA」:カチオン重合型潜在性硬化剤(芳香族スルホニウム塩、三新化学製)
(実施例1)
 「EP-4010S」30質量部、「YL983U」15質量部、「ZX1356-2」のトルエン/酢酸エチル(=50/50)40質量%溶液50質量部(不揮発分換算で20質量部)、「PKHC」のトルエン/酢酸エチル(=50/50)40質量%溶液50質量部(不揮発分換算で20質量部)、「EXL-2655」15質量部、「EV40W」の20質量%トルエン溶液10質量部(不揮発分換算で2質量部)、「AUL-704」4質量部、「SH6040」(γ-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング・シリコーン(株)製)1質量部及び「SI-60LA」3質量部を配合して混合溶液を得た。得られた混合溶液をアプリケータでPETフィルム上に塗布し、70℃10分間の熱風乾燥により、接着剤層の厚み20μmであるフィルム状の回路接続材料を得た。
(実施例2)
 「YL983U」20質量部、「BPA328」30質量部、「PKHC」のトルエン/酢酸エチル(=50/50)40質量%溶液125質量部(不揮発分換算で50質量部)、「EV40W」の20質量%トルエン溶液10質量部(不揮発分換算で2質量部)、「AUL-704」4質量部、「SH6040」1質量部及び「SI-60LA」3質量部となるように各成分を配合した以外は実施例1と同様にして、フィルム状の回路接続材料を得た。
(実施例3)
 「EV40W」に変えて、「EV150」を用いた以外は、実施例1と同様にして、フィルム状の回路接続材料を得た。
(実施例4)
 「EP-1032H60」5質量部、「HX3941HP」35質量部、「PKHC」のトルエン/酢酸エチル(=50/50)40質量%溶液50質量部(不揮発分換算で20質量部)、「アクリルゴムA」のトルエン/酢酸エチル(=50/50)10質量%溶液200質量部(不揮発分換算で20質量部)、「EXL-2655」20質量部、「EV40W」の20質量%トルエン溶液10質量部(不揮発分換算で2質量部)、「AUL-704」4質量部及び「SH6040」1質量部となるように各成分を配合した以外は実施例1と同様にして、フィルム状の回路接続材料を得た。
(実施例5)
 「BPA328」10質量部、「HX3941HP」40質量部、「PKHC」のトルエン/酢酸エチル(=50/50)40質量%溶液37.5質量部(不揮発分換算で15質量部)、「アクリルゴムA」のトルエン/酢酸エチル(=50/50)10質量%溶液350質量部(不揮発分換算で35質量部)、「EV40W」の20質量%トルエン溶液10質量部(不揮発分換算で2質量部)、「AUL-704」4質量部及び「SH6040」1質量部となるように各成分を配合した以外は実施例1と同様にして、フィルム状の回路接続材料を得た。
(比較例1)
 「EV40W」を添加しなかった以外は、実施例1と同様にして、フィルム状の回路接続材料を得た。
(比較例2)。
 「EV40W」を添加しなかった以外は、実施例2と同様にして、フィルム状の回路接続材料を得た。
(比較例3)
 「EV40W」を添加しなかった以外は、実施例4と同様にして、フィルム状の回路接続材料を得た。
(比較例4)。
 「EV40W」を添加しなかった以外は、実施例5と同様にして、フィルム状の回路接続材料を得た。
 実施例で作製した回路接続材料の組成を質量部(不揮発分換算)で表1に、比較例で作製した回路接続材料の組成を質量部(不揮発分換算)で表2にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[仮圧着性の評価]
 上記フィルム状の回路接続材料の接着剤層面を、全面に酸化インジウム(ITO)の薄層を有する厚み0.7mmのガラス板に、それぞれ60℃、70℃、80℃で1MPaの条件で、1秒間又は3秒間仮接着した後PETフィルムを剥離することで、仮圧着性を評価した。接着剤層が均一にITO上に転写されている状態を「A」、接着剤層が部分的にITO上に転写されている状態を「B」、接着剤層がITO上に全く転写されない状態を「C」とした。実施例の評価結果を表3に、比較例の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明に係るフィルム状の回路接続材料は、60℃1秒間と極めて低温かつ短時間の条件においても仮圧着性に十分に優れることが確認された。
 1…回路接続材料、2…フィルム状接着剤、1a…接続部、1b…接着剤層、3…樹脂層、3a…硬化した樹脂層、5…導電性粒子、7…支持フィルム、10…第一の回路部材、11…第一の基板、13…第一の回路電極、20…第二の回路部材、21…第二の基板、23…第二の回路電極、100…接続構造体。

Claims (7)

  1.  対向する回路電極同士を電気的に接続する回路接続材料であって、
     (a)エポキシ樹脂と、
     (b)潜在性硬化剤と、
     (c)フィルム形成材と、
     (d)カルボン酸ビニルエステルをモノマー単位として含む熱可塑性ポリマーと、
    を含有する回路接続材料。
  2.  前記カルボン酸ビニルエステルが酢酸ビニルである、請求項1記載の回路接続材料。
  3.  前記潜在性硬化剤がカチオン重合型潜在性硬化剤である、請求項1又は2記載の回路接続材料。
  4.  前記カチオン重合型潜在性硬化剤が芳香族スルホニウム塩を含む、請求項3記載の回路接続材料。
  5.  有機微粒子を更に含有する、請求項1~4のいずれか一項に記載の回路接続材料。
  6.  第一の基板及び該基板の主面上に形成された第一の回路電極を有する第一の回路部材と、
     第二の基板及び該基板の主面上に形成された第二の回路電極を有し、該第二の回路電極と前記第一の回路電極とが対向するように配置され、該第二の回路電極が前記第一の回路電極と電気的に接続されている第二の回路部材と、
     前記第一の回路部材及び前記第二の回路部材の間に介在する接続部と、
    を備え、
     前記接続部が、請求項1~5のいずれか一項に記載の回路接続材料の硬化物である、接続構造体。
  7.  支持フィルムと、該支持フィルムの一方面上に設けられ、請求項1~5のいずれか一項に記載の回路接続材料からなる接着剤層と、を備えるフィルム状接着剤を、基板及び該基板の主面上に形成された回路電極を有する回路部材に、80℃以下で仮接着する工程と、
     前記仮接着後、前記支持フィルムを剥離して前記接着剤層を前記基板の主面に転写する工程と、
    を備える仮圧着方法。
PCT/JP2010/070335 2009-11-17 2010-11-16 回路接続材料、それを用いた接続構造体及び仮圧着方法 WO2011062149A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112012011798-0A BR112012011798B1 (pt) 2009-11-17 2010-11-16 material para conexão de circuito, estrutura para conexão que usa o mesmo e método de ligação por pressão temporária
KR1020127013955A KR101374927B1 (ko) 2009-11-17 2010-11-16 회로 접속 재료, 이를 이용한 접속 구조체 및 가압착 방법
JP2010548314A JP5944102B2 (ja) 2009-11-17 2010-11-16 回路接続材料、それを用いた接続構造体
CN2010800517785A CN102686690A (zh) 2009-11-17 2010-11-16 电路连接材料、使用其的连接结构体以及临时压接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009262034 2009-11-17
JP2009-262034 2009-11-17

Publications (1)

Publication Number Publication Date
WO2011062149A1 true WO2011062149A1 (ja) 2011-05-26

Family

ID=44059627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070335 WO2011062149A1 (ja) 2009-11-17 2010-11-16 回路接続材料、それを用いた接続構造体及び仮圧着方法

Country Status (6)

Country Link
JP (2) JP5944102B2 (ja)
KR (1) KR101374927B1 (ja)
CN (2) CN102686690A (ja)
BR (1) BR112012011798B1 (ja)
TW (1) TWI452110B (ja)
WO (1) WO2011062149A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001825A (ja) * 2011-06-17 2013-01-07 Tosoh Corp エチレン−酢酸ビニル系共重合体組成物及びそれを用いた硬化物
WO2013038840A1 (ja) * 2011-09-12 2013-03-21 住友電気工業株式会社 フィルム状異方導電性接着剤
CN103173173A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种双组分环氧胶粘剂及其制备方法
CN103173176A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种双组分改性环氧胶粘剂及其制备方法
WO2020196119A1 (ja) * 2019-03-28 2020-10-01 日東電工株式会社 硬化型粘接着シート、及び硬化型粘接着シートの製造方法
WO2021060486A1 (ja) * 2019-09-27 2021-04-01 株式会社カネカ 接着剤、および接着剤の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044261B2 (ja) * 2012-10-22 2016-12-14 日立化成株式会社 異方導電性接着剤組成物
CN104592922B (zh) * 2014-12-31 2016-04-20 湖北绿色家园精细化工股份有限公司 一种透明、高硬度、耐黄变环氧饰品胶及其制备工艺
CN106883786A (zh) * 2017-02-24 2017-06-23 深圳市金晖科技有限公司 一种全方位热固导电胶的制备方法
JP6769586B1 (ja) * 2018-12-26 2020-10-14 住友ベークライト株式会社 樹脂組成物および金属ベース銅張積層板
CN110972411B (zh) * 2019-10-22 2022-12-06 深圳丹邦科技股份有限公司 基于量子碳基膜的柔性线路板基材及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316147A (ja) * 1989-03-09 1991-01-24 Hitachi Chem Co Ltd 回路の接続方法及びそれに用いる接着剤フィルム
WO2007099965A1 (ja) * 2006-02-27 2007-09-07 Hitachi Chemical Company, Ltd. 回路接続材料、これを用いた回路部材の接続構造及びその製造方法
JP2008111092A (ja) * 2006-10-06 2008-05-15 Hitachi Chem Co Ltd 回路接続材料及びそれを用いた接続構造体
WO2009054410A1 (ja) * 2007-10-24 2009-04-30 Hitachi Chemical Company, Ltd. 導電粒子、回路接続材料及び接続構造体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279646A (ja) * 1991-09-09 1993-10-26 Hitachi Chem Co Ltd マルチワイヤ配線板用接着剤およびこの接着剤を用いたマルチワイヤ配線板およびその製造方法
JP3907217B2 (ja) * 1993-07-29 2007-04-18 日立化成工業株式会社 回路接続材料とその接続材料を用いた回路の接続方法
KR100601341B1 (ko) * 2004-06-23 2006-07-14 엘에스전선 주식회사 이방 도전성 접착제 및 이를 이용한 접착필름
US20070116961A1 (en) * 2005-11-23 2007-05-24 3M Innovative Properties Company Anisotropic conductive adhesive compositions
KR20110074634A (ko) * 2007-01-10 2011-06-30 히다치 가세고교 가부시끼가이샤 회로 부재 접속용 접착제 및 이것을 이용한 반도체 장치
JP5222490B2 (ja) * 2007-04-25 2013-06-26 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体
WO2009001605A1 (ja) * 2007-06-26 2008-12-31 Sony Chemical & Information Device Corporation 異方性導電材料、接続構造体及びその製造方法
CN101688099B (zh) * 2007-08-08 2016-08-03 日立化成株式会社 粘接剂组合物、膜状粘接剂和电路部件的连接结构
JP5141456B2 (ja) * 2007-10-24 2013-02-13 日立化成工業株式会社 回路接続材料及び接続構造体
JP2009161684A (ja) * 2008-01-09 2009-07-23 Hitachi Chem Co Ltd 回路接続用接着剤組成物、この接着剤組成物用いた回路部材の接続構造及び回路部材の接続方法
JP5226562B2 (ja) * 2008-03-27 2013-07-03 デクセリアルズ株式会社 異方性導電フィルム、並びに、接合体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316147A (ja) * 1989-03-09 1991-01-24 Hitachi Chem Co Ltd 回路の接続方法及びそれに用いる接着剤フィルム
WO2007099965A1 (ja) * 2006-02-27 2007-09-07 Hitachi Chemical Company, Ltd. 回路接続材料、これを用いた回路部材の接続構造及びその製造方法
JP2008111092A (ja) * 2006-10-06 2008-05-15 Hitachi Chem Co Ltd 回路接続材料及びそれを用いた接続構造体
WO2009054410A1 (ja) * 2007-10-24 2009-04-30 Hitachi Chemical Company, Ltd. 導電粒子、回路接続材料及び接続構造体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001825A (ja) * 2011-06-17 2013-01-07 Tosoh Corp エチレン−酢酸ビニル系共重合体組成物及びそれを用いた硬化物
WO2013038840A1 (ja) * 2011-09-12 2013-03-21 住友電気工業株式会社 フィルム状異方導電性接着剤
JP2013060479A (ja) * 2011-09-12 2013-04-04 Sumitomo Electric Ind Ltd フィルム状異方導電性接着剤
CN103173173A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种双组分环氧胶粘剂及其制备方法
CN103173176A (zh) * 2013-03-23 2013-06-26 广东新展化工新材料有限公司 一种双组分改性环氧胶粘剂及其制备方法
WO2020196119A1 (ja) * 2019-03-28 2020-10-01 日東電工株式会社 硬化型粘接着シート、及び硬化型粘接着シートの製造方法
JP7405832B2 (ja) 2019-03-28 2023-12-26 日東電工株式会社 硬化型粘接着シート、及び硬化型粘接着シートの製造方法
WO2021060486A1 (ja) * 2019-09-27 2021-04-01 株式会社カネカ 接着剤、および接着剤の製造方法

Also Published As

Publication number Publication date
JP5944102B2 (ja) 2016-07-05
KR101374927B1 (ko) 2014-03-14
BR112012011798A2 (ja) 2018-03-27
CN104877611B (zh) 2020-04-10
CN102686690A (zh) 2012-09-19
KR20120087978A (ko) 2012-08-07
JP2015091957A (ja) 2015-05-14
BR112012011798B1 (pt) 2020-12-08
JPWO2011062149A1 (ja) 2013-04-04
CN104877611A (zh) 2015-09-02
TWI452110B (zh) 2014-09-11
TW201144404A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
JP5944102B2 (ja) 回路接続材料、それを用いた接続構造体
JP5716763B2 (ja) 回路接続材料及びそれを用いた回路部材の接続構造
WO2004060996A1 (ja) 硬化性樹脂組成物、接着性エポキシ樹脂ペースト、接着性エポキシ樹脂シート、導電接続ペースト、導電接続シート及び電子部品接合体
JP2008111092A (ja) 回路接続材料及びそれを用いた接続構造体
KR20030071484A (ko) 전극의 접속방법, 그것에 사용되는 표면처리 배선판 및접착필름 및 전극의 접속구조
JP6237855B2 (ja) 接着フィルム、回路部材の接続構造及び回路部材の接続方法
JPH06256746A (ja) 接着剤組成物および接着フィルム
JP2007224228A (ja) 回路接続材料並びに回路端子の接続構造体及び接続方法
JP6146302B2 (ja) 回路接続材料、回路部材の接続構造及び回路部材の接続構造の製造方法
JP2012021140A (ja) 回路接続用接着フィルム、これを用いた回路接続構造体及び回路部材の接続方法
JP4265140B2 (ja) 異方導電性接着剤組成物、それを用いた回路端子の接続方法及び接続構造体
JP2008308682A (ja) 回路接続材料
JP4888482B2 (ja) 異方導電性接着剤組成物、それを用いた回路端子の接続方法及び接続構造体
JP2005194413A (ja) 回路接続用接着フィルム及び回路接続構造体
JP2009161684A (ja) 回路接続用接着剤組成物、この接着剤組成物用いた回路部材の接続構造及び回路部材の接続方法
JP2011114037A (ja) 回路接続材料及び接続体
JP2012023024A (ja) 回路接続用接着フィルム、これを用いた回路接続構造体及び回路部材の接続方法
JP4075409B2 (ja) 接着フィルム及びそれを用いた電極の接続構造
JPH0625632A (ja) 接着剤組成物及び積層フィルム
JP2009299079A (ja) 回路用接続部材及び回路板
TWI452103B (zh) 電路連接用接著膜及其用途、電路連接構造體及其製造方法、以及電路構件的連接方法
JP2011111474A (ja) 回路接続材料
JP5365666B2 (ja) 回路接続材料並びに回路端子の接続構造体及び接続方法
JP2010209207A (ja) 低温用接着剤及び接合体
JP2009105449A (ja) 回路用接続部材及び回路板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051778.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010548314

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4300/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127013955

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10831543

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011798

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011798

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120517